WO2021039730A1 - Optical element, glass, and luminescence device - Google Patents

Optical element, glass, and luminescence device Download PDF

Info

Publication number
WO2021039730A1
WO2021039730A1 PCT/JP2020/031864 JP2020031864W WO2021039730A1 WO 2021039730 A1 WO2021039730 A1 WO 2021039730A1 JP 2020031864 W JP2020031864 W JP 2020031864W WO 2021039730 A1 WO2021039730 A1 WO 2021039730A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
adhesive layer
optical member
wavelength
optical
Prior art date
Application number
PCT/JP2020/031864
Other languages
French (fr)
Japanese (ja)
Inventor
武紀 染谷
誠 白鳥
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021542898A priority Critical patent/JPWO2021039730A1/ja
Publication of WO2021039730A1 publication Critical patent/WO2021039730A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to an optical element, glass and a light emitting device.
  • an ultraviolet LED light emitting diode
  • This ultraviolet LED is used in various applications depending on the emission wavelength. For example, it can be used in a curing process of an ultraviolet curable resin, treatment of skin diseases, sterilization of viruses and pathogens, and the like.
  • the ultraviolet LED has a low efficiency of extracting the light emitted by the ultraviolet LED element, which hinders its widespread use.
  • LED elements such as flip-chip structures and vertical structures are being studied in order to improve the light extraction efficiency, the light extraction efficiency is still low at around 8%, and further improvement in light utilization efficiency is required. There is.
  • Patent Document 1 discloses a technique in which a photonic crystal having a concavo-convex structure is formed on the light emitting surface of an LED element by etching processing, and a part of the totally reflected light is taken out of the LED. Further, a technique of providing an optical member on the LED element is also being studied. As the optical member, a sapphire hemispherical lens is used in Patent Document 2, a spinel sintered body is used in Patent Document 3, and a fluororesin is used in Patent Document 4. The techniques used for each are disclosed.
  • Patent Document 5 discloses a technique of using a translucent resin as a member for adhering a light emitting element and a covering member.
  • Patent Document 6 discloses a technique of using a thermoplastic resin or a curable resin as a material for forming an adhesive member.
  • Patent Document 7 discloses a technique of using fluorine-containing glass as a sealing material for sealing a light source.
  • fluorine-containing glass is used as an adhesive material, it is considered difficult to improve the light extraction efficiency because fluorine is a component that greatly lowers the refractive index.
  • the present invention focuses on a material for adhering an LED element and an optical member, and among ultraviolet rays, has excellent transparency to short wavelength ultraviolet rays (UV-C) having a wavelength of about 260 to 285 nm, and UV-.
  • An object of the present invention is to provide an optical element having an adhesive layer that is not easily deteriorated by C irradiation.
  • Another object of the present invention is to provide a glass used for adhering members and a light emitting device having the glass as an adhesive layer.
  • An optical element including an optical member and an adhesive layer, wherein the optical member has a light incident surface and a light emitting surface, and an optical function is provided on at least one of the light incident surface and the light emitting surface.
  • the adhesive layer is provided on the surface of at least one of the light incident surface and the light emitting surface of the optical member, and the adhesive layer is made of inorganic glass and has a wavelength of 1 mm in thickness.
  • An optical element having an average value of external transmittance of 30% or more at 260 to 285 nm.
  • the inorganic glass constituting the adhesive layer has a difference in average transmittance of 10% or less at wavelengths of 260 to 285 nm before and after the ultraviolet irradiation test under the following conditions, as described in [1] to [4].
  • Ultraviolet irradiation test Both main surfaces of the glass plate obtained by molding the inorganic glass into a plate shape are mirror-optically polished to a thickness of 1 mm.
  • One of the polished surfaces of the glass plate is arranged so as to face a position 20 cm from a 400 W high-pressure mercury lamp that emits ultraviolet rays having a wavelength of 220 to 400 nm, and the high-pressure mercury lamp is irradiated with ultraviolet rays for 100 hours.
  • the optical member is a lens, a lens array, a diffraction grating, a diffraction optical element, or a grating cell array.
  • the content of oxide-based mol% is P 2 O 5 30 to 60%, ZnO 10 to 60%, Li 2 O 1 to 30%, SiO 20 to 6%, Al 2 O 3 0 ⁇ 6%, Na 2 O 0 ⁇ 20%, K 2 O 0 ⁇ 15%, BaO 0 ⁇ 10%, CaO 0 ⁇ 10%, Ta 2 O 5 0 ⁇ 3%, SnO 0 ⁇ 3%, La 2
  • An optical member made of a substrate, an LED element provided on the substrate, and an inorganic glass provided on the LED element that allows light emitted from the LED element to be transmitted and irradiated to the outside.
  • a light emitting device having an adhesive layer provided between the LED element and the optical member, wherein the adhesive layer is made of the glass according to any one of [8] to [14].
  • an optical element having excellent transparency to short wavelength ultraviolet rays (UV-C) having a wavelength of about 260 to 285 nm and less deterioration due to UV-C irradiation can be obtained.
  • the optical element according to the present invention can be used at a relatively high temperature as compared with the case where a resin is used as the adhesive layer.
  • the glass used for adhering the members according to the present invention has excellent transparency to short wavelength ultraviolet rays (UV-C) having a wavelength of about 260 to 285 nm, and the member (adhesion) is made of glass. , The difference in refractive index from the member is small. Therefore, when used for bonding LED elements and optical members such as lenses, glass fibers, and lenses, the loss of light due to reflection and absorption is small, and the light extraction efficiency and transmittance are reduced. The decrease can be prevented.
  • FIG. 1 is a schematic cross-sectional view showing an example of an optical element.
  • FIG. 2 is a schematic cross-sectional view showing an example of an optical device.
  • the optical element 10 includes an optical member 1 and an adhesive layer 2.
  • the optical member 1 has a light incident surface and a light emitting surface, and has an optical functional surface on at least one of the light incident surface and the light emitting surface.
  • the optical functional surface may be provided in at least a part of a light incident surface or a light emitting surface.
  • the adhesive layer 2 is provided on the surface of at least one of the light incident surface and the light emitting surface of the optical member 1. Further, the adhesive layer 2 is made of inorganic glass, and the average value of the external transmittance at a wavelength of 260 to 285 nm at a thickness of 1 mm is 30% or more.
  • the mode of the adhesive layer is not limited as long as the adhesive layer is provided on at least one surface of the light incident surface and the light emitting surface of the optical member.
  • the adhesive layer may be provided in the entire region (entire surface) on the surface, or may be provided in a partial region on the surface of the optical member according to the size of the LED element or the like to be the other adherend. It may be.
  • the adhesive layer may be formed not only on the adhesive surface between the optical member and the other adherend but also on the side surface of the other adherend. Further, the other adherend may be adhered to the optical member while being sealed with the adhesive layer.
  • the light transmittance of each wavelength in the present specification is a value measured by using a visible ultraviolet spectrophotometer. That is, the transmittance is not the internal transmittance but the external transmittance including the surface reflectance of the interface, and is the external transmittance converted to a thickness of 1 mm.
  • the adhesive layer made of inorganic glass (hereinafter, may be simply referred to as “glass”) is provided on at least one surface of the light incident surface and the light emitting surface of the optical member. As described above, the adhesive layer does not have to be provided on the entire surface of the light incident surface or the light emitting surface, and may be provided in at least a part of the region.
  • the glass is softened by heating to a temperature equal to or higher than the softening point, and is brought into contact with the two adherends to be bonded. Then, by cooling and curing, the two adherends are adhered to each other via the adhesive layer.
  • the two adherends are, for example, an optical member and the other adherend in the optical element according to the present embodiment.
  • the adhesive layer can be formed by preparing the material of the adhesive layer as a frit paste, applying it to the adhesive surface by a known coating method, and then heating it to decalcify and defoam.
  • the adhesive layer can also be formed by preparing the material of the adhesive layer as a green sheet, placing a small piece of the green sheet on the adhesive surface and heating it to decalcify and defoam.
  • the material of the adhesive layer is prepared as a glass sheet by machining such as slicing and polishing, and small pieces cut to the size required for adhesion are heated while being in contact with the adhesive surface and fused to form the adhesive layer. Can be formed.
  • the optical element according to the present embodiment is compared with the case where a resin is used as the adhesive layer. As a result, deterioration due to long-term exposure to UV-C is suppressed, so that the product life can be extended.
  • UV-C ultraviolet light
  • the glass functions as an adhesive layer for an optical element that adheres an LED element or the like to an optical member, it can also be used for bonding other members.
  • the member in this case is not particularly limited, but it is preferably a member that requires light transmission. That is, in addition to the adhesion between the optical member and the LED element, it can also be preferably used for adhesion between glass fibers, adhesion between lenses, adhesion between prisms, adhesion between optical filters, and the like.
  • Glass has low absorption of short-wavelength ultraviolet rays (UV-C) having a wavelength of about 260 to 285 nm, and has high UV-C transparency. That is, the average value of the external transmittance at a wavelength of 260 to 285 nm at a thickness of 1 mm is 30% or more, preferably 40% or more, and more preferably 55% or more. The higher the external transmittance, the more preferable, but 90% or less is practical.
  • the transmittance for UV-C can be adjusted mainly by the amount of UV-C absorbing component contained in the glass. Examples of the UV-C absorbing component include Nb 2 O 5 , TiO 2 , CeO 2 , V 2 O 5 , Bi 2 O 3 , WO 3 , Fe 2 O 3 and SnO.
  • the UV-C transmittance of glass is high.
  • the transmittance at a wavelength of 265 nm at a thickness of 1 mm is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more. The higher the transmittance, the more preferable, but 85% or less is practical.
  • the transmittance of the glass at a wavelength of 265 nm after the ultraviolet irradiation test under the following conditions is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more. Further, the higher the transmittance, the more preferable, but 85% or less is practical. Discoloration of glass occurs when the UV-C absorbing component becomes a coloring component and causes the glass to develop color. Therefore, as described above, the UV-C resistance can be improved by adjusting the type and amount of the UV-C absorbing component.
  • Both main surfaces of a glass plate obtained by molding glass into a plate shape are mirror-optically polished to a thickness of 1 mm.
  • One of the polished surfaces of the glass plate is arranged so as to face a position 20 cm from a 400 W high-pressure mercury lamp that emits ultraviolet rays having a wavelength of 220 to 400 nm, and the high-pressure mercury lamp is irradiated with ultraviolet rays for 100 hours.
  • the difference in the average transmittance of the glass at a wavelength of 260 to 285 nm before and after the ultraviolet irradiation test under the same conditions as described above is preferably 10% or less, more preferably 8% or less, still more preferably 5% or less.
  • the difference in the average transmittance means that the average transmittance of the glass at a wavelength of 260 to 285 nm before the ultraviolet irradiation test is T0 (%), and the glass at a wavelength of 260 to 285 nm after the ultraviolet irradiation test. It is a value represented by
  • the "average transmittance (T0) of glass at a wavelength of 260 to 285 nm before the ultraviolet irradiation test” is synonymous with the "average value of the external transmittance of glass at a wavelength of 260 to 285 nm at a thickness of 1 mm". ..
  • the difference between the refractive index of glass and the refractive index of the member (adhesion) to be adhered such as an optical member is small. This suppresses total reflection and Frenel reflection at the interface between the adherend and the glass when glass is used for bonding the LED element to an optical member such as a lens, glass fibers to each other, or lenses to each other. This is to prevent a decrease in transmittance.
  • the value of ⁇ nd is preferably 0.35 or less, more preferably 0.30 or less, and even more preferably 0.25 or less.
  • the absolute value ⁇ nd of the difference between the refractive index nd (O) of the optical member and the refractive index of glass, that is, the refractive index nd (A) of the adhesive layer is described above. It is preferably in the range.
  • the refractive index of the glass is preferably a value that makes the difference from the refractive index of the adherend small, so that the refractive index of the glass itself differs depending on the refractive index of the adherend.
  • the refractive index nd (A) with respect to the d-line of glass is preferably 1.50 or more, more preferably 1.52 or more, still more preferably 1.53 or more. More preferably .54 or higher.
  • the upper limit is not particularly limited, but 1.70 or less is practical.
  • the softening point of the glass is low.
  • the softening point of glass does not always match the glass transition temperature Tg and the yield point Tc, but they have a correlation. Therefore, by lowering the glass transition temperature Tg and the yield point Tc of the glass, the softening point is lowered as a result, and deterioration of the adherend can be prevented.
  • the softening point, glass transition temperature, and yield point of the glass in the present specification are the same as the softening point, glass transition temperature, and yield point of the adhesive layer in the optical element of the present embodiment.
  • the yield point Tc (A) of the glass is preferably 400 ° C. or lower, more preferably 380 ° C. or lower, and even more preferably 350 ° C. or lower.
  • the lower limit is not particularly limited, but 250 ° C. or higher is practical.
  • the yield point Tc (O) of the optical member is preferably higher than the yield point Tc (A) of the glass.
  • the value of ⁇ Tc is preferably 300 ° C. or higher, more preferably 320 ° C. or higher, and even more preferably 350 ° C. or higher.
  • the upper limit is not particularly limited, but 500 ° C. or lower is practical.
  • the absolute value of the difference between the melting point Tm (O) of the optical member and the bending point Tc (A) of the glass is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, still more preferably 400 ° C. or higher.
  • the glass transition temperature Tg (A) of the glass is preferably 380 ° C. or lower, more preferably 350 ° C. or lower, and even more preferably 320 ° C. or lower.
  • the lower limit is not particularly limited, but 230 ° C. or higher is practical.
  • the thickness of the adhesive layer made of glass is preferably 0.01 mm or more, more preferably 0.05 mm or more, from the viewpoint of adhesiveness to the adherend. Further, the thickness of the adhesive layer is preferably 0.2 mm or less, more preferably 0.15 mm or less, and particularly preferably 0.1 mm or less from the viewpoint of suppressing the loss of light in the adhesive layer.
  • composition system of the glass constituting the adhesive layer as described above phosphate glass, borate glass and the like can be preferably used.
  • the specific glass composition will be described below.
  • The% indicating the content of each component is an oxide-based molar% display unless otherwise specified.
  • P 2 O 5 is an essential component (glass-forming oxide) that forms glass.
  • the content of P 2 O 5 is preferably 30% or more, more preferably 35% or more.
  • the content thereof is preferably 60% or less, more preferably 55% or less, still more preferably 50% or less. 45% or less is even more preferable.
  • ZnO is a component that can improve the meltability of glass and lower the glass transition temperature and softening temperature.
  • the ZnO content is preferably 10% or more, more preferably 15% or more.
  • the ZnO content is preferably 60% or less, more preferably 50% or less, further preferably 45% or less, and 40% or less. Even more preferable.
  • Li 2 O is a component that can improve the meltability of glass and lower the glass transition temperature and softening temperature.
  • the content of Li 2 O is preferably 1% or more, more preferably 3% or more, further preferably 5% or more, still more preferably 7% or more.
  • the content of Li 2 O is preferably 30% or less, more preferably 28% or less.
  • the total content of P 2 O 5 , Zn O and Li 2 O is preferably 65% or more, more preferably 70% or more.
  • the upper limit of the total content is 100%, and the glass may be composed of only these three components without containing other components.
  • SiO 2 is an optional component that can form a glass skeleton together with P 2 O 5 to increase the stability of the glass, increase the devitrification resistance, and prevent the phase separation of the glass, and may not be contained (0%). ). On the other hand, if it is excessively contained, the glass transition point and the yield point may increase. Therefore, the content thereof is preferably 6% or less, more preferably 3% or less.
  • Al 2 O 3 is an optional component that can enhance weather resistance and may not be contained (0%). On the other hand, if it is contained in excess, the melting temperature of the glass may increase. Therefore, the content thereof is preferably 6% or less, more preferably 3% or less.
  • Na 2 O is an optional component capable of lowering the melting temperature of the glass and lowering the glass transition temperature and the softening temperature, and may not be contained (0%). On the other hand, if it is contained in an excessive amount, the glass may become unstable. Therefore, the content thereof is preferably 20% or less, more preferably 15% or less.
  • K 2 O is an optional component capable of lowering the melting temperature of the glass and lowering the glass transition temperature and the softening temperature, and may not be contained (0%). On the other hand, if it is contained in an excessive amount, the liquidus temperature may increase. Therefore, the content thereof is preferably 15% or less, more preferably 10% or less.
