WO2021037161A1 - 车辆及其制动方法、装置 - Google Patents

车辆及其制动方法、装置 Download PDF

Info

Publication number
WO2021037161A1
WO2021037161A1 PCT/CN2020/111835 CN2020111835W WO2021037161A1 WO 2021037161 A1 WO2021037161 A1 WO 2021037161A1 CN 2020111835 W CN2020111835 W CN 2020111835W WO 2021037161 A1 WO2021037161 A1 WO 2021037161A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
braking torque
braking
speed
electric
Prior art date
Application number
PCT/CN2020/111835
Other languages
English (en)
French (fr)
Inventor
马东
王璐
李道林
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to BR112022003431A priority Critical patent/BR112022003431A2/pt
Priority to US17/639,258 priority patent/US11752987B2/en
Publication of WO2021037161A1 publication Critical patent/WO2021037161A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/18Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle weight or load, e.g. load distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/52Torque sensing, i.e. wherein the braking action is controlled by forces producing or tending to produce a twisting or rotating motion on a braked rotating member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/58Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration responsive to speed and another condition or to plural speed conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/02Vehicle mass

Definitions

  • the present disclosure relates to the field of vehicle technology, in particular to a vehicle and its braking method and device.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the present disclosure proposes a vehicle braking method and device to improve the accuracy of vehicle braking control, and eliminate the risk of backsliding of the vehicle or the risk of stalling of the drive motor of the vehicle.
  • an embodiment of the first aspect of the present disclosure proposes a braking method for a vehicle, which includes the following steps: acquiring first state information of the vehicle, wherein the first state information includes vehicle quality and braking demand reduction. Speed; calculate the required braking torque of the vehicle according to the first state information, and control the electric braking torque of the vehicle according to the required braking torque of the vehicle; obtain the current speed of the vehicle and the electric brake exit protection Speed; calculate the electric brake exit speed according to the required braking torque of the vehicle and the braking demand deceleration, and when the current vehicle speed is less than the electric brake exit speed and the electric brake exit protection speed When the larger value of, the vehicle is controlled to unload the electric braking torque.
  • the braking method of the vehicle in the embodiment of the present disclosure first obtains the first state information of the vehicle, calculates the required braking torque of the vehicle according to the first state information, controls the vehicle to output electric braking torque according to the required braking torque of the vehicle, and then Acquire the current vehicle speed and the electric brake exit protection speed, calculate the electric brake exit speed according to the required braking torque and braking demand deceleration of the vehicle, and calculate the electric brake exit speed when the current vehicle speed is less than the electric brake exit speed and the electric brake exit speed At the larger value of the protection speed, control the vehicle to unload the electric braking torque.
  • the braking method of the vehicle can improve the accuracy of the braking control of the vehicle, and eliminate the risk of the vehicle slipping backward or the risk of the vehicle's driving motor from being blocked.
  • an embodiment of the second aspect of the present disclosure proposes a braking device for a vehicle, which includes: a first acquisition module for acquiring first state information of the vehicle, wherein the first state information includes the mass of the vehicle And braking demand deceleration; the first calculation module is used to calculate the required braking torque of the vehicle according to the first state information; the control module is used to control the vehicle output electric system according to the required braking torque of the vehicle Dynamic torque; a second acquisition module, used to acquire the current vehicle speed and electric brake withdrawal protection speed; a second calculation module, used to calculate the braking torque required by the vehicle and the braking demand deceleration The electric brake exit speed; wherein, the control module is also used to control the vehicle unloading station when the current vehicle speed is less than the larger value of the electric brake exit speed and the electric brake exit protection speed The electric braking torque.
  • the braking device of the vehicle of the embodiment of the present disclosure first obtains the first state information of the vehicle, calculates the required braking torque of the vehicle according to the first state information, and controls the vehicle to output electric braking torque according to the required braking torque of the vehicle, and then Acquire the current vehicle speed and the electric brake exit protection speed, calculate the electric brake exit speed according to the required braking torque and braking demand deceleration of the vehicle, and calculate the electric brake exit speed when the current vehicle speed is less than the electric brake exit speed and the electric brake exit speed At the larger value of the protection speed, control the vehicle to unload the electric braking torque.
  • the braking device of the vehicle can improve the accuracy of the braking control of the vehicle, and eliminate the risk of the vehicle slipping backward or the risk of the vehicle's drive motor being blocked.
  • an embodiment of the third aspect of the present disclosure proposes a vehicle including the vehicle braking device of the foregoing embodiment.
  • the vehicle of the embodiment of the present disclosure can improve the accuracy of vehicle braking control through the above-mentioned vehicle braking device, and eliminate the risk of the vehicle slipping backward or the risk of blocking the vehicle drive motor.
  • Fig. 1 is a flowchart of a vehicle braking method according to an embodiment of the present disclosure
  • Figure 2 is a flowchart of a vehicle braking method according to a first specific embodiment of the present disclosure
  • Fig. 3 is a flowchart of a method for calculating the exit speed of an electric brake according to an example of the present disclosure
  • Figure 4 (a) is a schematic diagram of a vehicle braking process in an example of the present disclosure
  • Figure 4(b) is a schematic diagram of a vehicle braking process in another example of the present disclosure.
  • Fig. 5 is a flowchart of a vehicle braking method according to a second specific embodiment of the present disclosure
  • Fig. 6 is a flowchart of a vehicle braking method according to a third specific embodiment of the present disclosure.
  • Fig. 7 is a flowchart of a vehicle braking method according to a fourth specific embodiment of the present disclosure.
  • Fig. 8 is a flowchart of a vehicle braking method according to a fifth specific embodiment of the present disclosure.
  • Fig. 9 is a flowchart of a vehicle braking method according to a sixth specific embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of an electric brake torque-time curve of an example of the present disclosure.
  • FIG. 11 is an overall flowchart of a vehicle braking method according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of electric braking control in a vehicle braking method according to an embodiment of the present disclosure
  • FIG. 13 is a flowchart of mechanical braking control in a vehicle braking method according to an embodiment of the present disclosure
  • FIG. 14 is a flowchart of a vehicle braking method according to a seventh specific embodiment of the present disclosure.
  • Fig. 15 is a schematic circuit diagram of a motor drive system of an example of the present disclosure.
  • Fig. 16 is a structural block diagram of a vehicle braking device according to an embodiment of the present disclosure.
  • Fig. 17 is a structural block diagram of a vehicle according to an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a braking method of a vehicle according to an embodiment of the present disclosure. As shown in Figure 1, the braking method of the vehicle includes the following steps:
  • the vehicle may be a rail vehicle, such as urban rail trains, subways, etc.
  • the electric braking part is executed by the TCU (Transmission Control Unit, traction controller), and the mechanical braking part is executed by the BCU. (Brake Control Unit) is executed.
  • TCU Transmission Control Unit
  • BCU BCU
  • Brain Control Unit is executed.
  • both of them receive the first state information of the vehicle sent by the CCU (Central Control Unit, vehicle controller), including vehicle quality and braking Demand deceleration.
  • S102 Calculate the required braking torque of the vehicle according to the first state, and control the vehicle to output electric braking torque according to the required braking torque of the vehicle.
  • the TCU calculates the braking torque required by the vehicle during the braking process according to the received first state information of the vehicle, and controls the driving motor of the vehicle to give priority to electric braking according to the braking torque required by the vehicle, that is, Control the drive motor to output electric braking torque, and at the same time the TCU feedbacks the electric braking state so that the BCU can monitor the electric braking state in real time. In this process, only the electric brake is performed by the drive motor, and no mechanical brake is involved.
  • the drive motor is a permanent magnet synchronous motor.
  • the TCU controls the vehicle's electric motor to output electric braking torque to reduce the vehicle speed, so as to electrically brake the vehicle.
  • the TCU and BCU collect the current vehicle speed in real time, and the TCU compares the collected vehicle speed with the calculated electric brake exit speed to determine whether to exit the electric brake, that is, start to unload the electric brake Torque: The BCU compares the collected vehicle speed with the calculated mechanical brake application speed to determine whether to start applying mechanical brake torque.
  • the TCU determines that the vehicle speed is reduced to the electric brake withdrawal speed, it starts to unload the electric brake torque to exit the electric brake, and when the BCU determines that the vehicle speed is reduced to the mechanical brake application speed, it controls the vehicle to apply the mechanical brake torque.
  • precise control of unloading electric braking torque and applying mechanical braking torque can be realized, which helps to improve the comfort of riding when the vehicle is braking.
  • the purpose of vehicle braking can be achieved by maximizing the use of electric braking, reducing the application of mechanical braking during the entire braking process, thereby effectively avoiding mechanical device wear and mechanical impact; and
  • the mechanical braking torque can be applied in time, which can make the vehicle more stable during the braking process, improve the comfort of the user in the car, and prevent the vehicle from being at zero speed. Risks such as slipping behind.
  • Fig. 2 is a flowchart of a vehicle braking method according to a specific embodiment of the present disclosure. As shown in Figure 2, the braking method of a vehicle includes the following steps:
  • S201 Acquire first state information of the vehicle, where the first state information includes vehicle mass and braking demand deceleration.
  • S202 Calculate the required braking torque of the vehicle according to the first state information, and control the vehicle to output electric braking torque according to the required braking torque of the vehicle.
  • S203 Acquire the current speed and current gradient of the vehicle.
  • the TCU may obtain the current vehicle speed of the vehicle through the vehicle speed sensor, and may obtain the current gradient of the vehicle through the in-vehicle navigation device or the transponder device on the driving route.
  • S204 Determine whether to control the vehicle to unload the electric braking torque and whether to control the vehicle to apply mechanical braking torque according to the current vehicle speed, the required braking torque of the vehicle, the braking demand deceleration, and the current slope of the vehicle.
  • the braking process can only involve electric braking.
  • the mechanical braking torque is applied to achieve parking of the vehicle;
  • the mechanical braking torque can be applied at the same time when the electric braking torque is unloaded, and when the electric braking torque is completely unloaded and the vehicle speed is 0, the mechanical braking torque can be fully applied to realize parking .
  • the accuracy of vehicle braking control is improved.
  • the required braking torque T b of the vehicle can be calculated by the following formula (1):
  • is the braking demand deceleration
  • k is the equivalent deceleration coefficient
  • M st is the static mass of the whole vehicle
  • M rot is the rotating mass of the single vehicle
  • n is the vehicle formation
  • R is the wheel radius
  • K n is the vehicle decelerator Efficiency
  • K r is the reduction ratio of the reducer.
  • the vehicle mass can be (M st +n*M rot ).
  • determining whether to control the vehicle to unload the electric braking torque and whether to control the vehicle to apply mechanical braking torque according to the current vehicle speed, the required braking torque of the vehicle, the braking demand deceleration and the current gradient includes: The required braking torque, braking demand deceleration and current gradient calculate the electric brake exit speed, and when the current vehicle speed is less than the electric brake exit speed, control the vehicle to unload the electric brake torque.
  • the vehicle can be controlled to start to unload the electric brake torque. Although the electric brake torque begins to unload, the electric brake still exists and the vehicle speed continues to decrease. During this process, the vehicle speed is lower than the electric brake exit speed, and the electric brake torque can be unloaded continuously.
  • the electric brake exit speed is calculated according to the braking torque required by the vehicle, the braking demand deceleration and the current slope, including: obtaining the electric braking torque unloading rate and the current ground adhesion coefficient; according to the braking torque required by the vehicle, Electric brake torque unloading rate, braking demand deceleration, current ground adhesion coefficient and current slope, calculate the electric brake exit speed.
  • S301 Calculate the electric braking torque unloading time according to the braking torque required by the vehicle and the electric braking torque unloading rate.
  • the electric brake torque is unloaded and the vehicle speed is exactly 0 as the design target, and the electric brake exit speed is calculated. At this time, the electric brake torque begins to unload, and the vehicle speed is the electric brake withdrawal speed.
  • the electric brake torque unloading time can be calculated by the following formula (2):
  • tu is the electric brake torque unloading time
  • K u is the electric brake torque unloading rate
  • the acceleration component along the slope caused by ground friction and gradient will affect the driving of the vehicle and change the speed of the vehicle.
  • the ground deceleration a r (that is, the deceleration caused by rolling friction) can be calculated based on the current ground adhesion coefficient and the current vehicle mass;
  • the ramp deceleration a g can be calculated by the following formula (3):
  • g is the acceleration due to gravity
  • is the current slope.
  • S304 Calculate the electric brake exit speed according to the electric brake torque unloading time, the braking demand deceleration, the ground deceleration, and the gradient deceleration.
  • the entire unloading process of the electric braking torque can be approximated as a constant deceleration process with constant deceleration plus a constant deceleration process with constant deceleration (Mainly the ramp and resistance process).
  • the ramp deceleration process can be approximately equivalent to the average deceleration as The uniform deceleration process.
  • V edf k*
  • the mechanical braking torque can be applied at the same time as the electric braking torque is unloaded. At this time, the mechanical braking application speed is equal to the electric braking torque exit speed.
  • the method to calculate the exit speed of the electric brake is to calculate the applied speed of the mechanical brake.
  • the control vehicle starts to apply mechanical brake torque. As the braking continues, the vehicle speed continues to decrease. During this process, the vehicle speed is lower than the mechanical brake application speed, and the vehicle is continuously controlled Apply mechanical braking torque.
