WO2021037628A1 - Hilfsspannungsversorgung für stromrichter und ihr einsatz in fahrzeugen - Google Patents

Hilfsspannungsversorgung für stromrichter und ihr einsatz in fahrzeugen Download PDF

Info

Publication number
WO2021037628A1
WO2021037628A1 PCT/EP2020/073183 EP2020073183W WO2021037628A1 WO 2021037628 A1 WO2021037628 A1 WO 2021037628A1 EP 2020073183 W EP2020073183 W EP 2020073183W WO 2021037628 A1 WO2021037628 A1 WO 2021037628A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
auxiliary
circuit
converter
bridge circuit
Prior art date
Application number
PCT/EP2020/073183
Other languages
English (en)
French (fr)
Inventor
Christoph Berndt Marxgut
Original Assignee
Rolls-Royce Deutschland Ltd & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls-Royce Deutschland Ltd & Co Kg filed Critical Rolls-Royce Deutschland Ltd & Co Kg
Priority to EP20758195.0A priority Critical patent/EP4022753A1/de
Priority to US17/638,326 priority patent/US20220302843A1/en
Publication of WO2021037628A1 publication Critical patent/WO2021037628A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the invention relates to a circuit arrangement for generating an auxiliary DC voltage for converters.
  • the invention also applies to a converter with such a circuit arrangement and a vehicle with such a converter.
  • the invention also relates to an associated process for generating an auxiliary DC voltage.
  • a central point here is to ensure the auxiliary voltage supply of the converter, because the function of the converter depends on the availability of the auxiliary voltage supply.
  • auxiliary voltage supplies are designed with multiple redundancies in order to be able to intercept the failure of an auxiliary voltage branch through other paths. These are either fed by AC / DC converters from the vehicle electrical system (typ. 115 V / 400 Hz) or by battery systems (typ. 28 V / DC).
  • AC / DC converters from the vehicle electrical system (typ. 115 V / 400 Hz) or by battery systems (typ. 28 V / DC).
  • the disadvantage of these designs is, on the one hand, the complexity that the redundancy entails. On the other hand, it increases the weight of the entire auxiliary voltage supply, which is particularly unfavorable in aviation.
  • FIG. 1 shows the circuit arrangement 1.
  • a DC input voltage Vi is converted into an AC output voltage for supplying one phase of a three-phase electrical machine 11.
  • the input voltage Vi buffered by two intermediate circuit capacitors 4 connected in series, is fed to a half-bridge circuit 2.
  • the half-bridge circuit 2 is formed by the first branch Ai and the second branch A2.
  • the half-bridge circuit 2 converts the direct voltage into an alternating voltage.
  • the half-bridge circuit does not consist, as in conventional topologies, of two switching elements, in which the center point is fed to a load, but of four switching elements Si to S4.
  • the switching elements Si to S4 are preferably semiconductor components.
  • the first and the second simultaneously switching switching element Si and S2 form the first branch Ai and the third and fourth simultaneously switching switching element S3 and S4 form the second branch A2.
  • the series connection of the switching elements Si and S2 or S3 and S4 enables the input voltage Vi to be divided between two switching elements Si and S2 or S3 and S4 of the corresponding branches Ai and A2. Accordingly, switching elements Si to S4 with a nominal voltage approximately equal to half the input voltage Vi can be used. Since it must only be ensured that the voltage distribution of the two switching elements Si and S2 or S3 and S4 is the same in each case, since otherwise one or more of the switching elements Si to S4 will be overstressed in terms of voltage or current, as a result of which the entire circuit arrangement 1 can be destroyed.
  • a flying capacitor 3 is arranged in parallel on the input side of the half-bridge circuit 2, which keeps the voltages of the switching elements Si and S2 or S3 and S4 almost constant even during the commutation period.
  • a first aspect of the invention is that an inherently necessary capacitor of a converter is used to feed an auxiliary voltage generating unit. This is particularly the case with topologies as shown in FIG. 1, simply possible because several intermediate circuit capacitors are used here, which have not applied the full intermediate circuit voltage. This means that the switches of the auxiliary voltage generation unit and the insulation do not have to be designed for the entire intermediate circuit voltage, which reduces the cost, weight and complexity of the converter.
  • the invention claims a circuit arrangement for generating an auxiliary DC voltage, comprising a half-bridge circuit which emits a load current and converts a DC voltage into an AC voltage, and at least two intermediate circuit capacitors arranged in series parallel to the half-bridge circuit on the input side, and further having one through one of the intermediate circuit capacitors with electrical Energy-fed auxiliary voltage generation unit which is designed to generate an auxiliary DC voltage of less than or equal to 48V.
  • the half-bridge circuit has at least two switching elements arranged in series in each of the two branches, a flying capacitor being connected in parallel to each corresponding switching elements of the two branches.
  • the voltage on the flying capacitor can be regulated by choosing the switching times of the switching elements.
  • the auxiliary voltage generating unit has: a full bridge circuit, a transformer fed by the full bridge circuit, and a rectifier circuit fed by the transformer.
  • the invention also claims a power converter, in particular an inverter, with a circuit arrangement according to the invention.
