WO2021037099A1 - 圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法 - Google Patents

圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法 Download PDF

Info

Publication number
WO2021037099A1
WO2021037099A1 PCT/CN2020/111578 CN2020111578W WO2021037099A1 WO 2021037099 A1 WO2021037099 A1 WO 2021037099A1 CN 2020111578 W CN2020111578 W CN 2020111578W WO 2021037099 A1 WO2021037099 A1 WO 2021037099A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
gear
disk
control mechanism
magnetic
Prior art date
Application number
PCT/CN2020/111578
Other languages
English (en)
French (fr)
Inventor
顾志鹏
李达
张意如
焦政
陈跃东
Original Assignee
东莞东阳光医疗智能器件研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910818521.0A external-priority patent/CN110420604A/zh
Priority claimed from CN201921450609.3U external-priority patent/CN210675123U/zh
Application filed by 东莞东阳光医疗智能器件研发有限公司 filed Critical 东莞东阳光医疗智能器件研发有限公司
Publication of WO2021037099A1 publication Critical patent/WO2021037099A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts

Definitions

  • the present invention relates to the technical field of medical detection equipment, in particular to a disk chip magnetic particle moving device, a detection device and a movement control method thereof.
  • Disc chips have the advantages of good integration performance and simple control, so they are widely used in the field of POCT, including biochemical, immunological and molecular diagnostics.
  • the disc chip can achieve high-throughput reaction and detection processes, further promoting its application in diagnostics and other fields.
  • reaction systems involve the use and manipulation of magnetic particles. The precise control of magnetic particles will directly affect the transfer efficiency and consistency of the magnetic particles, and then affect the accuracy of detection.
  • the purpose of the present invention is to provide a disk chip magnetic particle moving device, a detection device and a movement control method thereof, so as to solve the problem that the control accuracy of the magnetic particle movement in the prior art is low, and the magnetism of multiple reaction chambers cannot be realized.
  • the invention provides a disk chip magnetic particle moving device, including:
  • a centrifugal control mechanism wherein the disc chip is mounted on the centrifugal control mechanism so as to be able to rotate along its own central axis under the drive of the centrifugal control mechanism;
  • a radial control mechanism includes a drive assembly and at least one guide rail assembly; the guide track of the guide track assembly is arranged along the radial direction of the disc chip, and the drive assembly is drivingly connected to the guide track assembly ;
  • a magnetic member the magnetic member is installed on the guide rail assembly to reciprocate along the radial direction of the disk chip under the drive of the guide rail assembly;
  • the centrifugal control mechanism and the radial control mechanism are relatively fixed.
  • disc chips of the present invention include circular chips, as well as other chips with a geometrically symmetric center shape, as long as it is convenient for centrifugal operation.
  • the centrifugal control mechanism includes a first motor, a first rotating shaft and a chip mounting structure
  • the driving end of the first motor is drivingly connected to one end of the first rotating shaft, and the other end of the first rotating shaft is connected to the chip mounting structure; the disc chip is mounted on the chip mounting structure, and The first rotating shaft is arranged coaxially.
  • the chip mounting structure includes a mounting plate and a fixed shaft arranged along the central axis of the mounting plate, the mounting plate is in transmission connection with the first rotating shaft and the central axes of the two coincide with each other, the disc
  • the central shaft hole of the chip is sleeved and assembled with the fixed shaft;
  • the disk chip is positioned relative to the mounting disk.
  • At least one positioning pillar is provided on the mounting disk, and a positioning hole corresponding to the positioning pillar is provided on the disc chip;
  • the disk chip and the mounting disk are positioned relative to each other through the positioning column and the positioning hole.
  • the side wall of the fixed shaft is provided with at least one positioning protrusion
  • the inner wall of the central shaft hole is provided with a positioning groove corresponding to the positioning protrusion
  • the disk chip and the mounting disk are relatively positioned by the positioning protrusion and the positioning groove.
  • reaction chamber includes a first reaction cavity, a second reaction cavity, and a third reaction cavity that are arranged along the circumference of the disc chip;
  • the first reaction cavity and the second reaction cavity are in communication through a first transfer channel, and the second reaction cavity and the third reaction cavity are in communication through a second transfer channel;
  • the first reaction cavity, the second reaction cavity and the third reaction cavity are all provided with holes.
  • the guide rail assembly includes a guide rail and a sliding member; the sliding member is linearly slidably assembled with the guide rail, the magnetic member is mounted on the sliding member, and the driving assembly is drivingly connected with the sliding member.
  • the drive assembly includes a second motor, a first gear set and at least one rack; the drive end of the second motor is drivingly connected to the drive end of the first gear set, and the drive end of the first gear set The driven end is drivingly connected with the rack;
  • the rack is connected with the sliding member.
  • the first gear set includes a first driving gear, a first intermediate gear, a second intermediate gear, and at least one first driven gear; the first intermediate gear and the second intermediate gear rotate coaxially and synchronously Assembling, the highest point of the first intermediate gear is lower than the lowest point of the first driven gear;
  • the driving end of the second motor is drivingly connected to the first intermediate gear through the first driving gear, and the second intermediate gear is drivingly connected to the rack through the first driven gear.
  • the drive assembly includes a third motor, a second gear set and at least one connecting rod; the drive end of the third motor is drivingly connected to the drive end of the second gear set, and the second gear set The driven end is hingedly driven with the sliding member through the connecting rod.
  • the second gear set includes a second driving gear, a third intermediate gear, and a fourth intermediate gear; the third intermediate gear and the fourth intermediate gear are coaxially and synchronously rotated and assembled, and the third intermediate gear The highest point of is lower than the lowest point of the connecting rod;
  • the driving end of the third motor is drivingly connected with the third intermediate gear through the second driving gear, and the fourth intermediate gear is hingedly driven with the sliding member through the connecting rod.
  • the driving assembly includes a fourth motor, a third driving gear, a second driven gear having at least one guide hole, and a guide member that cooperates with the guide hole;
  • the driving end of the fourth motor is drivingly connected with the third driving gear, and the third driving gear meshes with the second driven gear;
  • the second driven gear is coaxially arranged with the disc chip ,
  • the guide hole is arc-shaped, and the distance from one end of the guide hole to the other end of the guide hole and the center of the second driven gear gradually decreases;
  • the guide member is connected with the sliding member and slidably fits along the track of the guide hole, the sliding member is driven by the guide member to reciprocate along the guide rail; the sliding member is provided with a support
  • the magnetic member is installed on the supporting member and located above the second driven gear.
  • the guide member includes a roller shaft and a roller mounted on the roller shaft; the roller shaft is mounted on the sliding member along the axial direction of the second driven gear, and the roller is connected to the roller shaft.
  • the guide hole rolling fit is
  • the support member passes through the guide hole.
  • the present invention also provides a detection device, including the disk chip magnetic particle moving device.
  • the present invention also provides a method for controlling the movement of high-flux magnetic particles of a disc chip. According to the device for moving the magnetic particles of the disc chip or according to the detection device, the steps are as follows:
  • the drive assembly is used to drive the guide rail assembly to move, so that the magnetic member is driven by the guide rail assembly to move along the radial direction of the disk chip; the magnetic member is driven by the magnetic force to be located in the reaction chamber The magnetic particles move synchronously in the inner cavity of the reaction chamber;
  • the centrifugal control mechanism is used to drive the disk chip to rotate on a fixed axis, and the magnetic member drives the magnetic particles to move synchronously along the circumferential direction of the disk chip in the inner cavity of the reaction chamber through magnetic force.
  • the radial control of the magnetic particles is realized by adopting a radial control mechanism composed of a guide rail assembly and a driving assembly.
  • the drive assembly is used to drive the linear movement of the guide rail assembly, and indirectly control the movement of the magnetic part along the radial direction of the disc chip through the linear control effect of the guide assembly.
  • This method can improve the movement of the magnetic part during the indirect control of the drive assembly. Accuracy, thereby improving the movement accuracy of magnetic particles.
  • the circumferential control of the magnetic particles is realized by a centrifugal control mechanism.
  • the centrifugal control mechanism can drive the disc chip to rotate on a fixed axis. When matched with the radial control mechanism, the magnetic can be controlled indirectly through the control of the magnetic parts.
  • the continuous circumferential and radial movement of the particles on the disc chip overcomes the difficulty in the prior art that the magnetic particles cannot be continuously moved in the circumferential and radial directions, and at the same time improves the accuracy of the movement of the magnetic particles. It is guaranteed and can realize synchronous and high-precision movement of magnetic particles in multiple reaction chambers.
  • Figure 1 is an assembly diagram of a mobile device provided by an embodiment of the present invention
  • Figure 2 is a transmission structure diagram of the mobile device shown in Figure 1;
  • Figure 3 is an assembly diagram of a mobile device provided by another embodiment of the present invention.
  • Fig. 4 is a transmission structure diagram of the mobile device shown in Fig. 3;
  • Figure 5 is an assembly diagram of a mobile device provided by another embodiment of the present invention.
  • Fig. 6 is a transmission structure diagram of the mobile device shown in Fig. 5;
  • Figure 7 is an assembly view of the guide shown in Figure 5;
  • Figure 8 is a structural diagram of a centrifugal control mechanism provided by an embodiment of the present invention.
  • Figure 9 is a perspective view of a puck chip provided by an embodiment of the present invention.
  • Fig. 10 is a plan view of a puck chip provided by an embodiment of the present invention.
  • the first motor 22. The first rotating shaft; 23. The chip mounting structure;
  • the present invention provides a disk chip high flux magnetic particle moving device, including: a disk chip 1 with at least one reaction chamber 12;
  • the centrifugal control mechanism 2, the disc chip 1 is mounted on the centrifugal control mechanism 2 so as to be able to rotate along its own central axis under the drive of the centrifugal control mechanism 2 on a fixed axis;
  • the radial control mechanism 3 includes a drive assembly 32 and at least one guide rail assembly 31; the guide track of the guide track assembly 31 is arranged along the radial direction of the disc chip 1, and the drive assembly 32 Drive connection with the guide rail assembly 31;
  • the magnetic member 11 is mounted on the guide rail assembly 31 to reciprocate along the radial direction of the disk chip 1 under the drive of the guide rail assembly 31;
  • the centrifugal control mechanism 2 and the radial control mechanism 3 are relatively fixed.
  • the disc chip 1 of the present invention includes a circular chip, as well as other chips with a geometrically symmetric center shape, as long as it is convenient for centrifugal operation.
  • the disc chip 1 is preferably a circular chip.
  • the centrifugal control mechanism 2 is used to control the circumferential movement of magnetic particles in the reaction chamber 12 of the disc chip 1
  • the radial control mechanism 3 is used to control the magnetic particles radially within the reaction chamber 12 of the disc chip 1. Movement, through the cooperation of the centrifugal control mechanism 2 and the radial control mechanism 3, the continuous displacement of the magnetic member 11 in the radial and circumferential directions of the disc chip 1 can be realized.
  • the magnetic particles can be driven by the magnetic force of the magnetic member 11.
  • the reaction chamber 12 moves radially and circumferentially. Therefore, in this control method, the movement accuracy of the magnetic particles depends on the movement accuracy of the magnetic member 11.
  • the drive assembly 32 and the guide rail assembly 31 cooperate with each other, and the drive assembly 32 drives the guide rail assembly 31 to move linearly, and is guided by the guide rail assembly 31 so that the magnetic part 11 can follow the radial direction of the disc chip 1.
  • the direction reciprocates, so that the magnetic force drives the magnetic particles to also reciprocate along the radial direction of the disk chip 1.
  • the centrifugal control mechanism 2 can drive the disc chip 1 to rotate along its own central axis.
  • the disc chip 1 rotates on a fixed axis, it will produce a relative displacement with the magnetic part 11 on the guide rail assembly 31, that is, the magnetic part 11 does not move and the disc chip 1 rotates, so that the magnetic part 11 can be moved along the circle relative to the disc chip 1.
  • the disk chip 1 moves in the circumferential direction, and the magnetic member 11 drives the magnetic particles in the reaction chamber 12 to also rotate along the circumferential direction of the disk chip 1 through magnetic force.
  • the circumferential movement accuracy of the magnetic member 11 and the magnetic particles is controlled indirectly. Therefore, the circumferential movement precision of the magnetic particles can be improved by controlling the circumferential rotation precision of the disc chip 1.
  • the moving device adopts the method of actively controlling the movement of the magnetic part 11 and indirectly controlling the movement of the magnetic particles by the magnetic part 11.
  • the control of the movement accuracy of the magnetic particles is transferred to the guide rail.
  • the linear movement accuracy of the component 31 or the circumferential rotation accuracy of the disc chip 1 is higher, and ensuring the linear movement accuracy of the guide rail assembly 31 or the circumferential rotation accuracy of the disc chip 1 greatly reduces technical difficulties.
  • the magnetic particles are controlled to move, they can move along the radial and circumferential directions of the disc chip 1 under the cooperation of the centrifugal control mechanism 2 and the radial control mechanism 3.
  • the radial and circumferential movement of the magnetic particles can be continuous, Crossing, the accuracy of movement can be effectively controlled.
  • the material of the disc chip 1 can be glass, silicon wafer or common polymer materials.
  • Polymer materials include polydimethylsiloxane (PDMS), polyurethane, epoxy resin, polymethylmethacrylate (PMMA), polycarbonate (PC), cycloolefin copolymer (COC), polystyrene ( PS), polyethylene (PE) and fluoroplastics, etc.
