WO2021036856A1 - 一种多波长激光器以及波长控制方法 - Google Patents

一种多波长激光器以及波长控制方法 Download PDF

Info

Publication number
WO2021036856A1
WO2021036856A1 PCT/CN2020/109669 CN2020109669W WO2021036856A1 WO 2021036856 A1 WO2021036856 A1 WO 2021036856A1 CN 2020109669 W CN2020109669 W CN 2020109669W WO 2021036856 A1 WO2021036856 A1 WO 2021036856A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sub
switch
wavelength
length
Prior art date
Application number
PCT/CN2020/109669
Other languages
English (en)
French (fr)
Inventor
赵壮
孙旭
赵臻青
曾金林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021036856A1 publication Critical patent/WO2021036856A1/zh
Priority to US17/680,851 priority Critical patent/US20220181845A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06253Pulse modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0657Mode locking, i.e. generation of pulses at a frequency corresponding to a roundtrip in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0601Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising an absorbing region
    • H01S5/0602Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising an absorbing region which is an umpumped part of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers

Definitions

  • This application relates to the field of optical communications, and in particular to a multi-wavelength laser and a wavelength control method.
  • the multi-wavelength laser light source can make the design of the transmitting end more compact, and the cost and power consumption can be greatly reduced, which is the key to the expansion of the optical fiber communication system.
  • Mode-Locked Laser is a type of multi-wavelength light source.
  • the mode-locked laser is composed of a gain region and a saturable absorption region. The two regions share the same waveguide, and the electrodes corresponding to the two regions are electrically isolated by electrical isolation grooves.
  • the gain region is formed by adding forward current, and the saturable absorption region is applied with reverse bias to control the nonlinear saturable absorption characteristics in the laser cavity of the mode-locked laser, that is, the absorption coefficient of the laser cavity to light. It decreases with the increase of light intensity.
  • the wavelength adjustment of the mode-locked laser is generally achieved through temperature control.
  • the packaging structure of the mode-locked laser includes a thermoelectric cooler (TEC).
  • TEC thermoelectric cooler
  • the change of TEC temperature will affect the operating temperature of the mode-locked laser. For example, as the temperature increases, the wavelength of the optical signal emitted by the mode-locked laser becomes longer.
  • the embodiments of the present application provide a multi-wavelength laser and a wavelength control method, which shortens the time for wavelength adjustment of an optical signal.
  • an embodiment of the present application provides a multi-wavelength laser, including a waveguide, a first electrode, and a second electrode.
  • the first electrode and the second electrode are arranged on the waveguide; the first electrode is electrically isolated from the second electrode; the first electrode includes a plurality of sub-electrodes, and each adjacent two sub-electrodes are electrically isolated; the second electrode is used for loading The current amplifies the optical signal in the waveguide; at least one sub-electrode is used to control the wavelength range of the optical signal in the waveguide by loading current or voltage.
  • the first electrode is composed of a plurality of sub-electrodes
  • the working length of the first electrode is the total length of the sub-electrodes loaded with current or voltage, and different lengths can be selected as required.
  • the change of the working length will make the energy of the optical field in the waveguide different, and then make the temperature in the waveguide different, so that the multi-wavelength laser can emit optical signals in different wavelength ranges.
  • This multi-wavelength laser can adjust the temperature in the waveguide faster, that is, shorten the wavelength control time.
  • the length of each sub-electrode is different. It is possible to make the working length of the first electrode more possible, so that the wavelength adjustable range of the optical signal is larger.
  • the first electrode has a first length
  • the second electrode has a second length.
  • the first length is the sum of the lengths of all the sub-electrodes, and the ratio of the first length to the third length is less than or equal to 12%.
  • the third length is the sum of the first length and the second length. In this embodiment, the longer the first length, the greater the driving current required by the multi-wavelength laser to generate laser light, so this design can reduce the driving power consumption of the multi-wavelength laser.
  • the multi-wavelength laser further includes a controller, a plurality of switches, and a current source.
  • the plurality of switches correspond to a plurality of sub-electrodes one-to-one, and one end of each switch is connected to the sub-electrode corresponding to each switch.
  • the other end of each switch is connected to a current source, the second electrode is connected to the current source, and the controller is used to control each switch.
  • a specific implementation manner of loading current on the sub-electrodes is provided, which improves the practicability of the solution.
  • the multi-wavelength laser further includes a first voltage source
  • the current source includes a first current source
  • the second electrode is connected to the first current source
  • the other end of each switch is connected to the first current source
  • each switch The other end is connected to the first voltage source.
  • the controller is used to control each switch to connect to the first current source or the first voltage source.
  • each switch can be controlled to be connected to a current source or a voltage source, which improves the scalability of the solution.
  • the multi-wavelength laser further includes a plurality of second voltage sources, the plurality of second voltage sources correspond to a plurality of switches one-to-one, the current source includes a first current source, and the second electrode is connected to the first current source , The other end of each switch is connected to the first current source, and the other end of each switch is connected to the second voltage source corresponding to each switch.
  • the controller is used to control each switch to connect to the first current source or the second voltage source corresponding to each switch.
  • each sub-electrode is connected to a different voltage source, which can make the wavelength adjustable range of the optical signal in the waveguide larger.
  • the multi-wavelength laser further includes a plurality of second voltage sources, the plurality of second voltage sources correspond to a plurality of switches, and the current source includes a first current source and a plurality of second current sources.
  • One second current source corresponds to a plurality of switches, the second electrode is connected to the first current source, the other end of each switch is connected to the second current source corresponding to each switch, and the other end of each switch is connected to each switch.
  • the controller is used to control each switch to connect to the second current source corresponding to each switch or the second voltage source corresponding to each switch.
  • the magnitude of the current loaded on each sub-electrode will also affect the wavelength of the optical signal in the waveguide. Connecting different current sources to each sub-electrode can also make the wavelength adjustable range of the optical signal in the waveguide larger.
  • Each sub-electrode can be connected to the corresponding current source or the corresponding voltage source, and the adjustment method is more flexible.
  • the first electrode is arranged on one side of the second electrode, or the first electrode is arranged on both sides of the second electrode, so that the structure of the multi-wavelength laser has more possibilities.
  • the material of the waveguide includes at least one or more of the following: gallium arsenide GaAs, indium gallium arsenide InGaAs, indium phosphide InP semiconductor quantum dots, semiconductor quantum wires or semiconductor quantum wells.
  • gallium arsenide GaAs indium gallium arsenide InGaAs
  • indium phosphide InP semiconductor quantum dots semiconductor quantum wires or semiconductor quantum wells.
  • several waveguide materials are provided, which improves the feasibility of this solution.
  • an embodiment of the present application provides a wavelength control method.
  • the method includes the following steps.
  • the multi-wavelength laser obtains the corresponding relationship between the length of the first electrode and the wavelength of the optical signal in the waveguide, wherein the first electrode is arranged on the waveguide, the first electrode includes a plurality of sub-electrodes, and every two adjacent sub-electrodes are electrically isolated .
  • the multi-wavelength laser selects at least one sub-electrode from the first electrode according to the corresponding relationship.
  • the multi-wavelength laser controls the wavelength range of the optical signal by loading current or voltage on at least one sub-electrode, and amplifies the optical signal by loading current on the second electrode, wherein the second electrode is disposed on the waveguide, and the first electrode and The second electrode is electrically isolated.
  • each sub-electrode is connected to the first current source through a switch corresponding to each sub-electrode, or each sub-electrode is connected to the first voltage source through a switch corresponding to each sub-electrode, by loading at least one sub-electrode
  • the wavelength range of the current or voltage control optical signal includes: controlling the wavelength range of the optical signal by connecting a switch corresponding to at least one sub-electrode to a first current source or a first voltage source.
