WO2021039838A1 - Washing method of semiconductor manufacturing device component having gas holes - Google Patents

Washing method of semiconductor manufacturing device component having gas holes Download PDF

Info

Publication number
WO2021039838A1
WO2021039838A1 PCT/JP2020/032168 JP2020032168W WO2021039838A1 WO 2021039838 A1 WO2021039838 A1 WO 2021039838A1 JP 2020032168 W JP2020032168 W JP 2020032168W WO 2021039838 A1 WO2021039838 A1 WO 2021039838A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
semiconductor manufacturing
cleaning
gas hole
manufacturing apparatus
Prior art date
Application number
PCT/JP2020/032168
Other languages
French (fr)
Japanese (ja)
Inventor
知宏 松村
昭廣 松本
Original Assignee
株式会社新菱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=74685044&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021039838(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社新菱 filed Critical 株式会社新菱
Priority to EP20857702.3A priority Critical patent/EP4023349A4/en
Priority to JP2020569214A priority patent/JP6859496B1/en
Publication of WO2021039838A1 publication Critical patent/WO2021039838A1/en
Priority to US17/577,461 priority patent/US11753714B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4407Cleaning of reactor or reactor parts by using wet or mechanical methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0042Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/005Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by infrared radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • B08B7/026Using sound waves
    • B08B7/028Using ultrasounds

Definitions

  • the present invention relates to a method for cleaning a semiconductor manufacturing apparatus component having a gas hole.
  • the present application claims priority based on Japanese Patent Application No. 2019-155485 filed in Japan on August 28, 2019, the contents of which are incorporated herein by reference.
  • a shower head for uniformly injecting gas onto the wafer when etching or film-forming the surface of the semiconductor wafer is provided.
  • the shower head is usually made of aluminum or an aluminum alloy and includes a dispersion plate having a plurality of through holes (gas holes). Deposits generated by the gas injected from the shower head adhere to the surface (gas injection surface) of the dispersion plate on the side facing the wafer. Since the deposits also adhere to the inside of the gas holes, if the shower head is used continuously without removing the deposits, the gas holes will be closed in due course. Therefore, it is necessary to clean the gas injection surface of the shower head to remove deposits.
  • Patent Document 1 describes at least ammonium fluoride, hydrofluoric acid, and ethylene glycol in a cleaning method for removing a film to be removed, which is a metal oxide film adhering to the surface of an object to be cleaned, which is made of aluminum or an aluminum alloy.
  • a cleaning method comprising a cleaning solution containing the above-mentioned or a cleaning solution consisting of an ammonium fluoride acetic acid solution is described.
  • Patent Document 2 describes a method of cleaning process deposits from a component of a process chamber of a substrate processing apparatus, wherein the component has a plurality of gas holes, and the method is (a) the plurality of the components in the component.
  • the process deposits in the multiple gas holes are simultaneously pushed through the interior by mechanically pushing multiple extension pins, which are spaced apart to match the layout of the gas holes in the component, into the gas holes of the component.
  • the steps of removing and cleaning the process deposits in the gas hole, (b) exposing the component to an acidic solution, and (c) (1) placing the component in the plasma zone, (2).
  • a step of plasma stabilizing the component by a step of introducing a gas into the plasma zone, (3) a step of forming a plasma of the gas in the plasma zone, and (4) a step of exhausting the gas from the plasma zone. And, the above-mentioned method is described.
  • step (a) takes time and effort, and semiconductor manufacturing having gas holes can be easily performed in a short time. Cannot clean equipment parts.
  • an object of the present invention is to provide a simple method for cleaning a semiconductor manufacturing apparatus component having a gas hole, which can shorten the cleaning time.
  • a method for cleaning semiconductor manufacturing equipment parts having gas holes used in a single-wafer type semiconductor manufacturing equipment for processing a semiconductor wafer is made of aluminum or an aluminum alloy, and includes a dispersion plate having a plurality of gas holes.
  • a method for cleaning a semiconductor manufacturing apparatus component having a gas hole which comprises a step (2) of bringing the gas injection surface and the inside of the gas hole into contact with a cleaning liquid containing an inorganic acid.
  • [3] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to [1] or [2], wherein the average energy density of the laser beam is 1 ⁇ 10 3 to 1 ⁇ 10 13 W / m 2.
  • [4] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of [1] to [3], wherein the laser beam is a pulse beam.
  • [5] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to [4], wherein the pulse frequency of the pulse beam is 1 Hz to 5000 kHz.
  • the laser beam is selected from the group consisting of CO 2 laser, He-Ne laser, argon laser, YAG laser, Nd: YAG laser, Er: Nd-YAG laser, fiber laser and high power diode laser.
  • Cleaning method [9] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of [1] to [8], wherein the cleaning liquid contains an oxidizing agent. [10] Cleaning of the semiconductor manufacturing equipment component having the gas hole according to any one of [1] to [9], in which the semiconductor manufacturing equipment component having the gas hole is immersed in the cleaning liquid in the step (2).
  • FIG. 1 is a block diagram showing a film forming apparatus including a shower head to which the cleaning method of the present invention is carried out.
  • YAG laser means a solid-state laser using yttrium aluminum garnet.
  • Nd: YAG laser means a YAG laser that uses a crystal doped (added) with a few percent neodymium (element symbol Nd) in the process of producing a YAG crystal, and is an "Er: Nd-YAG laser”.
  • Er Means a YAG laser that uses crystals doped with a few percent neodymium (element symbol Nd) and a few percent erbium (element symbol Er) in the process of producing YAG crystals.
  • the present invention is a method for cleaning semiconductor manufacturing equipment parts having gas holes used in a single-wafer type semiconductor manufacturing equipment for processing a semiconductor wafer (hereinafter, may be simply referred to as "the cleaning method of the present invention").
  • the semiconductor manufacturing equipment component having gas holes (hereinafter, may be simply referred to as “semiconductor manufacturing equipment component”) is made of aluminum or an aluminum alloy, and includes a dispersion plate having a plurality of gas holes.
  • the dispersion plate is a part of the semiconductor manufacturing equipment component, and may be integrally formed inseparably from a portion of the semiconductor manufacturing equipment component other than the dispersion plate, or may be detachably configured.
  • FIG. 1 shows an example of a film forming apparatus including a shower head.
  • the shower head to which the cleaning method of the present invention can be applied is not limited to the one shown in FIG.
  • the film forming apparatus 2 shown in FIG. 1 has, for example, a processing container 4 made of aluminum or an aluminum alloy whose cross section is substantially cylindrical.
  • a shower head 6 for introducing a necessary processing gas for example, a raw material gas for film formation or another support gas, is provided on the ceiling portion in the processing container 4, and a dispersion plate 8 on the lower surface thereof is provided.
  • the processing gas is blown out from a large number of gas holes 10 provided in the above toward the processing space S.
  • the side wall of the processing container 4 is provided with a carry-in / out port 12 for carrying in / out a substrate W such as a semiconductor wafer as an object to be processed into the processing container 4, and the carry-out port 12 is airtight.
  • a gate valve 14 that can be opened and closed is provided in the.
  • An exhaust drop space 18 is formed in the bottom 16 of the processing container 4. Specifically, a large opening 20 is formed in the central portion of the bottom 16 of the processing container 4, and a bottomed cylindrical cylindrical partition wall 22 extending downward is connected to the opening 20 to connect the opening 20.
  • An exhaust drop space 18 is formed inside.
  • the bottom 24 of the cylindrical partition wall 22 that partitions the exhaust drop space 18 is provided with a cylindrical column 26 that stands up from this and is made of, for example, quartz glass, and a mounting table is provided at the upper end thereof. 28 is fixed by welding.
  • the support column 26 and the mounting table 28 may be formed of ceramic such as AlN.
  • the opening 20 on the inlet side of the exhaust drop space 18 is set to be smaller than the diameter of the mounting table 28, and the processing gas flowing down the outside of the peripheral edge of the mounting table 28 wraps around below the mounting table 28. It is designed to flow into the opening 20.
  • An exhaust port 30 is formed on the lower side wall of the cylindrical partition wall 22 so as to face the exhaust drop space 18, and a vacuum exhaust system 32 is connected to the exhaust port 30.
  • the vacuum exhaust system 32 is composed of an exhaust pipe 34 provided with a vacuum pump (not shown), and the exhaust pipe 34 is connected to the exhaust port 30 in the processing container 4 and in the exhaust drop space 18.
  • the atmosphere can be evacuated and exhausted.
  • a pressure adjusting valve (not shown) capable of controlling the opening degree is interposed in the middle of the exhaust pipe 34, and the pressure in the processing container 4 is adjusted by automatically adjusting the opening degree of the valve. Can be maintained at a constant value or can be quickly changed to a desired pressure.
  • a heating means 36 made of a resistance heating heater such as a carbon wire is embedded in the mounting table 28, and a substrate W such as a semiconductor wafer as an object to be processed is placed on the upper surface of the mounting table 28. This can be heated.
  • the heating means 36 is connected to a power supply line 38 arranged in the support column 26 so that electric power can be supplied while being controlled.
  • the mounting table 28 is formed with a plurality of, for example, three pin insertion holes 40 penetrating in the vertical direction (only two are shown in FIG. 1), and can be moved up and down in each pin insertion hole 40.
  • a push-up pin 42 inserted in the fitted state is arranged.
  • a ceramic push-up ring 44 such as alumina formed in a circular ring shape is arranged at the lower end of the push-up pin 42, and the lower end of each push-up pin 42 is not fixed to the push-up ring 44. And support it.
  • the arm portion 46 extending from the push-up ring 44 is connected to a salvage rod 48 provided so as to penetrate the bottom portion 16 of the processing container 4, and the salvage rod 48 can be raised and lowered by an actuator 50.
  • each push-up pin 42 is adapted to appear and disappear upward from the upper end of each pin insertion hole 40 when the wafer W is delivered.
  • a stretchable bellows 52 is interposed in the penetrating portion of the bottom of the container of the infestation rod 48 of the actuator 50 so that the infestation rod 48 can move up and down while maintaining the airtightness in the processing container 4.
  • the shower head 6 is detachably attached to a ceiling plate 54 that closes the upper end opening of the processing container 4 by a bolt 57 via a sealing member 55 such as an O-ring.
  • the shower head 6 has, for example, a bottomed cylindrical shower head main body 56.
  • a sealing member 58 such as an O-ring is interposed between the peripheral portion of the ceiling plate 54 and the upper end portion of the processing container 4, so that the airtightness inside the processing container 4 is maintained.
  • the entire shower head 6 is made of aluminum or an aluminum alloy.
  • a first diffusion chamber 60 for diffusing the raw material gas and a second diffusion chamber 62 for diffusing the support gas are separated and formed in the shower head main body 56.
  • the first diffusion chamber 60 and the second diffusion chamber 62 are separated and formed above and below the partition plate 64.
  • the first diffusion chamber 60 is communicated with the processing gas introduction port 66A provided on the ceiling plate 7 of the shower head 6 for introducing the raw material gas
  • the second diffusion chamber 62 provides the support gas. It is communicated with the support gas introduction port 66B provided on the ceiling plate 7 for introduction.
  • the plate-shaped dispersion plate 8 on the lower surface of the shower head main body 56 is detachably attached to the shower head main body 56 by bolts 9.
  • a plurality of gas holes 10 formed in the dispersion plate 8 which is the lower surface of the shower head main body 56 are arranged vertically and horizontally in a substantially in-plane manner in a matrix.
  • the gas hole 10 is formed by a raw material gas hole 10A for injecting a raw material gas and a second support gas hole 10C provided so as to be located between two adjacent raw material gas holes 10A.
  • Step (1) A step of scanning the gas injection surface, which is the surface of the dispersion plate facing the wafer, with a laser beam.
  • Step (2) Cleaning the gas injection surface and the inside of the gas hole containing an inorganic acid. Process of contact with liquid
  • Step (1) In the step (1), by scanning the gas injection surface with a laser beam, deposits adhering to the gas injection surface, which is the surface of the dispersion plate on the side facing the wafer, are removed. Further, since the laser beam also irradiates the inner surface of the gas hole provided in the dispersion plate, at least a part of the deposits adhering to the inner surface of the gas hole is removed. Further, even if the deposits remaining attached to the inner surface of the gas pores are not removed, the irradiation with the laser beam causes physical changes such as cracking. Therefore, when the cleaning liquid is brought into contact with the cleaning liquid in the step (2), the cleaning liquid easily permeates the deposits.
  • the laser source of the laser beam is, for example, a gas laser such as a CO 2 laser, a He-Ne laser or an argon laser, a YAG laser, an Nd: YAG laser, an Er: Nd-YAG laser, a fiber laser or a high power diode laser.
  • Solid laser As the laser source, at least one selected from the group consisting of these gas lasers and solid-state lasers is preferable, and any one is more preferable. Among them, it is more preferable to select from the group consisting of these solid-state lasers, and it is further preferable to select from the group consisting of YAG laser, Nd: YAG laser and fiber laser.
  • laser source of the laser beam As described above, it is possible to remove at least deposits on the gas injection surface without damaging the dispersion plate made of aluminum or an aluminum alloy.
  • Laser beams from two or more types of laser sources may be used at the same time, or only laser beams from one type of laser source may be used.
  • a CO 2 laser typically produces a laser beam with a wavelength of 9300-10600 nm.
  • Argon lasers typically produce a laser beam with a wavelength of 488 nm or 514 nm.
  • Nd YAG lasers typically generate a laser beam with a wavelength of 1064 nm.
  • Er Nd-YAG lasers typically generate a laser beam with a wavelength of 2940 nm.
  • Fiber lasers typically produce a laser beam with a wavelength of 1070 nm.
  • High power diode lasers typically generate a laser beam with a wavelength of 810 to 980 nm.
  • the wavelength of the laser beam is preferably 10 nm to 1000 ⁇ m, preferably in the range of 700 nm to 1000 ⁇ m (infrared light, preferably in the range of 750 to 4000 nm), in the range of 10 to 400 nm (ultraviolet light, preferably in the range of 10 to 380 nm). Alternatively, it is more preferably in the range of 400 to 700 nm (visible light). Laser beams of multiple wavelengths may be irradiated at the same time.
  • 700 nm to 1000 ⁇ m is preferable, 750 to 4000 nm is more preferable, 760 to 2000 nm is further preferable, 785 to 1600 nm is more preferable, and 1000 to 1100 nm is even more preferable.
  • the average energy density obtained by dividing the average energy of the laser beam by the irradiation area may be any energy density that does not damage the aluminum or aluminum alloy dispersion plate and can at least remove the deposits on the gas injection surface.
  • ⁇ 10 3 to 1 ⁇ 10 13 W / m 2 is preferable, 1 ⁇ 10 3 to 1 ⁇ 10 12 W / m 2 is more preferable, and 1 ⁇ 10 3 to 1 ⁇ 10 11 W / m 2 is even more preferable.
  • the energy of the laser beam can be freely set within the above energy density range.
  • the average energy of the laser beam is usually selected so that the average energy density falls within the above range, preferably 1 to 10000 W, more preferably 5 to 8000 W, still more preferably 10 to 5000 W.
  • the beam profile of the laser can be either a Gaussian beam or a tophat beam.
  • a tophat beam is preferable because it can remove deposits uniformly without leaving any irradiation marks.
  • the laser beam may be a continuous wave beam or a pulse beam.
  • a pulse beam is preferable because it is less affected by heat. If the laser beam is a pulse beam, the output of each pulse will increase as its frequency decreases.
  • the pulse frequency is preferably 1 Hz to 5000 kHz, more preferably 5 Hz to 1000 kHz, still more preferably 10 Hz to 500 kHz.
  • the sweep speed is preferably 0.01 to 100 mm / sec, more preferably 0.1 to 50 mm / sec, and even more preferably 1 to 10 mm / sec.
  • Step (2) the deposits that could not be completely removed in the step (1) are removed by bringing the gas injection surface and the inside of the gas holes into contact with the cleaning liquid containing an inorganic acid.
  • the irradiation of the laser beam causes physical changes such as cracks in the film of the deposit, which makes it easier for the cleaning liquid to permeate. Therefore, the removal of the deposit is completed in a shorter time than in the case of contacting with the cleaning liquid without irradiating the laser beam.
  • the inorganic acid contained in the cleaning liquid is preferably at least one selected from the group consisting of phosphoric acid, boric acid, hydrochloric acid, sulfuric acid, nitric acid and hydrofluoric acid. It is more preferably selected from sulfuric acid, nitric acid and hydrofluoric acid, and even more preferably selected from nitric acid and hydrofluoric acid.
  • the concentration of the inorganic acid is not particularly limited.
  • the cleaning liquid contains an oxidizing agent.
  • the oxidizing agent is, for example, hydrogen peroxide, nitric acid, concentrated sulfuric acid, or the like.
  • Nitric acid is particularly preferable because it is an inorganic acid and at the same time acts as an oxidizing agent.
  • Concentrated nitric acid is particularly preferable as nitric acid.
  • Hydrofluoric acid is particularly useful for removing deposits containing silicon dioxide.
  • the cleaning liquid may contain water. When the inorganic acid is nitric acid, hydrochloric acid, dilute sulfuric acid or hydrofluoric acid, water is contained in the cleaning liquid.
  • the cleaning liquid may further contain additives such as a surfactant.
  • the inside of the gas injection surface and the gas hole and the cleaning liquid containing an inorganic acid are brought into contact with each other by, for example, a method of immersing a cleaning object such as a shower head in the cleaning liquid or a method of spraying the cleaning object. ,
  • the method of dipping is preferable.
  • the time for contacting the gas injection surface and the inside of the gas hole with the cleaning liquid containing an inorganic acid is preferably 0.5 to 24 hours, more preferably 1 to 12 hours, and even more preferably 2 to 12 hours. Since the contact time is relatively short, the wall thickness of the semiconductor manufacturing apparatus component having the gas hole, which is the object to be cleaned, is small, so that the life of the semiconductor manufacturing apparatus component having the gas hole can be extended.
  • the cleaning method of the present invention may include a step (3) of irradiating the gas injection surface with ultrasonic waves during or after the step (1) or the step (2).
  • a step (3) of irradiating the gas injection surface with ultrasonic waves By irradiating the gas injection surface with ultrasonic waves, further physical defects can be caused in the film of the deposit, the processing time in the step (2) can be further shortened, and the gas holes to be cleaned can be obtained. It is possible to further extend the life of the semiconductor manufacturing equipment component having the gas hole by reducing the wall thinning of the semiconductor manufacturing equipment component having the gas hole.
  • the semiconductor manufacturing apparatus component having a gas hole of the present invention first irradiates the gas injection surface of the semiconductor manufacturing apparatus component having a gas hole with a laser beam and adheres to the surface of the gas injection surface and the vicinity of the surface of the gas hole.
  • the deposits are removed (step 1), and then the gas injection surface and the inside of the gas holes are brought into contact with a cleaning liquid containing an inorganic acid to remove the deposits that cannot be removed by the laser beam alone (step 2).
  • step 1 even if the deposit adhering to the back of the gas hole cannot be removed, it is considered that the film of the deposit is cracked or peeled off from the inner wall of the gas hole.
  • step 2 the cleaning liquid permeates through the cracks formed in the film of the deposit or the gap formed between the film of the deposit and the inner wall of the gas hole, and the deposit inside the gas hole can be removed in a short time. It is conceivable that.
  • step 2 although the diameter of the gas hole is increased due to the thinning of the dispersion plate, the expansion rate of the diameter of the gas hole is small because it is a short time, and the dispersion of the diameter of the gas hole is larger than before. It doesn't become.
  • Diameter of gas hole before nitric acid immersion 972 ⁇ m
  • Diameter of gas hole after immersion in nitric acid 1018 ⁇ m
  • Diameter of unused gas hole 1016 ⁇ m
  • the diameter of the gas hole increased by 2 ⁇ m as a result of cleaning by dipping in nitric acid.
  • Comparative Example 2 (Washing by dipping in nitric acid) The aluminum alloy shower head to which aluminum fluoride was attached, which was different from the aluminum alloy shower head to which aluminum fluoride was attached, which was used in Comparative Example 1, was washed by the same nitrate immersion as in Comparative Example 1. Similar to Comparative Example 1, complete removal of aluminum fluoride around the gas hole was confirmed, but residual aluminum fluoride was observed on a part of the gas injection surface.
  • Example 1 (Laser irradiation) A YAG laser (Gaussian beam, pulse oscillation, pulse frequency 200 kHz) with an average output of 200 W and a wavelength of 1064 nm is continuously applied to the plasma contact surface of an aluminum alloy shower head to which aluminum fluoride is attached at a beam diameter of 30 ⁇ m and a beam sweep speed of 5 mm / sec. Swept.
  • a YAG laser Gausian beam, pulse oscillation, pulse frequency 200 kHz
  • a wavelength of 1064 nm is continuously applied to the plasma contact surface of an aluminum alloy shower head to which aluminum fluoride is attached at a beam diameter of 30 ⁇ m and a beam sweep speed of 5 mm / sec. Swept.
  • the laser irradiation surface was observed with the naked eye after the laser irradiation, the removal of aluminum fluoride was confirmed over the entire surface of the laser irradiation surface.
  • Example 2 (Laser irradiation) A YAG laser (tophat beam, pulse oscillation, pulse frequency 10 Hz) with an average output of 40 W and a wavelength of 1064 nm is applied to the plasma contact surface of an aluminum alloy shower head with aluminum fluoride attached at a beam diameter of 6 mm and a beam sweep speed of 1 mm / sec. It was swept continuously. When the laser irradiation surface was observed with the naked eye after the laser irradiation, the removal of aluminum fluoride was confirmed over the entire surface of the laser irradiation surface. Compared with Example 1 (Gaussian beam), the surface uniformity after laser treatment was improved.
  • Example 3 (Laser irradiation) A YAG laser (tophat beam, pulse oscillation, pulse frequency 10 Hz) with an average output of 40 W and a wavelength of 1064 nm was applied to the plasma contact surface of an aluminum alloy shower head with aluminum fluoride attached at a beam diameter of 6 mm and a beam sweep speed of 5 mm / sec. It was swept continuously. When the laser irradiation surface was observed with the naked eye after the laser irradiation, the removal of aluminum fluoride was confirmed over the entire surface of the laser irradiation surface.
  • Example 1 Compared with Example 1 (Gaussian beam), the surface uniformity after laser treatment was improved. (Change in diameter of gas hole due to laser irradiation)
  • the gas holes of the aluminum alloy shower head subjected to laser irradiation were magnified and observed using a digital microscope (same as above) before and after cleaning, and the diameter of the gas holes before cleaning and the diameter of the gas holes after cleaning. was measured. The following measured values were obtained. Diameter of gas hole before laser irradiation: 978 ⁇ m Diameter of gas hole after laser irradiation: 1009 ⁇ m A widening of the diameter of the gas hole was observed by laser irradiation. This is due to the partial removal of aluminum fluoride that narrows the gas pores.
  • Example 4 (Laser irradiation) A YAG laser (tophat beam, pulse oscillation, pulse frequency 10 Hz) with an average output of 40 W and a wavelength of 1064 nm is applied to the plasma contact surface of an aluminum alloy shower head with aluminum fluoride attached at a beam diameter of 6 mm and a beam sweep speed of 8 mm / sec. It was swept continuously. When the laser irradiation surface was observed with the naked eye after the laser irradiation, the removal of aluminum fluoride was confirmed over the entire surface of the laser irradiation surface. Compared with Example 1 (Gaussian beam), the surface uniformity after laser treatment was improved.
  • the semiconductor manufacturing equipment component having a gas hole can be cleaned in a shorter time, and the life of the semiconductor manufacturing equipment component having the gas hole can be extended as compared with the conventional case. Therefore, it is possible to produce semiconductor wafers at a lower cost.