  • BaO is an optional component that can lower the melting temperature of the glass and improve the stability of the glass, and may not be contained (0%). On the other hand, if it is contained in an excessive amount, the glass may become unstable or the liquidus temperature may rise. Therefore, the content thereof is preferably 10% or less, more preferably 5% or less.
  • CaO is an optional component that can lower the melting temperature of the glass and improve the stability of the glass, and may not be contained (0%). On the other hand, if it is contained in an excessive amount, the liquidus temperature may rise, so the content thereof is preferably 10% or less, more preferably 5% or less.
  • MgO and SrO can be added in the range of 0 to 5% from the same viewpoint as CaO.
  • Ta 2 O 5 is an optional component that raises the refractive index of glass and may not be contained (0%). On the other hand, since it is a component that lowers the transmittance in the deep ultraviolet region, its content is preferably 3% or less, more preferably 1% or less.
  • SnO is an optional component that can improve the transmittance by using only an amount suitable as a reducing agent, and may not be contained (0%). On the other hand, since it is a component that absorbs light in the ultraviolet region, its content is preferably 3% or less, more preferably 1% or less.
  • La 2 O 3 is an optional component capable of maintaining a high ultraviolet transmittance while increasing the refractive index, and may not be contained (0%). On the other hand, since the liquidus temperature may rise or devitrify, the content thereof is preferably 5% or less, more preferably 3% or less.
  • Gd 2 O 3 is an optional component capable of maintaining a high ultraviolet transmittance while increasing the refractive index, and may not be contained (0%). On the other hand, since it is a component that lowers the transmittance in the near-ultraviolet region, its content is preferably 5% or less, more preferably 3% or less.
  • Y 2 O 3 is an optional component that can maintain a high ultraviolet transmittance while increasing the refractive index, and can lower the liquidus temperature and improve the devitrification resistance by coexisting with La 2 O 3. It does not have to be (0%). On the other hand, since the melting temperature, molding temperature, and liquid phase temperature may rise or devitrify, the content thereof is preferably 5% or less, more preferably 3% or less.
  • Nb 2 O 5 , TiO 2 , CeO 2 , V 2 O 5 , Bi 2 O 3 , WO 3 and Fe 2 O 3 show absorption in the ultraviolet region, especially UV-C light, like the SnO. It is an ingredient. Therefore, although these are all optional components, their content is preferably small and may not be contained (0%). Among them, Fe 2 O 3 is inevitably mixed as an impurity from the raw material, and in particular, trivalent iron (Fe 3+ ) shows strong absorption to light in the ultraviolet region, so its content is 0.01%. It is preferably less than, more preferably less than 0.005%.
  • divalent iron Fe 2+
  • it is also effective to shift the valence of iron ions to divalent by setting the melting atmosphere to the reducing side.
  • this method include adding a reducing agent to the raw material and making the molten atmosphere non-oxidizing.
  • the total content of Nb 2 O 5 , TiO 2 , CeO 2 , V 2 O 5 , Bi 2 O 3 and WO 3 is preferably less than 0.1%, more preferably 0.05% or less.
  • CuO, MnO 2 , NiO, CoO and Cr 2 O 3 may also be contained, but it is preferable that these are not contained other than the unavoidable impurities mixed from the raw materials and the like, that is, they are not intentionally contained. ..
  • F is an optional component that can improve the weather resistance of the glass and may not be contained (0%).
  • it since it is a component that lowers the refractive index of glass, its content is preferably 10% by mass or less, and more preferably 8% by mass or less.
  • the inorganic glass constituting the adhesive layer in the optical element have been described above, but the inorganic glass can be used not only as the adhesive layer but also for adhering other members.
  • the glass according to the present embodiment used for adhering the members has an average value of external transmittance of 30% or more at a wavelength of 260 to 285 nm at a thickness of 1 mm, and a yield point Tc (A) of 400 ° C. or less. is there.
  • a preferred embodiment of such glass is the same as the preferred embodiment of the inorganic glass described as the adhesive layer.
  • is preferably 0.35 or less, more preferably 0.30 or less, and even more preferably 0.25 or less.
  • the member (adhesion) to be adhered using glass is not particularly limited, but it is preferably a member that requires light transmission.
  • the glass according to the present embodiment can be preferably used for bonding an optical member and an LED element, bonding glass fibers to each other, bonding lenses to each other, bonding prisms to each other, bonding optical filters to each other, and the like.
  • the optical member has a light incident surface and a light emitting surface, and includes an optical functional surface in at least a part of at least one of the light incident surface and the light emitting surface.
  • the light incident surface is, for example, a surface on which light emitted from an LED element is incident
  • the light emitting surface is a surface through which the incident light is transmitted through the optical member and emits light to irradiate the outside. It is the surface to be done.
  • Optical functional surfaces include those that refract, diffract, and scatter light by the surface, high-reflection surfaces such as mirrors, low-reflection surfaces with enhanced transparency, and various filters with wavelength selectivity. Therefore, the entire surface of the light incident surface or the light emitting surface of the optical member may have the function, or a part of the surface may have the function.
  • optical member various conventionally known optical members can be used as long as the above functions can be exhibited.
  • the shape is not particularly limited, and examples thereof include a lens, a lens array, a diffraction grating, a diffraction optical element, and a grating cell array.
  • a metal or a dielectric film formed on the surface thereof in a single layer or in multiple layers can be mentioned.
  • the optical member preferably has a spherical or aspherical convex lens shape as shown in FIG.
  • the refractive index nd (O) of the optical member with respect to the d-line (587.6 nm) is preferably nd (O) ⁇ 1.5. More preferably, nd (O) ⁇ 1.6, further preferably nd (O) ⁇ 1.65, and particularly preferably nd (O) ⁇ 1.7.
  • the light emitted by the light emitting element passes through an optical member processed into a shape such as a lens and is emitted to the outside of the light emitting device. Therefore, by making the material forming the optical member highly transparent at the emission wavelength emitted by the light emitting element, it is possible to suppress the loss of light and further improve the light extraction efficiency.
  • the distance through which light passes in the optical member is about 0.5 mm to 5 mm, and the absorption coefficient k (O) at the emission wavelength of the light emitting element of the optical member is k (O) ⁇ 0.2 (mm -1 ). It is preferable, more preferably k (O) ⁇ 0.15 (mm -1 ), and even more preferably k (O) ⁇ 0.1 (mm -1 ).
  • the optical member has a high glass transition temperature Tg (O) so that the shape of the optical member is not deformed even when the optical member is heated in a production process such as a bonding process between the light emitting element and the optical member.
  • Tg (O) ⁇ 350 ° C. is preferable, Tg (O) ⁇ 400 ° C. is more preferable, and Tg (O) ⁇ 500 ° C. is particularly preferable.
  • the material constituting the optical member is not particularly limited, and is inorganic glass, quartz glass (Tg: 1060 ° C., Tc: 1210 ° C., nd: 1.46), crystalline sapphire (nd (normal light): 1.77, Melting point: 2053 ° C.), spinel, and resin can be used.
  • quartz glass Tg: 1060 ° C., Tc: 1210 ° C., nd: 1.46
  • spinel Melting point: 2053 ° C.
  • Inorganic glass can be easily processed into various shapes, and is suitable from the viewpoint of reduction of manufacturing cost and mass production. Furthermore, compared to the case of resin, inorganic glass has no risk of deterioration even when exposed to high-power light emitted by LED elements or short-wavelength light such as ultraviolet rays for a long time, and has excellent heat resistance. Therefore, it is expected that the life of the optical element will be extended.
  • examples of the inorganic glass include borosilicate glass, silicate glass, phosphoric acid glass, and fluorinated glass.
  • the borosilicate glass contains SiO 2 and B 2 O 3 as main components, Al 2 O 3 , alkaline earth metal oxides (MgO, CaO, SrO, BaO), and alkali metal oxides (Li 2 O, Na 2). O, K 2 O), and other glass containing metal oxides.
  • the phosphoric acid glass contains P 2 O 5 as a main component, Al 2 O 3 , alkaline earth metal oxides (MgO, CaO, SrO, BaO), and alkali metal oxides (Li 2 O, Na 2 O, K). 2 O), glass containing other metal oxides and the like can be mentioned.
  • the optical member can also have an antireflection film formed on its surface.
  • the antireflection film for example, a monolayer film or a multilayer film of a dielectric such as SiO 2 , MgF 2 , Al 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 is used.
  • a monolayer film or a multilayer film of a dielectric such as SiO 2 , MgF 2 , Al 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 is used.
  • the optical device 20 As shown in FIG. 2, the optical device 20 according to the present embodiment is provided on the substrate 4, the LED element 3 provided on the substrate 4, and the LED element 3, and emits light from the LED element 3. It has an optical member 1 made of inorganic glass that allows light to be transmitted and irradiated to the outside, and an adhesive layer 2 provided between the LED element 3 and the optical member 1. As the adhesive layer 2, the same glass as described in ⁇ Inorganic glass ⁇ in the above [optical element] can be used.
  • the light emitting device is prepared by forming the LED element 3 on the substrate 4 by a known method and separately molding the optical member 1.
  • the inorganic glass to be the adhesive layer 2 is produced.
  • the inorganic glass is softened by heating it to a temperature equal to or higher than the softening point, and the softened inorganic glass is brought into contact with the adhesive surface of the optical member 1 or the LED element 3 to be adhered before being cured.
  • the optical member 1 and the LED element 3 are adhered by the adhesive layer 2, and the light emitting device 20 can be obtained.
  • the material of the adhesive layer 2 is prepared as a frit paste, applied to the adhesive surface by a known coating method such as screen printing, and then heated to decalcify and defoam. It can be carried out. Further, the adhesive layer 2 can also be formed by preparing the material of the adhesive layer 2 as a green sheet, placing a small piece of the green sheet on the adhesive surface and heating it to decalcify and defoam. Further, the adhesive layer can also be formed by preparing the material of the adhesive layer 2 as a plate material, forming a sheet by redraw molding, placing the sheet small pieces on the adhesive surface, heating and fusing them. Further, the material of the adhesive layer 2 is prepared as a glass sheet by machining such as slicing or polishing, and small pieces cut to a size required for adhesion are heated while being in contact with the adhesive surface and fused. Can be formed.
  • Adhesive layer (inorganic glass) Test Examples 1-1 to 1-30] Raw materials such as carbonates, nitrates, sulfates, hydroxides, oxides, boric acid, and phosphoric acid, which correspond to each other, so as to obtain glasses having the compositions shown in Tables 1 and 2 (indicated by mol% based on oxides). After weighing and thoroughly mixing, the mixture was placed in a platinum pit and heated in a temperature range of 1150 ° C. to 1200 ° C. for 1.5 hours to 3 hours to melt.
  • Raw materials such as carbonates, nitrates, sulfates, hydroxides, oxides, boric acid, and phosphoric acid, which correspond to each other, so as to obtain glasses having the compositions shown in Tables 1 and 2 (indicated by mol% based on oxides). After weighing and thoroughly mixing, the mixture was placed in a platinum pit and heated in a temperature range of 1150 ° C. to 1200 ° C. for 1.5 hours to 3 hours
  • Test Examples 1-1 to 1-27 are inorganic glasses according to Examples, and Test Examples 1-28 to 1-30 are inorganic glasses according to Comparative Examples.
  • blanks in the table indicate that the component is not substantially contained.
  • substantially not contained means that it is below the level of impurities contained in raw materials and the like, that is, it is not intentionally contained.
  • the refractive index nd (A) of the adhesive layer with respect to the d-line was measured using a precision refractive index meter (manufactured by Shimadzu Corporation, model: KPR-200, KPR-2000).
  • a precision refractive index meter manufactured by Shimadzu Corporation, model: KPR-200, KPR-2000.
  • a rectangular parallelepiped shape having a side of 5 mm or more and a thickness of 5 mm or more was used, and the sample obtained by slowly cooling at a temperature lowering rate of ⁇ 60 ° C./h was measured.
  • the external transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation, model: V-570). Before and after the ultraviolet irradiation test under the following conditions, the transmittance at a wavelength of 265 nm and the average transmittance at a wavelength of 260 to 285 nm were measured. The value of the average transmittance at a wavelength of 260 to 285 nm before the ultraviolet irradiation test is the average value of the external transmittance at a wavelength of 260 to 285 nm at a thickness of 1 mm.
  • Ultraviolet irradiation test Both main surfaces of a glass plate obtained by molding the inorganic glass constituting the adhesive layer into a plate shape are mirror-optically polished to a thickness of 1 mm. One of the polished surfaces of the glass plate is placed so as to face a position 20 cm from a 400 W high-pressure mercury lamp (manufactured by Harrison Toshiba Lighting Co., Ltd., type: H400-P) that emits ultraviolet rays having a wavelength of 220 to 400 nm, and the high pressure is provided. Irradiate ultraviolet rays from a mercury lamp for 100 hours.
  • "transmittance (265 nm)" means the transmittance at a wavelength of 265 nm before the ultraviolet irradiation test.
  • the “transmittance after UV irradiation” means the transmittance at a wavelength of 265 nm after the ultraviolet irradiation test.
  • the “average transmittance (260 to 285 nm)” means the average transmittance at a wavelength of 260 to 285 nm before the ultraviolet irradiation test.
  • the “average transmittance after UV irradiation” means the average transmittance at a wavelength of 260 to 285 nm after the ultraviolet irradiation test.
  • Optical element Test Examples 2-1 to 2-30
  • SiO 2 5.8%, B 2 O 3 66.6%, La 2 O 3 19.3%, Y 2 O 3 8.3% are displayed in mol% based on oxides.
  • Corresponding raw materials such as nitrates, sulfates, hydroxides, oxides, boric acid, etc. are weighed, mixed well, and then put into a platinum pit, and placed in a temperature range of 1150 ° C to 1350 ° C for 1.5 hours. It was heated for 3 hours and melted. The molten glass was poured into a preheated mold, cooled, formed into a plate, held at a temperature near the glass transition temperature for 4 hours, and then slowly cooled to room temperature at a cooling rate of ⁇ 60 ° C./h.
  • the refractive index nd (O), the yield point Tc (O), and the glass transition point Tg (O) of the optical member obtained above with respect to the d-line were measured by the same method as that of the inorganic glass.
  • the O) was 1.74
  • the yield point Tc (O) was 720 ° C
  • the glass transition point Tg (O) was 685 ° C.
  • the refractive index and yield point are the refractive index nd (A) and yield point Tc (A) of each inorganic glass obtained in Test Examples 1-1 to 1-30 (excluding Test Example 1-28).
  • the difference between the above was taken, and ⁇ nd and ⁇ Tc were calculated.
  • a glass melt having the composition shown above was dropped from a pipe attached to a glass melting furnace and cooled and solidified to obtain a coarse sphere-shaped glass coarse ball.
  • the surface of the rough glass ball was polished to prepare a glass polishing ball.
  • a glass block can be made by machining with a blade or the like from a glass plate obtained by molding and solidifying it into a plate shape, and by reheating and deforming it, and polishing the surface with a ball polishing machine is also possible. Can be obtained.
  • a hemispherical lens optical member was produced by processing the obtained glass polishing ball into a hemispherical shape by slicing or polishing.
  • Test Examples 1-1 to 1-30 Each glass to be the adhesive layer obtained in Test Examples 1-1 to 1-30 is thinly polished on the optical member, and on a hemispherical lens, the temperature is 20 ° C. to 100 ° C. higher than the yield point Tc for 5 minutes to 15 minutes. Each optical element was obtained by heating for a minute and adhering.
  • the formation of the adhesive layer is not limited to the above method, and a frit paste-like material may be applied or a green sheet-like material may be formed on a hemispherical lens and produced by the same heat treatment.
  • Test Examples 2-1 to 2-27 are Examples, and Test Examples 2-28 to 2-30 are Comparative Examples.
  • Test Examples 3-1 to 3-8 are the inorganic glasses according to the examples.
  • blanks in the table indicate that the component is not substantially contained.
  • F (fluorine) in the table is the content of F (indicated by mass%) in the inorganic glass analyzed by fluorescent X-ray analysis.
  • optical element Test Examples 4-1 to 4-8
  • the same optical member as that used in Test Examples 2-1 to 2-30 was prepared.
  • the difference between the optical member and the refractive index nd (A) and the yield point Tc (A) of each of the inorganic glasses obtained in Test Examples 3-1 to 3-8 was taken to calculate ⁇ nd and ⁇ Tc, respectively.
  • the results are shown in Table 6.
  • inorganic glass having excellent transparency to short wavelength ultraviolet rays (UV-C) having a wavelength of 260 to 285 nm and UV-C resistance was obtained. Since such inorganic glass has a lower yield point Tc than conventional glass, it can be suitably used for bonding members. In addition, since the difference in refractive index between the optical member, which is an adherend, is small, reflection or absorption occurs when the LED element is used for bonding an optical member such as a lens, glass fibers, or lenses. It was suggested that the loss of light due to this is small, and it is possible to prevent a decrease in light extraction efficiency and transmittance.
  • UV-C ultraviolet rays

Abstract

The present invention pertains to an optical element provided with an optical member and an adhesive layer, the optical member having a light incident surface, a light emission surface, and an optical functional surface on at least one among the light incident surface and the light emission surface, wherein the adhesive layer is provided on the surface of at least one among the light incident surface and the light emission surface of the optical member, and the adhesive layer is made of organic glass and has an average external transmittance of at least 30% when the thickness thereof is 1 mm and the wavelength of light is 260-285 nm.