  • the mechanical brake application speed is calculated according to the vehicle’s required braking torque, braking demand deceleration and the current gradient.
  • the current vehicle speed is less than the mechanical brake application speed
  • the electric braking torque unloading rate can be obtained, and the vehicle can be controlled to apply mechanical braking torque according to the electric braking torque unloading rate; on the other hand, the current electric braking torque can be obtained, and the current electric braking torque can be obtained according to the unloading rate of the electric braking torque.
  • the braking torque and the current electric braking torque are required to control the vehicle to apply mechanical braking torque.
  • the BCU when the BCU controls the vehicle to apply mechanical braking torque, on the one hand, it can obtain the mechanical braking torque application rate according to the electric braking torque unloading rate.
  • the mechanical braking torque application rate can be made equal to the electric braking torque. Torque unloading rate.
  • the mechanical braking applied torque can be obtained according to the vehicle’s required braking torque and the current electric braking torque.
  • the current mechanical braking torque can be made the same as the sum of the current electric braking torque. In the braking process, the braking torque is always the braking torque required by the vehicle.
  • the BCU can also set the mechanical braking torque application rate to be less than the electric braking torque unloading rate according to needs, or set the sum of the current mechanical braking torque and the current electric braking torque to change according to a certain rule, such as first Gradually increase, then gradually decrease.
  • the mechanical braking torque is provided by a hydraulic braking system
  • controlling the vehicle to apply mechanical braking torque includes: acquiring second state information of the vehicle, where the second state information includes dynamic friction coefficient, brake disc Radius, caliper oil port area; according to the electric brake torque unloading rate, the first state information and the second state information, control the hydraulic brake system to apply hydraulic brake pressure, thereby applying mechanical brake torque; or, according to vehicle requirements
  • the braking torque, the current electric braking torque, the first state information and the second state information control the hydraulic braking system to apply hydraulic braking pressure, thereby applying mechanical braking torque.
  • the BCU in addition to acquiring the first state information of the vehicle like the TCU, the BCU also acquires the second state information of the vehicle, including the dynamic friction coefficient ⁇ d , the brake disc radius r d , and the clamp oil port area S. At the same time, the BCU can also obtain the mechanical braking torque T bm according to the electric braking torque unloading rate, where the mechanical braking torque T bm is equal to the product of the mechanical braking torque application rate and the duration of the mechanical braking torque application.
  • the torque application rate is equal to the electric braking torque unloading rate; alternatively, the mechanical braking torque T bm is obtained according to the vehicle's required braking torque and the current electric braking torque, where the mechanical braking torque T bm is equal to the vehicle's required braking torque minus Go to the current electric brake torque.
  • the hydraulic braking pressure applied by the hydraulic braking system can be calculated according to the mechanical braking torque T bm , the first state information and the second state information of the vehicle, and the mechanical braking torque can be applied according to the hydraulic braking pressure.
  • the calculation formula of hydraulic brake pressure is as follows:
  • judging whether to control the vehicle to unload electric braking torque and whether to control the vehicle to apply mechanical braking torque according to the current vehicle speed, the required braking torque of the vehicle, the braking demand deceleration and the current gradient also includes: When the current gradient is 0, when the current speed of the vehicle is 0, the vehicle is controlled to apply mechanical braking torque.
  • the electric brake can be used to achieve the purpose of vehicle braking to the maximum extent, and the application of mechanical brakes during the entire braking process can be reduced, thereby effectively avoiding mechanical device wear and mechanical impact.
  • the braking method of the vehicle includes the following steps:
  • S501 Acquire first state information of the vehicle, where the first state information includes vehicle mass and braking demand deceleration.
  • S502 Calculate the required braking torque of the vehicle according to the first state information, and control the vehicle to output electric braking torque according to the required braking torque of the vehicle.
  • S503 Acquire the current vehicle speed and the electric brake exit protection speed of the vehicle.
  • the electric brake exit protection speed V prot can be determined according to the motor torque control accuracy and the motor speed collection accuracy, such as a minimum value within a controllable range, and the specific value can be set according to the motor and the traction controller used by the vehicle.
  • S504 Calculate the electric brake withdrawal speed according to the required braking torque and braking demand deceleration of the vehicle, and control the vehicle to unload the electric brake when the current vehicle speed is less than the larger value of the electric brake withdrawal speed and the electric brake withdrawal protection speed. Braking torque.
  • the vehicle's specified impact rate ⁇ jerk must meet specific requirements, which results in the application and unloading of electric braking torque at a relatively small rate under normal conditions.
  • the drive motor will output a negative response. Torque can cause the vehicle to tow in the reverse direction. For this reason, the present disclosure sets the maximum exit speed of the electric brake for corresponding protection.
  • the braking method of a vehicle includes the following steps:
  • S602 Calculate the required braking torque of the vehicle according to the first state information, and control the vehicle to output electric braking torque according to the required braking torque of the vehicle.
  • S603 Acquire the current speed of the vehicle and the maximum speed at which the electric brake exits.
  • obtaining the maximum speed of electric brake withdrawal includes: obtaining the maximum allowable gradient, maximum allowable vehicle mass, and maximum allowable braking demand deceleration of the vehicle; according to the maximum allowable vehicle mass, maximum allowable braking demand deceleration and maximum allowable The slope calculates the maximum speed at which the electric brake exits.
  • calculating the maximum allowable speed of the electric brake exit according to the maximum allowable vehicle mass, the maximum allowable braking demand deceleration, and the maximum allowable slope may include: calculating the maximum allowable vehicle braking system based on the maximum allowable vehicle mass and the maximum allowable braking demand deceleration Dynamic torque; calculate the maximum speed of electric brake withdrawal according to the maximum allowable braking torque, maximum allowable braking demand deceleration and maximum allowable slope of the vehicle.
  • the maximum speed of electric brake withdrawal is calculated, including: obtaining the electric brake torque unloading rate and current ground adhesion coefficient; according to the maximum allowable vehicle Braking torque, electric braking torque unloading rate, maximum allowable braking demand deceleration, current ground adhesion coefficient and maximum allowable slope, calculate the maximum speed of electric braking exit.
  • the calculation of the maximum speed of the electric brake withdrawal includes: according to the maximum allowable vehicle Braking torque and electric braking torque unloading rate, calculating the maximum allowable unloading time of electric braking torque; calculating ground deceleration according to the current ground adhesion coefficient; calculating the maximum allowable slope deceleration according to the maximum allowable slope; according to the maximum allowable unloading of electric braking torque Time, maximum allowable braking demand deceleration, ground deceleration and maximum allowable slope deceleration, calculate the maximum speed of electric brake exit.
  • the maximum allowable vehicle mass, the maximum allowable braking demand deceleration, and the maximum allowable gradient of the vehicle can be substituted into formula (5), and the maximum electric brake exit speed v edmax can be calculated , that is, the electric brake torque is unloaded to meet the comfort Maximum speed required by sex.
  • the above-mentioned electric braking torque unloading rate Ku may be the maximum unloading rate of electric braking torque.
  • a comfortable electric braking torque unloading rate Kv may also be set, where , Kv is less than Ku.
  • the electric braking torque can be unloaded immediately at Kv.
  • the current vehicle speed is reduced to the maximum withdrawal speed of the electric brake, Vedmax, the electric braking torque is quickly unloaded with Ku, which can make the ride more comfortable.
  • the braking method of the vehicle may further include: obtaining the current gradient of the vehicle; calculating the electric brake exit speed according to the required braking torque, braking demand deceleration, and current gradient of the vehicle; if the electric brake exit speed is less than 0, control the vehicle to unload the electric brake torque when the current vehicle speed is lower than the maximum speed of electric brake exit.
  • the electric brake exit speed Vedf is less than 0 generally when the slope is very large. At this time, if the current vehicle speed is less than the electric brake exit protection speed Vprot, the electric brake torque is unloaded, because of the mechanical brake. When the vehicle speed reaches 0, the total braking torque will be insufficient and the vehicle will slip backward. If the current vehicle speed is less than the maximum exit speed Vedmax of the electric brake, the electric brake will be unloaded. Torque, because the unloading rate is the same, the electric brake torque unloading time is longer, which is convenient for the supplement of mechanical brake.
  • the braking method of the vehicle includes the following steps:
  • S702 Calculate the required braking torque of the vehicle according to the first state information, and control the vehicle to output electric braking torque according to the required braking torque of the vehicle.
  • S704 Calculate the electric brake exit speed according to the required braking torque and braking demand deceleration of the vehicle.
  • S705 Calculate the mechanical brake application speed according to the mechanical brake application delay time, the brake demand deceleration, and the electric brake exit speed.
  • the calculation of the mechanical brake application speed according to the mechanical brake application delay time, the brake demand deceleration and the electric brake exit speed includes: calculating the speed difference according to the mechanical brake application delay time and the brake demand deceleration Value; according to the speed difference and the electric brake exit speed, calculate the mechanical brake application speed.
  • the speed difference ⁇ v can be calculated by the following formula (9) :
  • the mechanical brake application speed V eha can be calculated by the following formula (10):
  • V eha V edf + ⁇ v (10)
  • S706 Determine whether to control the vehicle to unload the electric brake torque and whether to control the vehicle to apply the mechanical brake torque according to the current vehicle speed, the electric brake withdrawal speed and the mechanical brake application speed.
  • the vehicle when the current vehicle speed is less than the electric brake withdrawal speed, the vehicle is controlled to unload the electric braking torque, and when the current vehicle speed is less than the mechanical brake application speed, the vehicle is controlled to apply the mechanical braking torque.
  • the vehicle when the current vehicle speed is less than the mechanical brake application speed, the vehicle is controlled to apply the mechanical braking torque.
  • the vehicle control method further includes the following steps:
  • S802 Calculate the required braking torque of the vehicle according to the first state information, and control the vehicle to output electric braking torque according to the required braking torque of the vehicle.
  • S803 Acquire the current vehicle speed, the electric brake exit protection speed, the mechanical brake application delay time, and the electric brake exit speed of the vehicle.
  • S804 Calculate the mechanical brake application speed according to the mechanical brake application delay time, the brake demand deceleration, and the electric brake exit speed.
  • S805 Calculate the mechanical brake application protection speed according to the mechanical brake application delay time, the brake demand deceleration and the electric brake exit protection speed.
  • the calculation of the mechanical brake application protection speed includes: calculating according to the mechanical brake application delay time and the braking demand deceleration, Speed difference; according to the speed difference and the speed at which the electric brake exits the protection, calculate the protection speed of the mechanical brake.
  • the mechanical brake application protection speed V ehp can be calculated by the following formula (11):
  • V ehp V prot + ⁇ v (11)
  • the vehicle when the current vehicle speed is less than the larger of the electric brake withdrawal speed and the electric brake withdrawal protection speed, the vehicle is controlled to unload the electric brake torque, and when the current vehicle speed is lower than the mechanical brake application speed and the mechanical brake When the larger value of the protection speed is automatically applied, the vehicle is controlled to apply mechanical braking torque.
  • the connection between the unloading of electric braking torque and the application of mechanical braking torque can be better realized, so as to better ensure the rapid response of the vehicle demand and the braking effect of the vehicle.
  • the vehicle control method further includes: acquiring the current gradient of the vehicle; according to the current vehicle speed, current gradient, electric brake exit speed, mechanical brake application speed, electric brake exit protection speed, and mechanical brake application protection Speed, determine whether to control the vehicle to unload electric braking torque, and whether to control the vehicle to apply mechanical braking torque.
  • the current vehicle speed current gradient, electric brake withdrawal speed, mechanical brake application speed, electric brake withdrawal protection speed and mechanical brake application protection speed, determine whether to control the vehicle to unload the electric brake torque and whether to control the vehicle to apply Mechanical braking torque, including: obtaining the unloading rate of electric braking torque; if the current gradient is not 0, when the current vehicle speed is less than the larger value of the electric braking exit speed and the electric braking exit protection speed, the electric braking Torque unloading rate to unload the electric brake torque; and when the current vehicle speed is less than the greater of the mechanical brake application speed and the mechanical brake application protection speed, control the vehicle to apply the mechanical brake torque according to the electric brake torque unloading rate; or , Obtain the current electric braking torque, and control the vehicle to apply mechanical braking torque according to the vehicle's required braking torque and the current electric braking torque.
  • it is determined whether to control the vehicle to unload the electric brake torque according to the current vehicle speed, current gradient, electric brake exit speed, mechanical brake application speed, electric brake exit protection speed, and mechanical brake application protection speed, and Whether to control the vehicle to apply mechanical braking torque can also include: if the current gradient is 0, when the current vehicle speed of the vehicle is 0, control the vehicle to apply mechanical braking torque; and if the current gradient is not 0, control the electric brake The sum of torque and mechanical braking torque is equal to the braking torque required by the vehicle.
  • the braking method of a vehicle includes the following steps:
  • S901 Periodically acquire first state information of the vehicle, where the first state information includes vehicle mass and braking demand deceleration.
  • S902 Calculate the required braking torque of the vehicle in the current cycle according to the first state information of the current cycle.
