WO2021039219A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2021039219A1
WO2021039219A1 PCT/JP2020/028305 JP2020028305W WO2021039219A1 WO 2021039219 A1 WO2021039219 A1 WO 2021039219A1 JP 2020028305 W JP2020028305 W JP 2020028305W WO 2021039219 A1 WO2021039219 A1 WO 2021039219A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
degrees
substrate
display device
crystal display
Prior art date
Application number
PCT/JP2020/028305
Other languages
English (en)
French (fr)
Inventor
美彦 黒田
宮地 弘一
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2021542639A priority Critical patent/JPWO2021039219A1/ja
Priority to CN202080048844.7A priority patent/CN114096912B/zh
Priority to US17/628,210 priority patent/US20220252943A1/en
Publication of WO2021039219A1 publication Critical patent/WO2021039219A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133773Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers the alignment material or treatment being different for the two opposite substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133746Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for high pretilt angles, i.e. higher than 15 degrees

Definitions

  • This disclosure relates to a liquid crystal display device.
  • liquid crystal display modes For liquid crystal displays, especially liquid crystal display panels for large TVs, viewing angle, transmittance, response time, etc. are important performance indicators.
  • 4D-RTN (4Domain-Reverse Twisted Nematic) mode
  • PSA Polymer Sustained Alignment
  • IPS In Plane Switching
  • FFS Frringe Field
  • Various modes such as a switching mode have been developed (see, for example, Patent Document 1). At present, large-sized TVs using these liquid crystal display mode technologies are mass-produced.
  • Patent Document 2 discloses a technique utilizing 4D-ECB mode (4Domain-Electrically Controlled Birefringence) for the purpose of improving the transmittance of 4D-RTN using a photoalignment film. ..
  • 4D-ECB mode (4Domain-Electrically Controlled Birefringence) for the purpose of improving the transmittance of 4D-RTN using a photoalignment film. ..
  • the twist angle of the liquid crystal molecules is set to be substantially 0 degrees.
  • the liquid crystal display device described in Patent Document 2 cannot be said to be excellent in viewing angle characteristics. In order to obtain a liquid crystal display device with higher quality than before, it is required to achieve both transmittance characteristics and viewing angle characteristics.
  • the present disclosure has been made in view of the above problems, and one object of the present disclosure is to provide a liquid crystal display device having excellent transmittance characteristics and viewing angle characteristics.
  • the present inventors have diligently studied to solve the above problems, and have solved the problems of the present disclosure by paying attention to the relationship between the direction in which the slit extends in the pixel electrode and the orientation direction of the liquid crystal molecules. Specifically, the present disclosure employs the following means.
  • a liquid crystal display device in which a plurality of pixels are arranged in a display area, a first substrate provided with pixel electrodes having slits, and a second substrate arranged so as to face the first substrate.
  • a liquid crystal layer provided between the first substrate and the second substrate and containing liquid crystal molecules having negative dielectric constant anisotropy, a first alignment film formed on the first substrate, and the first alignment film.
  • a second alignment film formed on two substrates is provided, and at least one of the first alignment film and the second alignment film is a photoalignment film, and each pixel in the plurality of pixels is subjected to a voltage application.
  • the liquid crystal molecules have a plurality of orientation regions different from each other, and the slits are arranged in each orientation region in the plurality of orientation regions and obliquely formed so as to extend obliquely with respect to each side of the pixel.
  • a liquid crystal having a slit portion, in which the direction in which the oblique slit portion extends and the long axis direction of the liquid crystal molecules existing near the center in the thickness direction of the liquid crystal layer when no voltage is applied are projected onto the first substrate.
  • a liquid crystal display device having an angle of 15 degrees or more and 85 degrees or less with the projection direction.
  • a liquid crystal display device in which a plurality of pixels are arranged in a display area, a first substrate provided with pixel electrodes having slits, and a second substrate arranged so as to face the first substrate.
  • a liquid crystal layer provided between the first substrate and the second substrate and containing a liquid crystal molecule having a negative dielectric constant anisotropy, a first alignment film formed on the first substrate, and the above.
  • At least one of the first alignment film and the second alignment film is a photo-alignment film, and each pixel in the plurality of pixels has a plurality of orientation regions in which the orientation directions of the liquid crystal molecules are different from each other when a voltage is applied.
  • the slit is arranged in each orientation region in the plurality of orientation regions, has an oblique slit portion formed so as to extend in an oblique direction with respect to each side of the pixel, and has the first polarization in a plan view.
  • the transmission axis of the plate and the transmission axis of the second polarizing plate are orthogonal to each other, and the axial direction of the transmission axis of the first polarizing plate is defined as 0 degrees, and the axial direction of the transmission axis of the second polarizing plate is defined as 90 degrees.
  • the liquid crystal projection direction which is the direction in which the long axis direction of the liquid crystal molecules existing near the center in the thickness direction of the liquid crystal layer is projected onto the first substrate, is each of the plurality of orientation regions.
  • a liquid crystal display device in which the degree is 0 degrees or more and 30 degrees or less, and the direction in which the oblique slit portion extends is 45 degrees or more and 85 degrees or less in each of the plurality of orientation regions.
  • FIG. 1 is a schematic view showing a schematic configuration of a liquid crystal display device.
  • FIG. 2 is a schematic diagram showing the arrangement of pixels.
  • FIG. 3 is a schematic view showing a tilt direction and an orientation direction in a pixel included in the liquid crystal display device of the first embodiment.
  • FIG. 4 is a schematic view showing a tilt direction and an orientation direction in a pixel included in the liquid crystal display device of the first embodiment.
  • FIG. 5 is a diagram showing voltage-transmittance characteristics in the liquid crystal display device of FIG.
  • FIG. 6 is a diagram showing voltage-transmittance characteristics in the liquid crystal display device of FIG.
  • FIG. 7 is a diagram showing voltage-transmittance characteristics in the liquid crystal display device of FIG. FIG.
  • FIG. 8 is a schematic diagram showing a tilt direction and an orientation direction in the pixels of the liquid crystal display device of the comparative example (Comparative Example 3).
  • FIG. 9 is a schematic view showing the pretilt angle of the liquid crystal molecules in the uni-oriented region.
  • FIG. 10 is a schematic view showing a tilt direction and an orientation direction in a pixel included in the liquid crystal display device of the second embodiment.
  • FIG. 11 is a diagram showing voltage-transmittance characteristics in the liquid crystal display device of FIG.
  • FIG. 12 is a schematic view showing a tilt direction and an orientation direction in a pixel included in the liquid crystal display device of the third embodiment.
  • FIG. 13 is a schematic view showing a tilt direction and an orientation direction in the pixels of the liquid crystal display device of the fourth embodiment.
  • FIG. 14 is a diagram showing voltage-transmittance characteristics in the liquid crystal display device of FIG.
  • FIG. 15 is a schematic view showing a tilt direction and an orientation direction in a pixel included in the liquid crystal display device of another embodiment.
  • FIG. 16 is a schematic view showing a tilt direction and an orientation direction in the pixels of the liquid crystal display device of the second embodiment.
  • FIG. 17 is a schematic view showing a tilt direction and an orientation direction in the pixels of the liquid crystal display device of the seventh embodiment.
  • FIG. 18 is a schematic view showing a tilt direction and an orientation direction in the pixels of the liquid crystal display device of the eighth embodiment.
  • FIG. 19 is a schematic view showing a tilt direction and an orientation direction in the pixels of the liquid crystal display device of the ninth embodiment.
  • FIG. 15 is a schematic view showing a tilt direction and an orientation direction in a pixel included in the liquid crystal display device of another embodiment.
  • FIG. 16 is a schematic view showing a tilt direction and an orientation direction in the pixels of the liquid crystal display device
  • FIG. 20 is a schematic view showing a tilt direction and an orientation direction in the pixels of the liquid crystal display devices of Comparative Example 1 and Comparative Example 2.
  • FIG. 21 is a schematic view showing a tilt direction and an orientation direction in the pixels of the liquid crystal display devices of Comparative Example 4 and Comparative Example 5.
  • FIG. 22 is a schematic view showing a tilt direction and an orientation direction in the pixels of the liquid crystal display device of Comparative Example 6.
  • FIG. 23 is a diagram showing the liquid crystal projection angle-transmittance characteristic.
  • FIG. 24 is a diagram showing the slit angle-transmittance characteristic.
  • a "pixel” is a minimum unit for expressing the shade (gradation) of each color in a display, and corresponds to a unit for expressing each gradation of R, G, and B in a color display device, for example. To do. Therefore, when the term “pixel” is used, it refers to each of the R pixel, the G pixel, and the B pixel, not the color display pixel (picture element) in which the R pixel, the G pixel, and the B pixel are combined. That is, in the case of a color display device, one pixel corresponds to any color of the color filter.
  • the "pre-tilt angle” is an angle formed by the surface of the alignment film and the long axis direction of the liquid crystal molecules in the vicinity of the alignment film when no voltage is applied to the liquid crystal display device (voltage off state).
  • Orientation means the orientation on the substrate surface or a plane parallel to the substrate surface. However, the orientation does not take into account the inclination angle of the substrate surface with respect to the normal direction. Unless otherwise specified, the azimuth is defined as the reference azimuth (0 degree) parallel to the lower side of the pixel when viewed from the front of the display area and extending to the right, and counterclockwise is represented as a positive angle.
  • the "orientation orientation of the liquid crystal layer” is a liquid crystal molecule existing near the center in the thickness direction of the liquid crystal layer (more specifically, near the center in the layer plane of the liquid crystal layer of each pixel and in the thickness direction of the liquid crystal layer).
  • the long-axis end on the substrate (first substrate) side where the pixel electrodes are arranged is the start point
  • the long-axis end on the other substrate (second substrate) side is the end point in the liquid crystal molecules existing near the center of the above. It means the direction to do. Therefore, the "direction in which the long axis direction of the liquid crystal molecules existing near the center in the thickness direction of the liquid crystal layer is projected onto the first substrate” is the first substrate side of the liquid crystal molecules existing near the center in the thickness direction of the liquid crystal layer. It means the direction in which the direction from the long-axis end of the second substrate to the end of the long-axis end on the second substrate side is projected onto the first substrate.
  • the "tilt orientation” starts at the long-axis end of the liquid crystal molecules existing near the alignment film on the alignment film side and ends at the long-axis end on the opposite side of the alignment film when the voltage is off. Means direction.
  • the liquid crystal display device 10 is a thin film transistor (TFT) type liquid crystal display device, and a plurality of pixels 30 are arranged side by side in the display area 29.
  • the liquid crystal display device 10 includes a pair of substrates composed of a first substrate 11 and a second substrate 12, a liquid crystal layer 13 arranged between the first substrate 11 and the second substrate 12, and a liquid crystal layer 13. It has.
  • TFT thin film transistor
  • the present disclosure may be applied to other drive methods (for example, passive matrix method, plasma address method, etc.).
  • the first substrate 11 has a pixel electrode 15 made of a transparent conductor such as ITO (Indium Tin Oxide), a TFT as a switching element, and a scanning line on the surface of the transparent substrate 14 made of glass, resin, or the like on the liquid crystal layer 13 side. It is a TFT substrate on which various wirings such as signals and signal lines are arranged.
  • the pixel electrode 15 is an electrode (slit electrode) provided with a slit.
  • the second substrate 12 is provided with a black matrix 17, a color filter 18, and a counter electrode 19 (also referred to as a common electrode) made of a transparent conductor on the surface of the transparent substrate 16 made of glass, resin, or the like on the liquid crystal layer 13 side. It is a CF substrate.
  • the counter electrode 19 is a planar electrode in which a slit is not formed.
  • the pair of substrates 11 and 12 are formed with a liquid crystal alignment film that orients liquid crystal molecules in the vicinity of the substrate surface in a predetermined direction with respect to the substrate surface (that is, the electrode arrangement surface).
  • the liquid crystal alignment film is a vertical alignment film that orients the liquid crystal molecules so that the long axis direction of the liquid crystal molecules is perpendicular to the substrate surface when the voltage is off.
  • the liquid crystal display device 10 includes, as liquid crystal alignment films, a first alignment film 22 formed on the electrode arrangement surface of the first substrate 11 and a second alignment film 23 formed on the electrode arrangement surface of the second substrate 12. have.
  • the first substrate 11 and the second substrate 12 are provided with a predetermined gap (cell gap) via the spacer 24 so that the electrode arrangement surface of the first substrate 11 and the electrode arrangement surface of the second substrate 12 face each other. Is arranged.
  • FIG. 1 shows a case where the spacer 24 is a columnar spacer, it may be a spacer for another liquid crystal device such as a bead spacer.
  • the pair of substrates 11 and 12 arranged to face each other are bonded to each other via a sealing material 25 at the peripheral edge thereof.
  • the space surrounded by the first substrate 11, the second substrate 12, and the sealing material 25 is filled with the liquid crystal composition.
  • the liquid crystal layer 13 is formed between the first substrate 11 and the second substrate 12.
  • the liquid crystal layer 13 is filled with liquid crystal molecules having a negative dielectric anisotropy.
  • the thickness (d) of the liquid crystal layer 13 is, for example, 1.5 to 8.0 ⁇ m, preferably 2.0 ⁇ m or more.
  • a polarizing plate is arranged on the outside of each of the first substrate 11 and the second substrate 12.
  • the liquid crystal display device 10 includes a first polarizing plate 27 provided on the first substrate 11 side and a second polarizing plate 28 provided on the second substrate 12 side as polarizing plates.
  • the transmission axis 27a of the first polarizing plate 27 and the transmission axis 28a of the second polarizing plate 28 are arranged so as to be orthogonal to each other when viewed from the front of the display region 29.
  • a terminal region is provided on the outer edge portion of the first substrate 11.
  • the liquid crystal display device 10 is driven by connecting a driver IC or the like for driving the liquid crystal to this terminal region.
  • FIG. 2 is a schematic view showing the arrangement of pixels 30 when the display area 29 of the liquid crystal display device 10 is viewed from the second substrate 12 side.
  • the cone of reference numeral 35 represents a liquid crystal molecule.
  • the apex side of the cone represents the first substrate 11 side
  • the bottom surface side of the cone represents the second substrate 12 side.
  • FIG. 2 shows the liquid crystal molecules 35 for some pixels.
  • the pixel 30 has a rectangular shape and includes a long side portion 30a extending in the vertical direction and a short side portion 30b extending in the horizontal direction (see FIG. 3A). As shown in FIG. 2, a plurality of pixels 30 are arranged in a matrix in the vertical direction (Y-axis direction in FIG. 2) and the horizontal direction (X-axis direction in FIG. 2) in the display area 29.
  • the lateral direction of the pixel 30 and the X-axis direction are parallel
  • the longitudinal direction of the pixel 30 and the Y-axis direction are parallel.
  • the X-axis direction is a direction parallel to the axial direction of the first transmission axis 27a
  • the Y-axis direction is a direction parallel to the axial direction of the second transmission axis 28a.
  • Each pixel 30 has a plurality of regions in which the orientation directions of the liquid crystal layer 13 when the voltage is turned on are different from each other. This compensates for the viewing angle characteristic of the liquid crystal display device 10.
  • each pixel 30 is formed with four orientation regions in which the orientation directions of the liquid crystal layer 13 when the voltage is turned on are different from each other.
  • each pixel 30 has a first domain 31, a second domain 32, a third domain 33, and a fourth domain 34 as a plurality of orientation regions. These four domains 31 to 34 are arranged side by side in the vertical direction (that is, a direction parallel to the axial direction of the second transmission axis 28a) in one pixel.
  • the orientation orientation of the liquid crystal layer 13 when the voltage is off satisfies ⁇ degree, 180- ⁇ degree, 180 + ⁇ degree, and ⁇ degree (however, 0 ⁇ ⁇ ⁇ 30 degrees. ) Is one of them.
  • the orientation of the liquid crystal layer 13 when the voltage is off is the first to fourth domains. In each of 31 to 34, it is in the range of 0 degrees or more and 30 degrees or less.
  • the orientation is represented by an angle of 0 degrees or more and 90 degrees or less.
  • the short side direction (X-axis direction) of the pixel 30 and the liquid crystal when the voltage is off The angle formed by the orientation of the layer 13 with the orientation is also referred to as "liquid crystal projection angle ⁇ ".
  • the liquid crystal projection angle ⁇ refers to the smaller angle between the lateral direction of the pixel 30 and the orientation direction of the liquid crystal layer 13 when the voltage is off.
  • FIG. 3 shows the tilt orientation of the liquid crystal molecules near the first substrate 11
  • (b) shows the tilt orientation of the liquid crystal molecules near the second substrate 12
  • (c) and (d) are.
  • (e) shows the orientation orientation of the liquid crystal layer 13 when the voltage is on.
  • the white arrows in FIGS. 3 (a) and 3 (b) indicate the tilt direction.
  • 3A and 3B are schematic views of the liquid crystal alignment film formed on the substrate as viewed from the liquid crystal layer 13 side.
  • 3 (c) to 3 (e) are schematic views of the liquid crystal display device 10 viewed from the second substrate 12 side in a plan view.
  • FIGS. 3 (d) and 3 (e) also show the pixel electrodes 15 provided on the first substrate 11.
  • the third domain 33 is 190 degrees
  • the fourth domain 34 is 170 degrees (see FIG. 3A).
  • the third domain 33 has 170 degrees and the fourth domain 34 has 190 degrees (see FIG. 3B).
  • At least one of the first alignment film 22 and the second alignment film 23 is a photo-alignment film, and in the present embodiment, both the first alignment film 22 and the second alignment film 23 are photo-alignment films.
  • the first alignment film 22 and the second alignment film 23 are relative to a coating film formed by using a polymer composition containing a polymer having a photo-oriented group (hereinafter, referred to as “liquid crystal alignment agent”). It is formed by obliquely irradiating polarized radiation a plurality of times using a photomask (for example, a polarizer). As a result, a plurality of regions in which the orientation directions of the liquid crystal layers 13 are different from each other when the voltage is turned on are formed in one pixel.
  • a photomask for example, a polarizer
  • a “photo-alignment film” is a liquid crystal alignment formed by irradiating a coating film formed by using a polymer having a photo-aligning group with polarized or unpolarized light. Refers to a membrane.