Description

光学素子、ガラス及び発光装置Optical elements, glass and light emitting devices
 本発明は光学素子、ガラス及び発光装置に関する。 The present invention relates to an optical element, glass and a light emitting device.
 紫外線発光装置における光源として、環境保全等の観点から、従来の水銀ランプに代えて、紫外線LED(発光ダイオード)が注目されている。この紫外線LEDは、発光波長によって様々な用途で用いられる。例えば、紫外線硬化樹脂の硬化工程、皮膚疾患の治療、ウィルスや病原菌の殺菌等に用いることができる。 As a light source in an ultraviolet light emitting device, an ultraviolet LED (light emitting diode) is attracting attention instead of a conventional mercury lamp from the viewpoint of environmental protection and the like. This ultraviolet LED is used in various applications depending on the emission wavelength. For example, it can be used in a curing process of an ultraviolet curable resin, treatment of skin diseases, sterilization of viruses and pathogens, and the like.
 しかしながら、紫外線LEDは、紫外線LED素子の出射する光の取出し効率が低く、普及の妨げとなっている。光の取出し効率を向上させるために、フリップチップ構造や縦型構造といったLED素子が検討されているものの、光の取出し効率は8%前後と依然として低く、光の利用効率のさらなる向上が求められている。 However, the ultraviolet LED has a low efficiency of extracting the light emitted by the ultraviolet LED element, which hinders its widespread use. Although LED elements such as flip-chip structures and vertical structures are being studied in order to improve the light extraction efficiency, the light extraction efficiency is still low at around 8%, and further improvement in light utilization efficiency is required. There is.
 これに対して、特許文献1では、LED素子の光放出面にエッチング加工で凹凸構造のフォトニック結晶を形成して、全反射する光の一部をLED外に取り出す技術が開示されている。
 また、LED素子上に光学部材を設ける技術も検討されており、光学部材として、特許文献2ではサファイア製の半球レンズを、特許文献3ではスピネル焼結体を、特許文献4ではフッ素樹脂を、それぞれ使用する技術が、開示されている。
On the other hand, Patent Document 1 discloses a technique in which a photonic crystal having a concavo-convex structure is formed on the light emitting surface of an LED element by etching processing, and a part of the totally reflected light is taken out of the LED.
Further, a technique of providing an optical member on the LED element is also being studied. As the optical member, a sapphire hemispherical lens is used in Patent Document 2, a spinel sintered body is used in Patent Document 3, and a fluororesin is used in Patent Document 4. The techniques used for each are disclosed.
 LED素子と光学部材を接着する材料に関する検討としては、特許文献5に発光素子と被覆部材とを接着する部材として透光性を有する樹脂を用いる技術が開示されている。また、特許文献6に熱可塑性樹脂や硬化性樹脂を接着部材の形成材料として用いる技術が開示されている。 As a study on a material for adhering an LED element and an optical member, Patent Document 5 discloses a technique of using a translucent resin as a member for adhering a light emitting element and a covering member. Further, Patent Document 6 discloses a technique of using a thermoplastic resin or a curable resin as a material for forming an adhesive member.
日本国特許第6349036号公報Japanese Patent No. 6349036 日本国特許第6230038号公報Japanese Patent No. 6230038 国際公開第2018/066636号International Publication No. 2018/0663636 国際公開第2017/208535号International Publication No. 2017/208535 日本国特開2018-67630号公報Japanese Patent Application Laid-Open No. 2018-67630 国際公開第2016/190207号International Publication No. 2016/190207 日本国特開2018-35046号公報Japanese Patent Application Laid-Open No. 2018-35046
 このように、LED素子に光学部材を組み合わせて光の取出し効率を向上させようとする技術が、様々な角度から検討、提案されている。
 しかしながら、LED素子と光学部材を接着する材料に関する検討はあまり多くはなされていない。特許文献5及び6に開示されたような樹脂を接着材料として用いた場合、LED素子から発される光によって樹脂が劣化し、透過率の低下や破損等のおそれがある。当該劣化は、紫外線LED素子を用いた際に顕著である。
As described above, techniques for improving the light extraction efficiency by combining the LED element with the optical member have been studied and proposed from various angles.
However, not many studies have been made on the material for adhering the LED element and the optical member. When a resin as disclosed in Patent Documents 5 and 6 is used as an adhesive material, the resin may be deteriorated by the light emitted from the LED element, and the transmittance may be lowered or damaged. The deterioration is remarkable when the ultraviolet LED element is used.
 また、接着材料ではないが、特許文献7では光源を封止する封止材として含フッ素ガラスを用いる技術が開示されている。しかしながら、当該含フッ素ガラスを接着材料として用いると、フッ素は屈折率を大きく下げる成分であることから、光の取出し効率の向上が難しいと考えられる。 Further, although it is not an adhesive material, Patent Document 7 discloses a technique of using fluorine-containing glass as a sealing material for sealing a light source. However, when the fluorine-containing glass is used as an adhesive material, it is considered difficult to improve the light extraction efficiency because fluorine is a component that greatly lowers the refractive index.
 上記実情に鑑み、本発明は、LED素子と光学部材を接着する材料に着目し、紫外線の中でも、特に波長260~285nm程度の短波長紫外線(UV-C)に対する透過性に優れ、かつUV-C照射によって劣化しにくい接着層を備えた光学素子を提供することを目的とする。また、部材の接着に用いられるガラス、及び前記ガラスを接着層として有する発光装置を提供することも目的とする。 In view of the above circumstances, the present invention focuses on a material for adhering an LED element and an optical member, and among ultraviolet rays, has excellent transparency to short wavelength ultraviolet rays (UV-C) having a wavelength of about 260 to 285 nm, and UV-. An object of the present invention is to provide an optical element having an adhesive layer that is not easily deteriorated by C irradiation. Another object of the present invention is to provide a glass used for adhering members and a light emitting device having the glass as an adhesive layer.
 本発明者らが鋭意検討を行った結果、接着層として、特定の特性を有するガラスを用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent studies by the present inventors, it was found that the above problems can be solved by using glass having specific characteristics as the adhesive layer, and the present invention has been completed.
 すなわち、本発明は下記[1]~[15]に関するものである。
[1] 光学部材と接着層とを備える光学素子であって、前記光学部材は、光入射面及び光出射面を有し、前記光入射面及び前記光出射面の少なくともいずれか一方に光学機能面を備え、前記接着層は、前記光学部材の前記光入射面及び前記光出射面の少なくともいずれか一方の表面上に設けられ、前記接着層は、無機ガラスからなり、厚さ1mmでの波長260~285nmにおける外部透過率の平均値が30%以上である光学素子。
[2] d線(波長587.6nm)に対する、前記光学部材の屈折率nd(O)と前記接着層の屈折率nd(A)との差の絶対値Δndが、Δnd=|nd(O)-nd(A)|≦0.35である、前記[1]に記載の光学素子。
[3] 前記光学部材の屈伏点Tc(O)と前記接着層の屈伏点Tc(A)との差の絶対値ΔTcが、ΔTc=|Tc(O)-Tc(A)|≧300(℃)である、前記[1]又は[2]に記載の光学素子。
[4] 前記接着層の屈伏点Tc(A)が、Tc(A)≦400(℃)である、前記[1]~[3]のいずれか1に記載の光学素子。
[5] 前記接着層を構成する前記無機ガラスは、下記条件による紫外線照射試験前後での、波長260~285nmにおける平均透過率の差が10%以下である、前記[1]~[4]のいずれか1に記載の光学素子。
 紫外線照射試験:前記無機ガラスを板状に成型したガラス板の両主面を鏡面光学研磨して厚さ1mmとする。前記ガラス板の研磨面の一方を波長220~400nmの紫外線を放射する400Wの高圧水銀ランプから20cmの位置に対向させて配置し、前記高圧水銀ランプから100時間紫外線を照射する。
[6] 前記接着層の厚さが0.01~0.2mmである、前記[1]~[5]のいずれか1に記載の光学素子。
[7] 前記光学部材は、レンズ、レンズアレイ、回折格子、回折光学素子又はグレーティングセルアレイである前記[1]~[6]のいずれか1に記載の光学素子。
[8] 部材の接着に用いられるガラスであって、厚さ1mmでの波長260~285nmにおける外部透過率の平均値が30%以上であり、屈伏点Tc(A)が、Tc(A)≦400(℃)であるガラス。
[9] d線(波長587.6nm)に対する、接着する前記部材の屈折率nd(O)と前記ガラスの屈折率nd(A)との差の絶対値Δndが、Δnd=|nd(O)-nd(A)|≦0.35である、前記[8]に記載のガラス。
[10] 屈折率nd(A)が、nd(A)≧1.50である、前記[8]又は[9]に記載のガラス。
[11] 酸化物基準のモル%表示での含有量が、P、ZnO及びLiOの合計65%以上、かつNb、TiO、CeO、V、Bi及びWOの合計 0.1%未満、である前記[8]~[10]のいずれか1に記載のガラス。
[12] 酸化物基準のモル%表示での含有量が、Fe 0.01%未満である前記[8]~[11]のいずれか1に記載のガラス。
[13] 下記条件による紫外線照射試験後の波長265nmにおける透過率が30%以上である、前記[8]~[12]のいずれか1に記載のガラス。
 紫外線照射試験:ガラスを板状に成型したガラス板の両主面を鏡面光学研磨して厚さ1mmとする。前記ガラス板の研磨面の一方を波長220~400nmの紫外線を放射する400Wの高圧水銀ランプから20cmの位置に対向させて配置し、前記高圧水銀ランプから100時間紫外線を照射する。
[14] 酸化物基準のモル%表示での含有量が、P 30~60%、ZnO 10~60%、LiO 1~30%、SiO 0~6%、Al 0~6%、NaO 0~20%、KO 0~15%、BaO 0~10%、CaO 0~10%、Ta 0~3%、SnO 0~3%、La 0~5%、Gd 0~5%、かつY 0~5%、である前記[8]~[13]のいずれか1に記載のガラス。
[15] 基板と、前記基板上に設けられたLED素子と、前記LED素子上に設けられ、前記LED素子から出射する光を透過して、外部に照射可能とする無機ガラスからなる光学部材と、前記LED素子と前記光学部材との間に設けられた接着層と、を有し、前記接着層が、前記[8]~[14]のいずれか1に記載のガラスからなる、発光装置。
That is, the present invention relates to the following [1] to [15].
[1] An optical element including an optical member and an adhesive layer, wherein the optical member has a light incident surface and a light emitting surface, and an optical function is provided on at least one of the light incident surface and the light emitting surface. The adhesive layer is provided on the surface of at least one of the light incident surface and the light emitting surface of the optical member, and the adhesive layer is made of inorganic glass and has a wavelength of 1 mm in thickness. An optical element having an average value of external transmittance of 30% or more at 260 to 285 nm.
[2] The absolute value Δnd of the difference between the refractive index nd (O) of the optical member and the refractive index nd (A) of the adhesive layer with respect to the d-line (wavelength 587.6 nm) is Δnd = | nd (O). The optical element according to the above [1], wherein −nd (A) | ≦ 0.35.
[3] The absolute value ΔTc of the difference between the bending point Tc (O) of the optical member and the bending point Tc (A) of the adhesive layer is ΔTc = | Tc (O) −Tc (A) | ≧ 300 (° C.). The optical element according to the above [1] or [2].
[4] The optical element according to any one of [1] to [3], wherein the yield point Tc (A) of the adhesive layer is Tc (A) ≤400 (° C.).
[5] The inorganic glass constituting the adhesive layer has a difference in average transmittance of 10% or less at wavelengths of 260 to 285 nm before and after the ultraviolet irradiation test under the following conditions, as described in [1] to [4]. The optical element according to any one.
Ultraviolet irradiation test: Both main surfaces of the glass plate obtained by molding the inorganic glass into a plate shape are mirror-optically polished to a thickness of 1 mm. One of the polished surfaces of the glass plate is arranged so as to face a position 20 cm from a 400 W high-pressure mercury lamp that emits ultraviolet rays having a wavelength of 220 to 400 nm, and the high-pressure mercury lamp is irradiated with ultraviolet rays for 100 hours.
[6] The optical element according to any one of [1] to [5], wherein the adhesive layer has a thickness of 0.01 to 0.2 mm.
[7] The optical element according to any one of [1] to [6], wherein the optical member is a lens, a lens array, a diffraction grating, a diffraction optical element, or a grating cell array.
[8] A glass used for adhering members, the average value of external transmittance at a wavelength of 260 to 285 nm at a thickness of 1 mm is 30% or more, and the yield point Tc (A) is Tc (A) ≦. Glass at 400 (° C).
[9] The absolute value Δnd of the difference between the refractive index nd (O) of the member to be bonded and the refractive index nd (A) of the glass with respect to the d-line (wavelength 587.6 nm) is Δnd = | nd (O). The glass according to the above [8], wherein −nd (A) | ≦ 0.35.
[10] The glass according to the above [8] or [9], wherein the refractive index nd (A) is nd (A) ≥ 1.50.
[11] The content of P 2 O 5 , ZnO and Li 2 O in terms of mol% based on oxide is 65% or more in total, and Nb 2 O 5 , TiO 2 , CeO 2 , V 2 O 5 and Bi. 2 The glass according to any one of [8] to [10] above, wherein the total of O 3 and WO 3 is less than 0.1%.
[12] The glass according to any one of [8] to [11] above, wherein the content in molar% of the oxide standard is less than 0.01% of Fe 2 O 3.
[13] The glass according to any one of [8] to [12] above, wherein the transmittance at a wavelength of 265 nm after an ultraviolet irradiation test under the following conditions is 30% or more.
Ultraviolet irradiation test: Both main surfaces of a glass plate obtained by molding glass into a plate shape are mirror-optically polished to a thickness of 1 mm. One of the polished surfaces of the glass plate is arranged so as to face a position 20 cm from a 400 W high-pressure mercury lamp that emits ultraviolet rays having a wavelength of 220 to 400 nm, and the high-pressure mercury lamp is irradiated with ultraviolet rays for 100 hours.
[14] The content of oxide-based mol% is P 2 O 5 30 to 60%, ZnO 10 to 60%, Li 2 O 1 to 30%, SiO 20 to 6%, Al 2 O 3 0 ~ 6%, Na 2 O 0 ~ 20%, K 2 O 0 ~ 15%, BaO 0 ~ 10%, CaO 0 ~ 10%, Ta 2 O 5 0 ~ 3%, SnO 0 ~ 3%, La 2 The glass according to any one of the above [8] to [13], which is O 30 to 5%, Gd 2 O 30 to 5%, and Y 2 O 30 to 5%.
[15] An optical member made of a substrate, an LED element provided on the substrate, and an inorganic glass provided on the LED element that allows light emitted from the LED element to be transmitted and irradiated to the outside. A light emitting device having an adhesive layer provided between the LED element and the optical member, wherein the adhesive layer is made of the glass according to any one of [8] to [14].
 本発明によれば、接着層として特定の無機ガラスを用いることにより、波長260~285nm程度の短波長紫外線(UV-C)に対する透過性に優れ、かつUV-C照射による劣化が少ない光学素子を提供できる。また、本発明に係る光学素子は、接着層として樹脂を用いた場合と比べて、比較的高温下での使用も可能となる。
 また、本発明に係る部材の接着に用いられるガラスは、波長260~285nm程度の短波長紫外線(UV-C)に対する透過性に優れ、かつ、前記部材(被着物)がガラス製である場合に、当該部材との屈折率差が小さい。そのため、LED素子とレンズ等の光学部材との接着や、グラスファイバー同士の接着、レンズ同士の接着等に用いた際に、反射や吸収による光の損失が小さく、光の取出し効率や透過率の低下を防ぐことができる。
According to the present invention, by using a specific inorganic glass as the adhesive layer, an optical element having excellent transparency to short wavelength ultraviolet rays (UV-C) having a wavelength of about 260 to 285 nm and less deterioration due to UV-C irradiation can be obtained. Can be provided. Further, the optical element according to the present invention can be used at a relatively high temperature as compared with the case where a resin is used as the adhesive layer.
Further, the glass used for adhering the members according to the present invention has excellent transparency to short wavelength ultraviolet rays (UV-C) having a wavelength of about 260 to 285 nm, and the member (adhesion) is made of glass. , The difference in refractive index from the member is small. Therefore, when used for bonding LED elements and optical members such as lenses, glass fibers, and lenses, the loss of light due to reflection and absorption is small, and the light extraction efficiency and transmittance are reduced. The decrease can be prevented.
図1は、光学素子の一例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an example of an optical element. 図2は、光学装置の一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of an optical device.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 ガラスにおける各成分の含有率(含有量)は、特に断らない限り、酸化物基準のモル%表示である。
 本明細書において質量基準の割合(百分率、部など)は重量基準の割合(百分率、部など)と同じである。
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and carried out without departing from the gist of the present invention. Further, "-" indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
Unless otherwise specified, the content (content) of each component in glass is expressed in mol% based on oxides.
In the present specification, the mass-based ratio (percentage, parts, etc.) is the same as the weight-based ratio (percentage, parts, etc.).
[光学素子]
 図1に示すように、本実施形態に係る光学素子10は、光学部材1と接着層2とを備える。
 光学部材1は、光入射面及び光出射面を有し、前記光入射面及び前記光出射面の少なくともいずれか一方に光学機能面を備える。前記光学機能面は、光入射面又は光出射面の少なくとも一部の領域に備えられていればよい。
 接着層2は、光学部材1の前記光入射面及び前記光出射面の少なくともいずれか一方の表面上に設けられている。また、接着層2は、無機ガラスからなり、厚さ1mmでの波長260~285nmにおける外部透過率の平均値が30%以上である。
[Optical element]
As shown in FIG. 1, the optical element 10 according to the present embodiment includes an optical member 1 and an adhesive layer 2.
The optical member 1 has a light incident surface and a light emitting surface, and has an optical functional surface on at least one of the light incident surface and the light emitting surface. The optical functional surface may be provided in at least a part of a light incident surface or a light emitting surface.
The adhesive layer 2 is provided on the surface of at least one of the light incident surface and the light emitting surface of the optical member 1. Further, the adhesive layer 2 is made of inorganic glass, and the average value of the external transmittance at a wavelength of 260 to 285 nm at a thickness of 1 mm is 30% or more.
 光学部材の光入射面及び光出射面の少なくともいずれか一方の表面上に接着層が設けられていれば、接着層の態様は限定されない。例えば、接着層は、表面上の全領域(全面)に設けられていてもよく、他方の被着物となるLED素子等の大きさに合わせて、光学部材の表面上の一部の領域に設けられていてもよい。また、光学部材と他方の被着物との接着面のみならず、他方の被着物の側面にまで、接着層が形成されていてもよい。さらには、接着層で他方の被着物を封止しつつ、光学部材と接着させてもよい。 The mode of the adhesive layer is not limited as long as the adhesive layer is provided on at least one surface of the light incident surface and the light emitting surface of the optical member. For example, the adhesive layer may be provided in the entire region (entire surface) on the surface, or may be provided in a partial region on the surface of the optical member according to the size of the LED element or the like to be the other adherend. It may be. Further, the adhesive layer may be formed not only on the adhesive surface between the optical member and the other adherend but also on the side surface of the other adherend. Further, the other adherend may be adhered to the optical member while being sealed with the adhesive layer.
 なお、本明細書における各波長の光の透過率は、可視紫外分光光度計を用いて測定される値である。すなわち、透過率は、内部透過率ではなく界面の表面反射率を含む外部透過率であり、厚さ1mmに換算した外部透過率である。 The light transmittance of each wavelength in the present specification is a value measured by using a visible ultraviolet spectrophotometer. That is, the transmittance is not the internal transmittance but the external transmittance including the surface reflectance of the interface, and is the external transmittance converted to a thickness of 1 mm.
{無機ガラス}