  • An inverter is a converter that generates an alternating voltage with a changed frequency and amplitude from a direct voltage. From a DC input voltage an output AC voltage is generated via a DC voltage intermediate circuit and pulsed semiconductor switches.
  • the invention also claims a vehicle, in particular an aircraft, with a power converter according to the invention for an electric or hybrid-electric drive.
  • a vehicle is understood to mean any type of means of locomotion or transport, be it manned or unmanned.
  • An aircraft is a flying vehicle.
  • the vehicle has: an electric motor supplied with electrical energy by the converter and a propeller that can be set in rotation by the electric motor.
  • the invention also claims a method for generating an auxiliary direct voltage, comprising: a half-bridge circuit which emits a load current and converts a direct voltage into an alternating voltage, and at least two intermediate circuit capacitors arranged in series parallel to the half-bridge circuit on the input side, an auxiliary voltage generating unit with electrical energy from a of the intermediate circuit capacitors is fed, the auxiliary DC voltage being generated less than or equal to 48 V.
  • FIG. 2 shows a block diagram of a circuit arrangement with an auxiliary voltage generating unit
  • Fig. 3 is a circuit diagram of a circuit arrangement with an auxiliary voltage generating unit
  • FIG 5 shows an aircraft with a power converter.
  • FIG. 2 shows the auxiliary voltage architecture according to the invention using the example of a quasi-2L converter (but only one phase is shown).
  • the voltage on the flying capacitor 3 is regulated by the offset of the switch-on times of the switching elements Si to S4; the flying capacitor 3 is required to stabilize the switching transients and at the same time forms the input capacitor of the auxiliary voltage generating unit 5.
  • FIG. 2 shows the circuit arrangement 1 according to FIG. 1 with a half-bridge circuit 2 and two series-connected intermediate circuit capacitors 4, with the auxiliary voltage generating unit 5 being arranged in parallel with one of the two intermediate circuit capacitors 4, which is fed by the electrical energy stored in the intermediate circuit capacitor 4.
  • the auxiliary voltage generating unit 5 generates an auxiliary direct voltage V LV less than or equal to 48 V.
  • FIG. 3 shows an example of a circuit of the auxiliary voltage generating unit 5.
  • a full bridge circuit 5.1 which generates an alternating voltage from an input direct voltage.
  • the alternating voltage is fed to a transformer 5.2 for electrical isolation.
  • a rectifier circuit 5.3 is connected to the transformer 5.2.
  • the auxiliary DC voltage V LV is now available at the output of the rectifier circuit 5.3.
  • the topology of the auxiliary voltage generating unit 5 can in principle be freely selected and designed by the designer, but must provide the transformer 5.2 to isolate the voltage due to the potential on which the flying capacitor 3 is located.
  • a great advantage of this architecture is that the switches of the full bridge circuit are not loaded with the full intermediate circuit voltage (> 1 kV), but with the maximum voltage on one of the intermediate circuit capacitors 4, which is significantly smaller depending on the number of capacitors. This means that switches with the same voltage requirements as in the power circuit (switching elements Si to S 4 ) can be installed (but with a lower current requirement).
  • flyback topology which is very popular for auxiliary voltage converters, is not optimal here because it also impacts the transformed output voltage on the switches in addition to the input voltage.
  • either the magnetic circuit of the transformer can also be tapped or the energy is fed via diodes to the capacitor at the output.
  • the architecture would have created a supply path from high voltage to low voltage in a suitable manner, which was previously only possible with additional high-voltage auxiliary converters.
  • the concept presented here can be used both as a "stand-alone" auxiliary voltage supply for AC / DC, DC / AC and DC / DC (quasi) multilevel power converters, or as an additional Chen auxiliary supply branch for critical applications, such as in aviation.
  • FIG. 4 shows a block diagram of a DC / AC converter 7, in particular a converter, with a circuit arrangement for generating a three-phase alternating voltage.
  • a half-bridge circuit 2 with a flying capacitor 3 is formed for each phase.
  • the half-bridge circuit 2 is supplied with direct voltage by two intermediate circuit capacitors 4 connected in series.
  • Each intermediate circuit capacitor 4 feeds an auxiliary voltage generating unit 5.
  • FIG. 5 shows an electric or hybrid-electric aircraft 8, in particular an aircraft, with a converter 7 according to FIG. 4, which supplies an electric motor 9 with electrical energy.
  • the electric motor 9 drives a propeller 10. Both are part of an electrical thrust generating unit.
  • a converter 7 can also be part of an on-board electrical system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Die Erfindung gibt eine Schaltungsanordnung (1) zur Erzeugung einer Hilfsgleichspannung (VLV), aufweisend: - eine einen Laststrom (IL) abgebende Halbbrückenschaltung (2), die eine Gleichspannung (V1) in eine Wechselspannung wandelt, und - mindestens zwei eingangsseitig, in Serie parallel zur Halbbrückenschaltung (2) angeordnete Zwischenkreiskondensatoren (4), gekennzeichnet durch: - eine durch einen der Zwischenkreiskondensatoren (4) mit elektrischer Energie gespeiste Hilfsspannungserzeugungseinheit (5), die ausgebildet ist, eine Hilfsgleichspannung (VLV) kleiner gleich 48 V zu erzeugen. Ein zugehöriges Verfahren zur Erzeugung einer Hilfsgleichspannung sowie ein Stromrichter und ein Fahrzeug mit einer derartigen Schaltungsanordnung werden ebenfalls angegeben.

