WO2021039831A1 - エミッタおよび点滴灌漑用チューブ - Google Patents
エミッタおよび点滴灌漑用チューブ Download PDFInfo
- Publication number
- WO2021039831A1 WO2021039831A1 PCT/JP2020/032142 JP2020032142W WO2021039831A1 WO 2021039831 A1 WO2021039831 A1 WO 2021039831A1 JP 2020032142 W JP2020032142 W JP 2020032142W WO 2021039831 A1 WO2021039831 A1 WO 2021039831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pedestal
- tube
- emitter
- irrigation liquid
- wall surface
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/02—Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/22—Improving land use; Improving water use or availability; Controlling erosion
Definitions
- the present invention relates to an emitter and a drip irrigation tube having the emitter.
- the drip irrigation method has been known as one of the plant cultivation methods.
- the drip irrigation method is a method in which a drip irrigation tube is placed on the soil in which a plant is planted, and an irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
- an irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
- the drip irrigation method has attracted particular attention because it can minimize the consumption of irrigation liquid.
- the drip irrigation tube is a tube in which a plurality of through holes for discharging the irrigation liquid are formed, and a plurality of emitters (“) for discharging the irrigation liquid from each through hole, which is joined to the inner wall surface of the tube. Also called “dripper").
- the emitter can keep the discharge amount of irrigation liquid constant even if the pressure inside the tube is different.
- the pressure inside the tube is high at a position close to the liquid feed pump and low at a position far from the liquid feed pump, but the discharge amount is constant regardless of whether the emitter is installed near or far from the liquid feed pump. Is desired.
- Patent Document 1 discloses a mechanism for adjusting a flow rate by bending a membrane (diaphragm) toward a recessed outlet (communication hole) according to a pressure in a conduit (tube).
- the flow rate adjusting mechanism having a diaphragm that deforms according to the pressure in the tube to adjust the flow rate with respect to the communication hole allows the irrigation liquid from the emitter to be used even if the pressure in the tube changes. It is useful for making the discharge amount constant.
- such a flow rate adjusting mechanism has a problem that the pressure range in the tube that can make the discharge amount of the irrigation liquid from the emitter constant is narrow. For example, until the pressure inside the tube is high to some extent, control can be performed to keep the amount of irrigation liquid discharged from the emitter constant, but when the pressure inside the tube exceeds a certain threshold, the flow rate is adjusted. It becomes difficult to control the irrigation, and it may be difficult to make the discharge amount constant.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an emitter capable of controlling the discharge amount of the irrigation liquid to be constant even when the change in pressure in the tube is wide. And. Another object of the present invention is to provide a drip irrigation tube having the emitter.
- the emitter of the present invention is joined to a position on the inner wall surface of a tube through which an irrigation liquid flows, corresponding to a discharge port communicating with the inside and outside of the tube, and the irrigation liquid in the tube is quantitatively discharged from the discharge port.
- An emitter for discharging the irrigation liquid to the outside of the tube a water intake part for taking in the irrigation liquid, a discharge part for discharging the irrigation liquid taken in from the water intake part, and the water intake part.
- the flow rate adjusting unit has a flexible accommodating portion for receiving the irrigation liquid taken in from the water intake portion, a pedestal having a communication hole for communicating the accommodating portion and the discharging portion, and a flexible portion. From the diaphragm portion that has the property and deforms toward the pedestal when the pressure of the irrigation liquid in the tube is applied, and from the diaphragm portion and the inner wall surface of the tube when the diaphragm portion is not deformed. It has a pedestal support portion that supports the pedestal so as to be separated from each other, the pedestal support portion has flexibility, and the pedestal is the inner wall surface of the tube when the diaphragm portion presses the pedestal.
- the pedestal is arranged so as to move toward, and the pedestal is arranged so as to face the diaphragm portion, and when the diaphragm portion is deformed, the diaphragm portion is in contact with the first pedestal surface, and the emitter is said to be the above.
- a second pedestal surface that is arranged so as to face the inner wall surface of the tube when joined to the inner wall surface of the tube and that the inner wall surface of the tube can come into contact with when the diaphragm portion presses the pedestal.
- the drip irrigation tube of the present invention has a tube having a discharge port for discharging an irrigation liquid, and the above-mentioned emitter joined at a position corresponding to the discharge port on the inner wall surface of the tube.
- an emitter capable of controlling the discharge amount of the irrigation liquid to be constant even when the change in pressure in the tube is wide. Further, according to the present invention, it is possible to provide a drip irrigation tube having the emitter.
- FIG. 1A shows a vertical cross-sectional view of the tube and the emitter
- FIG. 1B shows a cross-sectional view of the tube and the emitter
- 2A is a plan view of the emitter with the film removed
- FIG. 2B is a bottom view of the emitter with the film removed
- FIG. 2C is a cross-sectional view taken along line AA of FIG. 2B
- FIG. 3 is a cross-sectional view of the pedestal.
- FIG. 4 is a cross-sectional view (cross-sectional view) of the pedestal.
- FIG. 5 shows an example of the operation of the flow rate adjusting unit according to the pressure of the irrigation liquid in the tube.
- FIG. 6 shows the relationship between pressure and flow rate between the emitter according to the embodiment of the present invention and the conventional emitter.
- FIG. 1A and 1B show a drip irrigation tube 100 according to an embodiment of the present invention. Note that FIG. 1A shows a vertical cross-sectional view of the tube 110 and the emitter 120, and FIG. 1B shows a cross-sectional view of the tube 110 and the emitter 120.
- the drip irrigation tube 100 has a tube 110 and an emitter 120.
- the tube 110 is a tube for flowing an irrigation liquid.
- irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof.
- the direction in which the irrigation liquid flows in the tube 110 is not particularly limited.
- the material of the tube 110 is not particularly limited. In this embodiment, the material of the tube 110 is polyethylene.
- a plurality of discharge ports 111 for discharging the irrigation liquid at predetermined intervals (for example, 200 mm or more and 500 mm or less) in the axial direction of the tube 110 are formed on the tube wall of the tube 110.
- the diameter of the opening of the discharge port 111 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 111 is 1.5 mm.
- Emitters 120 are joined to positions of the inner wall surface 112 of the tube corresponding to the discharge port 111.
- the cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be arranged inside the tube 110 without leakage.
- the drip irrigation tube 100 is produced by joining the back surface 125 (see FIGS. 2B and C) of the emitter 120 to the inner wall surface 112 of the tube.
- the method of joining the tube 110 and the emitter 120 is not particularly limited. Examples of the method of joining the tube 110 and the emitter 120 include welding of the resin material constituting the tube 110 or the emitter 120, and bonding with an adhesive.
- the discharge port 111 may be formed after joining the tube 110 and the emitter 120, or may be formed before joining.
- FIG. 2A is a plan view of the emitter 120 with the film (diaphragm portion 153) removed
- FIG. 2B is a bottom view of the emitter 120 with the film (diaphragm portion 153) removed
- FIG. 2C is FIG. 2B. It is sectional drawing along the line AA of.
- FIG. 3 is a cross-sectional view of the pedestal 160.
- the emitter 120 is joined to the inner wall surface 112 of the tube through which the irrigation liquid flows, at a position corresponding to the discharge port 111 communicating with the inside and outside of the tube 110, and the irrigation liquid in the tube 110 is quantitatively discharged from the discharge port 111. Discharge to the outside of the tube 110.
- the emitter 120 is joined to the inner wall surface 112 of the tube so that the discharge portion 137 covers the discharge port 111 of the tube 110.
- the outer shape of the emitter 120 is not particularly limited as long as it can be brought into close contact with the inner wall surface 112 of the tube and cover the discharge port 111.
- the shape of the back surface 125 joined to the inner wall surface in the cross section of the emitter 120 perpendicular to the axial direction of the tube 110 is convex toward the inner wall surface 112 of the tube so as to be along the inner wall surface 112 of the tube. It has a substantially arc shape.
- the size of the emitter 120 is not particularly limited and may be appropriately determined based on a desired amount of irrigation liquid discharged from the discharge port 111. In the present embodiment, the length of the emitter 120 in the long side direction is 19 mm, the length in the short side direction is 8 mm, and the height is 2.7 mm.
- the emitter 120 is preferably molded of an elastic material.
- materials for the emitter 120 include materials containing resins, elastomers and rubbers.
- resins include thermoplastic resins, thermosetting resins and the like.