  • each sub-electrode is connected to a second current source corresponding to each switch through a switch corresponding to each sub-electrode, or each sub-electrode is connected to a second voltage corresponding to each switch through a switch corresponding to each sub-electrode.
  • adjusting the wavelength range of the optical signal by loading a current or voltage on at least one sub-electrode includes: controlling the wavelength range of the optical signal by connecting a switch corresponding to the at least one sub-electrode to a second current source or a second voltage source.
  • the length of each sub-electrode is different.
  • the first electrode has a first length
  • the second electrode has a second length.
  • the first length is the sum of the lengths of all the sub-electrodes, and the ratio of the first length to the third length is less than or equal to 12%.
  • the third length is the sum of the first length and the second length.
  • the first electrode is arranged on one side of the second electrode, or the first electrode is arranged on both sides of the second electrode.
  • the first electrode is composed of multiple sub-electrodes
  • the working length of the first electrode is the total length of the sub-electrodes loaded with current or voltage.
  • the working length controls the wavelength range of the emitted optical signal, effectively shortening the wavelength control time.
  • FIG. 1 is a schematic structural diagram of a first multi-wavelength laser provided by an embodiment of this application;
  • 2 is a schematic diagram of the wavelength of the signal emitted by the multi-wavelength laser changing with the working length of the first electrode;
  • 3 is a schematic diagram of the relationship between the driving current and the proportion of the first electrode
  • FIG. 4 is a schematic structural diagram of a second multi-wavelength laser provided by an embodiment of the application.
  • Fig. 5(a) is a schematic structural diagram of a third multi-wavelength laser provided by an embodiment of the application.
  • Fig. 5(b) is a schematic structural diagram of a fourth multi-wavelength laser provided by an embodiment of the application.
  • Fig. 5(c) is a schematic structural diagram of a fifth multi-wavelength laser provided by an embodiment of the application.
  • Fig. 5(d) is a schematic structural diagram of a sixth multi-wavelength laser provided by an embodiment of the application.
  • Fig. 5(e) is a schematic structural diagram of a seventh multi-wavelength laser provided by an embodiment of the application.
  • Fig. 5(f) is a schematic structural diagram of an eighth multi-wavelength laser provided by an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a wavelength control method provided by an embodiment of the application.
  • the embodiments of the present application provide a multi-wavelength laser and a wavelength control method, which can cause the multi-wavelength laser to emit optical signals in different wavelength ranges by applying voltage or current.
  • the technical solution disclosed in this application can adjust the temperature in the waveguide faster and shorten the time for adjusting the wavelength of the optical signal.
  • the multi-wavelength laser in this application may specifically be a mode-locked laser.
  • the wavelength range can also be referred to as a band.
  • FIG. 1 is a schematic structural diagram of a first multi-wavelength laser provided by an embodiment of the application.
  • the multi-wavelength laser includes a waveguide 101, a first electrode 102, and a second electrode 103.
  • the first electrode 102 and the second electrode 103 are disposed on the waveguide 101, and the first electrode 102 and the second electrode 103 are electrically isolated, that is, there is a gap between the first electrode 102 and the second electrode 103.
  • a complete electrode can be covered on the waveguide 101 first, and then a groove can be formed on the electrode. Then one side of the slot is the first electrode 102, and the other side of the slot is the second electrode 103.
  • the first electrode 102 includes a plurality of sub-electrodes 1021, and every two adjacent sub-electrodes 1021 are electrically isolated.
  • the first electrode 102 can be divided into three sub-electrodes 1021 by opening two grooves on it.
  • the number of the sub-electrodes 1021 in the first electrode 102 is subject to actual applications, and the details are not limited here.
  • the size of the slot between the first electrode 102 and the second electrode 103 and the size of the slot between each sub-electrode 1021 in the first electrode 102 are subject to actual applications, which are not specifically limited here.
  • the first electrode 102 and the second electrode 103 will be further described below.
  • the wavelength range of the optical signal in the waveguide 101 is controlled by loading a current or voltage on at least one of the sub-electrodes 1021 in the first electrode 102, so that the multi-wavelength laser emits optical signals in different wavelength ranges.
  • the working length of the first electrode 102 is the total length of the sub-electrodes 1021 loaded with voltage or current. It should be noted that the difference in the working length of the first electrode 102 will cause the energy of the optical field in the waveguide 101 to be different, which in turn causes the temperature in the waveguide 101 to be different, so that the laser emits optical signals in different wavelength ranges.
  • the second electrode 103 realizes population inversion by loading current to amplify the optical signal in the waveguide 101.
  • multi-wavelength lasers can realize multi-wavelength signal output through mode-locking technology, that is, output pulses with a narrow width in the time domain through mode-locking, thereby presenting multi-wavelength output in the frequency domain.
  • voltage or current can be applied to the first electrode 102 to achieve mode locking.
  • the voltage applied to the first electrode 102 may specifically refer to a reverse bias voltage to achieve the saturable absorption characteristic of the waveguide 101, that is, the absorption coefficient of the waveguide 101 for light increases with the increase of light intensity. Decrease, and stop when the absorption reaches saturation, so that the multi-wavelength laser realizes mode-locking.
  • current is applied to the first electrode 102, and the multi-wavelength laser realizes mode locking due to the nonlinear effect of four-wave mixing.
  • the first electrode corresponds to the saturable absorption region of the mode-locked laser
  • the second electrode corresponds to the gain region of the mode-locked laser
  • Fig. 2 is a schematic diagram of the wavelength of the signal emitted by the multi-wavelength laser varying with the working length of the first electrode. It can be seen from FIG. 2 that the center wavelength of the transmitted signal changes with the change of the working length of the first electrode. Specifically, when the working length of the first electrode 102 is 90 ⁇ m, the central wavelength of the emitted signal is 1532 nm; when the working length of the first electrode 102 is 70 ⁇ m, the central wavelength of the emitted signal is 1537 nm; when the first electrode 102 is working When the length is 50 ⁇ m, the center wavelength of the emitted signal is 1550nm.
  • the working length of the first electrode can be a, b, c, a+b, a+c, b+c And there are 7 possibilities for a+b+c.
  • each sub-electrode 1021 may be the same or different, which is not specifically limited here.
  • setting the length of each sub-electrode 1021 to be different can make the working length of the first electrode more possible, so that the wavelength of the emitted signal can be adjusted in a larger range.
  • the driving current required by the multi-wavelength laser to generate laser light is larger.
  • the ratio of the length of the first electrode 102 to the total length of the electrode is less than or equal to 12%, that is, the first electrode The proportion of is less than or equal to 12%.
  • FIG. 3 is a schematic diagram of the relationship between the driving current and the proportion of the first electrode. It can be seen that when the proportion of the first electrode increases from 3% to 12%, the increase in the driving current is relatively small. When the proportion of the first electrode increases from 12% to 15% or even 19%, the driving current increases significantly, that is, a large driving current is required to make the multi-wavelength laser generate laser light. Therefore, the proportion of the first electrode is less than or equal to 12%, which can reduce the driving power consumption of the multi-wavelength laser.
  • the proportion of the first electrode can be designed according to requirements, for example, the proportion of the first electrode is less than or equal to 10%, which is not specifically limited here.
  • the waveguide 101 has a first end face 1011 and a second end face 1012, and the first end face 1011 and the second end face 1012 may be coated with a coating to enhance the resonance in the waveguide 101.
  • the first end surface 1011 can be coated with a highly reflective film with a reflectivity greater than 99%.
  • the optical signal in the waveguide 101 is output by the second end face 1012, and the reflectivity of the film coated on the second end face 1012 can be flexibly designed to adjust the driving current threshold of the laser generated by the multi-wavelength laser and the power of the output optical signal.
  • the second end face 1012 can also be coated with a highly reflective film with a reflectivity greater than 99%.
  • the optical signal in the waveguide 101 is output by the first end face 1011, and the reflectivity of the film coated on the first end face 1011 can be flexibly designed , The specifics are not limited here. It is also understandable that the above-mentioned optical signal is the laser light generated in the waveguide 101.
  • Fig. 4 is a schematic structural diagram of a second multi-wavelength laser provided by an embodiment of the application.
  • the first electrode 102 is arranged on both sides of the second electrode 103.