  • the material of the disc chip 1 using a polymer material can be one or a combination of several of the above materials.
  • the processing method of the disc chip 1 can be determined according to the material and structure, for example, one or more of different methods such as photolithography, numerical control, casting, injection molding, laser engraving, plasma etching, and wet etching can be selected.
  • the magnetic member 11 can be a strong rubidium-iron-boron magnet or similar magnets. The strength and size of the magnet can be determined according to the amount of magnetic particles and the speed of movement.
  • the number of reaction chambers 12 can also be one or more. When the number is more than one, a plurality of reaction chambers 12 are arranged along the circumference of the disc chip 1, so that the centrifugal control mechanism 2 and the radial control mechanism 3 are coordinated and controlled. Next, the magnetic particles in the multiple reaction chambers 12 can be controlled synchronously.
  • the multiple reaction chambers 12 can be used to test the same index of different samples, or different indexes of the same sample, so as to improve the detection efficiency. Those skilled in the art can set and use according to requirements.
  • the relative fixation of the centrifugal control mechanism 2 and the radial control mechanism 3 can be based on a base, a bracket, etc., for example, the centrifugal control mechanism 2 and the radial control mechanism 3 are relatively fixed by a common or different bracket to maintain the relative position during work.
  • the specific structure can be set according to the requirements of volume, portability, etc., which is not limited here.
  • centrifugal control mechanism 2 in order to ensure the stability of the centrifugal control mechanism 2 and the radial control mechanism 3 and other testing requirements, it can also be equipped with shock-absorbing components, sample addition components, incubation components, and other testing components to increase the comprehensiveness of the mobile device.
  • the centrifugal control mechanism 2 includes a first motor 21, a first rotating shaft 22, and a chip mounting structure 23; the driving end of the first motor 21 is drivingly connected to one end of the first rotating shaft 22, so The other end of the first rotating shaft 22 is connected to the chip mounting structure 23; the disc chip 1 is mounted on the chip mounting structure 23 and is coaxially arranged with the first rotating shaft 22.
  • the first motor 21 When the centrifugal control mechanism 2 is working, the first motor 21 is controlled to rotate, and after the first motor 21 rotates, the first rotating shaft 22 is driven to rotate on a fixed axis through its driving end. Since the disc chip 1 is coaxial with the first rotating shaft 22 after being mounted on the chip mounting structure 23, the drive of the first rotating shaft 22 causes the disc chip 1 to rotate on a fixed axis (circumferential rotation). Cooperating with the magnetic force of the magnetic member 11, the magnetic particles can move circumferentially in the reaction chamber 12 under the relative displacement of the two.
  • the first motor 21 may be a stepping motor or a servo motor, and the stepping motor or the servo motor can ensure the angle of rotation during the rotation process. Therefore, according to the requirements of the rotation accuracy of the magnetic particles, a stepping motor or a servo motor corresponding to the step angle can be selected to realize the control of the movement accuracy of the magnetic particles.
  • a coupling, fixed welding or other connection methods can be used for coaxial connection, which will not be repeated here.
  • the chip mounting structure 23 includes a mounting plate 231 and a fixed shaft 232 arranged along the central axis of the mounting plate 231.
  • the mounting plate 231 is drivingly connected to the first rotating shaft 22 and the two The central axis coincides, the central axis hole 127 of the disc chip 1 is sleeved and assembled with the fixed shaft 232; the disc chip 1 is positioned relative to the mounting plate 231.
  • the magnetic member 11 can be arranged above the disk chip 1 or below the disk chip 1. In some embodiments, when the magnetic member 11 is arranged below the disk chip 1, the mounting disk 231 and the reaction chamber 12 There is no overlap in the axial direction of the disk chip 1.
  • a disc structure of the mounting disc 231 is used. After the disc chip 1 is mounted on the mounting disc 231 via the fixed shaft 232, only the disc chip is covered in the axial direction.
  • the circumferential part on 1 is close to the center of the circle, so it is convenient to set the reaction chamber 12 on the part of the disc chip 1 far away from the center of the circle to ensure that the reaction chamber 12 and the mounting plate 231 do not overlap in the axial direction.
  • the magnetic member 11 is controlled to move There is no relative interference with the mounting disk 231. At the same time, it can also support the disc chip 1 evenly in the circumferential direction on the part of the disc chip 1 close to the center of the circle, increase the supporting area, and ensure the stability of the disc chip 1 when it rotates.
  • the relative positioning of the disc chip 1 and the mounting plate 231 can be achieved by the interference fit between the central shaft hole 127 of the disc chip 1 and the fixed shaft 232, or other positioning structures can also be used.
  • the mounting plate 231 is provided with at least one positioning post 233, and the disc chip 1 is provided with a positioning hole 234 corresponding to the positioning post 233; the disc chip 1 and The mounting plate 231 is relatively positioned by the positioning post 233 and the positioning hole 234.
  • the restriction between the positioning hole 234 and the positioning post 233 can prevent the disc chip 1 and the mounting plate 231 from being separated from each other.
  • Circumferential misalignment causes the disk chip 1 to rotate synchronously when the mounting disk 231 rotates.
  • the number of positioning holes 234 and positioning posts 233 can be set in one pair or multiple pairs.
  • the number of positioning holes 234 and positioning posts 233 can be selected according to the strength requirements and layout requirements. This structure can be adapted to the alignment circles in different embodiments. The relative positioning between the disk chip 1 and the mounting disk 231 will not be repeated here.
  • the side wall of the fixed shaft 232 is provided with at least one positioning protrusion 235
  • the inner wall of the central shaft hole 127 is provided with a positioning groove 236 corresponding to the positioning protrusion 235.
  • the disk chip 1 and the mounting disk 231 are positioned relative to each other by the positioning protrusion 235 and the positioning groove 236.
  • the disc chip 1 can be prevented by the limiting effect between the positioning protrusion 235 and the positioning groove 236 Circumferential displacement between the mounting plate 231 and the mounting plate 231 makes the disk chip 1 rotate synchronously when the mounting plate 231 rotates.
  • the number of positioning protrusions 235 and positioning grooves 236 can be set in one pair or multiple pairs.
  • the number of positioning protrusions 235 and positioning grooves 236 can be optionally selected according to the strength requirements and arrangement requirements.
  • the structure can also be adapted to different embodiments. The relative positioning between the puck chip 1 and the mounting plate 231 in the middle is omitted here.
  • the reaction chamber 12 includes a first reaction cavity 121, a second reaction cavity 122, and a third reaction cavity 123 arranged along the circumference of the disc chip 1;
  • the reaction cavity 121 and the second reaction cavity 122 are in communication through a first transfer channel 124, and the second reaction cavity 122 and the third reaction cavity 123 are in communication through a second transfer channel 125;
  • the first reaction cavity 121, the second reaction cavity 122 and the third reaction cavity 123 are all provided with holes 126.
  • the hole 126 can also be used as an exhaust port at the same time.
  • the reaction chamber 12 may be composed of three reaction chambers: a first reaction chamber 121, a second reaction chamber 122, and a third reaction chamber 123.
  • the structure of the reaction chamber 12 is particularly suitable for magnetic particle double-antibody sandwich chemiluminescence. Immunoassay and similar testing work. Here, taking magnetic particle double antibody sandwich chemiluminescence immunoassay as an example, the working process of the mobile device will be described in detail.
  • the magnetic member 11 can be separated from the disc chip 1 first, and the sample to be tested, the magnetic particles and the solution can be passed through the first reaction chamber
  • the hole 126 on the body 121 is added to the first reaction chamber 121. Start the centrifugal control mechanism 2 to enter the oscillating mode.
  • the oscillating mode is the reciprocating rotation of the centrifugal control mechanism 2 in the circumferential direction, driving the disc chip 1 to also reciprocate in the circumferential direction, and using inertia to make the first reaction chamber 121
  • the rotation angle, speed and reciprocating frequency of the centrifugal control mechanism 2 can be set, which are not limited here.
  • the oscillating mode is stopped, and the magnetic member 11 is driven to move close to the disk chip 1 in the radial direction of the disk chip 1 through the radial control mechanism 3, and the magnetic particles are attracted by the magnetic force of the magnetic member 11 And gather at the position A in the first reaction chamber 121 away from the center of the disk chip 1.
  • the magnetic member 11 drives the magnetic particles to move to the B position along the radial direction of the disk chip 1.
  • the centrifugal control mechanism 2 uses the centrifugal control mechanism 2 to rotate the disc chip 1, and through the relative displacement of the magnetic member 11 and the disc chip 1 in the circumferential direction, the magnetic particles are driven by the magnetic member 11 to move into the disc chip 1 in the circumferential direction.
  • the first transfer channel 124 enters the second reaction chamber 122 through the first transfer channel 124 and reaches the C position.
  • the moving speed of the magnetic member 11 can be adjusted according to factors such as the amount of magnetic particles and the magnetic strength of the magnetic member 11.
  • the radial control mechanism 3 After entering the second reaction chamber 122, the radial control mechanism 3 is used to drive the magnetic member 11 to move away from the center of the circle along the radial direction of the disc chip 1, driving the magnetic particles to move from the C position to the D position. At this time, continue to use the radial control mechanism 3 to drive the magnetic member 11 to move radially away from the magnetic particles to ensure that the magnetic particles are no longer controlled by the magnetic force of the magnetic member 11.
  • the cleaning solution is added to the second reaction chamber 122 through the hole 126 of the second reaction chamber 122, and the centrifugal control mechanism 2 is activated to enter the oscillation mode.
  • the oscillation mode is the reciprocating rotation of the centrifugal control mechanism 2 in the circumferential direction to drive the circle
  • the disk chip 1 also reciprocates along the circumferential direction, and uses inertia to make the magnetic particles in the second reaction cavity 122 oscillate in the second reaction cavity 122 to sufficiently clean the magnetic particles.
  • the oscillating mode is stopped, and the centrifugal control mechanism 2 and the radial control mechanism 3 are activated.
  • the magnetic member 11 By moving the magnetic member 11 in the radial and circumferential directions of the disc chip 1, the magnetic particles are driven to repeat in the first reaction chamber 121 and the first reaction chamber 121.
  • the movement in the second reaction chamber 122 moves the magnetic particles radially from the D position to the E position and the F position, and then enters the third reaction chamber 123 through the second transfer channel 125, and reaches the G position and the H position in sequence.
  • the radial control mechanism 3 is used to drive the magnetic member 11 away from the magnetic particles to ensure that the magnetic particles are no longer controlled by the magnetic force of the magnetic member 11.
  • the substrate solution is added through the hole 126 of the third reaction chamber 123, and the oscillation mode is turned on through the centrifugal control mechanism 2 again to complete the reaction and perform luminescence detection. At this point, the detection process of the magnetic particle double antibody sandwich chemiluminescence immunoassay is completed.
  • the mobile device can also be applied to the fields of conventional in vitro diagnostics and biochemical testing, as well as any field that requires a disk-type microfluidic chip and high-throughput magnetic particle movement requirements.
  • Those skilled in the art can set the structure of the reaction chamber 12 corresponding to the detection requirements in different fields.
  • the reaction chamber 12 includes reaction chambers of different structures, different numbers, and different arrangements, which are not limited herein.
  • the guide rail assembly 31 includes a guide rail 311 and a sliding member 312; the sliding member 312 is linearly slidably assembled with the guide rail 311, the magnetic member 11 is mounted on the sliding member 312, and the drive assembly 32 is connected to The sliding member 312 is drivingly connected.
  • the guide rail assembly 31 realizes the linear drive of the magnetic member 11 through the linear sliding fit of the sliding member 312 and the guide rail 311.
  • the guide rail 311 serves as a guiding basis.
  • the driving assembly 32 is used to drive the sliding member 312 to move linearly along the track of the guide rail 311, This can drive the magnetic member 11 to move linearly (that is, to move in the radial direction relative to the disk chip 1).
  • the driving assembly 32 can adopt a gear structure, a connecting rod 326 structure, etc., and the driving accuracy of the guide rail assembly 31 can be improved through indirect driving, thereby improving the accuracy of the movement of the magnetic particles, and ensuring a higher accuracy of the detection result.
  • the drive assembly 32 includes a second motor 321, a first gear set 322 and at least one rack 323; the drive end of the second motor 321 is connected to the The driving end of the first gear set 322 is drivingly connected, and the driven end of the first gear set 322 is drivingly connected to the rack 323; the rack 323 is connected to the sliding member 312.
  • the first gear set 322 has the advantage of high driving accuracy through a plurality of gear meshing transmissions, and can ensure the high-precision linear movement of the sliding member 312 on the guide rail 311.
  • the second motor 321 is started, and the driving end of the first gear set 322 is driven to rotate through the driving end of the second motor 321 (the driving end is also the first gear set 322 drivingly connected to the second motor 321).
  • One gear so that the driven end of the first gear set 322 is engaged with the rack 323 for transmission through the transmission cooperation of the multiple gears in the first gear set 322 (that is, the last one in the first gear set 322 and the rack 323
  • the meshing gear drives the sliding member 312 to move linearly on the guide rail 311.
  • the second motor 321 may also be a stepping motor, a servo motor, or the like.
  • the first gear set 322 located between the second motor 321 and the rack 323 can adjust the transmission ratio between the gears according to requirements, so as to cooperate with the rotation speed and step angle of the second motor 321 to realize the alignment of the sliding member 312. Precise control of linear movement distance.
  • the first gear set 322 includes a first driving gear 3221, a first intermediate gear 3222, a second intermediate gear 3223 and at least one first driven gear 3224; the first intermediate gear 3222 and the second intermediate gear 3222