  • S903 Perform filtering processing on the required braking torque of the vehicle in the current cycle to obtain a filter value of the required braking torque of the vehicle in the current cycle.
  • S904 Control the vehicle to output an electric braking torque according to the required braking torque filter value of the vehicle in the current cycle.
  • filtering the required braking torque of the vehicle in this cycle to obtain the filtering value of the required braking torque of the vehicle in this cycle includes: obtaining the filtering of the required braking torque of the vehicle in the previous cycle or multiple cycles Value; According to the required braking torque of the vehicle in this cycle and the filter value of the required braking torque of the vehicle in the previous cycle or multiple cycles, the filter value of the required braking torque of the vehicle in this cycle is calculated.
  • the calculation of the filter value of the required braking torque of the vehicle in this cycle may include: Perform arithmetic filtering, square filtering, geometric filtering, or reconciliation filtering on the required braking torque of the vehicle in this cycle and the filtering value of the required braking torque of the vehicle in the previous cycle or multiple cycles to obtain the required braking torque of the vehicle in this cycle Filter value.
  • the filter value of the braking torque required by the vehicle in the current cycle can be calculated by any of the following formulas:
  • T bf[N] T b[N] * ⁇ +T bf[N-1] *(1- ⁇ ) (12-1)
  • is the filter coefficient
  • T b[N] is the required braking torque of the vehicle in this period
  • T bf[N] is the filter value of the required braking torque of the vehicle in this period
  • T bf[N-1] is the previous
  • the filter value of the braking torque required by the vehicle for one cycle formula (12-1) is the formula when arithmetic filtering is used, formula (12-2) is the formula when square filtering is used, and formula (12-3) is the geometric filter When the formula is used, the formula (12-4) is the formula when the harmonic filtering is adopted.
  • the filter value of the braking torque required by the vehicle in this cycle can also be calculated by any of the following formulas:
  • T bf[N] T b[N] * ⁇ 1 +T bf[N-1] * ⁇ 2 +...+T bf[N-M] * ⁇ M+1 (12-5)
  • ⁇ 1 , ⁇ 2 ,..., ⁇ M+1 are filter coefficients
  • ⁇ 1 + ⁇ 2 +...+ ⁇ M+1 1
  • T bf[N-M] is the first M Periodic vehicle braking torque filter value
  • formula (12-5) is the formula when using arithmetic filtering
  • formula (12-6) is the formula when using square filtering
  • formula (12-7) is when using geometric filtering
  • Formula (12-8) is the formula when harmonic filtering is used.
  • the vehicle is controlled to perform electric braking according to the filter value of the required braking torque of the vehicle in this cycle, which can make the actual motor output braking torque change smoothly and improve the comfort of the whole vehicle.
  • the braking method of a vehicle further includes: obtaining the current speed of the vehicle; according to the current speed, the required braking torque of the vehicle in this cycle, the filter value of the required braking torque of the vehicle in this cycle, and the braking demand in this cycle Deceleration to determine whether to control the vehicle to unload the electric braking torque.
  • the electric brake exit speed of the current cycle can be calculated according to the required braking torque of the vehicle in the current cycle, the filter value of the required brake torque of the vehicle in the current cycle, and the braking demand deceleration of the current cycle.
  • the vehicle speed is lower than the electric brake exit speed of this cycle, control the vehicle to unload the electric brake torque.
  • the electric brake exit speed of this cycle is calculated, including: obtaining electric braking torque Unloading rate and current ground adhesion coefficient; according to the required braking torque of the vehicle in this period, the filter value of the required braking torque of the vehicle in this period, the electric braking torque unloading rate, the braking demand deceleration of this period and the current ground adhesion The coefficient is used to calculate the exit speed of the electric brake in this cycle.
  • the value of the filter coefficient ⁇ is different, the electric brake torque filter value obtained by filtering is different, and the torque filter delay time is also different, and the change curve of the electric brake torque during unloading is also different, as shown in Figure 10.
  • the exit speed of the electric brake can be obtained as:
  • the TCU and BCU determine whether the vehicle is in the service brake state; if the vehicle is in the service brake state, the TCU monitors the state of the drive motor and the vehicle's allowable feedback state, and if there is no abnormality, it will be based on the required braking torque of the vehicle Give priority to the electric braking torque. During the electric braking process, the BCU monitors the electric braking torque fed back by the TCU and the required braking torque of the vehicle to determine whether mechanical braking torque needs to be applied.
  • the TCU and BCU monitor the vehicle speed and vehicle status information, and determine whether the vehicle speed is Reach the speed at which the electric braking torque is unloaded, and/or whether the vehicle speed reaches the speed at which the mechanical braking torque is applied, and perform corresponding control according to the judgment result.
  • the speed of unloading the electric brake torque can be selected according to the demand from one of the electric brake withdrawal speed, the electric brake withdrawal protection speed, and the electric brake withdrawal maximum speed.
  • the speed of applying the mechanical brake torque can be the mechanical brake application speed. , One of the protection speeds applied by the mechanical brake.
  • V edf is greater than the electric brake exit protection speed V prof , if V edf > V prof , when the current vehicle speed decelerates to V edf , the vehicle is controlled to unload the electric braking torque at the speed K u until electric braking torque is 0; if V edf ⁇ V prof, when the current vehicle speed to V prof, electrical braking torque control vehicle unloading a rate K u, until the electrical braking torque of zero.
  • the braking method of the vehicle further includes the following steps:
  • S1401 Acquire first state information of the vehicle, where the first state information includes vehicle mass and braking demand deceleration.
  • S1402 Calculate the required braking torque of the vehicle according to the first state information, and control the drive motor of the vehicle to output electric braking torque according to the required braking torque of the vehicle.
  • the drive motor is an AC motor, such as a permanent magnet synchronous motor.
  • the drive motor is controlled to lock, including: when the current vehicle speed drops to 0, the power supply voltage of the drive motor is adjusted to make The stator of the drive motor generates a constant magnetic field, so that the rotor of the drive motor is locked and locked.
  • the drive motor of the vehicle when the drive motor of the vehicle is controlled to output electric braking torque according to the required braking torque of the vehicle, the drive motor is subjected to closed-loop speed control.
  • the closed-loop control of the rotation speed of the drive motor includes: periodically detecting the rotation speed (including the size and direction of the rotation speed) of the rotor of the drive motor, and adjusting the size and direction of the constant magnetic field generated by the stator according to the rotation speed of the rotor. Lock the rotor of the drive motor.
  • the rotation speed of the drive motor can be used as feedback to control the drive motor so that the vehicle speed is reduced to zero for a short period of time; when the vehicle speed is reduced to zero,
  • the power supply voltage of the drive motor can be adjusted.
  • DC power can be supplied to the drive motor to form a constant magnetic field in the motor stator.
  • the constant magnetic field interacts with the magnetic field formed by the permanent magnets of the rotor, and the guide bar in the rotor cuts the constant magnetic field to produce Induced current, the rotor is subjected to electromagnetic force in a constant magnetic field, which forces the rotor speed to gradually decrease.
  • the rotor speed drops to zero, the rotor no longer cuts the magnetic field, so that the drive motor is locked and can ensure that the drive motor is short. It is locked within time (for example, 2-10s).
  • the drive motor is locked for a short time.
  • the vehicle speed is very low even if it is not 0, and the lock of the drive motor will not cause significant impact.
  • mechanical control is applied. The vehicle can be parked reliably by moving.
  • the drive motor is controlled by a two-level three-phase inverter circuit.
  • the two-level three-phase inverter circuit outputs a three-phase inverter with variable frequency and amplitude. Phase AC voltage to the drive motor.
  • the two-level three-phase inverter circuit is composed of six switching tubes, and all of the six switching tubes may be IGBTs (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor).
  • the motor controller can control the on and off of six IGBT tubes to generate a three-phase AC voltage with variable frequency and amplitude to supply the drive motor, and use the braking torque Carry out the closed-loop speed control of the driving motor until the speed of the driving motor decreases to zero, that is, the vehicle speed decreases to zero.
  • Za, Zb, and Zc can be equivalent to the star-connected three-phase stator windings of the drive motor, and the six switching tubes are respectively denoted as the first switching tube VT1 and the second switching tube.
  • the adjustment of the power supply voltage of the driving motor includes the following control cycle in turn:
  • the five switching tubes VT5 and the sixth switching tube VT6 are turned on, and the second switching tube VT2, the third switching tube VT3 and the fourth switching tube VT4 are controlled to be turned off; the third switching tube VT3, the fourth switching tube VT4 and the fifth switch are controlled
  • the tube VT5 is turned on, and the first switching tube VT1, the second switching tube VT2 and the sixth switching tube VT6 are controlled to be turned off.
  • the three switching tubes VT3 and the fourth switching tube VT4 are turned on, controlling the first switching tube VT1, the fifth switching tube VT5 and the sixth switching tube VT6 to turn off; controlling the fourth switching tube VT4, the fifth switching tube VT5 and the sixth switch
  • the tube VT6 is turned on, and the first switching tube VT1, the second switching tube VT2 and the third switching tube VT3 are controlled to be turned off.
  • the motor controller can perform cyclic control as shown in Table 1 on the six switch tubes (IGBT) VT1-VT6.
  • the two-level three-phase inverter circuit can be controlled to periodically perform the control in Table 1, and supply the generated voltage to the drive motor to form a constant magnetic field in the drive motor stator, which is connected to the permanent magnet of the rotor.
  • the formed magnetic field interacts with each other to force the rotor speed to decrease. When the rotor speed drops to zero, the rotor no longer cuts the magnetic field, so that the drive motor is locked.
  • the vehicle when the drive motor is locked, the vehicle is controlled to apply mechanical braking torque.
  • the driver can apply a mechanical brake to the vehicle by pulling the handbrake (parking Braking) to achieve long-term parking of the vehicle.
  • the mechanical brake can be hydraulic brake or EPB (Electrical Park Brake, electronic parking brake). At this time, the mechanical brake is only a parking function and will not cause wear of the brake discs and brake pads.
  • Fig. 16 is a structural block diagram of a vehicle braking device according to an embodiment of the present disclosure.
  • the braking device 100 of the vehicle includes: a first acquisition module 110, a first calculation module 120, a control module 130, a second acquisition module 140, and a second calculation module 150.
  • the first obtaining module 110 is used to obtain first state information of the vehicle, where the first state information includes vehicle mass and braking demand deceleration; the first calculation module 120 is used to calculate the vehicle’s required state information according to the first state information. Dynamic torque; the control module 130 is used to control the vehicle's electric braking torque according to the required braking torque of the vehicle; the second acquisition module 140 is used to obtain the current vehicle speed and the electric brake exit protection speed of the vehicle; the second calculation module 150 is used to The electric brake exit speed is calculated according to the braking torque and braking demand deceleration required by the vehicle. Wherein, the control module 130 is also used to control the vehicle to unload the electric brake torque when the current vehicle speed is less than the larger value of the electric brake withdrawal speed and the electric brake withdrawal protection speed.
  • the second acquisition module 140 is also used to acquire the current gradient of the vehicle, the electric braking torque unloading rate, and the current ground adhesion coefficient.
  • the second calculation module 150 is also used to calculate the electric brake exit speed according to the required braking torque of the vehicle, the electric braking torque unloading rate, the braking demand deceleration, the current ground adhesion coefficient and the current slope.
  • the second calculation module 150 calculates the electric brake exit speed according to the required braking torque of the vehicle, the electric braking torque unloading rate, the braking demand deceleration, the current ground adhesion coefficient and the current slope. Used for: Calculate the electric braking torque unloading time according to the braking torque required by the vehicle and the electric braking torque unloading rate; calculate the ground deceleration according to the current ground adhesion coefficient; calculate the slope deceleration according to the current gradient; unload according to the electric braking torque Time, braking demand deceleration, ground deceleration and slope deceleration, and calculate the electric brake exit speed.
  • the control module 130 determines whether to control the vehicle to unload the electric braking torque and whether to control the vehicle to apply mechanical braking torque according to the current vehicle speed, the required braking torque of the vehicle, the braking demand deceleration, and the current slope. , Specifically used to: If the current gradient is not 0, calculate the mechanical brake application speed according to the vehicle’s required braking torque, braking demand deceleration and the current gradient, and control the vehicle when the current vehicle speed is less than the mechanical brake application speed Apply mechanical braking torque.
  • control module 130 is further configured to control the vehicle to apply mechanical braking torque when the current vehicle speed of the vehicle is 0.
  • the braking device of the vehicle can improve the accuracy of the braking control of the vehicle, and eliminate the risk of backward sliding of the vehicle or the risk of stalling of the drive motor of the vehicle.
  • the present disclosure also proposes a vehicle.
  • the vehicle 1000 includes the vehicle braking device 100 of the above-mentioned embodiment.
  • the vehicle of the embodiment of the present disclosure adopts the above-mentioned vehicle braking device, which can improve the accuracy of vehicle braking control and enhance the passenger's riding experience.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium can even be paper or other suitable media on which the program can be printed, because it can be done, for example, by optically scanning the paper or other media, and then editing, interpreting, or other suitable media if necessary.
  • the program is processed in a way to obtain the program electronically and then stored in the computer memory.
  • each part of the present disclosure can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented by hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic circuits, application-specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present disclosure, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed e.g., it may be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meaning of the above-mentioned terms in the present disclosure can be understood according to specific circumstances.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may be that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种车辆(1000)及其制动方法、装置(100)。其中,方法包括以下步骤:获取车辆(1000)的第一状态信息,其中,第一状态信息包括车辆质量和制动需求减速度;根据第一状态信息计算车辆(1000)所需制动扭矩,并根据车辆(1000)所需制动扭矩控制车辆(1000)输出电制动扭矩;获取车辆(1000)的当前车速和电制动退出保护速度;根据车辆(1000)所需制动扭矩和制动需求减速度计算电制动退出速度,并在当前车速小于电制动退出速度和电制动退出保护速度中的较大值时,控制车辆(1000)卸载电制动扭矩。