  • the waveguide 101 is covered with a layer of electrode, two slots are provided on the electrode, and the electrode located in the middle of the two slots is the second electrode 103.
  • the electrodes on both sides of the second electrode 103 are the first electrodes 102.
  • the number of sub-electrodes 1021 of the first electrode 102 can be set as required.
  • the material of the waveguide 101 may include at least one or more of the following: gallium arsenide (GaAs), indium gallium arsenide (InGaAs), indium phosphide (InP) semiconductor quantum dots, semiconductor quantum wires or semiconductor quantum trap. It should be noted that in practical applications, the material of the waveguide 101 includes but is not limited to the materials listed above.
  • FIG. 5(a) is a schematic structural diagram of a third multi-wavelength laser provided by an embodiment of this application.
  • the multi-wavelength laser further includes a controller 104, a plurality of switches 105, and a first current source 106.
  • each switch 105 corresponds to each sub-electrode 1021 in the first electrode 102, one end of each switch 105 is connected to the corresponding sub-electrode 1021, and the other end of each switch 105 is connected to the first current source 106.
  • the current source 106 is connected to the second electrode 103.
  • the controller 104 can load the current of the first current source 106 on the corresponding sub-electrode 1021 by controlling the switch 105 to close.
  • FIG. 5(b) is a schematic structural diagram of a fourth multi-wavelength laser provided by an embodiment of the application.
  • the multi-wavelength laser includes a first current source 106 and a plurality of second current sources (for example, a second current source 107a, a second current source 107b, and a second current source 107c).
  • the number of second current sources is the same as the number of switches 105 and corresponds to each other.
  • One end of each switch 105 is connected to the corresponding sub-electrode 1021, and the other end of each switch 105 is connected to each second current source.
  • the current source 106 is connected to the second electrode 103.
  • the controller 104 can load the current of the second current source on the corresponding sub-electrode 1021 by controlling the switch 105 to close.
  • each sub-electrode 1021 will affect the wavelength of the optical signal in the waveguide 101. Therefore, each sub-electrode is connected to a different second current source, which can make the wavelength adjustable range of the optical signal in the waveguide 101 wider.
  • FIG. 5(c) is a schematic structural diagram of a fifth multi-wavelength laser provided by an embodiment of the application.
  • the multi-wavelength laser includes a first current source 106 and a first voltage source 108.
  • the first current source 106 is connected to the second electrode 103, one end of each switch 105 is connected to the corresponding sub-electrode 1021, and the other end of each switch 105 is connected to the first voltage source 108.
  • the controller 104 can load the voltage of the first voltage source 108 on the corresponding sub-electrode 1021 by controlling the switch 105 to close.
  • FIG. 5(d) is a schematic structural diagram of a sixth multi-wavelength laser provided by an embodiment of this application.
  • the multi-wavelength laser includes a first current source 106 and a first voltage source 108.
  • Each switch 105 is a dual-control switch, that is, each switch 105 can connect its corresponding sub-electrode 1021 to the first current source 106 or connect its corresponding sub-electrode 1021 to the first voltage source 108.
  • one end of each switch 105 is fixedly connected to its corresponding sub-electrode 1021, and the other end of each switch 105 can be switched on two contacts, which are respectively connected to the first current source 106 and the first current source 106.
  • Voltage source 308 is a voltage source
  • the controller 104 can load the current of the first current source 106 or the voltage of the first voltage source 308 on the corresponding sub-electrode 1021 by controlling the switch 105 to switch between the two contacts.
  • the first current source 106 is connected to the second electrode 103.
  • the sub-electrode 1021 can be loaded with current or voltage, which improves the flexibility of the solution. It should be noted that the above two contacts may also be referred to as the other end and the other end respectively.
  • FIG. 5(e) is a schematic structural diagram of a seventh multi-wavelength laser provided by an embodiment of this application.
  • the multi-wavelength laser includes a first current source 106, a plurality of second current sources (e.g., a second current source 107a, a second current source 107b, and a second current source 107c), and a plurality of second voltage sources (e.g., a second voltage source 109a).
  • the second voltage source 109b and the second voltage source 109c is consistent with the number of switches 105 and corresponds to each other one to one.
  • Each switch 105 is a dual-control switch, that is, each switch 105 can connect its corresponding sub-electrode 1021 to one of the second current sources, or connect its corresponding sub-electrode 1021 to one of the second voltage sources. Specifically, one end of each switch 105 is fixedly connected to its corresponding sub-electrode 1021, and the other end of each switch 105 can be switched on two contacts, which are respectively connected to one of the second current sources and A second voltage source. The controller 104 can load the current of the second current source or the voltage of the second voltage source on the corresponding sub-electrode 1021 by controlling the switch 105 to switch between the two contacts. In addition, the first current source 106 is connected to the second electrode 103.
  • each sub-electrode 1021 will affect the wavelength of the optical signal in the waveguide 101. Therefore, each sub-electrode is connected to a different second voltage source, so that the wavelength adjustable range of the optical signal in the waveguide 101 is larger, and the sub-electrode 1021 can be loaded with current or voltage, which improves the flexibility of the solution.
  • FIG. 5(f) is a schematic structural diagram of an eighth multi-wavelength laser provided by an embodiment of this application.
  • Sub-electrodes 1021 are provided on both sides of the second electrode 103.
  • the multi-wavelength laser further includes a controller 104, a plurality of switches 105, and a first current source 106.
  • each switch 105 corresponds to each sub-electrode 1021 in the first electrode 102, one end of each switch 105 is connected to the corresponding sub-electrode 1021, and the other end of each switch 105 is connected to the first current source 106.
  • the current source 106 is connected to the second electrode 103.
  • the controller 104 can load the current of the first current source 106 on the corresponding sub-electrode 1021 by controlling the switch 105 to close. It is understandable that the above-mentioned implementation manners of FIGS. 5(b) to 5(e) are also applicable to the structure in which the sub-electrodes 1021 are provided on both sides of the second electrode 103, and the details are not listed here.
  • the manner of loading current or voltage on the sub-electrode 1021 of the first electrode 102 includes but is not limited to the six implementation manners listed above. It can be understood that the above-mentioned controller 104 may specifically be a Microcontroller Unit (MCU).
  • MCU Microcontroller Unit
  • the TEC can also be set in the packaging structure of the multi-wavelength laser of this application. Because the temperature of the TEC will also affect the wavelength of the output optical signal of the multi-wavelength laser, the combination of temperature control will make the wavelength of the multi-wavelength laser of this application adjust The way is more flexible.
  • the energy of the optical field in the waveguide is changed, and the temperature in the waveguide is changed, thereby achieving the purpose of quickly adjusting the wavelength range of the optical signal emitted by the multi-wavelength laser.
  • the wavelength control method corresponding to the laser will be introduced below. It should be noted that the device structure corresponding to the following wavelength control method may be as described in the foregoing device embodiment. However, it is not limited to the multi-wavelength laser described above.
  • FIG. 6 is a schematic flowchart of a wavelength control method provided by an embodiment of the application.
  • the wavelength control method includes the following steps.
  • the corresponding relationship between the length of the first electrode 102 and the wavelength of the optical signal in the waveguide 101 can be determined in advance, and the The wavelength laser stores the corresponding relationship.
  • the multi-wavelength laser can determine the target wavelength of the optical signal to be output, and then determine the length of the first electrode 102 corresponding to the target wavelength according to the corresponding relationship, and then determine the sub-electrode 1021 to be used.
  • Control the wavelength range of the optical signal by applying a current or voltage on the at least one sub-electrode 1021, and amplify the optical signal by applying a current on the second electrode.
  • the controller 104 of the multi-wavelength laser can control the wavelength range of the optical signal by applying a current or voltage on the selected sub-electrode 1021, and amplify the light by applying a current on the second electrode. signal.
  • the controller 104 can control the switch 105 corresponding to the sub-electrode 1021 to close or switch to load current or voltage.
  • FIGS. 5(a)-5(f) please refer to the embodiment shown in FIGS. 5(a)-5(f), which will not be repeated.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种多波长激光器以及波长控制方法。多波长激光器包括波导(101)、第一电极(102)和第二电极(103)。第一电极(102)和第二电极(103)设置于波导(101)上。第一电极(102)与第二电极(103)电隔离。第一电极(102)包括多个子电极(1021),且每两个相邻的子电极(1021)之间电隔离。第二电极(102)用于通过加载电流放大波导(101)内的光信号。至少一个子电极(1021)用于通过加载电流或电压调节波导(101)内光信号的波长。在工作状态下第一电极(102)长度的不同将使得波导(101)内光场能量不同,进而使得波导(101)内温度的不同,从而使得多波长激光器可以发射不同波长范围的光信号。多波长激光器可以更快地调节波导(101)内的温度,缩短了波长调节的时间。