Description

Beschreibung
Hilfsspannungsversorgung für Stromrichter und ihr Einsatz in Fahrzeugen
GEBIET DER ERFINDUNG
Die Erfindung betrifft eine Schaltungsanordnung zur Erzeugung einer Hilfsgleichspannung für Stromrichter. Die Erfindung be trifft auch einen Stromrichter mit einer derartigen Schal tungsanordnung sowie ein Fahrzeug mit einem derartigen Strom richter. Die Erfindung betrifft außerdem ein zugehöriges Ver fahren zur Erzeugung einer Hilfsgleichspannung.
HINTERGRUND DER ERFINDUNG
Anwendungen, bei denen eine hohe Verfügbarkeit bzw. eine sehr geringe Ausfallwahrscheinlichkeit von leistungselektronischen Stromrichtern in der Hochspannungstechnik (> lkV) gefordert sind, stellen eine besondere Herausforderung an das Design, weil diese Anforderungen sowohl in technischer (Gewicht, Ef fizienz, Volumen, Komplexität, etc.) als auch in wirtschaft licher Hinsicht anspruchsvoll sind.
Ein zentraler Punkt dabei ist die Sicherstellung der Hilfs spannungsversorgung des Stromrichters, weil von der Verfüg barkeit der Hilfsspannungsversorgung die Funktion des Strom richters abhängt.
In Luftfahrtanwendungen werden Hilfsspannungsversorgungen mehrfach redundant ausgeführt, um den Ausfall eines Hilfs spannungszweiges durch andere Pfade abfangen zu können. Diese werden entweder durch AC/DC-Wandler aus dem Bordnetz (typ. 115 V / 400 Hz) gespeist oder von Batteriesystemen (typ. 28 V / DC) versorgt. Der Nachteil dieser Ausführungen ist zum einen die Komplexität, die die Redundanz mit sich bringt. Zum anderen erhöht sich dadurch das Gewicht der ge- samten Hilfsspannungsversorgung, was insbesondere in der Luftfahrt ungünstig ist.
Aus dem Stand der Technik, wie beispielsweise in der Patent anmeldung US 2012/0218795 Al offengelegt, ist bei Stromrich tern eine „Flying-Kondensator Topologie" bekannt, die in der Leistungselektronik eine bekannte Mehrpunkttopologie dar stellt.
Aus der nachveröffentichten Patentanmeldung DE 102019 212 073 Al ist eine ähnliche Topologie bekannt. FIG. 1 zeigt die Schaltungsanordnung 1. Dabei wird eine DC Eingangsspannung Vi in eine AC Ausgangsspannung zur Versorgung einer Phase einer dreiphasigen elektrischen Maschine 11 gewandelt. Dazu wird die Eingangsspannung Vi, gepuffert durch zwei in Serie ge schaltete Zwischenkreiskondensatoren 4, einer Halbbrücken schaltung 2 zugeführt. Die Halbbrückenschaltung 2 wird durch den ersten Ast Ai und den zweiten Ast A2 gebildet. Die Halb brückenschaltung 2 wandelt die Gleichspannung in eine Wech selspannung um.
Wie zu erkennen ist, besteht die Halbbrückenschaltung nicht wie in konventionellen Topologien aus zwei Schaltelementen, bei denen der Mittelpunkt einer Last zugeführt wird, sondern durch vier Schaltelemente Si bis S4. Die Schaltelemente Si bis S4 sind vorzugsweise Halbleiterbauelemente.
Das erste und das zweite gleichzeitig schaltende Schaltele ment Si und S2 bilden den ersten Ast Ai und das dritte und das vierte gleichzeitig schaltende Schaltelement S3 und S4 bilden den zweiten Ast A2. Die Serienschaltung der Schaltelemente Si und S2 bzw. S3 und S4 ermöglicht die Aufteilung der Eingangs spannung Vi auf jeweils zwei Schaltelemente Si und S2 bzw. S3 und S4 der entsprechenden Äste Ai bzw. A2. Dementsprechend können Schaltelemente Si bis S4 mit einer Nennspannung etwa gleich der halben Eingangsspannung Vi eingesetzt werden. Da bei muss lediglich sichergestellt werden, dass die Spannungs aufteilung der beiden Schaltelemente Si und S2 bzw. S3 und S4 jeweils gleich ist, da es sonst zu einer spannungsmäßigen bzw. strommäßigen Überbeanspruchung eines oder mehrerer der Schaltelemente Si bis S4 kommt, wodurch die gesamte Schal tungsanordnung 1 zerstört werden kann.
