WO2021036829A1 - 一种定位、离线指纹库的生成方法及装置 - Google Patents

一种定位、离线指纹库的生成方法及装置 Download PDF

Info

Publication number
WO2021036829A1
WO2021036829A1 PCT/CN2020/109305 CN2020109305W WO2021036829A1 WO 2021036829 A1 WO2021036829 A1 WO 2021036829A1 CN 2020109305 W CN2020109305 W CN 2020109305W WO 2021036829 A1 WO2021036829 A1 WO 2021036829A1
Authority
WO
WIPO (PCT)
Prior art keywords
offline
fingerprint
base station
location
base stations
Prior art date
Application number
PCT/CN2020/109305
Other languages
English (en)
French (fr)
Inventor
苏军峰
李威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20855826.2A priority Critical patent/EP3833122A4/en
Publication of WO2021036829A1 publication Critical patent/WO2021036829A1/zh
Priority to US17/208,792 priority patent/US20210232610A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • G01S5/02521Radio frequency fingerprinting using a radio-map
    • G01S5/02523Details of interaction of receiver with radio-map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • G01S5/02521Radio frequency fingerprinting using a radio-map
    • G01S5/02524Creating or updating the radio-map
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • G01S5/02521Radio frequency fingerprinting using a radio-map
    • G01S5/02524Creating or updating the radio-map
    • G01S5/02525Gathering the radio frequency fingerprints
    • G01S5/02526Gathering the radio frequency fingerprints using non-dedicated equipment, e.g. user equipment or crowd-sourcing

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for generating a positioning and offline fingerprint database.
  • the most commonly used positioning method is the radio fingerprint-printing pattern matching (RFPM) positioning method.
  • RFPM radio fingerprint-printing pattern matching
  • the positioning request includes the terminal The cell information and received signal strength (RSS) reported by the device.
  • the positioning server uses the matching algorithm to compare with the historical positioning data according to the cell information and received signal strength in the positioning request, and then determines the location of the terminal device.
  • the server delivers the determined location of the terminal device to the terminal device.
  • terminal equipment can only be used when the terminal device can be connected to the positioning server.
  • the positioning server cannot obtain the cell information and RSS of the current location of the terminal device. , You cannot locate it.
  • terminal equipment may need to close the data network to prevent the positioning server from determining the positioning result of the terminal equipment, which also causes the terminal equipment to be unable to determine its current location, which in turn restricts the functions of related services and affects users’ Use experience.
  • the terminal device needs to find the historical positioning data that matches the cell information currently collected by the terminal device and the received signal strength based on the locally stored historical positioning data to achieve the positioning required
  • the amount of calculation is large, it takes a long time to obtain the positioning result, the processing resources of the terminal device are occupied too much, and the accuracy of the positioning result is low, which makes the user experience of this kind of users poor.
  • the embodiment of the present invention provides a method and device for generating a positioning and offline fingerprint database.
  • the method for generating a positioning and offline fingerprint database helps solve the problem that the terminal device in the wireless positioning process in the prior art needs to rely on communication with the positioning server to ensure The problem of positioning accuracy.
  • a positioning method in which a terminal device collects a position fingerprint; the position fingerprint includes: a signal identification of a first base station, a cell identification (CellID) of the first base station, and a cell identification (CellID) of the first base station.
  • the position fingerprint includes: a signal identification of a first base station, a cell identification (CellID) of the first base station, and a cell identification (CellID) of the first base station.
  • the offline fingerprints include: the CellID, signal identification and channel parameters of a base station, and a reference point position; the terminal device according to the reference point position in the first offline fingerprint, and the channel parameters of the Q neighboring cell base stations
  • search for multiple second offline fingerprints that meet a first condition and the first condition is that the channel parameter carried in the offline fingerprint is the same as one of the channel parameters of the Q neighboring cell base stations , And the position of the reference point carried in the offline fingerprint is within the search range of the first neighborhood, and the search range of the first neighborhood is a limited area including the
  • the terminal device uses the locally stored offline fingerprint library for positioning, it does not need to match the target location fingerprint based on the serving base station information and multiple neighboring cell base station information in the location fingerprint feature to determine the multiple with higher similarity.
  • the location fingerprint feature only needs to determine the first offline fingerprint based on the CellID of the first base station, and then determine multiple second offline fingerprints based on the position of the reference point in the first offline fingerprint. Furthermore, it can be based on the first offline fingerprint and the second offline fingerprint. Offline fingerprinting to determine the location of a terminal device can reduce the amount of calculation required for terminal device positioning, improve positioning efficiency and positioning accuracy, and there is no need to request information from the positioning server multiple times during the positioning process.
  • the terminal device uses the reference point position in the first offline fingerprint as the center, and determines the search range of the first neighboring cell base station according to the signal coverage of the first base station; In the search range of the first neighboring cell base station, in the offline fingerprint database, find the L1 offline fingerprints whose reference point position is within the search range of the first neighboring cell base station; the terminal device determines in the L1 offline fingerprints A plurality of second offline fingerprints, wherein the plurality of second offline fingerprints are a plurality of offline fingerprints that are the same as the channel parameters of the Q neighboring cell base stations.
  • the signal coverage area determined by the first location and the signal system corresponding to the serving base station in the first serving base station information can effectively determine the second neighboring cell search range, and then can quickly determine the signal coverage area.
  • the second offline fingerprint matched by the neighboring cell base station in the target location fingerprint can effectively determine the second neighboring cell search range, and then can quickly determine the signal coverage area.
  • the offline fingerprint further includes: the grid identifier of the grid where the reference point position is; the terminal device determines that the reference point position in the first offline fingerprint is the first grid of the first grid where the reference point position is. A grid identifier; the terminal device determines K1 offline fingerprints corresponding to the grid identifiers of the R adjacent grids corresponding to the first grid, wherein the R adjacent grids corresponding to the first grid
  • the grid is the search range of the first neighboring cell base station; R and K1 are positive integers; the terminal device determines multiple second offline fingerprints among the K1 offline fingerprints, wherein the multiple second offline fingerprints Are multiple offline fingerprints that are the same as the channel parameters of the Q neighboring cell base stations.
  • the terminal device determines the multiple signal identifiers according to the signal identifiers of each of the Q neighboring cell base stations and the signal identifiers in the multiple second offline fingerprints. Weights corresponding to the second offline fingerprints; further, the terminal device according to the weights corresponding to the first offline fingerprints, the reference point positions of the first offline fingerprints, and the weights corresponding to the plurality of second offline fingerprints, the The position of the reference point of the multiple second offline fingerprints determines the position of the terminal device.
  • the positioning server needs to traverse all the location fingerprint features in the location fingerprint library according to the nearest neighbor matching (k-NearestNeighbor, KNN) algorithm, and determine a method for matching multiple location fingerprint features with higher similarity.
  • KNN nearest neighbor matching
  • the terminal device uses the locally stored offline fingerprint library for positioning, it only needs to determine the matching first offline fingerprint and multiple second offline fingerprints according to the CellID and grid identification of the serving base station. 2.
  • Offline fingerprints Furthermore, the position is determined according to the matched first offline fingerprint and the second offline fingerprint, which can reduce the amount of calculation required for terminal device positioning, and effectively improve the accuracy of offline positioning and the effect of offline positioning.
  • the offline fingerprint library further includes: the relationship between the CellID of the offline fingerprint and the grid identifier of the grid where the offline fingerprint is located; The first offline fingerprint matched by the CellID of the first base station, the first offline fingerprint is searched according to the relationship between the CellID of the offline fingerprint and the grid identifier of the grid where the offline fingerprint is located, wherein the first offline fingerprint
  • the offline fingerprint is an offline fingerprint corresponding to the second grid identifier of the grid where the CellID of the first base station is located.
  • the influence of pseudo base stations on positioning can be effectively removed, and the relationship between the CellID of the offline fingerprint and the grid identifier of the grid where the offline fingerprint is located can ensure that the terminal device is During the positioning process, the validity of the first offline fingerprint search through CellID can improve the positioning speed.
  • the number of the first offline fingerprints is N0, where N0 is greater than 1, and the terminal device according to the reference point position of each offline fingerprint in the N0 first offline fingerprints, and the Q neighbors
  • the terminal device is based on the signal identification and reference point position in the N0 first offline fingerprints, the signal identification and reference point position in the W second offline fingerprints, and the Q in the position fingerprint. +1 signal identification to determine the location of the terminal device. Therefore, the terminal device uses more offline fingerprints to improve the accuracy of positioning.
  • a positioning server receives M location fingerprint features from a terminal device, where the M location fingerprint features include information about M first locations and multiple base stations.
  • the multiple base stations are the M serving base stations in the cells where the M first locations are located, and the N neighboring cell base stations corresponding to the M serving base stations, and the multiple location fingerprint features include the M services
  • the positioning server compares the CellID of the M serving base stations with the signal identification in the information of the multiple base stations Matching with channel parameters to generate P offline fingerprints, where P is greater than M;
  • the multiple offline fingerprints are stored in the offline fingerprint library of the positioning server; each offline fingerprint includes: CellID of a base station , Signal identification and channel parameters, a reference point position; M, N, and P are positive integers; for each offline fingerprint, the CellID included in it is the CellID of any one of the M serving base
  • this embodiment matches the CellIDs of the M serving base stations with the signal identifiers and channel parameters in the information of the multiple base stations , To generate P offline fingerprints, which can effectively process the redundant information in the location fingerprint features, effectively improve the utilization of the information in the location fingerprint features, and improve the accuracy of offline positioning of the terminal device, thereby improving the localization of the terminal device Availability of offline positioning.
  • the positioning server matches the CellID of the serving base station in the multiple location fingerprint features that meet the second condition with the channel parameters of the N neighboring cell base stations corresponding to the M serving base stations, and determines the M CellIDs of N neighboring cell base stations corresponding to each serving base station;
  • the second condition is that the channel format of the serving base station carried in the location fingerprint feature is the same as the channel format of the serving base station carried in the location fingerprint feature corresponding to the neighboring cell base station ,
  • the first location carried in the location fingerprint feature is within the second neighborhood search range;
  • the second neighborhood search range is a limited area including the first location in the location fingerprint feature corresponding to the neighboring cell base station;
  • the positioning server generates P offline fingerprints according to the M location fingerprint characteristics and the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations.
  • the CellID of the serving base station in the multiple location fingerprint features that meet the second condition is matched with the channel parameters of the N neighboring cell base stations corresponding to the M serving base stations, and it is determined that the M serving base stations correspond to
  • the CellID of the N neighboring cell base stations can also locate the information of the neighboring cell base stations as the location fingerprint feature, so the effective information in the location fingerprint feature is extracted, and the location fingerprint feature information can be better used to improve The accuracy of positioning.
  • the positioning server generates M offline fingerprints according to the information of the M first positions and the M serving base stations; the positioning server generates M offline fingerprints according to the M first positions, the M serving base stations Generate M ⁇ N offline fingerprints corresponding to the information of the N neighboring cell base stations and the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations; the P is equal to M ⁇ (N+1).
  • an offline fingerprint can effectively extract the effective information in the location fingerprint feature, make better use of the location fingerprint feature information, improve the accuracy of positioning, and reduce the processing complexity of the positioning server.
  • the location fingerprint feature further includes the location source of the first location; the method further includes:
  • the positioning server determines the positioning source of the M first positions as the positioning source corresponding to the reference point position in the generated offline fingerprint; the positioning server determines the offline fingerprint according to the positioning source of the reference point position in the offline fingerprint
  • the priority of fingerprints is used to screen the offline fingerprints corresponding to the Cellid of the base station; the offline fingerprints corresponding to the Cellid of the same base station in the offline fingerprint library are the offline fingerprints corresponding to the Cellid of the selected base station.
