WO2015128103A1 - Elektrisches antriebssystem - Google Patents

Elektrisches antriebssystem Download PDF

Info

Publication number
WO2015128103A1
WO2015128103A1 PCT/EP2015/050216 EP2015050216W WO2015128103A1 WO 2015128103 A1 WO2015128103 A1 WO 2015128103A1 EP 2015050216 W EP2015050216 W EP 2015050216W WO 2015128103 A1 WO2015128103 A1 WO 2015128103A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
phase
drive system
electric drive
terminals
Prior art date
Application number
PCT/EP2015/050216
Other languages
English (en)
French (fr)
Inventor
Martin Braun
Stefan Butzmann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201580010726.6A priority Critical patent/CN106068202A/zh
Priority to US15/119,760 priority patent/US9899948B2/en
Publication of WO2015128103A1 publication Critical patent/WO2015128103A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/32Waterborne vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/18Reluctance machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to an electric drive system, in particular for an electrically operated vehicle such as an electric car or a hybrid vehicle.
  • an inverter 102 in the form of a
  • Pulse-controlled inverter For this purpose, a DC voltage provided by a DC voltage intermediate circuit 103 can be converted into a multi-phase AC voltage, for example a three-phase AC voltage.
  • the DC intermediate circuit 103 is fed by a string 104 of serially connected battery modules 105 or any DC voltage sources.
  • Document DE 10 2011 085 731 A1 discloses an electric drive system for a six-phase motor with two inverters connected in parallel.
  • the document DE 10 2008 008 978 AI discloses modular drive converters.
  • Document DE 10 2010 001 250 A1 discloses an electric drive system for an electric machine with two
  • the present invention provides an electric drive system with a n-phase electric machine, n> 1, which has at least two polyphase winding strands, a first
  • An inverter whose output terminals are connected to the phase terminals of a first one of the multiphase winding phases of the electric machine, a second parallel to the first inverter connected second inverter whose output terminals are connected to the phase terminals of a second of the polyphase winding phases of the electric machine, and a DC voltage source, comprising a plurality of battery modules connected in series and having a first output terminal connected to a first input terminal of the first inverter and a second output terminal connected to a first input terminal of the second inverter, wherein a second input terminal of the first inverter and a second input terminal of the first inverter
  • Input terminal of the second inverter are interconnected, so that the first inverter and the second inverter in Series connection are arranged, and wherein the second input terminal of the first inverter and the second input terminal of the second
  • Inverter are connected to a center tap of the DC voltage source between two sub-groups of series-connected battery modules.
  • One idea of the present invention is to control electrical machines by means of standardized power assemblies, such as inverters, for example in B6 topology.
  • inverters are available as standardized module types, which are inexpensive to procure and implement by economies of scale.
  • the modularization of the power modules advantageously increases the efficiency of the electric drive system without the implementation of the electrical machine or of the individual power units per se being more expensive or expensive.
  • simple mechanical connection means can be provided for all power modules, by means of which the system modules can be interconnected.
  • a central control device for example on a central control board, can be provided equally for all power assemblies.
  • the first and the second inverter each having a three-phase self-commutated inverter comprising three balanced half-bridges of two power semiconductor switches in series circuit.
  • the switching elements may each comprise power semiconductor switches, preferably MOSFET switches or IGBT switches. These switches are particularly durable and reliable to control.
  • the drive system may further comprise a control device which is adapted to the power semiconductor switches of the first Inverter and the second inverter to control, wherein the control device is arranged on a central control board for the first inverter and the second inverter.
  • the drive system may further comprise at least one third inverter connected in parallel to the first inverter
  • Inverter are coupled, and at least one parallel to the second inverter connected fourth inverter, whose
  • Inverter are coupled.
  • the drive system according to a further embodiment, a third
  • Fig. 1 is a schematic representation of an exemplary conventional electric drive system
  • FIG. 2 is a schematic diagram of an electric drive system according to another embodiment of the present invention.
  • Fig. 3 is a schematic representation of an electric drive system according to another embodiment of the present invention.
  • Like reference numerals generally designate like or equivalent components. The schematic shown in the figures
  • FIG. 2 shows a schematic representation of an electric drive system 30 with a six-phase electrical machine 6, which may be, for example, a switched reluctance machine or a rotating field machine.
  • the electric machine 6 has two three-phase winding strands 6a and 6b, which can be coupled together in their neutral point.
  • the electric drive system 30 also has an inverter system comprising at least one first inverter 3a and a second inverter
  • the first inverter 3a feeds the first three-phase winding branch 6a of the electric machine 6 at its output terminals.
  • the second inverter 3b feeds it
  • the inverters 3a and 3b each have a B6 full-bridge topology, that is, each of the inverters has a three-phase self-commutated inverter, the three symmetrical half-bridges of two power semiconductor switches Hl and H2, H3 and H4 or H5 and H6 in
  • the power semiconductor switches may be, for example, MOSFET switches or IGBT switches. However, it is also possible to use any other type of switching elements as switches Hl to H6 and to switch parallel to each switching element Hl to H6 a freewheeling diode.