Description

一种多波长激光器以及波长控制方法
本申请要求于2019年08月30日提交中国专利局、申请号为201910816476.5、发明名称为“一种多波长激光器以及波长控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种多波长激光器以及波长控制方法。
背景技术
随着大容量光纤通信网络的发展,用于同时为多个信道提供光源的多波长激光光源的使用越来越多。多波长激光光源可以使发射端的设计更加紧凑,成本和功耗大大降低,是光纤通信系统扩容的关键。
锁模激光器(Mode-Locked Laser,MLL)是多波长光源的一种。锁模激光器由增益区和可饱和吸收区两部分构成,这两部分区域共用同一波导,且这两部分区域分别对应的电极通过电隔离槽实现电气隔离。在工作时,增益区通过加正向电流形成增益,可饱和吸收区通过加反向偏压来控制该锁模激光器的激光腔内的非线性可饱和吸收特性,即激光腔对光的吸收系数随光强的增大而减小,当吸收达到饱和时则停止吸收,使得多波长激光器实现锁模,在时域上输出宽度较窄的脉冲,从而频域上呈现多波长输出。目前一般通过温度控制来实现锁模激光器的波长调节。具体地,锁模激光器的封装结构包括热电制冷器(Thermoelectric Cooler,TEC)。TEC温度的变化将影响锁模激光器的工作温度。例如,随着温度升高,锁模激光器发射得光信号的波长会变长。
然而,由于热量传递需要时间,那么随着TEC温度的变化,锁模激光器的工作温度并不会立即变化,导致对激光器的输出波长进行调节所需的时间较长。
发明内容
本申请实施例提供了一种多波长激光器以及波长控制方法,缩短了对光信号进行波长调节的时间。
第一方面,本申请实施例提供了一种多波长激光器,包括波导、第一电极和第二电极。其中,第一电极和第二电极设置于波导上;第一电极与第二电极电隔离;第一电极包括多个子电极,每相邻两个子电极之间电隔离;第二电极用于通过加载电流放大波导内的光信号;至少一个子电极用于通过加载电流或电压控制波导内光信号的波长范围。
在该实施方式中,第一电极由多个子电极组成,第一电极的工作长度为加载了电流或电压的子电极的总长度,可以根据需要选择不同的长度。工作长度的变化将使得波导内光场能量不同,进而使得波导内温度的不同,从而使得多波长激光器可以发射不同波长范围的光信号。此多波长激光器可实现更快地调节波导内的温度,即缩短了波长控制时间。
在一些可能的实施方式中,每个子电极的长度不同。可以使得第一电极的工作长度存在更多可能,从而光信号的波长可调节范围更大。
在一些可能的实施方式中,第一电极具有第一长度,第二电极具有第二长度,第一长度为所有子电极的长度之和,第一长度与第三长度的比值小于或等于12%,第三长度为第一长度与第二长度之和。在该实施方式中,由于第一长度越长多波长激光器生成激光所需的驱动电流越大,因此这么设计可以降低多波长激光器的驱动功耗。
在一些可能的实施方式中,多波长激光器还包括控制器、多个开关以及电流源,多个开关与多个子电极一一对应,每个开关的一端连接每个开关所对应的子电极,每个开关的另一端连接电流源,第二电极连接电流源,控制器用于控制每个开关。在该实施方式中,提供了一种在子电极上加载电流的具体实现方式,提高了本方案的实用性。
在一些可能的实施方式中,多波长激光器还包括第一电压源,电流源包括第一电流源,第二电极连接第一电流源,每个开关的另一端连接第一电流源,每个开关的又一端连接第一电压源。控制器用于控制每个开关连通第一电流源或第一电压源。在该实施方式中,可以控制每个开关与电流源或电压源连接,提高了本方案的扩展性。
在一些可能的实施方式中,多波长激光器还包括多个第二电压源,多个第二电压源与多个开关一一对应,电流源包括第一电流源,第二电极连接第一电流源,每个开关的另一端连接第一电流源,每个开关的又一端连接每个开关对应的第二电压源。控制器用于控制每个开关连通第一电流源或每个开关对应的第二电压源。在该实施方式中,由于每个子电极上加载电压的大小会影响波导内光信号的波长,那么每个子电极连接不同电压源,可以使得波导内光信号的波长可调范围更大。
在一些可能的实施方式中,多波长激光器还包括多个第二电压源,多个第二电压源与多个开关一一对应,电流源包括第一电流源以及多个第二电流源,多个第二电流源与多个开关一一对应,第二电极连接第一电流源,每个开关的另一端连接每个开关对应的第二电流源,每个开关的又一端连接每个开关对应的第二电压源。控制器用于控制每个开关连通每个开关对应的第二电流源或每个开关对应的第二电压源。在该实施方式中,每个子电极上加载电流的大小也会影响波导内光信号的波长,那么每个子电极连接不同电流源,也可以使得波导内光信号的波长可调范围更大,并且每个子电极既可以连接与之对应的电流源,也可以连接与之对应的电压源,调节方式更灵活。
在一些可能的实施方式中,第一电极设置于第二电极的其中一侧,或,第一电极设置于第二电极的两侧,使得该多波长激光器的结构具有更多的可能性。
在一些可能的实施方式中,波导的材料包括如下的至少一种或多种:砷化镓GaAs,铟镓砷InGaAs,磷化铟InP的半导体量子点、半导体量子线或半导体量子阱。在该实施方式中,提供了几种波导的材料,提高了本方案的可实现性。
第二方面,本申请实施例提供了一种波长控制方法。该方法包括如下步骤。
多波长激光器获取第一电极的长度与波导内光信号的波长之间的对应关系,其中,第一电极设置于波导上,第一电极包括多个子电极,每相邻两个子电极之间电隔离。之后,多波长激光器根据对应关系从第一电极中选择至少一个子电极。进而,多波长激光器通过在至少一个子电极上加载电流或电压控制光信号的波长范围,并通过在第二电极上加载电流放大光信号,其中,第二电极设置于波导上,第一电极与第二电极电隔离。
在一些可能的实施方式中,每个子电极通过每个子电极对应的开关连接第一电流源,或,每个子电极通过每个子电极对应的开关连接第一电压源,通过在至少一个子电极上加载电流或电压控制光信号的波长范围包括:通过将至少一个子电极对应的开关连接第一电流源或第一电压源控制光信号的波长范围。
在一些可能的实施方式中,每个子电极通过每个子电极对应的开关连接每个开关对应的第二电流源,或,每个子电极通过每个子电极对应的开关连接每个开关对应的第二电压源,通过在至少一个子电极上加载电流或电压调节光信号的波长范围包括:通过将至少一个子电极对应的开关连接第二电流源或第二电压源控制光信号的波长范围。
在一些可能的实施方式中,每个子电极的长度不同。
在一些可能的实施方式中,第一电极具有第一长度,第二电极具有第二长度,第一长度为所有子电极的长度之和,第一长度与第三长度的比值小于或等于12%,第三长度为第一长度与第二长度之和。
在一些可能的实施方式中,第一电极设置于第二电极的其中一侧,或,第一电极设置于第二电极的两侧。
波导的材料见第一方面的具体描述,在此不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:第一电极由多个子电极组成,第一电极的工作长度为加载了电流或电压的子电极的总长度,通过改变第一电极的工作长度来控制发射的光信号的波长范围,有效缩短了波长控制时间。