  • the "photooriented group” is a functional group that imparts anisotropy to the film by a photoisomerization reaction, a photodimerization reaction, a photodecomposition reaction, a photorearrangement reaction, or the like by light irradiation.
  • the polymer component of the liquid crystal alignment agent is not particularly limited, but a polymer obtained by using a polyamic acid, a polyamic acid ester, a polyimide, a polyorganosiloxane, and a monomer having an unsaturated bond (hereinafter, "unsaturated single amount"). It is preferably at least one polymer selected from the group consisting of "systematic polymers").
  • the unsaturated monomer-based polymer include a maleimide-based polymer and a (meth) acrylic-based polymer.
  • the maleimide-based polymer means a polymer having a structural unit derived from a maleimide compound.
  • the maleimide-based polymer is preferably a polymer having a structural unit derived from a maleimide compound and a structural unit derived from a styrene compound (styrene-maleimide-based polymer).
  • the photoorientating group includes an azobenzene-containing group containing azobenzene or a derivative thereof as a basic skeleton, a lauric acid structure-containing group containing katsura acid or a derivative thereof (katsura acid structure) as a basic skeleton, and chalcone or a derivative thereof as a basic skeleton.
  • Examples thereof include a chalcone-containing group, a benzophenone-containing group containing benzophenone or a derivative thereof as a basic skeleton, a phenylbenzoate-containing group containing phenylbenzoate or a derivative thereof as a basic skeleton, and a coumarin-containing group containing coumarin or a derivative thereof as a basic skeleton.
  • the liquid crystal aligning agent used when forming the first alignment film 22 and the second alignment film 23 preferably contains a polymer having a cinnamic acid structure-containing group because of its high photoreactivity.
  • the pre-tilt angle defined by the first alignment film 22 and the pre-tilt angle defined by the second alignment film 23 is less than 90 degrees from the viewpoint of suppressing the response delay of the liquid crystal molecules 35.
  • the pre-tilt angle defined by the first alignment film 22 and the pre-tilt angle defined by the second alignment film 23 are both less than 90 degrees.
  • the pretilt angle is preferably 89.9 degrees or less, more preferably 89.5 degrees or less, and even more preferably 89.0 degrees or less.
  • the pretilt angle is preferably 81.0 degrees or more, more preferably 83.0 degrees or more, and further preferably 84.0 degrees or more. is there.
  • the pixel electrode 15 is provided with a plurality of slits 15a which are openings (see FIGS. 3 (d) and 3 (e)).
  • the slit 15a is an oblique slit extending in an oblique direction with respect to each side (long side portion 30a and short side portion 30b) of the pixel 30.
  • the slit 15a is formed on the entire surface of the pixel region.
  • a plurality of linear electrodes 15b extending in parallel in the direction in which the slit 15a extends are arranged on the entire surface.
  • the width of the slit 15a (hereinafter, also referred to as “slit width”) is, for example, 1 to 8 ⁇ m, preferably 5 ⁇ m or less.
  • the distance between the slits 15a adjacent to each other (that is, the width of the linear electrode 15b; hereinafter, also referred to as “electrode width”) is, for example, 1 to 8 ⁇ m, preferably 5 ⁇ m or less.
  • the slit 15a of the pixel electrode 15 may be composed of only an oblique slit, or may further have an opening parallel to the long side portion 30a or the short side portion 30b. May be good.
  • the direction in which the slit 15a extends (that is, the direction in which the linear electrode 15b extends) satisfies ⁇ degree or ⁇ degree (however, 45 degree ⁇ ⁇ ⁇ 85 degree in each of the first to fourth domains 31 to 34). ).
  • ⁇ degree or ⁇ degree however, 45 degree ⁇ ⁇ ⁇ 85 degree in each of the first to fourth domains 31 to 34.
  • slit angle ⁇ the angle formed by the lateral direction (X-axis direction) of the pixel 30 and the direction in which the slit 15a extends.
  • the slit angle ⁇ is the smaller of the two angles (see FIGS. 3 (d) and 3 (e)).
  • the slit angle ⁇ is also an angle formed by the first transmission shaft 27a and the direction in which the slit 15a extends, and can take a value of 0 degrees or more and 90 degrees or less.
  • the orientation of the liquid crystal layer 13 is different from each other in the plurality of orientation regions due to the action of the electric field formed by the slit 15a.
  • the orientation of the liquid crystal layer 13 is parallel to the direction in which the slit 15a extends in each orientation region (see FIG. 3E).
  • the liquid crystal display device 10 has an angle ⁇ (the smaller of the two angles) formed by the direction in which the slit 15a extends and the orientation direction of the liquid crystal layer 13 when the voltage is off in each of the domains 31 to 34 of each pixel 30. (See FIG. 3D) shows the range of 15 degrees or more and 85 degrees or less.
  • the angle ⁇ is within the above range, the liquid crystal display device 10 having excellent transmittance characteristics and viewing angle characteristics can be obtained.
  • the angle ⁇ is more preferably 20 degrees or more, further preferably 30 degrees or more. It is particularly preferable that the temperature is 35 degrees or higher.
  • the angle ⁇ is more preferably 80 degrees or less, further preferably 70 degrees or less, and particularly preferably 65 degrees or less.
  • the angle ⁇ is represented by the difference between the slit angle ⁇ and the liquid crystal projection angle ⁇ . In the example of FIG. 3, the angle ⁇ is 35 degrees.
  • the tilt orientation of the liquid crystal molecules in the vicinity of the first substrate 11 is such that the first domain 31 and the second domain 32 are 0 degrees, the third domain 33 and the third domain 33 when the first substrate 11 is viewed from the liquid crystal layer 13 side.
  • the fourth domain 34 is 180 degrees (see FIG. 4A).
  • the tilt orientation of the liquid crystal molecules in the vicinity of the second substrate 12 is such that the first domain 31 and the second domain 32 are 0 degrees, and the third domain 33 and the fourth domain 34 are viewed from the liquid crystal layer 13 side of the second substrate 12. Is 180 degrees (see FIG. 4 (b)).
  • the orientation of the liquid crystal layer 13 when the voltage is off is 0 degrees in the first domain 31 and the second domain 32, and 180 degrees in the third domain 33 and the fourth domain 34.
  • the angle ⁇ is 60 degrees.
  • the liquid crystal projection angle ⁇ is preferably 0 degrees or more and 25 degrees or less, more preferably 0 degrees or more and 20 degrees or less, and 0 degrees or more and 15 degrees or less in that the effect of improving the viewing angle characteristics can be further enhanced. It is more preferable that the temperature is 0 ° C. or higher and 10 ° C. or lower.
  • the slit angle ⁇ is preferably an angle larger than 45 degrees, more preferably 50 degrees or more, and further preferably 55 degrees or more in that the driving voltage of the liquid crystal display device can be lowered. ..
  • the slit angle ⁇ is preferably 80 degrees or less, more preferably 75 degrees or less, and more preferably 70 degrees or less in that the effect of improving the transmittance characteristic when the voltage is turned on can be further enhanced. It is more preferably 60 degrees or less, and particularly preferably 60 degrees or less.
  • the liquid crystal display device 10 can be manufactured by a method including the following steps 1 to 3.
  • Step 1 Formation of coating film
  • the first substrate 11 and the second substrate 12 before forming the alignment film are prepared according to a known method.
  • a liquid crystal alignment agent is applied on each electrode arrangement surface of the first substrate 11 and the second substrate 12, and a coating film is formed on the substrate.
  • the liquid crystal alignment agent is preferably applied to the substrate by an offset printing method, a flexographic printing method, a spin coating method, a roll coater method, or an inkjet printing method.
  • preheating is preferably performed for the purpose of preventing the applied liquid crystal alignment agent from dripping.
  • the pre-baking temperature is preferably 30 to 200 ° C.
  • the pre-baking time is preferably 0.25 to 10 minutes.
  • the post-baking temperature is preferably 80 to 300 ° C., and the post-baking time is preferably 5 to 200 minutes.
  • the thickness of the liquid crystal alignment film formed is preferably 0.001 to 1 ⁇ m.
  • Step 2 Orientation treatment
  • at least one of the coating films (liquid crystal alignment film) formed in step 1 is subjected to a photoalignment treatment.
  • a photomask is used, and the substrate is subjected to the tilt direction expressed on the liquid crystal alignment film. Irradiate polarized radiation (linearly polarized light) from an oblique direction to the surface. As a result, the coating film exhibits the ability to impart a pre-tilt angle, and a liquid crystal alignment film is obtained.
  • the photo-alignment treatment is performed by a plurality of scanning steps in which the exposure directions on the coating film are different from each other.
  • a plurality of scanning steps By these a plurality of scanning steps, a plurality of domains (four domains in FIGS. 3 and 4) having different orientation directions of the liquid crystal layer 13 when the voltage is turned on are formed in one pixel.
  • ultraviolet rays including light having a wavelength of 150 to 800 nm and visible light can be used.
  • it is ultraviolet light containing light having a wavelength of 200 to 400 nm.
  • the light source used include a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, and the like.
  • the irradiation amount of radiation is preferably 100 to 50,000 J / m 2 , and more preferably 150 to 20,000 J / m 2 .
  • Step 3 Construction of liquid crystal cell
  • two substrates first substrate 11 and second substrate 12
  • liquid crystal molecules having a negative dielectric anisotropy were placed between the two substrates arranged to face each other.
  • a liquid crystal cell is manufactured.
  • two substrates are arranged to face each other with a gap so that the liquid crystal alignment films face each other, and the peripheral portions of the two substrates are bonded with a sealing material to form a substrate surface and a sealing material.
  • Examples thereof include a method of injecting and filling a liquid crystal in a cell gap surrounded by a blanket and sealing the injection hole, a method of using the ODF method, and the like.
  • the liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates.
  • the liquid crystal display device 10 is obtained by attaching the first polarizing plate 27 and the second polarizing plate 28 to the outer surfaces of the liquid crystal cells so that the transmission shaft 27a and the transmission shaft 28a are orthogonal to each other.
  • the polarizing plate include a polarizing plate in which a polarizing film called "H film” in which polyvinyl alcohol is stretch-oriented and iodine is absorbed is sandwiched between a cellulose acetate protective film, or a polarizing plate made of the H film itself.
  • the angle ⁇ formed by the direction in which the slit 15a extends and the orientation direction of the liquid crystal layer 13 when the voltage is off is within the range of 15 degrees or more and 85 degrees or less.
  • the transmittance characteristic and the viewing angle characteristic of the liquid crystal display device can be made excellent. This point will be further described with reference to the voltage-transmittance characteristics of FIGS. 5 and 6. These voltage-transmittance characteristics are the results calculated by simulation under the calculation conditions described in the following examples.
  • FIG. 5 shows the voltage-transmittance characteristics when the pretilt angle is 89 degrees in the liquid crystal display device 10 of FIG.
  • FIG. 6 shows the voltage-transmittance characteristic when the pretilt angle is 87 degrees in the liquid crystal display device 10 of FIG.
  • 0 degree
  • is a polar angle with the front of the display area of the liquid crystal display device as 0 degrees
  • is a direction parallel to the lateral direction of the pixels
  • 0 is the right direction when the display area is viewed from the front. Azimuth in degrees.
  • the liquid crystal display device 10 can be effectively applied to various uses.
  • the liquid crystal display device 10 includes, for example, a clock, a portable game machine, a word processor (word processor), a laptop computer, a car navigation system, a cam coder, a PDA, a digital camera, a mobile phone, a smartphone, various monitors, a liquid crystal television, an information display, and the like. It can be used as various display devices.
  • the pre-tilt angle defined by the first alignment film 22 and the pre-tilt angle defined by the second alignment film 23 are both less than 90 degrees, but in the present embodiment, the first alignment film 22 It differs from the first embodiment in that one of the defined pre-tilt angle and the pre-tilt angle defined by the second alignment film 23 is less than 90 degrees and the other is substantially 90 degrees.
  • FIG. 9 shows the pre-tilt angle of the liquid crystal molecules in each pixel 30 of the liquid crystal display device of the present embodiment.
  • each of the orientation regions 39 of the first to fourth domains 31 to 34 is defined by the second alignment film 23 with the pretilt angle ⁇ 1 defined by the first alignment film 22 being less than 90 degrees.
  • the pre-tilt angle ⁇ 2 is substantially 90 degrees.
  • the first alignment film 22 is divided and exposed so that the orientation orientation of the liquid crystal molecules in one pixel is different for each region by the photoalignment treatment (see FIG. 10A).
  • the first alignment film 22 is formed by obliquely irradiating a coating film formed of a polymer having a photoalignable group with polarized radiation a plurality of times using a photomask (for example, a polarizer).
  • a photomask for example, a polarizer
  • the second alignment film 23 is not dividedly exposed (see FIG. 10B), and when the voltage is off, the orientation orientation of the liquid crystal molecules 35 existing in the vicinity of the second alignment film 23 is controlled in the same direction.
  • the coating film formed by using the same polymer composition as the first alignment film 22 is used as it is as the second alignment film 23 without irradiating light.
  • the entire surface of the second alignment film 23 may be subjected to unpolarized exposure from the substrate normal direction without using a photomask.
  • the exposure to the second substrate 12 may be parallel light or diffused light.
  • the pretilt angle ⁇ 1 defined by the first alignment film 22 is preferably 89.0 degrees or less, more preferably 88.5 degrees or less, still more preferably 88.5 degrees or less, from the viewpoint of suppressing the response delay of the liquid crystal molecules 35. It is 88.0 degrees or less. Further, from the viewpoint of suppressing a decrease in contrast of the liquid crystal display device 10, the pretilt angle ⁇ 1 is preferably 81.0 degrees or more, more preferably 83.0 degrees or more, still more preferably 84.0 degrees or more. Is. In addition, in this specification, "substantially 90 degrees” means the range of 90 degrees ⁇ 0.5 degrees.
  • the pre-tilt angle ⁇ 2 defined by the second alignment film 23 is preferably 90 degrees ⁇ 0.2 degrees, more preferably 90 degrees ⁇ 0.1 degrees.
  • the heating temperature at the time of forming the liquid crystal alignment film is the first alignment film 22 and the second alignment film 22.
  • the temperature of the two alignment films 23 is different, the post-baking time at the time of forming the liquid crystal alignment film is different between the first alignment film 22 and the second alignment film 23, and the film thickness of the liquid crystal alignment film is the first alignment film. Even if the thickness of the first alignment film 22 and the second alignment film 23 are different from each other, or the first alignment film 22 and the second alignment film 23 are different alignment films, the occurrence of flicker and seizure can be suppressed. Good.
  • (A) to (e) in FIG. 10 are the same as those in FIG.
  • the first alignment film 22 is formed by divided exposure. Due to the divided exposure, the tilt orientation of the liquid crystal molecules in the vicinity of the first substrate 11 is 0 degrees in the first domain 31 and the second domain 32, and the third domain 33 and the fourth when the first substrate 11 is viewed from the liquid crystal layer 13 side. It is 180 degrees in the domain 34.
  • the second alignment film 23 is not exposed.
  • the orientation of the liquid crystal layer 13 when the voltage is off in the liquid crystal display device 10 is 0 in the first domain 31 and the second domain 32.
  • the degree is 180 degrees in the third domain 33 and the fourth domain 34.
  • the angle ⁇ is 60 degrees.
  • FIG. 11 shows the relationship between the applied voltage and the transmittance in the liquid crystal display device of FIG.
  • FIG. 11 shows the results calculated by simulation under the calculation conditions described in the following examples, where the pre-tilt angle on the first substrate 11 side is 87.0 degrees and the pre-tilt angle on the second substrate side is 90 degrees. is there.
  • the solid line and the broken line have the same meanings as those in FIGS. 5 to 7.
  • one of the pre-tilt angle defined by the first alignment film 22 and the pre-tilt angle defined by the second alignment film 23 is less than 90 degrees, and the other is substantially 90 degrees. It is the same as the second embodiment in that it is. However, this embodiment is different from the second embodiment in that both the first alignment film 22 and the second alignment film 23 are produced by split exposure.
  • (A) to (e) in FIG. 12 are the same as those in FIG.
  • the first alignment film 22 is formed by partial exposure to the first domain 31 and the second domain 32.
  • the tilt direction of the liquid crystal molecules in the vicinity of the first substrate 11 is 0 degrees in the first domain 31 and the second domain 32 when the first substrate 11 is viewed from the liquid crystal layer 13 side.
  • the third domain 33 and the fourth domain 34 of the first alignment film 22 are not irradiated with light, or unpolarized exposure is performed from the direction normal to the substrate.
  • the second alignment film 23 does not irradiate the first domain 31 and the second domain 32 with light, or performs unpolarized exposure from the normal direction of the substrate to the third domain 33 and the fourth domain 34. Divide exposure.
  • the tilt direction of the liquid crystal molecules in the vicinity of the second substrate 12 is 0 degrees in the third domain 33 and the fourth domain 34 when the second substrate 12 is viewed from the liquid crystal layer 13 side.
  • the orientation of the liquid crystal layer 13 when the voltage of the liquid crystal display device is off is 0 degrees in the first domain 31 and the second domain 32. It is 180 degrees in the 3rd domain 33 and the 4th domain 34.
  • the angle ⁇ is 60 degrees.
  • the first alignment film 22 and the second alignment film 23 are formed by irradiating a part of the first to fourth domains 31 to 34 with light.
  • the pretilt angle ⁇ 1 defined by the first alignment film 22 is 90 degrees. It is set to less than, and the pretilt angle ⁇ 2 defined by the second alignment film 23 is set to substantially 90 degrees.
  • the pretilt angle ⁇ 1 defined by the first alignment film 22 is substantially 90 degrees, and is defined by the second alignment film 23.
  • the pre-tilt angle ⁇ 2 is set to less than 90 degrees.
  • tilt angle ⁇ 3 The pre-tilt angle defined by the alignment-exposed liquid crystal alignment film (hereinafter referred to as “tilt angle ⁇ 3”) is referred to as a pre-tilt angle defined by the alignment-exposed liquid crystal alignment film (hereinafter referred to as “tilt angle ⁇ 4”). ) Is smaller than.
  • the tilt angle ⁇ 3 is preferably 89.0 degrees or less, more preferably 88.5 degrees or less, and further preferably 88.0 degrees or less.
  • the tilt angle ⁇ 3 is preferably 81.0 degrees or more, more preferably 83.0 degrees or more, and further preferably 84.0 degrees or more. is there.
  • the pre-tilt angle ⁇ 4 is substantially 90 degrees.
  • the number of scan exposures to a pair of substrates can be set to be equal to or less than the number of times corresponding to the number of orientation regions formed in one pixel (total of 2 times in the liquid crystal display device of FIG. 12). Therefore, the number of exposures can be reduced as much as possible, and the throughput can be improved.
  • the first alignment film 22 is subjected to orientation exposure for a part of the orientation regions in one pixel, and the remaining orientation regions are the first. 2
  • the alignment film 23 is subjected to orientation exposure. That is, each pixel 30 has a region in which the directions of asymmetry within one pixel are opposite to each other. In this case, the alignment region exposed on the 11th side of the first substrate and the alignment region exposed on the 12th side of the second substrate cause flicker with waveforms opposite to each other. As a result, the display quality can be improved while reducing the number of exposures.
  • the fourth embodiment will be described focusing on the differences from the first to third embodiments.
  • the plurality of orientation regions first to fourth domains 31 to 34