  • switches Hl to H6 At a center tap of a first half-bridge of the inverters 3a and 3b, respectively, a first of the phases of the three-phase winding strands 6a and 6b is coupled, at a middle tap of a second half-bridge of the inverters 3a or 3b a second of the phases of the three-phase winding strands 6a and 6b, respectively.
  • the first inverter 3a and the second inverter 3b can either as a separate inverter units or in a
  • Machine 6 is coupled.
  • a (not explicitly shown) control device can be used, which, for example, on a common control board
  • the inverters 3a and 3b may each consist of a
  • DC intermediate circuit 2a and 2b are fed.
  • electric drive system 30 is a common DC voltage source 1,
  • a traction battery of an electric vehicle for supplying both DC voltage intermediate circuits 2a and 2b with electrical
  • the DC voltage source 1 may, for example, have a series connection of battery modules 5, the number of which is shown by way of example in FIG. 2 as 3 - any other number of battery modules 5 may also be possible.
  • the number of phases of the inverters 3a and 3b may differ from the exemplary number of three shown in FIG. 2, depending on the required number of phases of the phase windings 6a and 6b of the electric machine 6 whose phase number is any number can accept. It is also possible to connect more than two inverters 3a and 3b in parallel, in particular if the electric machine 6 has more than two polyphase winding strands 6a and 6b.
  • Winding strands are assigned and electrically connected with selbigem.
  • the DC voltage source 1 is in each case one of its two
  • Inverters 3a and 3b connected.
  • the respective other input terminals of the two inverters 3a and 3b are provided with a center tap M of
  • the center tap M is coupled in each case between two subgroups of battery modules 5 of the DC voltage source 1 in the series circuit of the battery modules 5 in order for the Input terminals of the two inverters 3a and 3b a fixed
  • inverters 3a and 3b it is also possible to implement a plurality of center taps M, each of which is designed such that the total output voltage of all the battery modules 5 is divided by the number of inverters connected in series.
  • Each inverter 3a, 3b can also be made of a separate
  • DC voltage source 1 are fed.
  • a supply of a six-phase electric machine 6, as shown in FIG. 2 can also be effected by two separate DC voltage sources 1.
  • adjacent inverters 3a, 3b can each be alternately fed by two DC voltage sources 1 in this variant.
  • the performance of the electric drive system 30 can be significantly increased while maintaining the desired output voltage level.
  • the average voltage level between the two inverters 3a and 3b can be balanced in a suitable manner via the choice of the center tap M. As a result, the current carrying capacity of the
  • Power semiconductor switch Hl to H6 of the inverters 3a and 3b compared to conventional power semiconductor switches Hl to H6 are not increased.
  • a redundant system can be created by the modularization, in which in case of failure of a single inverter 3a or 3b a
  • the defective or defective part of the inverter system can be deactivated and bridged by suitable bypass switch in the series circuit of the inverter or bypassed, and the electric machine 6 is at least temporarily reduced by the other inverter parts with reduced
  • FIG. 3 shows a further development of the electric drive system 30 of FIG. 2.
  • two or more inverters 3a and 3c, and 3b and 3d, respectively, may be included in each of the series-connected inverter subsystems of the inverter system be switched in parallel.
  • a plurality of inverters 3a and 3c or 3b and 3d per voltage level can be implemented, which can be staggered, for example, in order to reduce voltage and / or current fluctuations ("ripple") in the phase voltages or the phase currents entering the electrical machine 6
  • each of the inverters 3a, 3b, 3c, and 3d feeds a three-phase phase winding 6a, 6b, 6c, 6d of the electric machine.
  • the individual inverters 3a and 3c or 3b and 3d need only be designed for a fraction of the total DC voltage of the DC voltage source 1, depending on the number of voltage intermediate levels used. As a result, standard power modules for high output voltages of the DC voltage source 1 can be used.
  • Machine 6 may be, for example, a synchronous or asynchronous machine, a reluctance machine or a brushless DC motor (BLDC)
  • BLDC brushless DC motor
  • Drive system 30 of Fig. 2 to 3 in stationary systems use, for example, in power plants, in electrical power plants such as wind turbines, photovoltaic systems or
  • Combined Heat and Power plants in energy storage facilities such as compressed air storage power plants, battery storage power plants, Flywheel accumulators, pumped storage or similar systems.
  • energy storage facilities such as compressed air storage power plants, battery storage power plants, Flywheel accumulators, pumped storage or similar systems.
  • Another possible use of the electric drive system 30 of FIGS. 2 to 3 are passenger or goods transport vehicles, which are designed for locomotion on or under the water, such as ships, motor boats or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein elektrisches Antriebssystem, mit einer n-phasigen elektrischen Maschine, n>1, welche mindestens zwei mehrphasige Wicklungsstränge aufweist, einem ersten Wechselrichter, dessen Ausgangsanschlüsse mit den Phasenanschlüssen eines ersten der mehrphasigen Wicklungsstränge der elektrischen Maschine verbunden sind, einem zweiten, parallel zu dem ersten Wechselrichter geschalteten zweiten Wechselrichter, dessen Ausgangsanschlüsse mit den Phasenanschlüssen eines zweiten der mehrphasigen Wicklungsstränge der elektrischen Maschine verbunden sind, und einer Gleichspannungsquelle, die eine Vielzahl von in Reihe geschalteten Batteriemodulen aufweist und die mit einem ersten Ausgangsanschluss mit einem ersten Eingangsanschluss des ersten Wechselrichters und mit einem zweiten Ausgangsanschluss mit einem ersten Eingangsanschluss des zweiten Wechselrichters verbunden ist, wobei ein zweiter Eingangsanschluss des ersten Wechselrichters und ein zweiter Eingangsanschluss des zweiten Wechselrichters untereinander verbunden sind, so dass der erste Wechselrichter und der zweite Wechselrichter in Reihenschaltung angeordnet sind, und wobei der zweite Eingangsanschluss des ersten Wechselrichters und der zweite Eingangsanschluss des zweiten Wechselrichters mit einem Mittelabgriff der Gleichspannungsquelle zwischen zwei Untergruppen der in Reihe geschalteten Batteriemodule verbunden sind.