  • the positioning server searches for the information of the P group base stations corresponding to the same CellID according to the CellIDs of the M serving base stations and the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations; Determine P offline fingerprints according to the information of the P group of base stations and the first position in the fingerprint characteristics of the location where the information of each group of base stations is located; wherein, the reference point in each offline fingerprint and the first position in the information of each group of base stations One position is related; the signal identification in each offline fingerprint is related to the signal identification in the information of each group of base stations.
  • the effective information in the location fingerprint feature can be effectively compressed, the size of the offline fingerprint library can be reduced, so that the terminal device can store the offline fingerprint library locally, improve the accuracy of offline positioning of the terminal device, and thereby improve the terminal device Availability of offline positioning locally.
  • the location fingerprint feature further includes the location source of the first location; for each of the multiple location fingerprint features corresponding to the information of each group of base stations, the location fingerprint feature: the location server according to the location The location source of the first location in the fingerprint feature determines the location source priority of the location fingerprint feature; the location server determines the location based on the location source priority of the location fingerprint feature and the signal identifier in the location fingerprint feature The weight corresponding to the location fingerprint feature; the positioning server determines the reference point in the offline fingerprint feature corresponding to the information of the group of base stations according to the weight corresponding to the multiple location fingerprint features and the first location in the multiple location fingerprint features Location; the positioning server determines the signal identification of the base station corresponding to the information of the group of base stations according to the weight corresponding to the location fingerprint feature and the signal identification in the location fingerprint feature.
  • the information in the location fingerprint feature can be effectively extracted according to the location source and the signal identifier, which can improve the reliability of offline fingerprint features, and thereby improve the availability of the terminal device for local offline location.
  • the search range of the second neighboring cell is that the positioning server is centered according to the first location in the location fingerprint feature corresponding to the neighboring cell base station, and based on the location fingerprint feature corresponding to the neighboring cell base station. An area determined by the signal coverage area determined by the signal standard corresponding to the serving base station.
  • the signal coverage area determined by the first location in the location fingerprint feature to be matched and the signal system corresponding to the serving base station in the information of the serving base station can effectively determine the second neighborhood search range, which can then be quickly determined
  • the information of the serving base station that matches the channel parameters of the neighboring cell base station in the location fingerprint to be matched realizes the effective use of the information of the neighboring cell base station.
  • the channel parameters of the first neighboring cell base station correspond to the CellIDs of K0 serving base stations that meet the second condition, and the first neighboring cell base station is one of the N neighboring cell base stations;
  • the server determines the centers of the K0 first positions according to the K0 first positions; K0 is a positive integer; the positioning server determines the center and the Euclidean distance between the K0 first positions and the center CellID of the serving base station matching the channel parameters of the first neighboring cell base station; wherein the CellID of the serving base station matching the channel parameters of the first neighboring cell base station is the serving base station corresponding to the first location closest to the center The CellID.
  • the serving base station that matches the channel parameter of the first neighboring cell base station is screened out, and the channel parameter of the first neighboring cell base station corresponds to K0.
  • the CellID of a serving base station that meets the second condition cannot determine the CellID of the first neighboring cell base station.
  • the offline fingerprint further includes: a grid identification of the grid where the reference point position is located.
  • the terminal device can improve the searching efficiency of searching the first offline fingerprint and the second offline fingerprint during the positioning process, and improve the positioning speed.
  • the positioning server determines the N1 offline fingerprints in each grid according to the grid identifier of the grid where the reference point position is located; the positioning server determines the N1 offline fingerprints in each grid according to the N1 offline fingerprints.
  • N1 offline fingerprints; N1 is a positive integer; wherein the offline fingerprints after grid screening are the offline fingerprints corresponding to the grid; the CellID and the network fingerprints in the offline fingerprints before grid screening are The relationship between the grid identifier of the grid where the offline fingerprints before grid screening is located is stored with the offline fingerprint library.
  • the above technical solution can effectively remove the influence of the pseudo base station on the positioning by screening the offline fingerprints in the grid, and can ensure the effectiveness of the first offline fingerprint search by the CellID during the positioning process of the terminal device, and improve the positioning speed.
  • an embodiment of the present application provides a positioning device, including:
  • the collection module is used to collect location fingerprints;
  • the location fingerprints include: the signal identification of the first base station, the cell identification CellID of the first base station, the signal identifications of the Q neighboring cell base stations of the first base station, and the Q Channel parameters of two neighboring cell base stations;
  • the first base station is the serving base station accessed by the terminal device;
  • Q is an integer greater than 1;
  • the processing module is configured to search for a first offline fingerprint matching the CellID of the first base station in an offline fingerprint library through the CellID of the first base station; the offline fingerprint library is stored in the terminal device, and the offline fingerprint
  • the library is used to manage multiple offline fingerprints; each offline fingerprint includes: the CellID, signal identification and channel parameters of a base station, and a reference point position; according to the reference point position in the first offline fingerprint, and the Q number
  • the channel parameters of neighboring cell base stations are searched in the offline fingerprint library for multiple second offline fingerprints that meet the first condition, and the first condition is the channel parameters carried in the offline fingerprints and the Q neighboring cell base stations
  • One of the channel parameters is the same, and the position of the reference point carried in the offline fingerprint is within the search range of the first neighboring cell, and the search range of the first neighboring cell is a limited area including the position of the reference point in the first offline fingerprint Based on the signal identification and reference point location in the first offline fingerprint, the signal identification and reference point location in the multiple second offline fingerprints, and the
  • the processing module is specifically configured to: take the position of the reference point in the first offline fingerprint as the center, and determine the first neighboring cell base station according to the signal coverage of the first base station Search range; according to the search range of the first neighboring cell base station, in the offline fingerprint database, look for L1 offline fingerprints whose reference point positions are within the search range of the first neighboring cell base station; L1 is a positive integer; Among the L1 offline fingerprints, a plurality of second offline fingerprints are determined, wherein the plurality of second offline fingerprints are a plurality of offline fingerprints that are the same as the channel parameters of the N neighboring cell base stations.
  • the offline fingerprint further includes: a grid identifier of the grid where the reference point position is; the processing module is specifically configured to: determine the first offline fingerprint where the reference point position is The first grid identifier of a grid; K1 offline fingerprints corresponding to the grid identifiers of the R adjacent grids corresponding to the first grid are determined, wherein the R phases corresponding to the first grid
  • the neighboring grid is the search range of the first neighboring cell base station; R and K1 are positive integers; among the K1 offline fingerprints, a plurality of second offline fingerprints are determined, wherein the plurality of second offline fingerprints are related to the Multiple offline fingerprints with the same channel parameters of the Q neighboring cell base stations.
  • the offline fingerprint library further includes: the relationship between the CellID of the offline fingerprint and the grid identifier of the grid where the offline fingerprint is located; the processing module is specifically configured to: if the offline fingerprint library is determined If there is no first offline fingerprint matching the CellID of the first base station, the first offline fingerprint is searched according to the relationship between the CellID of the offline fingerprint and the grid identifier of the grid where the offline fingerprint is located, where The first offline fingerprint is an offline fingerprint corresponding to the second grid identifier of the grid where the CellID of the first base station is located.
  • the processing module is specifically configured to: according to the signal identifier of each neighboring cell base station in the signal identifiers of the Q neighboring cell base stations, and the signal in the plurality of second offline fingerprints
  • the identification matching determines the weights corresponding to the plurality of second offline fingerprints; further, the terminal device according to the weights corresponding to the first offline fingerprints, the reference point positions of the first offline fingerprints, and the plurality of second offline fingerprints
  • the weights corresponding to the fingerprints and the positions of the reference points of the plurality of second offline fingerprints determine the position of the terminal device.
  • N0 first offline fingerprints there are N0 first offline fingerprints, where N0 is greater than 1, and the processing module is further configured to: according to the reference point position of each offline fingerprint in the N0 first offline fingerprints , And the channel parameters of the N neighboring cell base stations, in the offline fingerprint database, search for W second offline fingerprints that meet the first condition; W is a positive integer; based on the N0 first offline fingerprints The signal identification and reference point location, the signal identification and reference point location in the W second offline fingerprints, and the N+1 signal identifications in the location fingerprint determine the location of the terminal device.
  • an embodiment of the present application provides a device for generating an offline fingerprint database, including:
  • the receiving module is configured to receive M location fingerprint features from the terminal device, where the M location fingerprint features include a total of M first locations and information of multiple base stations, and the multiple base stations are the M-th M serving base stations in a cell where a location is located, and N neighboring cell base stations corresponding to the M serving base stations, the multiple location fingerprint features include cell IDs, signal IDs, and channel parameters of the M serving base stations , And the signal identifiers and channel parameters of the N neighboring cell base stations.
  • the processing module is configured to match the CellIDs of the M serving base stations with the signal identifiers and channel parameters in the information of the multiple base stations to generate P offline fingerprints, where P is greater than M; the multiple offline fingerprints Stored in the offline fingerprint library of the positioning server; each offline fingerprint includes: CellID, signal identification and channel parameters of a base station, a reference point position; M, N, P are positive integers; for each offline fingerprint , The CellID included is the CellID of any one of the M serving base stations, and the reference point position is related to the first position corresponding to the CellID carried in the offline fingerprint.
  • the sending module is used to send the offline fingerprint library to the terminal device.
  • the processing module is specifically configured to: compare the CellID of the serving base station in the multiple location fingerprint characteristics that meet the second condition with the channel parameters in the N neighboring cell base stations corresponding to the M serving base stations Matching is performed to determine the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations; the second condition is that the channel format of the serving base station carried in the location fingerprint feature is carried in the location fingerprint feature corresponding to the neighboring cell base station The channel systems of the serving base stations are the same, and the first location carried in the location fingerprint feature is within the second neighborhood search range; the second neighborhood search range includes the first location in the location fingerprint feature corresponding to the neighboring base station A limited area of a location; generating P offline fingerprints according to the M location fingerprint characteristics and the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations.
  • the processing module is specifically configured to: generate M offline fingerprints according to the information of the M first positions and the M serving base stations; according to the M first positions, The information of the N neighboring cell base stations corresponding to the M serving base stations and the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations generate M ⁇ N offline fingerprints; the P is equal to M ⁇ (N+1) .
  • the location fingerprint feature further includes the location source of the first location; the processing module is further configured to: determine the location source of the M first locations as correspondingly generated offline fingerprints The location source of the reference point position in the offline fingerprint; the priority of the offline fingerprint is determined according to the location source of the reference point position in the offline fingerprint, and then the offline fingerprint corresponding to the Cellid of the base station is screened; the same in the offline fingerprint library The offline fingerprint corresponding to the Cellid of the base station is the offline fingerprint corresponding to the Cellid of the selected base station.
  • the processing module is specifically configured to: according to the CellIDs of the M serving base stations and the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations, search for P group base stations corresponding to the same CellID ⁇ ; According to the information of the P group of base stations and the first position in the fingerprint characteristics of the location where the information of each group of base stations is located, P offline fingerprints are determined; wherein, the reference point in each offline fingerprint and the information of each group of base stations The first position in is related; the signal identification in each offline fingerprint is related to the signal identification in the information of each group of base stations.