附图说明
图1为本申请实施例提供的第一种多波长激光器的结构示意图;
图2为多波长激光器发射信号的波长随第一电极的工作长度变化的示意图;
图3为驱动电流与第一电极占比的关系示意图;
图4为本申请实施例提供的第二种多波长激光器的结构示意图;
图5(a)为本申请实施例提供的第三种多波长激光器的结构示意图;
图5(b)为本申请实施例提供的第四种多波长激光器的结构示意图;
图5(c)为本申请实施例提供的第五种多波长激光器的结构示意图;
图5(d)为本申请实施例提供的第六种多波长激光器的结构示意图;
图5(e)为本申请实施例提供的第七种多波长激光器的结构示意图;
图5(f)为本申请实施例提供的第八种多波长激光器的结构示意图;
图6为本申请实施例提供的一种波长控制方法的流程示意图。
具体实施方式
本申请实施例提供了多波长激光器以及波长控制方法,可以通过加载电压或电流的方式使得多波长激光器发射不同波长范围的光信号。相对于TEC温度控制技术,本申请揭示的技术方案可更快地调节波导内的温度,缩短了对光信号进行波长调节的时间。需要说明的是,本申请中的多波长激光器具体可以是锁模激光器。波长范围也可以称为波段。
需要说明的是,本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”和“第四”等用于区别类似的对象,而非限定特定的顺序或先后次序。应理解,上述术语在适当情况下可以互换,以便在本申请描述的实施例能够以除了在本申请描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1为本申请实施例提供的第一种多波长激光器的结构示意图。该多波长激光器包括:波导101、第一电极102以及第二电极103。其中,第一电极102以及第二电极103设置于波导101上,且第一电极102与第二电极103电隔离,即第一电极102与第二电极103之间具有间隙。例如,可以在波导101上先覆盖一层完整的电极,进而在该电极上开槽。那么开槽的一侧为第一电极102,开槽的另一侧为第二电极103。
需要说明的是,该第一电极102包括多个子电极1021,并且每相邻两个子电极1021之间电隔离。例如,如图1所示,可以通过在第一电极102上开两个槽将其分为三个子电极1021。可以理解的是,第一电极102中子电极1021的数量以实际应用为准,具体此处不做限定。此外,第一电极102与第二电极103之间开槽的尺寸以及第一电极102中每个子电极1021之间开槽的尺寸均以实际应用为准,具体此处不做限定。
下面对第一电极102和第二电极103进行进一步说明。具体地,通过在第一电极102中至少一个子电极1021上加载电流或电压来控制波导101内光信号的波长范围,使得多波长激光器发射不同波长范围的光信号。其中,第一电极102的工作长度为加载了电压或电流的子电极1021的总长度。需要说明的是,第一电极102的工作长度的不同会使得波导101内光场能量不同,进而使得波导101内温度的不同,从而使得激光器发射不同波长范围的光信号。第二电极103通过加载电流实现粒子数翻转,以放大波导101内的光信号。
需要说明的是,多波长激光器可以通过锁模技术实现多波长信号输出,即通过锁模在时域上输出宽度较窄的脉冲,从而频域上呈现多波长输出。应理解,在第一电极102上加载电压或电流都可以实现锁模。其中,第一种情况,在第一电极102上加载的电压具体可以是指反向偏压,以实现波导101的可饱和吸收特性,即波导101对光的吸收系数随光强的增大而减小,当吸收达到饱和时则停止吸收,使得多波长激光器实现锁模。另一种情况,第一电极102上加载电流,由于四波混频非线性效应,该多波长激光器实现锁模。
以本申请的多波长激光器是锁模激光器为例,第一电极对应锁模激光器的可饱和吸收区,第二电极对应锁模激光器的增益区。
图2为多波长激光器发射信号的波长随第一电极的工作长度变化的示意图。由图2可以看出,发射信号的中心波长随着第一电极的工作长度的变化而发生改变。具体地,当第一电极102的工作长度为90μm时,发射信号的中心波长为1532nm;当第一电极102的工作长度为70μm时,发射信号的中心波长为1537nm;当第一电极102的工作长度为50μm时,发射信号的中心波长为1550nm。
以图1中所示的三个子电极1021的长度分别记为a、b和c为例,该第一电极的工作 长度可以为a、b、c、a+b、a+c、b+c以及a+b+c共7种可能。假设a=50μm、b=20μm且c=20μm,那么对应图2,当第一电极的工作长度为a+b+c时,发射信号的中心波长为1532nm;当第一电极的工作长度为a+b或a+c时,发射信号的中心波长为1537nm;当第一电极的工作长度为a时,发射信号的中心波长为1550nm。
需要说明的是,每个子电极1021的长度可以相同也可以不同,具体此处不做限定。可选地,将每个子电极1021的长度设置为不同,可以使得第一电极的工作长度存在更多可能,从而使得发射信号的波长可调节的范围更大。
可选地,由于第一电极102的工作长度越长,多波长激光器生成激光所需的驱动电流越大。为了使多波长激光器生成的激光所需的驱动电流较小,第一电极102的长度与电极(包括第一电极102以及第二电极103)总长度的比值小于或等于12%,即第一电极的占比小于或等于12%。
图3为驱动电流与第一电极占比的关系示意图。可以看出,第一电极占比由3%增长到12%的过程中,驱动电流的增幅较小。而当第一电极的占比由12%增大到15%甚至19%的过程中,驱动电流的增幅明显变大,即需要很大的驱动电流才能使多波长激光器生成激光。因此,第一电极的占比小于或等于12%,可以降低多波长激光器的驱动功耗。
需要说明的是,波导101材料的不同会影响驱动电流与第一电极占比的关系。因此,在实际应用中,可以根据需求设计第一电极的占比,例如,第一电极的占比小于或等于10%,具体此处不做限定。
可选地,如图1所示,波导101具有第一端面1011以及第二端面1012,且该第一端面1011和第二端面1012可以采用镀膜处理,用于增强波导101内的谐振。其中,第一端面1011可以镀反射率大于99%的高反射薄膜。波导101内的光信号由第二端面1012输出,而第二端面1012所镀薄膜的反射率可以灵活设计,用于调整该多波长激光器生成激光的驱动电流阈值和输出光信号的功率。需要说明的是,也可以在第二端面1012镀反射率大于99%的高反射薄膜,波导101内的光信号由第一端面1011输出,而第一端面1011所镀薄膜的反射率可以灵活设计,具体此处不做限定。可以理解的还有,上述光信号就是波导101内生成的激光。
图4为本申请实施例提供的第二种多波长激光器的结构示意图。与图1所示多波长激光器不同的是,第一电极102设置在第二电极103的两侧。具体地,波导101上覆盖有一层电极,在该电极上设置两个开槽,位于两个开槽中间的电极为第二电极103。第二电极103两侧的电极即为第一电极102。可根据需要设置第一电极102的子电极1021数量。