- thermoplastics include polyethylene.
- the flexibility of the emitter 120 can be adjusted by using an elastic material.
- the flexibility of the diaphragm portion 153 and the pedestal support portion 163, which will be described later, is important for adjusting the flow rate.
- the diaphragm portion 153 and the pedestal support portion 163 contain a thermoplastic resin, the emitter 120 according to the present embodiment exhibits particularly excellent flexibility.
- Examples of methods for adjusting the flexibility of the emitter 120 include selecting an elastic resin and adjusting the mixing ratio of the elastic resin to a hard resin material.
- the index indicating the hardness of the material of the emitter 120 includes the durometer hardness specified in JIS K6253-3 (2012).
- the durometer hardness includes type A, type D, type E, and the like, depending on the type of durometer used for measurement. For example, when the hardness 40 is shown using a type D durometer, the durometer hardness D40 is obtained. When the numerical value of each type is the same, the durometer hardness is the hardest in type D, and becomes softer in the order of type A and type E.
- the emitter 120 flows the water intake section 131 for receiving the irrigation liquid and the irrigation liquid taken in from the water intake section 131 into the decompression channel groove 133.
- the accommodating portion 135, the communication hole 151, the pedestal 160, and the diaphragm portion 153 function as the flow rate adjusting portion 136.
- the connecting groove 132 becomes the connecting flow path 142
- the decompression flow path groove 133 becomes the decompression flow path 143.
- a flow path connecting the water intake section 131, the connection flow path 142, the decompression flow path 143, the through hole 134, the accommodating section 135, the communication hole 151, and the discharge section 137 is formed.
- the flow path allows the irrigation liquid to flow from the intake section 131 to the discharge section 137.
- the water intake unit 131 is arranged in a region substantially half of the surface 124 of the emitter 120.
- the number of water intake units 131 is not particularly limited. In the present embodiment, the two intake portions 131 are arranged along the long axis direction of the emitter 120.
- the flow rate adjusting unit 136 is arranged in the region of the surface 124 where the water intake unit 131 is not arranged.
- the water intake unit 131 has a water intake side screen unit 170 and a water intake through hole 147.
- the water intake side screen portion 170 prevents suspended matter in the irrigation liquid taken into the emitter 120 from entering the water intake through hole 147.
- the water intake side screen portion 170 is open in the tube 110 and has a water intake recess 173 and a ridge 174.
- the water intake recess 173 is a recess formed on the surface 124 of the emitter 120 in almost the entire region of one half surface on which the diaphragm portion 153 is not arranged.
- the depth of the water intake recess 173 is not particularly limited, and is appropriately set depending on the size of the emitter 120.
- a ridge 174 is formed on the bottom surface of the water intake recess 173. Further, a water intake through hole 147 is formed on the bottom surface of the water intake recess 173.
- the ridge 174 is arranged on the bottom surface of the water intake recess 173.
- the arrangement and number of the ridges 174 are not particularly limited as long as the irrigation liquid can be taken in from the opening side of the water intake recess 173 and the intrusion of suspended matter in the irrigation liquid can be prevented.
- a plurality of long ridges 174 are arranged along the major axis direction of the water intake recess 173, and a plurality of short ridges 174 are arranged along the minor axis direction of the water intake recess 173.
- a water intake through hole 147 is formed on the bottom surface of the water intake recess 173.
- the ridge 174 may be formed so that the width decreases from the surface 124 of the emitter 120 toward the bottom surface of the water intake recess 173, or the same from the surface 124 of the emitter 120 to the bottom surface of the water intake recess 173. It may be formed in a width.
- the water intake through hole 147 is formed on the bottom surface of the water intake recess 173.
- the shape and number of the water intake through holes 147 are not particularly limited as long as the irrigation liquid taken into the water intake recess 173 can be taken into the emitter 120.
- the water intake through hole 147 is a long hole formed along the long axis direction of the bottom surface of the water intake recess 173. Since the elongated hole is covered with a plurality of ridges 174, the water intake through hole 147 appears to be divided into a large number of through holes when viewed from the front side.
- the irrigation liquid that has flowed through the tube 110 is taken into the emitter 120 while the water intake side screen portion 170 prevents suspended matter from entering the water intake through hole 147.
- connection groove 132 (connection flow path 142) connects the water intake through hole 147 (water intake portion 131) and the decompression flow path groove 133 (decompression flow path 143).
- the connection groove 132 is formed along the outer edge of the back surface 125 of the emitter 120.
- the decompression flow path groove 133 is connected to the connection groove 132.
- the decompression flow path groove 133 (decompression flow path 143) connects the connection groove 132 (connection flow path 142) and the through hole 134.
- the decompression flow path groove 133 communicates with the water intake unit 131 to form a decompression flow path 143 in which the irrigation liquid flows while depressurizing.
- the decompression flow path groove 133 is arranged at the center of the back surface 125 in the minor axis direction along the major axis direction.
- the upstream end of the decompression flow path groove 133 is connected to the connection groove 132, and the through hole 134 communicates with the downstream end.
- the shape of the decompression flow path groove 133 is not particularly limited as long as it can exhibit the function of depressurizing and flowing the irrigation liquid.
- the plan view shape of the decompression flow path groove 133 is a zigzag shape.
- substantially triangular prism-shaped protrusions 175 protruding from the inner side surface are alternately arranged along the flow direction of the irrigation liquid.
- the convex portion 175 is arranged so that the tip thereof does not exceed the central axis of the decompression flow path groove 133 when viewed in a plan view.
- the through hole 134 communicates the decompression flow path groove 133 (decompression flow path 143) (see FIG. 2B) with the accommodating portion 135 (see FIG. 2A) to accommodate the irrigation liquid flowing through the decompression flow path 143.
- the upstream end of the through hole 134 is connected to the decompression flow path groove 133, and the downstream end is connected to the accommodating portion 135.
- the shape of the through hole 134 is not particularly limited as long as it can exhibit the above-mentioned function.
- the through hole 134 is arranged at the center of the emitter 120 in the minor axis direction.
- the flow rate adjusting unit 136 is arranged in the flow path and adjusts the flow rate of the irrigation liquid flowing in the flow path according to the pressure of the irrigation liquid in the tube 110.
- the flow rate adjusting unit 136 is arranged in a region where the water intake unit 131 of the emitter 120, the connecting groove 132 (connecting flow path 142), and the decompression flow path groove 133 (decompression flow path 143) are not arranged.
- the flow rate adjusting unit 136 includes an accommodating unit 135, a pedestal 160, a communication hole 151, a diaphragm portion 153, and a pedestal support portion 163.
- the pedestal 160 has a first pedestal surface 161 arranged on the front side (diaphragm portion 153 side) and a second pedestal surface 162 arranged on the back side (inner wall surface 112 side of the tube 110).
- the first pedestal surface 161 cooperates with the diaphragm unit 153 to function as the first flow rate control unit 181
- the second pedestal surface 162 cooperates with the inner wall surface 112 of the tube 110 to serve as the second flow rate control unit 182.
- Function that is, in the flow rate adjusting unit 136 according to the present embodiment, both the front surface (first pedestal surface 161) and the back surface (second pedestal surface 162) of the pedestal 160 are used as the pedestal surface.
- the one flow rate adjusting unit 136 retains the functions of the two flow rate control units.
- FIG. 3 is a cross-sectional view of the pedestal 160.
- the configuration of the flow rate adjusting unit 136 will be described with reference to FIG.
- the accommodating unit 135 communicates with the decompression channel groove 133 and receives the irrigation liquid taken in from the water intake unit 131.
- the irrigation liquid flows into the accommodating portion 135 through the through hole 134.
- the pedestal 160 has a communication hole 151, a first pedestal surface 161 and a second pedestal surface 162.
- the pedestal 160 is arranged between the diaphragm portion 153 and the inner wall surface 112 of the tube 110 so as to be separated from the pedestal 160.
- the first pedestal surface 161 of the pedestal 160 serves as a valve structure (first flow rate control unit 181) that adjusts the flow rate of the irrigation liquid flowing in the flow path according to the pressure of the irrigation liquid in cooperation with the diaphragm portion 153.
- the second pedestal surface 162 of the pedestal 160 functions in cooperation with the inner wall surface 112 of the tube to adjust the flow rate of the irrigation liquid flowing in the flow path according to the pressure of the irrigation liquid (second flow rate). It functions as a control unit 182).
