JP4890668B2 - Quartz glass lid for reaction apparatus for semiconductor heat treatment and manufacturing method thereof - Google Patents

Quartz glass lid for reaction apparatus for semiconductor heat treatment and manufacturing method thereof Download PDF

Info

Publication number
JP4890668B2
JP4890668B2 JP19853999A JP19853999A JP4890668B2 JP 4890668 B2 JP4890668 B2 JP 4890668B2 JP 19853999 A JP19853999 A JP 19853999A JP 19853999 A JP19853999 A JP 19853999A JP 4890668 B2 JP4890668 B2 JP 4890668B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass lid
lid
heat treatment
semiconductor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19853999A
Other languages
Japanese (ja)
Other versions
JP2001026465A (en
Inventor
実 斎藤
浩紀 布川
良典 持原
秀幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Shin Etsu Quartz Products Co Ltd
Original Assignee
YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD., Shin Etsu Quartz Products Co Ltd filed Critical YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Priority to JP19853999A priority Critical patent/JP4890668B2/en
Publication of JP2001026465A publication Critical patent/JP2001026465A/en
Application granted granted Critical
Publication of JP4890668B2 publication Critical patent/JP4890668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、半導体熱処理用反応装置の石英ガラス製蓋体およびその製造方法に関し、さらに詳しくは半導体を低温でエッチング処理、アッシング処理、成膜処理するための半導体熱処理用反応装置に装備する石英ガラス製蓋体およびその製造方法に関する。
【0002】
【従来の技術】
従来、半導体の製造においてエッチング処理、アッシング処理、成膜処理等においてイオンビームやプラズマ等が用いられてきたが、これらのイオンビームやプラズマは高エネルギーであることから、半導体の表面を損傷したり、汚染を起こしたり、或は照射部の温度を上昇させるなどして半導体の特性を低下させる不具合があった。特に、近年、半導体のパターンがハーフミクロン以下の超微細となるに従い、このイオンビームやプラズマ処理による損傷や汚染、或は温度上昇による材質の変質は大きな問題となり、低エネルギービームによる処理が検討されだし、ハロゲン系ガス等の反応ガスを加熱噴射し、それをエネルギーを有する光でプラズマ化する低温熱処理方法が注目を集めている。この低温処理方法にあっては、加熱噴出ガスとともに光の存在が必要であるところから、該方法を実施する装置には光の透過性に優れた石英ガラス板に多数の噴射孔を設けた石英ガラス製蓋体が一般的に装備されている。しかし、石英ガラスといえどもその表面に凹凸があると光が乱反射され光の透過量が少なくなりプラズマの発生が悪くなることから、石英ガラス製蓋体の表面は鏡面加工に仕上げられ、さらに鏡面加工時の残留研摩材を除去するため、弗化水素酸水溶液による洗浄をするのが一般的である。しかしながら、従来の弗化水素酸水溶液による洗浄では、石英ガラスがエッチングされてまい、せっかく高精度に鏡面研摩加工してもその面に傷が浮き出したり、或は荒れてしまったりし、長時間の洗浄ができず、残留研摩材の十分な除去ができず、半導体の特性の低下は避けがたかった。
【0003】
【発明が解決しようとする課題】
こうした現状に鑑み、本発明者等は鋭意研究を重ねた結果、石英ガラス製蓋体に直径0.1〜2mmの細孔を0.1個/cm2以上設ける一方、その表面粗さを中心線平均粗さ(Ra)で0.1μm以下に仕上げることで良好なプラズマの発生が達成できることを見出した。さらに、前記石英ガラス製蓋体の残留研摩材濃度を1ppm以下とすることで、残留研摩材に起因する不純物パーティクルの発生が低減し、半導体が汚染されず、特性の低下も起こらないことを見出して、本発明を完成したものである。すなわち
【0004】