 無機ガラス(以下、単に「ガラス」と称することがある。)からなる接着層は、光学部材の光入射面及び光出射面の少なくともいずれか一方の表面上に設けられている。上述したように、接着層は、光入射面又は光出射面の全面に設けられている必要はなく、少なくとも一部の領域に設けられていればよい。
 ガラスにより2つの接着する部材(被着物)同士を接着させる際には、軟化点以上の温度に加熱してガラスを軟化させ、接着対象である2つの被着物と接触させる。次いで冷却し、硬化することにより、2つの被着物同士が接着層を介して接着される。なお2つの被着物とは、例えば、本実施形態に係る光学素子においては光学部材と他方の被着物のことである。
 また、接着層の材料をフリットペーストとして用意し、公知の塗布方法により接着面に塗布した後に加熱し、脱灰、脱泡を行うことで接着層を形成できる。
 さらに、接着層の材料をグリーンシートとして用意し、グリーンシートの小片を接着面に乗せて加熱し、脱灰、脱泡を行うことによっても、接着層を形成できる。
 さらに、接着層の材料をスライスや研磨といった機械加工によりガラスシートとして用意し、接着に必要な大きさに切断した小片を接着面に接触させながら加熱し、融着させることによっても、接着層を形成できる。
{Inorganic glass}
The adhesive layer made of inorganic glass (hereinafter, may be simply referred to as “glass”) is provided on at least one surface of the light incident surface and the light emitting surface of the optical member. As described above, the adhesive layer does not have to be provided on the entire surface of the light incident surface or the light emitting surface, and may be provided in at least a part of the region.
When two members (adhesions) to be bonded to each other are bonded to each other by glass, the glass is softened by heating to a temperature equal to or higher than the softening point, and is brought into contact with the two adherends to be bonded. Then, by cooling and curing, the two adherends are adhered to each other via the adhesive layer. The two adherends are, for example, an optical member and the other adherend in the optical element according to the present embodiment.
Further, the adhesive layer can be formed by preparing the material of the adhesive layer as a frit paste, applying it to the adhesive surface by a known coating method, and then heating it to decalcify and defoam.
Further, the adhesive layer can also be formed by preparing the material of the adhesive layer as a green sheet, placing a small piece of the green sheet on the adhesive surface and heating it to decalcify and defoam.
Furthermore, the material of the adhesive layer is prepared as a glass sheet by machining such as slicing and polishing, and small pieces cut to the size required for adhesion are heated while being in contact with the adhesive surface and fused to form the adhesive layer. Can be formed.
 例えば、LED素子と光学部材とを接着した場合には、LED素子から出射される光は、接着層であるガラスを透過して、光学部材の内部へ導入される。
 この際、LED素子から出射される光が波長260~285nm程度の短波長紫外線(UV-C)であっても、本実施形態に係る光学素子は、接着層として樹脂を用いた場合と比較して、長期間のUV-Cの暴露による劣化が抑制されているので、製品寿命を延ばすことができる。
For example, when the LED element and the optical member are adhered to each other, the light emitted from the LED element passes through the glass which is the adhesive layer and is introduced into the inside of the optical member.
At this time, even if the light emitted from the LED element is short wavelength ultraviolet light (UV-C) having a wavelength of about 260 to 285 nm, the optical element according to the present embodiment is compared with the case where a resin is used as the adhesive layer. As a result, deterioration due to long-term exposure to UV-C is suppressed, so that the product life can be extended.
 なお、上記ガラスは、LED素子等と光学部材を接着する光学素子の接着層として機能するものであるが、他の部材の接着にも用いることができる。この場合の部材は特に限定されないが、光の透過性が求められる部材であることが好ましい。すなわち、上記光学部材とLED素子の接着以外に、グラスファイバー同士の接着、レンズ同士の接着、プリズム同士の接着及び光学フィルター同士の接着等にも好ましく用いることができる。 Although the glass functions as an adhesive layer for an optical element that adheres an LED element or the like to an optical member, it can also be used for bonding other members. The member in this case is not particularly limited, but it is preferably a member that requires light transmission. That is, in addition to the adhesion between the optical member and the LED element, it can also be preferably used for adhesion between glass fibers, adhesion between lenses, adhesion between prisms, adhesion between optical filters, and the like.
 ガラスは、波長260~285nm程度の短波長紫外線(UV-C)の吸収が少なく、高いUV-C透過性を有する。すなわち、厚さ1mmでの波長260~285nmにおける外部透過率の平均値が30%以上であり、40%以上が好ましく、55%以上がより好ましい。外部透過率は高いほど好ましいが、90%以下が実際的である。
 UV-Cに対する透過率は、主にガラスに含まれるUV-C吸収成分の量により調整できる。UV-C吸収成分とは、例えばNb、TiO、CeO、V、Bi、WO、Fe及びSnO等が挙げられる。
Glass has low absorption of short-wavelength ultraviolet rays (UV-C) having a wavelength of about 260 to 285 nm, and has high UV-C transparency. That is, the average value of the external transmittance at a wavelength of 260 to 285 nm at a thickness of 1 mm is 30% or more, preferably 40% or more, and more preferably 55% or more. The higher the external transmittance, the more preferable, but 90% or less is practical.
The transmittance for UV-C can be adjusted mainly by the amount of UV-C absorbing component contained in the glass. Examples of the UV-C absorbing component include Nb 2 O 5 , TiO 2 , CeO 2 , V 2 O 5 , Bi 2 O 3 , WO 3 , Fe 2 O 3 and SnO.
 ガラスのUV-C透過率は高いことが好ましい。ガラスを板状に成型してガラス板とした場合の一例として、厚さ1mmでの波長265nmにおける透過率は30%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましい。透過率は高いほど好ましいが、85%以下が実際的である。 It is preferable that the UV-C transmittance of glass is high. As an example of the case where glass is molded into a plate shape to form a glass plate, the transmittance at a wavelength of 265 nm at a thickness of 1 mm is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more. The higher the transmittance, the more preferable, but 85% or less is practical.
 ガラスを接着層として用いる際に、UV-C耐性が低いことでガラスが劣化すると、ガラスは変色する場合がある。さらには、ガラスは、劣化により割れが生じるなどすると、接着層として機能しなくなるおそれもある。そのため、下記条件による紫外線照射試験後の波長265nmにおけるガラスの透過率は30%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましい。また、透過率は高いほど好ましいが、85%以下が実際的である。
 ガラスの変色は、UV-C吸収成分が着色成分となってガラスを呈色させることで起こる。そのため、上記と同様、UV-C吸収成分の種類や量を調整することで、UV-C耐性を向上できる。
 紫外線照射試験:ガラスを板状に成型したガラス板の両主面を鏡面光学研磨して厚さ1mmとする。前記ガラス板の研磨面の一方を波長220~400nmの紫外線を放射する400Wの高圧水銀ランプから20cmの位置に対向させて配置し、前記高圧水銀ランプから100時間紫外線を照射する。
When glass is used as an adhesive layer, if the glass deteriorates due to low UV-C resistance, the glass may be discolored. Furthermore, the glass may not function as an adhesive layer if it is cracked due to deterioration. Therefore, the transmittance of the glass at a wavelength of 265 nm after the ultraviolet irradiation test under the following conditions is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more. Further, the higher the transmittance, the more preferable, but 85% or less is practical.
Discoloration of glass occurs when the UV-C absorbing component becomes a coloring component and causes the glass to develop color. Therefore, as described above, the UV-C resistance can be improved by adjusting the type and amount of the UV-C absorbing component.
Ultraviolet irradiation test: Both main surfaces of a glass plate obtained by molding glass into a plate shape are mirror-optically polished to a thickness of 1 mm. One of the polished surfaces of the glass plate is arranged so as to face a position 20 cm from a 400 W high-pressure mercury lamp that emits ultraviolet rays having a wavelength of 220 to 400 nm, and the high-pressure mercury lamp is irradiated with ultraviolet rays for 100 hours.
 また、上記と同様の条件による紫外線照射試験前後での、波長260~285nmにおけるガラスの平均透過率の差は10%以下が好ましく、8%以下がより好ましく、5%以下がさらに好ましい。
 平均透過率の差とは、具体的には、上記紫外線照射試験前の、波長260~285nmにおけるガラスの平均透過率をT0(%)とし、同紫外線照射試験後の、波長260~285nmにおけるガラスの平均透過率をT1(%)とした場合に、|T0-T1|(%)により表される値である。かかる差が小さいほど、UV-C耐性が高いと判断できる。なお、「紫外線照射試験前の、波長260~285nmにおけるガラスの平均透過率(T0)」とは、ガラスの「厚さ1mmでの波長260~285nmにおける外部透過率の平均値」と同義である。
Further, the difference in the average transmittance of the glass at a wavelength of 260 to 285 nm before and after the ultraviolet irradiation test under the same conditions as described above is preferably 10% or less, more preferably 8% or less, still more preferably 5% or less.
Specifically, the difference in the average transmittance means that the average transmittance of the glass at a wavelength of 260 to 285 nm before the ultraviolet irradiation test is T0 (%), and the glass at a wavelength of 260 to 285 nm after the ultraviolet irradiation test. It is a value represented by | T0-T1 | (%) when the average transmittance of is T1 (%). It can be determined that the smaller the difference, the higher the UV-C resistance. The "average transmittance (T0) of glass at a wavelength of 260 to 285 nm before the ultraviolet irradiation test" is synonymous with the "average value of the external transmittance of glass at a wavelength of 260 to 285 nm at a thickness of 1 mm". ..
 ガラスの屈折率と、光学部材等の接着する部材(被着物)の屈折率との差は小さいことが好ましい。これは、LED素子とレンズ等の光学部材との接着や、グラスファイバー同士の接着、又はレンズ同士の接着等にガラスを用いた際に、被着物とガラスの界面における全反射やフレネル反射を抑制して、透過率の低下を防げるためである。 It is preferable that the difference between the refractive index of glass and the refractive index of the member (adhesion) to be adhered such as an optical member is small. This suppresses total reflection and Frenel reflection at the interface between the adherend and the glass when glass is used for bonding the LED element to an optical member such as a lens, glass fibers to each other, or lenses to each other. This is to prevent a decrease in transmittance.
 d線(波長587.6nm)に対する屈折率をndと表した場合に、d線に対する、被着物の屈折率nd(O)とガラスの屈折率nd(A)との差の絶対値Δndは、Δnd=|nd(O)-nd(A)|で表される。かかるΔndの値は、0.35以下が好ましく、0.30以下がより好ましく、0.25以下がさらに好ましい。具体的には例えば、本実施形態に係る光学素子において、光学部材の屈折率nd(O)と、ガラスの屈折率、すなわち接着層の屈折率nd(A)との差の絶対値Δndが上記範囲であることが好ましい。 When the refractive index for the d-line (wavelength 587.6 nm) is expressed as nd, the absolute value Δnd of the difference between the refractive index nd (O) of the adherend and the refractive index nd (A) of the glass with respect to the d-line is It is represented by Δnd = | nd (O) -nd (A) |. The value of Δnd is preferably 0.35 or less, more preferably 0.30 or less, and even more preferably 0.25 or less. Specifically, for example, in the optical element according to the present embodiment, the absolute value Δnd of the difference between the refractive index nd (O) of the optical member and the refractive index of glass, that is, the refractive index nd (A) of the adhesive layer is described above. It is preferably in the range.
 上記のように、ガラスの屈折率は、被着物の屈折率との差が小さくなる値が好ましいことから、ガラスそのものの好ましい屈折率は、被着物の屈折率によって異なる。例えばガラス製の光学部材の接着に用いる場合には、ガラスのd線に対する屈折率nd(A)は1.50以上が好ましく、1.52以上がより好ましく、1.53以上がさらに好ましく、1.54以上がよりさらに好ましい。また、上限は特に限定されないが、1.70以下が実際的である。 As described above, the refractive index of the glass is preferably a value that makes the difference from the refractive index of the adherend small, so that the refractive index of the glass itself differs depending on the refractive index of the adherend. For example, when used for adhering an optical member made of glass, the refractive index nd (A) with respect to the d-line of glass is preferably 1.50 or more, more preferably 1.52 or more, still more preferably 1.53 or more. More preferably .54 or higher. The upper limit is not particularly limited, but 1.70 or less is practical.
 ガラスにより被着物を接着する際に、ガラスの軟化する温度(軟化点)が高いと、高温での熱処理が必要となる。その際の熱処理温度が高すぎると、被着物の耐熱性によっては、被着物が変質するおそれがある。そのため、ガラスの軟化点は低い方が好ましい。 When adhering an adherend with glass, if the temperature at which the glass softens (softening point) is high, heat treatment at a high temperature is required. If the heat treatment temperature at that time is too high, the adherend may be deteriorated depending on the heat resistance of the adherend. Therefore, it is preferable that the softening point of the glass is low.
 ガラスの軟化点とガラス転移温度Tgや屈伏点Tcとは必ずしも一致しないが、それらには相関性がある。そのため、ガラスのガラス転移温度Tgや屈伏点Tcを低くすることで、結果的に軟化点が低くなり、被着物の変質を防ぐことができる。なお、本明細書におけるガラスの軟化点、ガラス転移温度及び屈伏点とは、本実施形態の光学素子においては接着層の軟化点、ガラス転移温度及び屈伏点と同じである。
 ガラスの屈伏点Tc(A)は、400℃以下が好ましく、380℃以下がより好ましく、350℃以下がさらに好ましい。下限は特に限定されないが、250℃以上が実際的である。
The softening point of glass does not always match the glass transition temperature Tg and the yield point Tc, but they have a correlation. Therefore, by lowering the glass transition temperature Tg and the yield point Tc of the glass, the softening point is lowered as a result, and deterioration of the adherend can be prevented. The softening point, glass transition temperature, and yield point of the glass in the present specification are the same as the softening point, glass transition temperature, and yield point of the adhesive layer in the optical element of the present embodiment.
The yield point Tc (A) of the glass is preferably 400 ° C. or lower, more preferably 380 ° C. or lower, and even more preferably 350 ° C. or lower. The lower limit is not particularly limited, but 250 ° C. or higher is practical.
 被着物の一方が光学部材である場合、光学部材の屈伏点Tc(O)は、ガラスの屈伏点Tc(A)より高いことが好ましい。また、ガラスの屈伏点Tc(A)と光学部材の屈伏点Tc(O)との差の絶対値ΔTcは、ΔTc=|Tc(O)-Tc(A)|で表される。かかるΔTcの値は、300℃以上が好ましく、320℃以上がより好ましく、350℃以上がさらに好ましい。上限は特に限定されないが、500℃以下が実際的である。
 なお、光学部材としてサファイア等の単結晶を用いる場合、光学部材の屈伏点を定義することができない。この場合、光学部材の融点Tm(O)とガラスの屈伏点Tc(A)との差の絶対値が、300℃以上が好ましく、350℃以上がより好ましく、400℃以上がさらに好ましい。
When one of the adherends is an optical member, the yield point Tc (O) of the optical member is preferably higher than the yield point Tc (A) of the glass. Further, the absolute value ΔTc of the difference between the bending point Tc (A) of the glass and the bending point Tc (O) of the optical member is represented by ΔTc = | Tc (O) -Tc (A) |. The value of ΔTc is preferably 300 ° C. or higher, more preferably 320 ° C. or higher, and even more preferably 350 ° C. or higher. The upper limit is not particularly limited, but 500 ° C. or lower is practical.
When a single crystal such as sapphire is used as the optical member, the yield point of the optical member cannot be defined. In this case, the absolute value of the difference between the melting point Tm (O) of the optical member and the bending point Tc (A) of the glass is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, still more preferably 400 ° C. or higher.
 ガラスのガラス転移温度Tg(A)は、380℃以下が好ましく、350℃以下がより好ましく、320℃以下がさらに好ましい。下限は特に限定されないが、230℃以上が実際的である。 The glass transition temperature Tg (A) of the glass is preferably 380 ° C. or lower, more preferably 350 ° C. or lower, and even more preferably 320 ° C. or lower. The lower limit is not particularly limited, but 230 ° C. or higher is practical.
 ガラスからなる接着層の厚さは、被着物に対する接着性の観点から0.01mm以上が好ましく、0.05mm以上がより好ましい。また、接着層での光の損失を抑える点から接着層の厚さは0.2mm以下が好ましく、0.15mm以下がより好ましく、0.1mm以下が特に好ましい。 The thickness of the adhesive layer made of glass is preferably 0.01 mm or more, more preferably 0.05 mm or more, from the viewpoint of adhesiveness to the adherend. Further, the thickness of the adhesive layer is preferably 0.2 mm or less, more preferably 0.15 mm or less, and particularly preferably 0.1 mm or less from the viewpoint of suppressing the loss of light in the adhesive layer.
 上記のような接着層を構成するガラスの組成系としては、リン酸塩系ガラス、ホウ酸塩ガラス等を好適に用いることができる。
 以下に具体的なガラスの組成について説明する。なお、各成分の含有量を示す%とは、特に断りがない限り酸化物基準のモル%表示である。
As the composition system of the glass constituting the adhesive layer as described above, phosphate glass, borate glass and the like can be preferably used.
The specific glass composition will be described below. The% indicating the content of each component is an oxide-based molar% display unless otherwise specified.
 Pは、ガラスを形成する必須成分(ガラス形成酸化物)である。Pの含有量は30%以上が好ましく、35%以上がより好ましい。一方、過剰に含むと耐候性が悪化し、接着層の信頼性が悪化するおそれがあることから、その含有量は60%以下が好ましく、55%以下がより好ましく、50%以下がさらに好ましく、45%以下がよりさらに好ましい。 P 2 O 5 is an essential component (glass-forming oxide) that forms glass. The content of P 2 O 5 is preferably 30% or more, more preferably 35% or more. On the other hand, if it is excessively contained, the weather resistance may be deteriorated and the reliability of the adhesive layer may be deteriorated. Therefore, the content thereof is preferably 60% or less, more preferably 55% or less, still more preferably 50% or less. 45% or less is even more preferable.
 ZnOは、ガラスの溶融性を改善するとともに、ガラス転移温度や軟化温度を下げることができる成分である。ZnOの含有量は10%以上が好ましく、15%以上がより好ましい。一方、過剰に含むとガラスが不安定となり、失透するおそれがあることから、ZnOの含有量は60%以下が好ましく、50%以下がより好ましく、45%以下がさらに好ましく、40%以下がよりさらに好ましい。 ZnO is a component that can improve the meltability of glass and lower the glass transition temperature and softening temperature. The ZnO content is preferably 10% or more, more preferably 15% or more. On the other hand, if it is excessively contained, the glass becomes unstable and may be devitrified. Therefore, the ZnO content is preferably 60% or less, more preferably 50% or less, further preferably 45% or less, and 40% or less. Even more preferable.
 LiOは、ガラスの溶融性を改善するともに、ガラス転移温度や軟化温度を下げることができる成分である。LiOの含有量は1%以上が好ましく、3%以上がより好ましく、5%以上がさらに好ましく、7%以上がよりさらに好ましい。一方、過剰に含むとガラスが不安定になったり、失透したりするおそれがあることから、LiOの含有量は30%以下が好ましく、28%以下がより好ましい。 Li 2 O is a component that can improve the meltability of glass and lower the glass transition temperature and softening temperature. The content of Li 2 O is preferably 1% or more, more preferably 3% or more, further preferably 5% or more, still more preferably 7% or more. On the other hand, if it is contained in an excessive amount, the glass may become unstable or devitrified. Therefore, the content of Li 2 O is preferably 30% or less, more preferably 28% or less.