  • the intermediate gear 3223 is assembled for coaxial and synchronous rotation.
  • the highest point of the first intermediate gear 3222 is lower than the lowest point of the first driven gear 3224; the driving end of the second motor 321 passes through the first driving gear 3221 It is drivingly connected to the first intermediate gear 3222, and the second intermediate gear 3223 is drivingly connected to the rack 323 via the first driven gear 3224.
  • the first driving gear 3221 belongs to the driving end of the first gear set 322,
  • the second motor 321 is drivingly connected to the first driving gear 3221 to drive the first driving gear 3221 to rotate, and the first driving gear 3221 meshes with the first intermediate gear 3222 to drive the first intermediate gear 3222 to rotate.
  • the second intermediate gear 3223 and the first intermediate gear 3222 rotate coaxially and synchronously, so when the first intermediate gear 3222 rotates, it will drive the second intermediate gear 3223 to rotate, and the second intermediate gear 3223 meshes with the first driven gear 3224 To drive the first driven gear 3224 to rotate.
  • the first driven gear 3224 belongs to the driven end of the first gear set 322, the first driven gear 3224 meshes with the rack 323 to drive the rack 323 to move, and indirectly drives the sliding member 312 to move linearly on the guide rail 311.
  • the first intermediate gear 3222 and the second intermediate gear 3223 can be coaxially connected by a common shaft, or the first intermediate gear 3222 and the second intermediate gear 3223 can be arranged as a coaxial integrally formed structure (the cross section of the structure is " "I" shape), as long as the first intermediate gear 3222 and the second intermediate gear 3223 rotate coaxially and synchronously.
  • the first gear set 322 may be formed by using four gears, the first driving gear 3221, the first intermediate gear 3222, the second intermediate gear 3223, and the first driven gear 3224, and may also be formed by other numbers of gears. Make a limit.
  • the second intermediate gear 3223 needs to indirectly drive the relative movement between the slider 312 and the guide rail 311 through the first driven gear 3224 and the rack 323, the second intermediate gear 3223, the first driven The gear 3224 and the rack 323 will be roughly in the same plane, in order to make the second motor 321 indirectly drive the guide rail assembly 31 through the rack 323 through the first gear set 322 not to be in the circumferential direction of the second intermediate gear 3223 with the guide rail assembly 31
  • the first intermediate gear 3222 does not interfere with the first driven gear 3224, thereby limiting the highest point of the first intermediate gear 3222 to be lower than the lowest point of the first driven gear 3224.
  • multiple reaction chambers 12 will be distributed in the circumferential direction of the disc chip 1, and the corresponding guide rail assembly 31 also needs to be correspondingly arranged in multiple numbers along the circumferential direction of the disc chip 1.
  • the multiple first driven gears 3224 will mesh and drive the second intermediate gear 3223 at different positions along the circumferential direction of the second intermediate gear 3223.
  • the second motor 321 does not interfere with the multiple first driven gears 3224 distributed in the circumferential direction of the second intermediate gear 3223 when driving the first intermediate gear 3222
  • at least the first intermediate gear 3222 is required
  • the highest point of is lower than the lowest point of the first driven gear 3224.
  • the relative distance between the two can be set according to the actual situation, which is not limited here.
  • the advantage of this arrangement is that it can ensure effective transmission between the drive assembly 32 and the guide rail assembly 31, and is also suitable for the arrangement of multiple reaction chambers 12, so that the assembly of the entire structure is reasonable and effective.
  • the drive assembly 32 includes a third motor 324, a second gear set 325 and at least one connecting rod 326;
  • the driving end of the second gear set 325 is drivingly connected, and the driven end of the second gear set 325 is hingedly driven with the sliding member 312 via the connecting rod 326.
  • the second gear set 325 has the advantage of high driving accuracy through a plurality of gears meshing transmission, and is driven by the third motor 324 through the connecting rod 326 to drive the sliding member 312 to move linearly on the guide rail 311, which can ensure that the sliding member 312 is on the guide rail 311 High-precision linear movement.
  • the third motor 324 is started, and the driving end of the second gear set 325 is driven to rotate through the driving end of the third motor 324 (the driving end is also the first drive connected to the third motor 324 in the second gear set 325).
  • the third motor 324 may also be a stepping motor or a servo motor.
  • the second gear set 325 located between the third motor 324 and the connecting rod 326 can adjust the transmission ratio between the gears according to requirements, so as to cooperate with the rotation speed and step angle of the third motor 324 to realize the alignment of the sliding member 312. Precise control of linear movement distance.
  • the second gear set 325 includes a second driving gear 3251, a third intermediate gear 3252, and a fourth intermediate gear 3253; the third intermediate gear 3252 and the fourth intermediate gear 3253 are coaxially and synchronously rotated and assembled, The highest point of the third intermediate gear 3252 is lower than the lowest point of the connecting rod 326; the driving end of the third motor 324 is drivingly connected to the third intermediate gear 3252 through the second driving gear 3251, so The fourth intermediate gear 3253 is hingedly driven with the sliding member 312 via the connecting rod 326.
  • the second driving gear 3251 belongs to the driving end of the second gear set 325, and the third motor 324 and the second
  • the driving gear 3251 is drivingly connected to drive the second driving gear 3251 to rotate, and the second driving gear 3251 meshes with the third intermediate gear 3252 to drive the third intermediate gear 3252 to rotate.
  • the fourth intermediate gear 3253 and the third intermediate gear 3252 rotate coaxially and synchronously, so when the third intermediate gear 3252 rotates, it will drive the fourth intermediate gear 3253 to rotate.
  • the fourth intermediate gear 3253 belongs to the slave of the first gear set 322. Moving end.
  • the fourth intermediate gear 3253 is articulated and driven by the sliding member 312 of the connecting rod 326, and indirectly drives the sliding member 312 to move linearly on the guide rail 311.
  • the third intermediate gear 3252 and the fourth intermediate gear 3253 can be coaxially connected by a common shaft, or the third intermediate gear 3252 and the fourth intermediate gear 3253 can be arranged as a coaxial integrated structure (the cross section of the structure is " "I" shape), as long as the third intermediate gear 3252 and the fourth intermediate gear 3253 rotate coaxially and synchronously.
  • the second gear set 325 is composed of three gears, the second driving gear 3251, the third intermediate gear 3252, and the fourth intermediate gear 3253, and may also be composed of other numbers of gears, which is not limited herein.
  • the fourth intermediate gear 3253 indirectly drives the relative movement between the sliding member 312 and the guide rail 311 through the hinged connecting rod 326
  • the fourth intermediate gear 3253 and the connecting rod 326 will be roughly in the same plane.
  • the connecting rod 326 is hinged on the upper surface or the lower surface of the fourth intermediate gear 3253.
  • multiple reaction chambers 12 will be distributed in the circumferential direction of the disc chip 1, and the corresponding guide rail assembly 31 also needs to be correspondingly arranged in multiple numbers along the circumferential direction of the disc chip 1.
  • the multiple connecting rods 326 will be hingedly connected to the fourth intermediate gear 3253 at different positions of the fourth intermediate gear 3253 along the circumferential direction of the fourth intermediate gear 3253.
  • the third motor 324 does not interfere with the multiple connecting rods 326 distributed in the circumferential direction of the fourth intermediate gear 3253 when driving the third intermediate gear 3252
  • at least the highest point of the third intermediate gear 3252 is required It is lower than the lowest point of connecting rod 326.
  • the relative distance between the two can be set according to the actual situation, which is not limited here.
  • the advantage of this arrangement is that it can ensure effective transmission between the drive assembly 32 and the guide rail assembly 31, and is also suitable for the arrangement of multiple reaction chambers 12, so that the assembly of the entire structure is reasonable and effective.
  • the drive assembly 32 includes a fourth motor 327, a third driving gear 328, a second driven gear 329 with at least one guide hole 3291, and The guide hole 3291 is matched with the guide piece 3292; the driving end of the fourth motor 327 is drivingly connected with the third driving gear 328, and the third driving gear 328 meshes with the second driven gear 329; The two driven gears 329 are arranged coaxially with the disc chip 1.
  • the guide hole 3291 is arc-shaped and the distance from the center of the second driven gear 329 gradually from one end to the other end of the guide hole 3291 Reduce; the guide 3292 is connected to the sliding member 312 and slidably fits along the track of the guide hole 3291, the sliding member 312 is driven by the guide 3292 to reciprocate along the guide rail 311
  • the sliding member 312 is provided with a supporting member 3293, and the magnetic member 11 is mounted on the supporting member 3293 and located above the second driven gear 329.
  • the first gear set 322 has the advantage of high driving accuracy through a plurality of gear meshing transmissions.
  • the sliding member 312 when the sliding member 312 is driven to move linearly on the guide rail 311 through the second driven gear 329, it depends on the second driven gear 329.
  • the cooperation between the arc-shaped guide hole 3291 on the gear 329 and the guide 3292 connecting the sliding member 312 can drive the sliding member 312 to move linearly on the guide rail 311 with a small displacement when the second driven gear 329 is rotated at a large angle. It is ensured that the sliding member 312 moves linearly with high precision on the guide rail 311.
  • the fourth motor 327 When the driving assembly 32 is working, the fourth motor 327 is activated, and the third driving gear 328 is driven by the driving end of the fourth motor 327.
  • the third driving gear 328 drives the second driven gear 329 to rotate, and indirectly passes through the guide hole 3291 and the guide
  • the guiding cooperation of the member 3292 drives the sliding member 312 to move linearly on the guide rail 311. Since the guide hole 3291 is arc-shaped and the distance from one end to the other end of the guide hole 3291 and the center of the second driven gear 329 gradually decreases, when the second driven gear 329 is in the third driving gear 328 When it rotates under the driving of the guide hole 3291 and the guide member 3292, the guide member 3292 will move along the track of the guide hole 3291.
  • the sliding member 312 will be driven to follow the guide hole 3292.
  • the change in the distance between the 3291 and the center of the second driven gear 329 moves linearly along the radial direction of the second driven gear 329.
  • the second driven gear 329 is coaxially arranged with the disc chip 1. Therefore, the large-distance movement of the guide 3292 in the guide hole 3291 is converted into the small-distance movement of the sliding member 312 on the guide rail 311.
  • the movement accuracy of the sliding member 312 is greatly improved, and thus the movement accuracy of the magnetic member 11 and the magnetic particles are also improved.
  • the fourth motor 327 may also be a stepping motor or a servo motor.
  • the curvature of the guide hole 3291 can be set according to requirements, so as to cooperate with the rotation speed and step angle of the fourth motor 327 to achieve precise control of the linear movement distance of the sliding member 312.
  • the guide 3292 includes a roller shaft and a roller 3294 assembled on the roller shaft; the roller shaft is mounted on the second driven gear 329 in the axial direction.
  • the roller 3294 is in rolling engagement with the guide hole 3291.
  • the guide hole 3291 and the roller 3294 can move in a rolling friction manner when the guide hole 3291 and the roller 3294 are relatively coordinated to move, so as to ensure the smooth movement between the two and reduce component wear caused by friction.
  • the supporting member 3293 passes through the guide hole 3291.
  • the support 3293 passes through the guide hole 3291, after the second driven gear 329 rotates, the support 3293 and the guide 3292 move synchronously in the guide hole 3291.
  • the support 3293 ensures the radial movement of the magnetic member 11, The structure is simple and reliable.
  • the present invention also provides a detection device, including the disk chip magnetic particle moving device. Since the specific structure, functional principle and technical effect of the mobile device are described in detail above, the relevant content will not be repeated here. For any technical content related to the mobile device, please refer to the foregoing record.
  • the present invention also provides a method for controlling the movement of high-flux magnetic particles of the disc chip 1. According to the device for moving the magnetic particles of the disc chip or according to the detection device, the steps are as follows:
  • the drive assembly 32 is used to drive the guide rail assembly 31 to move, so that the magnetic member 11 is driven by the guide rail assembly 31 to move along the radial direction of the disk chip 1; the magnetic member 11 acts by magnetic force Drive the magnetic particles in the reaction chamber 12 to move synchronously in the inner cavity of the reaction chamber 12; the centrifugal control mechanism 2 is used to drive the disk chip 1 to rotate on a fixed axis, and the magnetic member 11 acts by magnetic force. The magnetic particles are driven to move synchronously along the circumferential direction of the disc chip 1 in the inner cavity of the reaction chamber 12.
  • the radial control of the magnetic particles is realized by adopting the radial control mechanism 3 composed of the guide rail assembly 31 and the drive assembly 32.
  • the drive assembly 32 is used to drive the rail assembly 31 to move linearly, and indirectly control the movement of the magnetic member 11 along the radial direction of the disc chip 1 through the linear control effect of the rail assembly 31.
  • This method can be indirectly controlled by the drive assembly 32.
  • the centrifugal control mechanism 2 is used to realize the circumferential control of the magnetic particles.
  • the centrifugal control mechanism 2 can drive the disc chip 1 to rotate on a fixed axis.
  • the magnetic part 11 After being matched with the radial control mechanism 3, the magnetic part 11 The control indirectly controls the continuous circumferential and radial movement of the magnetic particles on the disc chip 1, overcoming the difficulty of continuous movement of the magnetic particles in the circumferential and radial directions in the prior art, and at the same time improving the movement of the magnetic particles. Accuracy, the detection result is guaranteed, and the magnetic particles in multiple reaction chambers can move synchronously and with high precision.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明提供一种圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法,涉及医疗检测设备技术领域,包括:具有至少一个反应室的圆盘芯片;圆盘芯片安装在离心控制机构上,以能够在离心控制机构的驱动下沿自身的中轴线定轴转动;径向控制机构包括驱动组件和至少一个导轨组件;导轨组件的导向轨迹沿着圆盘芯片的径向设置,驱动组件与导轨组件驱动连接;磁性件安装在导轨组件上,以在导轨组件的驱动下沿着圆盘芯片的径向往复运动;离心控制机构和径向控制机构相对固定。上述技术方案中,径向控制机构与离心控制机构相配合可以通过对磁性件的控制间接控制磁性微粒在圆盘芯片上连续的周向和径向移动,提高了磁性微粒移动的精度,保障检测结果的精度。