本発明は、良好なプラズマを発生でき、かつ半導体の特性を低下させることがない半導体熱処理用反応装置の石英ガラス製蓋体を提供することを目的とする。
【0005】
また、本発明は、上記半導体熱処理用反応装置の石英ガラス製蓋体の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明は、加熱ガスを噴射するための多数の細孔を有し、その表面が鏡面仕上げされた半導体熱処理用反応装置の石英ガラス製蓋体において、前記蓋体の細孔の直径が0.1〜2mm、孔数が0.1個/cm2以上、表面粗さが中心線平均粗さ(Ra)で0.1μm以下で、かつ残留酸化希土類元素濃度が1ppm以下であることを特徴とする半導体熱処理用反応装置の石英ガラス製蓋体およびその製造方法に係る。
【0007】
本発明の石英ガラス製蓋体を装備した半導体熱処理用反応装置の例を図1に示す。図1において、1は石英ガラス製蓋体、2は細孔、3はウエーハ、4はウエーハ支持台、5はコイル、6は高周波発生器、7は反応ガス導入口、8は導波室、9は反応室である。石英ガラス製蓋体1は、図1に示す反応室9と導波室8との境界に設置され、反応ガス導入口7から導入され、加熱された反応ガスは前記蓋体1に設けた細孔2から反応室9に噴射される一方、高周波発生器6で発生した高周波は石英ガラス製蓋体1を介して反応室9に透過され、加熱噴射ガスを励起してプラズマを発生する。本発明の石英ガラス製蓋体1にあっては、前記細孔2の直径を0.1〜2mm、孔数を0.1個/cm2以上とすることを必須とする。これにより良好な反応ガスの噴出ができ、プラズマを良好に発生させることができる。前記細孔2は円形でも角形でもよく、その例を図2〜4に示すことができる。図2は円形の孔を設けた蓋体の例であり、蓋体の厚さは(b)に示すように5mmであり、細孔の直径は0.3mmである。また、図3は円錐形状の細孔を有する石英ガラス製蓋体の例であり、蓋体の厚さは(b)に示すように7mmであり、該蓋体に設けた細孔は円錐形状で表面の直径が0.8mm、表面から深さ3mmから直径0.3mmの円筒形状となっている。さらに、図4は角形形状の細孔の例である。本発明の石英ガラス製蓋体は前記要件に加えて表面粗さが中心線平均粗さ(Ra)で0.1μm以下にすることを必須とする。表面粗さが前記範囲を超えると光の透過量が不足しプラズマの発生に悪影響を及ぼす。
【0008】
さらに、本発明の石英ガラス製蓋体は、残留酸化希土類元素濃度が1ppm以下であり、さらに好ましくは蓋体の厚さが2〜20mmの範囲とするのがよい。残留酸化希土類元素濃度が前記範囲を超えると、半導体の熱処理時に残留酸化希土類元素が不純物パーティクルとなり半導体を汚染する。また、蓋体の厚さが2mm未満では強度不足を起こし、20mmを超えると反応室の圧力が高くなり過ぎて好ましくない。
【0009】
次に、本発明の石英ガラス製蓋体の製造方法を説明すると、先ず、厚さ2〜20mmの範囲の石英ガラス基板にレーザー加工で、直径0.1〜2mmの細孔8を0.1個/cm2以上穿孔し、次いで粒度0.1〜6μmの酸化希土類研摩材で、表面粗さが中心線平均粗さ(Ra)で0.1μm以下に研摩する。得られた石英ガラス製蓋体を純水中で超音波洗浄を15分以上行い、次いで硝酸水溶液洗浄を5時間以上、さらに超音波洗浄を15分以上行い残留酸化希土類元素濃度を1ppm以下とする。研摩材の粒度が前記範囲未満では研摩に時間がかかり過ぎ、前記範囲を超えると目的とする表面粗さが得られない。また、洗浄条件が前記範囲を逸脱すると、残留酸化希土類元素濃度を1ppmにすることができない。使用する硝酸水溶液の濃度は1〜30重量%の範囲がよく、濃度が1重量%未満では良好な洗浄ができず、30重量%を超える濃度では硝酸水溶液のコストが高くなるが処理効果の向上がみられず好ましくない。また、硝酸水溶液洗浄が5時間未満では、残留酸化希土類元素の除去が十分に行われない。
【0010】
このように本発明の石英ガラス製蓋体の製造にあっては酸化希土類元素研摩材が用いられるが、好ましくは粒度0.1〜6μmの酸化セリウムを主要な成分とする研摩材がよい。この研摩材を用いることで中心線平均表粗さ(Ra)が0.1μm以下の鏡面を容易に達成できる。より好ましくは酸化セリウム40〜90重量%を含有する研摩材がよい。
【0011】
【実施例】
次に、実施例によりさらに本発明を詳細に説明するが、本発明は、これらによって何ら限定されるものではない。
【0012】
実施例1
図2(a)に示すように長さ15cm×幅15cm×厚さ5mmの正方形の石英ガラス基板にレーザー加工で直径0.3mmの円形の細孔を20個設け、図2(b)に示す石英ガラス製蓋体1を得た。該蓋体を粒度0.1〜6μmの酸化セリウムを主要な成分とする研摩材(CeO2を約52重量%、La23を約29重量%含有)を用いて研摩し、表面粗さを中心線平均粗さ(Ra)で0.05μmの鏡面に仕上げた。得られた石英ガラス製蓋体を純水で濯ぎ洗いしたのち超音波洗浄を15分間行い、次いで4%の硝酸水溶液に10時間浸漬し、さらに超音波洗浄を15分間行い、純水で濯いだ。この石英ガラス製蓋体の表層のセリウムの残存量をICP発光分光分析法で測定したところ、セリウム元素は確認できなかった。得られた石英ガラス製蓋体をプラズマエッチング処理装置に設置し、ウエーハの酸化膜エッチング処理を行ったところ、反応生成物の発生が抑えられ、低パーティクルで低コンタミネーションの良好なエッチング処理を行うことができた。
【0013】
実施例2