- the diaphragm portion 153 is deformed by the pressure of the irrigation liquid in the tube 110 and approaches the first pedestal surface 161 described later, and the flow rate is controlled between the diaphragm portion 153 and the first pedestal surface 161. Will be done. Further, the pressure of the irrigation liquid in the tube 110 is further increased, the diaphragm portion 153 is further deformed, and by pressing the pedestal 160, the pedestal support portion 163 is deformed and the pedestal 160 approaches the inner wall surface 112 of the tube. The flow rate is controlled between the second pedestal surface 162, which will be described later, and the inner wall surface 112 of the tube.
- the shape of the pedestal 160 is not particularly limited as long as it can function as two flow control units. In the present embodiment, the shape of the pedestal 160 is cylindrical.
- the communication hole 151 communicates the accommodating portion 135 and the discharge portion 137, and allows the irrigation liquid that has flowed into the accommodating portion 135 to flow toward the discharge portion 137.
- the communication hole 151 is arranged in the central portion of the pedestal 160.
- the upstream end of the communication hole 151 is open to the central portion of the first pedestal surface 161 and the downstream end of the communication hole 151 is open to the central portion of the second pedestal surface 162.
- the size of the opening of the communication hole 151 is not particularly limited and can be appropriately set according to the desired flow rate of the irrigation liquid.
- the first pedestal surface 161 is arranged so as to face the diaphragm portion 153, and is a surface that the diaphragm portion 153 can come into contact with when the diaphragm portion 153 is deformed.
- the first pedestal surface 161 is formed with a first communication groove 171 that communicates with the communication hole 151.
- the irrigation liquid does not flow between the first pedestal surface 161 and the diaphragm portion 153, but can flow through the first connecting groove 171.
- the shape of the first pedestal surface 161 is not particularly limited as long as the above functions can be exhibited, and may be appropriately set according to the shape of the pedestal 160 and the like.
- the first connecting groove 171 is formed on the first pedestal surface 161 for guiding the irrigation liquid in the accommodating portion 135 to the communication hole 151 even when the diaphragm portion 153 is in close contact with the pedestal 160 (first pedestal surface 161). Irrigation groove.
- One end of the first communication groove 171 communicates with the communication hole 151.
- the other end of the first connecting groove 171 is arranged on the outer edge of the first pedestal surface 161.
- the second pedestal surface 162 is arranged so as to face the inner wall surface 112 of the tube when the emitter 120 is joined to the inner wall surface 112 of the tube, and when the diaphragm portion 153 presses the pedestal 160 and the pedestal 160 moves. , A surface that can come into contact with the inner wall surface 112 of the tube.
- the second pedestal surface 162 is formed with a second communication groove 172 that communicates with the communication hole 151.
- the irrigation liquid does not flow between the second pedestal surface 162 and the inner wall surface 112 of the tube, but can flow through the second connecting groove 172. ..
- the shape of the second pedestal surface 162 is not particularly limited as long as it can exhibit the above functions, and may be appropriately set according to the shape of the inner wall surface of the tube 110 and the like.
- the second connecting groove 172 is a second pedestal surface 162 for guiding the irrigation liquid in the communication hole 151 to the discharge portion 137 even when the inner wall surface 112 of the tube 110 is in close contact with the pedestal 160 (second pedestal surface 162). It is a groove formed in. One end of the second connecting groove 172 communicates with the connecting hole 151. In the present embodiment, the other end of the second connecting groove 172 is arranged on the outer edge of the second surface 162 of the second pedestal surface 162.
- FIG. 4 is a cross-sectional view (cross-sectional view) of the pedestal 160.
- the left figure of FIG. 4 shows the state when the pressure inside the tube 110 is low and the diaphragm portion 153 is not deformed, and the right figure of FIG. 4 shows the state when the pressure inside the tube 110 is high and the diaphragm portion 153 is deformed and the pedestal. It shows the state when 160 is pressed.
- the cross section of the tube is omitted in the left figure of FIG.
- the shape of the second pedestal surface 162 can appropriately control the flow rate when the pedestal 160 is pressed and the second pedestal surface 162 approaches the inner wall surface 112 of the tube. As described above, it is preferable that the shape is complementary to the inner wall surface 112 of the tube. In the present embodiment, the shape of the second pedestal surface 162 does not have a curvature in the major axis direction of the emitter 120 like the inner wall surface 112 of the tube 110, and the tube in the minor axis direction of the emitter 120. It has the same curvature as the inner wall surface 112 of 110.
- the second pedestal surface 162 has such a shape, when the second pedestal surface 162 is in close contact with the inner wall surface 112 of the tube 110, the space between the second pedestal surface 162 and the inner wall surface 112 of the tube 110 is irrigated. It is possible to prevent the irrigation liquid from flowing. Even in such a state, as described above, the irrigation liquid can flow through the second communication groove 172 that communicates with the communication hole 151. As a result, the second flow rate control unit 182 can appropriately control the flow rate of the irrigation liquid.
- the diaphragm portion 153 is flexible and deforms toward the pedestal 160 when it receives the pressure of the irrigation liquid in the tube 110.
- the diaphragm portion 153 is, for example, a film arranged on the pedestal 160 so as not to come into contact with the pedestal 160 when not under pressure.
- the shape of the diaphragm portion 153 can be appropriately designed so as to have a flow rate adjusting function according to the shape of the pedestal 160.
- the pedestal support portion 163 supports the pedestal 160 so as to be separated from the diaphragm portion 153 and the inner wall surface 112 of the tube 110 when the diaphragm portion 153 is not deformed.
- the pedestal support portion 163 is flexible and deforms so that the pedestal 160 moves toward the inner wall surface 112 of the tube when the diaphragm portion 153 presses the pedestal 160.
- the material and shape of the pedestal support unit 163 are appropriately set so that the first flow rate control unit 181 and the second flow rate control unit 182 function appropriately.
- the material of the pedestal support portion 163 is preferably a thermoplastic resin from the viewpoint that the pedestal 160 can be appropriately moved when pressed by the diaphragm portion 153.
- the thickness of the pedestal support portion 163 is preferably 0.2 mm or more and 1.0 mm or less, preferably 0.3 mm or more and 0.7 mm, from the viewpoint that the pedestal 160 can be appropriately moved when pressed by the diaphragm portion 153. The following is more preferable.
- the length of the pedestal support portion 163 (the length in the direction perpendicular to the thickness of the pedestal support portion 163) is 3 mm or more and 8 mm or less from the viewpoint that the pedestal 160 can be appropriately moved when pressed by the diaphragm portion 153. It is preferably present, and more preferably 4 mm or more and 6 mm or less.
- the hardness of the pedestal support portion 163 is preferably such that the durometer hardness at 20 ° C. is A30 or more and D60 or less from the viewpoint that the pedestal 160 can be appropriately moved when pressed by the diaphragm portion 153.
- the discharge unit 137 temporarily stores the irrigation liquid from the communication hole 151. As described above, the emitter 120 is joined to the inner wall surface 112 of the tube so that the discharge portion 137 covers the discharge port 111 of the tube 110. The irrigation liquid that has reached the discharge unit 137 is discharged to the outside from the discharge port 111 of the tube 110.
- the method for manufacturing the emitter is not particularly limited.
- the emitter of this embodiment can be manufactured, for example, by injection molding.
- the diaphragm portion and the other portion may be formed separately and joined to each other.
- the diaphragm portion and the emitter body may be integrally formed via a hinge to rotate the hinge. Both may be joined by moving.
- the hinge may be cut after joining the diaphragm portion and the emitter body.
- FIG. 5 shows an example of the operation of the flow rate adjusting unit 136 according to the pressure of the irrigation liquid in the tube 110.
- the top figure of FIG. 5 shows a state where the pressure of the irrigation liquid in the tube 110 is very low (for example, about 0 bar).
- the diaphragm portion 153 is hardly deformed because it is hardly pressurized, and is not in contact with the first pedestal surface 161 of the pedestal 160.
- the pedestal support portion 163 is not deformed, and the position of the pedestal 160 is the same as the initial state.
- the irrigation liquid flowing from the decompression flow path 143 to the accommodating portion 135 mainly has a large gap between the diaphragm portion 153 and the first pedestal surface 161 and the inner wall surface 112 of the tube and the second pedestal surface 162. It flows to the discharge unit 137 through a large gap.