Description

圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法 技术领域
本发明涉及医疗检测设备技术领域,尤其是涉及一种圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法。
背景技术
圆盘芯片具备集成性能好和控制简单的优势,从而广泛应用于POCT领域,包括生化、免疫和分子诊断。此外,圆盘芯片可以实现高通量反应和检测过程,进一步促进其在诊断等领域的应用。目前在诊断领域中,多数反应体系会涉及到磁性微粒的使用和操控,磁性微粒的精确控制将直接影响磁性微粒的转移效率和转移一致性,继而影响检测的精度。
现有技术中,利用圆盘芯片进行检测时,对磁性微粒移动的控制精度较低,且无法实现多个反应腔体的磁性微粒同步高精度移动,尤其是磁性微粒高通量的向心运动,而这对圆盘芯片上复杂的生化反应是必须的,进而也无法获得精度较高的检测结果。所以,如何提高磁性微粒移动的控制精度以提高检测结果的精度,以及如何提高圆盘芯片的高通量磁性微粒移动,一直是本领域内的难点。
发明内容
本发明的目的在于提供一种圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法,以解决现有技术中存在的对磁性微粒移动的控制精度低、无法实现多个反应腔体的磁性微粒同步高精度移动的技术问题。
本发明提供的一种圆盘芯片磁性微粒移动装置,包括:
具有至少一个反应室的圆盘芯片;
离心控制机构,所述圆盘芯片安装在所述离心控制机构上,以能够在所述离心控制机构的驱动下沿自身的中轴线定轴转动;
径向控制机构,所述径向控制机构包括驱动组件和至少一个导轨组件;所述导轨组件的导向轨迹沿着所述圆盘芯片的径向设置,所述驱动组件与所述导轨组件驱动连接;
磁性件,所述磁性件安装在所述导轨组件上,以在所述导轨组件的驱动下沿着所述圆盘芯片的径向往复运动;
所述离心控制机构和所述径向控制机构相对固定。
值得说明的是,本发明的圆盘芯片包括圆形芯片,也包括其他具有中心几何对称形状的芯片,只要便于进行离心操作即可。
进一步的,所述离心控制机构包括第一电机、第一转轴和芯片安装结构;
所述第一电机的驱动端与所述第一转轴的一端驱动连接,所述第一转轴的另一端与所述芯片安装结构连接;所述圆盘芯片安装在所述芯片安装结构上,与所述第一转轴同轴设置。
进一步的,所述芯片安装结构包括安装盘以及沿着所述安装盘的中轴线设置的固定轴,所述安装盘与所述第一转轴传动连接且二者的中轴线重合,所述圆盘芯片的中心轴孔与所述 固定轴套接装配;
所述圆盘芯片与所述安装盘相对定位。
进一步的,所述安装盘上设置有至少一个定位柱,所述圆盘芯片上设置有与该定位柱对应的定位孔;
所述圆盘芯片与所述安装盘通过所述定位柱和所述定位孔相对定位。
进一步的,所述固定轴的侧壁设置有至少一个定位凸起,所述中心轴孔的内孔壁设置有与该定位凸起对应的定位槽;
所述圆盘芯片与所述安装盘通过所述定位凸起和所述定位槽相对定位。
进一步的,所述反应室包括沿所述圆盘芯片的周向设置的第一反应腔体、第二反应腔体和第三反应腔体;
所述第一反应腔体和所述第二反应腔体之间通过第一转移通道连通,所述第二反应腔体和所述第三反应腔体之间通过第二转移通道连通;所述第一反应腔体、所述第二反应腔体和所述第三反应腔体上均设置有孔。
进一步的,所述导轨组件包括导轨和滑动件;所述滑动件与所述导轨直线滑动装配,所述磁性件安装在所述滑动件上,所述驱动组件与所述滑动件驱动连接。
进一步的,所述驱动组件包括第二电机、第一齿轮组和至少一个齿条;所述第二电机的驱动端与所述第一齿轮组的主动端驱动连接,所述第一齿轮组的从动端与所述齿条驱动连接;
所述齿条与所述滑动件连接。
进一步的,所述第一齿轮组包括第一主动齿轮、第一中间齿轮、第二中间齿轮和至少一个第一从动齿轮;所述第一中间齿轮和所述第二中间齿轮同轴同步转动装配,所述第一中间齿轮的最高点低于所述第一从动齿轮的最低点;
所述第二电机的驱动端通过所述第一主动齿轮与所述第一中间齿轮驱动连接,所述第二中间齿轮通过所述第一从动齿轮与所述齿条驱动连接。
进一步的,所述驱动组件包括第三电机、第二齿轮组和至少一个连杆;所述第三电机的驱动端与所述第二齿轮组的主动端驱动连接,所述第二齿轮组的从动端通过所述连杆与所述滑动件铰接驱动。
进一步的,所述第二齿轮组包括第二主动齿轮、第三中间齿轮和第四中间齿轮;所述第三中间齿轮和所述第四中间齿轮同轴同步转动装配,所述第三中间齿轮的最高点低于所述连杆的最低点;
所述第三电机的驱动端通过所述第二主动齿轮与所述第三中间齿轮驱动连接,所述第四中间齿轮通过所述连杆与所述滑动件铰接驱动。
进一步的,所述驱动组件包括第四电机、第三主动齿轮、具有至少一个导向孔的第二从动齿轮和与所述导向孔配合的导向件;
所述第四电机的驱动端与所述第三主动齿轮驱动连接,所述第三主动齿轮与所述第二从动齿轮啮合;所述第二从动齿轮与所述圆盘芯片同轴设置,所述导向孔呈弧形且自该导向孔一端至另一端的方向上与所述第二从动齿轮圆心的距离逐渐减小;
所述导向件与所述滑动件连接并沿着所述导向孔的轨迹滑动配合,所述滑动件在所述导 向件的驱动下沿着所述导轨往复运动;所述滑动件上设置有支撑件,所述磁性件安装在所述支撑件上且位于所述第二从动齿轮的上方。
进一步的,所述导向件包括滚轮轴以及装配在所述滚轮轴上的滚轮;所述滚轮轴沿着所述第二从动齿轮的轴向安装在所述滑动件上,所述滚轮与所述导向孔滚动配合。
进一步的,所述支撑件穿过所述导向孔。
本发明还提供了一种检测装置,包括所述圆盘芯片磁性微粒移动装置。
本发明还提供了一种圆盘芯片高通量磁性微粒的移动控制方法,根据所述圆盘芯片磁性微粒移动装置,或根据所述检测装置,步骤如下:
利用所述驱动组件驱动所述导轨组件运动,使所述磁性件在所述导轨组件的驱动下沿着所述圆盘芯片的径向运动;所述磁性件通过磁力作用带动位于所述反应室内的磁性微粒在所述反应室的内腔中同步运动;
利用所述离心控制机构驱动所述圆盘芯片定轴转动,所述磁性件通过磁力作用带动所述磁性微粒在所述反应室的内腔中沿所述圆盘芯片的周向同步运动。
在上述技术方案中,对于磁性微粒的径向控制采用了导轨组件和驱动组件构成的径向控制机构实现。驱动组件用来驱动导轨组件直线移动,并通过导轨组件的直线控制效果间接的控制磁性件沿着圆盘芯片的径向移动,这种方式能够在驱动组件间接控制的过程中提高磁性件的移动精度,从而提高磁性微粒的移动精度。与之配合的,对于磁性微粒的周向控制采用了离心控制机构实现,离心控制机构能够驱动圆盘芯片定轴转动,与径向控制机构相配合后,可以通过对磁性件的控制间接控制磁性微粒在圆盘芯片上连续的周向和径向的移动,克服了现有技术中无法连续对磁性微粒周向和径向移动的难点,并同时提高了磁性微粒移动的精度,对检测结果有所保障,而且能实现多个反应室内的磁性微粒同步高精度移动。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例提供的移动装置的装配图;
图2为图1所示的移动装置的传动结构图;
图3为本发明另一个实施例提供的移动装置的装配图;
图4为图3所示的移动装置的传动结构图;
图5为本发明又一个实施例提供的移动装置的装配图;
图6为图5所示的移动装置的传动结构图;
图7为图5所示的导向件的装配图;
图8为本发明一个实施例提供的离心控制机构的结构图;
图9为本发明一个实施例提供的圆盘芯片的立体图;
图10为本发明一个实施例提供的圆盘芯片的平面图。
附图标记:
1、圆盘芯片;2、离心控制机构;3、径向控制机构;
11、磁性件;12、反应室;
121、第一反应腔体;122、第二反应腔体;
123、第三反应腔体;124、第一转移通道;
125、第二转移通道;126、孔;127、中心轴孔;
21、第一电机;22、第一转轴;23、芯片安装结构;
231、安装盘;232、固定轴;233、定位柱;
234、定位孔;235、定位凸起;236、定位槽;
31、导轨组件;32、驱动组件;
311、导轨;312、滑动件;
321、第二电机;322、第一齿轮组;323、齿条;
3221、第一主动齿轮;3222、第一中间齿轮;
3223、第二中间齿轮;3224、第一从动齿轮;
324、第三电机;325、第二齿轮组;326、连杆;
3251、第二主动齿轮;3252、第三中间齿轮;3253、第四中间齿轮;
327、第四电机;328、第三主动齿轮;329、第二从动齿轮;
3291、导向孔;3292、导向件;3293、支撑件;3294、滚轮。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1至图10所示,本发明提供的一种圆盘芯片高通量磁性微粒的移动装置,包括:具有至少一个反应室12的圆盘芯片1;
离心控制机构2,所述圆盘芯片1安装在所述离心控制机构2上,以能够在所述离心控制机构2的驱动下沿自身的中轴线定轴转动;
径向控制机构3,所述径向控制机构3包括驱动组件32和至少一个导轨组件31;所述导轨组件31的导向轨迹沿着所述圆盘芯片1的径向设置,所述驱动组件32与所述导轨组件31驱动连接;
磁性件11,所述磁性件11安装在所述导轨组件31上,以在所述导轨组件31的驱动下沿着所述圆盘芯片1的径向往复运动;
所述离心控制机构2和所述径向控制机构3相对固定。
本发明的圆盘芯片1包括圆形芯片,也包括其他具有中心几何对称形状的芯片,只要便于进行离心操作即可。在一些实施方式中,所述圆盘芯片1优选为圆形芯片。
在该移动装置中,离心控制机构2用来控制磁性微粒在圆盘芯片1的反应室12内周向移动,径向控制机构3用来控制磁性微粒在圆盘芯片1的反应室12内径向移动,通过离心控制机构2和径向控制机构3的配合,可以实现磁性件11在圆盘芯片1的径向和周向的连续位移,磁性微粒在磁性件11的磁力带动下,便能够在反应室12内径向和周向移动。所以,在这种控制方式中,磁性微粒的移动精度取决于磁性件11的移动精度。
磁性件11径向移动时,驱动组件32与导轨组件31相互配合,驱动组件32会驱动导轨组件31直线运动,通过导轨组件31进行导向,使磁性件11能够沿着圆盘芯片1的径向方向往复移动,从而磁力带动磁性微粒也沿着圆盘芯片1的径向方向往复移动。
在该控制方式下,通过调整驱动组件32的驱动精度,间接的控制导轨组件31的直线移动精度,实现对磁性件11和磁性微粒的径向移动精度的控制。所以,通过对导轨组件31直线移动精度的控制便可以提高磁性微粒的径向移动精度。
磁性件11周向移动时,主要依靠离心控制机构2对圆盘芯片1的定轴转动来实现。圆盘芯片1安装在离心控制机构2上以后,离心控制机构2可以驱动圆盘芯片1沿自身的中轴线定轴转动。圆盘芯片1定轴转动时会与导轨组件31上的磁性件11产生相对位移,即磁性件11不动、圆盘芯片1转动,从而可以使磁性件11相对于圆盘芯片1沿着圆盘芯片1的周向移动,磁性件11通过磁力带动反应室12内的磁性微粒也沿着圆盘芯片1的周向转动。在该控制方式下,通过调整圆盘芯片1的转动精度,间接实现对磁性件11和磁性微粒的周向移动精度的控制。所以,通过对圆盘芯片1周向转动精度的控制便可以提高磁性微粒的周向移动精度。
所以,该移动装置采用了主动控制磁性件11移动,利用磁性件11间接控制磁性微粒移动的方式,通过离心控制机构2和径向控制机构3的配合,将磁性微粒移动精度的控制转移到了导轨组件31的直线移动精度或圆盘芯片1周向转动精度上,而保证导轨组件31的直线移动精度或圆盘芯片1周向转动精度便大大降低了技术难点。对磁性微粒进行移动控制时,可以在离心控制机构2和径向控制机构3的配合下沿着圆盘芯片1的径向和周向移动,磁性微粒的径向移动和周向移动可以连续、交叉着进行,移动精度可以有效的进行掌控。