Abstract

In this method of washing a semiconductor manufacturing device component having gas holes used in a single-wafer semiconductor manufacturing device for processing semiconductor wafers, the semiconductor manufacturing device component having gas holes is provided with a dispersion plate which is formed from aluminum or an aluminum alloy and which has a plurality of gas holes, and involves a step (1) for scanning a laser beam on the gas injection surface, which is the surface of the dispersion plate facing the wafer, and a step (2) for bringing the gas injection surface and the inside of the gas holes into contact with a cleaning liquid that contains an inorganic acid.

Description

ガス孔をもつ半導体製造装置部品の洗浄方法Cleaning method for semiconductor manufacturing equipment parts with gas holes
 本発明は、ガス孔をもつ半導体製造装置部品の洗浄方法に関する。
 本願は、2019年8月28日に、日本に出願された特願2019-155485号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for cleaning a semiconductor manufacturing apparatus component having a gas hole.
The present application claims priority based on Japanese Patent Application No. 2019-155485 filed in Japan on August 28, 2019, the contents of which are incorporated herein by reference.
 半導体ウエハを処理する枚葉式の半導体製造装置においては、半導体ウエハの表面にエッチング処理を施したり成膜処理を施したりする際に、ガスをウエハに対して均一に噴射するためのシャワーヘッドが用いられる。
 シャワーヘッドは、通常、アルミニウム又はアルミニウム合金からなり、複数の貫通孔(ガス孔)を有する分散板を備える。この分散板のウエハに面する側の表面(ガス噴射面)には、シャワーヘッドから噴射したガスによって生成した堆積物が付着する。堆積物はガス孔の内部にも付着するので、堆積物を除去せずにシャワーヘッドの使用を続ければ、やがて、ガス孔が閉塞することとなる。そのため、シャワーヘッドのガス噴射面を洗浄して、堆積物を除去することが必要である。
In a single-wafer type semiconductor manufacturing apparatus that processes a semiconductor wafer, a shower head for uniformly injecting gas onto the wafer when etching or film-forming the surface of the semiconductor wafer is provided. Used.
The shower head is usually made of aluminum or an aluminum alloy and includes a dispersion plate having a plurality of through holes (gas holes). Deposits generated by the gas injected from the shower head adhere to the surface (gas injection surface) of the dispersion plate on the side facing the wafer. Since the deposits also adhere to the inside of the gas holes, if the shower head is used continuously without removing the deposits, the gas holes will be closed in due course. Therefore, it is necessary to clean the gas injection surface of the shower head to remove deposits.
 特許文献1には、アルミニウム又はアルミニウム合金よりなる洗浄対象物の表面に付着した金属酸化膜よりなる除去対象膜を洗浄により除去するクリーニング方法において、少なくともフッ化アンモニウムとフッ化水素酸とエチレングリコールとを含むクリーニング溶液又はフッ化アンモニウム酢酸溶液よりなるクリーニング溶液を用いるようにしたことを特徴とするクリーニング方法が記載されている。 Patent Document 1 describes at least ammonium fluoride, hydrofluoric acid, and ethylene glycol in a cleaning method for removing a film to be removed, which is a metal oxide film adhering to the surface of an object to be cleaned, which is made of aluminum or an aluminum alloy. A cleaning method comprising a cleaning solution containing the above-mentioned or a cleaning solution consisting of an ammonium fluoride acetic acid solution is described.
 特許文献2には、基板処理装置のプロセスチャンバのコンポーネントからプロセス堆積物を洗浄する方法であって、該コンポーネントが複数のガスホールを有し、該方法が、(a)該コンポーネント内の該複数のガスホールのレイアウトと一致するように隔置されている複数の伸長ピンを該コンポーネントの該ガスホールに機械的に押し込み内部を通過させることにより、該複数のガスホール内のプロセス堆積物を同時に取り除き、該ガスホール内の該プロセス堆積物を洗浄する、ステップと、(b)該コンポーネントを酸性溶液に晒すステップと、(c)(1)該コンポーネントをプラズマゾーンに配置する工程、(2)ガスを該プラズマゾーンに導入する工程、(3)該プラズマゾーン内に該ガスのプラズマを形成する工程、(4)該ガスを該プラズマゾーンから排気する工程、によって該コンポーネントをプラズマ安定化するステップと、を含む、前記方法が記載されている。 Patent Document 2 describes a method of cleaning process deposits from a component of a process chamber of a substrate processing apparatus, wherein the component has a plurality of gas holes, and the method is (a) the plurality of the components in the component. The process deposits in the multiple gas holes are simultaneously pushed through the interior by mechanically pushing multiple extension pins, which are spaced apart to match the layout of the gas holes in the component, into the gas holes of the component. The steps of removing and cleaning the process deposits in the gas hole, (b) exposing the component to an acidic solution, and (c) (1) placing the component in the plasma zone, (2). A step of plasma stabilizing the component by a step of introducing a gas into the plasma zone, (3) a step of forming a plasma of the gas in the plasma zone, and (4) a step of exhausting the gas from the plasma zone. And, the above-mentioned method is described.
日本国特開2005-167087号公報Japanese Patent Application Laid-Open No. 2005-167807 日本国特許第4668915号公報Japanese Patent No. 4668915
 しかし、半導体プロセスの微細化に伴って、従来よりも緻密な薄膜を半導体デバイス上に成膜されるようになるにしたがい、より緻密な堆積物がシャワーヘッドのガス噴射面にも付着するようになった。このような緻密な堆積物を除去するため、特許文献1に記載されたクリーニング液又は硝酸等の無機酸を用いて洗浄処理を行うと、処理に長時間を要することを見出した。その結果、分散板の溶解量が大きくなり、ガス孔の直径が拡大してしまうことから、ウエハの成膜処理の際に均一な膜厚の成膜ができなくなる。 However, as the semiconductor process becomes finer, a thinner thin film than before is formed on the semiconductor device, so that more dense deposits also adhere to the gas injection surface of the shower head. became. It has been found that when a cleaning treatment is carried out using the cleaning liquid described in Patent Document 1 or an inorganic acid such as nitric acid in order to remove such dense deposits, the treatment takes a long time. As a result, the amount of the dispersion plate dissolved increases and the diameter of the gas pores increases, so that a uniform film thickness cannot be formed during the film formation process of the wafer.
 また、特許文献2のプロセス堆積物を洗浄する方法を、ガス孔をもつ半導体製造装置部品に適用した場合、ステップ(a)に手間と時間がかかり、短時間で簡便にガス孔をもつ半導体製造装置部品を洗浄できない。 Further, when the method of cleaning the process deposits of Patent Document 2 is applied to a semiconductor manufacturing apparatus component having gas holes, step (a) takes time and effort, and semiconductor manufacturing having gas holes can be easily performed in a short time. Cannot clean equipment parts.
 そこで、本発明は、洗浄時間を短縮でき、簡便な、ガス孔をもつ半導体製造装置部品の洗浄方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a simple method for cleaning a semiconductor manufacturing apparatus component having a gas hole, which can shorten the cleaning time.
 [1] 半導体ウエハを処理する枚葉式の半導体製造装置において用いられるガス孔をもつ半導体製造装置部品の洗浄方法であって、
 前記ガス孔をもつ半導体製造装置部品は、アルミニウム又はアルミニウム合金からなり、複数のガス孔を有する分散板を備えており、
 前記分散板のウエハに面する側の表面であるガス噴射面をレーザービームで走査する工程(1)と、
 前記ガス噴射面及び前記ガス孔の内部を、無機酸を含むクリーニング液と接触させる工程(2)と
を含む、ガス孔をもつ半導体製造装置部品の洗浄方法。
 [2] 前記レーザービームの平均エネルギーが1~10000Wである、[1]に記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [3] 前記レーザービームの平均エネルギー密度が1×10~1×1013W/mである、[1]又は[2]に記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [4] 前記レーザービームがパルスビームである、[1]~[3]のいずれかに記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [5] 前記パルスビームのパルス周波数が1Hz~5000kHzである、[4]に記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [6] 前記レーザービームが、COレーザー、He-Neレーザー、アルゴンレーザー、YAGレーザー、Nd:YAGレーザー、Er:Nd-YAGレーザー、ファイバーレーザー及び高出力ダイオードレーザーからなる群から選択されるいずれか1つによって生成される、[1]~[5]のいずれかに記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [7] 前記レーザービームの波長が10nm~1000μmである、[1]~[6]のいずれかに記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [8] 前記無機酸が、硝酸、塩酸、硫酸及びフッ酸からなる群から選択される少なくとも1種を含む、[1]~[7]のいずれかに記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [9] 前記クリーニング液が酸化剤を含む、[1]~[8]のいずれかに記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [10] 前記工程(2)において、前記ガス孔をもつ半導体製造装置部品を前記クリーニング液に浸漬する、[1]~[9]のいずれかに記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [11] 前記ガス孔をもつ半導体製造装置部品を前記クリーニング液に0.5~24時間浸漬する、[10]に記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [12] 前記分散板の前記ガス噴射面及び前記ガス孔に堆積物が付着しており、前記堆積物は、エッチングガスとアルミニウムとの反応生成物を含む、[1]~[11]のいずれかに記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [13] 前記分散板の前記ガス噴射面及び前記ガス孔に堆積物が付着しており、前記堆積物は、成膜ガスに由来する化合物を含む、[1]~[12]のいずれかに記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [14] 前記工程(1)と前記工程(2)との間に、前記ガス噴射面に超音波を照射する工程(3)を備える、[1]~[13]のいずれかに記載のガス孔をもつ半導体製造装置部品の洗浄方法。
 [15] 前記ガス孔をもつ半導体製造装置部品がシャワーヘッドである、[1]~[14]のいずれかに記載のガス孔をもつ半導体製造装置部品の洗浄方法。
[1] A method for cleaning semiconductor manufacturing equipment parts having gas holes used in a single-wafer type semiconductor manufacturing equipment for processing a semiconductor wafer.
The semiconductor manufacturing equipment component having the gas holes is made of aluminum or an aluminum alloy, and includes a dispersion plate having a plurality of gas holes.
The step (1) of scanning the gas injection surface, which is the surface of the dispersion plate facing the wafer, with a laser beam, and
A method for cleaning a semiconductor manufacturing apparatus component having a gas hole, which comprises a step (2) of bringing the gas injection surface and the inside of the gas hole into contact with a cleaning liquid containing an inorganic acid.
[2] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to [1], wherein the average energy of the laser beam is 1 to 10000 W.
[3] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to [1] or [2], wherein the average energy density of the laser beam is 1 × 10 3 to 1 × 10 13 W / m 2.
[4] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of [1] to [3], wherein the laser beam is a pulse beam.
[5] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to [4], wherein the pulse frequency of the pulse beam is 1 Hz to 5000 kHz.
[6] The laser beam is selected from the group consisting of CO 2 laser, He-Ne laser, argon laser, YAG laser, Nd: YAG laser, Er: Nd-YAG laser, fiber laser and high power diode laser. The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of [1] to [5], which is generated by one of them.
[7] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of [1] to [6], wherein the wavelength of the laser beam is 10 nm to 1000 μm.
[8] A semiconductor manufacturing apparatus component having a gas hole according to any one of [1] to [7], wherein the inorganic acid contains at least one selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid and hydrofluoric acid. Cleaning method.
[9] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of [1] to [8], wherein the cleaning liquid contains an oxidizing agent.
[10] Cleaning of the semiconductor manufacturing equipment component having the gas hole according to any one of [1] to [9], in which the semiconductor manufacturing equipment component having the gas hole is immersed in the cleaning liquid in the step (2). Method.
[11] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to [10], wherein the semiconductor manufacturing apparatus component having the gas hole is immersed in the cleaning liquid for 0.5 to 24 hours.
[12] Any of [1] to [11], wherein deposits are attached to the gas injection surface and the gas holes of the dispersion plate, and the deposits contain a reaction product of an etching gas and aluminum. A method for cleaning semiconductor manufacturing equipment parts having the gas holes described in.
[13] Deposits are attached to the gas injection surface and the gas holes of the dispersion plate, and the deposits are any of [1] to [12] containing a compound derived from the film-forming gas. A method for cleaning semiconductor manufacturing equipment components having the described gas holes.
[14] The gas according to any one of [1] to [13], comprising a step (3) of irradiating the gas injection surface with ultrasonic waves between the step (1) and the step (2). A method for cleaning semiconductor manufacturing equipment parts with holes.
[15] The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of [1] to [14], wherein the semiconductor manufacturing apparatus component having the gas hole is a shower head.
 本発明によれば、洗浄時間を短縮でき、簡便な、ガス孔をもつ半導体製造装置部品の洗浄方法を提供できる。 According to the present invention, it is possible to provide a simple method for cleaning semiconductor manufacturing equipment parts having gas holes, which can shorten the cleaning time.
図1は、本発明の洗浄方法の実施の対象となるシャワーヘッドを含む成膜装置を示す構成図である。FIG. 1 is a block diagram showing a film forming apparatus including a shower head to which the cleaning method of the present invention is carried out.