Um eine möglichst gleichmäßige Aufteilung der Eingangsspan nung Vi zu erreichen, wird an der Halbbrückenschaltung 2 ein gangsseitig parallel ein Flying-Kondensator 3 angeordnet, der die Spannungen der Schaltelemente Si und S2 bzw. S3 und S4 auch während des Kommutierungszeitraums nahezu konstant hält. Dadurch kann sich bei ungleichen Ein- und AusschaltZeitpunk ten der Schaltelemente Si und S2 bzw. S3 und S4in den Ästen Ai bzw. A2 kein großes Spannungsungleichgewicht bilden.
ZUSAMMENFASSUNG DER ERFINDUNG
Es ist Aufgabe der Erfindung, eine Lösung für eine Hilfsspan nungsversorgung bei Stromrichtern anzugeben, die gegenüber dem Stand der Technik weniger komplex ist und weniger Gewicht hat.
Die Erfindung ergibt sich aus den Merkmalen der unabhängigen Ansprüche. Vorteilhafte Weiterbildungen und Ausgestaltungen sind Gegenstand der abhängigen Ansprüche. Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung.
Ein erster Aspekt der Erfindung besteht darin, dass ein inhä rent notwendiger Kondensator eines Stromrichters zur Speisung einer Hilfsspannungserzeugungseinheit verwendet wird. Dies ist besonders bei Topologien, wie in FIG. 1 dargestellt, ein fach möglich, weil hierbei mehrere Zwischenkreiskondensatoren eingesetzt werden, die nicht die volle Zwischenkreisspannung angelegt haben. Damit müssen die Schalter der Hilfsspannungs erzeugungseinheit und die Isolation nicht auf die gesamte Zwischenkreisspannung ausgelegt werden, was die Kosten, das Gewicht und die Komplexität des Stromrichters verringert. Die Erfindung beansprucht eine Schaltungsanordnung zur Erzeu gung einer Hilfsgleichspannung, aufweisend eine einen Laststrom abgebende Halbbrückenschaltung, die eine Gleichspannung in eine Wechselspannung wandelt, und mindestens zwei eingangsseitig, in Serie parallel zur Halbbrückenschaltung angeordnete Zwischenkreiskondensato ren, und weiter aufweisend eine durch einen der Zwischenkreiskondensatoren mit elektrischer Energie gespeiste Hilfsspannungserzeugungs einheit, die ausgebildet ist, eine Hilfsgleichspannung kleiner gleich 48 V zu erzeugen.
In einer Weiterbildung weist die Halbbrückenschaltung in je dem der beiden Äste mindestens zwei in Serie angeordnete Schaltelemente auf, wobei parallel zu jeweils korrespondie renden Schaltelementen der beiden Äste ein Flying-Kondensator geschaltet ist.
In einer Weiterbildung kann die Spannung am Flying- Kondensator durch die Wahl der SchaltZeitpunkte der Schalt elemente regelbar sein.
In einer Weiterbildung weist die Hilfsspannungserzeugungsein heit auf: eine Vollbrückenschaltung, einen durch die Vollbrückenschaltung gespeisten Transfor mator und eine durch den Transformator gespeiste Gleichrichterschal tung.
Die Erfindung beansprucht auch einen Stromrichter, insbeson dere einen Inverter, mit einer erfindungsgemäßen Schaltungs anordnung.