  • the location fingerprint feature further includes the location source of the first location; for each of the multiple location fingerprint features corresponding to each group of base station information: the processing module, specifically Used to: determine the location source priority of the location fingerprint feature according to the location source of the first location in the location fingerprint feature; according to the location source priority of the location fingerprint feature, and the signal in the location fingerprint feature Identification, determine the weight corresponding to the location fingerprint feature; according to the weights corresponding to the multiple location fingerprint features, and the first location in the multiple location fingerprint features, determine the offline fingerprint feature corresponding to the information of the group of base stations The location of the reference point; according to the weight corresponding to the location fingerprint feature and the signal identification in the location fingerprint feature, the signal identification of the base station corresponding to the information of the group of base stations is determined.
  • the search range of the second neighboring cell is that the positioning server is centered according to the first location in the location fingerprint feature corresponding to the neighboring cell base station, and the serving base station is based on the first serving base station information.
  • the channel parameters of the first neighboring cell base station correspond to the CellIDs of K0 serving base stations that meet the second condition, and the first neighboring cell base station is one of the N neighboring cell base stations, so
  • the processing module is specifically configured to: determine the center of the K0 first positions according to the K0 first positions; determine the center and the Euclidean distance between the K0 first positions and the center CellID of the serving base station matching the channel parameters of the first neighboring cell base station; wherein the CellID of the serving base station matching the channel parameters of the first neighboring cell base station is the serving base station corresponding to the first location closest to the center
  • the CellID; K0 is a positive integer.
  • the offline fingerprint further includes: a grid identification of the grid where the reference point position is located.
  • the processing module is further configured to: determine N1 offline fingerprints in each grid according to the grid identification of the grid where the reference point position is located; according to the N1 offline fingerprints The signal identification in the screen, the N1 offline fingerprints are screened; the screened offline fingerprints are the offline fingerprints corresponding to the grid; the CellID in the offline fingerprints before the grid screening and the offline fingerprints before the grid screening The relationship between the grid identifier of the grid and the offline fingerprint library is stored.
  • an embodiment of the present application provides a communication device, the device including a processor, configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions and/or data.
  • the memory is coupled with the processor, and when the processor executes the program instructions stored in the memory, the method described in the first aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the device may be a network device and so on. In a possible device, the device includes:
  • Memory used to store program instructions
  • the communication interface is used to collect location fingerprints.
  • the processor is configured to use the CellID of the first base station to search for a first offline fingerprint matching the CellID of the first base station in an offline fingerprint library; the offline fingerprint library is stored in the terminal device, and the offline fingerprint
  • the library is used to manage multiple offline fingerprints; each offline fingerprint includes: the CellID, signal identification and channel parameters of a base station, and a reference point position; according to the reference point position in the first offline fingerprint, and the Q number
  • the channel parameters of neighboring cell base stations are searched in the offline fingerprint library for multiple second offline fingerprints that meet the first condition, and the first condition is the channel parameters carried in the offline fingerprints and the Q neighboring cell base stations
  • One of the channel parameters is the same, and the position of the reference point carried in the offline fingerprint is within the search range of the first neighboring cell, and the search range of the first neighboring cell is a limited area including the position of the reference point in the first offline fingerprint Based on the signal identification and reference point location in the first offline fingerprint, the signal identification and reference point location in the multiple second offline fingerprints, and the
  • an embodiment of the present application provides a communication device, the device includes a processor, and is configured to implement the method described in the second aspect.
  • the device may also include a memory for storing instructions and/or data.
  • the memory is coupled with the processor, and when the processor executes the program instructions stored in the memory, the method described in the second aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the device may be a terminal device and so on.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to match the CellIDs of the M serving base stations with the signal identifiers and channel parameters in the information of the multiple base stations to generate P offline fingerprints, where P is greater than M; the multiple offline fingerprints Are stored in the offline fingerprint library; each offline fingerprint includes: CellID, signal identification and channel parameters of a base station, a reference point position; M, N, and P are positive integers; for each offline fingerprint, The CellID included is the CellID of any one of the M serving base stations, and the position of the reference point is related to the first position corresponding to the CellID carried in the offline fingerprint.
  • the communication interface uses the receiving function to receive M location fingerprint features from the terminal device, and uses the sending function to send the offline fingerprint library of the positioning server to the terminal device.
  • an embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method executed by the positioning server in the first aspect.
  • an embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method executed by the terminal device in the first aspect.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a computer, cause the computer to execute the method executed by the positioning server in the first aspect.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a computer, cause the computer to execute the method executed by the terminal device in the first aspect.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory, configured to implement the method executed by the positioning server in the first aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory, configured to implement the method executed by the terminal device in the first aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • an embodiment of the present application provides a system including the communication device described in the third aspect and the communication device described in the fourth aspect.
  • an embodiment of the present application provides a system including the communication device described in the fifth aspect and the communication device described in the sixth aspect.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the application
  • Figure 2 is a schematic diagram of a cell provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a method for generating an offline fingerprint database provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of a positioning method provided by an embodiment of the application.
  • FIG. 5a is a schematic diagram of a second neighborhood search range provided by an embodiment of this application.
  • FIG. 5b is a schematic diagram of a cell provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a search range of a first neighboring cell provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a grid provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a device for generating an offline fingerprint database provided in an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a positioning device provided in an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided in an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a communication device provided in an embodiment of this application.
  • the server corresponding to the application needs to push related information according to the location information of the terminal device.
  • the terminal device in the GPS signal loss area (for example, the GPS module in the terminal device fails, or the terminal device moves to an area where the GPS signal cannot be searched, etc.), the terminal device cannot obtain the position of the terminal device based on its own GPS module. .
  • the terminal equipment needs to use the existing RFPM positioning method for position positioning, which can realize the positioning function of the terminal equipment without relying on GPS signals.
  • the terminal device needs positioning, it needs to send a positioning request to the positioning server.
  • the positioning request includes the cell information and signal identification sampling information reported by the terminal device.
  • the positioning server is based on the cell information and signal identification sampling information in the positioning request.
  • the matching algorithm is used to compare the location fingerprint features in the location fingerprint library to determine the location of the terminal device, and the location server delivers the determined location of the terminal device to the terminal device.
  • the positioning server cannot obtain the cell information and signal identification sampling information of the current location of the terminal device, it cannot be realized. Position the terminal equipment.
  • this application proposes that the location fingerprint features learned by the positioning server can be processed to effectively extract the location information of the location fingerprint features, and then the processed location fingerprint features are generated and sent to the terminal device for storage.
  • the terminal device adopts the RFPM positioning method
  • the terminal device only needs to query the offline fingerprint locally based on the cell information collected by itself and the signal identification sampling information to determine its current location information without relying on the location service.
  • Inter-communication can achieve the purpose of positioning when the terminal device reaches an area where it cannot communicate with the positioning server.
  • the location information of the location fingerprint feature is effectively extracted, the redundant information in the location fingerprint feature is reduced, and the location accuracy of the terminal device can be effectively improved under the same amount of location data in the early stage.
  • FIG. 1 is a schematic diagram of a network architecture applicable to the embodiments of this application.
  • the network architecture shown in FIG. 1 includes multiple base stations 110-112, a positioning server 120, and a terminal device 130.
  • the positioning server 120 can be used to collect the location fingerprint characteristics reported by the terminal device 130 to process the positioning information to generate offline Fingerprints, and send offline fingerprints to the terminal device 130, so that the terminal device 130 performs positioning based on the offline fingerprints.
  • the base station 110 may be used to provide services for the terminal device 130.
  • the cell serving the terminal device 130 is called a serving cell, and the cells corresponding to the base station 111 and the base station 112 are neighboring cells of the serving cell of the terminal device 130. It should be understood that the network architecture shown in FIG.
  • the network architecture may also include more terminal devices; similarly, the network architecture The architecture can also include more base stations and positioning servers, and can also include other devices. It should be noted that, in FIG. 1, one base station device corresponds to one cell as an example, which is not meant to be a limitation. For example, in some possible network architectures, one base station device may also correspond to more than one cell. No matter how many cells a base station device corresponds to, the method provided in this application is applicable.
  • the terminal device in FIG. 1 above includes a device that provides voice and/or data connectivity to a user.
  • it may include a handheld device with a wireless connection function or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal devices, portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, smart wearable devices, and so on.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the network device in FIG. 1 above includes a base station (for example, an access point), which may refer to a device that communicates with a wireless terminal device through one or more cells on an air interface in an access network.
  • the network device can be used to convert received air frames and Internet Protocol (IP) packets into each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It may also include the next generation node B (gNB) in the fifth generation (5G) new radio (NR) system or the cloud access network (CloudRAN) system Centralized unit (CU) and distributed unit (DU) in, the embodiment of the present application is not limited.
  • NodeB or eNB or e-NodeB, evolutional Node B in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It may also include the next generation node B (gNB) in the fifth generation (5G) new radio (NR) system or the cloud access network (CloudRAN) system Centralized unit (CU) and distributed unit (DU) in, the embodiment of the present application is not limited.
  • 5G fifth generation
  • NR new radio
  • CloudRAN cloud
  • the positioning server in FIG. 1 above refers to a device or a network element that can position a terminal device according to a position calculation algorithm.
  • it can be a computer device, a server (server), a cloud service platform, an evolved service mobile location center (E-SMLC), a service location protocol (service location protocol, SLP) network element, or a local management function ( The location management function (LMF) network element, etc.
  • the computer device may include, for example, a desktop computer, a tablet computer, a vehicle-mounted computer, and the like.
  • the terminal device 130 is located in the coverage area of the base stations 110-112.
  • the terminal device 130 is required for traffic navigation or location information sharing, or when the terminal device 130 logs in to a social application, such as logging in to WeChat,
  • the terminal device 130 can trigger the positioning process.
  • the terminal device uses the currently accessed serving cell and neighboring cells as the cells to be measured, and uses the measured cell information and signal identification as the terminal device 130
  • the target location fingerprint currently to be located for example, the target location fingerprint may include cell information corresponding to the base stations 110-112, and the signal strength (received signal strength, RSS) of the signals transmitted by the base stations 110-112 received by the terminal device 130, respectively.
  • the terminal device matches the target location fingerprint with the offline fingerprint pre-downloaded to local storage.
  • the location of the terminal device can be determined by using a matching algorithm, and it is only necessary to establish a communication connection with the positioning server to obtain the current location of the terminal device Therefore, it is no longer like the existing RFPM positioning method, which must rely on the communication with the positioning server to obtain the position information.
  • Positioning method based on location fingerprint The principle is that since the terminal device can measure the signals sent by different base stations at different locations, it can use the cell information and received signal strength (RSS) measured by the terminal device.
  • the iso-signal identification is used as the location fingerprint feature of the current location of the terminal device. Based on the location fingerprint feature corresponding to each known location in the historical positioning data, and comparing with the location fingerprint feature currently measured by the terminal device, the current location of the terminal device can be determined.
  • the signal identification can be the information in the measurement report of the terminal equipment, the information collected on the interface, etc., and the parameters of the base station.
  • the information in the measurement report of the terminal device may include reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), signal to interference plus noise ratio (signal to interference plus noise) ratio, SINR), timing advance (TA), evolved Node B identification (eNB-ID), cell identification (CellID), transmit power of terminal equipment, channel parameters, etc.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR timing advance
  • eNB-ID evolved Node B identification
  • CellID can be composed of mobile country code (mobile country code, MCC), mobile network code (mobile network code, MNC), mobile base station code (Cell Tower ID, CID), base station area code (Location Area Code, LAC) And the radio access technology RAT and other identifiers.
  • the channel parameters may include physical-layer cell identity (PCI) and absolute radio frequency channel number (ARFCN) and other parameters.
  • PCI may be composed of a primary synchronization signal (PSS) and a secondary synchronization signal (Secondary Synchronization Signal, SSS).