  • the present embodiment is different from the first to third embodiments in that a plurality of orientation regions are arranged side by side in each of the vertical direction and the horizontal direction of the pixel 30.
  • FIG. 13 (a) to 13 (e) are the same as those in FIG.
  • two first to fourth domains 31 to 34 are arranged side by side in one pixel in each of the vertical direction and the horizontal direction of the pixel 30.
  • Adjacent domains have different directions in which the slit 15a extends. Specifically, the slit 15a extends radially from the center of the pixel 30 toward the outer periphery of the pixel 30 in a plan view (see FIG. 13E).
  • the tilt direction of the liquid crystal molecules 35 in the vicinity of the first substrate 11 is such that the first domain 31 and the third domain 33 are 0 degrees and the second domain 32 when the first substrate 11 is viewed from the liquid crystal layer 13 side.
  • the fourth domain 34 becomes 180 degrees.
  • the tilt orientation of the liquid crystal molecules in the vicinity of the second substrate 12 is 180 degrees for the first domain 31 and the third domain 33 when the second substrate 12 is viewed from the liquid crystal layer 13 side, and the second domain 32 and the fourth domain 34. Is 0 degrees.
  • the orientation of the liquid crystal layer 13 is 0 degrees in the first domain 31 and the third domain 33 and 180 degrees in the second domain 32 and the fourth domain 34 when the voltage is off (see FIGS. 13 (c) and 13 (d)).
  • the direction is parallel to the direction in which the slit 15a extends (see FIG. 13E).
  • the angle ⁇ is 45 degrees.
  • FIG. 14 shows the relationship between the applied voltage and the transmittance in the liquid crystal display device of FIG. Note that FIG. 14 shows the results calculated by simulation under the calculation conditions described in the following examples, with the pretilt angle on the first substrate 11 side and the pretilt angle on the second substrate side being 89.0 degrees, respectively.
  • the solid line and the broken line have the same meanings as those in FIGS. 5 to 7.
  • the liquid crystal display device of the present embodiment has a sufficiently high maximum transmittance and good transmittance characteristics.
  • the pre-tilt angle ⁇ 1 defined by the first alignment film 22 is set to less than 90 degrees, and the pre-tilt angle ⁇ 2 defined by the second alignment film 23 is set to substantially 90 degrees.
  • the pre-tilt angle ⁇ 2 defined by the alignment film 23 may be less than 90 degrees, and the pre-tilt angle ⁇ 1 defined by the first alignment film 22 may be substantially 90 degrees.
  • the slit 15a is formed on the entire surface of the pixel region as the pixel electrode 15 has been described, but a part of the pixel region (for example, the boundary between two adjacent domains or the pixel 30) has been described.
  • a slit may be formed only in the outer edge portion of either the vertical direction or the horizontal direction of the above.
  • the present disclosure may be applied to a liquid crystal display device in which one pixel is oriented and divided into two regions, or as shown in FIGS. 15 (b) and 15 (c).
  • the present disclosure may be applied to a liquid crystal display device in which one pixel is oriented and divided into eight regions.
  • FIG. 15D the present disclosure is applied to a liquid crystal display device including a pixel composed of a short side portion in which each side of the pixel extends in the vertical direction and a long side portion extending in the horizontal direction. May be good.
  • the electrode width of the pixel electrode 15 is L
  • the slit width is S
  • the thickness (cell gap) of the liquid crystal layer 13 is d
  • L ⁇ 1.1d and S ⁇ . It is preferable to satisfy d.
  • the electrode width (L), the slit width (S), and the thickness (d) of the liquid crystal layer 13 satisfy the above relationship, it is preferable in that a liquid crystal display device 10 having a higher light transmittance can be obtained.
  • the reason why the preferable electrode width and slit width of the liquid crystal display device 10 change with the change in the thickness of the liquid crystal layer 13 is that the oblique electric field generated between the electrodes due to the slit structure affects the driving of the liquid crystal. Can be considered.
  • the liquid crystal having the slit electrode is set by setting the thickness of the liquid crystal layer 13 and the electrode width and the slit width of the pixel electrode 15 so as to satisfy the above relationship (L ⁇ 1.1d, S ⁇ d).
  • a suitable oblique electric field can be obtained in the display device, and a liquid crystal display device having excellent transmission characteristics can be obtained.
  • the color filter is provided on the second substrate 12, but the color filter may be provided on the first substrate 11.
  • the weight average molecular weight Mw of the polymer, the number average molecular weight Mn, the solution viscosity of the polymer solution, and the epoxy equivalent were measured by the following methods.
  • the required amounts of the raw material compounds and polymers used in the following examples were secured by repeating the synthesis on the synthetic scale shown in the following synthesis examples as necessary.
  • the weight average molecular weight Mw and the number average molecular weight Mn are polystyrene-equivalent values measured by GPC under the following conditions. Column: Made by Tosoh Corporation, TSKgelGRCXLII Solvent: tetrahydrofuran Temperature: 40 ° C Pressure: 68 kgf / cm 2 [Solution viscosity of polymer solution] The solution viscosity (mPa ⁇ s) of the polymer solution was measured at 25 ° C. using an E-type rotational viscometer. [Epoxy equivalent] The epoxy equivalent was measured by the hydrochloric acid-methylethylketone method described in JIS C 2105.
  • polymer (PM-2) styrene-maleimide-based polymer
  • the weight average molecular weight Mw measured by GPC in terms of polystyrene was 28,000, and the molecular weight distribution Mw / Mn was 1.8.
  • polymer (PM-3) styrene-maleimide-based polymer
  • the weight average molecular weight Mw measured by GPC in terms of polystyrene was 27,000, and the molecular weight distribution Mw / Mn was 1.7.
  • polymer (PAA-2) a polyamic acid
  • Siloxane (EPS-1) was obtained as a viscous transparent liquid.
  • the weight average molecular weight Mw of the obtained polyorganosiloxane (EPS-1) was 2,200, and the epoxy equivalent was 186 g / mol.
  • Example 1 Manufacture and evaluation of liquid crystal display device [Example 1] 1.
  • Mass ratio a solution having a solid content concentration of 4.0% by mass was prepared.
  • a liquid crystal alignment agent (AL-1) was prepared by filtering this solution through a filter having a pore size of 1 ⁇ m.
  • liquid crystal display device was manufactured using a TFT substrate and a CF substrate.
  • the angle (slit angle ⁇ ) formed by the lateral direction of each pixel and the direction in which the slit extends is 45 degrees
  • the electrode width (L) is 3.5 ⁇ m
  • the slit width (S) is 2.
  • a slit electrode having a size of 5 ⁇ m was used (see FIG. 3, the same applies to Examples 2 to 10 and Comparative Examples 1 to 6 below).
  • the counter electrode of the CF substrate a solid electrode having no slit formed was used.
  • a liquid crystal alignment agent (AL-1) was applied to each electrode arrangement surface of the TFT substrate and the CF substrate by a spin cast method. This was prebaked at 80 ° C. for 1 minute and then post-baked at 230 ° C. for 40 minutes to form a coating film having a film thickness of 120 nm. Subsequently, scan exposure was performed on the coating film (liquid crystal alignment film) formed on the TFT substrate. In the scan exposure, according to FIG. 3, four domains having different orientation directions of the liquid crystal molecules when the voltage is turned on are formed in one pixel, and the exposure orientation of each domain is in the lateral direction of each pixel.
  • the linear polarization of 313 nm was irradiated at an intensity of 20 mJ / cm 2 a total of 4 times so as to be 10 degrees. Further, the coating film (liquid crystal alignment film) formed on the CF substrate was also subjected to scan exposure in the same manner as the TFT substrate.
  • a nematic liquid crystal having a negative dielectric heterogeneity was dropped on the formation surface of the liquid crystal alignment film of the TFT substrate, and a thermosetting epoxy resin was placed as a sealing material on the outer edge of the CF substrate. After that, the TFT substrate and the CF substrate were bonded so that the alignment film surfaces were inside each other. Subsequently, the epoxy resin was cured by heating at 130 ° C. for 1 hour to obtain a liquid crystal cell. Further, in order to eliminate the flow orientation at the time of liquid crystal injection, the liquid crystal cell was heated at 150 ° C. and then slowly cooled to room temperature.
  • the pretilt angle of the obtained liquid crystal display device was 89.0 degrees on both the TFT substrate side and the CF substrate side.
  • the angle (liquid crystal projection angle ⁇ ) formed by the orientation of the liquid crystal layer and the lateral direction of the pixels when the voltage is off is 10 degrees.
  • the pre-tilt angle is a value measured using OPTI-Pro manufactured by Shintec Co., Ltd. (the same applies hereinafter).
  • the transmittance ratio at each voltage of the voltage V 20 of the voltage V 100 and the luminance becomes the maximum brightness of 20% of the maximum luminance alpha (V ) was calculated by the following formula (1), and the viewing angle characteristics were evaluated by the transmittance ratio ⁇ (V).
  • the transmission ratio ⁇ (V 100 ) at the voltage V 100 that becomes the maximum brightness and the transmission ratio ⁇ (V 20 ) at the voltage V 20 that becomes 20% of the maximum brightness are both within the range of 0.80 to 1.15.
  • "good" a case where, or at least one of the transmittance ratio alpha (V 20) at transmittance ratio alpha (V 100) and the voltage V 20 at a voltage V 100 is less than 0.80 1.
  • a case larger than 15 was evaluated as "defective”.
  • the transmittance ratio alpha (V 100) at a voltage V 100 1.08, the transmittance ratio of the voltage V 20 ⁇ (V 20) is 1.01, and the viewing angle characteristic "good" It was judged.
  • Example 2 [Example 2] 1.
  • a liquid crystal alignment agent (AL-2) was prepared by filtering this solution through a filter having a pore size of 1 ⁇ m. 2.
  • Manufacture of liquid crystal display device The point where the liquid crystal alignment agent (AL-2) is used instead of the liquid crystal alignment agent (AL-1), and the tilt orientation is the orientation shown in FIGS. 16A and 16B.
  • Example 16 was manufactured in the same manner as in Example 1 except that the exposure directions of the first to fourth domains were changed.
  • the pretilt angle of the obtained liquid crystal display device was 89.0 degrees on both the TFT substrate side and the CF substrate side.
  • the liquid crystal projection angle ⁇ is 10 degrees. 3. 3. Evaluation of transmittance characteristics In the same manner as in Example 1, the above 2.
  • Example 3 1. Manufacturing of Liquid Crystal Display Device The same as in Example 1 except that the exposure directions of the first to fourth domains are changed so that the tilt directions are the directions shown in FIGS. 4A and 4B. No. 4 optical vertical liquid crystal display device was manufactured. The pretilt angle of the obtained liquid crystal display device was 89.0 degrees on both the TFT substrate side and the CF substrate side. The liquid crystal projection angle ⁇ is 0 degrees. The scan exposure was performed twice on each substrate (4 times in total). 2. 2. Evaluation of transmittance characteristics 1. The transmittance of the liquid crystal display device manufactured in 1 was calculated by simulation in the same manner as in Example 1.
  • Example 4 Manufacture of liquid crystal display device The point where the liquid crystal alignment agent (AL-2) was used instead of the liquid crystal alignment agent (AL-1), the point where the slit angle ⁇ was set to 60 degrees, and the tilt orientation were shown in FIGS.
  • the optical vertical liquid crystal display device of FIG. 4 was manufactured in the same manner as in Example 1 except that the exposure directions of the first to fourth domains were changed so as to have the directions shown in b).
  • the pretilt angle of the obtained liquid crystal display device was 89.0 degrees on both the TFT substrate side and the CF substrate side.
  • the liquid crystal projection angle ⁇ is 0 degrees. 2.
  • Evaluation of transmittance characteristics In the same manner as in Example 1, the above 1. The result of FIG.
  • Example 5 [Example 5] 1.
  • a liquid crystal alignment agent (AL-3) was prepared by filtering this solution through a filter having a pore size of 1 ⁇ m. 2.
  • Manufacture of liquid crystal display device The point where the liquid crystal alignment agent (AL-3) was used instead of the liquid crystal alignment agent (AL-1), the point where the slit angle ⁇ was set to 60 degrees, and the tilt orientation were shown in FIGS.
  • the optical vertical liquid crystal display device of FIG. 4 was manufactured in the same manner as in Example 1 except that the exposure directions of the first to fourth domains were changed so as to have the directions shown in b).
  • the pre-tilt angle of the obtained liquid crystal display device was 87.0 degrees on both the TFT substrate side and the CF substrate side.
  • the liquid crystal projection angle ⁇ is 0 degrees. 3.
  • Evaluation of transmittance characteristics 2.
  • Example 6 Manufacture of liquid crystal display device The point where the liquid crystal alignment agent (AL-3) was used instead of the liquid crystal alignment agent (AL-1), the point where the slit angle ⁇ was set to 60 degrees, and the tilt direction are shown in FIG. 10 (a).
  • the optical vertical liquid crystal display device of FIG. 10 was manufactured in the same manner as in Example 1 except that only the TFT substrate was exposed so as to be oriented.
  • the pre-tilt angle of the obtained liquid crystal display device was 87.0 degrees on the TFT substrate side and 90 degrees on the CF substrate side.
  • the liquid crystal projection angle ⁇ is 0 degrees.
  • 2. Evaluation of transmittance characteristics In the same manner as in Example 1, the above 2. The result of FIG.
  • Example 7 [Example 7] 1.
  • a liquid crystal alignment agent (AL-4) was prepared by filtering this solution through a filter having a pore size of 1 ⁇ m. 2.
  • the pretilt angle of the obtained liquid crystal display device was 90 degrees on the TFT substrate side and 88.0 degrees on the CF substrate side.
  • the liquid crystal projection angle ⁇ is 0 degrees. 3.
  • Evaluation of transmittance characteristics 2.
  • Example 8 Manufacture of liquid crystal display device The point where the liquid crystal alignment agent (AL-4) was used instead of the liquid crystal alignment agent (AL-1), the point where the slit angle ⁇ was set to 60 degrees, and the tilt direction are shown in FIG. 18A.
  • the optical vertical liquid crystal display device of FIG. 18 was manufactured in the same manner as in Example 1 except that only the TFT substrate was exposed so as to be oriented.
  • the pretilt angle of the obtained liquid crystal display device was 88.0 degrees on the TFT substrate side and 90 degrees on the CF substrate side.
  • the liquid crystal projection angle ⁇ is 20 degrees.
  • 2. 2. Evaluation of transmittance characteristics In the same manner as in Example 1, the above 1. The transmittance of the liquid crystal display device manufactured in 1 was calculated by simulation.
  • Example 9 Manufacture of liquid crystal display device
  • the point where the liquid crystal alignment agent (AL-4) is used instead of the liquid crystal alignment agent (AL-1), the point where the slit angle ⁇ is set to 60 degrees, and the tilt direction are shown in FIG. 19 (b).
  • the optical vertical liquid crystal display device of FIG. 19 was manufactured in the same manner as in Example 1 except that only the CF substrate was exposed so as to be oriented.
  • the pre-tilt angle of the obtained liquid crystal display device was 90 degrees on the TFT substrate side and 88.0 degrees on the CF substrate side.
  • the liquid crystal projection angle ⁇ is 20 degrees.
  • 2. Evaluation of transmittance characteristics In the same manner as in Example 1, the above 1. The transmittance of the liquid crystal display device manufactured in 1 was calculated by simulation.
  • Example 10 Manufacture of Liquid Crystal Display Device
  • the optical vertical of FIG. 13 is the same as that of the first embodiment except that the coating films on the TFT substrate side and the CF substrate side are subjected to divided exposure so that the tilt direction is the orientation shown in FIG.
  • the pretilt angle of the obtained liquid crystal display device was 89.0 degrees on both the TFT substrate side and the CF substrate side.
  • the liquid crystal projection angle ⁇ is 0 degrees.
  • 2. Evaluation of transmittance characteristics In the same manner as in Example 1, the above 1.
  • the result of FIG. 14 was obtained by calculating the transmittance of the liquid crystal display device manufactured in FIG. 14 by simulation.
  • the liquid crystal aligning agent used in Examples 1 to 10 the liquid crystal projection angle ⁇ and the slit angle ⁇ of the liquid crystal display device, the angle ⁇ formed by the orientation direction of the liquid crystal layer and the slit direction when the voltage is off, and the transmittance ratio ⁇ ( V) is summarized in Table 1 below.
  • the liquid crystal projection angle ⁇ is equal to the angle formed by the orientation of the liquid crystal layer when the voltage is off and the direction in which the transmission axis of the polarizing plate on the TFT substrate side extends
  • the slit angle ⁇ is the slit direction and the TFT substrate side. It is equal to the angle formed by the direction in which the transmission axis of the polarizing plate is extended.
  • An optical vertical liquid crystal display device was manufactured in the same manner as in Example 1 except that the coating films on the TFT substrate side and the CF substrate side were subjected to divided exposure so that the orientation was the orientation shown in FIG. 20 (FIG. 20). ).
  • the pretilt angle of the obtained liquid crystal display device was 86.0 degrees on both the TFT substrate side and the CF substrate side.
  • the liquid crystal projection angle ⁇ is 45 degrees. 3.
  • Evaluation of transmittance characteristics In the same manner as in Example 1, the above 2.
  • [Comparative Example 3] 1. Manufacture of Liquid Crystal Display Device Example 1 except that the coating film on the TFT substrate side and the CF substrate side was subjected to partial exposure so that the tilt direction was the direction indicated by the white arrow in FIGS. 8A and 8B. An optical vertical liquid crystal display device was manufactured in the same manner as above. The pretilt angle of the obtained liquid crystal display device was 89.0 degrees on both the TFT substrate side and the CF substrate side. The liquid crystal projection angle ⁇ is 45 degrees. 2. 2. Evaluation of transmittance characteristics In the same manner as in Example 1, the above 1. The result of FIG. 7 was obtained by calculating the transmittance of the liquid crystal display device manufactured in FIG. 7 by simulation.
  • the transmittance ratio alpha (V 100) at a voltage V 100 1.12 the transmittance ratio of the voltage V 20 ⁇ (V 20) is 0.69, it is determined that the viewing angle characteristic "bad" ..
  • the liquid crystal projection angle ⁇ is 45 degrees. 2.
  • the transmittance ratio alpha (V 100) at a voltage V 100 1.12 the transmittance ratio of the voltage V 20 ⁇ (V 20) is 0.69, it is determined that the viewing angle characteristic "bad" ..
  • the liquid crystal aligning agent used in Comparative Examples 1 to 6 the liquid crystal projection angle ⁇ and the slit angle ⁇ of the liquid crystal display device, the angle ⁇ formed by the orientation direction of the liquid crystal layer and the slit direction when the voltage is off, and the transmittance ratio ⁇ ( V) is summarized in Table 2 below.
  • Example 11 By setting the slit angle ⁇ as a fixed value and changing the liquid crystal projection angle ⁇ to 0 degrees, 10 degrees, 20 degrees, 30 degrees, and 40 degrees, the change in transmittance with respect to the change in the liquid crystal projection angle ⁇ was investigated.
  • A-1 liquid crystal alignment agent
  • FIG. 23 (a) is the result when the slit angle ⁇ is 60 degrees
  • (b) is the result when the slit angle ⁇ is 75 degrees.
  • FIG. 23 As shown in FIG.
  • Example 12 the change in transmittance with respect to the change in the slit angle ⁇ was examined by setting the liquid crystal projection angle ⁇ as a fixed value and changing the slit angle ⁇ to 45 degrees, 50 degrees, 60 degrees, 70 degrees, and 80 degrees.
  • the calculation of the transmittance is the same as in Example 11.
  • the result is shown in FIG. In FIG. 24, (a) is the result when the liquid crystal projection angle ⁇ is 0 degrees, and (b) is the result when the liquid crystal projection angle ⁇ is 20 degrees. As shown in FIG.
  • the slit angles ⁇ are 45 degrees and 80 degrees, as compared with the case where the slit angles ⁇ are 45 degrees and 80 degrees.
  • Example 13 to 24 Regarding the liquid crystal display device of the first embodiment, the electrode width (L) and slit width (S) of the pixel electrodes and the cell gap (d) conditions are changed as shown in Table 3 below to adjust the transmittance of the liquid crystal display device. The effect was investigated.