圆盘芯片1的材质可以采用玻璃、硅片或者常见的聚合物材料。聚合物材料包括聚二甲基硅氧烷(PDMS)、聚氨酯、环氧树脂、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、环烯烃共聚物(COC)、聚苯乙烯(PS)、聚乙烯(PE)和氟塑料等。采用聚合物材料的圆盘芯片1材质可以是上述材料中的一种或者几种的组合。圆盘芯片1的加工方法可以根据材质和 结构来确定,例如选取光刻、数控、浇注、注塑、激光雕刻、等离子刻蚀、湿法刻蚀等不同方法中的一种或者几种制成。
磁性件11可以采用如铷铁硼强磁铁及类似磁铁,磁铁的强度和尺寸可以根据磁性微粒量和运动速度来确定。反应室12的数量也可以是一个或多个,当数量为多个时,多个反应室12沿着圆盘芯片1的周向设置,从而在离心控制机构2和径向控制机构3配合控制下,使多个反应室12内的磁性微粒能够同步受控。多个反应室12可以用来测试不同样本的同一指标,或者同一样本的不同指标,从而提高检测效率,本领域技术人员可以根据需求设置和使用。
离心控制机构2和径向控制机构3相互配合时需要相对固定、保持相对位置,以保证对磁性件11的移动以及磁性件11和圆盘芯片1之间相对位移的精确。离心控制机构2和径向控制机构3的相对固定可以采用底座、支架等方式,例如将离心控制机构2和径向控制机构3通过共同或不同的支架相对固定,以在工作过程中保持相对位置,具体结构可以根据体积大小、便携性等需求进行设置,在此不做限定。同时,为了保证离心控制机构2和径向控制机构3工作的稳定性以及其他检测需求,还可以搭配减震部件、加样部件、温育部件以及其他检测部件等,增加该移动装置的综合性功能。
参考图8所示,所述离心控制机构2包括第一电机21、第一转轴22和芯片安装结构23;所述第一电机21的驱动端与所述第一转轴22的一端驱动连接,所述第一转轴22的另一端与所述芯片安装结构23连接;所述圆盘芯片1安装在所述芯片安装结构23上,与所述第一转轴22同轴设置。
离心控制机构2工作时,控制第一电机21转动,第一电机21转动后会通过其驱动端驱动第一转轴22定轴转动。由于圆盘芯片1安装在所述芯片安装结构23上后与所述第一转轴22同轴,所以通过第一转轴22的驱动,会使圆盘芯片1定轴转动(周向转动)。配合磁性件11的磁力作用,在二者的相对位移下,磁性微粒便可以在反应室12内周向移动。
该第一电机21可以采用步进电机或伺服电机,步进电机或伺服电机能够在转动过程中保证转动的角度。所以,根据磁性微粒转动精度的需求,可以选用对应步距角的步进电机或伺服电机,以实现对磁性微粒移动精度的控制。在第一电机21的驱动端与第一转轴22连接时,可以采用联轴器、固定焊接或其他连接方式同轴连接,在此不做赘述。
继续参考图8,所述芯片安装结构23包括安装盘231以及沿着所述安装盘231的中轴线设置的固定轴232,所述安装盘231与所述第一转轴22传动连接且二者的中轴线重合,所述圆盘芯片1的中心轴孔127与所述固定轴232套接装配;所述圆盘芯片1与所述安装盘231相对定位。磁性件11可设置在圆盘芯片1的上方或圆盘芯片1的下方,在一些实施方式中,当磁性件11设置在圆盘芯片1下方时,所述安装盘231与所述反应室12在所述圆盘芯片1的轴向方向无重合。
在将圆盘芯片1与第一转轴22相对安装时,采用了圆盘结构的安装盘231,圆盘芯片1通过固定轴232安装在安装盘231上后,在轴向上只覆盖圆盘芯片1上靠近圆心的周向部分,所以方便在圆盘芯片1上远离圆心的部分周向设置反应室12,保证反应室12与安装盘231在轴向方向无重合,在控制磁性件11移动时不与安装盘231发生相对干涉。同时,还能够在圆盘芯片1上靠近圆心的部分周向、均匀的承托圆盘芯片1,提高承托面积,保证圆盘芯片1 转动时的稳定性。
所述圆盘芯片1与所述安装盘231相对定位时可以通过圆盘芯片1的中心轴孔127与固定轴232的过盈配合来实现,或者也可以采用其他定位结构来实现。
优选的,如图8所示,所述安装盘231上设置有至少一个定位柱233,所述圆盘芯片1上设置有与该定位柱233对应的定位孔234;所述圆盘芯片1与所述安装盘231通过所述定位柱233和所述定位孔234相对定位。
将圆盘芯片1的定位孔234与安装盘231上的定位柱233相对插接后,通过定位孔234和定位柱233之间的限位作用,能够防止圆盘芯片1和安装盘231之间周向错位,使安装盘231转动时同步带动圆盘芯片1转动。定位孔234与定位柱233的数量可以设置一对,也可以设置多对,根据强度需求以及布置需求可以任选定位孔234与定位柱233的数量,该结构可以适配不同实施例中对圆盘芯片1与安装盘231之间的相对定位,在此不做赘述。
可以参考图3的实施例所示,所述固定轴232的侧壁设置有至少一个定位凸起235,所述中心轴孔127的内孔壁设置有与该定位凸起235对应的定位槽236;所述圆盘芯片1与所述安装盘231通过所述定位凸起235和所述定位槽236相对定位。
将固定轴232侧壁的定位凸起235与中心轴孔127内孔壁的定位槽236相对插接后,通过定位凸起235和定位槽236之间的限位作用,能够防止圆盘芯片1和安装盘231之间周向错位,使安装盘231转动时同步带动圆盘芯片1转动。定位凸起235和定位槽236的数量可以设置一对,也可以设置多对,根据强度需求以及布置需求可以任选定位凸起235和定位槽236的数量,该结构也可以适配不同实施例中对圆盘芯片1与安装盘231之间的相对定位,在此不做赘述。
参考图9和图10,所述反应室12包括沿所述圆盘芯片1的周向设置的第一反应腔体121、第二反应腔体122和第三反应腔体123;所述第一反应腔体121和所述第二反应腔体122之间通过第一转移通道124连通,所述第二反应腔体122和所述第三反应腔体123之间通过第二转移通道125连通;所述第一反应腔体121、所述第二反应腔体122和所述第三反应腔体123上均设置有孔126。孔126同时也可作为排气口。
反应室12可以采用第一反应腔体121、第二反应腔体122和第三反应腔体123这三个反应腔体构成,该反应室12的结构尤其可以适用于磁微粒双抗夹心化学发光免疫分析以及类似的检测工作。在此,借以磁微粒双抗夹心化学发光免疫分析为例,对该移动装置的工作过程进行详细的说明。
在利用该移动装置进行磁微粒双抗夹心化学发光免疫分析的过程中,参考图10,可以首先将磁性件11与圆盘芯片1远离,将待测样本、磁性微粒和溶液通过第一反应腔体121上的孔126加入到第一反应腔体121中。启动离心控制机构2进入震荡模式,该震荡模式即通过离心控制机构2在周向方向上往复转动,带动圆盘芯片1也沿着周向往复转动,利用惯性作用使第一反应腔体121中的磁性微粒在第一反应腔体121内震荡,促使加入的溶液结合成为双抗夹心结构,该双抗夹心结构附着在磁性微粒上。根据震荡的需求,可以设置离心控制机构2的转动角度、速度以及往复频率,在此不做限定。
双抗夹心结构形成之后停止震荡模式,通过径向控制机构3驱动磁性件11在圆盘芯片1 的径向方向靠近圆盘芯片1移动,将磁性微粒在磁性件11的磁性作用力下,吸附并聚集到第一反应腔体121内远离圆盘芯片1圆心一端的A位置。继续控制磁性件11移动,使磁性件11带动磁性微粒沿圆盘芯片1的径向方向移动到B位置。然后利用离心控制机构2转动圆盘芯片1,通过磁性件11和圆盘芯片1在其周向上相对位移,将磁性微粒在磁性件11的带动下移动沿圆盘芯片1的周向方向进入到第一转移通道124,经过第一转移通道124进入到第二反应腔体122到达C位置。磁性件11的移动速度可以根据磁性微粒量和磁性件11磁力强度等因素进行调节。
进入第二反应腔体122后,利用径向控制机构3驱动磁性件11沿着圆盘芯片1的径向远离圆心移动,带动磁性微粒从C位置运动到D位置。此时,继续利用径向控制机构3驱动磁性件11径向移动、远离磁性微粒,保证磁性微粒不再受磁性件11的磁力控制。通过第二反应腔体122的孔126将清洗液加入到第二反应腔体122,启动离心控制机构2进入震荡模式,该震荡模式即通过离心控制机构2在周向方向上往复转动,带动圆盘芯片1也沿着周向往复转动,利用惯性作用使第二反应腔体122中的磁性微粒在第二反应腔体122内震荡,以充分清洗磁性微粒。
清洗完成之后停止震荡模式,启动离心控制机构2和径向控制机构3,通过对磁性件11在圆盘芯片1径向和周向的移动,带动磁性微粒重复在第一反应腔体121和第二反应腔体122内的移动方式,使磁性微粒从D位置径向移动到E位置和F位置,再经过第二转移通道125进入到第三反应腔体123,依次到达G位置和H位置。此时,利用径向控制机构3驱动磁性件11远离磁性微粒,保证磁性微粒不再受磁性件11的磁力控制。通过第三反应腔体123的孔126加入底物液,再次通过离心控制机构2开启震荡模式,完成反应并进行发光检测,至此磁微粒双抗夹心化学发光免疫分析的检测过程完成。
除此之外,该移动装置还可以适用于常规体外诊断和生化检测领域,以及任何需要圆盘式微流控芯片和高通量磁性微粒移动需求的领域。本领域技术人员可以根据不同领域的检测需求对应的设置反应室12的结构,例如反应室12内包括不同结构、不同数量、不同排布的反应腔体,在此不做限定。
优选的,所述导轨组件31包括导轨311和滑动件312;所述滑动件312与所述导轨311直线滑动装配,所述磁性件11安装在所述滑动件312上,所述驱动组件32与所述滑动件312驱动连接。该导轨组件31通过滑动件312与导轨311的直线滑动配合,实现对磁性件11的直线驱动,导轨311作为导向基础,当利用驱动组件32驱动滑动件312沿着导轨311的轨迹直线移动时,便可以带动磁性件11直线移动(即相对于圆盘芯片1沿其径向移动)。
其中,所述驱动组件32可以采用齿轮结构、连杆326结构等,通过间接的驱动可以提高对导轨组件31的驱动精度,从而提高对磁性微粒移动的精度,保证检测结果具有较高的精度。
如图1和图2所示,在一个实施例中,所述驱动组件32包括第二电机321、第一齿轮组322和至少一个齿条323;所述第二电机321的驱动端与所述第一齿轮组322的主动端驱动连接,所述第一齿轮组322的从动端与所述齿条323驱动连接;所述齿条323与所述滑动件312连接。
第一齿轮组322通过多个齿轮啮合传动具有驱动精度高的优点,能够保证滑动件312在 导轨311上高精度的直线移动。驱动组件32工作时第二电机321启动,通过第二电机321的驱动端驱动第一齿轮组322的主动端转动(该主动端也即第一齿轮组322中与第二电机321驱动连接的第一个齿轮),从而通过第一齿轮组322中多个齿轮的传动配合利用第一齿轮组322的从动端与齿条323啮合传动(即第一齿轮组322中最后一个并与齿条323啮合的齿轮),带动滑动件312在导轨311上做直线移动。
第二电机321也可以采用步进电机或伺服电机等。位于第二电机321和齿条323中间的第一齿轮组322,可以根据需求调整各个齿轮之间的传动比,从而与第二电机321的转速、步距角等相配合,实现对滑动件312直线移动距离的精确控制。
优选的,所述第一齿轮组322包括第一主动齿轮3221、第一中间齿轮3222、第二中间齿轮3223和至少一个第一从动齿轮3224;所述第一中间齿轮3222和所述第二中间齿轮3223同轴同步转动装配,所述第一中间齿轮3222的最高点低于所述第一从动齿轮3224的最低点;所述第二电机321的驱动端通过所述第一主动齿轮3221与所述第一中间齿轮3222驱动连接,所述第二中间齿轮3223通过所述第一从动齿轮3224与所述齿条323驱动连接。