  • PSS primary synchronization signal
  • SSS Secondary Synchronization Signal
  • the PSS frequency domain occupies 6 RBs of the system bandwidth, indicating an identity (Physical Indentity, PI) in a physical cell group, which can have 3 different sequences of 0, 1, and 2
  • the SSS frequency domain occupies 6 RBs, indicating the physical cell group number (Channel Number, CN), the identifier can be: 0 to 167 (168); the terminal device can distinguish different cells within the coverage of the base station through PCI.
  • the information collected on the interface can include the signal identifiers collected on the Gn interface, Gi interface, EC interface, etc.; the parameters of the base station can include the height of the base station, the frequency band of the base station, the direction angle of the base station, the downtilt angle of the base station, and the base station.
  • the longitude and latitude of the base station and the cell transmit power of the base station and other information.
  • the location information of the terminal device may be the location information obtained when each terminal device correspondingly receives multiple wireless signals.
  • the location information is the location information obtained by analyzing the data collected by the network device through the Gn port. Specifically, after deep packet inspection (DPI) analysis is performed on the data collected through the Gn port, a uniform resource locator (URL) is obtained, and then a global positioning system (global positioning system) is obtained. Referred to as GPS) location information.
  • GPS location information obtained from the URL of the APP.
  • this application is not limited to obtaining location information through the Gn port. For example, if an operator and a location service provider sign an agreement, the location information provided by the location service can also be directly obtained.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application.
  • “At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and does not limit which ones are included. For example, including at least one of A, B and C, then the included can be A, B, C, A and B, A and C, B and C, A and B and C.
  • “At least two” can be understood as two or more. In the same way, the understanding of "at least one" and other descriptions is similar.
  • an embodiment of the present application provides a flow of a method for generating an offline fingerprint database.
  • the network device in the flow may be the positioning server 120 in FIG. 1 above, and the terminal device may be the above-mentioned FIG. 1 In the terminal equipment 130.
  • the function of the positioning server can also be realized by the chip applied to the positioning server, or by other devices to support the realization of the positioning server, and the function of the terminal device can also be realized by the chip applied to the terminal device, or through other devices. Support terminal device realization.
  • the process includes:
  • Step 301 The positioning server receives M location fingerprint features from the terminal device.
  • the M location fingerprint features include a total of M first locations and information of multiple base stations, and the multiple base stations are the M serving base stations in the cells where the M first locations are located, and the M services For the N neighboring cell base stations corresponding to the base station, the multiple location fingerprint features include cell IDs, signal IDs, and channel parameters of the M serving base stations, and signal IDs and channel parameters of the N neighboring cell base stations.
  • the location fingerprint feature received by the positioning server is taken as an example for description.
  • other network devices with data processing functions may also receive the location fingerprint feature in the embodiment of the present application, which is not limited herein.
  • the location server may receive location fingerprint features reported by different terminal devices at different times, or receive location fingerprint features reported by the same terminal device at different times, or receive location fingerprint features reported by different terminal devices at the same time.
  • the location fingerprint feature may include the measured information of the serving cell and neighboring cells when the terminal device as the reporter is in a location, and the signal strength of each cell in the serving cell and neighboring cells received respectively.
  • the location fingerprint feature includes: the first location reported by the terminal device, the signal identification of the serving base station collected by the terminal device at the first location, the CellID of the serving base station, and the channel parameters of the serving base station , And the signal identifiers of the N neighboring cell base stations and the channel parameters of the N neighboring cell base stations collected by the terminal equipment at the first location.
  • the serving base station connected to the terminal device 130 (hereinafter referred to as UE1 for simplicity of description) at the first location 1 (X1, Y1) is base station A, and at this moment, a location fingerprint feature reported by UE1 to the positioning server It may include: the latitude and longitude coordinates (longitude, latitude) of the current location of UE1, the cell identifier CellidA of serving base station A, channel parameters (PIA, CNA), the signal strength RSS1 of the signal transmitted by receiving base station A, and the channel of neighboring base station B Parameters (PIB, CNB), the signal strength RSS2 of the signal transmitted by the receiving base station B; the channel parameters (PIB, CNB) of the neighboring cell base station C, the signal strength RSS3 of the signal transmitted by the receiving base station C.
  • a location fingerprint feature reported by UE1 to the positioning server It may include: the latitude and longitude coordinates (longitude, latitude) of the current location of UE1, the cell identifier CellidA of serving base station A
  • the location information of the first location may also include the first location location source and ACC parameters.
  • the reliability of the fingerprint feature of the location can be characterized, and the accuracy of the location of the first location can be characterized by ACC.
  • the specific content of a location fingerprint feature reported by UE1 may be shown in Table 1 below.
  • CellID is used to uniquely identify the base station and has global uniqueness
  • PI is used to identify the base station channel, which is not unique in the world and is only unique within a certain range
  • CN is used to identify the number of the base station channel, which is not unique in the world and only within a certain range only.
  • the location information of the first location 1 of UE1 may be obtained by UE1 according to different positioning methods, for example, it may be obtained according to GPS positioning, it may also be obtained through WIFI positioning, or it may be obtained through an online base station positioning method. The accuracy of the position obtained by different positioning methods is different, and the error can be recorded by ACC.
  • the serving base station that may be accessed in the first location 1 is base station B, and the neighboring base stations become base station A and base station C.
  • a location fingerprint feature reported by UE1 to the positioning server can be as shown in Table 2 Shown:
  • the location fingerprint features shown in Table 1 and the location fingerprint features shown in Table 2 contain redundant information.
  • the following information is recorded twice in Table 1 and Table 2, that is, UE1 is in the first
  • the signal strength of the base station CellIDA obtained by a location 1 is RSS1; the signal strength of the base station CellIDB obtained by the UE1 at the first location 1 is RSS2, and the signal strength of the base station CellIDC obtained by the UE1 at the first location 1 is RSS3.
  • the serving base station that UE1 may access is base station A; the neighboring cell base station is base station B.
  • a location fingerprint feature reported by UE1 to the positioning server It can be as shown in Table 3 below:
  • the serving base station that may be accessed is base station B, and the neighboring base station is base station A; at this time, a location fingerprint feature reported by UE1 to the positioning server can be shown in Table 4 below :
  • the serving base station that may be accessed is base station C, and the neighboring base station is base station A; at this time, a location fingerprint feature reported by UE1 to the positioning server can be shown in Table 5 below :
  • UE1 is outside the signal coverage of base station A and base station C.
  • the serving base station that may be accessed is base station F
  • the neighboring base station is base station D.
  • UE1 A location fingerprint feature reported to the positioning server can be as shown in Table 6 below:
  • UE1 is outside the signal coverage of base station A and base station C, and at the first position 6 (X6, Y6), the serving base station that may be accessed is base station D, and the neighboring base station is base station F.
  • UE1 A location fingerprint feature reported to the positioning server can be as shown in the following table 6_1:
  • a new location fingerprint feature will be generated and reported to the positioning server.
  • the positioning server can summarize the numerous location fingerprint features reported by different UEs according to the first location corresponding to the location fingerprint feature reported by the terminal device (ie, the coordinate location information of the UE), and summarize them under the corresponding coordinate location.
  • different geographic areas can be delineated in this application to obtain location fingerprint databases for different geographic areas. . For example, it can be divided according to different urban areas. Take Shanghai as an example. For different urban areas such as Pudong New Area, Jiading District, Huangpu District, Jinshan District, Xuhui District, Jing'an District, Yangpu District, etc., different location fingerprints can be learned respectively. Library.
  • the location fingerprint characteristics of Table 1 to Table 6_1 can be stored in In the fingerprint library at the same location.
  • the location fingerprint database can be obtained as shown in Table 7 below:
  • Step 302 The positioning server matches the CellIDs of the M serving base stations with the signal identifiers and channel parameters in the information of the multiple base stations to generate P offline fingerprints.
  • P is greater than M; P is a positive integer; the multiple offline fingerprints are stored in the offline fingerprint library of the positioning server; each offline fingerprint includes: a base station’s CellID, signal identification and channel parameters, a reference Point location.
  • the channel parameters of base station D may be set to be the same as the channel parameters of base station C. Therefore, the positioning server cannot uniquely correspond to the base station directly based on the channel parameters of the neighboring base stations, which makes it difficult to fully utilize the information in the location fingerprint features in the location fingerprint database. During the positioning process, the complete location fingerprint feature must be combined with the target location fingerprint. Matching results in a large amount of redundant information in the location fingerprint inventory.
  • the channel parameters in the neighboring cell base station information are not a globally unique identifier, it is impossible to directly determine the corresponding base station based on the channel parameters during positioning. As a result, the neighboring cell base station information cannot be directly integrated with the information in the location fingerprint feature of the serving base station. .
  • the positioning server can find the location fingerprint features related to CellIDA in Table 7, including: the two location fingerprint features corresponding to rows 1 and 3 of Table 7.
  • the neighboring cell base station information in the third row of Table 7 is one, so it is impossible to directly integrate the two location fingerprint features corresponding to the first row and the third row.
  • the information related to CellIDA actually includes the second, fourth, and fifth rows.
  • This information is in the form of neighboring cell base station information, because the channel parameters of neighboring cell base stations are not unique in the world. Identification, (for example, as shown in Figure 2, the actual corresponding base station of (PIC, CNC) in row 6 of Table 7 is base station D).
  • the positioning server cannot directly find the neighbor base station information based on the cell identifier CellIDA. Therefore, the relevant information about CellIDA in the second, fourth, and fifth rows cannot be directly integrated.
  • the same base station may be the serving base station, or It may be a neighboring cell base station.
  • base station A is the serving base station in the location fingerprint features in the first row
  • base station A is the neighbor in the location fingerprint features in the fourth row. Therefore, based on the M serving base stations in the M location fingerprint characteristics, the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations can be found.
  • the location fingerprint feature can be split into serving base station information and neighboring cell base station information, and according to the CellID of the corresponding neighboring cell base station, the neighboring cell base station information can be filled in the neighboring cell base station information.
  • CellID is used to solve the problem that the neighboring cell base station information in the location fingerprint feature cannot be directly used for positioning, and the location fingerprint feature cannot be directly integrated, resulting in a large amount of redundant information in the location fingerprint inventory.
  • the specific process can be as follows:
  • Step 3021 The positioning server may match the CellID of the serving base station in the multiple location fingerprint features that meet the second condition with the channel parameters of the N neighboring cell base stations corresponding to the M serving base stations, and determine the M serving base stations The CellID of the corresponding N neighboring cell base stations.
  • M and N are positive integers.
  • the second condition is that the channel format of the serving base station carried in the location fingerprint feature is the same as the channel format of the serving base station carried in the location fingerprint feature corresponding to the neighboring cell base station, and the first position carried in the location fingerprint feature Within the second neighboring cell search range; the second neighboring cell search range is a limited area including the first location in the location fingerprint feature corresponding to the neighboring cell base station.
  • the positioning server can first divide a location fingerprint feature into serving base station information and N neighboring cell base station information;
  • the serving base station information includes: the first position reported by the terminal device, the signal identifier of the serving base station collected by the terminal device at the first position, the CellID of the serving base station, and the information of the serving base station Channel parameters;
  • the neighboring cell base station information includes: the signal identification of the neighboring cell base station collected at the first location by the terminal equipment and the channel parameters of the neighboring cell base station;
  • the neighboring cell base station information includes: the terminal equipment reported In the first position, the signal identifier of the neighboring cell base station and the channel parameters of the neighboring cell base station collected by the terminal equipment at the first position.
  • the process of splitting the seven location fingerprint features in Table 7 is as follows.