 上記P、ZnO及びLiOの含有量は、合計で65%以上が好ましく、70%以上がより好ましい。一方、かかる含有量の合計の上限は100%であり、ガラスは他の成分を含まずこの三成分のみからなってもよい。 The total content of P 2 O 5 , Zn O and Li 2 O is preferably 65% or more, more preferably 70% or more. On the other hand, the upper limit of the total content is 100%, and the glass may be composed of only these three components without containing other components.
 SiOは、Pと共にガラス骨格を形成し、ガラスの安定性を高め耐失透性を上げ、ガラスの分相を防ぐことができる任意成分であり、含まなくてもよい(0%)。一方、過剰に含むとガラス転移点、屈伏点が高くなるおそれがあることから、その含有量は6%以下が好ましく、3%以下がより好ましい。 SiO 2 is an optional component that can form a glass skeleton together with P 2 O 5 to increase the stability of the glass, increase the devitrification resistance, and prevent the phase separation of the glass, and may not be contained (0%). ). On the other hand, if it is excessively contained, the glass transition point and the yield point may increase. Therefore, the content thereof is preferably 6% or less, more preferably 3% or less.
 Alは、耐候性を高めることができる任意成分であり、含まなくてもよい(0%)。一方、過剰に含むとガラスの溶融温度が高くなるおそれがあることから、その含有量は6%以下が好ましく、3%以下がより好ましい。 Al 2 O 3 is an optional component that can enhance weather resistance and may not be contained (0%). On the other hand, if it is contained in excess, the melting temperature of the glass may increase. Therefore, the content thereof is preferably 6% or less, more preferably 3% or less.
 NaOは、ガラスの溶融温度を低くするともに、ガラス転移温度や軟化温度を下げることができる任意成分であり、含まなくてもよい(0%)。一方、過剰に含むとガラスが不安定になるおそれがあることから、その含有量は20%以下が好ましく、15%以下がより好ましい。 Na 2 O is an optional component capable of lowering the melting temperature of the glass and lowering the glass transition temperature and the softening temperature, and may not be contained (0%). On the other hand, if it is contained in an excessive amount, the glass may become unstable. Therefore, the content thereof is preferably 20% or less, more preferably 15% or less.
 KOは、ガラスの溶融温度を低くするともに、ガラス転移温度や軟化温度を下げることができる任意成分であり、含まなくてもよい(0%)。一方、過剰に含むと液相温度が高くなるおそれがあることから、その含有量は15%以下が好ましく、10%以下がより好ましい。 K 2 O is an optional component capable of lowering the melting temperature of the glass and lowering the glass transition temperature and the softening temperature, and may not be contained (0%). On the other hand, if it is contained in an excessive amount, the liquidus temperature may increase. Therefore, the content thereof is preferably 15% or less, more preferably 10% or less.
 BaOは、ガラスの溶融温度を低くすると共に、ガラスの安定性を向上できる任意成分であり、含まなくてもよい(0%)。一方、過剰に含むとガラスが不安定になったり、液相温度が上昇するおそれがあることから、その含有量は10%以下が好ましく、5%以下がより好ましい。 BaO is an optional component that can lower the melting temperature of the glass and improve the stability of the glass, and may not be contained (0%). On the other hand, if it is contained in an excessive amount, the glass may become unstable or the liquidus temperature may rise. Therefore, the content thereof is preferably 10% or less, more preferably 5% or less.
 CaOはガラスの溶融温度を低くすると共に、ガラスの安定性を向上できる任意成分であり、含まなくてもよい(0%)。一方、過剰に含むと、液相温度が上昇するおそれがあることから、その含有量は10%以下が好ましく、5%以下がより好ましい。
 その他、MgO、SrOについてもCaOと同様の観点から0~5%の範囲で添加できる。
CaO is an optional component that can lower the melting temperature of the glass and improve the stability of the glass, and may not be contained (0%). On the other hand, if it is contained in an excessive amount, the liquidus temperature may rise, so the content thereof is preferably 10% or less, more preferably 5% or less.
In addition, MgO and SrO can be added in the range of 0 to 5% from the same viewpoint as CaO.
 Taはガラスの屈折率を上げる任意成分であり、含まなくてもよい(0%)。一方、深紫外域の透過率を低下させる成分であることから、その含有量は3%以下が好ましく、1%以下がより好ましい。 Ta 2 O 5 is an optional component that raises the refractive index of glass and may not be contained (0%). On the other hand, since it is a component that lowers the transmittance in the deep ultraviolet region, its content is preferably 3% or less, more preferably 1% or less.
 SnOは還元剤として適した量だけ用いることで透過率を向上できる任意成分であり、含まなくてもよい(0%)。一方、紫外域で光の吸収を示す成分であることから、その含有量は3%以下が好ましく、1%以下がより好ましい。 SnO is an optional component that can improve the transmittance by using only an amount suitable as a reducing agent, and may not be contained (0%). On the other hand, since it is a component that absorbs light in the ultraviolet region, its content is preferably 3% or less, more preferably 1% or less.
 Laは、屈折率を高めながらも紫外線透過率を高く保つことができる任意成分であり、含まなくてもよい(0%)。一方、液相温度が上昇したり失透するおそれがあることから、その含有量は5%以下が好ましく、3%以下がより好ましい。 La 2 O 3 is an optional component capable of maintaining a high ultraviolet transmittance while increasing the refractive index, and may not be contained (0%). On the other hand, since the liquidus temperature may rise or devitrify, the content thereof is preferably 5% or less, more preferably 3% or less.
 Gdは、屈折率を高めながらも紫外線透過率を高く保つことができる任意成分であり、含まなくてもよい(0%)。一方、近紫外域の透過率を低下させる成分であることから、その含有量は5%以下が好ましく、3%以下がより好ましい。 Gd 2 O 3 is an optional component capable of maintaining a high ultraviolet transmittance while increasing the refractive index, and may not be contained (0%). On the other hand, since it is a component that lowers the transmittance in the near-ultraviolet region, its content is preferably 5% or less, more preferably 3% or less.
 Yは、屈折率を高めながらも紫外線透過率を高く保つことができ、Laと共存させることで液相温度を下げて耐失透性を改善できる任意成分であり、含まなくてもよい(0%)。一方、溶解温度、成形温度、液相温度が上昇したり失透するおそれがあることから、その含有量は5%以下が好ましく、3%以下がより好ましい。 Y 2 O 3 is an optional component that can maintain a high ultraviolet transmittance while increasing the refractive index, and can lower the liquidus temperature and improve the devitrification resistance by coexisting with La 2 O 3. It does not have to be (0%). On the other hand, since the melting temperature, molding temperature, and liquid phase temperature may rise or devitrify, the content thereof is preferably 5% or less, more preferably 3% or less.
 Nb、TiO、CeO、V、Bi、WO及びFeは、前記SnOと同様、紫外域、特にUV-Cの光に対して吸収を示す成分である。そのため、これらはいずれも任意成分であるものの、その含有量は少ない方が好ましく、含まなくてもよい(0%)。
 中でも、Feは原料からの不純物として不可避的に混入し、特に3価の鉄(Fe3+)は紫外域の光に対して強い吸収を示すことから、その含有量は0.01%未満であることが好ましく、0.005%未満がより好ましい。なお、2価の鉄(Fe2+)は赤外域に吸収を持つため、溶融雰囲気を還元側にすることで、鉄イオンの価数を2価に振ることも有効である。この方法としては、原料に還元剤を添加すること、又は溶融雰囲気を非酸化性にすることなどが挙げられる。
Nb 2 O 5 , TiO 2 , CeO 2 , V 2 O 5 , Bi 2 O 3 , WO 3 and Fe 2 O 3 show absorption in the ultraviolet region, especially UV-C light, like the SnO. It is an ingredient. Therefore, although these are all optional components, their content is preferably small and may not be contained (0%).
Among them, Fe 2 O 3 is inevitably mixed as an impurity from the raw material, and in particular, trivalent iron (Fe 3+ ) shows strong absorption to light in the ultraviolet region, so its content is 0.01%. It is preferably less than, more preferably less than 0.005%. Since divalent iron (Fe 2+ ) has absorption in the infrared region, it is also effective to shift the valence of iron ions to divalent by setting the melting atmosphere to the reducing side. Examples of this method include adding a reducing agent to the raw material and making the molten atmosphere non-oxidizing.
 Nb、TiO、CeO、V、Bi及びWOの合計の含有量は0.1%未満が好ましく、0.05%以下がより好ましい。
 上記の他に、CuO、MnO、NiO、CoO及びCrも含み得るが、これらは原料等から混入する不可避的不純物以外には含有しないこと、すなわち、意図的に含有しないことが好ましい。
 また、Fは、ガラスの耐候性を向上できる任意成分であり、含まなくてもよい(0%)。一方、ガラスの屈折率を下げる成分であることから、その含有量は、10質量%以下が好ましく、8質量%以下がより好ましい。
The total content of Nb 2 O 5 , TiO 2 , CeO 2 , V 2 O 5 , Bi 2 O 3 and WO 3 is preferably less than 0.1%, more preferably 0.05% or less.
In addition to the above, CuO, MnO 2 , NiO, CoO and Cr 2 O 3 may also be contained, but it is preferable that these are not contained other than the unavoidable impurities mixed from the raw materials and the like, that is, they are not intentionally contained. ..
Further, F is an optional component that can improve the weather resistance of the glass and may not be contained (0%). On the other hand, since it is a component that lowers the refractive index of glass, its content is preferably 10% by mass or less, and more preferably 8% by mass or less.
 以上、光学素子における接着層を構成する無機ガラスについて詳細を述べたが、上記無機ガラスは、当該接着層としてのみならず、他の部材の接着にも用いることができる。 The details of the inorganic glass constituting the adhesive layer in the optical element have been described above, but the inorganic glass can be used not only as the adhesive layer but also for adhering other members.
 すなわち、部材の接着に用いられる本実施形態に係るガラスは、厚さ1mmでの波長260~285nmにおける外部透過率の平均値が30%以上であり、屈伏点Tc(A)が400℃以下である。
 かかるガラスの好ましい態様は、上記接着層として記載した無機ガラスの好ましい態様と同様である。また、被着物である部材は光学部材に限られないが、d線に対する、部材の屈折率nd(O)とガラスの屈折率nd(A)との差の絶対値Δnd=|nd(O)-nd(A)|で表される値は、0.35以下が好ましく、0.30以下がより好ましく、0.25以下がさらに好ましい。
That is, the glass according to the present embodiment used for adhering the members has an average value of external transmittance of 30% or more at a wavelength of 260 to 285 nm at a thickness of 1 mm, and a yield point Tc (A) of 400 ° C. or less. is there.
A preferred embodiment of such glass is the same as the preferred embodiment of the inorganic glass described as the adhesive layer. Further, the member that is an adherend is not limited to the optical member, but the absolute value Δnd = | nd (O) of the difference between the refractive index nd (O) of the member and the refractive index nd (A) of the glass with respect to the d-line. The value represented by −nd (A) | is preferably 0.35 or less, more preferably 0.30 or less, and even more preferably 0.25 or less.
 ガラスを用いた接着の対象となる部材(被着物)は特に限定されないが、光の透過性が求められる部材であることが好ましい。例えば、本実施形態に係るガラスは、光学部材とLED素子の接着、グラスファイバー同士の接着、レンズ同士の接着、プリズム同士の接着、光学フィルター同士の接着等に好ましく用いることができる。 The member (adhesion) to be adhered using glass is not particularly limited, but it is preferably a member that requires light transmission. For example, the glass according to the present embodiment can be preferably used for bonding an optical member and an LED element, bonding glass fibers to each other, bonding lenses to each other, bonding prisms to each other, bonding optical filters to each other, and the like.
{光学部材}
 光学部材は、光入射面及び光出射面を有し、前記光入射面及び前記光出射面の少なくともいずれか一方の、少なくとも一部の領域に光学機能面を備える。
 光入射面とは、例えばLED素子から出射された光が入射される面であり、光出射面とは、当該入射された光が光学部材内を透過し、外部を照射するために光が出射される面である。
{Optical member}
The optical member has a light incident surface and a light emitting surface, and includes an optical functional surface in at least a part of at least one of the light incident surface and the light emitting surface.
The light incident surface is, for example, a surface on which light emitted from an LED element is incident, and the light emitting surface is a surface through which the incident light is transmitted through the optical member and emits light to irradiate the outside. It is the surface to be done.
 光学機能面とは、当該面によって光を屈折、回折、散乱させるものや、ミラーのような高反射面や、透過性を高めた低反射面、波長選択性を持たせた各種フィルター等が挙げられ、光学部材の光入射面や光出射面の全面が当該機能を備えていても、一部の面が備えていてもよい。 Optical functional surfaces include those that refract, diffract, and scatter light by the surface, high-reflection surfaces such as mirrors, low-reflection surfaces with enhanced transparency, and various filters with wavelength selectivity. Therefore, the entire surface of the light incident surface or the light emitting surface of the optical member may have the function, or a part of the surface may have the function.
 光学部材は上記機能を発揮できれば、従来公知の様々な光学部材を用いることができる。形状も特に限定されないが、例えばレンズ、レンズアレイ、回折格子、回折光学素子、グレーティングセルアレイ等が挙げられる。また、その表面に金属や誘電体が単層または多層に成膜されたものも挙げられる。
 特に、光学部材は図1に示すような、球面または非球面の凸レンズ形状であることが好ましい。
As the optical member, various conventionally known optical members can be used as long as the above functions can be exhibited. The shape is not particularly limited, and examples thereof include a lens, a lens array, a diffraction grating, a diffraction optical element, and a grating cell array. In addition, a metal or a dielectric film formed on the surface thereof in a single layer or in multiple layers can be mentioned.
In particular, the optical member preferably has a spherical or aspherical convex lens shape as shown in FIG.
 光学部材は、発光素子(例えば、LED素子)と貼り合わされる場合、発光素子の光出射面が高屈折率材料で形成されているため、光学部材を高屈折率ガラスにすることで光取り出し効率を大きく向上させることができる。そのため、光学部材のd線(587.6nm)に対する屈折率nd(O)は、nd(O)≧1.5が好ましい。より好ましくはnd(O)≧1.6、さらに好ましくはnd(O)≧1.65、特に好ましくはnd(O)≧1.7である。 When the optical member is bonded to a light emitting element (for example, an LED element), the light emitting surface of the light emitting element is made of a high refractive index material. Therefore, by making the optical member high refractive index glass, the light extraction efficiency Can be greatly improved. Therefore, the refractive index nd (O) of the optical member with respect to the d-line (587.6 nm) is preferably nd (O) ≧ 1.5. More preferably, nd (O) ≧ 1.6, further preferably nd (O) ≧ 1.65, and particularly preferably nd (O) ≧ 1.7.
 発光素子が発した光はレンズ等の形状に加工された光学部材を通り発光装置外へ出射される。そのため、光学部材を形成する材料を発光素子が発する発光波長において高透過な材料とすることで光の損失を抑えて光取り出し効率をより向上できる。光学部材内で光が通る距離は0.5mm~5mm程度であり、光学部材の発光素子の発光波長での吸収係数k(O)は、k(O)≦0.2(mm-1)が好ましく、より好ましくはk(O)≦0.15(mm-1)、さらに好ましくはk(O)≦0.1(mm-1)である。 The light emitted by the light emitting element passes through an optical member processed into a shape such as a lens and is emitted to the outside of the light emitting device. Therefore, by making the material forming the optical member highly transparent at the emission wavelength emitted by the light emitting element, it is possible to suppress the loss of light and further improve the light extraction efficiency. The distance through which light passes in the optical member is about 0.5 mm to 5 mm, and the absorption coefficient k (O) at the emission wavelength of the light emitting element of the optical member is k (O) ≤ 0.2 (mm -1 ). It is preferable, more preferably k (O) ≦ 0.15 (mm -1 ), and even more preferably k (O) ≦ 0.1 (mm -1 ).
 光学部材は、発光素子と光学部材の接着工程等の生産プロセス内で加熱された場合でも、光学部材の形状が変形しないようにガラス転移温度Tg(O)が高いことが好ましい。Tg(O)≧350℃が好ましく、より好ましくはTg(O)≧400℃、特に好ましくはTg(O)≧500℃である。 It is preferable that the optical member has a high glass transition temperature Tg (O) so that the shape of the optical member is not deformed even when the optical member is heated in a production process such as a bonding process between the light emitting element and the optical member. Tg (O) ≧ 350 ° C. is preferable, Tg (O) ≧ 400 ° C. is more preferable, and Tg (O) ≧ 500 ° C. is particularly preferable.
 光学部材を構成する材料は特に限定されず、無機ガラス、石英ガラス(Tg:1060℃、Tc:1210℃、nd:1.46)、結晶質であるサファイア(nd(常光):1.77、融点:2053℃)やスピネル、樹脂を用いることができる。中でも、無機ガラスからなる接着層との屈折率差を小さくできる点から、無機ガラスからなる光学部材とすることが好ましい。 The material constituting the optical member is not particularly limited, and is inorganic glass, quartz glass (Tg: 1060 ° C., Tc: 1210 ° C., nd: 1.46), crystalline sapphire (nd (normal light): 1.77, Melting point: 2053 ° C.), spinel, and resin can be used. Above all, an optical member made of inorganic glass is preferable because the difference in refractive index from the adhesive layer made of inorganic glass can be reduced.
 無機ガラスは、様々な形状に容易に加工でき、製造コストの低減や大量生産の点から好適である。さらに、樹脂である場合と比較して、無機ガラスはLED素子が発する高出力な光や、紫外線のような短波長の光に長時間晒されても劣化のおそれがなく、耐熱性にも優れることから、光学素子とした際に長寿命化が期待される。 Inorganic glass can be easily processed into various shapes, and is suitable from the viewpoint of reduction of manufacturing cost and mass production. Furthermore, compared to the case of resin, inorganic glass has no risk of deterioration even when exposed to high-power light emitted by LED elements or short-wavelength light such as ultraviolet rays for a long time, and has excellent heat resistance. Therefore, it is expected that the life of the optical element will be extended.
 光学部材として無機ガラスを用いる場合、無機ガラスとしては例えば、ホウケイ酸ガラス、ケイ酸ガラス、リン酸ガラス、フツリン酸ガラス等が挙げられる。 When inorganic glass is used as the optical member, examples of the inorganic glass include borosilicate glass, silicate glass, phosphoric acid glass, and fluorinated glass.
 ホウケイ酸ガラスとしては、SiOおよびBを主成分として、Al、アルカリ土類金属酸化物(MgO、CaO、SrO、BaO)、アルカリ金属酸化物(LiO、NaO、KO)、その他の金属酸化物等を含むガラスが挙げられる。
 リン酸ガラスとしては、Pを主成分として、Al、アルカリ土類金属酸化物(MgO、CaO、SrO、BaO)、アルカリ金属酸化物(LiO、NaO、KO)、その他の金属酸化物等を含むガラスが挙げられる。
The borosilicate glass contains SiO 2 and B 2 O 3 as main components, Al 2 O 3 , alkaline earth metal oxides (MgO, CaO, SrO, BaO), and alkali metal oxides (Li 2 O, Na 2). O, K 2 O), and other glass containing metal oxides.
The phosphoric acid glass contains P 2 O 5 as a main component, Al 2 O 3 , alkaline earth metal oxides (MgO, CaO, SrO, BaO), and alkali metal oxides (Li 2 O, Na 2 O, K). 2 O), glass containing other metal oxides and the like can be mentioned.
 光学部材は、反射防止膜をその表面に形成させることもできる。反射防止膜としては例えば、SiO、MgF、Al、HfO、ZrO、Taなどの誘電体の単層膜、または多層膜が用いられる。反射防止膜を形成することにより、光学部材表面でのフレネル反射が低減されるため、光取り出し効率をさらに向上できる。 The optical member can also have an antireflection film formed on its surface. As the antireflection film, for example, a monolayer film or a multilayer film of a dielectric such as SiO 2 , MgF 2 , Al 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 is used. By forming the antireflection film, Fresnel reflection on the surface of the optical member is reduced, so that the light extraction efficiency can be further improved.
[光学装置]
 本実施形態に係る光学装置20は、図2に示すように、基板4と、前記基板4上に設けられたLED素子3と、前記LED素子3上に設けられ、前記LED素子3から出射する光を透過して、外部に照射可能とする無機ガラスからなる光学部材1と、前記LED素子3と前記光学部材1との間に設けられた接着層2と、を有する。接着層2は、上記[光学素子]における{無機ガラス}に記載したものと同様のガラスを用いることができる。