Description

车辆及其制动方法、装置
相关申请的交叉引用
本公开要求于2019年08月30日提交的申请号为201910817889.5,名称为“车辆及其制动方法、装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,尤其涉及一种车辆及其制动方法、装置。
背景技术
随着科技的发展,车辆已逐渐成为人们生活的一部分,人们对其安全性的要求越来越高。为保证车辆行驶的安全性,要求车辆能够及时、准确的提供所需的制动扭矩。因此,如何对车辆进行有效的制动控制,很有研究意义。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开提出了一种车辆的制动方法、装置,以提高车辆制动控制的精准度,消除车辆的后溜风险或车辆驱动电机的堵转风险。
为达上述目的,本公开第一方面实施例提出了一种车辆的制动方法,包括以下步骤:获取车辆的第一状态信息,其中,所述第一状态信息包括车辆质量和制动需求减速度;根据所述第一状态信息计算车辆所需制动扭矩,并根据所述车辆所需制动扭矩控制所述车辆输出电制动扭矩;获取所述车辆的当前车速和电制动退出保护速度;根据所述车辆所需制动扭矩和所述制动需求减速度计算电制动退出速度,并在所述当前车速小于所述电制动退出速度和所述电制动退出保护速度中的较大值时,控制所述车辆卸载所述电制动扭矩。
本公开实施例的车辆的制动方法,首先获取车辆的第一状态信息,并根据第一状态信息计算车辆所需制动扭矩,根据车辆所需制动扭矩控制车辆输出电制动扭矩,然后获取车辆的当前车速和电制动退出保护速度,根据车辆所需制动扭矩和制动需求减速度计算电制动退出速度,并在当前车速小于电制动退出速度和所述电制动退出保护速度中的较大值时,控制车辆卸载电制动扭矩。该车辆的制动方法,能够提高车辆制动控制的精准度,消除车辆的后溜风险或车辆驱动电机的堵转风险。
为达上述目的,本公开第二方面实施例提出了一种车辆的制动装置,包括:第一获取模块,用于获取车辆的第一状态信息,其中,所述第一状态信息包括车辆质量和制动需求减速度;第一计算模块,用于根据所述第一状态信息计算车辆所需制动扭矩;控制模块,用于根据所述车辆所需制动扭矩控制所述车辆输出电制动扭矩;第二获取模块,用于获取所述车辆的当前车速和电制动退出保护速度;第二计算模块,用于根据所述车辆所需制动 扭矩和所述制动需求减速度计算电制动退出速度;其中,所述控制模块还用于在所述当前车速小于所述电制动退出速度和所述电制动退出保护速度中的较大值时,控制所述车辆卸载所述电制动扭矩。
本公开实施例的车辆的制动装置,首先获取车辆的第一状态信息,并根据第一状态信息计算车辆所需制动扭矩,根据车辆所需制动扭矩控制车辆输出电制动扭矩,然后获取车辆的当前车速和电制动退出保护速度,根据车辆所需制动扭矩和制动需求减速度计算电制动退出速度,并在当前车速小于电制动退出速度和所述电制动退出保护速度中的较大值时,控制车辆卸载电制动扭矩。该车辆的制动装置,能够提高车辆制动控制的精准度,消除车辆的后溜风险或车辆驱动电机的堵转风险。
为了实现上述目的,本公开第三方面实施例提出了一种车辆,包括上述实施例的车辆的制动装置。
本公开实施例的车辆,通过上述的车辆的制动装置,能够提高车辆制动控制的精准度,消除车辆的后溜风险或车辆驱动电机的堵转风险。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开实施例的车辆的制动方法的流程图;
图2是本公开第一个具体实施例的车辆的制动方法的流程图;
图3是本公开一个示例的电制动退出速度的计算方法的流程图;
图4(a)是本公开一个示例的车辆制动过程的示意图;
图4(b)是本公开另一个示例的车辆制动过程的示意图;
图5是本公开第二个具体实施例的车辆的制动方法的流程图;
图6是本公开第三个具体实施例的车辆的制动方法的流程图;
图7是本公开第四个具体实施例的车辆的制动方法的流程图;
图8是本公开第五个具体实施例的车辆的制动方法的流程图;
图9是本公开第六个具体实施例的车辆的制动方法的流程图;
图10是本公开一个示例的电制动扭矩-时间曲线的示意图;
图11是本公开一个实施例的车辆的制动方法的总体流程图;
图12是本公开一个实施例的车辆的制动方法中电制动控制的流程图;
图13是本公开一个实施例的车辆的制动方法中机械制动控制的流程图;
图14是本公开第七个具体实施例的车辆的制动方法的流程图;
图15是本公开一个示例的电机驱动系统的电路示意图;
图16是本公开实施例的车辆的制动装置的结构框图;
图17是本公开实施例的车辆的结构框图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。下面参考附图描述本公开实施例的车辆及其制动方法、装置。
图1是本公开实施例的车辆的制动方法的流程图。如图1所示,该车辆的制动方法包括以下步骤:
S101,获取车辆的第一状态信息,其中,第一状态信息包括车辆质量和制动需求减速度。
在一些实施例中,车辆可以是轨道车辆,如城轨列车、地铁等,车辆的整个制动过程中电制动部分由TCU(Transmission Control Unit,牵引控制器)执行、机械制动部分由BCU(Brake Control Unit,制动控制单元)执行,在车辆开始进行制动时,两者均接收CCU(Central Control Unit,整车控制器)发送的车辆的第一状态信息,包括车辆质量和制动需求减速度。
S102,根据第一状态计算车辆所需制动扭矩,并根据车辆所需制动扭矩控制车辆输出电制动扭矩。
在一些实施例中,TCU根据接收到的车辆的第一状态信息,计算车辆在制动过程中所需制动扭矩,根据车辆所需制动扭矩控制车辆的驱动电机优先施加电制动,即控制驱动电机输出电制动扭矩,同时TCU反馈电制动状态,以便BCU实时对电制动状态进行监控。该过程中,仅通过驱动电机进行电制动,无机械制动参与。在一些实施例中,驱动电机为永磁同步电机。
S103,获取车辆的当前车速。
S104,根据车辆的当前车速判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩。
在一些实施例中,TCU生成制动请求后,通过控制车辆的电机输出电制动扭矩来降低车速,以对车辆进行电制动。并且,在车辆制动过程中TCU和BCU实时采集车辆的当前车速,TCU将采集到的车速与计算出的电制动退出速度做比较,以判断是否退出电制动,即开始卸载电制动扭矩;BCU将采集到的车速与计算出机械制动施加速度做比较,以判断是否开始施加机械制动扭矩。当TCU确定车速降低至电制动退出速度时,开始卸载电制动扭矩以退出电制动,以及当BCU确定车速降低至机械制动施加速度时,控制车辆施加机械制 动扭矩。由此,可实现对卸载电制动扭矩和施加机械制动扭矩的精确控制,有助于提高车辆制动时乘车的舒适性。
在一些实施例中,车辆制动时,可通过最大限度的利用电制动实现车辆制动的目的,减少整个制动过程中机械制动施加,从而可有效避免机械装置磨损及机械冲击;并可在电制动扭矩输出不能满足车辆的制动需求时,及时施加机械制动扭矩,可使车辆在制动过程中更加平稳,提高了用户乘车的舒适性,同时可避免车辆在零速后溜等风险。
图2是本公开一个具体实施例的车辆的制动方法的流程图。如图2所示,车辆的制动方法包括以下步骤:
S201,获取车辆的第一状态信息,其中,第一状态信息包括车辆质量和制动需求减速度。
S202,根据第一状态信息计算车辆所需制动扭矩,并根据车辆所需制动扭矩控制车辆输出电制动扭矩。
S203,获取车辆的当前车速和当前坡度。
在一些实施例中,TCU可以通过车速传感器获取车辆的当前车速,可通过车载导航设备或者行驶路线上的应答器设备,获取车辆的当前坡度。
S204,根据车辆的当前车速、车辆所需制动扭矩、制动需求减速度和当前坡度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩。
在一些实施例中,车辆的当前坡度为0时,制动过程可仅由电制动参与,当电制动扭矩完全卸载且车速为0时,开始施加机械制动扭矩以实现驻车;车辆的当前坡度不为0时,可在开始卸载电制动扭矩的同时施加机械制动扭矩,并在电制动扭矩完全卸载且车速为0时,完成机械制动扭矩的完全施加,实现驻车。由此,提高了车辆制动控制的精准度。
作为一个示例,TCU从CCU获取车辆的第一状态信息后,可通过如下公式(1)计算车辆所需制动扭矩T b
Figure PCTCN2020111835-appb-000001
其中,α为制动需求减速度,k为等效减速度系数,M st为整车静态质量,M rot为单车旋转质量,n为车辆编组,R为车轮半径,K n为车辆减速器的效率,K r为减速器的减速比。在该示例中,车辆质量可为(M st+n*M rot)。
在一些实施例中,根据当前车速、车辆所需制动扭矩、制动需求减速度和当前坡度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩,包括:根据车辆所需制动扭矩、制动需求减速度和当前坡度计算电制动退出速度,并在当前车速小于电制动退出速度时,控制车辆卸载电制动扭矩。
在一些实施例中,在计算得到电制动退出速度后,当车辆的当前车速减速至电制动退出速度时,可控制车辆开始卸载电制动扭矩。虽然电制动扭矩开始卸载,但电制动仍然存在,车速继续减少,在此过程中,车速小于电制动退出速度,可持续对电制动扭矩进行卸载。
作为一个示例,根据车辆所需制动扭矩、制动需求减速度和当前坡度计算电制动退出速度,包括:获取电制动扭矩卸载速率和当前地面附着系数;根据车辆所需制动扭矩、电制动扭矩卸载速率、制动需求减速度、当前地面附着系数和当前坡度,计算电制动退出速度。
在该示例中,如图3所示,电制动退出速度的计算步骤如下:
S301,根据车辆所需制动扭矩和电制动扭矩卸载速率,计算电制动扭矩卸载时间。
在一些实施例中,以电制动扭矩卸载完成,车速刚好为0为设计目标,计算电制动退出速度。此时,电制动扭矩开始卸载,车速为电制动退出速度,可通过下式(2)计算电制动扭矩卸载时间:
t u=T b/K u           (2)
其中,t u为电制动扭矩卸载时间,K u为电制动扭矩卸载速率。
S302,根据当前地面附着系数计算地面减速度。
S303,根据当前坡度计算坡度减速度。
在一些实施例中,在车辆制动过程中,地面摩擦力和坡度造成的沿坡面方向的加速度分量,包括地面减速度和坡度减速度,会影响车辆的行驶,改变车辆的车速。其中,地面减速度a r(即滚动摩擦力造成的减速度)可根据当前地面附着系数,以及当前的车辆质量计算得到;坡道减速度a g可通过下述公式(3)计算得到:
a g=g*θ       (3)
其中,g为重力加速度,θ为当前坡度。当坡度较小时,可以近似认为θ=sinθ=tanθ,因此坡道减速度a g可以近似等于g*θ。
S304,根据电制动扭矩卸载时间、制动需求减速度、地面减速度和坡度减速度,计算电制动退出速度。
在该示例中,由于电制动扭矩按照固定速率K u进行卸载,故电制动扭矩的整个卸载过程可近似为一减速度变化恒定的匀变减速过程加上一减速度恒定的匀减速过程(主要为坡道及阻力过程)。
在一些实施例中,当θ为零时,车辆制动过程中,车辆电制动与机械制动的状态如图4 (a)所示,电制动扭矩卸载完成后,车辆的车速为0,控制车辆施加机械制动扭矩。此时,电制动退出速度V edf可通过如下公式(4)计算:
Figure PCTCN2020111835-appb-000002
其中,匀变减速过程可近似等效为平均减速度为
Figure PCTCN2020111835-appb-000003
的匀减速过程。
当θ不为零时,车辆制动过程中,车辆电制动与机械制动的状态如图4(b)所示,若对电制动扭矩进行卸载,则需机械制动同步施加,以确保电制动扭矩和机械制动扭矩的和恒定,即在制动过程中,制动扭矩始终为车辆所需制动扭矩,此时电制动扭矩卸载过程可认为减速度不变,电制动退出速度V edf可通过如下公式(5)计算:
V edf=k*|α|*t+(a r+a g)*t    (5)
将上述计算出的电制动扭矩卸载时间t u(此时t=t u)、车辆所需制动扭矩T b、地面减速度a r代入公式(4)中可得:
Figure PCTCN2020111835-appb-000004
将上述计算出的电制动扭矩卸载时间t u(此时t=t u)、车辆所需制动扭矩T b、地面减速度a r、坡道减速度a g代入公式(5)中可得:
Figure PCTCN2020111835-appb-000005
在一些实施例中,根据当前车速、车辆所需制动扭矩、制动需求减速度和当前坡度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩,包括:如果当前坡度不为0,则根据车辆所需制动扭矩、制动需求减速度和当前坡度计算机械制动施加速度,并在当前车速小于机械制动施加速度时,控制车辆施加机械制动扭矩。
举例而言,如果当前坡度不为0,则可在开始卸载电制动扭矩的同时,施加机械制动扭矩,此时机械制动施加速度等于电制动扭矩退出速度,可根据上述当前坡度不为0时计算电制动退出速度的方法,计算机械制动施加速度。进而,在当前车速减速至机械制动施加速度时,控制车辆开始施加机械制动扭矩,随着制动的持续进行,车速继续减小,该过程中车速小于机械制动施加速度,持续控制车辆施加机械制动扭矩。
作为一个示例,当前坡度不为0,根据车辆所需制动扭矩、制动需求减速度和当前坡 度计算得到机械制动施加速度,在当前车速小于机械制动施加速度时,若控制车辆施加机械制动扭矩,则一方面,可获取电制动扭矩卸载速率,并根据电制动扭矩卸载速率,控制车辆施加机械制动扭矩;另一方面,可获取当前电制动扭矩,并根据车辆所需制动扭矩和当前电制动扭矩,控制车辆施加机械制动扭矩。
在一些实施例中,BCU在控制车辆施加机械制动扭矩时,一方面,可根据电制动扭矩卸载速率得到机械制动扭矩施加速率,例如,可令机械制动扭矩施加速率等于电制动扭矩卸载速率。另一方面,可根据车辆所需制动扭矩和当前电制动扭矩获得机械制动施加扭矩,例如,令当前的机械制动扭矩与当前的电制动扭矩的加和相同,由此可保证在制动过程中,制动扭矩始终为车辆所需制动扭矩。
当然,BCU也可根据需要设定机械制动扭矩施加速率小于电制动扭矩卸载速率,或,设定当前的机械制动扭矩与当前的电制动扭矩的加和按照一定规律变化,如先逐渐增加,后逐渐减小。
在一些实施例中,机械制动扭矩由液压制动系统提供,其中,控制车辆施加机械制动扭矩,包括:获取车辆的第二状态信息,其中,第二状态信息包括动摩擦系数、制动盘半径、夹钳油口面积;根据电制动扭矩卸载速率、第一状态信息和第二状态信息,控制液压制动系统施加液压制动压力,从而施加机械制动扭矩;或,根据车辆所需制动扭矩、当前电制动扭矩、第一状态信息和第二状态信息,控制液压制动系统施加液压制动压力,从而施加机械制动扭矩。
在一些实施例中,BCU除了同TCU一样获取车辆的第一状态信息外,还获取车辆的第二状态信息,包括动摩擦系数μ d、制动盘半径r d、夹钳油口面积S等。同时,BCU还可根据电制动扭矩卸载速率获得机械制动扭矩T bm,其中,机械制动扭矩T bm等于机械制动扭矩施加速率与施加机械制动扭矩的持续时间的乘积,机械制动扭矩施加速率等于电制动扭矩卸载速率;或者,根据车辆所需制动扭矩、当前电制动扭矩获得机械制动扭矩T bm,其中,机械制动扭矩T bm等于车辆所需制动扭矩减去当前电制动扭矩。进而可根据机械制动扭矩T bm、车辆的第一状态信息和第二状态信息计算液压制动系统施加的液压制动压力,进而根据该液压制动压力施加机械制动扭矩。其中,液压制动压力的计算公式如下:
Figure PCTCN2020111835-appb-000006
在一些实施例中,根据当前车速、车辆所需制动扭矩、制动需求减速度和当前坡度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩,还包括:如果当前坡度为0,则在车辆的当前车速为0时,控制车辆施加机械制动扭矩。由此,可达到 最大限度的利用电制动实现车辆制动的目的,减少了整个制动过程中机械制动的施加,从而可有效避免机械装置磨损及机械冲击。
在一些实施例中,根据当前车速、车辆所需制动扭矩、制动需求减速度和当前坡度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩,包括:如果当前坡度不为0,则控制电制动扭矩与机械制动扭矩的和等于车辆所需制动扭矩。由此,可使车辆在制动过程中更加平稳,提高了用户乘车的舒适性。
分析上述公式(5)或公式(7)可知,当坡道减速度a g值为一较大负值时,即车辆处于较大的坡道时,电制动退出速度V edf可能非常小、甚至存在为负值的可能性,但由于电制动扭矩的卸载速率有限,且正在前进的车辆车速为一非负值,有可能会出现车辆减速到0时,电制动扭矩仍未卸载完成,甚至电制动扭矩不会触发卸载的情况,此时车辆存在溜车风险或电机存在堵转风险。为规避此风险,本公开设置了电制动退出保护速度V prot。在本公开的一些实施例中,如图5所示,该车辆的制动方法包括以下步骤:
S501,获取车辆的第一状态信息,其中,第一状态信息包括车辆质量和制动需求减速度。
S502,根据第一状态信息计算车辆所需制动扭矩,并根据车辆所需制动扭矩控制车辆输出电制动扭矩。
S503,获取车辆的当前车速和电制动退出保护速度。
其中,电制动退出保护速度V prot可根据电机扭矩控制精度及电机转速采集精度确定,如可取一可控范围内的最小值,具体值可根据车辆使用电机和牵引控制器进行设定。
S504,根据车辆所需制动扭矩和制动需求减速度计算电制动退出速度,并在当前车速小于电制动退出速度和电制动退出保护速度中的较大值时,控制车辆卸载电制动扭矩。
其中,电制动退出速度的计算公式可参见式(6)、式(7),此处不做赘述。
由此,在进行电制动扭矩卸载时,通过设置电制动扭矩退出保护速度,能够提高车辆制动控制的精准度,消除车辆的后溜风险或车辆驱动电机的堵转风险。
按照舒适性要求,车辆规定冲击率λ jerk需满足特定要求,这就导致正常状态下电制动扭矩施加和卸载均需按照较小的速率进行。当前车速达到电制动退出速度前将制动需求减速度取消时,或者,电制动扭矩卸载速度较慢,出现车速到0但电制动扭矩未卸载完全的情况时,驱动电机会输出反向扭矩可能导致车辆反向牵引。为此,本公开设置了电制动退出最大速度进行相应防护。在一些实施例中,如图6所示,车辆的制动方法,包括以下步骤:
S601,获取车辆的第一状态信息,其中,第一状态信息包括车辆质量和制动需求减速 度。
S602,根据第一状态信息计算车辆所需制动扭矩,并根据车辆所需制动扭矩控制车辆输出电制动扭矩。
S603,获取车辆的当前车速和电制动退出最大速度。
S604,如果车辆的制动需求减速度变为0,在当前车速小于电制动退出最大速度时,控制车辆卸载电制动扭矩。
作为一个示例,获取电制动退出最大速度,包括:获取车辆的最大允许坡度、最大允许车辆质量和最大允许制动需求减速度;根据最大允许车辆质量、最大允许制动需求减速度和最大允许坡度计算电制动退出最大速度。
作为一个示例,根据最大允许车辆质量、最大允许制动需求减速度和最大允许坡度计算电制动退出最大速度,可包括:根据最大允许车辆质量和最大允许制动需求减速度计算车辆最大允许制动扭矩;根据车辆最大允许制动扭矩、最大允许制动需求减速度和最大允许坡度计算电制动退出最大速度。
作为一个示例,根据车辆最大允许制动扭矩、最大允许制动需求减速度和最大允许坡度计算电制动退出最大速度,包括:获取电制动扭矩卸载速率和当前地面附着系数;根据车辆最大允许制动扭矩、电制动扭矩卸载速率、最大允许制动需求减速度、当前地面附着系数和最大允许坡度,计算电制动退出最大速度。
作为一个示例,根据车辆最大允许制动扭矩、电制动扭矩卸载速率、最大允许制动需求减速度、当前地面附着系数和最大允许坡度,计算电制动退出最大速度,包括:根据车辆最大允许制动扭矩和电制动扭矩卸载速率,计算电制动扭矩最大允许卸载时间;根据当前地面附着系数计算地面减速度;根据最大允许坡度计算最大允许坡度减速度;根据电制动扭矩最大允许卸载时间、最大允许制动需求减速度、地面减速度和最大允许坡度减速度,计算电制动退出最大速度。
举例而言,可将车辆的最大允许车辆质量、最大允许制动需求减速度、最大允许坡度代入公式(5)中,计算得到电制动退出最大速度v edmax,即电制动扭矩卸载满足舒适性要求的最大速度。
在该实施例中,上述的电制动扭矩卸载速率Ku可以是电制动扭矩的最大卸载速率,为保证乘车的舒适性,还可以再设定一个电制动扭矩舒适卸载速率Kv,其中,Kv小于Ku。当取消制动需求减速度后,可立即以Kv卸载电制动扭矩,当前车速降低至电制动最大退出速度Vedmax时,以Ku快速卸载电制动扭矩,由此可使得乘车更舒适。
作为一个示例,车辆的制动方法,还可包括:获取车辆的当前坡度;根据车辆所需制动扭矩、制动需求减速度和当前坡度计算电制动退出速度;如果电制动退出速度小于0,则在当前车速小于电制动退出最大速度时,控制车辆卸载电制动扭矩。
需要说明的是,电制动退出速度Vedf小于0一般是在坡度很大时才会出现,此时如果在当前车速小于电制动退出保护速度Vprot时,卸载电制动扭矩,则由于机械制动的延时,有可能使机械制动补充不及时,导致车速到0时总制动扭矩不足,车辆发生后溜;而如果在当前车速小于电制动最大退出速度Vedmax时,卸载电制动扭矩,则由于卸载速率一样,使得电制动扭矩卸载时间更长,便于机械制动的补充。
由此,在进行电制动扭矩卸载时,通过设置电制动扭矩退出最大速度,能够提高车辆制动控制的精准度,同时能够消除车辆驱动电机出现反向牵引的风险。
由于机械制动扭矩施加有延时(如延迟时间为Δt1),故BCU开始施加机械制动扭矩时的车速,相较于电制动扭矩开始卸载时的车速大,即两者存在速度差值,记为Δv。为保证车辆需求实时得以响应,在本公开的一些实施例中,如图7所示,车辆的制动方法包括以下步骤:
S701,获取车辆的第一状态信息,其中,第一状态信息包括车辆质量和制动需求减速度。
S702,根据第一状态信息计算车辆所需制动扭矩,并根据车辆所需制动扭矩控制车辆输出电制动扭矩。
S703,获取车辆的当前车速和机械制动施加延迟时间。
S704,根据车辆所需制动扭矩和制动需求减速度计算电制动退出速度。
其中,电制动退出速度的计算公式可参见式(6)、式(7),此处不做赘述。
S705,根据机械制动施加延迟时间、制动需求减速度和电制动退出速度,计算机械制动施加速度。
作为一个示例,根据机械制动施加延迟时间、制动需求减速度和电制动退出速度,计算机械制动施加速度,包括:根据机械制动施加延迟时间和制动需求减速度,计算速度差值;根据速度差值和电制动退出速度,计算机械制动施加速度。
在一些实施例中,在机械制动施加延迟时间Δt1内,由于电制动扭矩未卸载,制动减速度恒定,车辆处于匀减速状态,此时可通过如下公式(9)计算速度差值Δv:
Δv=3.6*Δt1*(k*|α|+a r+a g)      (9)
可通过如下公式(10)计算机械制动施加速度V eha
V eha=V edf+Δv    (10)
S706,根据当前车速、电制动退出速度和机械制动施加速度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩。
在一些实施例中,在当前车速小于电制动退出速度时,控制车辆卸载电制动扭矩,以 及在当前车速小于机械制动施加速度时,控制车辆施加机械制动扭矩。由此,能够实现电制动扭矩卸载和机械制动扭矩施加的衔接,从而保证了车辆需求的快速响应,保证了车辆的制动效果。
在一些实施例中,如图8所示,车辆的控制方法还包括以下步骤:
S801,获取车辆的第一状态信息,其中,第一状态信息包括车辆质量和制动需求减速度。
S802,根据第一状态信息计算车辆所需制动扭矩,并根据车辆所需制动扭矩控制车辆输出电制动扭矩。
S803,获取车辆的当前车速、电制动退出保护速度、机械制动施加延迟时间和电制动退出速度。
其中,电制动退出速度的计算公式可参见式(6)、式(7),此处不做赘述。