Description

Beschreibung Titel
Elektrisches Antriebssystem
Die Erfindung betrifft ein elektrisches Antriebssystem, insbesondere für ein elektrisch betriebenes Fahrzeug wie ein Elektroauto oder ein Hybridfahrzeug.
Stand der Technik
Wie in Fig. 1 beispielhaft dargestellt, erfolgt in einem elektrischen Antriebssystem 100 die Einspeisung von mehrphasigem Strom in eine elektrische Maschine 101 üblicherweise durch einen Wechselrichter 102 in Form eines
Pulswechselrichters. Dazu kann eine von einem Gleichspannungszwischenkreis 103 bereitgestellte Gleichspannung in eine mehrphasige Wechselspannung, beispielsweise eine dreiphasige Wechselspannung umgerichtet werden. Der Gleichspannungszwischenkreis 103 wird dabei von einem Strang 104 aus seriell verschalteten Batteriemodulen 105 oder beliebigen Gleichspannungsquellen gespeist.
Um die für eine jeweilige Anwendung gegebenen Anforderungen an Leistung und Energie erfüllen zu können, werden häufig mehrere Batteriemodule oder Batteriezellen in einem Energiespeichersystem in Serie geschaltet. Wenn jedoch hohe Leistungen an der elektrischen Maschine benötigt werden, kann es notwendig werden, Maßnahmen in der Implementierung des elektrischen Antriebssystems 100 zu treffen, die den erhöhten Leistungsanforderungen gerecht werden.
Beispielsweise kann es möglich sein, mehrere Stränge 104 aus seriell verschalteten Batteriemodulen 105 parallel zu schalten. Dies kann jedoch zu unerwünschten Ausgleichsströmen zwischen den Strängen 104 führen. Zusätzlich dazu kann es auch notwendig sein, die Stromtragfähigkeit der Komponenten des Wechselrichters 102 und der elektrischen Maschine 101 zu erhöhen. Alternativ könnte auch die Zwischenkreisspannung angehoben werden. In jedem Fall werden umfangreiche Anpassungsentwicklungen und Änderungen in der Implementierung des elektrischen Antriebssystems nötig, die wiederum zu erhöhtem Implementierungsaufwand und -kosten führen.
Die Druckschrift US 2007/0070667 AI offenbart ein Antriebssystem für ein elektrisch betriebenes Fahrzeug mit mehrfach parallel geschalteten
Wechselrichtern, die einen mehrphasigen Motor mit Wechselspannung versorgen. Die Druckschrift DE 10 2011 085 731 AI offenbart ein elektrisches Antriebssystem für einen sechsphasigen Motor mit zwei parallel geschalteten Wechselrichtern. Die Druckschrift DE 10 2008 008 978 AI offenbart modulare Antriebsstromrichter. Die Druckschrift DE 10 2010 001 250 AI offenbart ein elektrisches Antriebssystem für eine elektrische Maschine mit zwei
Phasensystemen, die über getrennte Wechselrichter gespeist werden.
Offenbarung der Erfindung
Die vorliegende Erfindung schafft gemäß einem ersten Aspekt ein elektrisches Antriebssystem, mit einer n-phasigen elektrischen Maschine, n>l, welche mindestens zwei mehrphasige Wicklungsstränge aufweist, einem ersten
Wechselrichter, dessen Ausgangsanschlüsse mit den Phasenanschlüssen eines ersten der mehrphasigen Wicklungsstränge der elektrischen Maschine verbunden sind, einem zweiten, parallel zu dem ersten Wechselrichter geschalteten zweiten Wechselrichter, dessen Ausgangsanschlüsse mit den Phasenanschlüssen eines zweiten der mehrphasigen Wicklungsstränge der elektrischen Maschine verbunden sind, und einer Gleichspannungsquelle, die eine Vielzahl von in Reihe geschalteten Batteriemodulen aufweist und die mit einem ersten Ausgangsanschluss mit einem ersten Eingangsanschluss des ersten Wechselrichters und mit einem zweiten Ausgangsanschluss mit einem ersten Eingangsanschluss des zweiten Wechselrichters verbunden ist, wobei ein zweiter Eingangsanschluss des ersten Wechselrichters und ein zweiter
Eingangsanschluss des zweiten Wechselrichters untereinander verbunden sind, so dass der erste Wechselrichter und der zweite Wechselrichter in Reihenschaltung angeordnet sind, und wobei der zweite Eingangsanschluss des ersten Wechselrichters und der zweite Eingangsanschluss des zweiten
Wechselrichters mit einem Mittelabgriff der Gleichspannungsquelle zwischen zwei Untergruppen der in Reihe geschalteten Batteriemodule verbunden sind.
Vorteile der Erfindung
Eine Idee der vorliegenden Erfindung ist es, elektrische Maschinen mithilfe von standardisierten Leistungsbaugruppen, wie etwa Wechselrichtern, beispielsweise in B6-Topologie, anzusteuern. Derartige Wechselrichter sind als standardisierte Modultypen verfügbar, die durch Skaleneffekte kostengünstig zu beschaffen und zu implementieren sind. Durch die Modularisierung der Leistungsbaugruppen wird die Leistungsfähigkeit des elektrischen Antriebssystems vorteilhafterweise erhöht, ohne dass die Ausführung der elektrischen Maschine oder der einzelnen Leistungsbaugruppen an sich aufwändiger oder kostenintensiver wird. Für alle Leistungsbaugruppen können zudem einfache mechanische Verbindungsmittel vorgesehen werden, durch die die Systemmodule zusammengeschaltet werden können. Außderdem kann eine zentrale Steuereinrichtung, beispielsweise auf einer zentralen Steuerplatine, für alle Leistungsbaugruppen gleichermaßen vorgesehen werden.
Gemäß einer Ausführungsform des erfindungsgemäßen elektrischen
Antriebssystems können der erste und der zweite Wechselrichter jeweils einen dreiphasigen selbstgeführten Wechselrichter aufweisen, der drei symmetrische Halbbrücken aus jeweils zwei Leistungshalbleiterschaltern in Serienschaltung umfasst.
Gemäß einer weiteren Ausführungsform des erfindungsgemäßen elektrischen Antriebssystems können die Schaltelemente jeweils Leistungshalbleiterschalter, vorzugsweise MOSFET-Schalter oder IGBT-Schalter, aufweisen. Diese Schalter sind besonders belastbar und zuverlässig anzusteuern.