Als Inverter wird ein Stromrichter bezeichnet, der aus einer Gleichspannung eine in der Frequenz und Amplitude veränderte Wechselspannung erzeugt. Aus einer Eingangsgleichspannung wird über einen Gleichspannungszwischenkreis und getaktete Halbleiterschalter eine Ausgangswechselspannung erzeugt.
Die Erfindung beansprucht auch ein Fahrzeug, insbesondere ein Luftfahrzeug, mit einem erfindungsgemäßen Stromrichter für einen elektrischen oder hybrid-elektrischen Antrieb.
Unter Fahrzeug wird jede Art von Fortbewegungs- oder Trans portmittel, sei es bemannt oder unbemannt, verstanden. Ein Luftfahrzeug ist ein fliegendes Fahrzeug.
In einer weiteren Ausgestaltung weist das Fahrzeug auf: einen durch den Stromrichter mit elektrischer Energie ver sorgten Elektromotor und einen durch den Elektromotor in Rotation versetzbaren Pro peller.
Die Erfindung beansprucht auch ein Verfahren zur Erzeugung einer Hilfsgleichspannung, aufweisend: eine einen Laststrom abgebende Halbbrückenschaltung, die eine Gleichspannung in eine Wechselspannung wandelt, und mindestens zwei eingangsseitig, in Serie parallel zur Halbbrückenschaltung angeordnete Zwischenkreiskondensato ren, wobei eine Hilfsspannungserzeugungseinheit mit elektri scher Energie aus einem der Zwischenkreiskondensatoren ge speist wird, wobei die Hilfsgleichspannung kleiner gleich 48 V erzeugt wird.
Weitere Besonderheiten und Vorteile der Erfindung werden aus den nachfolgenden Erläuterungen eines Ausführungsbeispiels anhand von schematischen Zeichnungen ersichtlich.
KURZE BESCHREIBUNG DER ZEICHNUNGEN
Es zeigen: Fig. 1 ein Schaltbild einer Schaltungsanordnung gemäß Stand der Technik,
Fig. 2 ein Blockschaltbild einer Schaltungsanordnung mit Hilfsspannungserzeugungseinheit,
Fig. 3 ein Schaltbild einer Schaltungsanordnung mit Hilfs spannungserzeugungseinheit,
Fig. 4 ein Blockschaltbild eines Stromrichters und
Fig. 5 ein Luftfahrzeug mit einem Stromrichter.
DETAILLIERTE BESCHREIBUNG DER ERFINDUNG
FIG. 2 zeigt die erfindungsgemäße Hilfsspannungsarchitektur am Beispiel eines Quasi-2L-Umrichters (nur eine Phase ist aber dargestellt). Die Spannung an dem Flying-Kondensator 3 wird dabei durch den Versatz der EinschaltZeitpunkte der Schaltelemente Si bis S4 geregelt; der Flying-Kondensator 3 wird zur Stabilisierung der Schalttransienten benötigt und bildet gleichzeitig den Eingangskondensator der Hilfsspan nungserzeugungseinheit 5.
FIG. 2 zeigt die Schaltungsanordnung 1 gemäß FIG. 1 mit einer Halbbrückenschaltung 2 und zwei in Serie geschaltete Zwi schenkreiskondensatoren 4, wobei parallel zu einem der beiden Zwischenkreiskondensatoren 4 die Hilfsspannungserzeugungsein heit 5 angeordnet ist, die durch die in dem Zwischenkreiskon densator 4 gespeicherte elektrische Energie gespeist wird.
Die Hilfsspannungserzeugungseinheit 5 erzeugt eine Hilfs gleichspannung VLV kleiner gleich 48 V.
FIG. 3 zeigt ein Beispiel einer Schaltung der Hilfsspannungs erzeugungseinheit 5. Eingangsseitig befindet sich eine Voll brückenschaltung 5.1, die aus einer Eingangsgleichspannung eine Wechselspannung erzeugt. Die Wechselspannung wird zur Potenzialtrennung einem Transformator 5.2 zugeführt. Aus- gangsseitig ist an dem Transformator 5.2 eine Gleichrichter schaltung 5.3 angeschlossen. Am Ausgang der Gleichrichter schaltung 5.3 steht nun die Hilfsgleichspannung VLV zur Ver fügung.