  • the location fingerprint feature in row 1 of Table 7 includes 1 serving base station information and 2 neighboring cell base station information (rows 2 and 3 of Table 8), and row 1 of Table 7 can be split As shown in Table 8 below:
  • the positioning server can split the location fingerprint feature in row 2 of Table 7 into 1 serving base station information (shown in row 1 of Table 9) and 2 neighboring cell base station information (rows 2 and 3 of Table 9). As shown in the row), as shown in Table 9 below:
  • the positioning server can split the location fingerprint feature in row 3 of Table 7 into 1 serving base station information (shown in row 1 of Table 10) and 1 neighboring cell base station information (shown in row 2 of Table 10) , As shown in Table 10 below:
  • the positioning server can split the location fingerprint feature in row 4 of Table 7 into 1 serving base station information (shown in row 1 of Table 11) and 1 neighboring cell base station information (shown in row 2 of Table 11) Therefore, it can be broken down as shown in Table 11 below:
  • the positioning server can split the location fingerprint feature in row 5 of Table 7 into 1 serving base station information (shown in table 12 row 1) and 1 neighboring cell base station information (shown in table 12 row 2) Therefore, it can be broken down as shown in Table 12 below:
  • the positioning server can split the location fingerprint feature in row 6 of Table 7 into 1 serving base station information (shown in table 13 row 1) and 1 neighboring cell base station information (shown in table 13 row 2) , As shown in Table 13 below:
  • the positioning server can split the location fingerprint feature in row 6 of Table 7 into 1 serving base station information (shown in table 14 row 1) and 1 neighboring cell base station information (shown in table 14 row 2) , As shown in Table 14 below:
  • the positioning server may generate the mapping serving base station information according to the neighboring cell base station information and the CellID of the neighboring cell base station corresponding to the neighboring cell base station information.
  • the following takes the CellID of the neighboring cell base station in the location fingerprint feature in Table 8 as an example for description.
  • the complementation method of the CellID of the neighboring cell base station in the fingerprint characteristics of other locations please refer to this embodiment, which will not be repeated here. In the specific implementation process, it can include:
  • the positioning server may determine the search range of the second neighboring cell base station corresponding to the location fingerprint feature according to the first location in the location fingerprint feature and the serving base station in the location fingerprint feature.
  • the first serving base station information is the serving base station information in the first row of Table 8
  • the location fingerprint feature includes the information of two second neighboring cell base stations, corresponding to the information in Table 8. Lines 2 and 3.
  • the signal coverage radius of the 2G format is 20km
  • the signal coverage radius of the 3G format is 5km
  • the signal coverage radius of the 4G format is 3km.
  • the channel parameters of the serving base station and the neighboring base station can basically uniquely correspond to a base station. Therefore, each location fingerprint can be divided according to the first location in the location fingerprint characteristics and the signal coverage of the base station
  • the search range of the second neighboring cell base station corresponding to the feature.
  • the second neighboring cell search range is that the positioning server centers on the first location in the location fingerprint features corresponding to the neighboring cell base stations, and based on the location fingerprint features corresponding to the neighboring cell base stations. An area determined by the signal coverage area determined by the signal standard corresponding to the serving base station.
  • the radius of the search range of the second neighboring cell base station can also be determined according to other methods, which is not limited here.
  • the first position corresponding to Table 8 is first position 1. Therefore, the first position 1 can be taken as the center of the circle and the serving base station
  • the distance (for example, 3km) corresponding to the signal coverage area of A is a circular area formed by a radius, which is used as the second neighboring cell base station search range corresponding to the first serving base station information corresponding to Table 8.
  • the positioning server may determine the information of N_0 second serving base stations located in the search range of the second neighboring cell base station according to the first position in the position fingerprint feature.
  • the signal format of the serving base station corresponding to the second serving base station information is the same as the signal format corresponding to the serving base station in the first serving base station information.
  • a possible implementation is to first search for serving base station information within the search range of the second neighboring cell base station that meets the search range of the second neighboring cell base station, and then filter the serving base station corresponding to the first serving base station information according to the signal format Information of the second serving base station with the same signal format.
  • the search range includes first position 1, first position 3, first position 4, and first position 5 in Table 8 to Table 13.
  • the serving base station corresponding to the first position 1 is determined as base station B; according to Table 12, the serving base station corresponding to the first position 3 is determined as base station A; according to Table 13, the serving base station corresponding to the first position 4 is determined It is base station C; according to Table 13, it is determined that the serving base station corresponding to the first position 5 is base station F.
  • the information of the four second serving base stations determined includes : The serving base station information corresponding to Table 9, the serving base station information corresponding to Table 11, the serving base station information corresponding to Table 12, and the serving base station information corresponding to Table 13.
  • the positioning server determines the N_1 second serving base station information matching the N_0 second neighboring cell base station information according to the channel parameters in the N_0 second serving base station information. Combining the above example, it can be determined that the second serving base station information that matches the second neighboring cell base station information in the second row of Table 8 is the serving base station information corresponding to Table 9; and the second neighboring cell base station information in the third row of Table 8 The matched second serving base station information is the serving base station information corresponding to Table 9.
  • the positioning server may determine the CellID of the neighboring cell base station in the N neighboring cell base station information in the location fingerprint feature according to the matched CellID of the N_1 second serving base station information.
  • the correspondence between the CellID of base station B and the channel parameters (PIB, CNB) can be determined according to Table 9; according to Table 12, the correspondence between the CellID of base station C and the channel parameters (PIC, CNC) can be determined; therefore According to the foregoing corresponding relationship, the CellID of the neighboring cell base station in each neighboring cell base station information in Table 8 can be completed to generate the mapping serving base station information.
  • the mapping serving base station information can be used as a complete offline fingerprint for offline positioning of the terminal device.
  • the mapping serving base station information generated after complementing Table 8 may be as shown in Table 15:
  • the search range of the second neighboring cell base station is determined by using the first position as the center of the circle, it is not determined based on the location of base station A. Therefore, it may appear in the second neighboring cell base station search range.
  • the channel parameters of is not the only situation corresponding to a base station.
  • the search range of the second neighboring cell base station corresponding to Table 8 is a solid line area, which is determined based on the first location 1 as the center of the circle and the coverage of base station A, and the location of base station A is the center of the circle.
  • the dotted line area determined by the coverage area of the base station A does not overlap with the solid line area.
  • the cell of base station D (the dotted area of base station D) overlaps the solid line area, resulting in UE1 at the position of the first position 5, and the signal strength of base station D is measured.
  • the channel parameters (PIC, CNC) correspond to the two CellIDs of base station D and base station C.
  • the channel parameters of the third neighboring cell base station information are (PIC, CNC), which corresponds to K0 fourth serving base station information
  • the CellIDs corresponding to the fourth serving base station information are: CellIDC and CellIDD.
  • the information of the two fourth serving base stations corresponding to the neighboring cell base station information in Table 12 and Table 14 may be as shown in Table 16:
  • the present application proposes a method to solve the above problem, taking the channel parameters of the first neighboring cell base station corresponding to the CellID of K0 serving base stations that meet the second condition as an example, where the first neighboring cell
  • the cell base station is one of the N neighboring cell base stations.
  • the specific process may be as follows: the positioning server determines the center of the K0 first positions according to the K0 first positions; for example, it may be based on the K0 first positions.
  • the K0 first positions in the position fingerprint feature of the second condition determine the center position.
  • the center position can be the average position of the K0 first positions, or the centroid position determined after weighting according to the signal strength.
  • K0 is a positive integer.
  • the positioning server determines the CellID of the serving base station that matches the channel parameters of the first neighboring cell base station based on the Euclidean distance between the center and the K0 first positions and the center;
  • the CellID of the serving base station matching the channel parameters of the first neighboring cell base station is the CellID of the serving base station corresponding to the first location closest to the center.
  • the maximum likelihood function algorithm can be used to determine the most likely base station corresponding to the channel parameter.
  • the positioning server may use the K0 first positions as parameters of the likelihood function.
  • the positioning server determines the likelihood function according to the position of the centroid and the parameters of the likelihood function.
  • the positioning server uses the CellID of the serving base station in the location fingerprint feature corresponding to the second condition corresponding to the maximum likelihood function as the CellID of the serving base station matching the channel parameters of the first neighboring cell base station.
  • the fourth serving base station information corresponding to the first position 4 and the first position 5 in Table 16 can be used as the parameters of the likelihood function, passing the first position 1, the first position 4, and the first position 5. , Determine a center of mass position. The reciprocal of the Euclidean distance between the centroid position and the parameter of the likelihood function (first position 4 or first position 5) is used as the likelihood function. By determining when the likelihood function is the largest, determine whether the corresponding parameter is the first position 4 or the first position 5. For example, assuming that the likelihood function is the largest at the first position 4, then the CellIDC corresponding to the first position 4 The cell identifier as the channel parameter (PIC, CNC).
  • the CellID of the neighboring cell base station in Table 9 to Table 14 can be complemented, and the CellID of the neighboring cell base station can be complemented on the basis of Table 7 to obtain the mapping service corresponding to Table 9 to Table 14.
  • Base station information as shown in Table 17 below:
  • Step 3022 The positioning server generates P offline fingerprints according to the M location fingerprint characteristics and the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations.
  • the positioning server may generate M offline fingerprints according to the information of the M first locations and the M serving base stations; it may also generate M offline fingerprints according to the M first locations, and the M service
  • the information of the N neighboring cell base stations corresponding to the base station and the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations generate M ⁇ N offline fingerprints; therefore, according to the M location fingerprint characteristics and the M serving base stations
  • the P offline fingerprints generated by the CellIDs of the corresponding N neighboring cell base stations are M ⁇ (N+1) offline fingerprints.
  • the positioning server can use the information of a serving base station in the location fingerprint feature as an offline fingerprint.
  • the serving base station information (rows 1, 4, 6, and 8) of CellIDA in Table 17 as an example
  • 4 offline fingerprints can be generated correspondingly.
  • the serving base station information in row 1 of Table 17 can generate an offline fingerprint.
  • the first position in the corresponding serving base station information in the first row of Table 17 is the first position 1, which can be used as the reference point position in the offline fingerprint, and in the corresponding serving base station information in the first row in Table 17
  • the RSS1 can be used as the signal identifier of the base station in the offline fingerprint.
  • the generated offline fingerprint library can be as shown in Table 18_1:
  • this embodiment can effectively compress the redundant information in the location fingerprints, and can reduce the size of the offline fingerprint library, so that the terminal device can store the offline fingerprint library locally, and then the terminal device can be stored in the offline fingerprint library locally.
  • the positioning server will map the first position in the serving base station information as the reference point position in the offline fingerprint; wherein the mapped serving base station information is the information in the serving base station corresponding to the CellID of the base station Any one; the positioning server determines the signal identifier in the mapping serving base station information as the signal identifier of the base station corresponding to the reference point position.
  • the offline fingerprint database that can be generated according to Table 17 can be as shown in Table 18-2:
  • both the serving base station information and the mapping serving base station information can also be used as offline fingerprints in the offline fingerprint database. Combining the above examples, it can be as shown in Table 18_3.
  • the offline fingerprint can be screened for the location source based on the location source of the first location included in the location fingerprint feature.
  • the positioning server determines the location source priority of the first location of the location fingerprint feature according to the location source of the first location of the location fingerprint feature; further, the location server determines the location source priority of the first location of the location fingerprint feature according to the location of the location fingerprint feature.