- the second figure from the top of FIG. 5 shows a state in which the pressure of the irrigation liquid in the tube 110 is low to some extent (for example, 1 bar).
- the diaphragm portion 153 is deformed and approaches the first surface 161 of the pedestal 160, but since the diaphragm portion 153 does not press the pedestal 160, the pedestal support portion 163 is not deformed and the pedestal 160 The position is the same as the initial state.
- the irrigation liquid flowing from the decompression flow path 143 to the accommodating portion 135 has a small gap between the diaphragm portion 153 and the first pedestal surface 161 and the first connecting groove 171 and the inner wall surfaces 112 and the second of the tube.
- the flow rate of the irrigation liquid discharged from the discharge port 111 of the tube 110 is almost the same.
- the pressure of the irrigation liquid in the tube 110 is low to some extent (for example, 1 bar)
- the flow rate flowing to the discharge portion 137 includes the diaphragm portion 153, the first pedestal surface 161 and the first connecting groove 171. It is adjusted by the first flow rate control unit 181.
- the third figure from the top of FIG. 5 shows a state in which the pressure of the irrigation liquid in the tube 110 is high to some extent (for example, 2 bar).
- the diaphragm portion 153 is deformed and comes into contact with the first pedestal surface 161 of the pedestal 160, and the pedestal 160 is pressed by the diaphragm portion 153.
- the pedestal support portion 163 is deformed, and the pedestal 160 is moved toward the inner wall surface 112 of the tube.
- the second pedestal surface 162 of the pedestal 160 approaches the inner wall surface 112 of the tube.
- the irrigation liquid flowing from the decompression flow path 143 to the accommodating portion 135 fills the first connecting groove 171 and the small gap between the inner wall surface 112 of the tube and the second pedestal surface 162 and the second connecting groove 172. It flows through the discharge unit 137.
- the increase in the pressure of the irrigation liquid in the tube 110 and the decrease in the gap between the inner wall surface 112 of the tube 110 and the second pedestal surface 162 cancel each other out, and the irrigation liquid in the tube 110 Even if the pressure increases, the flow rate of the irrigation liquid discharged from the discharge port 111 of the tube 110 does not change substantially.
- the flow rate flowing to the discharge portion 137 is the inner wall surface 112 of the tube 110, the second pedestal surface 162, and the second connecting groove. It is adjusted by a second flow control unit 182 including 172.
- the fourth figure from the top of FIG. 5 shows a state in which the pressure of the irrigation liquid in the tube 110 is high (for example, 3 bar). Even in this state, the diaphragm portion 153 is deformed and comes into contact with the pedestal 161, and the pedestal 160 is pressed by the diaphragm portion 153. As a result, the pedestal support portion 163 is greatly deformed, and the second pedestal surface 162 of the pedestal 160 comes into close contact with the inner wall surface 112 of the tube. In this state, the irrigation liquid that has flowed from the decompression flow path 143 to the accommodating portion 135 flows to the discharge portion 137 through the first connecting groove 171 and the second connecting groove 172. In this way, when the pressure of the irrigation liquid pair in the tube 110 is high (for example, 3 bar), the flow rate is adjusted by the above-mentioned first flow rate control unit 181 and the above-mentioned second flow rate control unit 182. .
- FIG. 6 shows an emitter 120 according to an embodiment of the present invention and a conventional emitter (an emitter that does not have a second pedestal surface 162 and the back surface of the pedestal 160 is joined to the inner wall surface 112 of the tube). , Shows the relationship between pressure and flow rate.
- the solid line shows the relationship between the pressure and the flow rate in the emitter 120 according to the embodiment of the present invention
- the broken line shows the relationship between the pressure and the flow rate in the conventional emitter.
- the flow rate is constant even if the pressure exceeds about 2 bar, for example. This is because even if the pressure increases and the diaphragm portion 153 comes into close contact with the first pedestal surface 161, the flow rate is further adjusted between the inner wall surface 112 of the tube and the second pedestal surface 162.