図3(a)に示す長さ15cm×幅15cm×厚さ7mmの正方形の石英ガラス基板にレーザー加工で表面から表面直径0.8mm、厚さ3mmから直径0.3mmの円錐形状の細孔20個を図3の(b)のように設けた。この石英ガラス製蓋体を実施例1と同様に粒度分布0.1〜6μmの酸化セリウムを主要な成分とする研摩材で研摩し表面粗さを中心線平均粗さ(Ra)で0.08μmの鏡面に仕上げた。次いで、純水中の超音波洗浄を15分間、20%硝酸水溶液による洗浄を10時間行い、さらに超音波洗浄を15分間行った。得られた石英ガラス製蓋体の残存セリウムの量を、実施例1と同様にICP発光分光分析法で測定したところ、セリウム元素は確認できなかった。
【0014】
比較例1
実施例1と同様に研摩した石英ガラス製蓋体を純水で濯ぎ洗いしたのち、超音波洗浄を15分間、3%の弗化水素酸水溶液による洗浄を30秒間行い、さらに超音波洗浄を15分間行い、純水で濯ぎ洗いを行った。得られた石英ガラス製蓋体の残存セリウムの量を、実施例1と同様にICP発光分光分析法で測定したところ、セリウム元素が300ppm確認された。
【0015】
比較例2
実施例1と同様に研摩した石英ガラス製蓋体を純水で濯ぎ洗いしたのち、超音波洗浄を30分行い、さらに純水で濯ぎ石英ガラス製蓋体を得た。得られた石英ガラス製蓋体の残存セリウムの量を、実施例1と同様にICP発光分光分析法で測定したところ、セリウム元素が300ppm確認された。
【0016】
比較例3
実施例1と同様に研摩した石英ガラス製蓋体を純水で濯ぎ洗いしたのち、4%の硝酸水溶液に10時間浸漬し、純水で濯ぎ洗いを行った。得られた石英ガラス製蓋体の残存セリウムの量を、実施例1と同様にICP発光分光分析法で測定したところ、セリウム元素が6ppm確認された。
【0018】
【発明の効果】
本発明の石英ガラス製蓋体は、直径0.1〜2mmの細孔を0.1個/cm2以上有し、表面粗さが中心線平均粗さ(Ra)で0.1μm以下の鏡面に仕上げられ、かつ残存酸化希土類元素研摩材が1ppm以下である。この石英ガラス製蓋体を装備した半導体熱処理用反応装置を用いて半導体を加熱処理すると、反応生成物の発生が抑えられ、パーティクルやコンタミネーションが低減されるため、良好なエッチング処理や酸化膜形成処理ができ、半導体の特性が低下することもない。しかも前記石英ガラス製蓋体は、石英ガラス基板をレーザー加工で穿孔したのち特定の研摩材で鏡面仕上げし、それを特定の洗浄方法で洗浄することで容易に製造でき、工業的価値が高い。
【図面の簡単な説明】
【図1】石英ガラス製蓋体を装備した半導体熱処理用反応装置の概略図である。
【図2】(a)は円形状の細孔を有する石英ガラス製蓋体の斜視図であり、(b)はその細孔の断面図である。
【図3】(a)は円錐状の細孔を有する石英ガラス製蓋体の斜視図であり、(b)はその細孔の断面図である。
【図4】(a)は角形孔を有する石英ガラス製蓋体の斜視図であり、(b)はその細孔の断面図である。
【符号の説明】
1 石英ガラス製蓋体
2 細孔
3 ウエーハ
4 ウエーハ支持台
5 コイル
6 高周波発生器
7 反応ガス導入口
8 導波室
9 反応室
[0001]
[Industrial application fields]
The present invention relates to a quartz glass lid of a reaction apparatus for semiconductor heat treatment and a method for manufacturing the same, and more specifically, quartz glass provided in a reaction apparatus for semiconductor heat treatment for etching, ashing, and film-forming a semiconductor at a low temperature. The present invention relates to a lid body and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, ion beams and plasmas have been used in the manufacture of semiconductors for etching, ashing, film formation, etc., but these ion beams and plasmas are high energy, which can damage the surface of the semiconductor. There is a problem in that the characteristics of the semiconductor are deteriorated by causing contamination or raising the temperature of the irradiated part. In particular, in recent years, as semiconductor patterns have become ultrafine, less than half a micron, damage and contamination due to ion beam and plasma treatment, or material deterioration