可选地,波导101的材料可以包括如下的至少一种或多种:砷化镓(GaAs),铟镓砷(InGaAs),磷化铟(InP)的半导体量子点、半导体量子线或半导体量子阱。需要说明的是,在实际应用中,波导101的材料包括但不限于上述列举的材料。
在实际应用中可以有多种不同的实现方式来调节波导101内光信号的波长,下面分别进行说明。
第一种实现方式:图5(a)为本申请实施例提供的第三种多波长激光器的结构示意图。多波长激光器还包括控制器104、多个开关105以及第一电流源106。其中,每个开关105 与第一电极102中每个子电极1021一一对应,每个开关105的一端连接所对应的子电极1021,每个开关105的另一端连接第一电流源106,第一电流源106连接第二电极103。控制器104通过控制开关105闭合即可在对应的子电极1021上加载第一电流源106的电流。
第二种实现方式:图5(b)为本申请实施例提供的第四种多波长激光器的结构示意图。多波长激光器包括第一电流源106以及多个第二电流源(例如第二电流源107a、第二电流源107b和第二电流源107c)。其中,第二电流源的数量与开关105的数量一致且一一对应,每个开关105的一端连接所对应的子电极1021,每个开关105的另一端连接每个第二电流源,第一电流源106连接第二电极103。控制器104通过控制开关105闭合即可在对应的子电极1021上加载第二电流源的电流。
需要说明的是,每个子电极1021上加载电流的大小会影响波导101内光信号的波长。因此,每个子电极连接不同的第二电流源,可使得波导101内光信号的波长可调范围更大。
第三种实现方式:图5(c)为本申请实施例提供的第五种多波长激光器的结构示意图。多波长激光器包括第一电流源106以及第一电压源108。其中,第一电流源106连接第二电极103,每个开关105的一端连接所对应的子电极1021,每个开关105的另一端连接第一电压源108。控制器104通过控制开关105闭合即可在对应的子电极1021上加载第一电压源108的电压。
第四种实现方式:图5(d)为本申请实施例提供的第六种多波长激光器的结构示意图。多波长激光器包括第一电流源106以及第一电压源108。其中,每个开关105为双控开关,即每个开关105既可以将其对应的子电极1021与第一电流源106连接,也可以将其对应的子电极1021与第一电压源108连接。具体的,每个开关105的一端固定连接与其对应的子电极1021,而每个开关105的另一端可以在两个触点上切换,这两个触点分别连接第一电流源106和第一电压源308。控制器104通过控制开关105在两个触点上切换即可在对应的子电极1021上加载第一电流源106的电流或第一电压源308的电压。另外,第一电流源106连接第二电极103。本实现方式中,子电极1021既可以加载电流也可以加载电压,提高了本方案的灵活性。需要说明的是,上述两个触点也可分别称为另一端,又一端。
第五种实现方式:图5(e)为本申请实施例提供的第七种多波长激光器的结构示意图。多波长激光器包括第一电流源106、多个第二电流源(例如第二电流源107a、第二电流源107b和第二电流源107c)以及多个第二电压源(例如第二电压源109a、第二电压源109b和第二电压源109c)。其中,第二电压源的数量与开关105的数量一致且一一对应。每个开关105为双控开关,即每个开关105既可以将其对应的子电极1021与其中一个第二电流源连接,也可以将其对应的子电极1021与其中一个第二电压源连接。具体的,每个开关105的一端固定连接与其对应的子电极1021,而每个开关105的另一端可以在两个触点上切换,这两个触点分别连接其中一个第二电流源和其中一个第二电压源。控制器104通过控制开关105在两个触点上切换即可在对应的子电极1021上加载第二电流源的电流或第二电压源的电压。另外,第一电流源106连接第二电极103。本实现方式中,每个子电极1021上加载电压的大小会影响波导101内光信号的波长。因此,每个子电极连接不同的第二电压源,使得波导101内光信号的波长可调范围更大,并且子电极1021可加载电流或电压, 提高了本方案的灵活性。
第六种实现方式:图5(f)为本申请实施例提供的第八种多波长激光器的结构示意图。第二电极103的两侧都设置有子电极1021。与图5(a)类似的是,多波长激光器还包括控制器104、多个开关105以及第一电流源106。其中,每个开关105与第一电极102中每个子电极1021一一对应,每个开关105的一端连接所对应的子电极1021,每个开关105的另一端连接第一电流源106,第一电流源106连接第二电极103。控制器104通过控制开关105闭合即可在对应的子电极1021上加载第一电流源106的电流。可以理解的是,上述图5(b)-图5(e)的实现方式同样适用于第二电极103的两侧都设置有子电极1021的结构,具体此处不再一一列举。
在实际应用中,在第一电极102的子电极1021上加载电流或电压的方式包括但不限于上述列举的六种实施方式。可以理解的是,上述控制器104具体可以是微控制单元(Microcontroller Unit,MCU)。
需要说明的是,在本申请多波长激光器的封装结构中同样可以设置TEC,由于TEC的温度也会影响多波长激光器输出光信号的波长,因此结合温度控制将使得本申请多波长激光器的波长调节方式更灵活。
本实施例中,通过改变第一电极的工作长度,使得波导内光场能量发生改变,进而使得波导内温度发生改变,从而达到快速调节多波长激光器发出的光信号的波长范围的目的。
基于上述多波长激光器的介绍,下面对该激光器对应的波长控制方法进行介绍。需要说明的是,下述的波长控制方法对应的装置结构可以如上述装置实施例的描述。但是,并不限于为上述描述的多波长激光器。
图6为本申请实施例提供的一种波长控制方法的流程示意图。在该示例中,波长控制方法包括如下步骤。
601、获取第一电极的长度与波导内光信号的波长之间的对应关系。
本实施例中,由于第一电极102的工作长度会影响波导101内光信号的波长,那么可以预先确定第一电极102的长度与波导101内光信号的波长之间的对应关系,并由多波长激光器存储该对应关系。
需要说明的是,每个子电极1021上加载电流或电压的不同,该对应关系也不同。因此在上述图5(a)-5(f)的示例中,多波长激光器所存储的对应关系都是唯一确定的。
602、根据对应关系从第一电极中选择至少一个子电极1021。
本实施例中,多波长激光器可以确定需要输出的光信号的目标波长,再根据对应关系确定与该目标波长所对应的第一电极102的长度,进而可以确定要使用的子电极1021。
603、通过在上述至少一个子电极1021上加载电流或电压控制光信号的波长范围,并通过在第二电极上加载电流放大光信号。