[Optical device]
As shown in FIG. 2, the optical device 20 according to the present embodiment is provided on the substrate 4, the LED element 3 provided on the substrate 4, and the LED element 3, and emits light from the LED element 3. It has an optical member 1 made of inorganic glass that allows light to be transmitted and irradiated to the outside, and an adhesive layer 2 provided between the LED element 3 and the optical member 1. As the adhesive layer 2, the same glass as described in {Inorganic glass} in the above [optical element] can be used.
 発光装置は、公知の方法により基板4上にLED素子3を形成し、これとは別に光学部材1を成形するなどして、それぞれ用意する。次いで、接着層2となる無機ガラスを作製する。無機ガラスを軟化点以上の温度に加熱することで軟化させ、硬化する前に接着対象である光学部材1又はLED素子3の接着面に、該軟化状態の無機ガラスを接触させる。次いで冷却、硬化することにより接着層2により光学部材1とLED素子3とが接着され、発光装置20を得ることができる。 The light emitting device is prepared by forming the LED element 3 on the substrate 4 by a known method and separately molding the optical member 1. Next, the inorganic glass to be the adhesive layer 2 is produced. The inorganic glass is softened by heating it to a temperature equal to or higher than the softening point, and the softened inorganic glass is brought into contact with the adhesive surface of the optical member 1 or the LED element 3 to be adhered before being cured. Then, by cooling and curing, the optical member 1 and the LED element 3 are adhered by the adhesive layer 2, and the light emitting device 20 can be obtained.
 無機ガラスからなる接着層2の形成にあたっては、接着層2の材料をフリットペーストとして用意し、スクリーン印刷等の公知の塗布方法により接着面に塗布、その後加熱して脱灰、脱泡させることで行うことができる。
 また、接着層2の材料をグリーンシートとして用意し、グリーンシートの小片を接着面に乗せて加熱し、脱灰、脱泡させることでも接着層2を形成できる。
 さらに、接着層2の材料を板材として用意した後にリドロー成形によってシート化し、シート小片を接着面に乗せて加熱し融着させることでも接着層を形成できる。
 さらに、接着層2の材料をスライスや研磨といった機械加工によりガラスシートとして用意し、接着に必要な大きさに切断した小片を接着面に接触させながら加熱し、融着させることによっても、接着層を形成できる。
In forming the adhesive layer 2 made of inorganic glass, the material of the adhesive layer 2 is prepared as a frit paste, applied to the adhesive surface by a known coating method such as screen printing, and then heated to decalcify and defoam. It can be carried out.
Further, the adhesive layer 2 can also be formed by preparing the material of the adhesive layer 2 as a green sheet, placing a small piece of the green sheet on the adhesive surface and heating it to decalcify and defoam.
Further, the adhesive layer can also be formed by preparing the material of the adhesive layer 2 as a plate material, forming a sheet by redraw molding, placing the sheet small pieces on the adhesive surface, heating and fusing them.
Further, the material of the adhesive layer 2 is prepared as a glass sheet by machining such as slicing or polishing, and small pieces cut to a size required for adhesion are heated while being in contact with the adhesive surface and fused. Can be formed.
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。 The present invention will be specifically described with reference to Examples below, but the present invention is not limited thereto.
[接着層(無機ガラス):試験例1-1~1-30]
 表1及び2に示す組成(酸化物基準のモル%表示)のガラスが得られるように各々相当する炭酸塩、硝酸塩、硫酸塩、水酸化物、酸化物、ホウ酸、リン酸などの原料を秤量し、十分混合した後、白金製坩堝に投入し、1150℃~1200℃の温度範囲で1.5時間~3時間加熱、溶融した。この溶融ガラスを予熱した型に流し出して冷やし、板状に成形後、ガラス転移温度近傍の温度で4時間保持した後、-60℃/hの冷却速度で室温まで徐冷した。
 なお、表中、試験例1-1~1-27が実施例にかかる無機ガラスであり、試験例1-28~1-30が比較例にかかる無機ガラスである。また、表中の空欄は、その成分を実質的に含有していないことを示す。なお、ここで「実質的に含有していない」とは、原材料等に含まれる不純物レベル以下である、つまり意図的に含有させたものではないことをいう。
[Adhesive layer (inorganic glass): Test Examples 1-1 to 1-30]
Raw materials such as carbonates, nitrates, sulfates, hydroxides, oxides, boric acid, and phosphoric acid, which correspond to each other, so as to obtain glasses having the compositions shown in Tables 1 and 2 (indicated by mol% based on oxides). After weighing and thoroughly mixing, the mixture was placed in a platinum pit and heated in a temperature range of 1150 ° C. to 1200 ° C. for 1.5 hours to 3 hours to melt. The molten glass was poured into a preheated mold, cooled, formed into a plate, held at a temperature near the glass transition temperature for 4 hours, and then slowly cooled to room temperature at a cooling rate of −60 ° C./h.
In the table, Test Examples 1-1 to 1-27 are inorganic glasses according to Examples, and Test Examples 1-28 to 1-30 are inorganic glasses according to Comparative Examples. In addition, blanks in the table indicate that the component is not substantially contained. In addition, here, "substantially not contained" means that it is below the level of impurities contained in raw materials and the like, that is, it is not intentionally contained.
 得られた無機ガラスについて、各物性を以下の方法により測定した。結果を表3及び4に示す。なお、表4中、試験例1-28及び2-28における「-」とは、試験例1-28で得られた無機ガラスが白濁したことから、接着層として使用に適さないと判断し、各物性を測定していないことを意味する。また、試験例1-23~1-25における「N.D.」とは測定を行っていないことを意味する。 The physical characteristics of the obtained inorganic glass were measured by the following methods. The results are shown in Tables 3 and 4. In Table 4, "-" in Test Examples 1-28 and 2-28 was judged to be unsuitable for use as an adhesive layer because the inorganic glass obtained in Test Example 1-28 became cloudy. It means that each physical property is not measured. Further, "ND" in Test Examples 1-23 to 1-25 means that the measurement has not been performed.
(屈折率:nd(A))
 d線(波長587.56nm)に対する接着層の屈折率nd(A)を精密屈折率計(株式会社島津製作所製、型式:KPR-200、KPR-2000)を用いて測定した。
 サンプルは、一辺5mm以上、厚み5mm以上の直方体形状に加工したものを用い、降温速度-60℃/hで徐冷して得られたサンプルについて測定した。
(Refractive index: nd (A))
The refractive index nd (A) of the adhesive layer with respect to the d-line (wavelength 587.56 nm) was measured using a precision refractive index meter (manufactured by Shimadzu Corporation, model: KPR-200, KPR-2000).
As a sample, a rectangular parallelepiped shape having a side of 5 mm or more and a thickness of 5 mm or more was used, and the sample obtained by slowly cooling at a temperature lowering rate of −60 ° C./h was measured.
(平均熱膨張係数:α(50~350℃))
 50~350℃における平均熱膨張係数を、熱機械分析装置(株式会社リガク製、商品名:TMA8310)を用いて、昇温速度10℃/分の条件により測定した。
 ただし、試験例1-17~1-20、22、25、26については50~300℃における平均熱膨張係数を、試験例1-21、23、24、29については50~250℃における平均熱膨張係数を、それぞれ測定した。
(Average coefficient of thermal expansion: α (50-350 ° C))
The average coefficient of thermal expansion at 50 to 350 ° C. was measured using a thermomechanical analyzer (manufactured by Rigaku Co., Ltd., trade name: TMA8310) under the condition of a heating rate of 10 ° C./min.
However, for Test Examples 1-17 to 1-20, 22, 25, 26, the average coefficient of thermal expansion at 50 to 300 ° C., and for Test Examples 1-21, 23, 24, 29, the average coefficient of thermal expansion at 50 to 250 ° C. The coefficient of expansion was measured respectively.
(ガラス転移温度:Tg、屈伏点:Tc)
 上記平均熱膨張係数の測定時に得られた熱膨張曲線から、膨張の屈曲点(12.3dPa・sの粘度に相当する温度)をガラス転移温度Tg(℃)、見かけ上膨張が停止し、収縮に変わる温度を屈伏点Tc(℃)として求めた。
(Glass transition temperature: Tg, yield point: Tc)
From the thermal expansion curve obtained when measuring the average coefficient of thermal expansion, the bending point of expansion (the temperature corresponding to the viscosity of 12.3 dPa · s) is set to the glass transition temperature Tg (° C.), and the expansion apparently stops and contracts. The temperature at which the temperature changes to is determined as the yield point Tc (° C.).
(透過率)
 透過率は、分光光度計(日本分光株式会社製、型式:V-570)を用いて外部透過率を測定した。
 下記条件による紫外線照射試験前後での、波長265nmにおける透過率、波長260~285nmにおける平均透過率をそれぞれ測定した。当該紫外線照射試験前の波長260~285nmにおける平均透過率の値は、厚さ1mmでの波長260~285nmにおける外部透過率の平均値である。
 紫外線照射試験:前記接着層を構成する無機ガラスを板状に成型したガラス板の両主面を鏡面光学研磨して厚さ1mmとする。前記ガラス板の研磨面の一方を波長220~400nmの紫外線を放射する400Wの高圧水銀ランプ(ハリソン東芝ライティング株式会社製、形式:H400-P)から20cmの位置に対向させて配置し、前記高圧水銀ランプから100時間紫外線を照射する。
 表3、4において、「透過率(265nm)」とは紫外線照射試験前での波長265nmにおける透過率を意味する。「UV照射後透過率」とは紫外線照射試験後での波長265nmにおける透過率を意味する。「平均透過率(260~285nm)」とは紫外線照射試験前での波長260~285nmにおける平均透過率を意味する。「UV照射後平均透過率」とは紫外線照射試験後での波長260~285nmにおける平均透過率を意味する。
(Transmittance)
For the transmittance, the external transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation, model: V-570).
Before and after the ultraviolet irradiation test under the following conditions, the transmittance at a wavelength of 265 nm and the average transmittance at a wavelength of 260 to 285 nm were measured. The value of the average transmittance at a wavelength of 260 to 285 nm before the ultraviolet irradiation test is the average value of the external transmittance at a wavelength of 260 to 285 nm at a thickness of 1 mm.
Ultraviolet irradiation test: Both main surfaces of a glass plate obtained by molding the inorganic glass constituting the adhesive layer into a plate shape are mirror-optically polished to a thickness of 1 mm. One of the polished surfaces of the glass plate is placed so as to face a position 20 cm from a 400 W high-pressure mercury lamp (manufactured by Harrison Toshiba Lighting Co., Ltd., type: H400-P) that emits ultraviolet rays having a wavelength of 220 to 400 nm, and the high pressure is provided. Irradiate ultraviolet rays from a mercury lamp for 100 hours.
In Tables 3 and 4, "transmittance (265 nm)" means the transmittance at a wavelength of 265 nm before the ultraviolet irradiation test. The “transmittance after UV irradiation” means the transmittance at a wavelength of 265 nm after the ultraviolet irradiation test. The "average transmittance (260 to 285 nm)" means the average transmittance at a wavelength of 260 to 285 nm before the ultraviolet irradiation test. The "average transmittance after UV irradiation" means the average transmittance at a wavelength of 260 to 285 nm after the ultraviolet irradiation test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[光学素子:試験例2-1~2-30]
 光学部材として、酸化物基準のモル%表示で、SiO 5.8%、B 66.6%、La 19.3%、Y 8.3%となるように、相当する硝酸塩、硫酸塩、水酸化物、酸化物、ホウ酸などの原料を秤量し、十分混合した後、白金製坩堝に投入し、1150℃~1350℃の温度範囲で1.5時間~3時間加熱、溶解した。この溶融ガラスを予熱した型に流し出して冷やし、板状に成形後、ガラス転移温度近傍の温度で4時間保持した後、-60℃/hの冷却速度で室温まで徐冷した。
[Optical element: Test Examples 2-1 to 2-30]
As an optical member, SiO 2 5.8%, B 2 O 3 66.6%, La 2 O 3 19.3%, Y 2 O 3 8.3% are displayed in mol% based on oxides. , Corresponding raw materials such as nitrates, sulfates, hydroxides, oxides, boric acid, etc. are weighed, mixed well, and then put into a platinum pit, and placed in a temperature range of 1150 ° C to 1350 ° C for 1.5 hours. It was heated for 3 hours and melted. The molten glass was poured into a preheated mold, cooled, formed into a plate, held at a temperature near the glass transition temperature for 4 hours, and then slowly cooled to room temperature at a cooling rate of −60 ° C./h.
 上記で得られた光学部材のd線に対する屈折率nd(O)と屈伏点Tc(O)、ガラス転移点Tg(O)を、上記無機ガラスと同様の方法により測定したところ、屈折率nd(O)は1.74、屈伏点Tc(O)は720℃、ガラス転移点Tg(O)は685℃であった。このうち屈折率及び屈伏点については、試験例1-1~1-30(試験例1-28を除く)で得られた各無機ガラスの屈折率nd(A)及び屈伏点Tc(A)との差をそれぞれとり、Δnd及びΔTcを算出した。結果を表3及び4に示す。 The refractive index nd (O), the yield point Tc (O), and the glass transition point Tg (O) of the optical member obtained above with respect to the d-line were measured by the same method as that of the inorganic glass. The O) was 1.74, the yield point Tc (O) was 720 ° C, and the glass transition point Tg (O) was 685 ° C. Of these, the refractive index and yield point are the refractive index nd (A) and yield point Tc (A) of each inorganic glass obtained in Test Examples 1-1 to 1-30 (excluding Test Example 1-28). The difference between the above was taken, and Δnd and ΔTc were calculated. The results are shown in Tables 3 and 4.
 光学部材として、上記で示した組成のガラス溶融液をガラス溶解炉に取り付けられたパイプから滴下し冷却固化することで粗球形状のガラス粗ボールを得た。次いで、ガラス粗ボールの表面を研磨してガラス研磨ボールを作製した。他にも、板状に成形固化させて得られるガラス板からブレード等による機械加工、および再加熱して変形させることでガラスブロックを作製し、ボール研磨機で表面を研磨することでもガラス研磨ボールを得られる。得られたガラス研磨ボールをスライス加工や研磨加工により半球形状に加工することで、半球レンズ(光学部材)を作製した。
 光学部材に対し、試験例1-1~1-30で得られた接着層となる各ガラスを薄く研磨し、半球レンズ上で、屈伏点Tcより20℃~100℃高い温度で5分~15分加熱して接着することで、各光学素子を得た。なお、接着層の形成は上記の方法に限らず、フリットペースト状にしたものを塗布、またはグリーンシート状に成型したものを半球レンズ上に形成し、同様の熱処理で作製してもよい。試験例2-1~2-27が実施例であり、試験例2-28~2-30が比較例である。
As an optical member, a glass melt having the composition shown above was dropped from a pipe attached to a glass melting furnace and cooled and solidified to obtain a coarse sphere-shaped glass coarse ball. Next, the surface of the rough glass ball was polished to prepare a glass polishing ball. In addition, a glass block can be made by machining with a blade or the like from a glass plate obtained by molding and solidifying it into a plate shape, and by reheating and deforming it, and polishing the surface with a ball polishing machine is also possible. Can be obtained. A hemispherical lens (optical member) was produced by processing the obtained glass polishing ball into a hemispherical shape by slicing or polishing.
Each glass to be the adhesive layer obtained in Test Examples 1-1 to 1-30 is thinly polished on the optical member, and on a hemispherical lens, the temperature is 20 ° C. to 100 ° C. higher than the yield point Tc for 5 minutes to 15 minutes. Each optical element was obtained by heating for a minute and adhering. The formation of the adhesive layer is not limited to the above method, and a frit paste-like material may be applied or a green sheet-like material may be formed on a hemispherical lens and produced by the same heat treatment. Test Examples 2-1 to 2-27 are Examples, and Test Examples 2-28 to 2-30 are Comparative Examples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[接着層(無機ガラス):試験例3-1~3-8]
 表5に示す原料を秤量し、十分混合した後、白金製坩堝に投入し、1150℃~1200℃の温度範囲で1.5時間~3時間加熱、溶融した。この溶融ガラスを予熱した型に流し出して冷やし、板状に成形後、ガラス転移温度近傍の温度で4時間保持した後、-60℃/hの冷却速度で室温まで徐冷した。
 なお、表中、原料の含有量は基本的に酸化物基準のモル%表示であるが、アルカリ金属のみフッ化物基準のモル%表示である。試験例3-1~3-8が実施例にかかる無機ガラスである。また、表中の空欄は、その成分を実質的に含有していないことを示す。また、表中のF(フッ素)は、蛍光X線分析にて分析した無機ガラス中のFの含有量(質量%表示)である。
[Adhesive layer (inorganic glass): Test Examples 3-1 to 3-8]
The raw materials shown in Table 5 were weighed, mixed sufficiently, and then put into a platinum crucible and heated and melted in a temperature range of 1150 ° C. to 1200 ° C. for 1.5 hours to 3 hours. The molten glass was poured into a preheated mold, cooled, formed into a plate, held at a temperature near the glass transition temperature for 4 hours, and then slowly cooled to room temperature at a cooling rate of −60 ° C./h.
In the table, the content of raw materials is basically expressed in mol% based on oxides, but only alkali metals are expressed in mol% based on fluoride. Test Examples 3-1 to 3-8 are the inorganic glasses according to the examples. In addition, blanks in the table indicate that the component is not substantially contained. Further, F (fluorine) in the table is the content of F (indicated by mass%) in the inorganic glass analyzed by fluorescent X-ray analysis.
 得られた無機ガラスについて、各物性を上記で説明した方法により測定した。ただし、平均熱膨張係数αは、表6中に示す温度範囲を測定した。結果を表6に示す。なお、試験例3-1~3-8における「N.D.」とは測定を行っていないことを意味する。 The physical characteristics of the obtained inorganic glass were measured by the method described above. However, the average coefficient of thermal expansion α was measured in the temperature range shown in Table 6. The results are shown in Table 6. In addition, "ND" in Test Examples 3-1 to 3-8 means that the measurement has not been performed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[光学素子:試験例4-1~4-8]
 光学部材として、試験例2-1~2-30で用いたものと同様の光学部材を用意した。この光学部材と試験例3-1~3-8で得られた各無機ガラスの屈折率nd(A)及び屈伏点Tc(A)との差をそれぞれとり、Δnd及びΔTcを算出した。結果を表6に示す。
[Optical element: Test Examples 4-1 to 4-8]
As the optical member, the same optical member as that used in Test Examples 2-1 to 2-30 was prepared. The difference between the optical member and the refractive index nd (A) and the yield point Tc (A) of each of the inorganic glasses obtained in Test Examples 3-1 to 3-8 was taken to calculate Δnd and ΔTc, respectively. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1~6の結果より、波長260~285nmの短波長紫外線(UV-C)に対する透過性及びUV-C耐性に優れた無機ガラスが得られた。かかる無機ガラスは、屈伏点Tcが従来のガラスに比して低いことから、部材の接着に好適に利用できる。また、被着物である光学部材との屈折率差が小さいため、LED素子とレンズ等の光学部材との接着や、グラスファイバー同士の接着、レンズ同士の接着等に用いた際に、反射や吸収による光の損失が小さく、光の取出し効率や透過率の低下を防ぐことができることが示唆された。 From the results in Tables 1 to 6, inorganic glass having excellent transparency to short wavelength ultraviolet rays (UV-C) having a wavelength of 260 to 285 nm and UV-C resistance was obtained. Since such inorganic glass has a lower yield point Tc than conventional glass, it can be suitably used for bonding members. In addition, since the difference in refractive index between the optical member, which is an adherend, is small, reflection or absorption occurs when the LED element is used for bonding an optical member such as a lens, glass fibers, or lenses. It was suggested that the loss of light due to this is small, and it is possible to prevent a decrease in light extraction efficiency and transmittance.
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2019年8月30日出願の日本特許出願(特願2019-158703)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on August 30, 2019 (Japanese Patent Application No. 2019-158703), the contents of which are incorporated herein by reference.
1 光学部材
2 接着層
3 LED素子
4 基板
10 光学素子
20 発光装置
1 Optical member 2 Adhesive layer 3 LED element 4 Substrate 10 Optical element 20 Light emitting device