Die Topologie der Hilfsspannungserzeugungseinheit 5 kann vom Designer prinzipiell frei gewählt und ausgelegt werden, muss jedoch auf Grund des Potenzials, auf dem der Flying- Kondensator 3 liegt, den Transformator 5.2 zur Isolation der Spannung vorsehen.
Ein großer Vorteil dieser Architektur ist, dass die Schalter der Vollbrückenschaltung nicht mit der vollen Zwischenkreis spannung (> 1 kV), sondern mit der maximalen Spannung an ei nem der Zwischenkreiskondensatoren 4 belastet werden, die je nach Anzahl der Kondensatoren deutlich kleiner ist. Damit können Schalter mit derselben Spannungsanforderung wie im Leistungskreis (Schaltelemente Si bis S4) eingebaut werden (aber mit geringerer Stromanforderung).
In diesem Zusammenhang lässt sich aber auch schon Voraussa gen, dass die für Hilfsspannungsumrichter sehr beliebte Fly- back-Topologie hier nicht optimal ist, weil diese zur Ein gangsspannung auch noch die transformierte Ausgangsspannung auf die Schalter schlägt.
Für den Fall einer redundanten Hilfsspannungsarchitektur kann entweder der magnetische Kreis des Transformators zusätzlich angezapft werden oder die Energie wird über Dioden an den Kondensator am Ausgang gespeist. Man hätte mit der Architek tur jedenfalls ein Versorgungspfad von Hochspannung auf Nie derspannung auf geeignete Weise hergestellt, was bislang nur durch zusätzliche Hochspannungs-Hilfswandler möglich war.
Das hier vorgestellte Konzept kann sowohl als „Stand-alone"- Hilfsspannungsversorgung für AC/DC, DC/AC und DC/DC (Quasi-) Multilevel-Stromrichter eingesetzt werden, oder als zusätzli- chen Hilfsversorgungszweig für kritische Anwendungen, wie beispielsweise in der Luftfahrt.
FIG. 4 zeigt ein Blockschaltbild eines DC/AC Stromrichters 7, insbesondere eines Umrichters, mit einer Schaltungsanordnung zur Erzeugung einer dreiphasigen Wechselspannung. Dazu sind für jede Phase eine Halbbrückenschaltung 2 mit Flying- Kondensator 3 ausgebildet. Die Halbbrückenschaltung 2 wird von zwei in Serie geschalteten Zwischenkreiskondensatoren 4 mit Gleichspannung versorgt. Jeder Zwischenkreiskondensator 4 speist jeweils eine Hilfsspannungserzeugungseinheit 5.
FIG. 5 zeigt ein elektrisches oder hybrid-elektrisches Luft fahrzeug 8, insbesondere ein Flugzeug, mit einem Stromrichter 7 gemäß FIG. 4, der einen Elektromotor 9 mit elektrischer Energie versorgt. Der Elektromotor 9 treibt einen Propeller 10 an. Beide sind Teil einer elektrischen Schuberzeugungsein heit. Ein Stromrichter 7 kann auch Teil eines elektrischen Bordnetzes sein.
Obwohl die Erfindung im Detail durch die Ausführungsbeispiele näher illustriert und beschrieben wurde, ist die Erfindung durch die offenbarten Beispiele nicht eingeschränkt und ande re Variationen können vom Fachmann daraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
Bezugszeichenliste
1 Schaltungsanordnung
2 Halbbrückenschaltung
3 Flying-Kondensator
4 Zwischenkreiskondensator
5 Hilf sspannungserzeugungseinheit
5.1 Vollbrückenschaltung
5.2 Transformator
5.3 Gleichrichterschaltung
7 Stromrichter
8 Luftfahrzeug
9 Elektromotor
10 Propeller
11 Elektrische Maschine
Ai erster Ast
A2 zweiter Ast
IL Laststrom
51 erstes Schaltelement
52 zweites Schaltelement
53 drittes Schaltelement
54 viertes Schaltelement
Vcxi Spannung am Flying Kondensator 3
Vi Eingangsspannung
VLv Hilfsgleichspannung