 「~」を用いて表される数値範囲は、その数値範囲に「~」の両側の数値を含む。
 「YAGレーザー」は、イットリウム・アルミニウム・ガーネット(Yttrium Aluminum Garnet)を用いた固体レーザーを意味する。また、「Nd:YAGレーザー」はYAGの結晶を製造する過程でイットリウムを数%のネオジム(元素記号Nd)でドープ(添加)した結晶を用いるYAGレーザーを意味し、「Er:Nd-YAGレーザー」はYAGの結晶を製造する過程でイットリウムを数%のネオジム(元素記号Nd)及び数%のエルビウム(元素記号Er)でドープ(添加)した結晶を用いるYAGレーザーを意味する。
The numerical range represented by using "-" includes the numerical values on both sides of "-" in the numerical range.
"YAG laser" means a solid-state laser using yttrium aluminum garnet. Further, "Nd: YAG laser" means a YAG laser that uses a crystal doped (added) with a few percent neodymium (element symbol Nd) in the process of producing a YAG crystal, and is an "Er: Nd-YAG laser". "" Means a YAG laser that uses crystals doped with a few percent neodymium (element symbol Nd) and a few percent erbium (element symbol Er) in the process of producing YAG crystals.
 以下、本発明の実施形態について説明するが、本発明は後述する実施形態に限定されるものではなく、本発明の要旨を逸脱しない限り、種々の変形が可能である。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the embodiments described later, and various modifications can be made without departing from the gist of the present invention.
[ガス孔をもつ半導体製造装置部品の洗浄方法]
 本発明は、半導体ウエハを処理する枚葉式の半導体製造装置において用いられるガス孔をもつ半導体製造装置部品の洗浄方法(以下、単に「本発明の洗浄方法」という場合がある。)である。
[How to clean semiconductor manufacturing equipment parts with gas holes]
The present invention is a method for cleaning semiconductor manufacturing equipment parts having gas holes used in a single-wafer type semiconductor manufacturing equipment for processing a semiconductor wafer (hereinafter, may be simply referred to as "the cleaning method of the present invention").
<ガス孔をもつ半導体製造装置部品>
 前記ガス孔をもつ半導体製造装置部品(以下、単に「半導体製造装置部品」という場合がある。)は、アルミニウム又はアルミニウム合金からなり、複数のガス孔を有する分散板を備えている。
 前記分散板は、前記半導体製造装置部品の一部であり、前記半導体製造装置部品の前記分散板以外の部分と一体不可分に構成されていてもよいし、脱着自在に構成されていてもよい。
<Semiconductor manufacturing equipment parts with gas holes>
The semiconductor manufacturing equipment component having gas holes (hereinafter, may be simply referred to as “semiconductor manufacturing equipment component”) is made of aluminum or an aluminum alloy, and includes a dispersion plate having a plurality of gas holes.
The dispersion plate is a part of the semiconductor manufacturing equipment component, and may be integrally formed inseparably from a portion of the semiconductor manufacturing equipment component other than the dispersion plate, or may be detachably configured.
 前記ガス孔をもつ半導体製造装置部品の好適な実施形態はシャワーヘッドである。
 シャワーヘッドを含む成膜装置の一例を図1に示す。ただし、本発明の洗浄方法を適用可能なシャワーヘッドは図1に示されるものに限定されない。
A preferred embodiment of the semiconductor manufacturing apparatus component having the gas hole is a shower head.
FIG. 1 shows an example of a film forming apparatus including a shower head. However, the shower head to which the cleaning method of the present invention can be applied is not limited to the one shown in FIG.
 図1に示す成膜装置2は、例えば断面の内部が略円筒状になされたアルミニウム製又はアルミニウム合金製の処理容器4を有している。この処理容器4内の天井部には、必要な処理ガス、例えば、成膜用の原料ガス又はそれ以外の支援ガスを導入するためのシャワーヘッド6が設けられており、この下面の分散板8に設けた多数のガス孔10から処理空間Sに向けて処理ガスを吹き出すようにして噴射するようになっている。 The film forming apparatus 2 shown in FIG. 1 has, for example, a processing container 4 made of aluminum or an aluminum alloy whose cross section is substantially cylindrical. A shower head 6 for introducing a necessary processing gas, for example, a raw material gas for film formation or another support gas, is provided on the ceiling portion in the processing container 4, and a dispersion plate 8 on the lower surface thereof is provided. The processing gas is blown out from a large number of gas holes 10 provided in the above toward the processing space S.
 また、処理容器4の側壁には、この処理容器4内に対して被処理体としての半導体ウエハ等の基板Wを搬入搬出するための搬出入口12が設けられると共に、この搬出入口12には気密に開閉可能になされたゲートバルブ14が設けられている。
 そして、この処理容器4の底部16に排気落とし込め空間18が形成されている。具体的には、この処理容器4の底部16の中央部には大きな開口20が形成されており、この開口20に、その下方へ延びる有底円筒体状の円筒区画壁22を連結してその内部に排気落とし込め空間18を形成している。そして、この排気落とし込め空間18を区画する円筒区画壁22の底部24には、これより起立させて例えば石英ガラス等よりなる円筒体状の支柱26が設けられており、この上端部に載置台28が溶接により固定されている。尚、支柱26や載置台28をAlN等のセラミックにより形成してもよい。
Further, the side wall of the processing container 4 is provided with a carry-in / out port 12 for carrying in / out a substrate W such as a semiconductor wafer as an object to be processed into the processing container 4, and the carry-out port 12 is airtight. A gate valve 14 that can be opened and closed is provided in the.
An exhaust drop space 18 is formed in the bottom 16 of the processing container 4. Specifically, a large opening 20 is formed in the central portion of the bottom 16 of the processing container 4, and a bottomed cylindrical cylindrical partition wall 22 extending downward is connected to the opening 20 to connect the opening 20. An exhaust drop space 18 is formed inside. The bottom 24 of the cylindrical partition wall 22 that partitions the exhaust drop space 18 is provided with a cylindrical column 26 that stands up from this and is made of, for example, quartz glass, and a mounting table is provided at the upper end thereof. 28 is fixed by welding. The support column 26 and the mounting table 28 may be formed of ceramic such as AlN.
 そして、排気落とし込め空間18の入口側の開口20は、載置台28の直径よりも小さく設定されており、載置台28の周縁部の外側を流下する処理ガスが載置台28の下方に回り込んで開口20へ流入するようになっている。そして、円筒区画壁22の下部側壁には、この排気落とし込め空間18に臨ませて排気口30が形成されており、この排気口30には、真空排気系32が接続される。具体的には、この真空排気系32は、図示しない真空ポンプが介設された排気管34よりなり、この排気管34を排気口30に接続して処理容器4内及び排気落とし込め空間18の雰囲気を真空引きして排気できるようになっている。 The opening 20 on the inlet side of the exhaust drop space 18 is set to be smaller than the diameter of the mounting table 28, and the processing gas flowing down the outside of the peripheral edge of the mounting table 28 wraps around below the mounting table 28. It is designed to flow into the opening 20. An exhaust port 30 is formed on the lower side wall of the cylindrical partition wall 22 so as to face the exhaust drop space 18, and a vacuum exhaust system 32 is connected to the exhaust port 30. Specifically, the vacuum exhaust system 32 is composed of an exhaust pipe 34 provided with a vacuum pump (not shown), and the exhaust pipe 34 is connected to the exhaust port 30 in the processing container 4 and in the exhaust drop space 18. The atmosphere can be evacuated and exhausted.
 そして、この排気管34の途中には、開度コントロールが可能になされた図示しない圧力調整弁が介設されており、この弁開度を自動的に調整することにより、処理容器4内の圧力を一定値に維持したり、或いは所望する圧力へ迅速に変化させたりできるようになっている。
 また、載置台28には、例えばカーボンワイヤ等の抵抗加熱ヒータよりなる加熱手段36が埋め込まれており、この載置台28の上面に被処理体としての半導体ウエハ等の基板Wを載置し、これを加熱し得るようになっている。加熱手段36は支柱26内に配設された給電線38に接続されて、電力を制御しつつ供給できるようになっている。
A pressure adjusting valve (not shown) capable of controlling the opening degree is interposed in the middle of the exhaust pipe 34, and the pressure in the processing container 4 is adjusted by automatically adjusting the opening degree of the valve. Can be maintained at a constant value or can be quickly changed to a desired pressure.
Further, a heating means 36 made of a resistance heating heater such as a carbon wire is embedded in the mounting table 28, and a substrate W such as a semiconductor wafer as an object to be processed is placed on the upper surface of the mounting table 28. This can be heated. The heating means 36 is connected to a power supply line 38 arranged in the support column 26 so that electric power can be supplied while being controlled.
 載置台28には、この上下方向に貫通して複数、例えば3本のピン挿通孔40が形成されており(図1においては2つのみ示す)、各ピン挿通孔40に上下移動可能に遊嵌状態で挿通させた押し上げピン42を配置している。この押し上げピン42の下端には、円形リング形状に形成された例えばアルミナのようなセラミックス製の押し上げリング44が配置されており、この押し上げリング44に、各押し上げピン42の下端を固定されない状態にて支持させている。この押し上げリング44から延びるアーム部46は、処理容器4の底部16を貫通して設けられる出没ロッド48に連結されており、この出没ロッド48はアクチュエータ50により昇降可能になされている。これにより、各押し上げピン42をウエハWの受け渡し時に各ピン挿通孔40の上端から上方へ出没させるようになっている。また、アクチュエータ50の出没ロッド48の容器底部の貫通部には、伸縮可能なベローズ52が介設されており、出没ロッド48が処理容器4内の気密性を維持しつつ昇降できるようになっている。 The mounting table 28 is formed with a plurality of, for example, three pin insertion holes 40 penetrating in the vertical direction (only two are shown in FIG. 1), and can be moved up and down in each pin insertion hole 40. A push-up pin 42 inserted in the fitted state is arranged. A ceramic push-up ring 44 such as alumina formed in a circular ring shape is arranged at the lower end of the push-up pin 42, and the lower end of each push-up pin 42 is not fixed to the push-up ring 44. And support it. The arm portion 46 extending from the push-up ring 44 is connected to a salvage rod 48 provided so as to penetrate the bottom portion 16 of the processing container 4, and the salvage rod 48 can be raised and lowered by an actuator 50. As a result, each push-up pin 42 is adapted to appear and disappear upward from the upper end of each pin insertion hole 40 when the wafer W is delivered. Further, a stretchable bellows 52 is interposed in the penetrating portion of the bottom of the container of the infestation rod 48 of the actuator 50 so that the infestation rod 48 can move up and down while maintaining the airtightness in the processing container 4. There is.
 次に後述するように洗浄対象物となるシャワーヘッド6について説明する。
 このシャワーヘッド6は、処理容器4の上端開口部を閉じる天井板54にOリング等のシール部材55を介してボルト57により着脱可能に取り付けられる。このシャワーヘッド6は例えば有底円筒体状のシャワーヘッド本体56を有している。ここで天井板54の周辺部と処理容器4の上端部との間には、例えばOリング等のシール部材58が介設されており、処理容器4内の気密性を維持するようになっている。このシャワーヘッド6の全体は、アルミニウム又はアルミニウム合金により形成されている。
Next, the shower head 6 to be cleaned will be described as described later.
The shower head 6 is detachably attached to a ceiling plate 54 that closes the upper end opening of the processing container 4 by a bolt 57 via a sealing member 55 such as an O-ring. The shower head 6 has, for example, a bottomed cylindrical shower head main body 56. Here, a sealing member 58 such as an O-ring is interposed between the peripheral portion of the ceiling plate 54 and the upper end portion of the processing container 4, so that the airtightness inside the processing container 4 is maintained. There is. The entire shower head 6 is made of aluminum or an aluminum alloy.
 そして、シャワーヘッド本体56内には、原料ガスを拡散させる第1の拡散室60と、支援ガスを拡散させる第2の拡散室62とが分離区画して形成されている。図1では、シャワーヘッド本体56内に、水平方向に沿って配置された区画板64を設けることによってこの上下に第1の拡散室60及び第2の拡散室62が分離区画して形成されている。そして、第1の拡散室60は、原料ガスを導入するためにシャワーヘッド6の天井板7に設けた処理ガス導入口66Aに連通されており、また第2の拡散室62は、支援ガスを導入するために天井板7に設けた支援ガス導入口66Bに連通されている。またシャワーヘッド本体56の下面にある板状の分散板8は、シャワーヘッド本体56にボルト9により着脱可能に取り付けられている。
 ここで、シャワーヘッド本体56の下面である分散板8に形成されるガス孔10は、縦横にマトリックス状に略面内均一に複数配置されている。このガス孔10は、原料ガスを噴射するための原料ガス孔10Aと、隣り合う2つの原料ガス孔10Aの間に位置するように設けた第2支援ガス孔10Cとにより形成されている。
A first diffusion chamber 60 for diffusing the raw material gas and a second diffusion chamber 62 for diffusing the support gas are separated and formed in the shower head main body 56. In FIG. 1, by providing a partition plate 64 arranged along the horizontal direction in the shower head main body 56, the first diffusion chamber 60 and the second diffusion chamber 62 are separated and formed above and below the partition plate 64. There is. The first diffusion chamber 60 is communicated with the processing gas introduction port 66A provided on the ceiling plate 7 of the shower head 6 for introducing the raw material gas, and the second diffusion chamber 62 provides the support gas. It is communicated with the support gas introduction port 66B provided on the ceiling plate 7 for introduction. Further, the plate-shaped dispersion plate 8 on the lower surface of the shower head main body 56 is detachably attached to the shower head main body 56 by bolts 9.
Here, a plurality of gas holes 10 formed in the dispersion plate 8 which is the lower surface of the shower head main body 56 are arranged vertically and horizontally in a substantially in-plane manner in a matrix. The gas hole 10 is formed by a raw material gas hole 10A for injecting a raw material gas and a second support gas hole 10C provided so as to be located between two adjacent raw material gas holes 10A.
<工程(1)及び工程(2)>
 本発明の洗浄方法は、以下の工程(1)及び工程(2)を含む。