S804,根据机械制动施加延迟时间、制动需求减速度和电制动退出速度,计算机械制动施加速度。
其中,机械制动施加速度的计算公式可参见式(10),此处不做赘述。
S805,根据机械制动施加延迟时间、制动需求减速度和电制动退出保护速度,计算机械制动施加保护速度。
作为一个示例,根据机械制动施加延迟时间、制动需求减速度和电制动退出保护速度,计算机械制动施加保护速度,包括:根据机械制动施加延迟时间和制动需求减速度,计算速度差值;根据速度差值和电制动退出保护速度,计算机械制动施加保护速度。
在一些实施例中,在通过上式(9)计算出速度差值Δv后,可通过如下公式(11)计算机械制动施加保护速度V ehp
V ehp=V prot+Δv    (11)
S806,根据当前车速、电制动退出速度、机械制动施加速度、电制动退出保护速度和机械制动施加保护速度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩。
在一些实施例中,在当前车速小于电制动退出速度和电制动退出保护速度中的较大值时,控制车辆卸载电制动扭矩,以及在当前车速小于机械制动施加速度和机械制动施加保护速度中的较大值时,控制车辆施加机械制动扭矩。由此,能够更好的实现电制动扭矩卸载和机械制动扭矩施加的衔接,从而更好的保证了车辆需求的快速响应和车辆的制动效果。
在该实施例中,车辆的控制方法还包括:获取车辆的当前坡度;根据当前车速、当前坡度、电制动退出速度、机械制动施加速度、电制动退出保护速度和机械制动施加保护速度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩。
其中,根据当前车速、当前坡度、电制动退出速度、机械制动施加速度、电制动退出保护速度和机械制动施加保护速度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩,包括:获取电制动扭矩卸载速率;如果当前坡度不为0,则在当前车速小于电制动退出速度和电制动退出保护速度中的较大值时,根据电制动扭矩卸载速率卸载电制动扭矩;以及在当前车速小于机械制动施加速度和机械制动施加保护速度中的较大值时,根据电制动扭矩卸载速率,控制车辆施加机械制动扭矩;或,获取当前电制动扭矩,并根据车辆所需制动扭矩和当前电制动扭矩,控制车辆施加机械制动扭矩。
在一些实施例中,根据当前车速、当前坡度、电制动退出速度、机械制动施加速度、电制动退出保护速度和机械制动施加保护速度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩,还可包括:如果当前坡度为0,则在车辆的当前车速为0时,控制车辆施加机械制动扭矩;以及如果当前坡度不为0,则控制电制动扭矩与机械制动扭矩的和等于车辆所需制动扭矩。
为防止电制动扭矩卸载时可能出现的扭矩突变导致整车舒适性受损,可对计算出的车辆所需制动扭矩进行滤波处理。在本公开的一些实施例中,如图9所示,车辆的制动方法包括以下步骤:
S901,周期性地获取车辆的第一状态信息,其中,第一状态信息包括车辆质量和制动需求减速度。
S902,根据本周期的第一状态信息计算本周期的车辆所需制动扭矩。
S903,对本周期的车辆所需制动扭矩进行滤波处理,以得到本周期的车辆所需制动扭矩滤波值。
S904,根据本周期的车辆所需制动扭矩滤波值控制车辆输出电制动扭矩。
作为一个示例,对本周期的车辆所需制动扭矩进行滤波处理,以得到本周期的车辆所需制动扭矩滤波值,包括:获取前一个周期或前多个周期的车辆所需制动扭矩滤波值;根据本周期的车辆所需制动扭矩和前一个周期或前多个周期的车辆所需制动扭矩滤波值,计算本周期的车辆所需制动扭矩滤波值。
在该示例中,根据本周期的车辆所需制动扭矩和前一个周期或前多个周期的车辆所需制动扭矩滤波值,计算本周期的车辆所需制动扭矩滤波值,可包括:对本周期的车辆所需制动扭矩和前一个周期或前多个周期的车辆所需制动扭矩滤波值进行算术滤波或平方滤波或几何滤波或调和滤波,得到本周期的车辆所需制动扭矩滤波值。
在一些实施例中,可通过如下任一公式进行计算本周期的车辆所需制动扭矩滤波值:
T bf[N]=T b[N]*β+T bf[N-1]*(1-β)        (12-1)
Figure PCTCN2020111835-appb-000007
Figure PCTCN2020111835-appb-000008
Figure PCTCN2020111835-appb-000009
其中,β为滤波系数,T b[N]为本周期的车辆所需制动扭矩,T bf[N]为本周期的车辆所需制动扭矩滤波值,T bf[N﹣1]为前一个周期的车辆所需制动扭矩滤波值,式(12-1)为采用算术滤波时的公式,式(12-2)为采用平方滤波时的公式,式(12-3)为采用几何滤波时的公式,式(12-4)为采用调和滤波时的公式。
还可通过如下任一公式进行计算本周期的车辆所需制动扭矩滤波值:
T bf[N]=T b[N]1+T bf[N﹣1]2+...+T bf[N﹣M]M+1       (12-5)
Figure PCTCN2020111835-appb-000010
Figure PCTCN2020111835-appb-000011
Figure PCTCN2020111835-appb-000012
其中,β 12,...,β M+1均为滤波系数,且β 12+...+β M+1=1,T bf[N﹣M]为前M个周期的车辆所需制动扭矩滤波值,式(12-5)为采用算术滤波时的公式,式(12-6)为采用平方滤波时的公式,式(12-7)为采用几何滤波时的公式,式(12-8)为采用调和滤波时的公式。
由此,根据本周期的车辆所需制动扭矩滤波值控制车辆进行电制动,可使得实际的电机输出制动扭矩平滑变化,改善整车舒适性。
作为一个示例,车辆的制动方法还包括:获取车辆的当前车速;根据当前车速、本周期的车辆所需制动扭矩、本周期的车辆所需制动扭矩滤波值和本周期的制动需求减速度,判断是否控制车辆卸载所述电制动扭矩。
在该示例中,可根据本周期的车辆所需制动扭矩、本周期的车辆所需制动扭矩滤波值、本周期的制动需求减速度计算本周期的电制动退出速度,并在当前车速小于本周期的电制动退出速度时,控制车辆卸载电制动扭矩。
其中,根据本周期的车辆所需制动扭矩、本周期的车辆所需制动扭矩滤波值、本周期的制动需求减速度计算本周期的电制动退出速度,包括:获取电制动扭矩卸载速率和当前地面附着系数;根据本周期的车辆所需制动扭矩、本周期的车辆所需制动扭矩滤波值、电制动扭矩卸载速率、本周期的制动需求减速度和当前地面附着系数,计算本周期的电制动退出速度。
在一些实施例中,获取本周期的扭矩滤波延迟时间Δt;根据本周期的车辆所需制动扭 矩滤波值和电制动扭矩卸载速率,计算本周期的电制动扭矩卸载时间,为t u=T bf/K u;根据当前地面附着系数计算地面减速度;根据本周期的电制动扭矩卸载时间、本周期的制动需求减速度、地面减速度和本周期的扭矩滤波延迟时间,计算本周期的电制动退出速度。其中,滤波系数β的取值不同时,滤波得到的电制动扭矩滤波值不同,且扭矩滤波延迟时间也不同,电制动扭矩在卸载时的变化曲线也不同,如图10所示。
具体而言,结合上式(4)、(5)可得到电制动退出速度为:
Figure PCTCN2020111835-appb-000013
Figure PCTCN2020111835-appb-000014
为便于理解,下面结合图11-图13通过一个具体实施例描述上述的车辆的制动方法:
如图11所示,TCU和BCU判断车辆是否处于行车制动状态;如果车辆处于行车制动状态,则TCU监控驱动电机状态和车辆允许的回馈状态,若无异常则根据车辆所需制动扭矩优先施加电制动扭矩。在电制动过程中,BCU监控TCU反馈的电制动扭矩和车辆所需制动扭矩,判断是否需要施加机械制动扭矩,同时,TCU和BCU监控车速和车辆的状态信息,并判断车速是否达到卸载电制动扭矩的速度,和/或,车速是否达到施加机械制动扭矩的速度,并按照判断结果进行相应控制。其中,卸载电制动扭矩的速度可以根据需求选择电制动退出速度、电制动退出保护速度、电制动退出最大速度中的一个,施加机械制动扭矩的速度可以是机械制动施加速度、机械制动施加保护速度中的一个。
如图12所示,当车辆处于电制动状态时,判断车辆的制动需求减速度α是否为0,如果车辆的制动需求减速度α为0,则在当前车速小于电制动退出最大速度V edmax时,控制车辆按照速率K u进行电制动扭矩卸载,直至电制动扭矩为0。如果车辆的制动需求减速度α不为0,则判断计算出的电制动退出速度V edf是否小于或等于0,如果是,则在当前车速减速至V edmax时,控制车辆按照速率K u进行电制动扭矩卸载,直至电制动扭矩为0。如果不是,则进一步判断V edf是否大于电制动退出保护速度V prof,如果V edf>V prof,则在当前车速减速至V edf时,控制车辆按照速率K u进行电制动扭矩卸载,直至电制动扭矩为0;如果V edf≤V prof,则在当前车速减速至V prof时,控制车辆按照速率K u进行电制动扭矩卸载,直至电制动扭矩为0。
如图13所示,在电制动过程中,如果当前坡度不为0,且V edf>V prof,则在当前车速小 于机械制动施加速度V eha时,控制车辆施加机械制动扭矩;如果当前坡度不为0,且V edf≤V prof,则在当前车速小于机械制动施加保护速度V ehp时,控制车辆施加机械制动扭矩。另外,在电制动过程中,如果当前坡度为0,则在电制动扭矩完全卸载(即车辆的当前车速为0,有驻车需求)时,控制车辆施加机械制动扭矩。
另外,为了减少制动过程中对制动盘的磨损,在一些实施例中,如图14所示,车辆的制动方法还包括以下步骤:
S1401,获取车辆的第一状态信息,其中,第一状态信息包括车辆质量和制动需求减速度。
S1402,根据第一状态信息计算车辆所需制动扭矩,并根据车辆所需制动扭矩控制车辆的驱动电机输出电制动扭矩。
S1403,获取车辆的当前车速。
S1404,当当前车速降低至零后,控制驱动电机锁止。
作为一个示例,驱动电机为交流电机,如永磁同步电机,其中,当当前车速降低至零后,控制驱动电机锁止,包括:当当前车速降低至0后,调整驱动电机的供电电压,使驱动电机的定子产生恒定磁场,以使驱动电机的转子堵转锁止。
在一些实施例中,如图4(a)所示,在车速降低至0之前,仅控制车辆进行电制动,当车速降低至0时,可调整驱动电机的供电电压,以使驱动电机堵转,并保证驱动电机在短时间(例如2-10s)内处于锁止状态。
作为一个示例,在根据车辆所需制动扭矩控制车辆的驱动电机输出电制动扭矩时,对驱动电机进行转速闭环控制。
其中,对驱动电机进行转速闭环控制,包括:周期性地检测所述驱动电机的转子的转速(包括转速大小和方向),并根据转子的转速,调整定子产生的恒定磁场的大小和方向,以使驱动电机的转子堵转锁止。
具体而言,在驱动电机输出电制动扭矩的过程中,可将驱动电机的转速作为反馈,对驱动电机进行控制,以使车速降低至零,并维持短时间;在车速降低至零时,可调整驱动电机的供电电压,如可向驱动电机供应直流电,进而在电机定子内形成恒定磁场,该恒定磁场与转子永磁体形成的磁场相互作用,转子中的导条便切割该恒定磁场而产生感应电流,转子便在恒定磁场中受到电磁力的作用,进而迫使转子转速逐渐降低,当转子转速降至零时,转子不再切割磁场,从而实现驱动电机堵转,且可保证驱动电机在短时间(例如2-10s)内处于锁止状态。
也就是说,在车速降至0时,通过向驱动电机供应直流电来实现电机的堵转锁止,进而完成车辆制动时的全电制动,即车辆制动过程中的制动力仅有电制动提供。由此,既能够减少制动过程中对制动盘的磨损,又能够保证准确平稳地进行电制动,且能量消耗较小。
需要说明的是,由于无法保证绝对的电制动扭矩卸载到0时,车速或者驱动电机的转速也刚好为0,此时车辆有可能后溜。因此,本公开将驱动电机进行短时间的锁止控制,驱动电机锁止时,车速即使不为0,也很低,而且驱动电机锁止也不会造成明显的冲击,此时再施加机械制动,便能可靠地进行驻车。