Abstract

液晶表示装置は、複数の画素30が表示領域に配置されている。液晶表示装置は、スリット15aを有する画素電極15が設けられた第1基板11と、第1基板11に対向するように配置された第2基板と、負の誘電率異方性を持つ液晶分子を含有する液晶層13と、第1配向膜22と、第2配向膜23とを備える。第1配向膜22及び第2配向膜23のうち少なくとも一方は光配向膜であり、スリット15aは、画素30に設けられた複数の配向領域における各配向領域に配置され、画素30の各辺に対し斜め方向に延びるように形成された斜めスリット部を有する。斜めスリット部が延びる方向と、電圧無印加時において液晶層13の厚み方向の中央付近に存在する液晶分子35の長軸方向を第1基板11に投影した方向とのなす角度γは15度以上85度以下である。

Description

液晶表示装置 関連出願の相互参照
 本出願は、2019年8月23日に出願された日本特許出願番号2019-153145号に基づくもので、ここにその記載内容を援用する。
 本開示は、液晶表示装置に関する。
 液晶ディスプレイ、特に大型テレビ向けの液晶表示パネルは、視野角、透過率、応答時間等が重要な性能指標である。これらの性能指標の値を良好にするための液晶表示モードとして、4D-RTN(4Domain-Reverse Twisted Nematic)モードや、PSA(Polymer Sustained Alignment)モード、IPS(In Plane Switching)モード、FFS(Fringe Field Switching)モード等の各種モードが開発されている(例えば、特許文献1参照)。現在では、これらの液晶表示モード技術を使った大型テレビが量産されている。
 近年、これまでのハイビジョン(画素数1920×1080)から、より高精細の4K(画素数3840×2160)や8K(画素数7680×4320)が実現されつつある。しかしながら、4Kや8Kの液晶表示パネルでは、配線数やスイッチング素子の増加等に起因してパネル透過率が低下する傾向にある。パネル透過率が低下すると、バックライトの光利用効率が低下するため、消費電力の増大に繋がる。
 こうした不都合を解消するべく、特許文献2には、光配向膜を用いた4D-RTNの透過率改善を目的として、4D-ECBモード(4Domain-Electrically Controlled Birefringence)を活用した技術が開示されている。特許文献2に記載の液晶表示装置は、一つの画素内に、液晶分子の傾斜方位が互いに異なる4つの配向領域を画素の長手方向に沿って配置し、液晶表示パネルを平面視したときに、これら4つの配向領域のそれぞれにおいて、液晶分子のねじれ角が実質的に0度になるようにしている。
特許第5184618号公報 国際公開第2017/057210号
 特許文献2に記載の技術により液晶表示装置の透過率を改善できることが期待されるものの、特許文献2に記載の液晶表示装置は視野角特性に優れているとはいえない。従来にも増して高品位な液晶表示装置を得るために、透過率特性と視野角特性との両立を図ることが求められている。
 本開示は上記課題に鑑みなされたものであり、透過率特性及び視野角特性に優れた液晶表示装置を提供することを一つの目的とする。
 本発明者らは、上記課題を解決するべく鋭意検討し、画素電極においてスリットが延びる方向と、液晶分子の配向方位との関係に着目することにより本開示の課題を解決するに至った。具体的には、本開示は以下の手段を採用した。
[1] 複数の画素が表示領域に配置された液晶表示装置であって、スリットを有する画素電極が設けられた第1基板と、前記第1基板に対向するように配置された第2基板と、
 前記第1基板と前記第2基板との間に設けられ、負の誘電率異方性を持つ液晶分子を含有する液晶層と、前記第1基板に形成された第1配向膜と、前記第2基板に形成された第2配向膜と、を備え、前記第1配向膜及び前記第2配向膜のうち少なくとも一方は光配向膜であり、前記複数の画素における各画素は、電圧印加時において液晶分子の配向方位が互いに異なる複数の配向領域を有し、前記スリットは、前記複数の配向領域における各配向領域に配置され、前記画素の各辺に対し斜め方向に延びるように形成された斜めスリット部を有し、前記斜めスリット部が延びる方向と、電圧無印加時において前記液晶層の厚み方向の中央付近に存在する液晶分子の長軸方向を前記第1基板に投影した方向である液晶投影方向とのなす角度が、15度以上85度以下である、液晶表示装置。
[2] 前記各辺のうち所定の辺と、前記液晶投影方向とのなす角度が、0度以上30度以下である、上記[1]の液晶表示装置。
[3] 前記所定の辺と、前記斜めスリット部が延びる方向とのなす角度が、45度以上85度以下である、上記[2]の液晶表示装置。
[4] 複数の画素が表示領域に配置された液晶表示装置であって、スリットを有する画素電極が設けられた第1基板と、前記第1基板に対向するように配置された第2基板と、前記第1基板と前記第2基板との間に設けられ、負の誘電率異方性を持つ液晶分子を含有する液晶層と、前記第1基板に形成された第1配向膜と、前記第2基板に形成された第2配向膜と、前記第1基板を挟んで前記液晶層側とは反対側に配置された第1偏光板と、前記第2基板を挟んで前記液晶層側とは反対側に配置された第2偏光板と、を備える。前記第1配向膜及び前記第2配向膜のうち少なくとも一方は光配向膜であり、前記複数の画素における各画素は、電圧印加時において液晶分子の配向方位が互いに異なる複数の配向領域を有し、前記スリットは、前記複数の配向領域における各配向領域に配置され、前記画素の各辺に対し斜め方向に延びるように形成された斜めスリット部を有し、平面視して、前記第1偏光板の透過軸と前記第2偏光板の透過軸とは互いに直交し、前記第1偏光板の透過軸の軸方向を0度、前記第2偏光板の透過軸の軸方向を90度と定義したときに、電圧無印加時において前記液晶層の厚み方向の中央付近に存在する液晶分子の長軸方向を前記第1基板に投影した方向である液晶投影方向が、前記複数の配向領域のそれぞれにおいて0度以上30度以下であり、かつ前記斜めスリット部が延びる方向が、前記複数の配向領域のそれぞれにおいて45度以上85度以下である、液晶表示装置。
 本開示によれば、透過率特性及び視野角特性に優れた液晶表示装置を得ることができる。
図1は、液晶表示装置の概略構成を示す模式図である。 図2は、画素の配置を表す模式図である。 図3は、第1実施形態の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図4は、第1実施形態の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図5は、図3の液晶表示装置における電圧-透過率特性を示す図である。 図6は、図4の液晶表示装置における電圧-透過率特性を示す図である。 図7は、図8の液晶表示装置における電圧-透過率特性を示す図である。 図8は、比較例(比較例3)の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図9は、一配向領域における液晶分子のプレチルト角を表す模式図である。 図10は、第2実施形態の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図11は、図10の液晶表示装置における電圧-透過率特性を示す図である。 図12は、第3実施形態の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図13は、第4実施形態の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図14は、図13の液晶表示装置における電圧-透過率特性を示す図である。 図15は、他の実施形態の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図16は、実施例2の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図17は、実施例7の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図18は、実施例8の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図19は、実施例9の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図20は、比較例1及び比較例2の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図21は、比較例4及び比較例5の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図22は、比較例6の液晶表示装置が有する画素におけるチルト方位及び配向方位を表す模式図である。 図23は、液晶投影角度-透過率特性を示す図である。 図24は、スリット角度-透過率特性を示す図である。
(第1実施形態)
 以下に、第1実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。なお、以下の説明では便宜上、液晶表示装置の表示領域を正面から見た方向を基準にして上下及び左右を示している。
 本明細書において、「画素」とは、表示において各色の濃淡(階調)を表現する最小単位であり、カラー表示装置では、例えばR,G及びBのそれぞれの階調を表現する単位に相当する。したがって、「画素」と表現した場合、R画素、G画素及びB画素を組み合わせたカラー表示画素(絵素)ではなく、R画素、G画素及びB画素のそれぞれを指す。つまり、カラー表示装置の場合、1つの画素は、カラーフィルタのいずれかの色に対応している。「プレチルト角」とは、液晶表示装置に対し電圧を印加していない状態(電圧オフの状態)において、配向膜表面と配向膜近傍の液晶分子の長軸方向とがなす角度である。
 「方位」とは、基板面又は基板面に平行な平面における向きを意味する。ただし、方位は、基板面の法線方向に対する傾斜角を考慮していない。基準について特に説明がない場合、方位は、表示領域の正面から見て画素の下辺に平行であって右方向に延びる方向を基準方位(0度)とし、反時計回りを正の角度として表す。「液晶層の配向方位」とは、液晶層の厚み方向の中央付近に存在する液晶分子(より詳細には、各画素の液晶層における層面内の中央付近であって、かつ液晶層の厚み方向の中央付近に存在する液晶分子)における、画素電極が配置された基板(第1基板)側の長軸端部を始点とし、他方の基板(第2基板)側の長軸端部を終点とする方向を意味する。したがって、「液晶層の厚み方向の中央付近に存在する液晶分子の長軸方向を第1基板に投影した方位」とは、液晶層の厚み方向の中央付近に存在する液晶分子における第1基板側の長軸端部を始点とし、第2基板側の長軸端部を終点とする方向を第1基板に投影した向きを意味する。「チルト方位」とは、電圧オフの状態において、配向膜近傍に存在する液晶分子の当該配向膜側の長軸端部を始点とし、配向膜とは反対側の長軸端部を終点とする方向を意味する。
<液晶表示装置>
 液晶表示装置10は、薄膜トランジスタ(TFT:Thin Film Transistor)型の液晶表示装置であり、その表示領域29に画素30が複数並べて配置されている。液晶表示装置10は、図1に示すように、第1基板11及び第2基板12からなる一対の基板と、第1基板11と第2基板12との間に配置された液晶層13と、を備えている。なお、本実施形態では、TFT型の液晶表示装置に適用する場合について説明するが、他の駆動方式(例えば、パッシブマトリックス方式、プラズマアドレス方式等)に本開示を適用してもよい。
 第1基板11は、ガラスや樹脂等からなる透明基板14の液晶層13側の表面上に、ITO(Indium Tin Oxide)等の透明導電体からなる画素電極15、スイッチング素子としてのTFT、走査線や信号線等の各種配線が配置されたTFT基板である。画素電極15は、スリットが設けられた電極(スリット電極)である。第2基板12は、ガラスや樹脂等からなる透明基板16の液晶層13側の表面上に、ブラックマトリクス17、カラーフィルタ18、透明導電体からなる対向電極19(共通電極ともいう。)が設けられたCF基板である。対向電極19は、スリットが形成されていない面状電極である。
 一対の基板11,12には、基板面近傍の液晶分子を基板面(すなわち電極配置面)に対して所定方位に配向させる液晶配向膜が形成されている。液晶配向膜は、電圧オフ時において、液晶分子の長軸方向が基板面に対して垂直方向になるよう液晶分子を配向させる垂直配向膜である。液晶表示装置10は、液晶配向膜として、第1基板11の電極配置面上に形成された第1配向膜22と、第2基板12の電極配置面上に形成された第2配向膜23とを有している。
 第1基板11及び第2基板12は、第1基板11の電極配置面と、第2基板12の電極配置面とが対向するように、スペーサ24を介して所定の間隙(セルギャップ)を設けて配置されている。なお、図1には、スペーサ24を柱状スペーサとした場合を示したが、ビーズスペーサ等の他の液晶装置用スペーサであってもよい。対向配置された一対の基板11,12は、その周縁部において、シール材25を介して貼り合わされている。第1基板11、第2基板12及びシール材25によって囲まれた空間には液晶組成物が充填されている。これにより、第1基板11と第2基板12との間に液晶層13が形成されている。液晶層13には、負の誘電率異方性を持つ液晶分子が充填されている。液晶層13の厚さ(d)は、例えば1.5~8.0μmであり、好ましくは2.0μm以上である。
 第1基板11及び第2基板12のそれぞれの外側には偏光板が配置されている。液晶表示装置10は、偏光板として、第1基板11側に設けられた第1偏光板27と、第2基板12側に設けられた第2偏光板28とを備えている。第1偏光板27の透過軸27aと、第2偏光板28の透過軸28aとは、表示領域29の正面から見て互いに直交するように配置されている。また、第1基板11の外縁部には端子領域が設けられている。この端子領域に、液晶を駆動するためのドライバIC等が接続されることにより液晶表示装置10が駆動される。
(各画素の配向方位)
 図2は、液晶表示装置10の表示領域29を第2基板12側から見た場合の画素30の配置を表す模式図である。図中、符号35の円錐体は、液晶分子を表す。液晶分子35は、円錐体の頂点側が第1基板11側、円錐体の底面側が第2基板12側を表す。図2には便宜上、一部の画素について液晶分子35を示している。
 画素30は矩形形状であり、上下方向に延びる長辺部30aと、左右方向に延びる短辺部30bとを備えている(図3(a)参照)。図2に示すように、表示領域29には、複数の画素30が上下方向(図2中のY軸方向)及び左右方向(図2中のX軸方向)にマトリクス状に配置されている。本実施形態では、画素30の短手方向とX軸方向とが平行になっており、画素30の長手方向とY軸方向とが平行になっている。また、X軸方向は、第1透過軸27aの軸方向に平行な方向であり、Y軸方向は、第2透過軸28aの軸方向に平行な方向である。
 各画素30は、電圧オン時の液晶層13の配向方位が互いに異なる複数の領域を有している。これにより、液晶表示装置10の視野角特性を補償している。本実施形態では、各画素30には、電圧オン時の液晶層13の配向方位が互いに異なる4つの配向領域が形成されている。
 具体的には、各画素30は、複数の配向領域として第1ドメイン31、第2ドメイン32、第3ドメイン33及び第4ドメイン34を有している。これら4つのドメイン31~34は、1画素内に上下方向(すなわち、第2透過軸28aの軸方向に平行な方向)に並べて配置されている。第1~第4ドメイン31~34において、電圧オフ時の液晶層13の配向方位は、α度、180-α度、180+α度、及び-α度(ただし、0≦α≦30度を満たす。)のいずれかとなっている。換言すると、第1透過軸27aの軸方向を0度、第2透過軸28aの軸方向を90度と定義したときに、電圧オフ時の液晶層13の配向方位は、第1~第4ドメイン31~34のそれぞれにおいて、0度以上30度以下の範囲内になっている。なお、第1透過軸27aの軸方向を0度、第2透過軸28aの軸方向を90度と定義した場合の方位は、0度以上90度以下の角度で表される。以下では、第1透過軸27aの軸方向を0度、第2透過軸28aの軸方向を90度と定義した場合において、画素30の短手方向(X軸方向)と、電圧オフ時の液晶層13の配向方位とのなす角度を「液晶投影角度α」ともいう。液晶投影角度αは、画素30の短手方向と電圧オフ時の液晶層13の配向方位とのなす角度のうち小さい方の角度をいう。
 α=10度である場合について、図3を用いて説明する。図3中、(a)は、第1基板11近傍の液晶分子のチルト方位を示し、(b)は、第2基板12近傍の液晶分子のチルト方位を示し、(c)及び(d)は、電圧オフ時の液晶層13の配向方位を示し、(e)は、電圧オン時の液晶層13の配向方位を示している。なお、図3(a)及び(b)の白抜き矢印はチルト方位を表す。図3(a)及び(b)は、基板上に形成した液晶配向膜を液晶層13側から見た模式図である。図3(c)~(e)は、液晶表示装置10を第2基板12側から平面視した模式図である。図3(d)及び(e)には、第1基板11に設けられた画素電極15を併せて示している。
 図3の例では、第1基板11近傍の液晶分子のチルト方位は、第1基板11を液晶層13側から見て、第1ドメイン31が-10度(=350度)、第2ドメイン32が10度、第3ドメイン33が190度、第4ドメイン34が170度となる(図3(a)参照)。また、第2基板12近傍の液晶分子のチルト方位は、第2基板12を液晶層13側から見て、第1ドメイン31が10度、第2ドメイン32が-10度(=350度)、第3ドメイン33が170度、第4ドメイン34が190度となる(図3(b)参照)。これら一対の基板11、12の配向膜面が対向するように液晶表示装置10を構築することにより、液晶表示装置10において、電圧オフ時の液晶層13の配向方位は、第1ドメイン31で-10度(=350度)、第2ドメイン32で10度、第3ドメイン33で190度、第4ドメイン34で170度となる(図3(c)及び(d)参照)。
(液晶配向膜)
 第1配向膜22及び第2配向膜23のうち少なくとも一方は光配向膜であり、本実施形態では、第1配向膜22及び第2配向膜23は共に光配向膜である。第1配向膜22及び第2配向膜23は、光配向性基を有する重合体を含有する重合体組成物(以下、「液晶配向剤」という。)を用いて形成された塗膜に対し、フォトマスク(例えば偏光子)を用いて、偏光放射線を複数回斜め照射することにより形成されている。これにより、一画素内に、電圧オン時において液晶層13の配向方位が互いに異なる複数の領域が形成されている。
 なお、本明細書において、「光配向膜」とは、光配向性基を有する重合体を用いて形成された塗膜に対して偏光又は無偏光の光照射を行うことにより形成された液晶配向膜をいう。「光配向性基」とは、光照射による光異性化反応、光二量化反応、光分解反応又は光転位反応等によって膜に異方性を付与する官能基である。
 液晶配向剤の重合体成分は特に限定されないが、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン、及び不飽和結合を有する単量体を用いて得られる重合体(以下、「不飽和単量体系重合体」ともいう。)よりなる群から選択される少なくとも一種の重合体であることが好ましい。不飽和単量体系重合体としては、マレイミド系重合体、(メタ)アクリル系重合体等が挙げられる。なお、マレイミド系重合体とは、マレイミド化合物に由来する構造単位を有する重合体をいう。マレイミド系重合体は、マレイミド化合物に由来する構造単位と、スチレン化合物に由来する構造単位とを有する重合体(スチレン-マレイミド系重合体)が好ましい。