确定了需要使用的子电极1021后,多波长激光器的控制器104可以通过在被选中的子电极1021上加载电流或电压控制光信号的波长范围,并且通过在第二电极上加载电流放大该光信号。其中,控制器104可以通过控制子电极1021所对应的开关105闭合或切换来加载电流或电压,具体可以参照上述图5(a)-5(f)所示的实施方式,不再赘述。
需要说明的是,以上实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种多波长激光器,其特征在于,包括:波导、第一电极以及第二电极,其中:
    所述第一电极和所述第二电极设置于所述波导上,所述第一电极与所述第二电极电隔离,所述第一电极包括多个子电极,每相邻两个所述子电极之间电隔离;
    所述第二电极用于通过加载电流放大所述波导内的光信号;
    至少一个所述子电极用于通过加载电流或电压控制所述波导内的光信号的波长范围。
  2. 根据权利要求1所述的多波长激光器,其特征在于,每个所述子电极的长度不同。
  3. 根据权利要求1或2所述的多波长激光器,其特征在于,所述第一电极具有第一长度,所述第二电极具有第二长度,所述第一长度为所有所述子电极的长度之和,所述第一长度与第三长度的比值小于或等于12%,所述第三长度为所述第一长度与所述第二长度之和。
  4. 根据权利要求1至3中任一项所述的多波长激光器,其特征在于,所述第一电极设置于所述第二电极的其中一侧,或,所述第一电极设置于所述第二电极的两侧。
  5. 根据权利要求1至4中任一项所述的多波长激光器,其特征在于,所述多波长激光器还包括控制器、多个开关和电流源;其中,所述多个开关与所述多个子电极一一对应,每个所述开关的一端连接每个所述开关所对应的子电极,每个所述开关的另一端连接所述电流源,所述第二电极连接所述电流源,所述控制器用于控制每个所述开关。
  6. 根据权利要求5所述的多波长激光器,其特征在于,所述多波长激光器还包括第一电压源,所述电流源包括第一电流源,所述第二电极连接所述第一电流源,每个所述开关的另一端连接所述第一电流源,每个所述开关的又一端连接所述第一电压源;
    所述控制器用于控制每个所述开关连通所述第一电流源或所述第一电压源。
  7. 根据权利要求5所述的多波长激光器,其特征在于,所述多波长激光器还包括多个第二电压源,所述多个第二电压源与所述多个开关一一对应,所述电流源包括第一电流源,所述第二电极连接所述第一电流源,每个所述开关的另一端连接所述第一电流源,每个所述开关的又一端连接每个所述开关对应的第二电压源;
    所述控制器用于控制每个所述开关连通所述第一电流源或每个所述开关对应的第二电压源。
  8. 根据权利要求5所述的多波长激光器,其特征在于,所述多波长激光器还包括多个第二电压源,所述多个第二电压源与所述多个开关一一对应,所述电流源包括第一电流源以及多个第二电流源,所述多个第二电流源与所述多个开关一一对应,所述第二电极连接所述第一电流源,每个所述开关的另一端连接每个所述开关对应的第二电流源,每个所述开关的又一端连接每个所述开关对应的第二电压源;
    所述控制器用于控制每个所述开关连通每个所述开关对应的第二电流源或每个所述开关对应的第二电压源。
  9. 根据权利要求1至8中任一项所述的多波长激光器,其特征在于,所述波导的材料包括如下的至少一种或多种:砷化镓GaAs,铟镓砷InGaAs,磷化铟InP的半导体量子点、半导体量子线或半导体量子阱。
  10. 一种波长控制方法,其特征在于,所述方法包括:
    获取第一电极的长度与波导内光信号的波长之间的对应关系,所述第一电极设置于所述波导上,所述第一电极包括多个子电极,每相邻两个所述子电极之间电隔离;
    根据所述对应关系从所述第一电极中选择至少一个子电极;
    通过在所述至少一个子电极上加载电流或电压控制所述光信号的波长范围,并通过在第二电极上加载电流放大所述光信号,所述第二电极设置于所述波导上,所述第一电极与所述第二电极电隔离。
  11. 根据权利要求10所述的方法,其特征在于,每个所述子电极通过每个所述子电极对应的开关连接第一电流源,或,每个所述子电极通过每个所述子电极对应的开关连接第一电压源,通过在所述至少一个子电极上加载电流或电压控制所述光信号的波长范围包括:
    通过将所述至少一个子电极对应的开关连接所述第一电流源或所述第一电压源控制所述光信号的波长范围。
  12. 根据权利要求10所述的方法,其特征在于,每个所述子电极通过每个所述子电极对应的开关连接每个所述开关对应的第二电流源,或,每个所述子电极通过每个所述子电极对应的开关连接每个所述开关对应的第二电压源,通过在所述至少一个子电极上加载电流或电压控制所述光信号的波长范围包括:
    通过将所述至少一个子电极对应的开关连接所述第二电流源或所述第二电压源控制所述光信号的波长范围。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,每个所述子电极的长度不同。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一电极具有第一长度,所述第二电极具有第二长度,所述第一长度为所有所述子电极的长度之和,所述第一长度与第三长度的比值小于或等于12%,所述第三长度为所述第一长度与所述第二长度之和。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述第一电极设置于所述第二电极的其中一侧,或,所述第一电极设置于所述第二电极的两侧。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述波导的材料包括如下的至少一种或多种:砷化镓GaAs,铟镓砷InGaAs,磷化铟InP的半导体量子点、半导体量子线或半导体量子阱。
PCT/CN2020/109669 2019-08-30 2020-08-18 一种多波长激光器以及波长控制方法 WO2021036856A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/680,851 US20220181845A1 (en) 2019-08-30 2022-02-25 Multi-wavelength laser and wavelength control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910816476.5A CN112448266B (zh) 2019-08-30 2019-08-30 一种多波长激光器以及波长控制方法
CN201910816476.5 2019-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/680,851 Continuation US20220181845A1 (en) 2019-08-30 2022-02-25 Multi-wavelength laser and wavelength control method