- the emitter 120 according to the present embodiment can be controlled so that the discharge amount of the irrigation liquid is constant even when the pressure change in the tube 110 is wide.
- the present invention it is possible to provide an emitter capable of controlling the discharge amount of the irrigation liquid to be constant even when the pressure change in the tube is wide. Further, according to the present invention, it is possible to provide a drip irrigation tube having the emitter. Therefore, the present invention is expected to further popularize drip irrigation tubes having emitters and emitters.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Environmental Sciences (AREA)
- Nozzles (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
本発明は、チューブ内の圧力の変化が広い範囲にわたっても灌漑用液体の吐出量を一定化するように制御することができるエミッタを提供することに関する。エミッタの流量調整部は、灌漑用液体を吐出口に流すための連通孔を有する台座と、可撓性を有し、チューブ内の灌漑用液体の圧力を受けたときに台座に向かって変形するダイヤフラム部と、ダイヤフラム部およびチューブの内壁面から離間するように台座を支持する台座支持部と、を有する。台座支持部は、可撓性を有し、ダイヤフラム部が台座を押圧したときに台座がチューブの内壁面に向かって移動するように変形する。台座は、ダイヤフラム部に対向して配置された第1台座面と、チューブの内壁面に対向するように配置された第2台座面と、を有する。
Description
本発明は、エミッタおよび当該エミッタを有する点滴灌漑用チューブに関する。
以前から、植物の栽培方法の一つとして点滴灌漑法が知られている。点滴灌漑法とは、植物が植えられている土壌に点滴灌漑用チューブを配置し、点滴灌漑用チューブから土壌へ、水や液体肥料等の灌漑用液体を滴下する方法である。近年、点滴灌漑法は、灌漑用液体の消費量を最小限にすることが可能であるため、特に注目されている。
点滴灌漑用チューブは、灌漑用液体が吐出される複数の貫通孔が形成されたチューブと、当該チューブの内壁面に接合され、各貫通孔から灌漑用液体を吐出するための複数のエミッタ(「ドリッパ」ともいう)とを有する。
エミッタはチューブ内の圧力が異なっても灌漑用液体の吐出量を一定にできることが望まれる。たとえば、送液ポンプから近い位置ではチューブ内の圧力が高く、遠い位置では圧力は低いが、送液ポンプから近い位置に設置されたエミッタでも遠い位置に設置されたエミッタでも吐出量を一定にすることが望まれる。
このような吐出量を一定にするための機構として、灌漑用液体が流れる連通孔に対して、チューブ内の圧力に応じて変形して流量を調整するダイヤフラムが知られている。たとえば、特許文献1は、導管(チューブ)内の圧力に応じて、膜(ダイヤフラム)が凹部出口(連通孔)に向けて曲がることにより、流量を調整する機構を開示している。
上記のような、連通孔に対して、チューブ内の圧力に応じて変形し、流量を調整するダイヤフラムを有する流量調整機構は、チューブ内の圧力が変化しても、エミッタからの灌漑用液体の吐出量を一定化することに有用である。
しかしながら、このような流量調整機構では、エミッタからの灌漑用液体の吐出量を一定化できるチューブ内の圧力範囲が狭いという問題がある。たとえば、チューブ内の圧力がある程度高いときまでは、エミッタからの灌漑用液体の吐出量を一定化するための制御をすることはできるが、チューブ内の圧力がある閾値を超えると、流量を調整するための制御が困難になり、吐出量を一定化することが困難になることがある。
本発明は上記事情に鑑みてなされたものであり、チューブ内の圧力の変化が広い範囲にわたっても灌漑用液体の吐出量を一定化するように制御をすることができるエミッタを提供することを目的とする。また、本発明は、当該エミッタを有する点滴灌漑用チューブを提供することを目的とする。
本発明のエミッタは、灌漑用液体を流通させるチューブの内壁面における、前記チューブの内外を連通する吐出口に対応する位置に接合されて前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、前記灌漑用液体を取り入れるための取水部と、前記取水部から取り入れられた前記灌漑用液体を吐出するための吐出部と、前記取水部と前記吐出部とを接続する流路と、前記流路内に配置され、前記チューブ内の灌漑用液体の圧力に応じて前記流路内を流れる前記灌漑用液体の量を調整する流量調整部と、を有し、前記流量調整部は、前記取水部から取り入れられた前記灌漑用液体を受け入れるための収容部と、前記収容部と前記吐出部とを連通する連通孔を有する台座と、可撓性を有し、前記チューブ内の灌漑用液体の圧力を受けたときに前記台座に向かって変形するダイヤフラム部と、前記ダイヤフラム部が変形していないとき、前記ダイヤフラム部および前記チューブの内壁面から離間するように前記台座を支持する台座支持部と、を有し、前記台座支持部は、可撓性を有し、前記ダイヤフラム部が前記台座を押圧したときに前記台座が前記チューブの内壁面に向かって移動するように変形し、前記台座は、前記ダイヤフラム部と対向して配置され、前記ダイヤフラム部が変形したときに前記ダイヤフラム部が接触可能である第1台座面と、前記エミッタを前記チューブの内壁面に接合したときに前記チューブの内壁面と対向するように配置され、前記ダイヤフラム部が前記台座を押圧したときに前記チューブの内壁面が接触可能である第2台座面と、を有する。
本発明の点滴灌漑用チューブは、灌漑用液体を吐出するための吐出口を有するチューブと、前記チューブの内壁面の前記吐出口に対応する位置に接合された、上記のエミッタと、を有する。
本発明によれば、チューブ内の圧力の変化が広い範囲にわたっても灌漑用液体の吐出量を一定にするように制御することができるエミッタを提供することができる。また、本発明によれば当該エミッタを有する点滴灌漑用チューブを提供することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
(点滴灌漑用チューブおよびエミッタの構成)
図1Aおよび図1Bは、本発明の実施の形態に係る点滴灌漑用チューブ100を示す。なお、図1Aはチューブ110およびエミッタ120の縦断面図を示し、図1Bはチューブ110およびエミッタ120の横断面図を示している。
図1Aおよび図1Bは、本発明の実施の形態に係る点滴灌漑用チューブ100を示す。なお、図1Aはチューブ110およびエミッタ120の縦断面図を示し、図1Bはチューブ110およびエミッタ120の横断面図を示している。
図1Aおよび1Bに示されるように、点滴灌漑用チューブ100は、チューブ110およびエミッタ120を有する。チューブ110は、灌漑用液体を流すための管である。灌漑用液体の例には、水、液体肥料、農薬およびこれらの混合液が含まれる。チューブ110において、灌漑用液体を流す方向については、特に限定されない。また、チューブ110の材料は、特に限定されない。本実施の形態では、チューブ110の材料は、ポリエチレンである。
チューブ110の管壁には、チューブ110の軸方向において所定の間隔(例えば、200mm以上500mm以下)で灌漑用液体を吐出するための複数の吐出口111が形成されている。吐出口111の開口部の直径は、灌漑用液体を吐出できれば特に限定されない。本実施の形態では、吐出口111の開口部の直径は、1.5mmである。チューブの内壁面112の吐出口111に対応する位置には、エミッタ120がそれぞれ接合される。チューブ110の軸方向に垂直な断面形状および断面積は、チューブ110の内部にエミッタ120を液漏れなく配置できれば特に限定されない。
点滴灌漑用チューブ100は、エミッタ120の裏面125(図2B、C参照)をチューブの内壁面112に接合することによって作製される。チューブ110とエミッタ120との接合方法は、特に限定されない。チューブ110とエミッタ120との接合方法の例には、チューブ110またはエミッタ120を構成する樹脂材料の溶着、接着剤による接着が含まれる。吐出口111は、チューブ110とエミッタ120とを接合した後に形成されてもよいし、接合前に形成されてもよい。
(エミッタの構成)
図2Aはフィルム(ダイヤフラム部153)を取り外した状態のエミッタ120の平面図であり、図2Bはフィルム(ダイヤフラム部153)を取り外した状態のエミッタ120の底面図であり、図2Cは、図2Bの線A-Aに沿う断面図である。図3は台座160の断面図である。
図2Aはフィルム(ダイヤフラム部153)を取り外した状態のエミッタ120の平面図であり、図2Bはフィルム(ダイヤフラム部153)を取り外した状態のエミッタ120の底面図であり、図2Cは、図2Bの線A-Aに沿う断面図である。図3は台座160の断面図である。
エミッタ120は、灌漑用液体を流通させるチューブの内壁面112における、チューブ110の内外を連通する吐出口111に対応する位置に接合されて、チューブ110内の灌漑用液体を吐出口111から定量的にチューブ110外に吐出する。エミッタ120は、吐出部137がチューブ110の吐出口111を覆うようにチューブの内壁面112に接合される。エミッタ120の外形は、チューブの内壁面112に密着して吐出口111を覆うようにできれば特に限定されない。本実施の形態では、チューブ110の軸方向に垂直なエミッタ120の断面における、内壁面に接合する裏面125の形状は、チューブの内壁面112に沿うように、チューブの内壁面112に向かって凸の略円弧形状である。エミッタ120の大きさは、特に限定されず、吐出口111から吐出される灌漑用液体の所望の量に基づいて、適宜決定されればよい。本実施の形態では、エミッタ120の長辺方向の長さは19mmであり、短辺方向の長さは8mmであり、高さは2.7mmである。