 光配向性基としては、アゾベンゼン又はその誘導体を基本骨格として含むアゾベンゼン含有基、桂皮酸又はその誘導体(桂皮酸構造)を基本骨格として含む桂皮酸構造含有基、カルコン又はその誘導体を基本骨格として含むカルコン含有基、ベンゾフェノン又はその誘導体を基本骨格として含むベンゾフェノン含有基、フェニルベンゾエート又はその誘導体を基本骨格として含むフェニルベンゾエート含有基、クマリン又はその誘導体を基本骨格として含むクマリン含有基等が挙げられる。これらのうち、光反応性が高い点で、第1配向膜22及び第2配向膜23を形成する際に用いる液晶配向剤は、桂皮酸構造含有基を有する重合体を含有することが好ましい。
 第1配向膜22により規定されるプレチルト角及び第2配向膜23により規定されるプレチルト角は、液晶分子35の応答遅れを抑制する観点から、少なくとも一方が90度未満であることが好ましい。本実施形態では、第1配向膜22により規定されるプレチルト角及び第2配向膜23により規定されるプレチルト角がいずれも90度未満である。プレチルト角は、好ましくは89.9度以下であり、より好ましくは89.5度以下であり、更に好ましくは89.0度以下である。また、液晶表示装置10のコントラストの低下を抑制する観点から、プレチルト角は、好ましくは81.0度以上であり、より好ましくは83.0度以上であり、さらに好ましくは84.0度以上である。
(スリット)
 画素電極15には、開口部であるスリット15aが複数設けられている(図3(d)及び(e)参照)。スリット15aは、画素30の各辺(長辺部30a及び短辺部30b)に対して斜め方向に延びる斜めスリットである。スリット15aは、画素領域の面全体に形成されている。これにより、各ドメイン31~34には、スリット15aが延びる方向に平行に延びる複数の線状電極15bが面全体に配置されている。スリット15aの幅(以下、「スリット幅」ともいう。)は、例えば1~8μmであり、好ましくは5μm以下である。また、互いに隣接するスリット15aの間の距離(すなわち、線状電極15bの幅。以下、「電極幅」ともいう。)は、例えば1~8μmであり、好ましくは5μm以下である。なお、画素電極15が有するスリット15aは、図3に示すように、斜めスリットのみから構成されていてもよいし、長辺部30a又は短辺部30bに平行な開口部を更に有していてもよい。
 スリット15aが延びる方位(すなわち、線状電極15bが延びる方位)は、第1~第4ドメイン31~34のそれぞれにおいて、β度又は-β度(ただし、45度≦β≦85度を満たす。)となっている。換言すると、第1透過軸27aの軸方向を0度、第2透過軸28aの軸方向を90度と定義したときに、スリット15aが延びる方位と、画素30の短手方向(X軸方向)とのなす角度は、第1~第4ドメイン31~34のそれぞれにおいて、45度以上85度以下となっている。スリット15aが延びる方位は、第1ドメイン31と第2ドメイン32とで異なり、第3ドメイン33と第4ドメイン34とで異なっている。具体的には、第1ドメイン31及び第4ドメイン34では、スリット15aが延びる方位は-β度(=360-β度)であり、第2ドメイン32及び第3ドメイン33では、スリット15aが延びる方位はβ度である。
 なお、以下では、画素30の短手方向(X軸方向)と、スリット15aが延びる方向とのなす角度を「スリット角度β」という。スリット角度βは、2つの角度のうち小さい方の角度である(図3(d)、(e)参照)。スリット角度βは、第1透過軸27aとスリット15aが延びる方向とのなす角度でもあり、0度以上90度以下の値を取り得る。
 電圧オン時には、スリット15aによって形成される電界が作用することにより、液晶層13の配向方位は、複数の配向領域で互いに異なる。このとき、液晶層13の配向方位は、各配向領域において、スリット15aが延びる方向と平行になる(図3(e)参照)。例えば、図3の液晶表示装置10はβ=45度であり、各ドメインにおける液晶層13の配向方位はそれぞれ、電圧オフ時には、-10度(=350度)、10度、190度、170度となり(図3(d)参照)、電圧オン時には、-45度(=315度)、45度、225度、135度となる(図3(e)参照)。
 液晶表示装置10は、各画素30の各ドメイン31~34において、スリット15aが延びる方向と、電圧オフ時における液晶層13の配向方位とのなす角度γ(2つの角度のうち小さい方の角度、図3(d)参照)が、15度以上85度以下の範囲内となっている。角度γが上記範囲内にあることにより、透過率特性及び視野角特性に優れた液晶表示装置10を得ることができる。液晶表示装置10の電圧オン時の透過率特性及び視野角特性をより優れたものとする観点から、角度γは、20度以上であることがより好ましく、30度以上であることが更に好ましく、35度以上であることが特に好ましい。また、角度γは、80度以下であることがより好ましく、70度以下であることが更に好ましく、65度以下であることが特に好ましい。なお、角度γは、スリット角度βと液晶投影角度αとの差分で表される。図3の例では、角度γは35度である。
 次に、本実施形態の液晶表示装置10の他の一例として、α=0度かつβ=60度である場合について、図4を用いて説明する。図4の(a)~(e)は図3と同じである。図4の例では、第1基板11近傍の液晶分子のチルト方位は、第1基板11を液晶層13側から見て、第1ドメイン31及び第2ドメイン32が0度、第3ドメイン33及び第4ドメイン34が180度となる(図4(a)参照)。また、第2基板12近傍の液晶分子のチルト方位は、第2基板12を液晶層13側から見て、第1ドメイン31及び第2ドメイン32が0度、第3ドメイン33及び第4ドメイン34が180度となる(図4(b)参照)。この液晶表示装置10においては、電圧オフ時の液晶層13の配向方位が、第1ドメイン31及び第2ドメイン32で0度、第3ドメイン33及び第4ドメイン34で180度となる。また、電圧オン時の液晶層13の配向方位は、スリット15aが延びる方向に平行な方向、すなわち、第1ドメイン31で-60度(=300度)、第2ドメイン32で60度、第3ドメイン33で240度、第4ドメイン34で120度となる。角度γは60度である。
 液晶投影角度αは、視野角特性の改善効果をより高くできる点で、0度以上25度以下であることが好ましく、0度以上20度以下であることがより好ましく、0度以上15度以下であることが更に好ましく、0度以上10度以下であることが特に好ましい。スリット角度βは、液晶表示装置の駆動電圧を下げることができる点で、45度よりも大きい角度であることが好ましく、50度以上であることがより好ましく、55度以上であることが更に好ましい。また、スリット角度βは、電圧オン時の透過率特性の改善効果をより高くできる点で、80度以下であることが好ましく、75度以下であることがより好ましく、70度以下であることが更に好ましく、60度以下であることが特に好ましい。
<液晶表示装置の製造方法>
 次に、液晶表示装置10の製造方法について説明する。液晶表示装置10は、以下の工程1~3を含む方法によって製造することができる。
(工程1:塗膜の形成)
 まず、公知の方法に従って、配向膜形成前の第1基板11及び第2基板12を準備する。続いて、第1基板11及び第2基板12の各電極配置面上に液晶配向剤を塗布し、基板上に塗膜を形成する。基板への液晶配向剤の塗布は、好ましくはオフセット印刷法、フレキソ印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法により行う。液晶配向剤を塗布した後には、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、プレベーク時間は、好ましくは0.25~10分である。その後、焼成(ポストベーク)が実施される。ポストベーク温度は、好ましくは80~300℃であり、ポストベーク時間は、好ましくは5~200分である。形成される液晶配向膜の厚みは、好ましくは0.001~1μmである。
(工程2:配向処理)
 続いて、液晶配向膜に所望のプレチルト角特性を付与するために、工程1により形成した塗膜(液晶配向膜)の少なくとも一方に対して光配向処理を行う。本実施形態では、第1基板11上に形成した塗膜及び第2基板12上に形成した塗膜のそれぞれに対し、フォトマスクを用いて、液晶配向膜に発現させるチルト方位に応じて、基板面に対し斜め方向から偏光放射線(直線偏光)を照射する。これにより、塗膜にプレチルト角付与能を発現させ、液晶配向膜とする。光配向処理は、塗膜上での露光方位が互いに異なる複数の走査工程により行われる。これら複数の走査工程により、電圧オン時における液晶層13の配向方位が互いに異なる複数のドメイン(図3及び図4では4つのドメイン)が1画素内に形成される。
 塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。好ましくは、200~400nmの波長の光を含む紫外線である。使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザー等が挙げられる。放射線の照射量は、好ましくは100~50,000J/mであり、より好ましくは150~20,000J/mである。
 図3のように液晶投影角度αを0よりも大きくした場合には、各基板に対し、一画素内に形成される配向領域の数に対応する回数(本実施形態では合計4回)のスキャン露光を行う。一方、図4のように液晶投影角度αを0とした場合には、各基板に対し、一画素内に形成される配向領域の数の半分に対応する回数(本実施形態では合計2回)のスキャン露光で済む。したがって、α=0の場合には、液晶表示装置10の製造に際し配向処理回数を少なくすることができ、製造プロセスの効率化を図ることができる。
(工程3:液晶セルの構築)
 続いて、液晶配向膜が形成された2枚の基板(第1基板11及び第2基板12)を用い、対向配置した2枚の基板間に、負の誘電率異方性を持つ液晶分子を配置することにより、液晶セルを製造する。液晶セルを製造するには、例えば、液晶配向膜が対向するように間隙を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール材により貼り合わせ、基板表面及びシール材により囲まれたセルギャップ内に液晶を注入充填し注入孔を封止する方法、ODF方式による方法等が挙げられる。PSAモードの場合には、液晶セルの構築後に、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する処理を行う。
 続いて、液晶セルのそれぞれの外側表面に、透過軸27aと透過軸28aとが直交するように第1偏光板27及び第2偏光板28を貼り合わせることにより、液晶表示装置10が得られる。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板が挙げられる。
<液晶表示装置の作用>
 次に、上述した液晶表示装置10の作用について説明する。液晶表示装置10は、スリット15aが延びる方向と、電圧オフ時における液晶層13の配向方位とのなす角度γが、15度以上85度以下の範囲内となっている。角度γを上記特定の範囲内とすることにより、液晶表示装置の透過率特性と視野角特性とを優れたものとすることができる。この点について、図5及び図6の電圧-透過率特性を用いて更に説明する。これらの電圧-透過率特性は、以下の実施例に記載の計算条件にてシミュレーションにより算出した結果である。
 図5は、図3の液晶表示装置10において、プレチルト角を89度とした場合の電圧-透過率特性を示している。図6は、図4の液晶表示装置10において、プレチルト角を87度とした場合の電圧-透過率特性を示している。図7には、比較のため、図8に示す従来のUV2Aモード型の液晶表示装置(γ=0度)の例を示している。図5~7中、実線は、液晶表示装置の表示領域を正面から見た場合(θ=0度、φ=0度)であり、破線は、液晶表示装置の表示領域を正面から右方向又は左方向に45度傾いた方向から見た場合(θ=45度、φ=0度)である。θは、液晶表示装置の表示領域の正面を0度とした極角であり、φは、画素の短手方向に平行な方向であって、表示領域を正面から見たときの右方向を0度とした方位角である。
 図5に示すように、図3の液晶表示装置10では、θ=0度及びθ=45度のいずれにおいても最大透過率が十分に高く、透過率特性が良好である。また、図3の液晶表示装置10は、印加電圧(駆動電圧)を大きくしてもθ=0度とθ=45度との間の透過率差が小さく、視野角特性も良好である。またさらに、図4の液晶表示装置10についても同様の結果が得られた。一方、図8の液晶表示装置は、印加電圧を大きくすると、θ=0度とθ=45度との間の透過率差が大きくなり、角度γが15度以上85度以下の範囲内であるという条件を満たす液晶表示装置に比べて視野角特性に劣る。
 液晶表示装置10は、種々の用途に有効に適用することができる。液晶表示装置10は、例えば、時計、携帯型ゲーム機、ワードプロセッサ(ワープロ)、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話機、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置として用いることができる。
 (第2実施形態)
 次に、第2実施形態について第1実施形態との相違点を中心に説明する。上記第1実施形態では、第1配向膜22により規定されるプレチルト角及び第2配向膜23により規定されるプレチルト角を共に90度未満としたが、本実施形態では、第1配向膜22により規定されるプレチルト角及び第2配向膜23により規定されるプレチルト角のうち、一方が90度未満であり、他方が実質的に90度である点で第1実施形態と相違する。
 図9に、本実施形態の液晶表示装置の各画素30における、液晶分子のプレチルト角を示す。図9に示すように、第1~第4ドメイン31~34のそれぞれの配向領域39は、第1配向膜22により規定されるプレチルト角θ1を90度未満とし、第2配向膜23により規定されるプレチルト角θ2を実質的に90度としている。
 具体的には、第1配向膜22は、光配向処理により、1画素内において液晶分子の配向方位が領域ごとに異なるように分割露光されている(図10(a)参照)。第1配向膜22は、光配向性基を有する重合体を用いて形成された塗膜に対し、フォトマスク(例えば偏光子)を用いて、偏光放射線を複数回斜め照射することにより形成されている。一方、第2配向膜23は分割露光されておらず(図10(b)参照)、電圧オフ時には、第2配向膜23の近傍に存在する液晶分子35の配向方位を同じ方向に制御する。本実施形態では、第1配向膜22と同じ重合体組成物を用いて形成された塗膜を、光を照射せず第2配向膜23としてそのまま用いている。
 なお、第2配向膜23に対して光照射しない構成に代えて、第2配向膜23の面全体に対し、フォトマスクを用いずに基板法線方向から無偏光露光を行ってもよい。この場合、第2基板12に対する露光は、平行光であっても拡散光であってもよい。
 第1配向膜22により規定されるプレチルト角θ1は、液晶分子35の応答遅れを抑制する観点から、好ましくは89.0度以下であり、より好ましくは88.5度以下であり、さらに好ましくは88.0度以下である。また、液晶表示装置10のコントラストの低下を抑制する観点から、プレチルト角θ1は、好ましくは81.0度以上であり、より好ましくは83.0度以上であり、さらに好ましくは84.0度以上である。なお、本明細書において「実質的に90度」とは、90度±0.5度の範囲をいう。第2配向膜23により規定されるプレチルト角θ2は、好ましくは90度±0.2度であり、より好ましくは90度±0.1度である。
 なお、液晶配向膜によって規定されるプレチルト角を第1配向膜22側と第2配向膜23側とで非対称とする場合、液晶配向膜を形成する際の加熱温度を第1配向膜22と第2配向膜23とで異なる温度としたり、液晶配向膜形成時のポストベーク時間を第1配向膜22と第2配向膜23とで異なる時間としたり、液晶配向膜の膜厚を第1配向膜22と第2配向膜23とで異なる厚さとしたり、或いは、第1配向膜22と第2配向膜23とを異種配向膜としたりすることにより、フリッカーや焼き付きの発生を抑制するようにしてもよい。
 図10には、本実施形態の液晶表示装置の一例として、α=0度かつβ=60度である場合を示している。図10中の(a)~(e)は図3と同じである。図10の例では、第1配向膜22は分割露光により形成されている。分割露光により、第1基板11近傍の液晶分子のチルト方位は、第1基板11を液晶層13側から見て、第1ドメイン31及び第2ドメイン32で0度、第3ドメイン33及び第4ドメイン34で180度となっている。一方、第2配向膜23には露光処理を行っていない。これら一対の基板11、12を貼り合わせて液晶表示装置10を構築することにより、液晶表示装置10において、電圧オフ時の液晶層13の配向方位は、第1ドメイン31及び第2ドメイン32で0度、第3ドメイン33及び第4ドメイン34で180度となる。また、液晶表示装置10の電圧オン時には、液晶層13の配向方位が、スリット15aが延びる方向に平行な方位となる。具体的には、第1ドメイン31では-60度(=300度)、第2ドメイン32では60度、第3ドメイン33では240度、第4ドメイン34では120度となる。角度γは60度である。
 図11に、図10の液晶表示装置における印加電圧と透過率との関係を示す。なお、図11は、第1基板11側のプレチルト角が87.0度、第2基板側のプレチルト角が90度であり、以下の実施例に記載の計算条件にてシミュレーションにより算出した結果である。図11中、実線及び破線は、上記図5~7と同じ意味である。図11に示すように、図10の液晶表示装置は、正面方向から見た場合(θ=0度)及び斜め方向から見た場合(θ=45度)のいずれにおいても最大透過率が十分に高く、透過率特性が良好である。また、図10の液晶表示装置は、印加電圧を大きくしても正面方向から見た場合(θ=0度)と斜め方向から見た場合(θ=45度)との間で透過率差が小さく、視野角特性も良好である。
 (第3実施形態)
 次に、第3実施形態について第1実施形態及び第2実施形態との相違点を中心に説明する。本実施形態の液晶表示装置は、第1配向膜22により規定されるプレチルト角及び第2配向膜23により規定されるプレチルト角のうち、一方が90度未満であり、他方が実質的に90度となっている点で上記第2実施形態と同じである。ただし、本実施形態では、第1配向膜22及び第2配向膜23の両方が分割露光により作製されている点で第2実施形態と相違する。
 図12に、本実施形態の液晶表示装置の一例として、α=0度かつβ=60度である場合を示している。図12中の(a)~(e)は図3と同じである。図12の例では、第1配向膜22は、第1ドメイン31及び第2ドメイン32に対し分割露光することにより形成されている。これにより、第1基板11近傍の液晶分子のチルト方位は、第1基板11を液晶層13側から見て、第1ドメイン31及び第2ドメイン32では0度となっている。なお、第1配向膜22の第3ドメイン33及び第4ドメイン34に対しては光照射しないか、又は基板法線方向から無偏光露光を行う。一方、第2配向膜23は、第1ドメイン31及び第2ドメイン32に対しては光照射しないか、又は基板法線方向から無偏光露光を行い、第3ドメイン33及び第4ドメイン34に対し分割露光する。これにより、第2基板12近傍の液晶分子のチルト方位は、第2基板12を液晶層13側から見て、第3ドメイン33及び第4ドメイン34で0度となっている。