  • the location source priority of a location determines the location source priority of the reference point location in the corresponding offline fingerprint; thus, the location server screens offline fingerprints according to the location source priority of the reference point location in the offline fingerprint; the location server will screen
  • the subsequent offline fingerprints are used as offline fingerprints in the offline fingerprint library.
  • the location source of the reference point location in the corresponding offline fingerprint has priority
  • the order of level from largest to smallest is: GPS positioning, WIFI positioning, and online base station positioning.
  • the offline fingerprints can be screened according to the location source priority of the reference point position in the offline fingerprints. For example, if it is determined that there are high-priority offline fingerprints, and the number of offline fingerprints based on the same location or based on the same base station exceeds a preset threshold, the location fingerprint features with low priority are deleted.
  • the offline fingerprint library generated from the filtered offline fingerprints can be as shown in Table 19 below:
  • the location fingerprint feature also includes the positioning error parameter ACC corresponding to the location information. Therefore, the location server can also filter offline fingerprints according to the location source and ACC in the location fingerprint characteristics. The offline fingerprints corresponding to the fingerprint characteristics of the location are determined together by the location source and the error, and then the offline fingerprints are screened, so that the reliability of the offline fingerprint library generated by the screened offline fingerprints is improved.
  • the positioning server determines the positioning priority of the offline fingerprint according to the positioning source and/or ACC of the reference point position of the offline fingerprint; for example, the positioning may be based on the location fingerprint feature Source, determine the priority of the location source of the offline fingerprint, or, combine the ACC of the location fingerprint feature and the priority of the location source to determine the location priority of the offline fingerprint.
  • the positioning server screens the offline fingerprints according to the positioning priority of the offline fingerprints;
  • offline fingerprints can be screened based on the number of offline fingerprints of CellID of the same base station. For example, if it is determined that there are enough offline fingerprints of CellID of the same base station, only the offline fingerprints with the highest priority can be kept. Of course, other methods can also be used.
  • the screening of offline fingerprints is not limited here.
  • the positioning server uses the screened offline fingerprints as the offline fingerprints in the offline fingerprint library.
  • the offline fingerprints can also be screened according to the location source and/or ACC in the offline fingerprint.
  • the location source may specifically include: the location server can determine the location source of the first location of the location fingerprint feature as The location fingerprint feature corresponds to the location source of the reference point location in the generated offline fingerprint. For example, taking the location fingerprint feature as the first row in Table 8, it can be determined that the offline fingerprint corresponding to the first row in Table 8 is the first row in Table 18_3. Therefore, according to the positioning source of the first position corresponding to the first row in Table 8, GPS, the positioning source of the reference point position of the offline fingerprint, GPS can be determined.
  • the positioning server determines the priority of the offline fingerprint according to the positioning source of the reference point position in the offline fingerprint, and then screens the offline fingerprint corresponding to the CellID of the base station.
  • the base station is the base station corresponding to CellIDA. Therefore, the offline fingerprint corresponding to CellIDA includes: rows 1, 4, 7, and 9 in Table 18_3; according to the priority of the location source, you can filter CellIDA through preset rules The corresponding offline fingerprint. For example, the priority of GPS is the first priority, the priority of WIFI is the second priority, and the priority of base station positioning is the third priority.
  • the preset rule can be to reserve the offline fingerprint with the highest priority, then after screening
  • the offline fingerprint corresponding to CellIDA includes: row 1 in Table 18_3.
  • the positioning server uses the offline fingerprint corresponding to the CellID of the base station after screening as the offline fingerprint corresponding to the CellID of the base station in the offline fingerprint library.
  • row 1 in Table 18_3 can be used as the offline fingerprint corresponding to CellIDA in the offline fingerprint database.
  • the offline fingerprint may also include the status identifier of the base station in the offline fingerprint.
  • the status identifier of the base station may include: mobile, fixed, reset, uncertain and other statuses.
  • movement may be a scenario where the change of the reference point position of the offline fingerprint corresponding to the base station in a short period of time is greater than the preset threshold.
  • the reset can be the state after the base station restarts, and the fixed state indicates that the offline fingerprint corresponding to the base station is offline within a certain period of time.
  • the fingerprint is stable, and the updated offline location fingerprint feature determined by the newly added location fingerprint feature related to the base station has a gap with the offline location fingerprint before the update within the allowable range.
  • offline fingerprints can be screened based on the status identification of the offline fingerprints. For example, only offline fingerprints in a fixed state are selected to generate an offline fingerprint library, thereby improving the accuracy and reliability of positioning.
  • offline fingerprints can also be screened based on other conditions, such as the signal strength of the offline fingerprint, the ACC parameters of the reference point position, the location source, and other factors, which are not limited here.
  • the serving base station information and the mapping serving base station information of the same CellID can be combined into one offline fingerprint according to the CellID of the base station.
  • the positioning server searches for the information of the P-group base stations with the same CellID according to the CellIDs of the M serving base stations or the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations.
  • the location fingerprint includes 5 CellIDs: CellIDA, CellIDB, CellIDC, CellIDD, CellIDF. Therefore, the serving base station information or the mapping serving base station information in Table 17 can be determined as the information of the 5 groups of base stations.
  • the information of a group of base stations corresponding to CellIDA may include one or more of rows 1, 4, 7, and 9 in Table 17.
  • the positioning server determines P offline fingerprints according to the information of the P group of base stations and the first position in the fingerprint characteristics of the location where the information of each group of base stations is located; wherein, the reference point in each offline fingerprint is the same as that of each group of base stations.
  • the first position in the information is related; the signal identification in each offline fingerprint is related to the signal identification in the information of each group of base stations.
  • the positioning server may map the first position in the serving base station information with the CellID of the base station or the first position in the serving base station information with the CellID of the base station Perform a weighted average to determine the position of the reference point; further, the positioning server may perform a weighted average of the signal identifier in the serving base station information with the CellID of the base station or the signal identifier in the mapping serving base station information with the CellID of the base station, and determine it as The signal identifier of the base station corresponding to the reference point position.
  • the method of weighted averaging based on the serving base station information of CellIDA in Table 17 above is taken as an example to determine the offline fingerprint.
  • the weight corresponding to row 4 in Table 17 is 0.75.
  • X01 0.25*X1+0.75*X2
  • Y01 0.25*Y1+0.75*Y2.
  • RSS1' 0.25*RSS1+0.75*RSS4.
  • the positioning server searches for the information of the P group base stations with the same CellID according to the CellIDs of the M serving base stations and the CellIDs of the N neighboring cell base stations corresponding to the M serving base stations.
  • the serving base station information and the mapping serving base station information in Table 17 can be determined as the information of the 5 groups of base stations.
  • the information of a group of base stations corresponding to CellIDA includes rows 1, 4, 7, and 9 in Table 17.
  • the positioning server determines P offline fingerprints according to the information of the P group of base stations and the first position in the fingerprint characteristics of the location where the information of each group of base stations is located; wherein, the reference point in each offline fingerprint is the same as that of each group of base stations.
  • the first position in the information is related; the signal identification in each offline fingerprint is related to the signal identification in the information of each group of base stations.
  • CellID in Table 17 there are 4 serving base station information and mapping serving base station based on CellIDA (rows 1, 4, 7, and 9). According to these 4 serving base station information and mapping serving base station, 1 can be generated. Offline fingerprints.
  • the weight corresponding to row 4 in Table 17 is 0.17
  • the weight corresponding to row 7 in Table 17 is 0.34
  • the weight corresponding to row 9 in Table 17 is 0.43.
  • the above solution compresses 4 pieces of serving base station information and 6 pieces of neighboring cell base station information in the location fingerprint features in the original table 7 into 3 offline fingerprints, that is, compressed to 1/4 of the original size. , And maximize the retention of the information carried by the original location fingerprint library to ensure the accuracy of positioning.
  • the location fingerprint library can be compressed to the size of the original location fingerprint library 1/74, which is beneficial for the terminal device to store the offline fingerprint library locally, thereby achieving high-precision offline positioning.
  • the location source corresponding to the position of the reference point may be the location source that retains the information of each serving base station and/or the location source with the highest weight corresponding to the mapped serving base station information, or To save the location source of each serving base station information and/or map the weight corresponding to the location source of the serving base station information.
  • a possible implementation is to comprehensively determine the weight corresponding to each serving base station information and/or mapping serving base station information according to the signal identification and/or the priority of the location source, and then use the location source with the highest weight as the location of the offline fingerprint source.
  • the following is an example of a method of weighting based on serving base station information and mapping serving base station information. Take CellIDA's offline fingerprint as an example. If it is determined that the priority weight of GPS is 0.6, the priority weight of WIFI is 0.3, and the priority weight of base station positioning is 0.1. In Table 17, line 1 is GPS, lines 4 and 7 are WIFI, and line 9 is base station positioning.
  • the weight of the signal strength may be determined according to the signal identifier, and then the ratio of each positioning source may be determined according to the weight of the signal strength.
  • the ratio of GPS is 0.04
  • the ratio of WIFI is 0.51
  • the weight of base station positioning is 0.43. Therefore, the location source of offline fingerprint 1 can be stored as GPS (0.04), WIFI (0.51), base station location (0.43).
  • the terminal device determines the reliability of the matched offline fingerprint when locating according to the offline fingerprint, and it can also further filter the matched offline fingerprint according to the location source, thereby improving the accuracy of positioning.
  • the positioning server determines the priority of the serving base station information according to the first location in the serving base station information of the cellID of the base station and/or the location source of the first location in the mapping serving base station information corresponding to the CellID of the base station. /Or the priority of the mapping serving base station information.
  • the positioning server according to the priority of the serving base station information and/or the priority of the mapped serving base station information, and the signal identifier in the serving base station information and/or the signal identifier in the mapped serving base station information, Determine the weight corresponding to the serving base station information and/or the weight corresponding to the mapped serving base station information.
  • the positioning server according to the weight corresponding to the serving base station information and/or the weight corresponding to the mapped serving base station information, and the first position of the serving base station information and/or the first position in the mapped serving base station information , To determine the position of the reference point.
  • the location information of the offline fingerprint based on CellIDA is (X",Y")
  • X11 0.1*X1+0.23*X2+0.46*X3+0.20*X4
  • Y11 0.2*Y1+0.23* Y2+0.46*Y3+0.20*Y4.
  • the positioning server determines the base station corresponding to the position of the reference point according to the weight corresponding to the serving base station information and/or the weight corresponding to the mapping serving base station information, and the signal identifier of the serving base station information and/or the signal identifier in the mapping serving base station information.
  • the base station's CellID corresponding to the serving base station information and/or the mapped serving base station information can be filtered according to the location source. , And then determine each filtered serving base station information and/or mapping according to the filtered serving base station information and/or the signal identifier of the mapped serving base station information, and according to the filtered serving base station information and/or the signal identifier of the mapped serving base station information. The weight corresponding to the serving base station information is then weighted and averaged through the filtered serving base station information and/or the weight corresponding to the mapped serving base station information to determine the offline fingerprint corresponding to the CellID of the base station.
  • the filtered serving base station information and/or mapping serving base station information includes the first row and the first row in Table 17. Line 4 and Line 7. Furthermore, the offline fingerprint of CellIDA can be generated according to the first row, the fourth row, and the seventh row in Table 17. For specific implementation manners, reference may be made to the above-mentioned embodiments, which will not be repeated here.
  • the base station corresponding to row 11 in Table 17 is base station D, which can be combined according to the relevant information of base station D determined by fingerprint characteristics of other locations.
  • the base station corresponding to row 10 in Table 17 is base station F, which can be based on other information.
  • the relevant information of the base station F determined by the location fingerprint feature is combined.