工程(1): 前記分散板のウエハに面する側の表面であるガス噴射面をレーザービームで走査する工程
工程(2): 前記ガス噴射面及び前記ガス孔の内部を、無機酸を含むクリーニング液と接触させる工程
<Step (1) and Step (2)>
The cleaning method of the present invention includes the following steps (1) and (2).
Step (1): A step of scanning the gas injection surface, which is the surface of the dispersion plate facing the wafer, with a laser beam. Step (2): Cleaning the gas injection surface and the inside of the gas hole containing an inorganic acid. Process of contact with liquid
(工程(1))
 工程(1)では、レーザービームで前記ガス噴射面を走査することにより、前記分散板のウエハに面する側の表面である前記ガス噴射面に付着している堆積物が除去される。
 また、レーザービームは、前記分散板に設けられているガス孔の内面にも照射されるので、ガス孔の内面に付着している堆積物の少なくとも一部が除去される。
 さらに、ガス孔の内面に付着したまま残留している堆積物は、除去されないまでも、レーザービームが照射されたことによって、クラックが入るなどの物理的変化が生じる。そのため、工程(2)でクリーニング液と接触させた際に、クリーニング液が堆積物に浸透しやすい。
(Step (1))
In the step (1), by scanning the gas injection surface with a laser beam, deposits adhering to the gas injection surface, which is the surface of the dispersion plate on the side facing the wafer, are removed.
Further, since the laser beam also irradiates the inner surface of the gas hole provided in the dispersion plate, at least a part of the deposits adhering to the inner surface of the gas hole is removed.
Further, even if the deposits remaining attached to the inner surface of the gas pores are not removed, the irradiation with the laser beam causes physical changes such as cracking. Therefore, when the cleaning liquid is brought into contact with the cleaning liquid in the step (2), the cleaning liquid easily permeates the deposits.
 レーザービームのレーザー源は、例えば、COレーザー、He-Neレーザー又はアルゴンレーザーのような気体レーザー、YAGレーザー、Nd:YAGレーザー、Er:Nd-YAGレーザー、ファイバーレーザー又は高出力ダイオードレーザーのような固体レーザーである。
 レーザー源としては、これらの気体レーザー及び固体レーザーからなる群から選択される少なくとも1つが好ましく、いずれか1つがより好ましい。なかでも、これらの固体レーザーからなる群から選択されることがより好ましく、YAGレーザー、Nd:YAGレーザー及びファイバーレーザーからなる群から選択されることがさらに好ましい。
 レーザービームのレーザー源を前記したものとすることで、アルミニウム又はアルミニウム合金製の分散板を損傷せず、少なくともガス噴射面の堆積物を除去できる。
 2種類以上のレーザー源からのレーザービームを同時に使用してもよいし、1種類のレーザー源からのレーザービームのみを使用してもよい。
The laser source of the laser beam is, for example, a gas laser such as a CO 2 laser, a He-Ne laser or an argon laser, a YAG laser, an Nd: YAG laser, an Er: Nd-YAG laser, a fiber laser or a high power diode laser. Solid laser.
As the laser source, at least one selected from the group consisting of these gas lasers and solid-state lasers is preferable, and any one is more preferable. Among them, it is more preferable to select from the group consisting of these solid-state lasers, and it is further preferable to select from the group consisting of YAG laser, Nd: YAG laser and fiber laser.
By adopting the laser source of the laser beam as described above, it is possible to remove at least deposits on the gas injection surface without damaging the dispersion plate made of aluminum or an aluminum alloy.
Laser beams from two or more types of laser sources may be used at the same time, or only laser beams from one type of laser source may be used.
 COレーザーは、通常、波長9300~10600nmのレーザービームを生成する。アルゴンレーザーは、通常、波長488nm又は514nmのレーザービームを生成する。Nd:YAGレーザーは、通常、波長1064nmのレーザービームを生成する。
 Er:Nd-YAGレーザーは、通常、波長2940nmのレーザービームを生成する。ファイバーレーザーは、通常、波長1070nmのレーザービームを生成する。高出力ダイオードレーザーは、通常、波長810~980nmのレーザービームを生成する。
 レーザービームの波長は、10nm~1000μmが好ましく、700nm~1000μmの範囲内(赤外線、好ましくは750~4000nmの範囲内)、10~400nmの範囲内(紫外線、好ましくは10~380nmの範囲内)、又は400~700nmの範囲内(可視光線)がより好ましい。複数波長のレーザービームを同時に照射してもよい。透明堆積物を除去しやすい点から、700nm~1000μmが好ましく、750~4000nmがより好ましく、760~2000nmがさらに好ましく、785~1600nmがいっそう好ましく、1000~1100nmがよりいっそう好ましい。
A CO 2 laser typically produces a laser beam with a wavelength of 9300-10600 nm. Argon lasers typically produce a laser beam with a wavelength of 488 nm or 514 nm. Nd: YAG lasers typically generate a laser beam with a wavelength of 1064 nm.
Er: Nd-YAG lasers typically generate a laser beam with a wavelength of 2940 nm. Fiber lasers typically produce a laser beam with a wavelength of 1070 nm. High power diode lasers typically generate a laser beam with a wavelength of 810 to 980 nm.
The wavelength of the laser beam is preferably 10 nm to 1000 μm, preferably in the range of 700 nm to 1000 μm (infrared light, preferably in the range of 750 to 4000 nm), in the range of 10 to 400 nm (ultraviolet light, preferably in the range of 10 to 380 nm). Alternatively, it is more preferably in the range of 400 to 700 nm (visible light). Laser beams of multiple wavelengths may be irradiated at the same time. From the viewpoint of easy removal of transparent deposits, 700 nm to 1000 μm is preferable, 750 to 4000 nm is more preferable, 760 to 2000 nm is further preferable, 785 to 1600 nm is more preferable, and 1000 to 1100 nm is even more preferable.
 レーザービームの平均エネルギーを照射面積で除して求められる平均エネルギー密度は、アルミニウム又はアルミニウム合金製の分散板を損傷せず、少なくともガス噴射面の堆積物を除去できるエネルギー密度であればよく、1×10~1×1013W/mが好ましく、1×10~1×1012W/mがより好ましく、1×10~1×1011W/mがさらに好ましい。レーザービームの平均エネルギー密度を前記範囲とすることで、アルミニウム又はアルミニウム合金製の分散板を損傷せず、少なくともガス噴射面の堆積物を除去できる。 The average energy density obtained by dividing the average energy of the laser beam by the irradiation area may be any energy density that does not damage the aluminum or aluminum alloy dispersion plate and can at least remove the deposits on the gas injection surface. × 10 3 to 1 × 10 13 W / m 2 is preferable, 1 × 10 3 to 1 × 10 12 W / m 2 is more preferable, and 1 × 10 3 to 1 × 10 11 W / m 2 is even more preferable. By setting the average energy density of the laser beam within the above range, it is possible to remove at least deposits on the gas injection surface without damaging the dispersion plate made of aluminum or an aluminum alloy.
 レーザービームのエネルギーは、上記エネルギー密度の範囲で自由に設定できる。レーザービームの平均エネルギーは、通常、上記平均エネルギー密度が前記範囲内に収まるように選択され、1~10000Wが好ましく、5~8000Wがより好ましく、10~5000Wがさらに好ましい。レーザービームの平均エネルギーを前記範囲とすることで、アルミニウム又はアルミニウム合金製の分散板を損傷せず、少なくともガス噴射面の堆積物を除去できる。 The energy of the laser beam can be freely set within the above energy density range. The average energy of the laser beam is usually selected so that the average energy density falls within the above range, preferably 1 to 10000 W, more preferably 5 to 8000 W, still more preferably 10 to 5000 W. By setting the average energy of the laser beam in the above range, it is possible to remove at least the deposits on the gas injection surface without damaging the dispersion plate made of aluminum or an aluminum alloy.
レーザーのビームプロファイルは、ガウシアンビーム、トップハットビーム、いずれも使用できる。照射痕を残さず均一に堆積物を除去できる点から、トップハットビームが好ましい。
 レーザービームは連続波ビームでもパルスビームであってよい。熱の影響が少ない点から、パルスビームが好ましい。レーザービームがパルスビームであると、各パルスの出力は、その周波数が減少するにつれて増大する。レーザービームがパルスビームである場合、パルス周波数は、1Hz~5000kHzが好ましく、5Hz~1000kHzがより好ましく、10Hz~500kHzがさらに好ましい。レーザービームのパルス周波数を前記範囲とすることで、アルミニウム又はアルミニウム合金製の分散板を損傷せず、少なくともガス噴射面の堆積物を除去できる。
 処理速度と基材に対するダメージの点から、掃引速度は0.01~100mm/秒が好ましく、0.1~50mm/秒がより好ましく、1~10mm/秒がさらに好ましい。
The beam profile of the laser can be either a Gaussian beam or a tophat beam. A tophat beam is preferable because it can remove deposits uniformly without leaving any irradiation marks.
The laser beam may be a continuous wave beam or a pulse beam. A pulse beam is preferable because it is less affected by heat. If the laser beam is a pulse beam, the output of each pulse will increase as its frequency decreases. When the laser beam is a pulse beam, the pulse frequency is preferably 1 Hz to 5000 kHz, more preferably 5 Hz to 1000 kHz, still more preferably 10 Hz to 500 kHz. By setting the pulse frequency of the laser beam in the above range, it is possible to remove at least the deposits on the gas injection surface without damaging the dispersion plate made of aluminum or an aluminum alloy.
From the viewpoint of treatment speed and damage to the substrate, the sweep speed is preferably 0.01 to 100 mm / sec, more preferably 0.1 to 50 mm / sec, and even more preferably 1 to 10 mm / sec.
(工程(2))
 工程(2)では、ガス噴射面及びガス孔の内部と、無機酸を含むクリーニング液とを接触させることにより、工程(1)で除去しきれなかった堆積物を除去する。
 上述したとおり、レーザービームを照射したことで、堆積物の膜にはクラックが入る等の物理的な変化が生じており、クリーニング液が浸透しやすくなっている。そのため、レーザービームの照射を行わずにクリーニング液と接触させた場合よりも、短時間で堆積物の除去が完了する。
(Step (2))
In the step (2), the deposits that could not be completely removed in the step (1) are removed by bringing the gas injection surface and the inside of the gas holes into contact with the cleaning liquid containing an inorganic acid.
As described above, the irradiation of the laser beam causes physical changes such as cracks in the film of the deposit, which makes it easier for the cleaning liquid to permeate. Therefore, the removal of the deposit is completed in a shorter time than in the case of contacting with the cleaning liquid without irradiating the laser beam.
 前記クリーニング液に含まれる無機酸は、リン酸、ホウ酸、塩酸、硫酸、硝酸及びフッ酸からなる群から選択される少なくとも1種が好ましい。硫酸、硝酸及びフッ酸から選択されることがより好ましく、硝酸およびフッ酸から選択されることがさらに好ましい。クリーニング液に含まれる無機酸を前記範囲とすることで、アルミニウム又はアルミニウム合金製の分散板を損傷せず、少なくともガス噴射面の堆積物を除去できる。
 前記無機酸の濃度は特に限定されない。
 また、前記クリーニング液は、酸化剤を含むことが好ましい。酸化剤は、例えば、過酸化水素、硝酸、濃硫酸等である。硝酸は無機酸であり、同時に酸化剤としても作用するので、特に好ましい。硝酸は、濃硝酸が特に好ましい。フッ酸は、二酸化ケイ素を含む堆積物の除去に特に有用である。
 前記クリーニング液は、水を含んでもよい。前記無機酸が硝酸、塩酸、希硫酸又はフッ酸である場合は、クリーニング液中に水を含む。
 前記クリーニング液は、さらに、界面活性剤等の添加剤を含んでもよい。
The inorganic acid contained in the cleaning liquid is preferably at least one selected from the group consisting of phosphoric acid, boric acid, hydrochloric acid, sulfuric acid, nitric acid and hydrofluoric acid. It is more preferably selected from sulfuric acid, nitric acid and hydrofluoric acid, and even more preferably selected from nitric acid and hydrofluoric acid. By setting the inorganic acid contained in the cleaning liquid in the above range, it is possible to remove at least the deposits on the gas injection surface without damaging the dispersion plate made of aluminum or an aluminum alloy.
The concentration of the inorganic acid is not particularly limited.
Moreover, it is preferable that the cleaning liquid contains an oxidizing agent. The oxidizing agent is, for example, hydrogen peroxide, nitric acid, concentrated sulfuric acid, or the like. Nitric acid is particularly preferable because it is an inorganic acid and at the same time acts as an oxidizing agent. Concentrated nitric acid is particularly preferable as nitric acid. Hydrofluoric acid is particularly useful for removing deposits containing silicon dioxide.
The cleaning liquid may contain water. When the inorganic acid is nitric acid, hydrochloric acid, dilute sulfuric acid or hydrofluoric acid, water is contained in the cleaning liquid.
The cleaning liquid may further contain additives such as a surfactant.
 ガス噴射面及びガス孔の内部と、無機酸を含むクリーニング液とは、例えば、シャワーヘッド等の洗浄対象物をクリーニング液に浸漬する方法、洗浄対象物にスプレー噴霧する方法によって、接触させられるが、浸漬する方法が好ましい。 The inside of the gas injection surface and the gas hole and the cleaning liquid containing an inorganic acid are brought into contact with each other by, for example, a method of immersing a cleaning object such as a shower head in the cleaning liquid or a method of spraying the cleaning object. , The method of dipping is preferable.
 ガス噴射面及びガス孔の内部と、無機酸を含むクリーニング液とを接触させる時間は、0.5~24時間が好ましく、1~12時間がより好ましく、2~12時間がさらに好ましい。接触時間が比較的短時間であることで、洗浄対象物であるガス孔をもつ半導体製造装置部品の減肉が少ないので、当該ガス孔をもつ半導体製造装置部品の長寿命化が可能となる。 The time for contacting the gas injection surface and the inside of the gas hole with the cleaning liquid containing an inorganic acid is preferably 0.5 to 24 hours, more preferably 1 to 12 hours, and even more preferably 2 to 12 hours. Since the contact time is relatively short, the wall thickness of the semiconductor manufacturing apparatus component having the gas hole, which is the object to be cleaned, is small, so that the life of the semiconductor manufacturing apparatus component having the gas hole can be extended.
<工程(3)>
 本発明の洗浄方法は、前記工程(1)または前記工程(2)の途中に、または前記各工程後に、前記ガス噴射面に超音波を照射する工程(3)を備えてもよい。
 前記ガス噴射面に超音波を照射することによって、堆積物の膜にさらに物理的な欠陥を生じさせることができ、前記工程(2)の処理時間をより短縮し、洗浄対象物であるガス孔をもつ半導体製造装置部品の減肉をより少なくして、当該ガス孔をもつ半導体製造装置部品のさらなる長寿命化が可能となる。
<Process (3)>
The cleaning method of the present invention may include a step (3) of irradiating the gas injection surface with ultrasonic waves during or after the step (1) or the step (2).