 これら一対の基板11、12を貼り合わせて液晶表示装置を構築することにより、液晶表示装置の電圧オフ時における液晶層13の配向方位は、第1ドメイン31及び第2ドメイン32で0度、第3ドメイン33及び第4ドメイン34で180度となる。また、液晶表示装置10の電圧オン時には、液晶層13の配向方位は、第1ドメイン31で-60度(=300度)、第2ドメイン32で60度、第3ドメイン33で240度、第4ドメイン34で120度となる。角度γは60度である。
 本実施形態では、第1~第4ドメイン31~34のうち一部に光照射することにより第1配向膜22及び第2配向膜23を形成する。こうした配向処理により、一画素内の複数のドメインのうちの一部(本実施形態では、第1ドメイン31及び第2ドメイン32)では、第1配向膜22により規定されるプレチルト角θ1を90度未満とし、かつ第2配向膜23により規定されるプレチルト角θ2を実質的に90度としている。残りのドメイン(本実施形態では、第3ドメイン33及び第4ドメイン34)では、第1配向膜22により規定されるプレチルト角θ1を実質的に90度とし、かつ第2配向膜23により規定されるプレチルト角θ2を90度未満としている。
 配向露光された液晶配向膜によって規定されるプレチルト角(以下、「チルト角θ3」という。)は、配向露光されていない液晶配向膜によって規定されるプレチルト角(以下、「チルト角θ4」という。)よりも小さい。液晶分子35の応答遅れを抑制する観点から、チルト角θ3は、好ましくは89.0度以下であり、より好ましくは88.5度以下であり、さらに好ましくは88.0度以下である。また、液晶表示装置のコントラストの低下を抑制する観点から、チルト角θ3は、好ましくは81.0度以上であり、より好ましくは83.0度以上であり、さらに好ましくは84.0度以上である。プレチルト角θ4は、実質的に90度である。
 この液晶表示モードでは、一対の基板に対するスキャン露光の回数を、一画素内に形成される配向領域の数に対応する回数以下(図12の液晶表示装置では合計2回)とすることができる。したがって、露光回数をできるだけ少なくすることができ、スループットの向上を図ることができる。
 また、本実施形態の液晶表示装置は、1画素内の複数の配向領域のうち、一部の配向領域については第1配向膜22に配向露光が施されており、残りの配向領域については第2配向膜23に配向露光が施されている。すなわち、各画素30は、1画素内の非対称性の向きが互いに逆方向になる領域を有している。この場合、第1基板11側を露光した配向領域と、第2基板12側を露光した配向領域とでは互いに逆相の波形でフリッカーを発生することとなる。これにより、露光回数の低減を図りながら、表示品位を良化することができる。
 (第4実施形態)
 次に、第4実施形態について第1~第3実施形態との相違点を中心に説明する。上記第1~第3実施形態では、複数の配向領域(第1~第4ドメイン31~34)は、画素30の上下方向に並べて配置されている構成とした。これに対し、本実施形態では、複数の配向領域は、画素30の上下方向及び左右方向のそれぞれに複数個ずつ並べて配置されている点で第1~3実施形態と相違する。
 本実施形態の液晶表示装置の一例として、α=0度かつβ=45度である場合について、図13を用いて説明する。図13の(a)~(e)は図3と同じである。図13に示すように、第1~第4ドメイン31~34は、1画素内に、画素30の上下方向及び左右方向のそれぞれに2個ずつ並べて配置されている。隣接するドメイン同士は、スリット15aが延びる方向が互いに異なっている。具体的には、スリット15aは、画素30を平面視して、画素30の中央から外周に向かって放射線状に延びている(図13(e)参照)。
 図13の例では、第1基板11近傍の液晶分子35のチルト方位は、第1基板11を液晶層13側から見て、第1ドメイン31及び第3ドメイン33が0度、第2ドメイン32及び第4ドメイン34が180度となる。また、第2基板12近傍の液晶分子のチルト方位は、第2基板12を液晶層13側から見て、第1ドメイン31及び第3ドメイン33が180度、第2ドメイン32及び第4ドメイン34が0度となる。液晶層13の配向方位は、電圧オフ時に、第1ドメイン31及び第3ドメイン33で0度、第2ドメイン32及び第4ドメイン34で180度となり(図13(c)及び(d)参照)、電圧オン時には、スリット15aが延びる方向に平行な方向になる(図13(e)参照)。角度γは45度である。
 図14に、図13の液晶表示装置における印加電圧と透過率との関係を示す。なお、図14は、第1基板11側のプレチルト角及び第2基板側のプレチルト角をそれぞれ89.0度とし、以下の実施例に記載の計算条件にてシミュレーションにより算出した結果である。図14中、実線及び破線は、上記図5~7と同じ意味である。図14に示すように、本実施形態の液晶表示装置は最大透過率が十分に高く、透過率特性が良好である。また、印加電圧を大きくしても正面方向から見た場合(θ=0度)と斜め方向から見た場合(θ=45度)との間の透過率差が小さく、視野角特性も良好である。
 (他の実施形態)
 本開示は上記実施形態に限定されず、例えば以下のように実施されてもよい。
 ・上記第2実施形態では、第1配向膜22により規定されるプレチルト角θ1を90度未満とし、第2配向膜23により規定されるプレチルト角θ2を実質的に90度としたが、第2配向膜23により規定されるプレチルト角θ2を90度未満とし、第1配向膜22により規定されるプレチルト角θ1を実質的に90度としてもよい。
 ・上記実施形態では、画素電極15として、画素領域の面全体にスリット15aが形成されている場合について説明したが、画素領域の一部(例えば、隣接する2つのドメインの境界部や、画素30の上下方向及び左右方向のうちいずれかの外縁部分)にのみスリットが形成されていてもよい。
 ・画素の配向分割の数や画素の形状は上記実施形態の構成に限定されない。例えば、図15(a)に示すように、1画素を2つの領域に配向分割した液晶表示装置に本開示を適用したり、或いは、図15(b)及び図15(c)に示すように、1画素を8つの領域に配向分割した液晶表示装置に本開示を適用したりしてもよい。また、図15(d)に示すように、画素の各辺が上下方向に延びる短辺部と左右方向に延びる長辺部とにより構成された画素を備える液晶表示装置に本開示を適用してもよい。
 ・上記第1~第4実施形態において、画素電極15の電極幅をL、スリット幅をS、液晶層13の厚さ(セルギャップ)をdとしたとき、L<1.1d、かつS<dを満たすことが好ましい。電極幅(L)、スリット幅(S)、及び液晶層13の厚さ(d)が上記関係を満たす場合、光透過率がより高い液晶表示装置10を得ることができる点で好適である。なお、液晶層13の厚さの変更に伴い、液晶表示装置10の好ましい電極幅及びスリット幅が変化する要因としては、スリット構造により電極間で発生する斜め電界が液晶の駆動に影響を及ぼすことが考えられる。この点に鑑み、上記関係(L<1.1d、S<d)を満たすように液晶層13の厚さ、並びに画素電極15の電極幅及びスリット幅を設定することにより、スリット電極を有する液晶表示装置において好適な斜め電界を得ることができ、透過率特性に優れた液晶表示装置を得ることができる。
 ・上記実施形態では、カラーフィルタを第2基板12に設けたが、第1基板11にカラーフィルタを設けてもよい。
 以下、実施例に基づき実施形態を説明するが、以下の実施例によって本開示が限定的に解釈されるものではない。
 以下の例において、重合体の重量平均分子量Mw、数平均分子量Mn、重合体溶液の溶液粘度及びエポキシ当量は以下の方法により測定した。以下の実施例で用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの合成を必要に応じて繰り返すことにより確保した。
[重量平均分子量Mw及び数平均分子量Mn]
 重量平均分子量Mw及び数平均分子量Mnは、以下の条件におけるGPCにより測定したポリスチレン換算値である。
 カラム:東ソー(株)製、TSKgelGRCXLII
 溶剤:テトラヒドロフラン
 温度:40℃
 圧力:68kgf/cm
[重合体溶液の溶液粘度]
 重合体溶液の溶液粘度(mPa・s)は、E型回転粘度計を用いて25℃で測定した。
[エポキシ当量]
 エポキシ当量は、JIS C 2105に記載の塩酸-メチルエチルケトン法により測定した。
1.重合体の合成
[合成例1]
 窒素下、100mL二口フラスコに、下記(MI-1)で表される化合物5.00g、4-ビニル安息香酸0.64g、4-(2,5-ジオキソ-3-ピロリン-1-イル)安息香酸2.82g、及び4-(グリシジルオキシメチル)スチレン3.29g、ラジカル重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.31g、連鎖移動剤として2,4-ジフェニル-4-メチル-1-ペンテン0.52g、並びに溶媒としてテトラヒドロフラン25mlを加え、70℃で5時間重合した。n-ヘキサンに再沈殿した後、沈殿物を濾過し、室温で8時間真空乾燥することにより、スチレン-マレイミド系重合体(これを「重合体(PM-1)」とする。)を得た。GPCによるポリスチレン換算で測定される重量平均分子量Mwは30000、分子量分布Mw/Mnは2であった。
Figure JPOXMLDOC01-appb-C000001
[合成例2]
 窒素下、100mL二口フラスコに、上記(MI-1)で表される化合物5.00g、メタクリル酸0.86g、及びオキシラン-2-イルメチルメタクリラート1.43g、ラジカル重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.39g、連鎖移動剤として2,4-ジフェニル-4-メチル-1-ペンテン0.39g、並びに溶媒としてテトラヒドロフラン25mlを加え、70℃で5時間重合した。n-ヘキサンに再沈殿した後、沈殿物を濾過し、室温で8時間真空乾燥することにより、スチレン-マレイミド系重合体(これを「重合体(PM-2)」とする。)を得た。GPCによるポリスチレン換算で測定される重量平均分子量Mwは28000、分子量分布Mw/Mnは1.8であった。
[合成例3]
 窒素下、100mL二口フラスコに、下記(MI-2)で表される化合物3.00g、メタクリル酸1.82g、及びオキシラン-2-イルメチルメタクリラート3.01g、ラジカル重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.39g、連鎖移動剤として2,4-ジフェニル-4-メチル-1-ペンテン0.39g、並びに溶媒としてテトラヒドロフラン25mlを加え、70℃で5時間重合した。n-ヘキサンに再沈殿した後、沈殿物を濾過し、室温で8時間真空乾燥することにより、スチレン-マレイミド系重合体(これを「重合体(PM-3)」とする。)を得た。GPCによるポリスチレン換算で測定される重量平均分子量Mwは27000、分子量分布Mw/Mnは1.7であった。
Figure JPOXMLDOC01-appb-C000002
[合成例4]
 1,2,3,4-シクロブタンテトラカルボン酸二無水物70.0mmol、2,2’-ジメチル-4,4’-ジアミノビフェニル76.9mmolをN-メチル-2-ピロリドン(NMP)170gに溶解し、25℃で3時間反応を行うことにより、ポリアミック酸を10質量%含有する溶液を得た。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。得られた沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(これを「重合体(PAA-1)」とする。)を得た。
[合成例5]
 2,3,5-トリカルボキシシクロペンチル酢酸二無水物0.121モル、6-{[((2E)-3-{4-[(4-(3,3,3-トリフルオロプロポキシ)ベンゾイル)オキシ]フェニル}プロパ-2-エノイル)オキシ]}ヘキシル-3,5-ジアミノベンゾエート0.109モル、5ξ-コレスタン-3-イル 2,4-ジアミノフェニルエーテル0.00604モル、及び3,5-ジアミノ安息香酸=5ξ-コレスタン-3-イル0.00604モルをN-メチル-2-ピロリドン(NMP)185.7gに溶解し、60℃で24時間反応させた。この重合体溶液の粘度を測定したところ、2100mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。得られた沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(これを「重合体(PAA-2)」とする。)を得た。
[合成例6]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄したのち、減圧下で溶媒及び水を留去することにより、エポキシ基を有するポリオルガノシロキサン(EPS-1)を粘調な透明液体として得た。得られたポリオルガノシロキサン(EPS-1)の重量平均分子量Mwは2,200であり、エポキシ当量は186g/モルであった。
 次いで、300mLの三口フラスコに、ポリオルガノシロキサン(EPS-1)30.1g、メチルイソブチルケトン140g、下記式(A-1)で表される桂皮酸誘導体(A-1)31.9g(ポリオルガノシロキサン(EPS-1)が有するケイ素原子に対して50モル%に相当する。)、ステアリン酸4.60g(ポリオルガノシロキサン(EPS-1)が有するケイ素原子に対して10モル%に相当する。)、3,5-ジニトロ安息香酸0.0686g(ポリオルガノシロキサン(EPS-1)が有するケイ素原子に対して0.2モル%に相当する。)及びテトラブチルアンモニウムブロミド3.00gを仕込み、80℃で5時間撹拌下に反応を行った。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して溶液を得た。得られた溶液を5回水洗した後、溶媒を留去することにより、感放射線性ポリオルガノシロキサンとして、重量平均分子量(Mw)が12,600(Mw/Mn=1.42)の重合体(PS-1)の白色粉末55.6gを得た。
Figure JPOXMLDOC01-appb-C000003
2.液晶表示装置の製造及び評価
[実施例1]
1.液晶配向剤の調製
 重合体(PAA-1)80質量部、及び重合体(PAA-2)20質量部に、溶剤としてNMP及びブチルセロソルブ(BC)を加え、溶媒組成がNMP/BC=50/50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより液晶配向剤(AL-1)を調製した。
2.液晶表示装置の製造
 TFT基板及びCF基板を用いて液晶表示装置を製造した。TFT基板の画素電極としては、各画素の短手方向とスリットが延びる方向とがなす角度(スリット角度β)が45度、電極幅(L)が3.5μm、スリット幅(S)が2.5μmであるスリット電極を用いた(図3参照、以下の実施例2~10、比較例1~6についても同じ)。CF基板の対向電極としては、スリットが形成されていないベタ電極を用いた。TFT基板及びCF基板の各電極配置面に液晶配向剤(AL-1)をスピンキャスト法により塗布した。これを80℃で1分間プレベークを行った後、230℃で40分間ポストベークを行い、膜厚が120nmの塗膜を形成した。続いて、TFT基板に形成した塗膜(液晶配向膜)に対しスキャン露光を行った。スキャン露光は、図3に従い、電圧オン時の液晶分子の配向方位が互いに異なる4つのドメインが1画素内に形成されるように、かつ、各ドメインの露光方位が、各画素の短手方向に対して10度となるように、313nmの直線偏光を20mJ/cmの強度により合計4回照射することにより行った。また、CF基板に形成した塗膜(液晶配向膜)に対してもTFT基板と同様にしてスキャン露光を行った。
 続いて、TFT基板の液晶配向膜の形成面に、負の誘電異率方性を有するネマチック液晶を滴下し、CF基板の外縁部に、シール材として熱硬化性エポキシ樹脂を配置した。その後、TFT基板、CF基板の配向膜面が互いに内側になるようにして貼り合わせた。続いて、130℃で1時間加熱してエポキシ樹脂を硬化させ、液晶セルを得た。さらに、液晶注入時の流動配向を除くために、液晶セルを150℃で加熱してから室温まで徐冷した。次に、液晶セルの基板外側の両面に、偏光板を、その透過軸が互いに直交するように貼り合わせ、光垂直型液晶表示装置を得た。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に89.0度であった。電圧オフ時の液晶層の配向方位と画素の短手方向とがなす角度(液晶投影角度α)は10度となる。なお、プレチルト角は、シンテック社製のOPTI-Proを使用して測定した値である(以下同じ)。
3.透過率特性の評価
(1)透過率の計算
 LinkGlobal21社製のExpert LCDを用いて、上記1.で製造した液晶表示装置の透過率をシミュレーションにより算出した。計算条件として、液晶物性:Δε=3、Ne=1.6、No=1.5、セルギャップ:3.4μm、プレチルト角:計測値(実施例1では89.0°)を適用した。その結果を図5に示した。なお、図5には、液晶表示装置を正面方向(極角θ=0度かつ方位角φ=0度)から観察した場合の透過率(実線参照)と、液晶表示装置を斜め方向(極角θ=45度かつ方位角φ=0度)から観察した場合の透過率(破線参照)とを示している。
(2)最大透過率による評価
 上記(1)の結果(図5)から、液晶表示装置の最大透過率により透過率特性を評価した。極角θ=0度かつ方位角φ=0度での最大透過率が0.280以上である場合に透過率特性「良好」、0.280未満である場合に「不良」と評価した。この実施例では、最大透過率は0.314であり、透過率特性「良好」と判断された。
(3)透過率比による評価
 上記(1)の結果(図5)から、最大輝度になる電圧V100及び輝度が最大輝度の20%になる電圧V20の各電圧における透過率比α(V)を下記式(1)によりそれぞれ算出し、透過率比α(V)により視野角特性を評価した。
α(V)=(極角θ=0かつ方位角φ=0の透過率)/(極角θ=45かつ方位角φ=0の透過率)
                              …(1)
透過率比α(V)が1に近いほど、表示領域を正面から見た場合と斜め方向から見た場合との間の透過率差が小さく、視野角特性に優れているといえる。最大輝度になる電圧V100での透過率比α(V100)及び最大輝度の20%になる電圧V20での透過率比α(V20)が共に0.80~1.15の範囲内である場合を「良好」、電圧V100での透過率比α(V100)及び電圧V20での透過率比α(V20)のうち少なくとも一方が0.80未満であるか又は1.15よりも大きい場合を「不良」と評価した。この実施例では、電圧V100での透過率比α(V100)は1.08、電圧V20での透過率比α(V20)は1.01であり、視野角特性「良好」と判断された。
[実施例2]
1.液晶配向剤の調製
 重合体(PS-1)10質量部、及び重合体(PAA-1)100質量部に、溶剤としてNMP及びBCを加え、溶媒組成がNMP/BC=50/50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより液晶配向剤(AL-2)を調製した。
2.液晶表示装置の製造