作为一个示例,驱动电机通过两电平三相逆变电路进行控制,其中,在控制驱动电机输出电制动扭矩的过程中,两电平三相逆变电路输出频率和幅值可变的三相交流电压给驱动电机。
作为一个示例,如图15所示,两电平三相逆变电路由六个开关管组成,其中,六个开关管均可以是IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)。具体而言,在控制驱动电机输出电制动扭矩时,可通过电机控制器控制六个IGBT管的通断以产生频率和幅值可变的三相交流电压供给驱动电机,并利用制动扭矩对驱动电机进行转速闭环控制,直至驱动电机的转速降低至零,即车速降低至0。
在本公开的一个示例中,参照图15,Za、Zb、Zc可等效为驱动电机的星型连接的三相定子绕组,六个开关管分别记为第一开关管VT1、第二开关管VT2、第三开关管VT3、第四开关管VT4、第五开关管VT5和第六开关管VT6,第一开关管VT1与第四开关管VT4串联组成A相桥臂,第三开关管VT3与第六开关管VT6串联组成B相桥臂,第五开关管VT5与第二开关管VT2串联组成C相桥臂,且第一开关管VT1、第三开关管VT3和第五开关管VT5组成上桥臂,第四开关管VT4、第六开关管VT6和第二开关管VT2组成下桥臂,其中,调整驱动电机的供电电压,包括依次循环进行如下控制:
控制第一开关管VT1、第二开关管和VT2第三开关管VT3导通,控制第四开关管VT4、第五开关管VT5和第六开关管VT6关断;控制第一开关管VT1、第五开关管VT5和第六开关管VT6导通,控制第二开关管VT2、第三开关管VT3和第四开关管VT4关断;控制第三开关管VT3、第四开关管VT4和第五开关管VT5导通,控制第一开关管VT1、第二开关管VT2和第六开关管VT6关断。控制第一开关管VT1、第二开关管VT2和第六开关管VT6导通,控制第三开关管VT3、第四开关管VT4和第五开关管VT5关断;控制第二开关管VT2、第三开关管VT3和第四开关管VT4导通,控制第一开关管VT1、第五开关管VT5和第六开关管VT6关断;控制第四开关管VT4、第五开关管VT5和第六开关管VT6导通,控制第一开关管VT1、第二开关管VT2和第三开关管VT3关断。
也就是说,电机控制器可对六个开关管(IGBT)VT1-VT6进行如表1所示的循环控制。
表1
VT1 VT2 VT3 VT4 VT5 VT6
导通 导通 导通 关断 关断 关断
导通 关断 关断 关断 导通 导通
关断 关断 导通 导通 导通 关断
导通 导通 关断 关断 关断 导通
关断 导通 导通 导通 关断 关断
关断 关断 关断 导通 导通 导通
具体而言,可控制两电平三相逆变电路周期性地执行表1中的控制,并将产生的电压供给驱动电机,以在驱动电机定子内形成恒定磁场,该恒定磁场与转子永磁体形成的磁场相互作用,进而迫使转子转速降低,当转子转速降至零时,转子不再切割磁场,从而实现驱动电机堵转。
作为一个示例,当驱动电机锁止后,控制车辆施加机械制动扭矩。
在一些实施例中,当当前车速降低至零,且驱动电机锁止后,为了防止车辆前滑或者后溜,参照图4(a),驾驶员可通过拉动手刹给车辆施加机械制动(驻车制动),以实现车辆的长时间停车。其中,机械制动可以是液压制动或EPB(Electrical Park Brake,电子驻车制动),此时,机械制动仅为驻车功能,不会导致制动盘及制动闸片的磨损。
图16是本公开实施例的车辆的制动装置的结构框图。
如图16所示,该车辆的制动装置100包括:第一获取模块110、第一计算模块120、控制模块130、第二获取模块140和第二计算模块150。
其中,第一获取模块110用于获取车辆的第一状态信息,其中,第一状态信息包括车辆质量和制动需求减速度;第一计算模块120用于根据第一状态信息计算车辆所需制动扭矩;控制模块130用于根据车辆所需制动扭矩控制车辆输出电制动扭矩;第二获取模块140用于获车辆的当前车速和电制动退出保护速度;第二计算模块150用于根据车辆所需制动扭矩和制动需求减速度计算电制动退出速度。其中,控制模块130还用于在当前车速小于电制动退出速度和电制动退出保护速度中的较大值时,控制车辆卸载电制动扭矩。
在一些实施例中,第二获取模块140还用于获取车辆的当前坡度、电制动扭矩卸载速率和当前地面附着系数。第二计算模块150还用于根据车辆所需制动扭矩、电制动扭矩卸载速率、制动需求减速度、当前地面附着系数和当前坡度,计算电制动退出速度。
在一些实施例中,第二计算模块150在根据车辆所需制动扭矩、电制动扭矩卸载速率、制动需求减速度、当前地面附着系数和当前坡度,计算电制动退出速度时,具体用于:根据车辆所需制动扭矩和电制动扭矩卸载速率,计算电制动扭矩卸载时间;根据当前地面附着系数计算地面减速度;根据当前坡度计算坡度减速度;根据电制动扭矩卸载时间、制动需求减速度、地面减速度和坡度减速度,计算电制动退出速度。
在一些实施例中,控制模块130在根据当前车速、车辆所需制动扭矩、制动需求减速度和当前坡度,判断是否控制车辆卸载电制动扭矩,以及是否控制车辆施加机械制动扭矩时,具体用于:如果当前坡度不为0,则根据车辆所需制动扭矩、制动需求减速度和当前坡度计算机械制动施加速度,并在当前车速小于机械制动施加速度时,控制车辆施加机械制动扭矩。
在一些实施例中,如果所述当前坡度为0,则控制模块130还用于在车辆的当前车速为0时,控制车辆施加机械制动扭矩。
需要说明的是,上述对车辆的制动方法具体实施方式的描述,同样适用于本公开实施例的车辆的制动装置,为减少冗余,此处不做赘述。
本公开实施例的车辆的制动装置,能够提高车辆制动控制的精准度,消除车辆的后溜风险或车辆驱动电机的堵转风险。
本公开还提出了一种车辆,如图17所示,该车辆1000包括上述实施例的车辆的制动装置100。
本公开实施例的车辆,采用上述的车辆的制动装置,能够提高车辆制动控制的精准度,提升乘客的乘车体验。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种车辆的制动方法,包括以下步骤:
    获取车辆的第一状态信息,其中,所述第一状态信息包括车辆质量和制动需求减速度;
    根据所述第一状态信息计算车辆所需制动扭矩,并根据所述车辆所需制动扭矩控制所述车辆输出电制动扭矩;
    获取所述车辆的当前车速和电制动退出保护速度;
    根据所述车辆所需制动扭矩和所述制动需求减速度计算电制动退出速度,并在所述当前车速小于所述电制动退出速度和所述电制动退出保护速度中的较大值时,控制所述车辆卸载所述电制动扭矩。
  2. 如权利要求1所述的车辆的制动方法,其中,所述根据所述车辆所需制动扭矩和所述制动需求减速度计算电制动退出速度,包括:
    获取所述车辆的当前坡度、电制动扭矩卸载速率和当前地面附着系数;
    根据所述车辆所需制动扭矩、所述电制动扭矩卸载速率、所述制动需求减速度、所述当前地面附着系数和所述当前坡度,计算所述电制动退出速度。
  3. 如权利要求2所述的车辆的制动方法,其中,所述根据所述车辆所需制动扭矩、所述电制动扭矩卸载速率、所述制动需求减速度、所述当前地面附着系数和所述当前坡度,计算所述电制动退出速度,包括:
    根据所述车辆所需制动扭矩和所述电制动扭矩卸载速率,计算电制动扭矩卸载时间;
    根据所述当前地面附着系数计算地面减速度;
    根据所述当前坡度计算坡度减速度;
    根据所述电制动扭矩卸载时间、所述制动需求减速度、所述地面减速度和所述坡度减速度,计算所述电制动退出速度。
  4. 如权利要求2-3所述的车辆的制动方法,其中,所述方法还包括:
    根据所述当前车速、所述车辆所需制动扭矩、所述制动需求减速度和所述当前坡度,判断是否控制所述车辆卸载所述电制动扭矩,以及是否控制所述车辆施加机械制动扭矩。
  5. 如权利要求4所述的车辆的制动方法,其中,所述根据所述当前车速、所述车辆所需制动扭矩、所述制动需求减速度和所述当前坡度,判断是否控制所述车辆卸载所述电制动扭矩,以及是否控制所述车辆施加机械制动扭矩,包括:
    如果所述当前坡度不为0,则根据所述车辆所需制动扭矩、所述制动需求减速度和所述当前坡度计算机械制动施加速度,并在所述当前车速小于所述机械制动施加速度时,控制所述车辆施加所述机械制动扭矩。
  6. 如权利要求5所述的车辆的制动方法,其中,所述控制所述车辆施加所述机械制动扭矩,包括:
    获取电制动扭矩卸载速率,并根据所述电制动扭矩卸载速率,控制所述车辆施加所述机械制动扭矩;或,获取当前电制动扭矩,并根据所述车辆所需制动扭矩和所述当前电制动扭矩,控制所述车辆施加所述机械制动扭矩。
  7. 如权利要求5-6所述的车辆的制动方法,其中,所述机械制动扭矩由液压制动系统提供,其中,所述控制所述车辆施加所述机械制动扭矩,包括:
    获取所述车辆的第二状态信息,其中,所述第二状态信息包括动摩擦系数、制动盘半径、夹钳油口面积;
    根据所述电制动扭矩卸载速率、所述第一状态信息和所述第二状态信息,控制所述液压制动系统施加所述机械制动扭矩;或,根据所述车辆所需制动扭矩、所述当前电制动扭矩、所述第一状态信息和所述第二状态信息,控制所述液压制动系统施加所述机械制动扭矩。
  8. 如权利要求5-7所述的车辆的制动方法,其中,所述根据所述当前车速、所述车辆所需制动扭矩、所述制动需求减速度和所述当前坡度,判断是否控制所述车辆卸载所述电制动扭矩,以及是否控制所述车辆施加机械制动扭矩,还包括:
    如果所述当前坡度为0,则在所述车辆的当前车速为0时,控制所述车辆施加所述机械制动扭矩。
  9. 如权利要求1-8所述的车辆的制动方法,其中,所述根据所述当前车速、所述车辆所需制动扭矩、所述制动需求减速度和所述当前坡度,判断是否控制所述车辆卸载所述电制动扭矩,以及是否控制所述车辆施加机械制动扭矩,包括:
    如果所述当前坡度不为0,则控制所述电制动扭矩与所述机械制动扭矩的和等于所述车辆所需制动扭矩。
  10. 一种车辆的制动装置,包括:
    第一获取模块,用于获取车辆的第一状态信息,其中,所述第一状态信息包括车辆质量和制动需求减速度;
    第一计算模块,用于根据所述第一状态信息计算车辆所需制动扭矩;
    控制模块,用于根据所述车辆所需制动扭矩控制所述车辆输出电制动扭矩;
    第二获取模块,用于获取所述车辆的当前车速和电制动退出保护速度;
    第二计算模块,用于根据所述车辆所需制动扭矩和所述制动需求减速度计算电制动退出速度;
    其中,所述控制模块还用于在所述当前车速小于所述电制动退出速度和所述电制动退出保护速度中的较大值时,控制所述车辆卸载所述电制动扭矩。
  11. 一种车辆,包括如权利要求10所述的车辆的制动装置。
PCT/CN2020/111835 2019-08-30 2020-08-27 车辆及其制动方法、装置 WO2021037161A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112022003431A BR112022003431A2 (pt) 2019-08-30 2020-08-27 Veículo e método e dispositivo de freamento para o mesmo
US17/639,258 US11752987B2 (en) 2019-08-30 2020-08-27 Vehicle and braking method and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910817889.5A CN112440953B (zh) 2019-08-30 2019-08-30 车辆及其制动方法、装置
CN201910817889.5 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021037161A1 true WO2021037161A1 (zh) 2021-03-04