在通过第一主动齿轮3221、第一中间齿轮3222、第二中间齿轮3223和第一从动齿轮3224构成的第一齿轮组322中,第一主动齿轮3221属于第一齿轮组322的主动端,第二电机321与第一主动齿轮3221驱动连接以驱动第一主动齿轮3221转动,第一主动齿轮3221与第一中间齿轮3222啮合以驱动第一中间齿轮3222转动。第二中间齿轮3223和所述第一中间齿轮3222同轴同步转动,所以当第一中间齿轮3222转动时,会带动第二中间齿轮3223转动,第二中间齿轮3223与第一从动齿轮3224啮合以驱动第一从动齿轮3224转动。第一从动齿轮3224属于第一齿轮组322的从动端,该第一从动齿轮3224与齿条323啮合以驱动齿条323运动,间接的驱动滑动件312在导轨311上做直线移动。
第一中间齿轮3222和第二中间齿轮3223可以通过共同的轴以同轴连接,也可以将第一中间齿轮3222和第二中间齿轮3223设置为同轴一体成型的结构(该结构的截面呈“工”字形),只要使第一中间齿轮3222和第二中间齿轮3223同轴同步转动即可。第一齿轮组322除了采用第一主动齿轮3221、第一中间齿轮3222、第二中间齿轮3223和第一从动齿轮3224这四个齿轮构成以外,还可以采用其他数量的齿轮构成,在此不做限定。
需要说明的是,由于第二中间齿轮3223要间接的通过第一从动齿轮3224、齿条323来驱动滑动件312和导轨311之间的相对运动,所以第二中间齿轮3223、第一从动齿轮3224和齿条323会大致的处于同一平面内,为了使第二电机321通过第一齿轮组322间接通过齿条323驱动导轨组件31时不与导轨组件31在第二中间齿轮3223的周向发生干涉,至少要保证第一中间齿轮3222不与第一从动齿轮3224发生干涉,从而限定第一中间齿轮3222的最高点低于第一从动齿轮3224的最低点。
尤其是反应室12设置多个数量时,多个反应室12会在圆盘芯片1的周向分布,相应的导轨组件31也需要对应的沿着圆盘芯片1的周向设置多个数量。为了能够同步的驱动多个导轨组件31运动,多个第一从动齿轮3224会沿着第二中间齿轮3223的周向在第二中间齿轮3223的不同位置与其啮合传动。若需要保证第二电机321在驱动第一中间齿轮3222时不会与分布在第二中间齿轮3223周向的多个第一从动齿轮3224发生位置上的干涉,就至少需要 第一中间齿轮3222的最高点低于第一从动齿轮3224的最低点。而二者之间的相对距离可以根据实际情况进行设置,在此不做限定。如此设置的好处在于,可以保证驱动组件32和导轨组件31之间的有效传动,而且还适合多个反应室12的设置,使整个结构的装配上合理、有效。
如图3和图4所示,在另一个实施例中,所述驱动组件32包括第三电机324、第二齿轮组325和至少一个连杆326;所述第三电机324的驱动端与所述第二齿轮组325的主动端驱动连接,所述第二齿轮组325的从动端通过所述连杆326与所述滑动件312铰接驱动。
第二齿轮组325通过多个齿轮啮合传动具有驱动精度高的优点,并且在第三电机324驱动下通过连杆326驱动滑动件312在导轨311上直线移动,能够保证滑动件312在导轨311上高精度的直线移动。驱动组件32工作时第三电机324启动,通过第三电机324的驱动端驱动第二齿轮组325的主动端转动(该主动端也即第二齿轮组325中与第三电机324驱动连接的第一个齿轮),从而通过第二齿轮组325中多个齿轮的传动配合利用第二齿轮组325的从动端与连杆326驱动连接(即第二齿轮组325中最后一个并与连杆326连接的齿轮),通过连杆326带动滑动件312在导轨311上做直线移动。
第三电机324也可以采用步进电机或伺服电机等。位于第三电机324和连杆326中间的第二齿轮组325,可以根据需求调整各个齿轮之间的传动比,从而与第三电机324的转速、步距角等相配合,实现对滑动件312直线移动距离的精确控制。
优选的,所述第二齿轮组325包括第二主动齿轮3251、第三中间齿轮3252和第四中间齿轮3253;所述第三中间齿轮3252和所述第四中间齿轮3253同轴同步转动装配,所述第三中间齿轮3252的最高点低于所述连杆326的最低点;所述第三电机324的驱动端通过所述第二主动齿轮3251与所述第三中间齿轮3252驱动连接,所述第四中间齿轮3253通过所述连杆326与所述滑动件312铰接驱动。
在通过第二主动齿轮3251、第三中间齿轮3252和第四中间齿轮3253构成的第二齿轮组325中,第二主动齿轮3251属于第二齿轮组325的主动端,第三电机324与第二主动齿轮3251驱动连接以驱动第二主动齿轮3251转动,第二主动齿轮3251与第三中间齿轮3252啮合以驱动第三中间齿轮3252转动。第四中间齿轮3253和所述第三中间齿轮3252同轴同步转动,所以当第三中间齿轮3252转动时,会带动第四中间齿轮3253转动,第四中间齿轮3253属于第一齿轮组322的从动端。第四中间齿轮3253通过连杆326滑动件312铰接传动,间接的驱动滑动件312在导轨311上做直线移动。
第三中间齿轮3252和第四中间齿轮3253可以通过共同的轴以同轴连接,也可以将第三中间齿轮3252和第四中间齿轮3253设置为同轴一体成型的结构(该结构的截面呈“工”字形),只要使第三中间齿轮3252和第四中间齿轮3253同轴同步转动即可。第二齿轮组325除了采用第二主动齿轮3251、第三中间齿轮3252和第四中间齿轮3253这三个齿轮构成以外,还可以采用其他数量的齿轮构成,在此不做限定。
需要说明的是,由于第四中间齿轮3253要间接的通过铰接的连杆326来驱动滑动件312和导轨311之间的相对运动,所以第四中间齿轮3253和连杆326会大致的处于同一平面内,例如连杆326在第四中间齿轮3253的上表面铰接或下表面铰接。为了使第三电机324通过第 二齿轮组325间接通过连杆326驱动导轨组件31时不与导轨组件31在第四中间齿轮3253的周向发生干涉,至少要保证第三中间齿轮3252不与连杆326发生干涉,从而限定第三中间齿轮3252的最高点低于连杆326的最低点。
尤其是反应室12设置多个数量时,多个反应室12会在圆盘芯片1的周向分布,相应的导轨组件31也需要对应的沿着圆盘芯片1的周向设置多个数量。为了能够同步的驱动多个导轨组件31运动,多个连杆326会沿着第四中间齿轮3253的周向在第四中间齿轮3253的不同位置与其铰接连接。若需要保证第三电机324在驱动第三中间齿轮3252时不会与分布在第四中间齿轮3253周向的多个连杆326发生位置上的干涉,就至少需要第三中间齿轮3252的最高点低于连杆326的最低点。而二者之间的相对距离可以根据实际情况进行设置,在此不做限定。如此设置的好处在于,可以保证驱动组件32和导轨组件31之间的有效传动,而且还适合多个反应室12的设置,使整个结构的装配上合理、有效。
如图5和图6所示,在另一个实施例中,所述驱动组件32包括第四电机327、第三主动齿轮328、具有至少一个导向孔3291的第二从动齿轮329和与所述导向孔3291配合的导向件3292;所述第四电机327的驱动端与所述第三主动齿轮328驱动连接,所述第三主动齿轮328与所述第二从动齿轮329啮合;所述第二从动齿轮329与所述圆盘芯片1同轴设置,所述导向孔3291呈弧形且自该导向孔3291一端至另一端的方向上与所述第二从动齿轮329圆心的距离逐渐减小;所述导向件3292与所述滑动件312连接并沿着所述导向孔3291的轨迹滑动配合,所述滑动件312在所述导向件3292的驱动下沿着所述导轨311往复运动;所述滑动件312上设置有支撑件3293,所述磁性件11安装在所述支撑件3293上且位于所述第二从动齿轮329的上方。
第一齿轮组322通过多个齿轮啮合传动具有驱动精度高的优点,与此同时,在通过第二从动齿轮329驱动滑动件312在导轨311上直线移动时,是依靠设置在第二从动齿轮329上的弧形导向孔3291和连接滑动件312的导向件3292之间的配合,在大角度转动第二从动齿轮329时能够以小位移驱动滑动件312在导轨311上直线移动,可以保证滑动件312在导轨311上高精度的直线移动。
驱动组件32工作时第四电机327启动,通过第四电机327的驱动端驱动第三主动齿轮328,第三主动齿轮328驱动所述第二从动齿轮329转动,并间接通过导向孔3291与导向件3292的导向配合带动滑动件312在导轨311上做直线移动。由于导向孔3291呈弧形且自该导向孔3291一端至另一端的方向上与所述第二从动齿轮329圆心的距离逐渐减小,所以当第二从动齿轮329在第三主动齿轮328的驱动下转动时,由于导向孔3291与导向件3292之间的导向配合,会使导向件3292沿着导向孔3291的轨迹移动,在导向件3292移动过程中,会带动滑动件312按照导向孔3291与第二从动齿轮329圆心的距离变化沿着第二从动齿轮329的径向直线移动。与此同时,第二从动齿轮329与圆盘芯片1同轴设置,所以,通过导向件3292在导向孔3291内的大距离移动转换成滑动件312在导轨311上的小距离移动,便可以大大的提高滑动件312的移动精度,从而也就提高了磁性件11和磁性微粒的移动精度。
第四电机327也可以采用步进电机或伺服电机等。导向孔3291的弧形度可以根据需求设置,从而与第四电机327的转速、步距角等相配合,实现对滑动件312直线移动距离的精确 控制。
当反应室12设置多个数量时,多个反应室12会在圆盘芯片1的周向分布,相应的导轨组件31也需要对应的沿着圆盘芯片1的周向设置多个数量。为了能够同步的驱动多个导轨组件31运动,第二从动齿轮329上的导向孔3291也要对应的设置多条。
如图7所示,优选的,所述导向件3292包括滚轮轴以及装配在所述滚轮轴上的滚轮3294;所述滚轮轴沿着所述第二从动齿轮329的轴向安装在所述滑动件312上,所述滚轮3294与所述导向孔3291滚动配合。采用滚轮3294和滚轮轴配合的结构,可以使导向孔3291与滚轮3294相对配合移动时以滚动摩擦的方式运动,保证二者之间运动的顺畅性,降低摩擦带来的部件磨损。
优选的,所述支撑件3293穿过所述导向孔3291。当支撑件3293穿过导向孔3291时,第二从动齿轮329转动后,支撑件3293便与导向件3292在导向孔3291内同步的运动,通过支撑件3293保证磁性件11的径向运动,结构简单、可靠。
本发明还提供了一种检测装置,包括所述圆盘芯片磁性微粒移动装置。由于所述移动装置的具体结构、功能原理以及技术效果均在前文详述,相关内容在此便不再赘述。任何有关于所述移动装置的技术内容,均可参考前文记载。
本发明还提供了一种圆盘芯片1高通量磁性微粒的移动控制方法,根据所述圆盘芯片磁性微粒移动装置,或根据所述检测装置,步骤如下:
利用所述驱动组件32驱动所述导轨组件31运动,使所述磁性件11在所述导轨组件31的驱动下沿着所述圆盘芯片1的径向运动;所述磁性件11通过磁力作用带动位于所述反应室12内的磁性微粒在所述反应室12的内腔中同步运动;利用所述离心控制机构2驱动所述圆盘芯片1定轴转动,所述磁性件11通过磁力作用带动所述磁性微粒在所述反应室12的内腔中沿所述圆盘芯片1的周向同步运动。
在基于该移动装置的移动控制方法中,对于磁性微粒的径向控制采用了导轨组件31和驱动组件32构成的径向控制机构3实现。驱动组件32用来驱动导轨组件31直线移动,并通过导轨组件31的直线控制效果间接的控制磁性件11沿着圆盘芯片1的径向移动,这种方式能够在驱动组件32间接控制的过程中提高磁性件11的移动精度,从而提高磁性微粒的移动精度。与之配合的,对于磁性微粒的周向控制采用了离心控制机构2实现,离心控制机构2能够驱动圆盘芯片1定轴转动,与径向控制机构3相配合后,可以通过对磁性件11的控制间接控制磁性微粒在圆盘芯片1上连续的周向和径向的移动,克服了现有技术中无法连续对磁性微粒周向和径向移动的难点,并同时提高了磁性微粒移动的精度,对检测结果有所保障,而且能实现多个反应室内的磁性微粒同步高精度移动。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (16)