 液晶配向剤(AL-1)に代えて液晶配向剤(AL-2)を用いた点、並びに、チルト方位が図16(a)及び(b)に示す方位となるように、第1~第4ドメインの露光方位を変更した点以外は、実施例1と同様にして図16の光垂直型液晶表示装置を製造した。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に89.0度であった。液晶投影角度αは10度となる。
3.透過率特性の評価
 実施例1と同様にして、上記2.で製造した液晶表示装置の透過率をシミュレーションにより算出した。その結果、この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.285であり、透過率特性「良好」と判断された。また、電圧V100での透過率比α(V100)は1.04、電圧V20での透過率比α(V20)は1.11であり、視野角特性「良好」と判断された。
[実施例3]
1.液晶表示装置の製造
 チルト方位が図4(a)及び(b)に示す方位となるように、第1~第4ドメインの露光方位を変更した点以外は、実施例1と同様にして、図4の光垂直型液晶表示装置を製造した。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に89.0度であった。液晶投影角度αは0度となる。なお、スキャン露光は、各基板で2回ずつ(合計4回)行った。
2.透過率特性の評価
 上記1.で製造した液晶表示装置の透過率を実施例1と同様にしてシミュレーションにより算出した。その結果、この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.312であり、透過率特性「良好」と判断された。また、電圧V100での透過率比α(V100)は1.07、電圧V20での透過率比α(V20)は1.09であり、視野角特性「良好」と判断された。
[実施例4]
1.液晶表示装置の製造
 液晶配向剤(AL-1)に代えて液晶配向剤(AL-2)を用いた点、スリット角度βを60度にした点、及びチルト方位が図4(a)及び(b)に示す方位となるように、第1~第4ドメインの露光方位を変更した点以外は、実施例1と同様にして図4の光垂直型液晶表示装置を製造した。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に89.0度であった。液晶投影角度αは0度となる。
2.透過率特性の評価
 実施例1と同様にして、上記1.で製造した液晶表示装置の透過率をシミュレーションにより算出することにより、図6の結果を得た。この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.313であり、透過率特性「良好」と判断された。また、電圧V100での透過率比α(V100)は1.12、電圧V20での透過率比α(V20)は1.12であり、視野角特性「良好」と判断された。
[実施例5]
1.液晶配向剤の調製
 重合体(PM-3)10質量部、及び重合体(PAA-1)100質量部に、溶剤としてNMP及びBCを加え、溶媒組成がNMP/BC=50/50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより液晶配向剤(AL-3)を調製した。
2.液晶表示装置の製造
 液晶配向剤(AL-1)に代えて液晶配向剤(AL-3)を用いた点、スリット角度βを60度にした点、及びチルト方位が図4(a)及び(b)に示す方位となるように、第1~第4ドメインの露光方位を変更した点以外は、実施例1と同様にして図4の光垂直型液晶表示装置を製造した。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に87.0度であった。液晶投影角度αは0度となる。
3.透過率特性の評価
 上記2.で製造した液晶表示装置の透過率を実施例1と同様にしてシミュレーションにより算出した。その結果、この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.314であり、透過率特性「良好」と判断された。また、電圧V100での透過率比α(V100)は1.09、電圧V20での透過率比α(V20)は1.04であり、視野角特性「良好」と判断された。
[実施例6]
1.液晶表示装置の製造
 液晶配向剤(AL-1)に代えて液晶配向剤(AL-3)を用いた点、スリット角度βを60度にした点、及びチルト方位が図10(a)に示す方位となるように、TFT基板にのみ露光した点以外は、実施例1と同様にして図10の光垂直型液晶表示装置を製造した。得られた液晶表示装置のプレチルト角は、TFT基板側で87.0度、CF基板側で90度であった。液晶投影角度αは0度となる。
2.透過率特性の評価
 実施例1と同様にして、上記2.で製造した液晶表示装置の透過率をシミュレーションにより算出することにより、図11の結果を得た。この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.313であり、透過率特性「良好」と判断された。また、電圧V100での透過率比α(V100)は1.12、電圧V20での透過率比α(V20)は1.04であり、視野角特性「良好」と判断された。
[実施例7]
1.液晶配向剤の調製
 重合体(PM-1)10質量部、及び重合体(PAA-1)100質量部に、溶剤としてNMP及びBCを加え、溶媒組成がNMP/BC=50/50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより液晶配向剤(AL-4)を調製した。
2.液晶表示装置の製造
 液晶配向剤(AL-1)に代えて液晶配向剤(AL-4)を用いた点、及びチルト方位が図17(b)に示す方位となるように、CF基板にのみ露光した点以外は、実施例1と同様にして図17の光垂直型液晶表示装置を製造した。得られた液晶表示装置のプレチルト角は、TFT基板側が90度、CF基板側が88.0度であった。液晶投影角度αは0度となる。
3.透過率特性の評価
 上記2.で製造した液晶表示装置の透過率を実施例1と同様にしてシミュレーションにより算出した。その結果、この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.310であり、透過率特性「良好」と判断された。また、電圧V100での透過率比α(V100)は1.07、電圧V20での透過率比α(V20)は1.12であり、視野角特性「良好」と判断された。
[実施例8]
1.液晶表示装置の製造
 液晶配向剤(AL-1)に代えて液晶配向剤(AL-4)を用いた点、スリット角度βを60度にした点、及びチルト方位が図18(a)に示す方位となるように、TFT基板にのみ露光した点以外は、実施例1と同様にして図18の光垂直型液晶表示装置を製造した。得られた液晶表示装置のプレチルト角は、TFT基板側で88.0度、CF基板側で90度であった。液晶投影角度αは20度となる。
2.透過率特性の評価
 実施例1と同様にして、上記1.で製造した液晶表示装置の透過率をシミュレーションにより算出した。この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.306であり、透過率特性「良好」と判断された。また、電圧V100での透過率比α(V100)は1.11、電圧V20での透過率比α(V20)は0.84であり、視野角特性「良好」と判断された。
[実施例9]
1.液晶表示装置の製造
 液晶配向剤(AL-1)に代えて液晶配向剤(AL-4)を用いた点、スリット角度βを60度にした点、及びチルト方位が図19(b)に示す方位となるようにCF基板にのみ露光した点以外は、実施例1と同様にして図19の光垂直型液晶表示装置を製造した。得られた液晶表示装置のプレチルト角は、TFT基板側で90度、CF基板側で88.0度であった。液晶投影角度αは20度となる。
2.透過率特性の評価
 実施例1と同様にして、上記1.で製造した液晶表示装置の透過率をシミュレーションにより算出した。この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.308であり、透過率特性「良好」と判断された。また、電圧V100での透過率比α(V100)は1.11、電圧V20での透過率比α(V20)は0.85であり、視野角特性「良好」と判断された。
[実施例10]
1.液晶表示装置の製造
 チルト方位が図13に示す方位となるようにTFT基板側及びCF基板側の塗膜に分割露光を行った点以外は、実施例1と同様にして、図13の光垂直型液晶表示装置を製造した。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に89.0度であった。液晶投影角度αは0度となる。
2.透過率特性の評価
 実施例1と同様にして、上記1.で製造した液晶表示装置の透過率をシミュレーションにより算出することにより、図14の結果を得た。この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.321であり、透過率特性「良好」と判断された。また、電圧V100での透過率比α(V100)は1.09、電圧V20での透過率比α(V20)は1.14であり、視野角特性「良好」と判断された。
 実施例1~10において使用した液晶配向剤、並びに液晶表示装置の液晶投影角度α、スリット角度β、電圧オフ時の液晶層の配向方位とスリット方向とがなす角度γ、及び透過率比α(V)を下記表1にまとめた。なお、液晶投影角度αは、電圧オフ時の液晶層の配向方位と、TFT基板側の偏光板の透過軸が延びる方向とがなす角度と等しく、スリット角度βは、スリット方向と、TFT基板側の偏光板の透過軸が延びる方向とがなす角度と等しくなる。
Figure JPOXMLDOC01-appb-T000004
[比較例1]
1.液晶表示装置の製造
 スリットが設けられていないベタ電極をTFT基板及びCF基板として用いた点、及びチルト方位が図20(a)及び(b)に白抜き矢印で示す方位となるようにTFT基板側及びCF基板側の塗膜に分割露光を行った点以外は、実施例1と同様にして光垂直型液晶表示装置を製造した(図20)。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に89.0度であった。液晶投影角度αは45度となる。なお、図20中、(a)~(c)は図3と同じであり、(d)は、電圧オン時の液晶層13の配向方位を示している。
2.透過率特性の評価
 実施例1と同様にして、上記1.で製造した液晶表示装置の透過率をシミュレーションにより算出した。この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.243であり、透過率特性は「不良」と判断された。また、電圧V100での透過率比α(V100)は1.12、電圧V20での透過率比α(V20)は0.74であり、視野角特性「不良」と判断された。
[比較例2]
1.液晶配向剤の調製
 重合体(PM-2)10質量部、及び重合体(PAA-1)100質量部に、溶剤としてNMP及びBCを加え、溶媒組成がNMP/BC=50/50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより液晶配向剤(AL-5)を調製した。
2.液晶表示装置の製造
 スリットが設けられていないベタ電極をTFT基板及びCF基板として用いた点、液晶配向剤(AL-1)に代えて液晶配向剤(AL-5)を用いた点、及びチルト方位が図20に示す方位となるようにTFT基板側及びCF基板側の塗膜に分割露光を行った点以外は、実施例1と同様にして光垂直型液晶表示装置を製造した(図20)。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に86.0度であった。液晶投影角度αは45度となる。
3.透過率特性の評価
 実施例1と同様にして、上記2.で製造した液晶表示装置の透過率をシミュレーションにより算出した。この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.288であり、透過率特性は「良好」と判断された。一方、電圧V100での透過率比α(V100)は1.12、電圧V20での透過率比α(V20)は0.65であり、視野角特性「不良」と判断された。
[比較例3]
1.液晶表示装置の製造
 チルト方位が図8(a)及び(b)に白抜き矢印で示す方位となるようにTFT基板側及びCF基板側の塗膜に分割露光を行った以外は、実施例1と同様にして光垂直型液晶表示装置を製造した。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に89.0度であった。液晶投影角度αは45度となる。
2.透過率特性の評価
 実施例1と同様にして、上記1.で製造した液晶表示装置の透過率をシミュレーションにより算出することにより、図7の結果を得た。この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.306であり、透過率特性は「良好」と判断された。一方、電圧V100での透過率比α(V100)は1.12、電圧V20での透過率比α(V20)は0.69であり、視野角特性「不良」と判断された。
[比較例4]
1.液晶表示装置の製造
 スリットが設けられていないベタ電極をTFT基板及びCF基板として用いた点、及びチルト方位が図21(a)及び(b)に白抜き矢印で示す方位となるようにTFT基板側及びCF基板側の塗膜に分割露光を行った点以外は、実施例1と同様にして光垂直型液晶表示装置を製造した(図21)。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に89.0度であった。液晶投影角度αは45度となる。なお、図21中、(a)~(c)は図3と同じであり、(d)は、電圧オン時の液晶層13の配向方位を示している。
2.透過率特性の評価
 実施例1と同様にして、上記1.で製造した液晶表示装置の透過率をシミュレーションにより算出した。この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.272であり、透過率特性「不良」と判断された。また、電圧V100での透過率比α(V100)は1.12、電圧V20での透過率比α(V20)は0.69であり、視野角特性「不良」と判断された。
[比較例5]
1.液晶表示装置の製造
 スリットが設けられていないベタ電極をTFT基板及びCF基板として用いた点、液晶配向剤(AL-1)に代えて液晶配向剤(AL-3)を用いた点、及びチルト方位が図21(a)及び(b)に白抜き矢印で示す方位となるようにTFT基板側及びCF基板側の塗膜に分割露光を行った点以外は、実施例1と同様にして光垂直型液晶表示装置を製造した(図21)。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に87.0度であった。液晶投影角度αは45度となる。
2.透過率特性の評価
 実施例1と同様にして、上記1.で製造した液晶表示装置の透過率を測定した。この実施例では、極角θ=0度かつφ=0度での最大透過率が0.298であり、透過率特性「良好」と判断された。一方、電圧V100での透過率比α(V100)は1.11、電圧V20での透過率比α(V20)は0.65であり、視野角特性「不良」と判断された。
[比較例6]
1.液晶表示装置の製造
 チルト方位が図22(a)及び(b)に白抜き矢印で示す方位となるように、TFT基板及びCF基板に形成した塗膜に露光した点以外は、実施例1と同様にして光垂直型液晶表示装置を製造した(図22)。得られた液晶表示装置のプレチルト角は、TFT基板側及びCF基板側共に89.0度であった。液晶投影角度αは45度となる。
2.透過率特性の評価
 実施例1と同様にして、上記1.で製造した液晶表示装置の透過率をシミュレーションにより算出した。この実施例では、極角θ=0度かつ方位角φ=0度での最大透過率が0.306であり、透過率特性「良好」と判断された。一方、電圧V100での透過率比α(V100)は1.12、電圧V20での透過率比α(V20)は0.69であり、視野角特性「不良」と判断された。
 比較例1~6において使用した液晶配向剤、並びに液晶表示装置の液晶投影角度α、スリット角度β、電圧オフ時の液晶層の配向方位とスリット方向とがなす角度γ、及び透過率比α(V)を下記表2にまとめた。
Figure JPOXMLDOC01-appb-T000005
[実施例11]
 スリット角度βを固定値とし、液晶投影角度αを0度、10度、20度、30度及び40度に変更することにより、液晶投影角度αの変化に対する透過率変化を調べた。透過率の測定は、LinkGlobal21社製のExpert LCDを用い、液晶配向剤(AL-1)、印加電圧=10V、極角θ=0度、方位角φ=0度の条件により計算を行った。その結果を図23に示す。なお、図23中、(a)はスリット角度βを60度とした場合、(b)はスリット角度βを75度とした場合の結果である。
 図23に示すように、β=60度とした場合、液晶投影角度αが30度以下では10V印加時の透過率が0.30よりも大きかったのに対し、液晶投影角度αを40度とすると、透過率の低下が大きかった。特に、液晶投影角度αを0度以上20度以下とした場合には、透過率がほぼ変わらず安定し、透過率特性に優れていた。また、β=75度とした場合の結果からも、液晶投影角度αを30度以下とすることが好適であるといえる。
[実施例12]
 次に、液晶投影角度αを固定値とし、スリット角度βを45度、50度、60度、70度及び80度に変更することにより、スリット角度βの変化に対する透過率変化を調べた。透過率の計算については実施例11と同じである。その結果を図24に示す。なお、図24中、(a)は液晶投影角度αを0度とした場合、(b)は液晶投影角度αを20度とした場合の結果である。
 図24に示すように、液晶投影角度α=0度とした場合、スリット角度βを50度、60度、70度とした場合には、スリット角度βを45度、80度とした場合よりも透過率が高く、良好であった。α=20度とした場合の結果からも、スリット角度βを45度よりも大きく、かつ80度未満とすることが好適であるといえる。
[実施例13~24]
 上記実施例1の液晶表示装置について、画素電極の電極幅(L)及びスリット幅(S)、並びにセルギャップ(d)の各条件を下記表3のとおり変更し、液晶表示装置の透過率に及ぼす影響を調べた。透過率は、実施例1と同じく、LinkGlobal21社製のExpert LCDを用いてシミュレーションにより算出した。極角θ=0度かつ方位角φ=0度での最大透過率が0.310以上である場合に透過率特性「優良(◎)」、0.280以上0.310未満である場合に「良好(○)」と評価した。評価結果を以下に示す。なお、表3中、「L<1.1d」及び「S<d」欄について、該当する条件を満たす場合に「○」、満たさない場合に「×」と表示した。
Figure JPOXMLDOC01-appb-T000006
 表3に示すように、実施例1、13~24はいずれも、最大透過率が0.280以上であり、良好な透過率特性を示した。特に、電極幅がセルギャップの1.1倍よりも小さく(L<1.1d)、かつスリット幅がセルギャップよりも小さい(S<d)場合(実施例1、14~18、20、21)では、最大透過率が0.310以上の値を示し、特に優れていた。
 10…液晶表示装置、11…第1基板、12…第2基板、13…液晶層、15…画素電極、19…対向電極、22…第1配向膜、23…第2配向膜、30…画素、35…液晶分子。