due to temperature rise, has become a serious problem, and treatment with a low energy beam has been studied. However, a low-temperature heat treatment method in which a reactive gas such as a halogen-based gas is heated and jetted and turned into plasma with light having energy has attracted attention. In this low-temperature treatment method, since the presence of light is necessary together with the heated jet gas, a quartz glass plate having a large number of injection holes in a quartz glass plate excellent in light transmission is used in an apparatus for carrying out the method. A glass lid is generally equipped. However, even though quartz glass has irregularities on its surface, light is diffusely reflected and the amount of transmitted light is reduced, resulting in poor plasma generation, so the surface of the quartz glass lid is finished with a mirror finish. In order to remove residual abrasives during processing, it is common to wash with an aqueous hydrofluoric acid solution. However, the conventional cleaning with hydrofluoric acid solution does not etch the quartz glass, and even if it is mirror polished with high accuracy, scratches may appear on the surface, or the surface may become rough. It was impossible to clean and the residual abrasive could not be removed sufficiently, and it was difficult to avoid deterioration of the semiconductor characteristics.
[0003]
[Problems to be solved by the invention]
In view of the current situation, the present inventors have conducted extensive research, and as a result, provided a quartz glass lid with 0.1 to 2 mm or more pores having a diameter of 0.1 to 2 mm, while focusing on the surface roughness. It was found that good plasma generation can be achieved by finishing the line average roughness (R a ) to 0.1 μm or less. Furthermore, it has been found that by setting the concentration of the residual abrasive in the quartz glass lid to 1 ppm or less, the generation of impurity particles due to the residual abrasive is reduced, the semiconductor is not contaminated, and the characteristics are not deteriorated. Thus, the present invention has been completed. That is, [0004]
An object of the present invention is to provide a quartz glass lid of a reaction apparatus for semiconductor heat treatment that can generate good plasma and does not deteriorate semiconductor characteristics.