Gemäß einer weiteren Ausführungsform des erfindungsgemäßen elektrischen Antriebssystems kann das Antriebssystem weiterhin eine Steuereinrichtung aufweisen, welche dazu ausgelegt ist, die Leistungshalbleiterschalter des ersten Wechselrichters und des zweiten Wechselrichters anzusteuern, wobei die Steuereinrichtung auf einer zentralen Steuerplatine für den ersten Wechselrichter und den zweiten Wechselrichter angeordnet ist.
Gemäß einer weiteren Ausführungsform des erfindungsgemäßen elektrischen Antriebssystems kann das Antriebssystem weiterhin mindestens einen parallel zu dem ersten Wechselrichter geschalteten dritten Wechselrichter, dessen
Eingangsanschlüsse jeweils mit Eingangsanschlüssen des ersten
Wechselrichters gekoppelt sind, und mindestens einen parallel zu dem zweiten Wechselrichter geschalteten vierten Wechselrichter aufweisen, dessen
Eingangsanschlüsse jeweils mit Eingangsanschlüssen des zweiten
Wechselrichters gekoppelt sind. Dabei kann das Antriebssystem gemäß einer weiteren Ausführungsform weiterhin einen dritten
Gleichspannungszwischenkreis, welcher zwischen die Eingangsanschlüsse des dritten Wechselrichters gekoppelt ist, und einen vierten
Gleichspannungszwischenkreis, welcher zwischen die Eingangsanschlüsse des vierten Wechselrichters gekoppelt ist, umfassen.
Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit Bezug auf die beigefügten
Zeichnungen.
Kurze Beschreibung der Zeichnungen Es zeigen:
Fig. 1 eine schematische Darstellung eines beispielhaften konventionellen elektrischen Antriebssystems;
Fig. 2 eine schematische Darstellung eines elektrischen Antriebssystems gemäß einer weiteren Ausführungsform der vorliegenden Erfindung; und
Fig. 3 eine schematische Darstellung eines elektrischen Antriebssystems gemäß einer weiteren Ausführungsform der vorliegenden Erfindung. Gleiche Bezugszeichen bezeichnen im Allgemeinen gleichartige oder gleich wirkende Komponenten. Die in den Figuren gezeigten schematischen
Darstellungen sind nur beispielhafter Natur, die aus Gründen der
Übersichtlichkeit idealisiert abgebildet sind. Es versteht sich, dass die
dargestellten Komponenten lediglich zur Veranschaulichung von Prinzipien und funktionellen Aspekten der vorliegenden Erfindung dienen.
Fig. 2 zeigt eine schematische Darstellung eines elektrischen Antriebssystems 30 mit einer sechsphasigen elektrischen Maschine 6, welche beispielsweise eine geschaltete Reluktanzmaschine oder eine Drehfeldmaschine sein kann. Die elektrische Maschine 6 weist beispielhaft zwei dreiphasige Wicklungsstränge 6a und 6b auf, die in ihrem Sternpunkt miteinander gekoppelt sein können. Das elektrische Antriebssystem 30 weist zudem ein Wechselrichtersystem aus mindestens einem ersten Wechselrichter 3a und und einem zweiten
Wechselrichter 3b auf. Dabei speist der erste Wechselrichter 3a an seinen Ausgangsanschlüssen den ersten dreiphasigen Wicklungsstrang 6a der elektrischen Maschine 6. Der zweite Wechselrichter 3b speist an seinen
Ausgangsanschlüssen den zweiten dreiphasigen Wicklungsstrang 6b der elektrischen Maschine 6.
Die Wechselrichter 3a und 3b weisen dabei jeweils eine B6-Vollbrückentopologie auf, das heißt, jeder der Wechselrichter weist einen dreiphasigen selbstgeführten Wechselrichter auf, der drei symmetrische Halbbrücken aus jeweils zwei Leistungshalbleiterschaltern Hl und H2, H3 und H4 bzw. H5 und H6 in
Serienschaltung umfasst. Die Leistungshalbleiterschalter können beispielsweise MOSFET-Schalter oder IGBT-Schalter sein. Es ist dabei jedoch auch möglich, jede andere Art von Schaltelementen als Schalter Hl bis H6 zu verwenden und dabei parallel zu jedem Schaltelement Hl bis H6 eine Freilaufdiode zu schalten. An einem Mittelabgriff einer ersten Halbbrücke der Wechselrichter 3a bzw. 3b ist eine erste der Phasen der dreiphasigen Wicklungsstränge 6a bzw. 6b gekoppelt, an einem Mittelabgriff einer zweiten Halbbrücke der Wechselrichter 3a bzw. 3b eine zweite der Phasen der dreiphasigen Wicklungsstränge 6a bzw. 6b, und an einem Mittelabgriff einer dritten Halbbrücke der Wechselrichter 3a bzw. 3b eine dritte der Phasen der dreiphasigen Wicklungsstränge 6a bzw. 6b. Der erste Wechselrichter 3a und der zweite Wechselrichter 3b können dabei entweder als separate Wechselrichtereinheiten oder auch in einem
gemeinsamen Wechselrichtermodul implementiert sein. In letzterem Fall kann ein einziges Wechselrichtermodul mit sechs symmetrischen Halbbrücken
vorgesehen werden, dass in entsprechender Weise mit der elektrischen
Maschine 6 gekoppelt wird. Für die Ansteuerung der Leistungshalbleiterschalter Hl bis H6 kann eine (nicht explizit dargestellte) Steuereinrichtung eingesetzt werden, welche beispielsweise auf einer gemeinsamen Steuerplatine
implementiert werden kann.
Die Wechselrichter 3a und 3b können beispielsweise jeweils aus einem
Gleichspannungszwischenkreis 2a bzw. 2b gespeist werden. In dem elektrischen Antriebssystem 30 ist eine gemeinsame Gleichspannungsquelle 1,
beispielsweise eine Traktionsbatterie eines Elektrofahrzeugs zur Versorgung beider Gleichspannungszwischenkreise 2a und 2b mit elektrischer
Gleichspannung vorgesehen. Die Gleichspannungsquelle 1 kann dazu beispielsweise eine Serienschaltung aus Batteriemodulen 5 aufweisen, deren Anzahl in Fig. 2 nur beispielhaft mit 3 dargestellt ist - jede andere Anzahl an Batteriemodulen 5 kann ebenso möglich sein. Weiterhin ist klar, dass auch die Anzahl der Phasen der Wechselrichter 3a und 3b von der in Fig. 2 dargestellten beispielhaften Anzahl von drei abweichen kann, je nach erforderlicher Anzahl der Phasen der Wicklungsstränge 6a und 6b der elektrischen Maschine 6, deren Phasenanzahl jede beliebige Zahl annehmen kann. Ebenso ist es möglich, mehr als zwei Wechselrichter 3a und 3b parallel zu schalten, insbesondere wenn die elektrische Maschine 6 mehr als zwei mehrphasige Wicklungsstränge 6a und 6b aufweist. Dazu kann jeder der Wechselrichter einem der mehrphasigen