By irradiating the gas injection surface with ultrasonic waves, further physical defects can be caused in the film of the deposit, the processing time in the step (2) can be further shortened, and the gas holes to be cleaned can be obtained. It is possible to further extend the life of the semiconductor manufacturing equipment component having the gas hole by reducing the wall thinning of the semiconductor manufacturing equipment component having the gas hole.
<作用効果>
 本発明のガス孔をもつ半導体製造装置部品は、まず、ガス孔をもつ半導体製造装置部品のガス噴射面にレーザービームを照射して、ガス噴射面の表面及びガス孔の表面付近に付着している堆積物を除去し(工程1)、次いで、ガス噴射面及びガス孔の内部を無機酸を含むクリーニング液と接触させることにより、レーザービームだけでは除去できない堆積物を除去する(工程2)。工程1においては、ガス孔の奥に付着している堆積物を除去できなくても、堆積物の膜にクラックを生じさせたり、ガス孔の内壁から剥離させたりすると考えられる。工程2においては、堆積物の膜に生じたクラック又は堆積物の膜とガス孔の内壁との間に生じた隙間からクリーニング液が浸透し、短時間でガス孔の内部の堆積物を除去できると考えられる。工程2においては、分散板の減肉によるガス孔の直径の拡大が生じるものの、短時間であることから、ガス孔の直径の拡大率は小さく、従来よりもガス孔の直径の分散が大きくはならない。
<Effect>
The semiconductor manufacturing apparatus component having a gas hole of the present invention first irradiates the gas injection surface of the semiconductor manufacturing apparatus component having a gas hole with a laser beam and adheres to the surface of the gas injection surface and the vicinity of the surface of the gas hole. The deposits are removed (step 1), and then the gas injection surface and the inside of the gas holes are brought into contact with a cleaning liquid containing an inorganic acid to remove the deposits that cannot be removed by the laser beam alone (step 2). In step 1, even if the deposit adhering to the back of the gas hole cannot be removed, it is considered that the film of the deposit is cracked or peeled off from the inner wall of the gas hole. In step 2, the cleaning liquid permeates through the cracks formed in the film of the deposit or the gap formed between the film of the deposit and the inner wall of the gas hole, and the deposit inside the gas hole can be removed in a short time. it is conceivable that. In step 2, although the diameter of the gas hole is increased due to the thinning of the dispersion plate, the expansion rate of the diameter of the gas hole is small because it is a short time, and the dispersion of the diameter of the gas hole is larger than before. It doesn't become.
 以下、本発明を実施例によってより具体的に説明する。しかし、本発明は後述する実施例に限定されるものではなく、本発明の要旨を逸脱しない限り、種々の変形が可能である。 Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the examples described later, and various modifications can be made without departing from the gist of the present invention.
[比較例1]
(硝酸浸漬による洗浄)
 フッ化アルミニウムが付着したアルミニウム合金製シャワーヘッドを準備した。
 このシャワーヘッドを、ガス孔がすべて浸るように、濃硝酸をプラズマ接触面から48時間接触させた。
 その後、シャワーヘッド全体を純水で十分に洗浄して硝酸を除去した。
 次に、真空オーブンを用いてシャワーヘッド全体を乾燥した。
 乾燥後、シャワーヘッドのガス噴射面を肉眼で観察したところ、ガス孔付近のフッ化アルミニウムの完全除去が確認されたが、ガス噴射面の一部にフッ化アルミニウムの残留が認められた。
[Comparative Example 1]
(Washing by dipping in nitric acid)
An aluminum alloy shower head to which aluminum fluoride was attached was prepared.
The shower head was contacted with concentrated nitric acid for 48 hours from the plasma contact surface so that all the gas holes were immersed.
Then, the entire shower head was thoroughly washed with pure water to remove nitric acid.
The entire shower head was then dried using a vacuum oven.
After drying, when the gas injection surface of the shower head was visually observed, it was confirmed that aluminum fluoride was completely removed near the gas holes, but aluminum fluoride remained on a part of the gas injection surface.
(硝酸浸漬によるガス孔部の直径の変化)
 硝酸浸漬による洗浄を行ったアルミニウム合金製シャワーヘッドのガス孔部を、洗浄前と洗浄後にデジタル顕微鏡(VHX-900F、キーエンス社製)を用いて拡大観察し、洗浄前のガス孔部の直径及び洗浄後のガス孔部の直径を測定した。
 また、フッ化アルミニウムが付着していない新品のアルミ製シャワーヘッドのガス孔部を、デジタル顕微鏡(同上)を用いて拡大観察し、未使用のガス孔部の直径を測定した。
 以下の測定値を得た。
 硝酸浸漬前のガス孔部の直径: 972μm
 硝酸浸漬後のガス孔部の直径: 1018μm
 未使用のガス孔部の直径: 1016μm
 ガス孔部の直径は、硝酸浸漬による洗浄を行った結果、2μm大きくなった。
(Change in diameter of gas hole due to nitric acid immersion)
The gas holes of the aluminum alloy shower head cleaned by immersion in nitric acid were magnified and observed using a digital microscope (VHX-900F, manufactured by KEYENCE) before and after cleaning, and the diameter of the gas holes before cleaning and the diameter of the gas holes before cleaning were observed. The diameter of the gas hole after cleaning was measured.
Further, the gas hole portion of the new aluminum shower head to which aluminum fluoride did not adhere was magnified and observed using a digital microscope (same as above), and the diameter of the unused gas hole portion was measured.
The following measured values were obtained.
Diameter of gas hole before nitric acid immersion: 972 μm
Diameter of gas hole after immersion in nitric acid: 1018 μm
Diameter of unused gas hole: 1016 μm
The diameter of the gas hole increased by 2 μm as a result of cleaning by dipping in nitric acid.
[比較例2]
(硝酸浸漬による洗浄)
 比較例1で使用したフッ化アルミニウムが付着したアルミニウム合金製シャワーヘッドとは別のフッ化アルミニウムが付着したアルミニウム合金製シャワーヘッドに対して、比較例1と同様の硝酸浸漬による洗浄を行った。比較例1と同様、ガス孔部周辺のフッ化アルミニウムの完全除去は確認できたが、ガス噴射面の一部にフッ化アルミニウムの残留が認められた。
[Comparative Example 2]
(Washing by dipping in nitric acid)
The aluminum alloy shower head to which aluminum fluoride was attached, which was different from the aluminum alloy shower head to which aluminum fluoride was attached, which was used in Comparative Example 1, was washed by the same nitrate immersion as in Comparative Example 1. Similar to Comparative Example 1, complete removal of aluminum fluoride around the gas hole was confirmed, but residual aluminum fluoride was observed on a part of the gas injection surface.
(硝酸浸漬によるガス孔部の直径の変化)
 硝酸浸漬による洗浄を行ったアルミニウム合金製シャワーヘッドのガス孔部を、洗浄前と洗浄後にデジタル顕微鏡(同上)を用いて拡大観察し、洗浄前のガス孔部の直径及び洗浄後のガス孔部の直径を測定した。
 以下の測定値を得た。
 硝酸浸漬前のガス孔部の直径: 965μm
 硝酸浸漬後のガス孔部の直径: 1022μm
 未使用のガス孔部の直径は1016μmであったから、ガス孔部の直径は、硝酸浸漬による洗浄を行った結果、6μm大きくなった。
(Change in diameter of gas hole due to nitric acid immersion)
The gas holes of the aluminum alloy shower head cleaned by immersion in nitric acid were magnified and observed using a digital microscope (same as above) before and after cleaning, and the diameter of the gas holes before cleaning and the gas holes after cleaning were observed. The diameter of the washer was measured.
The following measured values were obtained.
Diameter of gas hole before nitric acid immersion: 965 μm
Diameter of gas hole after immersion in nitric acid: 1022 μm
Since the diameter of the unused gas hole was 1016 μm, the diameter of the gas hole was increased by 6 μm as a result of cleaning by dipping in nitric acid.
[実施例1]
(レーザー照射)
 フッ化アルミニウムが付着したアルミニウム合金製シャワーヘッドのプラズマ接触面に、平均出力200W、波長1064nmのYAGレーザー(ガウシアンビーム、パルス発振、パルス周波数200kHz)をビーム直径30μm、ビーム掃引速度5mm/秒で連続掃引した。
 レーザー照射後、レーザー照射面を肉眼で観察したところ、フッ化アルミニウムの除去がレーザー照射面全面にわたって確認された。
[Example 1]
(Laser irradiation)
A YAG laser (Gaussian beam, pulse oscillation, pulse frequency 200 kHz) with an average output of 200 W and a wavelength of 1064 nm is continuously applied to the plasma contact surface of an aluminum alloy shower head to which aluminum fluoride is attached at a beam diameter of 30 μm and a beam sweep speed of 5 mm / sec. Swept.
When the laser irradiation surface was observed with the naked eye after the laser irradiation, the removal of aluminum fluoride was confirmed over the entire surface of the laser irradiation surface.
(レーザー照射によるガス孔部の直径の変化)
 レーザー照射を行ったアルミニウム合金製シャワーヘッドのガス孔部を、洗浄前と洗浄後にデジタル顕微鏡(同上)を用いて拡大観察し、洗浄前のガス孔部の直径及び洗浄後のガス孔部の直径を測定した。
 以下の測定値を得た。
 レーザー照射前のガス孔部の直径: 994μm
 レーザー照射後のガス孔部の直径: 1006μm
 レーザー照射によりガス孔部の直径の広がりが観察された。これは、ガス孔部を狭窄しているフッ化アルミニウムが一部除去されたことによるものである。
(Change in diameter of gas hole due to laser irradiation)
The gas holes of the aluminum alloy shower head subjected to laser irradiation were magnified and observed using a digital microscope (same as above) before and after cleaning, and the diameter of the gas holes before cleaning and the diameter of the gas holes after cleaning. Was measured.
The following measured values were obtained.
Diameter of gas hole before laser irradiation: 994 μm
Diameter of gas hole after laser irradiation: 1006 μm
A widening of the diameter of the gas hole was observed by laser irradiation. This is due to the partial removal of aluminum fluoride that narrows the gas pores.
(硝酸浸漬による洗浄)
 レーザー照射後のシャワーヘッドを、ガス孔がすべて浸るように、濃硝酸(40%)をプラズマ接触面から3時間接触させた。
 その後、シャワーヘッド全体を純水で十分に洗浄して硝酸を除去した。
 次に、真空オーブンを用いてシャワーヘッド全体を乾燥した。
 乾燥後、シャワーヘッドのプラズマ接触面を肉眼で観察したところ、全面にわたってフッ化アルミニウムの除去が確認された。
(Washing by dipping in nitric acid)
The shower head after the laser irradiation was contacted with concentrated nitric acid (40%) from the plasma contact surface for 3 hours so that all the gas holes were immersed.
Then, the entire shower head was thoroughly washed with pure water to remove nitric acid.
The entire shower head was then dried using a vacuum oven.
After drying, the plasma contact surface of the shower head was visually observed, and it was confirmed that aluminum fluoride was removed over the entire surface.
(硝酸浸漬による付着物の除去の確認)
 硝酸浸漬による洗浄を行ったアルミニウム合金製シャワーヘッドのガス孔部の断面を、洗浄前と洗浄後にエネルギー分散型蛍光X線装置で分析する。
 その結果、ガス孔部の内面部全面にわたって、フッ素に基づくピークの著しい減少が観測される。
(Confirmation of removal of deposits by immersion in nitric acid)
The cross section of the gas hole of the aluminum alloy shower head cleaned by immersion in nitric acid is analyzed by an energy dispersive fluorescent X-ray apparatus before and after cleaning.
As a result, a significant decrease in fluorine-based peaks is observed over the entire inner surface of the gas pores.
[実施例2]
(レーザー照射)
 フッ化アルミニウムが付着したアルミニウム合金製シャワーヘッドのプラズマ接触面に、平均出力40W、波長1064nmのYAGレーザー(トップハットビーム、パルス発振、パルス周波数10Hz)をビーム直径6mm、ビーム掃引速度1mm/秒で連続掃引した。
 レーザー照射後、レーザー照射面を肉眼で観察したところ、フッ化アルミニウムの除去がレーザー照射面全面にわたって確認された。実施例1(ガウシアンビーム)と比較して、レーザー処理後の表面の均一性が向上した。
[Example 2]
(Laser irradiation)
A YAG laser (tophat beam, pulse oscillation, pulse frequency 10 Hz) with an average output of 40 W and a wavelength of 1064 nm is applied to the plasma contact surface of an aluminum alloy shower head with aluminum fluoride attached at a beam diameter of 6 mm and a beam sweep speed of 1 mm / sec. It was swept continuously.
When the laser irradiation surface was observed with the naked eye after the laser irradiation, the removal of aluminum fluoride was confirmed over the entire surface of the laser irradiation surface. Compared with Example 1 (Gaussian beam), the surface uniformity after laser treatment was improved.
(レーザー照射によるガス孔部の直径の変化)
 レーザー照射を行ったアルミニウム合金製シャワーヘッドのガス孔部を、洗浄前と洗浄後にデジタル顕微鏡(同上)を用いて拡大観察し、洗浄前のガス孔部の直径及び洗浄後のガス孔部の直径を測定した。
 以下の測定値を得た。
 レーザー照射前のガス孔部の直径: 979μm
 レーザー照射後のガス孔部の直径: 1007μm
 レーザー照射によりガス孔部の直径の広がりが観察された。これは、ガス孔部を狭窄しているフッ化アルミニウムが一部除去されたことによるものである。
(Change in diameter of gas hole due to laser irradiation)
The gas holes of the aluminum alloy shower head subjected to laser irradiation were magnified and observed using a digital microscope (same as above) before and after cleaning, and the diameter of the gas holes before cleaning and the diameter of the gas holes after cleaning. Was measured.
The following measured values were obtained.
Diameter of gas hole before laser irradiation: 979 μm
Diameter of gas hole after laser irradiation: 1007 μm
A widening of the diameter of the gas hole was observed by laser irradiation. This is due to the partial removal of aluminum fluoride that narrows the gas pores.
(硝酸浸漬による洗浄)
 レーザー照射後のシャワーヘッドを、ガス孔がすべて浸るように、濃硝酸(40%)をプラズマ接触面から12時間接触させた。
 その後、シャワーヘッド全体を純水で十分に洗浄して硝酸を除去した。
 次に、真空オーブンを用いてシャワーヘッド全体を乾燥した。
 乾燥後、シャワーヘッドのプラズマ接触面を肉眼で観察したところ、全面にわたってフッ化アルミニウムの除去が確認された。
(Washing by dipping in nitric acid)
The shower head after laser irradiation was contacted with concentrated nitric acid (40%) from the plasma contact surface for 12 hours so that all the gas holes were immersed.
Then, the entire shower head was thoroughly washed with pure water to remove nitric acid.
The entire shower head was then dried using a vacuum oven.