[0005]
Another object of the present invention is to provide a method for producing a quartz glass lid of the above-mentioned semiconductor heat treatment reactor.
[0006]
[Means for Solving the Problems]
The present invention that achieves the above object has a quartz glass lid of a reaction apparatus for semiconductor heat treatment having a large number of pores for injecting a heated gas and having a mirror-finished surface. Has a diameter of 0.1 to 2 mm, a pore number of 0.1 / cm 2 or more, a surface roughness of 0.1 μm or less in terms of centerline average roughness (R a ), and a residual rare earth oxide concentration of 1 ppm or less. The present invention relates to a quartz glass lid of a reaction apparatus for semiconductor heat treatment, and a method for producing the same.
[0007]
An example of a semiconductor heat treatment reactor equipped with the quartz glass lid of the present invention is shown in FIG. In FIG. 1, 1 is a quartz glass lid, 2 is a pore, 3 is a wafer, 4 is a wafer support, 5 is a coil, 6 is a high-frequency generator, 7 is a reaction gas inlet, 8 is a waveguide chamber, 9 is a reaction chamber. The quartz glass lid 1 is installed at the boundary between the reaction chamber 9 and the waveguide chamber 8 shown in FIG. 1, introduced from the reaction gas inlet 7, and heated reaction gas is provided in the lid 1. While being injected into the reaction chamber 9 from the hole 2, the high frequency generated by the high frequency generator 6 is transmitted to the reaction chamber 9 through the quartz glass lid 1 and excites the heated injection gas to generate plasma. In the quartz glass lid 1 of the present invention, it is essential that the diameter of the pore 2 is 0.1 to 2 mm and the number of holes is 0.1 / cm 2 or more. As a result, a good reactive gas can be ejected, and plasma can be generated satisfactorily. The pores 2 may be circular or rectangular, and examples thereof can be shown in FIGS. FIG. 2 shows an example of a lid provided with a circular hole. The thickness of the lid is 5 mm as shown in FIG. 2B, and the diameter of the pore is 0.3 mm. FIG. 3 shows an example of a quartz glass lid having conical pores, the lid having a thickness of 7 mm as shown in (b), and the pores provided in the lid are conical. The surface has a cylindrical diameter of 0.8 mm and a depth of 3 mm to 0.3 mm from the surface. Furthermore, FIG. 4 is an example of square-shaped pores. In addition to the above requirements, the quartz glass lid of the present invention must have a surface roughness of 0.1 μm or less in terms of centerline average roughness ( Ra ). If the surface roughness exceeds the above range, the amount of transmitted light is insufficient, which adversely affects the generation of plasma.
[0008]
Furthermore, the quartz glass lid of the present invention has a residual rare earth oxide concentration of 1 ppm or less, and more preferably a lid thickness of 2 to 20 mm. If the residual rare earth oxide concentration exceeds the above range, the residual rare earth oxide becomes impurity particles during the heat treatment of the semiconductor and contaminates the semiconductor. Further, if the thickness of the lid is less than 2 mm, the strength is insufficient, and if it exceeds 20 mm, the pressure in the reaction chamber becomes too high, which is not preferable.