Wicklungsstränge zugeordnet und mit selbigem elektrisch verbunden werden.
Die Gleichspannungsquelle 1 ist dabei mit jeweils einem ihrer zwei
Ausgangsanschlüsse mit jeweils einem Eingangsanschluss der beiden
Wechselrichter 3a und 3b verbunden. Die jeweils anderen Eingangsanschlüsse der beiden Wechselrichter 3a und 3b sind mit einem Mittelabgriff M der
Gleichspannungsquelle 1 verbunden. Der Mittelabgriff M ist dabei zwischen jeweils zwei Untergruppen von Batteriemodulen 5 der Gleichspannungsquelle 1 in der Serienschaltung der Batteriemodule 5 angekoppelt, um für die Eingangsanschlüsse der beiden Wechselrichter 3a und 3b ein festes
Referenzpotential bereitzustellen. Bei mehr als zwei Wechselrichtern 3a und 3b können auch mehrere Mittelabgriffe M implementiert werden, die jeweils derart ausgeführt sind, dass die gesamte Ausgangsspannung aller Batteriemodule 5 durch die Anzahl der in Reihe geschalteten Wechselrichter aufgeteilt wird.
Dadurch kann eine Symmetrierung der jeweiligen Referenzpotentiale für die Eingangsanschlüsse der Wechselrichter erreicht werden.
Jeder Wechselrichter 3a, 3b kann dabei auch aus einer separaten
Gleichspannungsquelle 1 gespeist werden. Beispielsweise kann eine Speisung einer sechsphasigen elektrischen Maschine 6 wie in Fig. 2 dargestellt, auch durch zwei getrennte Gleichspannungsquellen 1 erfolgen. Vorteilhafterweise können in dieser Variante benachbarte Wechselrichter 3a, 3b jeweils alternierend von beiden Gleichspannungsquellen 1 gespeist werden.
Durch die Verschaltung von prinzipiell gleichartigen Wechselrichtern 3a und 3b in Reihe kann die Leistungsfähigkeit des elektrischen Antriebssystems 30 bei einer Beibehaltung des gewünschten Ausgangsspannungslevels erheblich gesteigert werden. Die mittlere Spannungsebene zwischen den beiden Wechselrichtern 3a und 3b kann dabei in geeigneter Weise über die Wahl des Mittelabgriffs M symmetriert werden. Dadurch muss die Stromtragfähigkeit der
Leistungshalbleiterschalter Hl bis H6 der Wechselrichter 3a und 3b gegenüber herkömmlichen Leistungshalbleiterschaltern Hl bis H6 nicht erhöht werden. Zudem kann durch die Modularisierung ein redundantes System geschaffen werden, in dem im Fehlerfall eines einzelnen Wechselrichters 3a bzw. 3b eine
Notbetriebsfunktion mit eingeschränkter Leistungsfähigkeit eingerichtet werden kann. Dazu kann der defekte oder fehlerhafte Teil des Wechselrichtersystems deaktiviert und durch geeignete Umgehungsschalter in der Reihenschaltung der Wechselrichter überbrückt bzw. umgangen werden, und die elektrische Maschine 6 wird zumindest temporär durch die übrigen Wechselrichterteile mit reduzierter
Leistung versorgt.
Fig. 3 zeigt eine Weiterbildung des elektrischen Antriebssystems 30 der Fig. 2. In Fig. 3 können zwei oder mehr Wechselrichter 3a und 3c bzw. 3b und 3d in jedem der in Reihe geschalteten Wechselrichterteilsysteme des Wechselrichtersystems parallel geschaltet werden. Dadurch können mehrere Wechselrichter 3a und 3c bzw. 3b und 3d pro Spannungsebene implementiert werden, die beispielsweise versetzt getaktet werden können, um Spannungs- und/oder Stromschwankungen („ripple") in den Phasenspannungen bzw. den Phasenströmen, die in die elektrische Maschine 6 eingespeist werden, zu verringern. Weiterhin speist jeder der Wechselrichter 3a, 3b, 3c und 3d einen dreiphasigen Wicklungsstrang 6a, 6b, 6c, 6d der elektrischen Maschine. Im Beispiel der Fig. 3 ist die elektrische Maschine 6 daher eine zwölfphasige Maschine.
Die Anzahl der Spannungsebenen sowie die Anzahl der Wechselrichter 3a und 3c bzw. 3b und 3d pro Spannungsebene sind in Fig. 3 nur beispielhaft mit jeweils zwei dargestellt - es ist ohne weiteres möglich, mehr als zwei Spannungsebenen bzw. mehr als zwei Wechselrichter pro Spannungsebene zu implementieren. Dazu kann bei mehr als zwei Spannungsebenen gegebenenfalls ein zusätzlicher Mittelabgriff M an der Gleichspannungsquelle 1 zwischen zwei weiteren
Untergruppen der Batteriemodule 5 genutzt werden, um die
Spannungszwischenebenen zwischen den jeweils in Reihe liegenden
Eingangsanschlüssen der einzelnen Wechselrichtergruppen pro
Spannungsebene zu symmetrieren.
Die einzelnen Wechselrichter 3a und 3c bzw. 3b und 3d müssen nur auf einen Bruchteil der gesamten Gleichspannung der Gleichspannungsquelle 1 ausgelegt werden, je nach Anzahl der verwendeten Spannungszwischenebenen. Dadurch können auch Standardleistungsbaugruppen für hohe Ausgangsspannungen der Gleichspannungsquelle 1 genutzt werden.
In dem gezeigten Antriebssystem 30 der Fig. 2 bis 3 kann die elektrische
Maschine 6 beispielsweise eine Synchron- oder Asynchronmaschine, eine Reluktanzmaschine oder ein bürstenloser Gleichstrommotor (BLDC,„brushless DC motor") sein. Es kann dabei auch möglich sein, das elektrische
Antriebssystem 30 der Fig. 2 bis3 in stationären Systemen einzusetzen, beispielsweise in Kraftwerken, in elektrischen Energiegewinnungsanlagen wie zum Beispiel Windkraftan lagen, Photovoltaikanlagen oder
Kraftwärmekopplungsanlagen, in Energiespeicheranlagen wie zum Beispiel Druckluftspeicherkraftwerken, Batteriespeicherkraftwerken, Schwungradspeichern, Pumpspeichern oder ähnlichen Systemen. Eine weitere Einsatzmöglichkeit des elektrischen Antriebssystems 30 der Fig. 2 bis 3 sind Personen- oder Gütertransportfahrzeuge, welche zur Fortbewegung auf oder unter dem Wasser ausgelegt sind, beispielsweise Schiffe, Motorboote oder dergleichen.