Family

ID=74683584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111835 WO2021037161A1 (zh) 2019-08-30 2020-08-27 车辆及其制动方法、装置

Country Status (4)

Country Link
US (1) US11752987B2 (zh)
CN (1) CN112440953B (zh)
BR (1) BR112022003431A2 (zh)
WO (1) WO2021037161A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101032960A (zh) * 2007-01-22 2007-09-12 余晓鹏 电动驻车制动装置
JP4454259B2 (ja) * 2003-07-03 2010-04-21 株式会社トランストロン ブレーキ液圧保持装置
CN102050116A (zh) * 2010-12-17 2011-05-11 西安正昌电子有限责任公司 一种电子驻车制动方法
CN102431530A (zh) * 2011-10-28 2012-05-02 吉林大学 智能驻车制动及辅助起步控制方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159400A (ja) 1987-12-16 1989-06-22 Kawasaki Steel Corp 電気錫めっき装置
DE10148091A1 (de) * 2001-09-28 2003-04-17 Bayerische Motoren Werke Ag Verfahren zur Ermittlung der Masse eines Kraftfahrzeugs unter Berücksichtigung unterschiedlicher Fahrsituationen
EP2151363B1 (en) 2007-05-30 2011-08-17 Mitsubishi Electric Corporation Brake controller of electric vehicle
JP5180732B2 (ja) 2008-08-18 2013-04-10 株式会社日立製作所 制御装置を有する車両
BR112012016899A2 (pt) 2010-01-21 2018-06-05 Mitsubishi Electric Corp "dispositivo e método de controle de freio"
CN103359133B (zh) * 2013-07-19 2015-12-02 株洲南车时代电气股份有限公司 基于网络数据传输模式的电空混合制动控制方法及系统
JP6539455B2 (ja) * 2015-02-10 2019-07-03 ナブテスコ株式会社 ブレーキ制御装置およびブレーキ制御方法
WO2017134734A1 (ja) * 2016-02-02 2017-08-10 三菱電機株式会社 電気車のブレーキ制御装置
CN106828463B (zh) 2017-02-14 2020-08-25 中车株洲电力机车有限公司 一种轨道车辆及其控制系统
CN107351824B (zh) 2017-07-06 2020-01-24 中国铁路总公司 车辆滑行下的制动方法及系统
CN109572654B (zh) 2017-09-29 2021-08-10 株洲中车时代电气股份有限公司 一种基于牵引制动融合控制系统的冲击率控制方法
CN109664869A (zh) 2017-10-16 2019-04-23 株洲中车时代电气股份有限公司 一种车辆混合制动控制方法、装置、控制器及系统
CN107792039B (zh) 2017-10-25 2020-06-23 中车株洲电力机车有限公司 磁浮列车液压制动系统动力管理方法、系统和轨道车辆
CN109747665B (zh) 2017-11-03 2021-01-26 株洲中车时代电气股份有限公司 一种列车制动转牵引电空配合控制方法及系统
CN107901944B (zh) * 2017-11-03 2019-07-16 中车青岛四方机车车辆股份有限公司 列车电空转换方法及装置
CN110027590B (zh) * 2018-01-12 2020-05-26 株洲中车时代电气股份有限公司 一种列车制动消退过程牵引制动配合控制方法及系统
CN110077385B (zh) * 2018-01-25 2021-09-24 株洲中车时代电气股份有限公司 一种车辆制动控制方法
CN108859781B (zh) 2018-06-19 2021-06-15 南京中车浦镇海泰制动设备有限公司 轨道车辆制动减速度闭环控制装置及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454259B2 (ja) * 2003-07-03 2010-04-21 株式会社トランストロン ブレーキ液圧保持装置
CN101032960A (zh) * 2007-01-22 2007-09-12 余晓鹏 电动驻车制动装置
CN102050116A (zh) * 2010-12-17 2011-05-11 西安正昌电子有限责任公司 一种电子驻车制动方法
CN102431530A (zh) * 2011-10-28 2012-05-02 吉林大学 智能驻车制动及辅助起步控制方法

Also Published As

Publication number Publication date
US11752987B2 (en) 2023-09-12
CN112440953A (zh) 2021-03-05
CN112440953B (zh) 2022-04-15
US20220340108A1 (en) 2022-10-27
BR112022003431A2 (pt) 2022-05-24

Similar Documents

Publication Publication Date Title
US8073583B2 (en) Apparatus and method for controlling energy feedback for electric vehicle
WO2021037163A1 (zh) 车辆及其制动方法、装置
EP3330119B1 (en) Electric vehicle control device and electric vehicle control method
CN106080266B (zh) 一种轨道车辆的启动控制方法及装置
WO2017033753A1 (ja) 電動車両の制御方法、及び、制御装置
WO2020135340A1 (zh) 车辆及其制动方法和装置
JP6605031B2 (ja) 電気車両移動方向検出
WO2021037161A1 (zh) 车辆及其制动方法、装置
WO2021037162A1 (zh) 车辆及其制动方法、装置
WO2021037164A1 (zh) 车辆及其制动方法、装置
CN112440959B (zh) 车辆及其制动方法、装置
CN112440956B (zh) 车辆及其制动方法、装置
CN112440955B (zh) 车辆及其制动方法、装置
KR101146943B1 (ko) 전기 차량의 모터 구동 토크 제어 장치 및 그 방법
CN113460012B (zh) 车辆制动方法及装置、车辆控制方法、车辆
JP2000197203A (ja) 電気ブレーキの制御方法及びその装置
KR20140051681A (ko) 전후륜 구동력 분배 방법 및 장치
JP2024017465A (ja) 車両の制動制御方法
CN112793617A (zh) 电力机车的停车方法、装置及系统
CN116436372A (zh) 马达驱动系统
JP2019137249A (ja) 電動ブレーキ装置および電動ブレーキシステム
JP2007022421A (ja) 付随車ブレーキ受量器
JP2002369309A (ja) 電気車両システム
BR112016001113B1 (pt) Dispositivo de controle de frenagem regenerativa de veículo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022003431

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022003431

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220223

122 Ep: pct application non-entry in european phase

Ref document number: 20857525

Country of ref document: EP

Kind code of ref document: A1