本実施の形態において、エミッタ120は、弾性を有する材料で成形されることが好ましい。エミッタ120の材料の例には、樹脂、エラストマーおよびゴムを含む材料が挙げられる。樹脂の例には、熱可塑性樹脂および熱硬化性樹脂等が含まれる。熱可塑性樹脂の例には、ポリエチレンが含まれる。エミッタ120の可撓性は、弾性を有する材料の使用によって調整できる。本実施の形態に係るエミッタ120は、後述するダイヤフラム部153および台座支持部163の可撓性が流量調整のために重要である。ダイヤフラム部153および台座支持部163が熱可塑性樹脂を含む場合に、本実施の形態に係るエミッタ120は特に優れた可撓性を発揮する。エミッタ120の可撓性の調整方法の例には、弾性を有する樹脂の選択、硬質の樹脂材料に対する弾性を有する樹脂の混合比の調整が含まれる。エミッタ120の材料の硬度を示す指標としては、JIS K6253-3(2012年)において規定されているデュロメータ硬さが含まれる。なお、デュロメータ硬さは、測定に使用するデュロメータの種類によって、タイプA、タイプD、およびタイプEなどがある。例えば、タイプDデュロメータを使用して硬さ40を示した場合、デュロメータ硬さD40となる。そして、デュロメータ硬さは、各タイプにおける数値が同じ場合、タイプDが最も硬く、タイプA、タイプEの順に柔らかくなる。
図2A、図2B、図2Cに示されているように、エミッタ120は、灌漑用液体を受け入れるための取水部131と、取水部131から取り入れられた灌漑用液体を減圧流路溝133に流す接続溝132と、灌漑用液体を減圧させながら流す減圧流路溝133と、減圧流路溝133からの灌漑用液体を収容部135に導く貫通孔134と、貫通孔134からの灌漑用液体を収容するための収容部135と、収容部135内の灌漑用液体を吐出部137に連通するための連通孔151を有する台座160と、ダイヤフラム部153(図1A、図3、図4参照)とを有する。収容部135、連通孔151、台座160およびダイヤフラム部153は、流量調整部136として機能する。
エミッタ120がチューブ110に接合されることにより、接続溝132は接続流路142となり、減圧流路溝133は減圧流路143となる。これにより、取水部131、接続流路142、減圧流路143、貫通孔134、収容部135、連通孔151、吐出部137を繋ぐ流路が形成される。流路は、取水部131から吐出部137まで灌漑用液体を流通させる。
取水部131は、エミッタ120の表面124の略半分の領域に配置されている。取水部131の数は、特に限定されない。本実施の形態では、2つの取水部131が、エミッタ120の長軸方向に沿って配置されている。取水部131が配置されていない表面124の領域には、流量調整部136が配置されている。取水部131は、取水側スクリーン部170および取水用貫通孔147を有する。
取水側スクリーン部170は、エミッタ120に取り入れられる灌漑用液体中の浮遊物が取水用貫通孔147に侵入することを防止する。取水側スクリーン部170は、チューブ110内に開口しており、取水用凹部173および凸条174を有する。
取水用凹部173は、エミッタ120の表面124において、ダイヤフラム部153が配置されていない一方の半面の領域のほぼ全体に形成されている凹部である。取水用凹部173の深さは特に限定されず、エミッタ120の大きさによって適宜設定される。取水用凹部173の底面上には凸条174が形成されている。また、取水用凹部173の底面には取水用貫通孔147が形成されている。
凸条174は、取水用凹部173の底面上に配置されている。凸条174の配置および数は、取水用凹部173の開口部側から灌漑用液体を取り入れつつ、灌漑用液体中の浮遊物の侵入を防止できれば特に限定されない。本実施の形態では、複数の長い凸条174が取水用凹部173の長軸方向に沿って配列されており、複数の短い凸条174が取水用凹部173の短軸方向に沿って配列されている。また、取水用凹部173の底面には取水用貫通孔147が形成されている。
また、凸条174は、エミッタ120の表面124から取水用凹部173の底面に向かうにつれて幅が小さくなるように形成されていてもよいし、エミッタ120の表面124から取水用凹部173の底面まで同じ幅に形成されていてもよい。
取水用貫通孔147は、取水用凹部173の底面に形成されている。取水用貫通孔147の形状および数は、取水用凹部173の内部に取り込まれた灌漑用液体をエミッタ120内に取り込むことができれば特に限定されない。本実施の形態では、取水用貫通孔147は、取水用凹部173の底面の長軸方向に沿って形成された長孔である。長孔は、複数の凸条174により覆われているため、表側から見た場合、取水用貫通孔147は、多数の貫通孔に分かれているように見える。
チューブ110内を流れてきた灌漑用液体は、取水側スクリーン部170によって浮遊物が取水用貫通孔147内への侵入が防止されつつ、エミッタ120内に取り込まれる。
接続溝132(接続流路142)は、取水用貫通孔147(取水部131)と、減圧流路溝133(減圧流路143)とを接続する。接続溝132は、エミッタ120の裏面125の外縁部に沿って形成されている。接続溝132に、減圧流路溝133が接続されている。エミッタ120がチューブ110に接合されることにより、接続溝132とチューブの内壁面112とにより、接続流路142が形成される。取水部131から取り込まれた灌漑用液体は、接続流路142を通って、減圧流路143に流れる。
減圧流路溝133(減圧流路143)は、接続溝132(接続流路142)と貫通孔134とを接続する。減圧流路溝133は、取水部131に連通し、灌漑用液体を減圧させながら流す減圧流路143を形成する。本実施の形態では、減圧流路溝133は、裏面125の短軸方向の中央に、長軸方向に沿って配置されている。減圧流路溝133の上流端は接続溝132に接続されており、下流端には貫通孔134が連通している。減圧流路溝133の形状は、灌漑用液体を減圧させて流す機能を発揮できれば特に限定されない。本実施の形態では、減圧流路溝133の平面視形状は、ジグザグ形状である。減圧流路溝133では、内側面から突出する略三角柱形状の凸部175が灌漑用液体の流れる方向に沿って交互に配置されている。凸部175は、平面視したときに、先端が減圧流路溝133の中心軸を超えないように配置されている。チューブ110およびエミッタ120が接合されることにより、減圧流路溝133とチューブの内壁面112により、減圧流路143が形成される。取水部131から取り込まれた灌漑用液体は、減圧流路143により減圧されて流量調整部136に導かれる。
貫通孔134は、減圧流路溝133(減圧流路143)(図2B参照)と、収容部135(図2A参照)とを連通させて、減圧流路143を流れてきた灌漑用液体を収容部135に導く。貫通孔134の上流端は減圧流路溝133に接続され、下流端は収容部135に接続される。貫通孔134の形状は前記の機能を発揮できれば特に制限されない。本実施の形態では貫通孔134はエミッタ120の短軸方向の中央に配置されている。
流量調整部136は、流路内に配置され、チューブ110内の灌漑用液体の圧力に応じて流路内を流れる灌漑用液体の流量を調整する。流量調整部136は、エミッタ120の取水部131、接続溝132(接続流路142)および減圧流路溝133(減圧流路143)が配置されていない領域に配置されている。流量調整部136は、収容部135と、台座160と、連通孔151と、ダイヤフラム部153と、台座支持部163とを有する。台座160は、表側(ダイヤフラム部153側)に配置された第1台座面161と、裏側(チューブ110の内壁面112側)に配置された第2台座面162とを有する。第1台座面161は、ダイヤフラム部153と協働して第1流量制御部181として機能し、第2台座面162は、チューブ110の内壁面112と協働して第2流量制御部182として機能する。すなわち、本実施の形態に係る流量調整部136では、台座160の表側の面(第1台座面161)および裏側の面(第2台座面162)の両方を台座面として利用することで、1つの流量調整部136に2つの流量制御部の機能を保持させている。
図3は台座160の断面図である。以下、図3を参照しつつ、流量調整部136の構成について説明する。
収容部135は減圧流路溝133に連通し、取水部131から取り入れられた灌漑用液体を受け入れる。本実施の形態において、収容部135には貫通孔134から灌漑用液体が流れてくる。収容部135の下側には台座160があり、収容部135の上側にはダイヤフラム部153がある。
台座160は、連通孔151と、第1台座面161と、第2台座面162とを有する。本実施の形態では、台座160は、ダイヤフラム部153とチューブ110の内壁面112との間にこれらから離間して配置されている。台座160の第1台座面161は、ダイヤフラム部153と協働して灌漑用液体の圧力に応じて流路内を流れる灌漑用液体の流量を調整する弁構造(第1流量制御部181)として機能し、台座160の第2台座面162は、チューブの内壁面112と協働して灌漑用液体の圧力に応じて流路内を流れる灌漑用液体の流量を調整する弁構造(第2流量制御部182)として機能する。具体的には、チューブ110内の灌漑用液体の圧力によってダイヤフラム部153が変形して、後述する第1台座面161に近づき、ダイヤフラム部153と、第1台座面161との間で流量が制御される。また、チューブ110内の灌漑用液体の圧力がさらに高まりダイヤフラム部153がさらに変形し、台座160を押圧することで、台座支持部163が変形して、台座160がチューブの内壁面112に近づき、後述する第2台座面162とチューブの内壁面112との間で流量が制御される。
台座160の形状等は、2つの流量制御部として機能できれば特に制限されない。本実施の形態では、台座160の形状は、円柱状である。
連通孔151は、収容部135と吐出部137とを連通し、収容部135内に流入した灌漑用液体を吐出部137に向けて流す。本実施の形態では、連通孔151は、台座160の中央部分に配置されている。連通孔151の上流側の端部は、第1台座面161の中央部に開口しており、連通孔151の下流側の端部は、第2台座面162の中央部に開口している。連通孔151の開口部の大きさは、特に限定されず、灌漑用液体の希望する流量に応じて適宜設定できる。
第1台座面161は、ダイヤフラム部153に対向して配置され、ダイヤフラム部153が変形したときにダイヤフラム部153が接触可能な面である。本実施の形態では、第1台座面161には、連通孔151に連絡する第1連絡溝171が形成されている。第1台座面161が変形したダイヤフラム部153と密着したとき、灌漑用液体は第1台座面161とダイヤフラム部153との間を流れないが、第1連絡溝171を流れることができる。第1台座面161の形状は、上記の機能を発揮できれば特に制限されず、台座160の形状等にあわせて適宜設定されればよい。