  • the offline fingerprint in the offline fingerprint library is a CellID corresponding to an offline fingerprint.
  • the offline fingerprint in the offline fingerprint library can be updated according to the newly added location fingerprint feature.
  • the update method does not affect the size of the offline fingerprint library, so that the terminal device does not need to occupy a large amount of storage space and memory to realize offline positioning.
  • the specific update method may include: splitting into serving base station information and mapping serving base station information according to the newly added location fingerprint characteristics, and dividing the newly added serving base station information or mapping serving base station information into multiple pieces corresponding to the original CellID
  • the serving base station information and/or the mapped serving base station information are combined to regenerate the serving base station information and/or the weights corresponding to the mapped serving base station information, and then the newly added serving base station information or the mapped serving base station information is multiplied with the original CellID.
  • Pieces of serving base station information and/or mapping serving base station information are combined to generate an updated offline fingerprint.
  • the terminal device when the terminal device uses the locally stored offline fingerprint library for positioning, it can effectively use the neighboring cell base station information for positioning, without the need to perform the current location by completely matching the serving base station and the neighboring cell base station in the location fingerprint characteristics. Confirmation can effectively reduce the amount of calculation required for terminal equipment positioning, and the matching time is shorter; in addition, compared to the method of directly positioning through the serving base station information, the accuracy of offline positioning of the terminal equipment can be effectively improved.
  • the offline fingerprint in the offline fingerprint database is a serving base station information or a mapping serving base station information corresponding to an offline fingerprint.
  • the offline fingerprint can be updated according to the newly added location fingerprint feature
  • the offline fingerprints in the fingerprint database can be updated as follows: According to the newly added location fingerprint characteristics, they are divided into serving base station information and mapping serving base station information, and the newly added serving base station information or mapping serving base station information is generated to generate the corresponding offline
  • the fingerprint, as the updated offline fingerprint will send the updated offline fingerprint to the terminal device.
  • the location source can be screened according to the updated offline fingerprint and the original offline fingerprint, so as to improve the positioning accuracy of the offline fingerprint library.
  • the offline fingerprint may also include the grid identification of the grid where the reference point position of the offline fingerprint is located.
  • the positioning server can divide the offline fingerprints into the corresponding latitude and longitude grids according to the position of the reference points in the offline fingerprints, so that the terminal device can quickly determine the positional relationship between the offline fingerprints through the grid ID, and then can pass each The position relationship between offline fingerprints can quickly find offline fingerprints that match the fingerprint of the target location to speed up the positioning speed and reduce the amount of calculation for terminal device positioning.
  • the size of the specific latitude and longitude grid can be determined according to the positioning accuracy, which is not limited here.
  • the offline fingerprint can be as shown in Table 21 below:
  • the positioning server can also obtain multiple offline fingerprints corresponding to the grids located in the area according to other location fingerprint characteristics reported by different terminal devices, for example, through the above implementation
  • the offline fingerprint library shown in Table 22 can be obtained:
  • the size of the grid can be determined according to the needs of positioning accuracy. If the accuracy needs to be improved, the grid size can be reduced. If the search speed needs to be improved, the grid size can be expanded, which can be determined according to actual needs.
  • a latitude and longitude grid can only retain one or more offline fingerprints with the strongest signal strength. The specific process is as follows: First, the positioning server determines N1 offline fingerprints in each grid according to the grid identification of the grid where the reference point position is located; secondly, the positioning server selects the N1 offline fingerprints according to the signal identification in the N1 offline fingerprints.
  • the N1 offline fingerprints; N1 is a positive integer; in a possible implementation manner, the positioning server uses the offline fingerprint with the highest signal strength identified by the signal in the N1 offline fingerprints as the offline fingerprint corresponding to the grid after screening .
  • the screening method can also be determined according to actual needs, for example, the number of screens to be screened can be determined according to the size of the grid.
  • the offline fingerprints filtered by the grid may be the offline fingerprints corresponding to the grid.
  • the method of screening offline fingerprints by grid prevents the terminal device from determining too many offline fingerprints based on a latitude and longitude grid to calculate the matching degree, which reduces the amount of calculation of the terminal device.
  • the filtering condition is The offline fingerprint is the offline fingerprint with the strongest signal strength, which avoids the problem of possible pseudo base stations interfering with the accuracy of the positioning, and improves the accuracy of the positioning.
  • the positioning server can store the relationship between the grid identifier of the grid where the offline fingerprint before grid screening is located and the CellID of the offline fingerprint before grid screening in the offline fingerprint database.
  • the corresponding relationship between the CellID and the grid identifier corresponding to the deleted offline fingerprint may also be stored in the offline fingerprint database.
  • This scenario is mainly caused by the pseudo base station.
  • the offline fingerprints in the offline fingerprint library may be offline fingerprints screened by the positioning server according to the grid where the offline fingerprints are located; the offline fingerprint library may also include: offline fingerprints before grid screening The relationship between the CellID of the grid and the grid identification of the grid where the offline fingerprint before grid screening is located.
  • Step 303 The positioning server sends the offline fingerprint library to the terminal device.
  • the positioning server further generates an offline fingerprint library by compressing the text, and sends it to the terminal device.
  • the terminal device can perform offline positioning according to the received offline fingerprint library.
  • the positioning server needs to traverse all the location fingerprint features in the location fingerprint database according to the KNN algorithm, and determine the higher similarity based on the information of the serving base station in the matching location fingerprint feature and the information of the neighboring base station.
  • the method of matching multiple location fingerprint features with target location fingerprints based on multiple location fingerprint features cannot effectively use the related information of neighboring cell base stations in location fingerprint features.
  • the CellID of the neighboring cell base station is obtained by mapping the channel parameters of the neighboring cell base station in each location fingerprint feature to the CellID of the corresponding serving base station by the positioning server.
  • the terminal device uses the locally stored offline fingerprint library for positioning, it can effectively use all the fingerprint information in the location fingerprint feature, which can ensure that the accuracy is improved, while ensuring that the offline fingerprint library does not increase with the increase of time, which effectively guarantees While the degree of compression of the offline fingerprint library improves the positioning accuracy of the terminal device. It can effectively improve the accuracy of offline positioning and the effect of offline positioning without increasing the size of the offline fingerprint library.
  • the terminal device can perform offline positioning according to the offline fingerprint library pre-issued by the positioning server.
  • the specific positioning process may include:
  • Step 401 The terminal device collects the fingerprint of the target location
  • the target location fingerprint includes: the signal identifier of the first base station, the cell identifier CellID of the first base station, the signal identifiers of the Q neighboring cell base stations of the first base station, and the channels of the Q neighboring cell base stations Parameter; the first base station is the serving base station accessed by the terminal device; Q is a positive integer;
  • the serving base station that the terminal device accesses at the current moment is base station F
  • the cell ID is CellIDF
  • the channel parameters of neighboring cells are (PIC, CNC) and (PIA, CNA)
  • the received base station (PIA, CNA) is measured by ), base station (PIC, CNC), base station signal strength of base station F, and obtain the fingerprint of the first target position measured at the current moment.
  • the first target location fingerprint can be as shown in Table 25 below:
  • Step 402 The terminal device searches the offline fingerprint database for the first offline fingerprint matching the CellID of the first base station through the CellID of the first base station.
  • the offline fingerprint library is stored in the terminal device, and the offline fingerprint library is used to manage a plurality of offline fingerprints; each offline fingerprint includes: a cell ID of a base station, a signal identifier and channel parameters, and a reference point position.
  • the N0 first offline fingerprints matching the target location fingerprint may be: N0 first offline fingerprints including the CellID of the first base station.
  • offline fingerprints generated in other embodiments are also applicable to the offline positioning method, and you can refer to this example.
  • N is 1, and the terminal device can use the offline fingerprint in row 6 in Table 18_3 as the fingerprint with the target location.
  • the terminal device can search the offline fingerprint 11 and the offline fingerprint 6 with the cell ID as CellIDF in the table 22 according to the cell ID CellIDF in the first target location fingerprint.
  • the CellID of the serving base station received by the terminal device may not exist in the offline fingerprint library
  • the terminal device collects a second target location fingerprint; where the first base station in the second target location fingerprint is base station B, and the cell identifier is CellIDB; the neighboring cells are base station C and base station E, and base stations B, The signal strength of the signal sent by the base station C and the base station E obtains the fingerprint of the second target location measured at the current moment.
  • the second target location fingerprint can be as shown in Table 26:
  • the terminal device determines that there is no offline fingerprint corresponding to the CellID of the first base station in the second target location fingerprint in the offline fingerprint library, the CellID of the offline fingerprint before the grid screening is compared with the grid screening In the relationship between the grid identifiers of the grid where the previous offline fingerprint is located, the second grid identifier of the second grid corresponding to the CellID of the first base station is searched. In combination with the above example, the terminal device cannot obtain the offline fingerprint corresponding to CellIDB in Table 23. Therefore, the terminal device can look up the correspondence between CellIDB and the grid according to Table 24, and determine that the grid where CellIDB is located is grid 1. Furthermore, the terminal device uses the N0 offline fingerprints corresponding to the second grid identifier as the N0 first offline fingerprints matching the first base station.
  • the terminal device can find the grid 1 through CellIDB, and use the offline fingerprint 1 corresponding to the grid 1 as the first offline fingerprint matching the fingerprint of the second target location.
  • the terminal device can find the grid 1 through CellIDB, and use the offline fingerprint 1 corresponding to the grid 1 as the first offline fingerprint matching the fingerprint of the second target location.
  • Step 403 The terminal device searches for a plurality of second offline fingerprints that meet the first condition in the offline fingerprint library according to the reference point position in the first offline fingerprint and the channel parameters of the Q neighboring cell base stations .
  • the first condition is that the channel parameter carried in the offline fingerprint is the same as one of the channel parameters of the Q neighboring cell base stations, and the reference point position carried in the offline fingerprint is within the search range of the first neighboring cell, so
  • the first neighborhood search range is a limited area including the position of the reference point in the first offline fingerprint.
  • the terminal device uses the position of the reference point in the first offline fingerprint as the center, and determines the search range of the first neighboring cell base station according to the signal coverage range of the first base station.
  • the signal coverage radius of different base stations can be determined according to different signal formats.
  • the signal coverage radius of the 2G signal system is 20km
  • the signal coverage radius of the 3G signal system is 5km
  • the signal coverage radius of the 4G signal system is 3km.
  • the terminal device uses the reference point position in the first offline fingerprint as a center, and determines the search range of the first neighboring cell base station according to the signal coverage area determined by the signal format of the first base station.
  • the radius of the search range of the first neighboring cell base station can also be determined according to other methods, which is not limited here.
  • the first neighboring cell base station search range corresponding to the first offline fingerprint can be determined based on the reference point position 5 and the signal coverage radius corresponding to the signal format of base station F as the radius of the first neighboring cell base station search range.
  • the terminal device searches the offline fingerprint library for L1 offline fingerprints whose reference point positions are located within the search range of the first neighboring cell base station; L1 is a positive integer.
  • L1 is a positive integer.
  • the terminal device determines multiple second offline fingerprints among the L1 offline fingerprints, where the multiple second offline fingerprints are multiple offline fingerprints that are the same as the channel parameters of the Q neighboring cell base stations.
  • the terminal device uses the multiple offline fingerprints as the multiple second offline fingerprints that meet the conditions.
  • the channel parameters of the serving base station information in row 1 of Table 18_3 corresponding to the reference point position 1 match the neighboring cell base station information corresponding to (PIA, CNA), and the reference point position 3 corresponds to No. 4 in Table 18_3.