[0009]
Next, a method for producing the quartz glass lid of the present invention will be described. First, a quartz glass substrate having a thickness in the range of 2 to 20 mm is subjected to laser processing to form 0.1 to 2 pores 8 having a diameter of 0.1 to 2 mm. perforated pieces / cm 2 or more, then with rare earth oxide abrasive particle size 0.1~6Myuemu, surface roughness is polished to 0.1μm below the center line average roughness (R a). The obtained quartz glass lid body is subjected to ultrasonic cleaning in pure water for 15 minutes or longer, then washed with nitric acid aqueous solution for 5 hours or longer, and further subjected to ultrasonic cleaning for 15 minutes or longer to make the residual rare earth oxide concentration 1 ppm or lower. . If the abrasive particle size is less than the above range, it takes too much time for polishing, and if it exceeds the above range, the desired surface roughness cannot be obtained. Further, if the cleaning conditions deviate from the above range, the residual rare earth oxide concentration cannot be made 1 ppm. The concentration of the aqueous nitric acid solution used should be in the range of 1 to 30% by weight. If the concentration is less than 1% by weight, good cleaning cannot be performed. If the concentration exceeds 30% by weight, the cost of the aqueous nitric acid solution increases, but the treatment effect is improved. It is not preferable because no stagnation is observed. In addition, when the aqueous nitric acid solution is washed for less than 5 hours, the residual rare earth oxide is not sufficiently removed.
[0010]
As described above, in the production of the quartz glass lid of the present invention, a rare earth oxide abrasive is used, but an abrasive containing cerium oxide having a particle size of 0.1 to 6 μm as a main component is preferable. By using this abrasive, a mirror surface having a center line average surface roughness (R a ) of 0.1 μm or less can be easily achieved. An abrasive containing 40 to 90% by weight of cerium oxide is more preferable.
[0011]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these.
[0012]
Example 1
As shown in FIG. 2A, 20 circular pores having a diameter of 0.3 mm are provided by laser processing on a square quartz glass substrate having a length of 15 cm, a width of 15 cm, and a thickness of 5 mm, as shown in FIG. A lid 1 made of quartz glass was obtained. The lid body is polished using an abrasive (contains about 52 wt% CeO 2 and about 29 wt% La 2 O 3 ) containing cerium oxide having a particle size of 0.1 to 6 μm as a main component, and has a surface roughness. Was finished to a mirror surface with a center line average roughness ( Ra ) of 0.05 μm. The obtained quartz glass lid was rinsed with pure water and then subjected to ultrasonic cleaning for 15 minutes, then immersed in a 4% nitric acid aqueous solution for 10 hours, further subjected to ultrasonic cleaning for 15 minutes, and rinsed with pure water. It is. When the remaining amount of cerium on the surface layer of the lid made of quartz glass was measured by ICP emission spectroscopic analysis, no cerium element could be confirmed. The obtained quartz glass lid was placed in a plasma etching processing apparatus, and when an oxide film etching process was performed on the wafer, the generation of reaction products was suppressed, and the etching process was performed with low particles and low contamination. I was able to.
[0013]
Example 2
A square quartz glass substrate having a length of 15 cm, a width of 15 cm and a thickness of 7 mm shown in FIG. 3A is subjected to laser processing to form a conical pore 20 having a surface diameter of 0.8 mm and a thickness of 3 mm to 0.3 mm. The pieces were provided as shown in FIG. The quartz glass lid was polished with an abrasive containing cerium oxide having a particle size distribution of 0.1 to 6 μm as the main component in the same manner as in Example 1, and the surface roughness was set to a centerline average roughness (R a ) of 0. A mirror surface of 08 μm was finished. Subsequently, ultrasonic cleaning in pure water was performed for 15 minutes, 20% nitric acid aqueous solution was cleaned for 10 hours, and ultrasonic cleaning was further performed for 15 minutes. When the amount of residual cerium in the obtained quartz glass lid was measured by ICP emission spectroscopy in the same manner as in Example 1, no cerium element could be confirmed.
[0014]
Comparative Example 1
The quartz glass lid body polished in the same manner as in Example 1 was rinsed with pure water, followed by ultrasonic cleaning for 15 minutes, 3% hydrofluoric acid aqueous solution for 30 seconds, and ultrasonic cleaning for 15 minutes. For 5 minutes and rinsed with pure water. When the amount of residual cerium in the obtained quartz glass lid was measured by ICP emission spectroscopic analysis in the same manner as in Example 1, 300 ppm of cerium element was confirmed.