Claims (15)

  1.  光学部材と接着層とを備える光学素子であって、
     前記光学部材は、光入射面及び光出射面を有し、前記光入射面及び前記光出射面の少なくともいずれか一方に光学機能面を備え、
     前記接着層は、前記光学部材の前記光入射面及び前記光出射面の少なくともいずれか一方の表面上に設けられ、
     前記接着層は、無機ガラスからなり、厚さ1mmでの波長260~285nmにおける外部透過率の平均値が30%以上である光学素子。
    An optical element having an optical member and an adhesive layer.
    The optical member has a light incident surface and a light emitting surface, and has an optical functional surface on at least one of the light incident surface and the light emitting surface.
    The adhesive layer is provided on at least one surface of the light incident surface and the light emitting surface of the optical member.
    The adhesive layer is an optical element made of inorganic glass and having an average value of external transmittance of 30% or more at a wavelength of 260 to 285 nm at a thickness of 1 mm.
  2.  d線(波長587.6nm)に対する、前記光学部材の屈折率nd(O)と前記接着層の屈折率nd(A)との差の絶対値Δndが、Δnd=|nd(O)-nd(A)|≦0.35である、請求項1に記載の光学素子。 The absolute value Δnd of the difference between the refractive index nd (O) of the optical member and the refractive index nd (A) of the adhesive layer with respect to the d-line (wavelength 587.6 nm) is Δnd = | nd (O) -nd ( A) The optical element according to claim 1, wherein | ≤ 0.35.
  3.  前記光学部材の屈伏点Tc(O)と前記接着層の屈伏点Tc(A)との差の絶対値ΔTcが、ΔTc=|Tc(O)-Tc(A)|≧300(℃)である、請求項1又は2に記載の光学素子。 The absolute value ΔTc of the difference between the yield point Tc (O) of the optical member and the yield point Tc (A) of the adhesive layer is ΔTc = | Tc (O) −Tc (A) | ≧ 300 (° C.). , The optical element according to claim 1 or 2.
  4.  前記接着層の屈伏点Tc(A)が、Tc(A)≦400(℃)である、請求項1~3のいずれか1項に記載の光学素子。 The optical element according to any one of claims 1 to 3, wherein the yield point Tc (A) of the adhesive layer is Tc (A) ≤400 (° C.).
  5.  前記接着層を構成する前記無機ガラスは、下記条件による紫外線照射試験前後での、波長260~285nmにおける平均透過率の差が10%以下である、請求項1~4のいずれか1項に記載の光学素子。
     紫外線照射試験:前記無機ガラスを板状に成型したガラス板の両主面を鏡面光学研磨して厚さ1mmとする。前記ガラス板の研磨面の一方を波長220~400nmの紫外線を放射する400Wの高圧水銀ランプから20cmの位置に対向させて配置し、前記高圧水銀ランプから100時間紫外線を照射する。
    The inorganic glass constituting the adhesive layer has a difference in average transmittance of 10% or less at a wavelength of 260 to 285 nm before and after an ultraviolet irradiation test under the following conditions, according to any one of claims 1 to 4. Optical element.
    Ultraviolet irradiation test: Both main surfaces of the glass plate obtained by molding the inorganic glass into a plate shape are mirror-optically polished to a thickness of 1 mm. One of the polished surfaces of the glass plate is arranged so as to face a position 20 cm from a 400 W high-pressure mercury lamp that emits ultraviolet rays having a wavelength of 220 to 400 nm, and the high-pressure mercury lamp is irradiated with ultraviolet rays for 100 hours.
  6.  前記接着層の厚さが0.01~0.2mmである、請求項1~5のいずれか1項に記載の光学素子。 The optical element according to any one of claims 1 to 5, wherein the thickness of the adhesive layer is 0.01 to 0.2 mm.
  7.  前記光学部材は、レンズ、レンズアレイ、回折格子、回折光学素子又はグレーティングセルアレイである請求項1~6のいずれか1項に記載の光学素子。 The optical element according to any one of claims 1 to 6, wherein the optical member is a lens, a lens array, a diffraction grating, a diffraction optical element, or a grating cell array.
  8.  部材の接着に用いられるガラスであって、
     厚さ1mmでの波長260~285nmにおける外部透過率の平均値が30%以上であり、
     屈伏点Tc(A)が、Tc(A)≦400(℃)であるガラス。
    Glass used for bonding members
    The average value of the external transmittance at a wavelength of 260 to 285 nm at a thickness of 1 mm is 30% or more.
    A glass having a yield point Tc (A) of Tc (A) ≤ 400 (° C.).
  9.  d線(波長587.6nm)に対する、接着する前記部材の屈折率nd(O)と前記ガラスの屈折率nd(A)との差の絶対値Δndが、Δnd=|nd(O)-nd(A)|≦0.35である、請求項8に記載のガラス。 The absolute value Δnd of the difference between the refractive index nd (O) of the member to be bonded and the refractive index nd (A) of the glass with respect to the d-line (wavelength 587.6 nm) is Δnd = | nd (O) -nd ( A) The glass according to claim 8, wherein | ≤ 0.35.
  10.  屈折率nd(A)が、nd(A)≧1.50である、請求項8又は9に記載のガラス。 The glass according to claim 8 or 9, wherein the refractive index nd (A) is nd (A) ≥ 1.50.
  11.  酸化物基準のモル%表示での含有量が、
     P、ZnO及びLiOの合計 65%以上、かつ
     Nb、TiO、CeO、V、Bi及びWOの合計 0.1%未満、である請求項8~10のいずれか1項に記載のガラス。
    The content in molar% of the oxide standard is
    The total of P 2 O 5 , ZnO and Li 2 O is 65% or more, and the total of Nb 2 O 5 , TiO 2 , CeO 2 , V 2 O 5 , Bi 2 O 3 and WO 3 is less than 0.1%. The glass according to any one of claims 8 to 10.
  12.  酸化物基準のモル%表示での含有量が、
     Fe 0.01%未満、
    である請求項8~11のいずれか1項に記載のガラス。
    The content in molar% of the oxide standard is
    Fe 2 O 3 less than 0.01%,
    The glass according to any one of claims 8 to 11.
  13.  下記条件による紫外線照射試験後の波長265nmにおける透過率が30%以上である、請求項8~12のいずれか1項に記載のガラス。
     紫外線照射試験:ガラスを板状に成型したガラス板の両主面を鏡面光学研磨して厚さ1mmとする。前記ガラス板の研磨面の一方を波長220~400nmの紫外線を放射する400Wの高圧水銀ランプから20cmの位置に対向させて配置し、前記高圧水銀ランプから100時間紫外線を照射する。
    The glass according to any one of claims 8 to 12, which has a transmittance of 30% or more at a wavelength of 265 nm after an ultraviolet irradiation test under the following conditions.
    Ultraviolet irradiation test: Both main surfaces of a glass plate obtained by molding glass into a plate shape are mirror-optically polished to a thickness of 1 mm. One of the polished surfaces of the glass plate is arranged so as to face a position 20 cm from a 400 W high-pressure mercury lamp that emits ultraviolet rays having a wavelength of 220 to 400 nm, and the high-pressure mercury lamp is irradiated with ultraviolet rays for 100 hours.
  14.  酸化物基準のモル%表示での含有量が、
     P 30~60%、
     ZnO 10~60%、
     LiO 1~30%、
     SiO 0~6%、
     Al 0~6%、
     NaO 0~20%、
     KO 0~15%、
     BaO 0~10%、
     CaO 0~10%、
     Ta 0~3%、
     SnO 0~3%、
     La 0~5%、
     Gd 0~5%、かつ
     Y 0~5%、
    である請求項8~13のいずれか1項に記載のガラス。
    The content in molar% of the oxide standard is
    P 2 O 5 30-60%,
    ZnO 10-60%,
    Li 2 O 1-30%,
    SiO 2 0 ~ 6%,
    Al 2 O 3 0 ~ 6% ,
    Na 2 O 0 to 20%,
    K 2 O 0 to 15%,
    BaO 0-10%,
    CaO 0-10%,
    Ta 2 O 5 0 ~ 3% ,
    SnO 0-3%,
    La 2 O 3 0 ~ 5% ,
    Gd 2 O 30 to 5% and Y 2 O 30 to 5%,
    The glass according to any one of claims 8 to 13.
  15.  基板と、
     前記基板上に設けられたLED素子と、
     前記LED素子上に設けられ、前記LED素子から出射する光を透過して、外部に照射可能とする無機ガラスからなる光学部材と、
     前記LED素子と前記光学部材との間に設けられた接着層と、
    を有し、
     前記接着層が、請求項8~14のいずれか1項に記載のガラスからなる、発光装置。
    With the board
    The LED element provided on the substrate and
    An optical member provided on the LED element and made of inorganic glass that allows light emitted from the LED element to be transmitted and irradiated to the outside.
    An adhesive layer provided between the LED element and the optical member,
    Have,
    A light emitting device in which the adhesive layer is made of the glass according to any one of claims 8 to 14.
PCT/JP2020/031864 2019-08-30 2020-08-24 Optical element, glass, and luminescence device WO2021039730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542898A JPWO2021039730A1 (en) 2019-08-30 2020-08-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019158703 2019-08-30
JP2019-158703 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021039730A1 true WO2021039730A1 (en) 2021-03-04