Claims (13)

  1.  複数の画素が表示領域に配置された液晶表示装置であって、
     スリットを有する画素電極が設けられた第1基板と、
     前記第1基板に対向するように配置された第2基板と、
     前記第1基板と前記第2基板との間に設けられ、負の誘電率異方性を持つ液晶分子を含有する液晶層と、
     前記第1基板に形成された第1配向膜と、
     前記第2基板に形成された第2配向膜と、
    を備え、
     前記第1配向膜及び前記第2配向膜のうち少なくとも一方は光配向膜であり、
     前記複数の画素における各画素は、電圧印加時において液晶分子の配向方位が互いに異なる複数の配向領域を有し、
     前記スリットは、前記複数の配向領域における各配向領域に配置され、前記画素の各辺に対し斜め方向に延びるように形成された斜めスリット部を有し、
     前記斜めスリット部が延びる方向と、電圧無印加時において前記液晶層の厚み方向の中央付近に存在する液晶分子の長軸方向を前記第1基板に投影した方向である液晶投影方向とのなす角度が、15度以上85度以下である、液晶表示装置。
  2.  前記各辺のうち所定の辺と、前記液晶投影方向とのなす角度が、0度以上30度以下である、請求項1に記載の液晶表示装置。
  3.  前記所定の辺と、前記斜めスリット部が延びる方向とのなす角度が、45度以上85度以下である、請求項2に記載の液晶表示装置。
  4.  前記第1基板を挟んで前記液晶層側とは反対側に配置された第1偏光板と、
     前記第2基板を挟んで前記液晶層側とは反対側に配置された第2偏光板と、
    を備え、
     平面視して、前記第1偏光板の透過軸と前記第2偏光板の透過軸とは互いに直交し、
     前記第1偏光板の透過軸の軸方向を0度、前記第2偏光板の透過軸の軸方向を90度と定義したときに、前記液晶投影方向が、前記複数の配向領域のそれぞれにおいて0度以上30度以下であり、かつ前記斜めスリット部が延びる方向が、前記複数の配向領域のそれぞれにおいて45度以上85度以下である、請求項1~3のいずれか一項に記載の液晶表示装置。
  5.  複数の画素が表示領域に配置された液晶表示装置であって、
     スリットを有する画素電極が設けられた第1基板と、
     前記第1基板に対向するように配置された第2基板と、
     前記第1基板と前記第2基板との間に設けられ、負の誘電率異方性を持つ液晶分子を含有する液晶層と、
     前記第1基板に形成された第1配向膜と、
     前記第2基板に形成された第2配向膜と、
     前記第1基板を挟んで前記液晶層側とは反対側に配置された第1偏光板と、
     前記第2基板を挟んで前記液晶層側とは反対側に配置された第2偏光板と、
    を備え、
     前記第1配向膜及び前記第2配向膜のうち少なくとも一方は光配向膜であり、
     前記複数の画素における各画素は、電圧印加時において液晶分子の配向方位が互いに異なる複数の配向領域を有し、
     前記スリットは、前記複数の配向領域における各配向領域に配置され、前記画素の各辺に対し斜め方向に延びるように形成された斜めスリット部を有し、
     平面視して、前記第1偏光板の透過軸と前記第2偏光板の透過軸とは互いに直交し、
     前記第1偏光板の透過軸の軸方向を0度、前記第2偏光板の透過軸の軸方向を90度と定義したときに、電圧無印加時において前記液晶層の厚み方向の中央付近に存在する液晶分子の長軸方向を前記第1基板に投影した方向である液晶投影方向が、前記複数の配向領域のそれぞれにおいて0度以上30度以下であり、かつ前記斜めスリット部が延びる方向が、前記複数の配向領域のそれぞれにおいて45度以上85度以下である、液晶表示装置。
  6.  前記第1偏光板の透過軸の軸方向を0度、前記第2偏光板の透過軸の軸方向を90度と定義したときの前記液晶投影方向が、0度以上20度以下である、請求項4又は5に記載の液晶表示装置。
  7.  前記第1偏光板の透過軸の軸方向を0度、前記第2偏光板の透過軸の軸方向を90度と定義したときの前記斜めスリット部が延びる方向が、50度以上75度以下である、請求項4~6のいずれか一項に記載の液晶表示装置。
  8.  前記複数の配向領域の各配向領域において、前記第1配向膜により規定されるプレチルト角及び前記第2配向膜により規定されるプレチルト角のうち、一方が90度未満であり、他方が実質的に90度である、請求項1~7のいずれか一項に記載の液晶表示装置。
  9.  前記複数の配向領域のうち、一部の配向領域は、前記第1配向膜により規定されるプレチルト角が90度未満であって、かつ前記第2配向膜により規定されるプレチルト角が実質的に90度であり、残りの配向領域は、前記第1配向膜により規定されるプレチルト角が実質的に90度であって、かつ前記第2配向膜により規定されるプレチルト角が90度未満である、請求項1~7のいずれか一項に記載の液晶表示装置。
  10.  前記光配向膜は、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン及び不飽和結合を有する単量体を用いて得られる重合体よりなる群から選択される少なくとも一種を用いて形成されている、請求項1~9のいずれか一項に記載の液晶表示装置。
  11.  前記複数の配向領域は、前記各辺のうち所定方向に延びる辺に沿って並べて配置されている、請求項1~10のいずれか一項に記載の液晶表示装置。
  12.  前記複数の配向領域は、前記各辺のうち第1方向に延びる辺及び前記第1方向と直交する第2方向に延びる辺のそれぞれに沿って複数ずつ並べて配置されている、請求項1~10のいずれか一項に記載の液晶表示装置。
  13.  前記画素電極の電極幅をL、前記スリットの幅をS、前記液晶層の厚さをdとしたとき、L<1.1d、かつS<dである、請求項1~12のいずれか一項に記載の液晶表示装置。
PCT/JP2020/028305 2019-08-23 2020-07-21 液晶表示装置 WO2021039219A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021542639A JPWO2021039219A1 (ja) 2019-08-23 2020-07-21
CN202080048844.7A CN114096912B (zh) 2019-08-23 2020-07-21 液晶显示装置
US17/628,210 US20220252943A1 (en) 2019-08-23 2020-07-21 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-153145 2019-08-23
JP2019153145 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021039219A1 true WO2021039219A1 (ja) 2021-03-04

Family

ID=74684487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028305 WO2021039219A1 (ja) 2019-08-23 2020-07-21 液晶表示装置

Country Status (3)

Country Link
US (1) US20220252943A1 (ja)
JP (1) JPWO2021039219A1 (ja)
WO (1) WO2021039219A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008693A (ja) * 2008-06-26 2010-01-14 Casio Comput Co Ltd 液晶表示素子
WO2017057209A1 (ja) * 2015-10-02 2017-04-06 シャープ株式会社 液晶表示パネル及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145992A (ja) * 2004-11-22 2006-06-08 Sharp Corp 液晶表示装置及びその製造方法
US9405153B2 (en) * 2011-08-25 2016-08-02 Sharp Kabushiki Kaisha Method for manufacturing liquid crystal display device
JP2015163908A (ja) * 2012-06-21 2015-09-10 シャープ株式会社 液晶表示装置
WO2017057210A1 (ja) * 2015-10-02 2017-04-06 シャープ株式会社 液晶表示パネル、液晶表示パネルの製造方法及び液晶表示パネルの製造装置
US10725336B2 (en) * 2016-05-20 2020-07-28 Sharp Kabushiki Kaisha Liquid crystal display panel and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008693A (ja) * 2008-06-26 2010-01-14 Casio Comput Co Ltd 液晶表示素子
WO2017057209A1 (ja) * 2015-10-02 2017-04-06 シャープ株式会社 液晶表示パネル及びその製造方法

Also Published As

Publication number Publication date
CN114096912A (zh) 2022-02-25
JPWO2021039219A1 (ja) 2021-03-04
US20220252943A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2010079703A1 (ja) 液晶表示装置及び液晶層形成用組成物
US8691349B2 (en) Liquid crystal display panel and fabricating method thereof
JP4175826B2 (ja) 液晶表示装置
KR100824843B1 (ko) 액정 표시 장치 및 그의 제조 방법
JP2976948B2 (ja) 液晶表示装置、その製造方法およびその駆動方法
US9146425B2 (en) Liquid crystal display and method of manufacturing the same
WO2010116565A1 (ja) 液晶表示装置、液晶表示装置の製造方法、光重合体膜形成用組成物、及び、液晶層形成用組成物
CN107942567B (zh) 一种显示面板、显示器及制作方法、液晶介质混合物
KR101582157B1 (ko) 액정표시패널 및 이의 제조방법
WO2013103153A1 (ja) 液晶表示装置、及び、その製造方法
US9465244B2 (en) Liquid crystal display
WO2012086715A1 (ja) 液晶配向剤、液晶表示装置、及び、液晶表示装置の製造方法
US11635660B2 (en) Liquid crystal display device and manufacturing method therefor
WO2014045923A1 (ja) 液晶表示装置及びその製造方法
JP2010191450A (ja) 液晶表示装置及びその製造方法
US20130342798A1 (en) Liquid crystal display panel, liquid crystal display apparatus, and liquid crystal display cell
US10684513B2 (en) Liquid crystal display and production method therefor
WO2018101442A1 (ja) 液晶表示装置及びその製造方法
WO2021039219A1 (ja) 液晶表示装置
WO2015019958A1 (ja) 液晶表示装置及びその製造方法
CN114096912B (zh) 液晶显示装置
US20220252942A1 (en) Display panel and manufacturing method therefor, and display apparatus
WO2023027035A1 (ja) 液晶表示装置及びその製造方法
TW201827579A (zh) 液晶配向劑、液晶配向膜、液晶元件及聚合體
WO2021201257A1 (ja) 液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857930

Country of ref document: EP

Kind code of ref document: A1