[0015]
Comparative Example 2
The quartz glass lid body polished in the same manner as in Example 1 was rinsed with pure water, then subjected to ultrasonic cleaning for 30 minutes, and further rinsed with pure water to obtain a quartz glass lid body. When the amount of residual cerium in the obtained quartz glass lid was measured by ICP emission spectroscopic analysis in the same manner as in Example 1, 300 ppm of cerium element was confirmed.
[0016]
Comparative Example 3
The quartz glass lid polished in the same manner as in Example 1 was rinsed with pure water, then immersed in a 4% nitric acid aqueous solution for 10 hours, and rinsed with pure water. When the amount of residual cerium in the obtained quartz glass lid was measured by ICP emission spectrometry in the same manner as in Example 1, 6 ppm of cerium element was confirmed.
[0018]
【Effect of the invention】
The quartz glass lid of the present invention has 0.1 or more pores having a diameter of 0.1 to 2 mm and a surface roughness of 0.1 μm or less in terms of centerline average roughness (R a ). The mirror surface is finished, and the residual rare earth oxide abrasive is 1 ppm or less. When a semiconductor is heat-treated using a reaction apparatus for semiconductor heat treatment equipped with this quartz glass lid, the generation of reaction products is suppressed, and particles and contamination are reduced. It can be processed and the characteristics of the semiconductor are not deteriorated. Moreover, the lid made of quartz glass can be easily manufactured by drilling a quartz glass substrate by laser processing, mirror finishing with a specific polishing material, and cleaning it with a specific cleaning method, and has high industrial value.
[Brief description of the drawings]
FIG. 1 is a schematic view of a semiconductor heat treatment reactor equipped with a quartz glass lid.
FIG. 2A is a perspective view of a quartz glass lid having circular pores, and FIG. 2B is a cross-sectional view of the pores.
3A is a perspective view of a quartz glass lid having conical pores, and FIG. 3B is a cross-sectional view of the pores.
4A is a perspective view of a quartz glass lid having a square hole, and FIG. 4B is a cross-sectional view of the pore.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lid made from quartz glass 2 Pore 3 Wafer 4 Wafer support stand 5 Coil 6 High frequency generator 7 Reactive gas inlet 8 Waveguide chamber 9 Reaction chamber

Claims (3)

石英ガラス基板にレーザー加工で直径0.1〜2mmの細孔を0.1個/cm以上穿孔したのち、粒度0.1〜6μmの酸化希土類系研磨材で研摩し表面粗さを中心線平均粗さで0.1μm以下に仕上げ、次いで純水中での超音波洗浄、濃度1〜30重量%の硝酸水溶液洗浄を5時間以上行うことを特徴とする半導体熱処理用反応装置の石英ガラス製蓋体の製造方法。A quartz glass substrate is drilled with 0.1 to 2 mm or more pores with a diameter of 0.1 to 2 mm by laser processing, and then polished with a rare earth oxide abrasive with a particle size of 0.1 to 6 μm to center the surface roughness. Quartz glass of a reactor for semiconductor heat treatment characterized by finishing to an average roughness of 0.1 μm or less, followed by ultrasonic cleaning in pure water and cleaning with an aqueous nitric acid solution having a concentration of 1 to 30% by weight for 5 hours or more . A method for manufacturing a lid. 純水中での超音波洗浄を15分以上行うことを特徴とする請求項1記載の半導体熱処理用反応装置の石英ガラス製蓋体の製造方法。2. The method for producing a quartz glass lid of a reaction apparatus for semiconductor heat treatment according to claim 1, wherein ultrasonic cleaning in pure water is performed for 15 minutes or more. 請求項1又は2記載の製造方法で得られた、加熱ガスを噴射するための多数の細孔を有し、その細孔の直径が0.1〜2mm、孔数が0.1個/cm以上で、かつ表面粗さが中心線平均粗さ(Ra)で0.1μm以下、残留酸化希土類元素濃度が1ppm以下であることを特徴とする半導体熱処理用反応装置の石英ガラス製蓋体。It has many pores for injecting heated gas obtained with the manufacturing method of Claim 1 or 2 , The diameter of the pores is 0.1-2 mm, and the number of holes is 0.1 piece / cm. A quartz glass lid for a semiconductor heat treatment reactor, having a surface roughness of not less than 2 μm in terms of centerline average roughness (Ra) of not more than 0.1 μm and a residual rare earth oxide concentration of not more than 1 ppm.