After drying, the plasma contact surface of the shower head was visually observed, and it was confirmed that aluminum fluoride was removed over the entire surface.
(硝酸浸漬による付着物の除去の確認)
 硝酸浸漬による洗浄を行ったアルミニウム合金製シャワーヘッドのガス孔部の断面を、洗浄前と洗浄後にエネルギー分散型蛍光X線装置で分析する。
 その結果、ガス孔部の内面部全面にわたって、フッ素に基づくピークの著しい減少が観測される。
(Confirmation of removal of deposits by immersion in nitric acid)
The cross section of the gas hole of the aluminum alloy shower head cleaned by immersion in nitric acid is analyzed by an energy dispersive fluorescent X-ray apparatus before and after cleaning.
As a result, a significant decrease in fluorine-based peaks is observed over the entire inner surface of the gas pores.
[実施例3]
(レーザー照射)
 フッ化アルミニウムが付着したアルミニウム合金製シャワーヘッドのプラズマ接触面に、平均出力40W、波長1064nmのYAGレーザー(トップハットビーム、パルス発振、パルス周波数10Hz)をビーム直径6mm、ビーム掃引速度5mm/秒で連続掃引した。
 レーザー照射後、レーザー照射面を肉眼で観察したところ、フッ化アルミニウムの除去がレーザー照射面全面にわたって確認された。
[Example 3]
(Laser irradiation)
A YAG laser (tophat beam, pulse oscillation, pulse frequency 10 Hz) with an average output of 40 W and a wavelength of 1064 nm was applied to the plasma contact surface of an aluminum alloy shower head with aluminum fluoride attached at a beam diameter of 6 mm and a beam sweep speed of 5 mm / sec. It was swept continuously.
When the laser irradiation surface was observed with the naked eye after the laser irradiation, the removal of aluminum fluoride was confirmed over the entire surface of the laser irradiation surface.
実施例1(ガウシアンビーム)と比較して、レーザー処理後の表面の均一性が向上した。
(レーザー照射によるガス孔部の直径の変化)
 レーザー照射を行ったアルミニウム合金製シャワーヘッドのガス孔部を、洗浄前と洗浄後にデジタル顕微鏡(同上)を用いて拡大観察し、洗浄前のガス孔部の直径及び洗浄後のガス孔部の直径を測定した。
 以下の測定値を得た。
 レーザー照射前のガス孔部の直径: 978μm
 レーザー照射後のガス孔部の直径: 1009μm
 レーザー照射によりガス孔部の直径の広がりが観察された。これは、ガス孔部を狭窄しているフッ化アルミニウムが一部除去されたことによるものである。
Compared with Example 1 (Gaussian beam), the surface uniformity after laser treatment was improved.
(Change in diameter of gas hole due to laser irradiation)
The gas holes of the aluminum alloy shower head subjected to laser irradiation were magnified and observed using a digital microscope (same as above) before and after cleaning, and the diameter of the gas holes before cleaning and the diameter of the gas holes after cleaning. Was measured.
The following measured values were obtained.
Diameter of gas hole before laser irradiation: 978 μm
Diameter of gas hole after laser irradiation: 1009 μm
A widening of the diameter of the gas hole was observed by laser irradiation. This is due to the partial removal of aluminum fluoride that narrows the gas pores.
(硝酸浸漬による洗浄)
 レーザー照射後のシャワーヘッドを、ガス孔がすべて浸るように、濃硝酸(40%)をプラズマ接触面から12時間接触させた。
 その後、シャワーヘッド全体を純水で十分に洗浄して硝酸を除去した。
 次に、真空オーブンを用いてシャワーヘッド全体を乾燥した。
 乾燥後、シャワーヘッドのプラズマ接触面を肉眼で観察したところ、全面にわたってフッ化アルミニウムの除去が確認された。
(Washing by dipping in nitric acid)
The shower head after laser irradiation was contacted with concentrated nitric acid (40%) from the plasma contact surface for 12 hours so that all the gas holes were immersed.
Then, the entire shower head was thoroughly washed with pure water to remove nitric acid.
The entire shower head was then dried using a vacuum oven.
After drying, the plasma contact surface of the shower head was visually observed, and it was confirmed that aluminum fluoride was removed over the entire surface.
(硝酸浸漬による付着物の除去の確認)
 硝酸浸漬による洗浄を行ったアルミニウム合金製シャワーヘッドのガス孔部の断面を、洗浄前と洗浄後にエネルギー分散型蛍光X線装置で分析する。
 その結果、ガス孔部の内面部全面にわたって、フッ素に基づくピークの著しい減少が観測される。
(Confirmation of removal of deposits by immersion in nitric acid)
The cross section of the gas hole of the aluminum alloy shower head cleaned by immersion in nitric acid is analyzed by an energy dispersive fluorescent X-ray apparatus before and after cleaning.
As a result, a significant decrease in fluorine-based peaks is observed over the entire inner surface of the gas pores.
[実施例4]
(レーザー照射)
 フッ化アルミニウムが付着したアルミニウム合金製シャワーヘッドのプラズマ接触面に、平均出力40W、波長1064nmのYAGレーザー(トップハットビーム、パルス発振、パルス周波数10Hz)をビーム直径6mm、ビーム掃引速度8mm/秒で連続掃引した。
 レーザー照射後、レーザー照射面を肉眼で観察したところ、フッ化アルミニウムの除去がレーザー照射面全面にわたって確認された。実施例1(ガウシアンビーム)と比較して、レーザー処理後の表面の均一性が向上した。
[Example 4]
(Laser irradiation)
A YAG laser (tophat beam, pulse oscillation, pulse frequency 10 Hz) with an average output of 40 W and a wavelength of 1064 nm is applied to the plasma contact surface of an aluminum alloy shower head with aluminum fluoride attached at a beam diameter of 6 mm and a beam sweep speed of 8 mm / sec. It was swept continuously.
When the laser irradiation surface was observed with the naked eye after the laser irradiation, the removal of aluminum fluoride was confirmed over the entire surface of the laser irradiation surface. Compared with Example 1 (Gaussian beam), the surface uniformity after laser treatment was improved.
(レーザー照射によるガス孔部の直径の変化)
 レーザー照射を行ったアルミニウム合金製シャワーヘッドのガス孔部を、洗浄前と洗浄後にデジタル顕微鏡(同上)を用いて拡大観察し、洗浄前のガス孔部の直径及び洗浄後のガス孔部の直径を測定した。
 以下の測定値を得た。
 レーザー照射前のガス孔部の直径: 976μm
 レーザー照射後のガス孔部の直径: 1011μm
 レーザー照射によりガス孔部の直径の広がりが観察された。これは、ガス孔部を狭窄しているフッ化アルミニウムが一部除去されたことによるものである。
(Change in diameter of gas hole due to laser irradiation)
The gas holes of the aluminum alloy shower head subjected to laser irradiation were magnified and observed using a digital microscope (same as above) before and after cleaning, and the diameter of the gas holes before cleaning and the diameter of the gas holes after cleaning. Was measured.
The following measured values were obtained.
Diameter of gas hole before laser irradiation: 976 μm
Diameter of gas hole after laser irradiation: 1011 μm
A widening of the diameter of the gas hole was observed by laser irradiation. This is due to the partial removal of aluminum fluoride that narrows the gas pores.
(硝酸浸漬による洗浄)
 レーザー照射後のシャワーヘッドを、ガス孔がすべて浸るように、濃硝酸(40%)をプラズマ接触面から12時間接触させた。
 その後、シャワーヘッド全体を純水で十分に洗浄して硝酸を除去した。
 次に、真空オーブンを用いてシャワーヘッド全体を乾燥した。
 乾燥後、シャワーヘッドのプラズマ接触面を肉眼で観察したところ、全面にわたってフッ化アルミニウムの除去が確認された。
(Washing by dipping in nitric acid)
The shower head after laser irradiation was contacted with concentrated nitric acid (40%) from the plasma contact surface for 12 hours so that all the gas holes were immersed.
Then, the entire shower head was thoroughly washed with pure water to remove nitric acid.
The entire shower head was then dried using a vacuum oven.
After drying, the plasma contact surface of the shower head was visually observed, and it was confirmed that aluminum fluoride was removed over the entire surface.
(硝酸浸漬による付着物の除去の確認)
 硝酸浸漬による洗浄を行ったアルミニウム合金製シャワーヘッドのガス孔部の断面を、洗浄前と洗浄後にエネルギー分散型蛍光X線装置で分析する。
 その結果、ガス孔部の内面部全面にわたって、フッ素に基づくピークの著しい減少が観測される。
(Confirmation of removal of deposits by immersion in nitric acid)
The cross section of the gas hole of the aluminum alloy shower head cleaned by immersion in nitric acid is analyzed by an energy dispersive fluorescent X-ray apparatus before and after cleaning.
As a result, a significant decrease in fluorine-based peaks is observed over the entire inner surface of the gas pores.
[比較例3]
(硝酸浸漬による洗浄)
 フッ化アルミニウムが付着したアルミニウム合金製シャワーヘッドを準備した。
 このシャワーヘッドを、ガス孔がすべて浸るように、濃硝酸をガス噴射面から3時間接触させた。
 その後、シャワーヘッド全体を純水で十分に洗浄して硝酸を除去した。
 次に、真空オーブンを用いてシャワーヘッド全体を乾燥した。
 乾燥後、シャワーヘッドのガス噴射面及びガス孔部の内面を肉眼で観察したところ、フッ化アルミニウムの残留が認められた。
[Comparative Example 3]
(Washing by dipping in nitric acid)
An aluminum alloy shower head to which aluminum fluoride was attached was prepared.
The shower head was brought into contact with concentrated nitric acid from the gas injection surface for 3 hours so that all the gas holes were immersed.
Then, the entire shower head was thoroughly washed with pure water to remove nitric acid.
The entire shower head was then dried using a vacuum oven.
After drying, when the gas injection surface of the shower head and the inner surface of the gas hole were visually observed, residual aluminum fluoride was observed.
[結果の説明]
 比較例1及び2は、シャワーヘッドのガス孔部の内面およびその周辺に付着していたフッ化アルミニウムを除去でき、ガス孔の狭窄や閉塞を解消できたが、硝酸浸漬により、ガス孔部の直径が拡大していた。また、ガス噴射面のフッ化アルミニウムの除去は不十分であった。
 比較例3は、シャワーヘッドのプラズマ接触面及びガス孔部の内面に付着していたフッ化アルミニウムの除去が不十分であった。
 実施例1は、比較例1及び2に比べて短時間で、シャワーヘッドのプラズマ接触面及びガス孔部の内面に付着していたフッ化アルミニウムを除去でき、ガス孔の狭窄や閉塞を解消できた。また、洗浄の前後でガス孔部の直径にほとんど変化はなかった。
 比較例1及び2の結果から、硝酸を用いて洗浄する前のガス孔部直径が小さいほど、洗浄操作により洗浄後のガス孔部直径は大きくなることが分かる。フッ化アルミニウムを完全に除去するためにはシャワーヘッドを硝酸に長時間浸漬する必要があり、浸漬中にシャワーヘッドのフッ化アルミニウム非被覆部が硝酸によってエッチング溶解するからである。
[Explanation of results]
In Comparative Examples 1 and 2, aluminum fluoride adhering to the inner surface of the gas hole of the shower head and its periphery could be removed, and the narrowing and blockage of the gas hole could be eliminated. However, the gas hole was immersed in nitric acid. The diameter was expanding. In addition, the removal of aluminum fluoride on the gas injection surface was insufficient.
In Comparative Example 3, the removal of aluminum fluoride adhering to the plasma contact surface of the shower head and the inner surface of the gas hole portion was insufficient.
In Example 1, aluminum fluoride adhering to the plasma contact surface of the shower head and the inner surface of the gas hole can be removed in a shorter time than in Comparative Examples 1 and 2, and the narrowing and blockage of the gas hole can be eliminated. It was. In addition, there was almost no change in the diameter of the gas hole before and after cleaning.
From the results of Comparative Examples 1 and 2, it can be seen that the smaller the diameter of the gas hole before cleaning with nitric acid, the larger the diameter of the gas hole after cleaning by the cleaning operation. This is because the shower head needs to be immersed in nitric acid for a long time in order to completely remove aluminum fluoride, and the non-coated portion of aluminum fluoride of the shower head is etched and dissolved by nitric acid during the immersion.
 これらの結果から、レーザー照射後に洗浄液で洗浄することにより、ガス孔部直径が大きくなることなくシャワーヘッドのガス噴射面及びガス孔部の内面の付着物を完全に除去できることがわかる。 From these results, it can be seen that by cleaning with a cleaning liquid after laser irradiation, deposits on the gas injection surface of the shower head and the inner surface of the gas hole can be completely removed without increasing the diameter of the gas hole.
 本発明の洗浄方法によれば、ガス孔をもつ半導体製造装置部品の洗浄をより短時間で行うことができ、しかも、従来よりも当該ガス孔をもつ半導体製造装置部品の長寿命化を図ることができるので、より低コストでの半導体ウエハの生産が可能となる。 According to the cleaning method of the present invention, the semiconductor manufacturing equipment component having a gas hole can be cleaned in a shorter time, and the life of the semiconductor manufacturing equipment component having the gas hole can be extended as compared with the conventional case. Therefore, it is possible to produce semiconductor wafers at a lower cost.
 2 成膜装置
 4 処理容器
 6 シャワーヘッド
 7 シャワーヘッドの天井板
 8 分散板
 9 ボルト
 10 ガス孔
 10A 原料ガス孔
 10C 第2支援ガス孔
 12 搬出入口
 14 ゲートバルブ
 16 処理容器の底部
 18 排気落とし込め空間
 20 開口
 22 円筒区画壁
 24 円筒区画壁の底部
 26 支柱
 28 載置台
 30 排気口
 32 真空排気系
 34 排気管
 36 加熱手段
 38 給電線
 40 ピン挿通孔
 42 押し上げピン
 44 押し上げリング
 46 アーム部
 48 出没ロッド
 50 アクチュエータ
 54 天井板
 55 シール部材
 56 シャワーヘッド本体
 57 ボルト
 58 シール部材
 60 第1の拡散室
 62 第2の拡散室
 64 区画板
 66A 処理ガス導入口
 66B 支援ガス導入口
 70 除去対象膜
 AA 処理ガス
 BB 支援ガス
 CC 排気
 S  処理空間
 W  基板
2 Film deposition equipment 4 Processing container 6 Shower head 7 Shower head ceiling plate 8 Dispersion plate 9 Bolt 10 Gas hole 10A Raw material gas hole 10C 2nd support gas hole 12 Carry-in / out port 14 Gate valve 16 Bottom of processing container 18 Exhaust drop space 20 Opening 22 Cylindrical compartment wall 24 Bottom of cylindrical compartment wall 26 Strut 28 Mounting stand 30 Exhaust port 32 Vacuum exhaust system 34 Exhaust pipe 36 Heating means 38 Power supply line 40 Pin insertion hole 42 Push-up pin 44 Push-up ring 46 Arm part 48 Infestation rod 50 Actuator 54 Ceiling plate 55 Sealing member 56 Shower head body 57 Bolt 58 Sealing member 60 First diffusion chamber 62 Second diffusion chamber 64 Partition plate 66A Processing gas inlet 66B Assist gas inlet 70 Removal target film AA Treatment gas BB Assist Gas CC Exhaust S Processing Space W Board