Claims

Ansprüche
1. Elektrisches Antriebssystem (30), mit:
einer n-phasigen elektrischen Maschine (6), n>l, welche mindestens zwei mehrphasige Wicklungsstränge (6a, 6b) aufweist;
einem ersten Wechselrichter (3a), dessen Ausgangsanschlüsse mit den
Phasenanschlüssen eines ersten der mehrphasigen Wicklungsstränge (6a, 6b) der elektrischen Maschine (6) verbunden sind;
einem zweiten Wechselrichter (3b), dessen Ausgangsanschlüsse mit den Phasenanschlüssen eines zweiten der mehrphasigen Wicklungsstränge (6a, 6b) der elektrischen Maschine (6) verbunden sind; und
einer Gleichspannungsquelle (1), die eine Vielzahl von in Reihe geschalteten Batteriemodulen (5) aufweist und die mit einem ersten Ausgangsanschluss mit einem ersten Eingangsanschluss des ersten Wechselrichters (3a) und mit einem zweiten Ausgangsanschluss mit einem ersten Eingangsanschluss des zweiten Wechselrichters (3b) verbunden ist,
wobei ein zweiter Eingangsanschluss des ersten Wechselrichters (3a) und ein zweiter Eingangsanschluss des zweiten Wechselrichters (3b) untereinander verbunden sind, so dass der erste Wechselrichter (3a) und der zweite
Wechselrichter (3b) in Reihenschaltung angeordnet sind, und
wobei der zweite Eingangsanschluss des ersten Wechselrichters (3a) und der zweite Eingangsanschluss des zweiten Wechselrichters (3b) mit einem
Mittelabgriff (M) der Gleichspannungsquelle (1) zwischen zwei Untergruppen der in Reihe geschalteten Batteriemodule (5) verbunden sind.
2. Elektrisches Antriebssystem (30) nach Anspruch 1, wobei der erste und der zweite Wechselrichter (3a, 3b) jeweils einen dreiphasigen selbstgeführten Wechselrichter aufweisen, der drei symmetrische Halbbrücken aus jeweils zwei Leistungshalbleiterschaltern (Hl, H2; H3, H4; H5, H6) in Serienschaltung umfasst.
3. Elektrisches Antriebssystem (30) nach Anspruch 2, wobei die
Leistungshalbleiterschalter (Hl, H2; H3, H4; H5, H6) MOSFET-Schalter oder IGBT-Schalter aufweisen.
4. Elektrisches Antriebssystem (30) nach einem der Ansprüche 2 bis 3, weiterhin mit:
einer Steuereinrichtung, welche dazu ausgelegt ist, die
Leistungshalbleiterschalter (Hl, H2; H3, H4; H5, H6) des ersten Wechselrichters (3a) und des zweiten Wechselrichters (3b) anzusteuern,
wobei die Steuereinrichtung auf einer zentralen Steuerplatine für den ersten Wechselrichter (3a) und den zweiten Wechselrichter (3b) angeordnet ist.
5. Elektrisches Antriebssystem (30) nach einem der Ansprüche 1 bis 4, weiterhin mit:
mindestens einem parallel zu dem ersten Wechselrichter (3a) geschalteten Wechselrichter (3c), dessen Eingangsanschlüsse jeweils mit
Eingangsanschlüssen des ersten Wechselrichters (3a) gekoppelt sind; und mindestens einem parallel zu dem zweiten Wechselrichter (3b) geschalteten Wechselrichter (3d), dessen Eingangsanschlüsse jeweils mit
Eingangsanschlüssen des zweiten Wechselrichters (3b) gekoppelt sind.
PCT/EP2015/050216 2014-02-27 2015-01-08 Elektrisches antriebssystem WO2015128103A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580010726.6A CN106068202A (zh) 2014-02-27 2015-01-08 电驱动系统
US15/119,760 US9899948B2 (en) 2014-02-27 2015-01-08 Electric drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014203553.8 2014-02-27
DE102014203553.8A DE102014203553A1 (de) 2014-02-27 2014-02-27 Elektrisches Antriebssystem

Publications (1)

Publication Number Publication Date
WO2015128103A1 true WO2015128103A1 (de) 2015-09-03

Family

ID=52302243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/050216 WO2015128103A1 (de) 2014-02-27 2015-01-08 Elektrisches antriebssystem

Country Status (4)

Country Link
US (1) US9899948B2 (de)
CN (1) CN106068202A (de)
DE (1) DE102014203553A1 (de)
WO (1) WO2015128103A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026823A (zh) * 2016-06-21 2016-10-12 山东大学(威海) 一种电机驱动器拓扑及控制算法
CN109643969A (zh) * 2016-06-01 2019-04-16 Abb 瑞士股份有限公司 无刷电机
CN110337782A (zh) * 2016-06-01 2019-10-15 Abb瑞士股份有限公司 无刷电机

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3213952B1 (de) 2016-03-02 2020-08-26 Airbus Defence and Space GmbH Elektrisches antriebssystem für ein luftfahrzeug sowie betriebsverfahren
DE102016216324A1 (de) 2016-08-30 2018-03-01 Robert Bosch Gmbh Antriebssystem, insbesondere für ein Fahrzeug, und Verfahren zum Aufheizen eines Antriebssystems
CN108621862B (zh) * 2017-03-15 2020-11-17 华为技术有限公司 电驱动控制系统、电动汽车和电驱动控制方法
US11801763B2 (en) * 2017-12-19 2023-10-31 Ford Global Technologies, Llc Integrated DC vehicle charger
DE102018106307A1 (de) * 2018-03-19 2019-09-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batterieauslegung eines Fahrzeugs mit mehreren Antriebsmotoren
EP3736164B1 (de) 2019-05-07 2023-04-05 Volvo Car Corporation System und verfahren zur fehlererkennung in einem antriebssystem für ein elektrofahrzeug
EP3736166A1 (de) 2019-05-07 2020-11-11 Volvo Car Corporation System und verfahren zum ausgleichen des ladezustandes in einem antriebssystem für ein elektrofahrzeug
EP3736167A1 (de) * 2019-05-07 2020-11-11 Volvo Car Corporation System und verfahren zur fehlererkennung in einem antriebssystem für ein elektrofahrzeug
CN111030550B (zh) 2019-11-25 2022-05-17 华为技术有限公司 一种电机驱动器及动力系统
US11128212B1 (en) * 2020-03-02 2021-09-21 The Boeing Company Current ripple reduction for a direct current source powering an alternating current load
EP3875300A1 (de) * 2020-03-06 2021-09-08 Volvo Car Corporation Notlaufmodus für ein batterieelektrofahrzeug
WO2021208044A1 (zh) 2020-04-16 2021-10-21 华为技术有限公司 一种电源系统
US11427086B2 (en) * 2020-05-19 2022-08-30 Kaney Aerospace, Inc. System and method for electrical power conversion suited for driving an electric motor
CN116783816A (zh) * 2020-12-15 2023-09-19 华为数字能源技术有限公司 一种光伏系统、保护方法及逆变系统
CN115179975A (zh) * 2021-04-01 2022-10-14 中车株洲电力机车研究所有限公司 一种牵引传动系统
DE102021112819A1 (de) * 2021-05-18 2022-11-24 Schaeffler Technologies AG & Co. KG Steuereinrichtung zur Ansteuerung eines redundanten Aktuators mit zwei Teilaktuatoren
US20240313674A1 (en) * 2021-07-02 2024-09-19 Crrc Zhuzhou Institute Co., Ltd Electric traction system
US20240097593A1 (en) * 2022-09-16 2024-03-21 Hamilton Sundstrand Corporation Multi-three-phase drive system
DE102022210547A1 (de) 2022-10-06 2024-04-11 Vitesco Technologies GmbH Mehrteiliger Wechselrichter für elektrische Maschine mit mehreren Wicklungssystemen