Publications (1)

Publication Number Publication Date
WO2021036856A1 true WO2021036856A1 (zh) 2021-03-04

Family

ID=74683473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109669 WO2021036856A1 (zh) 2019-08-30 2020-08-18 一种多波长激光器以及波长控制方法

Country Status (3)

Country Link
US (1) US20220181845A1 (zh)
CN (1) CN112448266B (zh)
WO (1) WO2021036856A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936480A (ja) * 1995-07-21 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> 連続波長可変半導体レーザ
WO2002063731A2 (en) * 2001-02-02 2002-08-15 Bookham Technology Plc Sampled grating distributed reflector laser
CN102074891A (zh) * 2009-11-18 2011-05-25 住友电气工业株式会社 半导体激光器装置以及控制半导体激光器装置的方法
CN102255239A (zh) * 2010-03-23 2011-11-23 住友电气工业株式会社 可调ld的驱动电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2804838B2 (ja) * 1990-10-11 1998-09-30 国際電信電話株式会社 波長可変半導体レーザ
US5325392A (en) * 1992-03-06 1994-06-28 Nippon Telegraph And Telephone Corporation Distributed reflector and wavelength-tunable semiconductor laser
GB0408415D0 (en) * 2004-04-15 2004-05-19 Univ Cambridge Tech Control device and method
JP5474338B2 (ja) * 2008-11-28 2014-04-16 住友電工デバイス・イノベーション株式会社 半導体レーザのチューニング方法
CN105071219B (zh) * 2015-09-10 2017-12-26 常州工学院 一种可调双波长分布反馈式半导体激光器装置
KR102078573B1 (ko) * 2017-01-19 2020-02-20 한국전자통신연구원 분포 브라그 반사형 파장가변 레이저 다이오드
CN108471046B (zh) * 2018-05-14 2020-08-04 南京大学 一种半导体激光器和控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936480A (ja) * 1995-07-21 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> 連続波長可変半導体レーザ
WO2002063731A2 (en) * 2001-02-02 2002-08-15 Bookham Technology Plc Sampled grating distributed reflector laser
CN102074891A (zh) * 2009-11-18 2011-05-25 住友电气工业株式会社 半导体激光器装置以及控制半导体激光器装置的方法
CN102255239A (zh) * 2010-03-23 2011-11-23 住友电气工业株式会社 可调ld的驱动电路

Also Published As

Publication number Publication date
CN112448266B (zh) 2022-03-25
US20220181845A1 (en) 2022-06-09
CN112448266A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
US6166837A (en) WDM system for reduced SBS
JP4477273B2 (ja) 集積変調器を有する同調可能なレーザダイオードアセンブリ
US6331908B1 (en) Optical system for reduced SBS
EP0911921B1 (en) Laser transmitter with a reduced signal distortion
US20060045145A1 (en) Mode-locked laser diode device and wavelength control method for mode-locked laser diode device
WO2017135381A1 (ja) 光送信器及び光強度モニタ方法
WO2016136183A1 (ja) Soa集積ea-dfbレーザ及びその駆動方法
JP2019083351A (ja) 半導体光増幅器、半導体レーザモジュール、および波長可変レーザアセンブリ
WO2019059066A1 (ja) 半導体光集積素子
TWI379478B (en) Electroabsorption-modulated fabry-perot laser and methods of making the same
JP2003069147A (ja) 半導体レーザー
WO2011048869A1 (ja) 波長可変レーザ装置、光モジュールおよび波長可変レーザの制御方法
US6094447A (en) System and method for reducing wavefront distortion in high-gain diode-pumped laser media
WO2021036856A1 (zh) 一种多波长激光器以及波长控制方法
JP3181294B2 (ja) ダイオードレーザにおいて極めてパルス幅の短いパルスを生成する光qスイッチング
WO2015085544A1 (zh) 一种激光器
US20190058304A1 (en) Mode-locked semiconductor laser capable of changing output-comb frequency spacing
JP2000349713A (ja) 波長可変型光送信器
Srinivasan et al. Hybrid silicon devices for energy-efficient optical transmitters
JP5963266B2 (ja) 波長可変レーザシステム及びその制御方法
US6332048B1 (en) Modulator and method for manufacturing of such a modulator
JP3397511B2 (ja) 偏波変調可能な半導体レーザ
US20240178635A1 (en) Control method and control device of wavelength tunable laser device, and non-transitory storage medium storing control program of wavelength tunable laser device
US20240258766A1 (en) Isolation used for integrated optical single mode lasers
JP2012058432A (ja) 半導体ゲイン領域集積型マッハツェンダ変調器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855952

Country of ref document: EP

Kind code of ref document: A1