Claims (15)

  1.  半導体ウエハを処理する枚葉式の半導体製造装置において用いられるガス孔をもつ半導体製造装置部品の洗浄方法であって、
     前記ガス孔をもつ半導体製造装置部品は、アルミニウム又はアルミニウム合金からなり、複数のガス孔を有する分散板を備えており、
     前記分散板のウエハに面する側の表面であるガス噴射面をレーザービームで走査する工程(1)と、
     前記ガス噴射面及び前記ガス孔の内部を、無機酸を含むクリーニング液と接触させる工程(2)と
    を含む、ガス孔をもつ半導体製造装置部品の洗浄方法。
    A method for cleaning semiconductor manufacturing equipment parts having gas holes used in single-wafer type semiconductor manufacturing equipment for processing semiconductor wafers.
    The semiconductor manufacturing equipment component having the gas holes is made of aluminum or an aluminum alloy, and includes a dispersion plate having a plurality of gas holes.
    The step (1) of scanning the gas injection surface, which is the surface of the dispersion plate facing the wafer, with a laser beam, and
    A method for cleaning a semiconductor manufacturing apparatus component having a gas hole, which comprises a step (2) of bringing the gas injection surface and the inside of the gas hole into contact with a cleaning liquid containing an inorganic acid.
  2.  前記レーザービームの平均エネルギーが1~10000Wである、請求項1に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to claim 1, wherein the average energy of the laser beam is 1 to 10000 W.
  3.  前記レーザービームの平均エネルギー密度が1×10~1×1013W/mである、請求項1又は2に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to claim 1 or 2, wherein the average energy density of the laser beam is 1 × 10 3 to 1 × 10 13 W / m 2.
  4.  前記レーザービームがパルスビームである、請求項1~3のいずれか1項に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of claims 1 to 3, wherein the laser beam is a pulse beam.
  5.  前記パルスビームのパルス周波数が1Hz~5000kHzである、請求項4に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to claim 4, wherein the pulse frequency of the pulse beam is 1 Hz to 5000 kHz.
  6.  前記レーザービームが、COレーザー、He-Neレーザー、アルゴンレーザー、YAGレーザー、Nd:YAGレーザー、Er:Nd-YAGレーザー、ファイバーレーザー及び高出力ダイオードレーザーからなる群から選択されるいずれか1つによって生成される、請求項1~5のいずれか1項に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The laser beam is selected from the group consisting of CO 2 laser, He-Ne laser, argon laser, YAG laser, Nd: YAG laser, Er: Nd-YAG laser, fiber laser and high power diode laser. The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of claims 1 to 5, which is generated by.
  7.  前記レーザービームの波長が10nm~1000μmである、請求項1~6のいずれか1項に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of claims 1 to 6, wherein the wavelength of the laser beam is 10 nm to 1000 μm.
  8.  前記無機酸が、硝酸、塩酸、硫酸及びフッ酸からなる群から選択される少なくとも1種を含む、請求項1~7のいずれか1項に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of claims 1 to 7, wherein the inorganic acid contains at least one selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid and hydrofluoric acid. ..
  9.  前記クリーニング液が酸化剤を含む、請求項1~8のいずれか1項に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of claims 1 to 8, wherein the cleaning liquid contains an oxidizing agent.
  10.  前記工程(2)において、前記ガス孔をもつ半導体製造装置部品を前記クリーニング液に浸漬する、請求項1~9のいずれか1項に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of claims 1 to 9, wherein in the step (2), the semiconductor manufacturing apparatus component having the gas hole is immersed in the cleaning liquid.
  11.  前記ガス孔をもつ半導体製造装置部品を前記クリーニング液に0.5~24時間浸漬する、請求項10に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to claim 10, wherein the semiconductor manufacturing apparatus component having the gas hole is immersed in the cleaning liquid for 0.5 to 24 hours.
  12.  前記分散板の前記ガス噴射面及び前記ガス孔に堆積物が付着しており、前記堆積物は、エッチングガスとアルミニウムとの反応生成物を含む、請求項1~11のいずれか1項に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The invention according to any one of claims 1 to 11, wherein deposits are attached to the gas injection surface and the gas holes of the dispersion plate, and the deposits include a reaction product of an etching gas and aluminum. A method for cleaning semiconductor manufacturing equipment parts that have gas holes.
  13.  前記分散板の前記ガス噴射面及び前記ガス孔に堆積物が付着しており、前記堆積物は、成膜ガスに由来する化合物を含む、請求項1~12のいずれか1項に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The gas according to any one of claims 1 to 12, wherein deposits are attached to the gas injection surface and the gas holes of the dispersion plate, and the deposits contain a compound derived from the film-forming gas. A method for cleaning semiconductor manufacturing equipment parts with holes.
  14.  前記工程(1)と前記工程(2)との間に、前記ガス噴射面に超音波を照射する工程(3)を備える、請求項1~13のいずれか1項に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The gas hole according to any one of claims 1 to 13, further comprising a step (3) of irradiating the gas injection surface with ultrasonic waves between the step (1) and the step (2). Cleaning method for semiconductor manufacturing equipment parts.
  15.  前記ガス孔をもつ半導体製造装置部品がシャワーヘッドである、請求項1~14のいずれか1項に記載のガス孔をもつ半導体製造装置部品の洗浄方法。 The method for cleaning a semiconductor manufacturing apparatus component having a gas hole according to any one of claims 1 to 14, wherein the semiconductor manufacturing apparatus component having the gas hole is a shower head.
PCT/JP2020/032168 2019-08-28 2020-08-26 Washing method of semiconductor manufacturing device component having gas holes WO2021039838A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20857702.3A EP4023349A4 (en) 2019-08-28 2020-08-26 Washing method of semiconductor manufacturing device component having gas holes
JP2020569214A JP6859496B1 (en) 2019-08-28 2020-08-26 Cleaning method for semiconductor manufacturing equipment parts with gas holes
US17/577,461 US11753714B2 (en) 2019-08-28 2022-01-18 Washing method of semiconductor manufacturing device component having gas holes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019155485 2019-08-28
JP2019-155485 2019-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/577,461 Continuation US11753714B2 (en) 2019-08-28 2022-01-18 Washing method of semiconductor manufacturing device component having gas holes