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947377A2 (de) * 1998-04-03 1999-10-06 ABB Daimler-Benz Transportation (Italia) S.p.A. Ein Regelsystem und entsprechendes Regelverfahren zum Speisen eines Asynchronmotors
WO2006131210A1 (de) * 2005-06-10 2006-12-14 Bayerische Motoren Werke Aktiengesellschaft Elektrische antriebseinrichtung
US20070070667A1 (en) 2005-09-23 2007-03-29 Stancu Constantin C Multiple inverter system with single controller and related operating method
US20090033274A1 (en) * 2007-07-30 2009-02-05 Gm Global Technology Operations, Inc. System for using a multi-phase motor with a double-ended inverter system
DE102008008978B3 (de) 2008-02-13 2009-03-19 Thomas Magnete Gmbh Antriebsvorrichtung für einen Steuerschieber eines hydraulischen Ventils
US20110011658A1 (en) * 2009-07-17 2011-01-20 Fuji Electric Systems Co., Ltd. Load driving system and electric vehicle using the system
DE102010001250A1 (de) 2010-01-27 2011-07-28 Robert Bosch GmbH, 70469 Elektrisches Bordnetz sowie Verfahren zum Betreiben eines elektrischen Bordnetzes
WO2012016062A2 (en) * 2010-07-28 2012-02-02 Direct Drive Systems, Inc. Multi-leveled phase shifted electric machine system
US20120256568A1 (en) * 2009-07-02 2012-10-11 Chong Uk Lee Multi-port reconfigurable battery
DE102011085731A1 (de) 2011-11-03 2013-05-08 Bayerische Motoren Werke Aktiengesellschaft Elektrisches System

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166578A (en) * 1980-08-14 1992-11-24 Nilssen Ole K Inverter power supply circuit
US5446346A (en) * 1978-03-20 1995-08-29 Nilssen; Ole K. Electronic ballast with controlled DC supply voltage
JPS58112476A (ja) * 1981-12-25 1983-07-04 Toyota Central Res & Dev Lab Inc マルチレベルインバ−タ
US4624334A (en) * 1984-08-30 1986-11-25 Eaton Corporation Electric power assisted steering system
EP0403595A1 (de) * 1988-07-20 1990-12-27 Power Reflex Pty. Ltd. Geschaltete elektrische kraftumwandlung und ausgleich
JP2685586B2 (ja) * 1989-06-30 1997-12-03 株式会社日立製作所 多重インバータ装置
US5710698A (en) * 1994-09-30 1998-01-20 Lockheed Martin Energy Systems, Inc. Delta connected resonant snubber circuit
US5642273A (en) * 1994-09-30 1997-06-24 Martin Marietta Energy Systems, Inc. Resonant snubber inverter
DE19524985A1 (de) * 1995-07-08 1996-08-29 Abb Daimler Benz Transp Verfahren zum Steuern einer Drehfeldmaschine
US6882061B1 (en) * 1998-12-31 2005-04-19 Daimlerchrysler Corporation Battery self-warming mechanism using the inverter and the battery main disconnect circuitry
DE19926979A1 (de) 1999-06-14 2001-01-04 Siemens Ag Spannungszwischenkreis-Umrichter
KR20050048593A (ko) * 2002-07-31 2005-05-24 에스엠씨 일렉트리칼 프로덕츠, 인크 중간 내지 고 전압의 3레벨 이상의 ac 구동 인버터브리지를 구동하는 저 전압 2레벨 6펄스 인덕션 모터제어기
US6969967B2 (en) * 2003-12-12 2005-11-29 Ut-Battelle Llc Multi-level dc bus inverter for providing sinusoidal and PWM electrical machine voltages
US9166415B2 (en) * 2005-11-24 2015-10-20 Komatsu Ltd. AC link bidirectional DC-DC converter, hybrid power supply system using the same and hybrid vehicle
JP2008259302A (ja) 2007-04-04 2008-10-23 Honda Motor Co Ltd 電動機の制御装置
US7847437B2 (en) * 2007-07-30 2010-12-07 Gm Global Technology Operations, Inc. Efficient operating point for double-ended inverter system
JP4380755B2 (ja) * 2007-10-10 2009-12-09 株式会社デンソー 回転電機装置
WO2011090500A1 (en) 2010-01-19 2011-07-28 Rether Networks Inc. Random write optimization techniques for flash disks
CN102821998B (zh) * 2010-03-31 2015-02-11 株式会社东芝 电动车控制装置
US8937400B2 (en) * 2010-04-27 2015-01-20 Denso Corporation Power supply apparatus for vehicle
GB2472297B (en) * 2010-07-19 2014-04-23 Protean Electric Ltd Electric motor
JP2012060735A (ja) * 2010-09-07 2012-03-22 Sharp Corp マルチレベルインバータ
DE102011075429A1 (de) * 2011-05-06 2012-11-08 Sb Limotive Company Ltd. Antriebseinheit für einen elektrischen Motor
DE102011084698A1 (de) * 2011-10-18 2013-04-18 Sb Limotive Company Ltd. Umrichtereinheit für eine Asynchronmaschine
US8867248B2 (en) * 2011-12-20 2014-10-21 Kohler Co. High-efficiency, three-level, single-phase inverter
DE102012203525A1 (de) * 2012-03-06 2013-09-12 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit elektrischer Maschine und Verfahren zum Betreiben dieser
US8619446B2 (en) * 2012-04-27 2013-12-31 Rockwell Automation Technologies, Inc. Cascaded H-bridge (CHB) inverter level shift PWM with rotation
US8982593B2 (en) * 2012-04-27 2015-03-17 Rockwell Automation Technologies, Inc. Cascaded H-Bridge (CHB) inverter level shift PWM with rotation
US8976556B2 (en) * 2012-07-12 2015-03-10 Mitsubishi Electric Research Laboratories, Inc. Space vector modulation for multilevel inverters
US8934276B2 (en) * 2012-08-16 2015-01-13 Mitsubishi Electric Research Laboratories, Inc. DC-link voltage balancing control for multilevel inverters
EP2770624B1 (de) * 2013-02-22 2017-02-22 ABB Research Ltd. Verfahren und Vorrichtung zur Erzeugung von Dreiphasenstrom
KR101769176B1 (ko) * 2013-04-10 2017-08-17 엘에스산전 주식회사 멀티레벨 인버터 시스템
KR101791288B1 (ko) * 2013-06-05 2017-10-27 엘에스산전 주식회사 멀티 레벨 인버터
US9083230B2 (en) * 2013-06-20 2015-07-14 Rockwell Automation Technologies, Inc. Multilevel voltage source converters and systems
EP2849331B1 (de) * 2013-09-11 2020-02-12 ABB Schweiz AG Verfahren und Vorrichtung zum Ausgleich von Spannungen des Gleichstromzwischenkreises eines mehrstufigen Umrichters
US9520800B2 (en) * 2014-01-09 2016-12-13 Rockwell Automation Technologies, Inc. Multilevel converter systems and methods with reduced common mode voltage
US9325252B2 (en) * 2014-01-13 2016-04-26 Rockwell Automation Technologies, Inc. Multilevel converter systems and sinusoidal pulse width modulation methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947377A2 (de) * 1998-04-03 1999-10-06 ABB Daimler-Benz Transportation (Italia) S.p.A. Ein Regelsystem und entsprechendes Regelverfahren zum Speisen eines Asynchronmotors
WO2006131210A1 (de) * 2005-06-10 2006-12-14 Bayerische Motoren Werke Aktiengesellschaft Elektrische antriebseinrichtung
US20070070667A1 (en) 2005-09-23 2007-03-29 Stancu Constantin C Multiple inverter system with single controller and related operating method
US20090033274A1 (en) * 2007-07-30 2009-02-05 Gm Global Technology Operations, Inc. System for using a multi-phase motor with a double-ended inverter system
DE102008008978B3 (de) 2008-02-13 2009-03-19 Thomas Magnete Gmbh Antriebsvorrichtung für einen Steuerschieber eines hydraulischen Ventils
US20120256568A1 (en) * 2009-07-02 2012-10-11 Chong Uk Lee Multi-port reconfigurable battery
US20110011658A1 (en) * 2009-07-17 2011-01-20 Fuji Electric Systems Co., Ltd. Load driving system and electric vehicle using the system
DE102010001250A1 (de) 2010-01-27 2011-07-28 Robert Bosch GmbH, 70469 Elektrisches Bordnetz sowie Verfahren zum Betreiben eines elektrischen Bordnetzes
WO2012016062A2 (en) * 2010-07-28 2012-02-02 Direct Drive Systems, Inc. Multi-leveled phase shifted electric machine system
DE102011085731A1 (de) 2011-11-03 2013-05-08 Bayerische Motoren Werke Aktiengesellschaft Elektrisches System