第1連絡溝171は、台座160(第1台座面161)にダイヤフラム部153が密着した状態でも収容部135内の灌漑用液体を連通孔151に導くための、第1台座面161に形成されている溝である。第1連絡溝171の一方の端部は、連通孔151に連絡している。本実施の形態では、第1連絡溝171の他方の端部は、第1台座面161の外縁に配置されている。
第2台座面162は、エミッタ120をチューブの内壁面112に接合したときにチューブの内壁面112に対向するように配置され、ダイヤフラム部153が台座160を押圧して台座160が移動したときに、チューブの内壁面112に接触可能な面である。本実施の形態では、第2台座面162には、連通孔151に連絡する第2連絡溝172が形成されている。第2台座面162がチューブ110の内壁面112に密着したとき、灌漑用液体は第2台座面162とチューブの内壁面112との間を流れないが、第2連絡溝172を流れることができる。第2台座面162の形状は、上記の機能を発揮できれば特に制限されず、チューブ110の内壁面の形状等にあわせて適宜設定されればよい。
第2連絡溝172は、台座160(第2台座面162)にチューブ110の内壁面112が密着した状態でも連通孔151内の灌漑用液体を吐出部137に導くための、第2台座面162に形成されている溝である。第2連絡溝172の一方の端部は、連絡孔151に連絡している。本実施の形態では、第2連絡溝172の他方の端部は、第2台座面162の第2面162の外縁に配置されている。
図4は、台座160の断面図(横断面図)である。図4の左図はチューブ110内の圧力が低く、ダイヤフラム部153が変形していないときの状態を示し、図4の右図はチューブ110内の圧力が高く、ダイヤフラム部153が変形し、台座160を押圧したときの状態を示している。なお、図4の左図においてチューブの断面は省略されている。
図4の右図に示されているように、第2台座面162の形状は、台座160が押圧され、第2台座面162がチューブの内壁面112に接近したときに流量を適切に制御できるように、チューブの内壁面112に相補的な形状であることが好ましい。本実施の形態においては、第2台座面162の形状は、エミッタ120の長軸方向においてはチューブ110の内壁面112と同様に曲率を有しておらず、エミッタ120の短軸方向においてはチューブ110の内壁面112と同様の曲率を有している。第2台座面162がこのような形状を有することで、第2台座面162がチューブ110の内壁面112に密着したときに、第2台座面162とチューブ110の内壁面112との間を灌漑用液体が流れないようにすることができる。このような状態においても、上述したように、灌漑用液体は連通孔151と連絡する第2連絡溝172を流れることができる。これにより第2流量制御部182は、灌漑用液体の流量を適切に制御することができる。
ダイヤフラム部153は、可撓性を有し、チューブ110内の灌漑用液体の圧力を受けたときに台座160に向かって変形する。ダイヤフラム部153は、例えば、圧力を受けていないときに、台座160に接触しないように台座160上に配置されたフィルムである。ダイヤフラム部153の形状は、台座160の形状に合わせて流量調整機能を有するように適宜設計できる。
台座支持部163は、ダイヤフラム部153が変形していないとき、ダイヤフラム部153およびチューブ110の内壁面112から離間するように台座160を支持する。台座支持部163は、可撓性を有し、ダイヤフラム部153が台座160を押圧したときに台座160がチューブの内壁面112に向かって移動するように変形する。
台座支持部163の材料および形状は、第1流量制御部181および第2流量制御部182が適切に機能するように適宜設定される。本実施の形態において、台座支持部163の材料は、ダイヤフラム部153に押圧されたときに台座160が適切に移動できるという観点から、熱可塑性樹脂であることが好ましい。台座支持部163の厚さは、ダイヤフラム部153に押圧されたときに台座160が適切に移動できるという観点から、0.2mm以上1.0mm以下であることが好ましく、0.3mm以上0.7mm以下であることがさらに好ましい。台座支持部163の長さ(台座支持部163の厚さに垂直な方向の長さ)は、ダイヤフラム部153に押圧されたときに台座160が適切に移動できるという観点から、3mm以上8mm以下であることが好ましく、4mm以上6mm以下であることがさらに好ましい。台座支持部163の硬度は、ダイヤフラム部153に押圧されたときに台座160が適切に移動できるという観点から、20℃のときのデュロメータ硬さがA30以上D60以下であることが好ましい。
エミッタ120の構成の説明に戻る。吐出部137は、連通孔151からの灌漑用液体を一時的に貯留する。前述のとおり、エミッタ120は、吐出部137がチューブ110の吐出口111を覆うようにチューブの内壁面112に接合される。吐出部137に到達した灌漑用液体は、チューブ110の吐出口111から外部に排出される。
本実施形態において、エミッタの製造方法は特に限定されない。本実施形態のエミッタは、例えば、射出成形によって製造できる。この際、ダイヤフラム部とそれ以外の部分(エミッタ本体)とを別々に形成して、両者を接合してもよく、ダイヤフラム部とエミッタ本体を、ヒンジを介して一体で形成して、ヒンジを回動させることで両者を接合させてもよい。なお、ヒンジは、ダイヤフラム部とエミッタ本体とを接合した後に切断してもよい。
(エミッタの動作)
図5は、チューブ110内の灌漑用液体の圧力に応じた流量調整部136の動作の一例を示す。
図5は、チューブ110内の灌漑用液体の圧力に応じた流量調整部136の動作の一例を示す。
図5の一番上の図は、チューブ110内の灌漑用液体の圧力が非常に低い状態(例えば約0バール)を示す。この状態では、ダイヤフラム部153はほとんど加圧されていないためほとんど変形しておらず、台座160の第1台座面161に接触していない。また、ダイヤフラム部153が台座160を押圧していないため、台座支持部163も変形しておらず、台座160の位置は初期状態と同じである。この状態では、減圧流路143から収容部135に流れてきた灌漑用液体は、主としてダイヤフラム部153と第1台座面161との大きな隙間、およびチューブの内壁面112と第2台座面162との大きな隙間を通って吐出部137に流れる。
図5の上から二番目の図は、チューブ110内の灌漑用液体の圧力がある程度低い状態(例えば1バール)を示す。この状態では、ダイヤフラム部153は変形して台座160の第1面161に接近するが、ダイヤフラム部153が台座160を押圧していないため、台座支持部163は変形しておらず、台座160の位置は初期状態と同じである。この状態では、減圧流路143から収容部135に流れてきた灌漑用液体は、ダイヤフラム部153と第1台座面161との小さな隙間および第1連絡溝171、ならびにチューブの内壁面112と第2台座面162との大きな隙間を通って吐出部137に流れる。このとき、チューブ110内の灌漑用液体の圧力が高まることと、ダイヤフラム部153と第1台座面161との隙間が小さくなることとが相殺して、チューブ110内の灌漑用液体の圧力が高まっても、チューブ110の吐出口111から吐出される灌漑用液体の流量は、ほぼ変わらない。このように、チューブ110内の灌漑用液体の圧力がある程度低い状態(例えば1バール)のとき、吐出部137に流れる流量は、ダイヤフラム部153、第1台座面161および第1連絡溝171を含む第1流量制御部181によって調整される。
図5の上から三番目の図は、チューブ110内の灌漑用液体の圧力がある程度高い状態(例えば2バール)を示す。この状態では、ダイヤフラム部153は変形して台座160の第1台座面161に接触して、台座160がダイヤフラム部153により押圧される。これにより台座支持部163は変形して、台座160がチューブの内壁面112に向かって移動させられる。これにより、台座160の第2台座面162が、チューブの内壁面112に接近する。この状態では、減圧流路143から収容部135に流れてきた灌漑用液体は、第1連絡溝171、ならびにチューブの内壁面112と第2台座面162との小さな隙間および第2連絡溝172を通って吐出部137に流れる。このとき、チューブ110内の灌漑用液体の圧力が高まることと、チューブ110の内壁面112と第2台座面162との隙間が小さくなることとが相殺して、チューブ110内の灌漑用液体の圧力が高まっても、チューブ110の吐出口111から吐出される灌漑用液体の流量は、ほぼ変わらない。このように、チューブ110内の灌漑用液体の圧力がある程度高い状態(例えば2バール)のとき、吐出部137に流れる流量は、チューブ110の内壁面112、第2台座面162および第2連絡溝172を含む第2流量制御部182によって調整される。
図5の上から四番目の図は、チューブ110内の灌漑用液体の圧力が高い状態(例えば3バール)を示す。この状態でも、ダイヤフラム部153は変形して台座161に接触して、台座160がダイヤフラム部153により押圧される。これにより、台座支持部163は大きく変形して、台座160の第2台座面162が、チューブの内壁面112に密着する。この状態では、減圧流路143から収容部135に流れてきた灌漑用液体は、第1連絡溝171および第2連絡溝172を通って吐出部137に流れる。このように、チューブ110内の灌漑用液対の圧力が高い状態(例えば3バール)のとき、上述の第1流量制御部181と、上述の第2流量制御部182とによって流量が調整される。
(効果)
本発明の一実施の形態に係るエミッタ120の効果について、図6のグラフを参照しつつ説明する。図6は本発明の一実施の形態に係るエミッタ120と従来のエミッタ(第2台座面162を有しておらず、台座160の裏面がチューブの内壁面112に接合されているエミッタ)とにおいて、圧力と流量との関係を示している。図6のグラフにおいて、実線は本発明の一実施の形態に係るエミッタ120における圧力と流量との関係を示し、破線は従来のエミッタにおける圧力と流量との関係を示している。
本発明の一実施の形態に係るエミッタ120の効果について、図6のグラフを参照しつつ説明する。図6は本発明の一実施の形態に係るエミッタ120と従来のエミッタ(第2台座面162を有しておらず、台座160の裏面がチューブの内壁面112に接合されているエミッタ)とにおいて、圧力と流量との関係を示している。図6のグラフにおいて、実線は本発明の一実施の形態に係るエミッタ120における圧力と流量との関係を示し、破線は従来のエミッタにおける圧力と流量との関係を示している。