Publications (1)

Publication Number Publication Date
WO2021039838A1 true WO2021039838A1 (en) 2021-03-04

Family

ID=74685044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032168 WO2021039838A1 (en) 2019-08-28 2020-08-26 Washing method of semiconductor manufacturing device component having gas holes

Country Status (5)

Country Link
US (1) US11753714B2 (en)
EP (1) EP4023349A4 (en)
JP (2) JP6859496B1 (en)
TW (1) TWI809303B (en)
WO (1) WO2021039838A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278081B1 (en) * 2019-06-27 2021-07-19 세메스 주식회사 Apparatus and Method for treating substrate
WO2021039838A1 (en) * 2019-08-28 2021-03-04 株式会社新菱 Washing method of semiconductor manufacturing device component having gas holes
CN113215583B (en) * 2021-05-11 2022-12-09 爱极宝电子工业设备(广州)有限公司 Cleaning and regenerating method for aluminum and aluminum alloy device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167087A (en) 2003-12-04 2005-06-23 Tokyo Electron Ltd Cleaning method and semiconductor manufacturing apparatus
JP2009054997A (en) * 2007-07-27 2009-03-12 Semiconductor Energy Lab Co Ltd Method for manufacturing photoelectric conversion device
JP4668915B2 (en) 2003-05-22 2011-04-13 アプライド マテリアルズ インコーポレイテッド Cleaning process chamber components
JP2011184774A (en) * 2010-03-10 2011-09-22 Fujifilm Corp Gas supply electrode and method of cleaning gas supply electrode
JP2012064773A (en) * 2010-09-16 2012-03-29 Hitachi High-Technologies Corp Plasma processing equipment
JP2019155485A (en) 2018-03-07 2019-09-19 パナソニックIpマネジメント株式会社 Power tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4456769B2 (en) * 2001-02-02 2010-04-28 川崎マイクロエレクトロニクス株式会社 Method of cleaning silicon electrode for generating fluorocarbon plasma and method of manufacturing semiconductor device using the same
US20020185554A1 (en) * 2001-06-07 2002-12-12 Taiwan Semiconductor Manufacturing Co., Ltd. Method for treating a gas dispensing device and device treated
JP4982931B2 (en) * 2001-08-24 2012-07-25 東京エレクトロン株式会社 Semiconductor processing apparatus and method for cleaning the component
JP4231417B2 (en) * 2004-01-07 2009-02-25 パナソニック株式会社 Substrate processing apparatus and cleaning method thereof
US20080092806A1 (en) * 2006-10-19 2008-04-24 Applied Materials, Inc. Removing residues from substrate processing components
US8673083B2 (en) * 2009-04-22 2014-03-18 Inotera Memories, Inc. Method of cleaning showerhead
WO2021039838A1 (en) * 2019-08-28 2021-03-04 株式会社新菱 Washing method of semiconductor manufacturing device component having gas holes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668915B2 (en) 2003-05-22 2011-04-13 アプライド マテリアルズ インコーポレイテッド Cleaning process chamber components
JP2005167087A (en) 2003-12-04 2005-06-23 Tokyo Electron Ltd Cleaning method and semiconductor manufacturing apparatus
JP2009054997A (en) * 2007-07-27 2009-03-12 Semiconductor Energy Lab Co Ltd Method for manufacturing photoelectric conversion device
JP2011184774A (en) * 2010-03-10 2011-09-22 Fujifilm Corp Gas supply electrode and method of cleaning gas supply electrode
JP2012064773A (en) * 2010-09-16 2012-03-29 Hitachi High-Technologies Corp Plasma processing equipment
JP2019155485A (en) 2018-03-07 2019-09-19 パナソニックIpマネジメント株式会社 Power tool

Also Published As

Publication number Publication date
JP6859496B1 (en) 2021-04-14
EP4023349A1 (en) 2022-07-06
EP4023349A4 (en) 2022-10-19
JP2021106278A (en) 2021-07-26
JPWO2021039838A1 (en) 2021-09-27
TWI809303B (en) 2023-07-21
TW202108254A (en) 2021-03-01
US11753714B2 (en) 2023-09-12
US20220136101A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP6859496B1 (en) Cleaning method for semiconductor manufacturing equipment parts with gas holes
JP6737899B2 (en) Plasma processing process for improving in-situ chamber cleaning efficiency in plasma processing chamber
TWI752925B (en) Surface coating treatment
KR101434008B1 (en) Component of substrate processing apparatus, substrate processing apparatus and method for forming an allumite film thereon
CN105195487B (en) A kind of quartz glass cleaning method
JP2016122699A (en) Method for depositing silicon film and deposition device
EP2200073A1 (en) Method for forming silicide and apparatus for forming the silicide
JP2009132991A (en) Ceramic cover wafer of aluminum nitride or beryllium oxide
KR19990071626A (en) Method and apparatus for removing residues from a substrate in a sapphire plasma asher
JP2003126795A (en) Method for cleaning ceramic insulator
JP2007142335A (en) High-pressure treatment method
US6395192B1 (en) Method and apparatus for removing native oxide layers from silicon wafers
KR20080063751A (en) Method for surface treating semiconductor
JP2005167087A (en) Cleaning method and semiconductor manufacturing apparatus
US7270724B2 (en) Scanning plasma reactor
US10766824B2 (en) Methods of minimizing particles on wafer from plasma spray coatings
TW202043527A (en) Method for fabricating chamber parts
JP4890668B2 (en) Quartz glass lid for reaction apparatus for semiconductor heat treatment and manufacturing method thereof
KR20200067583A (en) Methods of reducing particle generation inside showerhead hole and chemical polishing composition
JPS6191930A (en) Cleaning method of semiconductor substrate
JP2004127990A (en) Method for manufacturing semiconductor device
JP5360799B2 (en) Method for producing zinc oxide thin film
JPH0897206A (en) Forming method of thermal oxidation film
JP2007067033A (en) Substrate processing apparatus
JP2005142596A (en) Method of cleaning semiconductor manufacturing apparatus and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020569214

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020857702

Country of ref document: EP

Effective date: 20220328