Family

ID=74684211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031864 WO2021039730A1 (en) 2019-08-30 2020-08-24 Optical element, glass, and luminescence device

Country Status (2)

Country Link
JP (1) JPWO2021039730A1 (en)
WO (1) WO2021039730A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167024A1 (en) * 2022-03-03 2023-09-07 Agc株式会社 Light-emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188544A (en) * 1996-01-10 1997-07-22 Asahi Glass Co Ltd Glass composition
JPH11349347A (en) * 1998-06-08 1999-12-21 Asahi Glass Co Ltd Crystalline low melting point glass composition
JP2002176200A (en) * 2000-09-12 2002-06-21 Lumileds Lighting Us Llc Light emitting diode having improved light extraction efficiency
JP2004284934A (en) * 2002-04-24 2004-10-14 Central Glass Co Ltd Lead-free low-melting point glass
WO2011132399A1 (en) * 2010-04-19 2011-10-27 パナソニック株式会社 Glass composition, light source device and illumination device
JP2018035046A (en) * 2016-09-01 2018-03-08 セントラル硝子株式会社 Encapsulation material for light source and glass material for encapsulation material for light source
WO2019142936A1 (en) * 2018-01-22 2019-07-25 Agc株式会社 Ultraviolet ray-transmitting glass and molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188544A (en) * 1996-01-10 1997-07-22 Asahi Glass Co Ltd Glass composition
JPH11349347A (en) * 1998-06-08 1999-12-21 Asahi Glass Co Ltd Crystalline low melting point glass composition
JP2002176200A (en) * 2000-09-12 2002-06-21 Lumileds Lighting Us Llc Light emitting diode having improved light extraction efficiency
JP2004284934A (en) * 2002-04-24 2004-10-14 Central Glass Co Ltd Lead-free low-melting point glass
WO2011132399A1 (en) * 2010-04-19 2011-10-27 パナソニック株式会社 Glass composition, light source device and illumination device
JP2018035046A (en) * 2016-09-01 2018-03-08 セントラル硝子株式会社 Encapsulation material for light source and glass material for encapsulation material for light source
WO2019142936A1 (en) * 2018-01-22 2019-07-25 Agc株式会社 Ultraviolet ray-transmitting glass and molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167024A1 (en) * 2022-03-03 2023-09-07 Agc株式会社 Light-emitting device

Also Published As

Publication number Publication date
JPWO2021039730A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP6341836B2 (en) Optical glass and optical element
JP6603449B2 (en) Glass, glass material for press molding, optical element blank, and optical element
CN112047625B (en) Ultraviolet-transmitting optical glass
TWI663137B (en) Glass, glass materials for press molding, blanks for optical elements, and optical elements
JP6037501B2 (en) Optical glass, optical element, and method for producing glass molded body
TWI610900B (en) Glass, glass material for press molding, optical component blanks and optical components
US20240124344A1 (en) Uv-transmitting glass and molded products
JP2021008397A (en) Glass, glass material for press-molding, optical element blank, and optical element
WO2021039730A1 (en) Optical element, glass, and luminescence device
JP6396622B1 (en) Glass, glass material for press molding, optical element blank, and optical element
JP2014034472A (en) Optical glass, optical element, and method of producing glass molding
JP2012224501A (en) Optical glass, optical element and preform
JP6280284B1 (en) Glass, glass material for press molding, optical element blank, and optical element
JP6639074B2 (en) Optical glass, lens preform and optical element
JP6693726B2 (en) Glass, glass material for press molding, optical element blank, and optical element
JP2016074566A (en) Optical glass, lens preform and optical element
JP2014015384A (en) Optical glass, preform and optical element
US20210384391A1 (en) Optical member with adhesive layer and light emitting device
JP2021050125A (en) Optical glass and optical element
JP2014015383A (en) Optical glass, preform and optical element
JP2014111521A (en) Optical glass, preform, and optical element
JP2013151402A (en) Optical glass, preform and optical element
JP5988427B2 (en) Optical glass, optical element, and method for producing glass molded body
JP2021050126A (en) Optical glass and optical element
WO2022255336A1 (en) Optical glass, near-infrared cut filter, glass element for press molding, optical element blank, and optical elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857216

Country of ref document: EP

Kind code of ref document: A1