図6の点線から明らかなように、従来のエミッタでは、圧力が高くなると流量を一定に制御することができなくなっている。具体的には、圧力が約2バールを超えると、流量が多くなりすぎて流量を適切に調整することができていない。これは、圧力が高くなってダイヤフラム部153が第1台座面161に密着すると、それ以上圧力が高くなっても流量を制限することができないためである。
これに対して、図6の実線から明らかなように、本発明の一実施の形態に係るエミッタ120では、例えば圧力が約2バールを超えても、流量は一定である。これは、圧力が高くなってダイヤフラム部153が第1台座面161に密着しても、さらにチューブの内壁面112と第2台座面162との間で流量が調整されるためである。
以上のように、本実施の形態に係るエミッタ120は、チューブ110内の圧力変化が広い範囲にわたっても灌漑用液体の吐出量を一定にするように制御することができる。
本出願は、2019年8月29日出願の特願2019-156781に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
本発明によれば、チューブ内の圧力変化が広い範囲にわたっても灌漑用液体の吐出量を一定にするように制御することができるエミッタを提供することができる。また、本発明によれば当該エミッタを有する点滴灌漑用チューブを提供することができる。したがって、本発明によって、エミッタおよびエミッタを有する点滴灌漑用チューブのさらなる普及が期待される。
100 点滴灌漑用チューブ
110 チューブ
111 吐出口
112 チューブの内壁面
120 エミッタ
124 表面
125 裏面
131 取水部
132 接続溝
133 減圧流路溝
134 貫通孔
135 収容部
136 流量調整部
137 吐出部
142 接続流路
143 減圧流路
147 取水用貫通孔
151 連通孔
153 ダイヤフラム部
160 台座
161 第1台座面
162 第2台座面
163 台座支持部
170 取水側スクリーン部
171 第1連絡溝
172 第2連絡溝
173 取水用凹部
174 凸条
175 凸部
181 第1流量制御部
182 第2流量制御部
110 チューブ
111 吐出口
112 チューブの内壁面
120 エミッタ
124 表面
125 裏面
131 取水部
132 接続溝
133 減圧流路溝
134 貫通孔
135 収容部
136 流量調整部
137 吐出部
142 接続流路
143 減圧流路
147 取水用貫通孔
151 連通孔
153 ダイヤフラム部
160 台座
161 第1台座面
162 第2台座面
163 台座支持部
170 取水側スクリーン部
171 第1連絡溝
172 第2連絡溝
173 取水用凹部
174 凸条
175 凸部
181 第1流量制御部
182 第2流量制御部
Claims (5)
- 灌漑用液体を流通させるチューブの内壁面における、前記チューブの内外を連通する吐出口に対応する位置に接合されて前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、
前記灌漑用液体を取り入れるための取水部と、
前記取水部から取り入れられた前記灌漑用液体を吐出するための吐出部と、
前記取水部と前記吐出部とを接続する流路と、
前記流路内に配置され、前記チューブ内の灌漑用液体の圧力に応じて前記流路内を流れる前記灌漑用液体の量を調整する流量調整部と、
を有し、
前記流量調整部は、
前記取水部から取り入れられた前記灌漑用液体を受け入れるための収容部と、
前記収容部と前記吐出部とを連通する連通孔を有する台座と、
可撓性を有し、前記チューブ内の灌漑用液体の圧力を受けたときに前記台座に向かって変形するダイヤフラム部と、
前記ダイヤフラム部が変形していないとき、前記ダイヤフラム部および前記チューブの内壁面から離間するように前記台座を支持する台座支持部と、
を有し、
前記台座支持部は、可撓性を有し、前記ダイヤフラム部が前記台座を押圧したときに前記台座が前記チューブの内壁面に向かって移動するように変形し、
前記台座は、
前記ダイヤフラム部と対向して配置され、前記ダイヤフラム部が変形したときに前記ダイヤフラム部が接触可能である第1台座面と、
前記エミッタを前記チューブの内壁面に接合したときに前記チューブの内壁面と対向するように配置され、前記ダイヤフラム部が前記台座を押圧したときに前記チューブの内壁面が接触可能である第2台座面と、
を有する、エミッタ。 - 前記台座は、
前記第1台座面に配置され、前記連通孔に連通する第1連絡溝と、
前記第2台座面に配置され、前記連通孔に連通する第2連絡溝と、
をさらに有する、請求項1に記載のエミッタ。 - 前記第2台座面は、前記エミッタを前記チューブの内壁面に接合したときに対向する前記チューブの内壁面に相補的な形状を有する、請求項1または請求項2に記載のエミッタ。
- 前記ダイヤフラム部および前記台座支持部は、熱可塑性樹脂を含む、請求項1~請求項3のいずれか一項に記載のエミッタ。
- 灌漑用液体を吐出するための吐出口を有するチューブと、
前記チューブの内壁面の前記吐出口に対応する位置に接合された、請求項1~請求項4のいずれか一項に記載のエミッタと、
を有する、点滴灌漑用チューブ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019156781A JP2021029221A (ja) | 2019-08-29 | 2019-08-29 | エミッタおよび点滴灌漑用チューブ |
JP2019-156781 | 2019-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039831A1 true WO2021039831A1 (ja) | 2021-03-04 |
Family
ID=74674178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/032142 WO2021039831A1 (ja) | 2019-08-29 | 2020-08-26 | エミッタおよび点滴灌漑用チューブ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021029221A (ja) |
WO (1) | WO2021039831A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050284966A1 (en) * | 2004-06-23 | 2005-12-29 | Defrank Michael | Emitter |
WO2015080126A1 (ja) * | 2013-11-27 | 2015-06-04 | 株式会社エンプラス | エミッタおよび点滴灌漑用チューブ |
-
2019
- 2019-08-29 JP JP2019156781A patent/JP2021029221A/ja active Pending
-
2020
- 2020-08-26 WO PCT/JP2020/032142 patent/WO2021039831A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050284966A1 (en) * | 2004-06-23 | 2005-12-29 | Defrank Michael | Emitter |
WO2015080126A1 (ja) * | 2013-11-27 | 2015-06-04 | 株式会社エンプラス | エミッタおよび点滴灌漑用チューブ |
Also Published As
Publication number | Publication date |
---|---|
JP2021029221A (ja) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016190168A1 (ja) | エミッタおよび点滴灌漑用チューブ | |
WO2016194603A1 (ja) | エミッタおよび点滴灌漑用チューブ | |
US10362740B2 (en) | Emitter and drip irrigation tube | |
JP7349432B2 (ja) | エミッタおよび点滴灌漑用チューブ | |
CN107613757B (zh) | 发射器及滴灌用输送管 | |
JP6667227B2 (ja) | エミッタおよび点滴灌漑用チューブ | |
CN108024516B (zh) | 发射器及滴灌用输送管 | |
JP2017104045A (ja) | エミッタおよび点滴灌漑用チューブ | |
JP7101045B2 (ja) | エミッタおよび点滴灌漑用チューブ | |
US11064663B2 (en) | Emitter and tube for drip irrigation | |
JP6783089B2 (ja) | エミッタおよび点滴灌漑用チューブ | |
WO2021039623A1 (ja) | エミッタおよび点滴灌漑用チューブ | |
WO2021039831A1 (ja) | エミッタおよび点滴灌漑用チューブ | |
JP6710602B2 (ja) | エミッタおよび点滴灌漑用チューブ | |
WO2017159251A1 (ja) | エミッタおよび点滴灌漑用チューブ | |
JP6444124B2 (ja) | エミッタおよび点滴灌漑用チューブ | |
JP7036668B2 (ja) | エミッタおよび点滴灌漑用チューブ | |
WO2018190084A1 (ja) | エミッタおよび点滴灌漑用チューブ | |
WO2018180700A1 (ja) | エミッタおよび点滴灌漑用チューブ | |
WO2021039624A1 (ja) | エミッタおよび点滴灌漑用チューブ | |
WO2020184419A1 (ja) | エミッタおよび点滴灌漑用チューブ | |
JP6831741B2 (ja) | エミッタおよび点滴灌漑用チューブ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20857839 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20857839 Country of ref document: EP Kind code of ref document: A1 |