  1. 一种圆盘芯片磁性微粒移动装置,其特征在于,包括:
    具有至少一个反应室的圆盘芯片;
    离心控制机构,所述圆盘芯片安装在所述离心控制机构上,以能够在所述离心控制机构的驱动下沿自身的中轴线定轴转动;
    径向控制机构,所述径向控制机构包括驱动组件和至少一个导轨组件;所述导轨组件的导向轨迹沿着所述圆盘芯片的径向设置,所述驱动组件与所述导轨组件驱动连接;
    磁性件,所述磁性件安装在所述导轨组件上,以在所述导轨组件的驱动下沿着所述圆盘芯片的径向往复运动;
    所述离心控制机构和所述径向控制机构相对固定。
  2. 根据权利要求1所述的圆盘芯片磁性微粒移动装置,其特征在于,所述离心控制机构包括第一电机、第一转轴和芯片安装结构;
    所述第一电机的驱动端与所述第一转轴的一端驱动连接,所述第一转轴的另一端与所述芯片安装结构连接;所述圆盘芯片安装在所述芯片安装结构上,与所述第一转轴同轴设置。
  3. 根据权利要求1或2所述的圆盘芯片磁性微粒移动装置,其特征在于,所述芯片安装结构包括安装盘以及沿着所述安装盘的中轴线设置的固定轴,所述安装盘与所述第一转轴传动连接且二者的中轴线重合,所述圆盘芯片的中心轴孔与所述固定轴套接装配;
    所述圆盘芯片与所述安装盘相对定位。
  4. 根据权利要求1-3中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述安装盘上设置有至少一个定位柱,所述圆盘芯片上设置有与该定位柱对应的定位孔;
    所述圆盘芯片与所述安装盘通过所述定位柱和所述定位孔相对定位。
  5. 根据权利要求1-4中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述固定轴的侧壁设置有至少一个定位凸起,所述中心轴孔的内孔壁设置有与该定位凸起对应的定位槽;
    所述圆盘芯片与所述安装盘通过所述定位凸起和所述定位槽相对定位。
  6. 根据权利要求1-5中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述反应室包括沿所述圆盘芯片的周向设置的第一反应腔体、第二反应腔体和第三反应腔体;
    所述第一反应腔体和所述第二反应腔体之间通过第一转移通道连通,所述第二反应腔体和所述第三反应腔体之间通过第二转移通道连通;所述第一反应腔体、所述第二反应腔体和所述第三反应腔体上均设置有孔。
  7. 根据权利要求1-6中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述导轨组件包括导轨和滑动件;所述滑动件与所述导轨直线滑动装配,所述磁性件安装在所述滑动件上,所述驱动组件与所述滑动件驱动连接。
  8. 根据权利要求1-7中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述驱动组件包括第二电机、第一齿轮组和至少一个齿条;所述第二电机的驱动端与所述第一齿轮组的主动端驱动连接,所述第一齿轮组的从动端与所述齿条驱动连接;
    所述齿条与所述滑动件连接。
  9. 根据权利要求1-8中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述第 一齿轮组包括第一主动齿轮、第一中间齿轮、第二中间齿轮和至少一个第一从动齿轮;所述第一中间齿轮和所述第二中间齿轮同轴同步转动装配,所述第一中间齿轮的最高点低于所述第一从动齿轮的最低点;
    所述第二电机的驱动端通过所述第一主动齿轮与所述第一中间齿轮驱动连接,所述第二中间齿轮通过所述第一从动齿轮与所述齿条驱动连接。
  10. 根据权利要求1-9中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述驱动组件包括第三电机、第二齿轮组和至少一个连杆;所述第三电机的驱动端与所述第二齿轮组的主动端驱动连接,所述第二齿轮组的从动端通过所述连杆与所述滑动件铰接驱动。
  11. 根据权利要求1-10中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述第二齿轮组包括第二主动齿轮、第三中间齿轮和第四中间齿轮;所述第三中间齿轮和所述第四中间齿轮同轴同步转动装配,所述第三中间齿轮的最高点低于所述连杆的最低点;
    所述第三电机的驱动端通过所述第二主动齿轮与所述第三中间齿轮驱动连接,所述第四中间齿轮通过所述连杆与所述滑动件铰接驱动。
  12. 根据权利要求1-11中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述驱动组件包括第四电机、第三主动齿轮、具有至少一个导向孔的第二从动齿轮和与所述导向孔配合的导向件;
    所述第四电机的驱动端与所述第三主动齿轮驱动连接,所述第三主动齿轮与所述第二从动齿轮啮合;所述第二从动齿轮与所述圆盘芯片同轴设置,所述导向孔呈弧形且自该导向孔一端至另一端的方向上与所述第二从动齿轮圆心的距离逐渐减小;
    所述导向件与所述滑动件连接并沿着所述导向孔的轨迹滑动配合,所述滑动件在所述导向件的驱动下沿着所述导轨往复运动;所述滑动件上设置有支撑件,所述磁性件安装在所述支撑件上且位于所述第二从动齿轮的上方。
  13. 根据权利要求1-12中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述导向件包括滚轮轴以及装配在所述滚轮轴上的滚轮;所述滚轮轴沿着所述第二从动齿轮的轴向安装在所述滑动件上,所述滚轮与所述导向孔滚动配合。
  14. 根据权利要求1-13中任一项所述的圆盘芯片磁性微粒移动装置,其特征在于,所述支撑件穿过所述导向孔。
  15. 一种检测装置,其特征在于,包括如权利要求1-14中任一项所述的圆盘芯片磁性微粒移动装置。
  16. 一种圆盘芯片高通量磁性微粒的移动控制方法,其特征在于,根据权利要求1-14中任一项所述的圆盘芯片磁性微粒移动装置,或根据权利要求15所述的检测装置,步骤如下:
    利用所述驱动组件驱动所述导轨组件运动,使所述磁性件在所述导轨组件的驱动下沿着所述圆盘芯片的径向运动;所述磁性件通过磁力作用带动位于所述反应室内的磁性微粒在所述反应室的内腔中同步运动;
    利用所述离心控制机构驱动所述圆盘芯片定轴转动,所述磁性件通过磁力作用带动所述磁性微粒在所述反应室的内腔中沿所述圆盘芯片的周向同步运动。
PCT/CN2020/111578 2019-08-30 2020-08-27 圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法 WO2021037099A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910818521.0A CN110420604A (zh) 2019-08-30 2019-08-30 圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法
CN201921450609.3U CN210675123U (zh) 2019-08-30 2019-08-30 圆盘芯片磁性微粒移动装置以及检测装置
CN201910818521.0 2019-08-30
CN201921450609.3 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021037099A1 true WO2021037099A1 (zh) 2021-03-04