Claims

Patentansprüche
1. Schaltungsanordnung (1) zur Erzeugung einer Hilfsgleich spannung (VLv), aufweisend: eine einen Laststrom (IL) abgebende Halbbrückenschaltung (2), die eine Gleichspannung (Vi) in eine Wechselspannung wandelt, und mindestens zwei eingangsseitig, in Serie parallel zur Halbbrückenschaltung (2) angeordnete Zwischenkreiskonden satoren (4), gekennzeichnet durch: eine durch einen der Zwischenkreiskondensatoren (4) mit elektrischer Energie gespeiste Hilfsspannungserzeugungs einheit (5), die ausgebildet ist, eine Hilfsgleichspannung (VLV) kleiner gleich 48 V zu erzeugen.
2. Schaltungsanordnung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Halbbrückenschaltung (2) in jedem der beiden Äste (Ai, A2) mindestens zwei in Serie angeordnete Schaltelemente (S1, S2 bzw. S3, S4) aufweist und parallel zu jeweils korres pondierenden Schaltelementen (S2, S3) der beiden Äste (Ai, A2) ein Flying-Kondensator geschaltet ist
3. Schaltungsanordnung (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Spannung (VCxi) am Flying-Kondensator (3) durch die Wahl der SchaltZeitpunkte der Schaltelemente (S1 bis S4) re gelbar ist.
4. Schaltungsanordnung (1) nach einem der vorhergehenden An sprüche, dadurch gekennzeichnet, dass die Hilfsspannungserzeugungseinheit (5) aufweist: eine Vollbrückenschaltung (5.1), einen durch die Vollbrückenschaltung (5.1) gespeisten Transformator (5.2) und eine durch den Transformator (5.2) gespeiste Gleichrich terschaltung (5.3).
5. Stromrichter (7) mit einer Schaltungsanordnung (1) nach einem der Ansprüche 1 bis 4.
6. Stromrichter (7) nach Anspruch 5, dadurch gekennzeichnet dass der Stromrichter (7) ein Inverter ist.
7. Fahrzeug mit einem Stromrichter (7) nach Anspruch 5 oder 6 für einen elektrischen oder hybrid-elektrischen Antrieb.
8. Fahrzeug nach Anspruch 7, dadurch gekennzeichnet, dass das Fahrzeug ein Luftfahrzeug (8) ist.
9. Fahrzeug (8) nach Anspruch 8, gekennzeichnet durch: einen durch den Stromrichter (7) mit elektrischer Energie versorgten Elektromotor (9) und einen durch den Elektromotor (9) in Rotation versetzbaren Propeller (10).
10. Verfahren zur Erzeugung einer Hilfsgleichspannung (VLV) , aufweisend: eine einen Laststrom (IL) abgebende Halbbrückenschaltung (2), die eine Gleichspannung (Vi) in eine Wechselspannung wandelt, und mindestens zwei eingangsseitig, in Serie parallel zur Halbbrückenschaltung (2) angeordnete Zwischenkreiskonden satoren (4), gekennzeichnet durch: eine Speisung einer Hilfsspannungserzeugungseinheit (5) mit elektrischer Energie aus einem der Zwischenkreiskon densatoren (4), wobei eine Hilfsgleichspannung (VLV) klei ner gleich 48 V erzeugt wird.
PCT/EP2020/073183 2019-08-30 2020-08-19 Hilfsspannungsversorgung für stromrichter und ihr einsatz in fahrzeugen WO2021037628A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20758195.0A EP4022753A1 (de) 2019-08-30 2020-08-19 Hilfsspannungsversorgung für stromrichter und ihr einsatz in fahrzeugen
US17/638,326 US20220302843A1 (en) 2019-08-30 2020-08-19 Auxiliary voltage supply for power converter and use thereof in vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019213156.5A DE102019213156A1 (de) 2019-08-30 2019-08-30 Hilfsspannungsversorgung für Stromrichter und ihr Einsatz in Fahrzeugen
DE102019213156.5 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021037628A1 true WO2021037628A1 (de) 2021-03-04

Family

ID=72148133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/073183 WO2021037628A1 (de) 2019-08-30 2020-08-19 Hilfsspannungsversorgung für stromrichter und ihr einsatz in fahrzeugen

Country Status (4)

Country Link
US (1) US20220302843A1 (de)
EP (1) EP4022753A1 (de)
DE (1) DE102019213156A1 (de)
WO (1) WO2021037628A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634232B1 (en) * 2022-04-30 2023-04-25 Beta Air, Llc Hybrid propulsion systems for an electric aircraft
US20230348082A1 (en) * 2022-04-30 2023-11-02 Beta Air, Llc Hybrid propulsion systems for an electric aircraft
US11639230B1 (en) * 2022-04-30 2023-05-02 Beta Air, Llc System for an integral hybrid electric aircraft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120218795A1 (en) 2011-02-28 2012-08-30 Siemens Corporation Pulse width modulated control for hybrid inverters
US20130314957A1 (en) * 2012-05-25 2013-11-28 General Electric Company High voltage high power multi-level drive structure
EP3213952A1 (de) * 2016-03-02 2017-09-06 Airbus Defence and Space GmbH Elektrisches antriebssystem für ein luftfahrzeug sowie betriebsverfahren

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203734B4 (de) * 2013-03-05 2018-02-15 Siemens Aktiengesellschaft Modularer Hochfrequenz-Umrichter
CN105829224B (zh) * 2013-12-18 2019-06-04 奥的斯电梯公司 多电平驱动器半dc总线电力供应