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643969A (zh) * 2016-06-01 2019-04-16 Abb 瑞士股份有限公司 无刷电机
CN110337782A (zh) * 2016-06-01 2019-10-15 Abb瑞士股份有限公司 无刷电机
CN109643969B (zh) * 2016-06-01 2024-05-07 Abb瑞士股份有限公司 桥式变流器和多相电机
CN106026823A (zh) * 2016-06-21 2016-10-12 山东大学(威海) 一种电机驱动器拓扑及控制算法
CN106026823B (zh) * 2016-06-21 2019-03-26 山东大学(威海) 一种电机驱动器拓扑及控制算法

Also Published As

Publication number Publication date
US9899948B2 (en) 2018-02-20
CN106068202A (zh) 2016-11-02
DE102014203553A1 (de) 2015-08-27
US20170070175A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015128103A1 (de) Elektrisches antriebssystem
DE102017124126B4 (de) Umrichter, elektrisches Polyphasen-System und Verfahren zum effizienten Leistungsaustausch
DE102015112513A1 (de) Matroschka-Umrichter
WO2013092183A2 (de) Energiespeichereinrichtung, system mit energiespeichereinrichtung und verfahren zum ansteuern einer energiespeichereinrichtung
DE102012205109B4 (de) Verfahren zum Betreiben einer Energiespeichereinrichtung, Energiespeichereinrichtung zum Erzeugen einer Versorgungsspannung für eine elektrische Maschine sowie Sytem mit einer Energiespeichereinrichtung
DE102010064317A1 (de) System zur Ankopplung mindestens einer Gleichstromquelle an einen steuerbaren Energiespeicher und zugehöriges Betriebsverfahren
EP2608397A1 (de) Modularer Hochfrequenz-Umrichter für Antriebe
EP2764614B1 (de) Modularer mehrstufiger wechselrichter mit einer vielzahl seriell geschalteter wechselrichtermodule zur erzeugung mehrphasiger ausgangsspannungen
WO2020156957A1 (de) Elektrischer antrieb und verfahren zum betreiben des elektrischen antriebs
DE102013204255A1 (de) Verfahren und Vorrichtung zum Betreiben eines Bordnetzes
WO2015128101A1 (de) Elektrisches antriebssystem
DE102012210010A1 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Bereitstellen einer Versorgungsspannung
WO2014127871A2 (de) Interne energieversorgung von energiespeichermodulen für eine energiespeichereinrichtung und energiespeichereinrichtung mit solchem
EP2673876B1 (de) Energiespeichereinrichtung für eine fremderregte elektrische maschine
WO2015128104A1 (de) Elektrisches antriebssystem
EP2673877A2 (de) System mit einer elektrisch erregten maschine
DE102017212844A1 (de) Bidirektionaler Inverterlader
WO2015128102A1 (de) Elektrisches antriebssystem
WO2013072107A1 (de) Energiespeichereinrichtung, system mit energiespeichereinrichtung und verfahren zum ansteuern einer energiespeichereinrichtung
DE102012202855A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
WO2015113780A1 (de) Energiespeichereinrichtung, system mit energiespeichereinrichtung und verfahren zum ansteuern einer energiespeichereinrichtung
WO2012163572A2 (de) Energieversorgungseinrichtung für wechselrichterschaltungen
DE102012202868A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
WO2014048462A1 (de) Antriebsanordnung für ein kraftfahrzeug
DE102012203415A1 (de) Ladeschaltung für elektrisches Antriebssystem und Verfahren zum Laden von Energiespeicherzellen in einem elektrischen Antriebssystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15700072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15119760

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15700072

Country of ref document: EP

Kind code of ref document: A1