JP19853999A 1999-07-13 1999-07-13 Quartz glass lid for reaction apparatus for semiconductor heat treatment and manufacturing method thereof Expired - Lifetime JP4890668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19853999A JP4890668B2 (en) 1999-07-13 1999-07-13 Quartz glass lid for reaction apparatus for semiconductor heat treatment and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19853999A JP4890668B2 (en) 1999-07-13 1999-07-13 Quartz glass lid for reaction apparatus for semiconductor heat treatment and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001026465A JP2001026465A (en) 2001-01-30
JP4890668B2 true JP4890668B2 (en) 2012-03-07

Family

ID=16392850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19853999A Expired - Lifetime JP4890668B2 (en) 1999-07-13 1999-07-13 Quartz glass lid for reaction apparatus for semiconductor heat treatment and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4890668B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250114B2 (en) * 2003-05-30 2007-07-31 Lam Research Corporation Methods of finishing quartz glass surfaces and components made by the methods
JPWO2004111297A1 (en) * 2003-06-10 2006-07-20 東京エレクトロン株式会社 Process gas supply mechanism, film forming apparatus, and film forming method
KR100997839B1 (en) * 2006-01-31 2010-12-01 도쿄엘렉트론가부시키가이샤 Microwave plasma processing apparatus
JP5426855B2 (en) * 2008-09-18 2014-02-26 東京応化工業株式会社 Manufacturing method of glass substrate

Also Published As

Publication number Publication date
JP2001026465A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
US6058945A (en) Cleaning methods of porous surface and semiconductor surface
US20170232784A1 (en) System and Method for Cleaning Semiconductor Fabrication Equipment Parts
US7736998B2 (en) Silicon-on insulator substrate and method for manufacturing the same
EP0534497B1 (en) Semiconductor wafer surface treatment method
CN103449731B (en) A kind of method promoting fused quartz optical component damage threshold
CA2206139C (en) Cleaning methods of porous surface and semiconductor surface
TW200524833A (en) Methods of finishing quartz glass surfaces and components made by the methods
KR102658739B1 (en) Conditioning chamber component
KR100265289B1 (en) Method for manufacturing the cathode of the plasma etching apparatus and the cathode manufactured accordingly
TW202108254A (en) Method for cleaning semiconductor manufacturing equipment parts with gas holes
JP3192610B2 (en) Method for cleaning porous surface, method for cleaning semiconductor surface, and method for manufacturing semiconductor substrate
JP4890668B2 (en) Quartz glass lid for reaction apparatus for semiconductor heat treatment and manufacturing method thereof
KR102017138B1 (en) Method for Recycling of SiC Product and Recycled SiC Product
TWI511189B (en) Chemical treatment to reduce machining-induced sub-surface damage in semiconductor processing components comprising silicon carbide
JP2002231699A (en) Cleaning method of silicon electrode for fluorocarbon- based plasma generation, and manufacturing method of semiconductor device
US20040266191A1 (en) Process for the wet-chemical surface treatment of a semiconductor wafer
EP1193327A1 (en) Silica glass apparatus for semiconductor industry and method for producing the same
KR100299975B1 (en) Method for manufacturing electrodes of plasma chamber
JP7254437B2 (en) Methods for conditioning silicon parts
KR102507136B1 (en) Method for reducing the metal contamination on a surface of a substrate
CN115332039B (en) Monocrystalline silicon structure, component, application and method for plasma processing equipment
KR100324134B1 (en) Joining SOW Eye Wafer Manufacturing Method
US20220093370A1 (en) Textured silicon semiconductor processing chamber components
KR20240046578A (en) Processed ceramic chamber parts
JP2004238262A (en) Surface treatment method of quartz glass member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090724

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4890668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term