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120218795A1 (en) 2011-02-28 2012-08-30 Siemens Corporation Pulse width modulated control for hybrid inverters
US20130314957A1 (en) * 2012-05-25 2013-11-28 General Electric Company High voltage high power multi-level drive structure
EP3213952A1 (de) * 2016-03-02 2017-09-06 Airbus Defence and Space GmbH Elektrisches antriebssystem für ein luftfahrzeug sowie betriebsverfahren

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BARTH CHRISTOPHER B ET AL: "Design and control of a GaN-based, 13-level, flying capacitor multilevel inverter", 2016 IEEE 17TH WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL), IEEE, 27 June 2016 (2016-06-27), pages 1 - 6, XP032954285, DOI: 10.1109/COMPEL.2016.7556770 *
BISWAS S K ET AL: "Gate drive methods for IGBTs in bridge configurations", INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 1994., CONFERENCE RECORD OF THE 1994 IEEE DENVER, CO, USA 2-6 OCT. 1994, NEW YORK, NY, USA,IEEE, 2 October 1994 (1994-10-02), pages 1310 - 1316, XP010124238, ISBN: 978-0-7803-1993-6, DOI: 10.1109/IAS.1994.377589 *
TORRESAN H D ET AL: "Auxiliary power supplies for high voltage converter systems", POWER ELECTRONICS SPECIALISTS CONFERENCE, 2004. PESC 04. 2004 IEEE 35TH ANNUAL, AACHEN, GERMANY 20-25 JUNE 2004, PISCATAWAY, NJ, USA,IEEE, US, 20 June 2004 (2004-06-20), pages 645 - 651Vol.1, XP010738063, ISBN: 978-0-7803-8399-9, DOI: 10.1109/PESC.2004.1355824 *

Also Published As

Publication number Publication date
US20220302843A1 (en) 2022-09-22
DE102019213156A1 (de) 2021-03-04
EP4022753A1 (de) 2022-07-06

Similar Documents

Publication Publication Date Title
WO2021037628A1 (de) Hilfsspannungsversorgung für stromrichter und ihr einsatz in fahrzeugen
EP3213952B1 (de) Elektrisches antriebssystem für ein luftfahrzeug sowie betriebsverfahren
EP1311058B1 (de) Frequenzumrichter
DE102011089297B4 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
WO2015128103A1 (de) Elektrisches antriebssystem
DE102008036811B4 (de) Redundanzsteuerverfahren eines mehrphasigen Stromrichters mit verteilten Energiespeichern
EP2596980B1 (de) Mehrpunkt-Stromrichter mit Bremschopper
DE102015207117A1 (de) Umrichter mit redundanter Schaltungstopologie
DE112012006696T5 (de) Steuerplatine für leiterplattenintegrierten Motortreiber
DE102014203157A1 (de) Bipolares Hochspannungsnetz und Verfahren zum Betreiben eines bipolaren Hochspannungsnetzes
DE102014203159A1 (de) Brennstoffzellensystem in einem bipolaren Hochspannungsnetz und Verfahren zum Betreiben eines bipolaren Hochspannungsnetzes
EP2395639A2 (de) Schaltungsanordnung und Verfahren zur Erzeugung einer Wechselspannung aus mindestens einer Spannungsquelle mit zeitlich variabler Ausgangsgleichspannung
DE102017106924A1 (de) Elektrisches Versorgungssystem für ein Flugzeug mit einem gewöhnlichen Wechselspannungsnetzwerk und einem bipolaren Gleichspannungsnetzwerk
DE102013209544A1 (de) Hochvoltgleichspannungsgerät und Verfahren zum Betreiben eines Hochvoltgleichspannungsgerätes
WO2020156957A1 (de) Elektrischer antrieb und verfahren zum betreiben des elektrischen antriebs
EP3036823A1 (de) Multilevelumrichter
EP2845303B1 (de) Stromrichter und betriebsverfahren zum wandeln von spannungen
EP2608397A1 (de) Modularer Hochfrequenz-Umrichter für Antriebe
WO2021037627A1 (de) Hilfsspannungsversorgung für stromrichter und ihr einsatz in fahrzeugen
WO2015128101A1 (de) Elektrisches antriebssystem
EP0514580B1 (de) Umrichteranordnung
DE102015105889A1 (de) Schaltmodul und Umrichter mit wenigstens einem Schaltmodul
DE102020127328A1 (de) Multilevel-Umwandler zum Wandeln von elektrischer Energie
WO2015128102A1 (de) Elektrisches antriebssystem
DE102019211214A1 (de) Schaltungsanordnung für Hochspannungsanwendungen und deren Einsatz in der Fahrzeugtechnik

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020758195

Country of ref document: EP

Effective date: 20220330