Family

ID=74684617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111578 WO2021037099A1 (zh) 2019-08-30 2020-08-27 圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法

Country Status (1)

Country Link
WO (1) WO2021037099A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080035579A1 (en) * 2006-08-11 2008-02-14 Samsung Electronics Co., Ltd. Centrifugal magnetic position control device, disk-shaped micro fluidic system including the same, and method of operating the compact disk-shaped micro fluidic system
CN101893640A (zh) * 2009-05-18 2010-11-24 霍夫曼-拉罗奇有限公司 用于自动分析样本的基于离心力的微流体系统和方法
CN105675857A (zh) * 2014-10-31 2016-06-15 绍兴普施康生物科技有限公司 一种离心式磁性粒子操纵与检测装置及其运作方法
CN107167435A (zh) * 2017-04-21 2017-09-15 江苏大学 基于微流控光度检测的离心式分离装置与方法
CN109030813A (zh) * 2018-07-19 2018-12-18 东莞东阳光科研发有限公司 一种化学发光免疫检测微流控芯片、检测仪及检测方法
CN109718877A (zh) * 2019-01-07 2019-05-07 东莞东阳光科研发有限公司 一种离心盘式微流控芯片及其使用方法
CN110016435A (zh) * 2019-05-16 2019-07-16 西安交通大学 一种用于游离核酸提取的离心微流控芯片及其在提取游离核酸的方法
CN110420604A (zh) * 2019-08-30 2019-11-08 东莞东阳光医疗智能器件研发有限公司 圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080035579A1 (en) * 2006-08-11 2008-02-14 Samsung Electronics Co., Ltd. Centrifugal magnetic position control device, disk-shaped micro fluidic system including the same, and method of operating the compact disk-shaped micro fluidic system
CN101893640A (zh) * 2009-05-18 2010-11-24 霍夫曼-拉罗奇有限公司 用于自动分析样本的基于离心力的微流体系统和方法
CN105675857A (zh) * 2014-10-31 2016-06-15 绍兴普施康生物科技有限公司 一种离心式磁性粒子操纵与检测装置及其运作方法
CN107167435A (zh) * 2017-04-21 2017-09-15 江苏大学 基于微流控光度检测的离心式分离装置与方法
CN109030813A (zh) * 2018-07-19 2018-12-18 东莞东阳光科研发有限公司 一种化学发光免疫检测微流控芯片、检测仪及检测方法
CN109718877A (zh) * 2019-01-07 2019-05-07 东莞东阳光科研发有限公司 一种离心盘式微流控芯片及其使用方法
CN110016435A (zh) * 2019-05-16 2019-07-16 西安交通大学 一种用于游离核酸提取的离心微流控芯片及其在提取游离核酸的方法
CN110420604A (zh) * 2019-08-30 2019-11-08 东莞东阳光医疗智能器件研发有限公司 圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法

Similar Documents

Publication Publication Date Title
CN107414631B (zh) 大口径非球面机器人偏心式行星抛光装置
CN113814917B (zh) 一种夹持装置
CN110420604A (zh) 圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法
WO2021037099A1 (zh) 圆盘芯片磁性微粒移动装置及检测装置及其移动控制方法
CN210675123U (zh) 圆盘芯片磁性微粒移动装置以及检测装置
CN110174760A (zh) 一种衰减值连续可调的光衰减器
CN102778578B (zh) 一种全自动分析仪器及其机械转臂
JP2557316Y2 (ja) 移動テーブル
CN104006826A (zh) 一种新型合光棱镜调整装置
CN104477401A (zh) 一种磁悬浮飞轮转子带磁装配机构
US11371625B2 (en) Fluid cross-free switching valve
CN107907214B (zh) 可调针孔装置
CN109540798B (zh) 一种双转盘安装结构及带有该安装结构的显微扫描结构
CN115464175B (zh) 一种分段式声衬打孔装置及其控制方法
CN109557329B (zh) 旋转式加样装置及加样方法
CN206960502U (zh) 一种可精准控制的加样装置
CN105626842A (zh) 一种消除齿隙组件
CN103301776B (zh) 一种频率和振幅可调式医用锥形管的摆动装置
CN115217924A (zh) 曲柄滑块凸轮机构
CN214743114U (zh) 曲柄滑块凸轮机构
CN218901615U (zh) 一种摆床用连杆转动机构
CN220730233U (zh) 一种可调节式吸样臂
CN220671458U (zh) 反应转盘单元、孵育盘装置及光激化学发光检测仪
CN221195954U (zh) 丝杆传动装置及系统
CN219169723U (zh) 一种切割装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857182

Country of ref document: EP

Kind code of ref document: A1