  • the serving base station information of the row matches the neighboring cell base station information corresponding to (PIC, CNC), so it can be used as the two second offline fingerprints within the search range of the first neighboring cell base station.
  • the terminal device may use the first offline fingerprint and the multiple second offline fingerprints as reconstructed fingerprint features that match the target location fingerprint.
  • the determined reconstruction fingerprint feature can be used as shown in Table 27 below:
  • the offline fingerprint 6 may be determined as two first offline fingerprints.
  • a possible implementation can include:
  • the terminal device determines the first grid identifier of the first grid where the reference point position in the first offline fingerprint is; the R adjacent grids corresponding to the first grid are the first neighbors Area base station search range. R is a positive integer.
  • the grid where the offline fingerprint 6 is located is the grid 5, and the adjacent grids of the grid 5 can be determined.
  • the specific method of determining the adjacent network can be based on the grids in the four directions of east, west, south and north as the adjacent grids.
  • the adjacent grids of grid 5 are: grid 2, grid 4, grid 6, and grid.
  • Another way to determine the neighboring network is to select a grid within a sector range as the neighboring grid.
  • the neighboring grids of the grid 4 are: grid 1, grid 2, and grid 4.
  • the specific method for selecting adjacent grids can be determined according to needs, and is not limited here.
  • the terminal device determines K1 offline fingerprints corresponding to the grid identifiers of the R adjacent grids corresponding to the first grid.
  • the offline fingerprints corresponding to the adjacent grids are offline fingerprint 3, offline fingerprint 5, and offline fingerprint 7.
  • the terminal device determines multiple second offline fingerprints among the K1 offline fingerprints.
  • K1 is a positive integer.
  • the multiple second offline fingerprints are multiple offline fingerprints that are the same as the channel parameters of the Q neighboring cell base stations.
  • the terminal device may determine the reconstructed fingerprint feature according to the K1 offline fingerprints and the first offline fingerprint. Since multiple offline fingerprints can exist in a grid, and at the same time, multiple second offline fingerprints can be determined according to adjacent grids, and then multiple reconstructed fingerprint features can be composed. The number of offline fingerprints determines the number of reconstructed fingerprint features. Assuming that there are two determined first offline fingerprints, it can be determined that there are also two reconstructed fingerprint features. According to each first offline fingerprint, the determined multiple second offline fingerprints are all neighboring cell base station information in the reconstructed fingerprint feature.
  • the terminal device generates a reconstructed fingerprint feature according to each first offline fingerprint; for each first offline fingerprint, the K1 offline fingerprints and the first offline fingerprint are used as reconstructed Fingerprint characteristics.
  • offline fingerprint 6 can be used as the serving base station information in the reconstructed fingerprint feature; offline fingerprint 3, offline fingerprint 5, offline fingerprint 7, and offline fingerprint 9 corresponding to adjacent grids can be used as the neighbors in the reconstructed fingerprint feature.
  • Zone base station information can be used at this time.
  • the reconstructed fingerprint features can be as shown in Table 28:
  • multiple second offline fingerprints that match the channel parameters of the neighboring cell base station in the first target location fingerprint can be determined. Specifically, it can include:
  • the terminal device matches the channel parameters of each of the K1 offline fingerprints with the channel parameters of the Q neighboring cell base stations.
  • the offline fingerprint corresponding to grid 2 matches (PIC, CNC) in the first target location fingerprint
  • the offline fingerprint corresponding to grid 4 matches (PIE, CNE) in the first target location fingerprint.
  • the terminal device uses the matched multiple offline fingerprints as multiple second offline fingerprints matching the channel parameters of the Q neighboring cell base stations. Therefore, it can be determined that the second offline fingerprint includes two, that is, the offline fingerprint corresponding to grid 2 and the offline fingerprint corresponding to grid 4. Therefore, the terminal device may use the first offline fingerprint and the multiple second offline fingerprints as a reconstructed fingerprint feature matching the target location fingerprint.
  • K1 is 6, corresponding to the generated reconstructed fingerprint features, including: 1 offline fingerprint corresponding to grid 5, 2 offline fingerprints corresponding to grid 2 , 2 offline fingerprints corresponding to grid 4, 1 offline fingerprint corresponding to grid 6, and 1 offline fingerprint corresponding to grid 8.
  • the process of generating reconstructed fingerprint features may include: first, the terminal device matches the channel parameters of each of the 6 offline fingerprints with the channel parameters of the two first neighboring cell base stations.
  • the two offline fingerprints corresponding to grid 2 match the (PIC, CNC) in the first target location fingerprint
  • the two offline fingerprints corresponding to grid 4 match the (PIE, CNE) in the first target location fingerprint. match. Therefore, the terminal device may use the matched 4 offline fingerprints as 4 second offline fingerprints matching the channel parameters of the 2 first neighboring cell base stations.
  • the terminal device can determine that the second offline fingerprints include four, that is, two offline fingerprints corresponding to grid 2 and two offline fingerprints corresponding to grid 4. Furthermore, the terminal device uses the first offline fingerprint and the two second offline fingerprints as a reconstructed fingerprint feature matching the first target location fingerprint.
  • Another possible implementation is to determine the number of reconstructed fingerprint features that can be generated by an offline fingerprint based on the number of second offline fingerprints existing in adjacent networks, and then determine the number of fingerprint features that can be generated based on each first offline fingerprint. Reconstruct fingerprint features.
  • the reconstructed fingerprint feature 1-1 may include: offline fingerprint 2-1, offline fingerprint 4-1, offline fingerprint corresponding to grid 6, offline fingerprint corresponding to grid 8, and offline fingerprint corresponding to grid 2.
  • the reconstructed fingerprint feature 1-2 may include: offline fingerprint 2-1, offline fingerprint 4-2, offline fingerprint corresponding to grid 6, offline fingerprint corresponding to grid 8, and offline fingerprint corresponding to grid 2.
  • the reconstructed fingerprint feature 1-3 may include: offline fingerprint 2-2, offline fingerprint 4-1, offline fingerprint corresponding to grid 6, offline fingerprint corresponding to grid 8, and offline fingerprint corresponding to grid 2.
  • the reconstructed fingerprint features 1-4 may include: offline fingerprints 2-2, offline fingerprints 4-2, offline fingerprints corresponding to grid 6, offline fingerprints corresponding to grid 8, and offline fingerprints corresponding to grid 2.
  • Step 404 The terminal device is based on the signal identification and reference point position in the first offline fingerprint, the signal identification and reference point position in the multiple second offline fingerprints, and the Q+ in the target position fingerprint 1 signal identifier to determine the location of the terminal device.
  • the specific process may include:
  • the terminal device determines the weight corresponding to the first offline fingerprint according to the match between the signal identifier of the first offline fingerprint and the signal identifier of the first target location fingerprint of the first base station.
  • the similarity between the signal strength RSS11 of the reconstructed fingerprint feature and the signal strength RSS01 in the fingerprint of the first target location is 0.8.
  • the terminal device determines the weights corresponding to the plurality of second offline fingerprints according to the signal identifiers of the plurality of second offline fingerprints and the signal identifiers of the target location fingerprints of the Q neighboring cell base stations.
  • the similarity between the signal strength RSS9 of the reconstructed fingerprint feature and the signal strength RSS02 in the first target location fingerprint is 0.6; for base station A, the signal strength RSS1 of the reconstructed fingerprint feature is similar to the first target location fingerprint The similarity of the signal strength RSS03 is 0.3.
  • the terminal device determines the second position of the terminal device according to the position of the reference point in the reconstructed fingerprint feature and the corresponding weight.
  • the terminal device determines the first offline fingerprint according to the weight corresponding to the first offline fingerprint, the weight corresponding to the plurality of second offline fingerprints, the reference point position, and the reference point position of the plurality of second offline fingerprints. Two positions; for example, if it is determined that the second position of the terminal device is (X', Y'), then:
  • X' 0.8*X5+0.6*X4+0.3*X1
  • Y' 0.8*Y5+0.6*Y4+0.3*Y1.
  • the positioning server needs to traverse all the location fingerprint features in the location fingerprint library according to the KNN algorithm, and determine a method for matching multiple location fingerprint features with higher similarity.
  • the terminal device uses the locally stored offline fingerprint library for positioning, it only needs to determine the matching offline fingerprints according to the CellID and the grid identifier of the serving base station, and according to the weighting
  • the amount of calculation required for terminal device positioning can be reduced, and the accuracy of offline positioning and the effect of offline positioning can be effectively improved.
  • the specific process may include:
  • the terminal device determines the weight corresponding to the first offline fingerprint according to the match between the signal identifier in the first offline fingerprint and the signal identifier of the first base station. For example, take the first offline fingerprint in the reconstructed fingerprint feature as offline fingerprint 6. At this time, for base station F, the signal strength RSS6 of the reconstructed fingerprint feature is similar to the signal strength RSS01 in the fingerprint at the first target location. The degree is 0.8.
  • the terminal device determines the first neighboring cell base station matching the second offline fingerprint through channel parameters;
  • the signal identifier of the matched first neighboring cell base station and the signal identifier in the second offline fingerprint are used to determine the weight corresponding to the second offline fingerprint;
  • the signal strength RSS3 of the reconstructed fingerprint feature is compared with the first The similarity of the signal strength RSS02 in the target location fingerprint is 0.6;
  • the similarity of the signal strength RSS05 of the reconstructed fingerprint feature and the signal strength RSS03 in the first target location fingerprint is 0.3.
  • the terminal device determine a second location.
  • the terminal device 0.8*X6'+0.6 *X3'+0.3*X5'
  • Y1' 0.8*Y6'+0.6*Y3'+0.3*Y5'.
  • the terminal device determines that the first offline fingerprints are N0, then according to the reference point position of each offline fingerprint in the N0 first offline fingerprints, and For the channel parameters of the Q neighboring cell base stations, in the offline fingerprint library, search for W second offline fingerprints that meet the first condition; W is a positive integer.
  • the terminal device is based on the signal identifiers and reference point positions in the N0 first offline fingerprints, the signal identifiers and reference point positions in the W second offline fingerprints, and the Q+1 signals in the target position fingerprint The identifier determines the location of the terminal device.
  • the terminal device can perform a weighted average on the N0 second positions to determine the position of the terminal device.
  • the weight can be determined according to the location source in the reconstructed fingerprint feature corresponding to each second location, or can be determined according to the location source corresponding to each second location and the signal strength of the reconstructed fingerprint feature, which is not limited here.
  • the terminal device uses the locally stored offline fingerprint library for positioning, it does not need to match the target location fingerprint based on the serving base station information and multiple neighboring cell base station information in the location fingerprint feature to determine the multiple with higher similarity.
  • the location fingerprint feature only needs to identify multiple offline fingerprints based on the grid identification, and directly determine the location based on the weighted average, which can reduce the amount of calculation required for terminal device positioning and improve the efficiency and accuracy of positioning .
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of the positioning server, the terminal device, and the interaction between the two.
  • the positioning server and at least one terminal device may include a hardware structure and/or a software module, and the above may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • Each function. Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 8 shows a schematic structural diagram of a communication device 800.
  • the device 800 for generating an offline fingerprint database may be a network device, which can realize the function of the positioning server in the method provided in the embodiment of the present application; the device 800 for generating an offline fingerprint database may also be capable of supporting the positioning server to implement the functions provided by the embodiment of the present application.
  • the device 800 for generating an offline fingerprint database may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the device 800 for generating an offline fingerprint database can be implemented by a chip system. In the embodiments of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 800 for generating an offline fingerprint database may include a processing module 801, a receiving module 802, and a sending module 803.
  • the processing module 801 may be used to execute the steps in the embodiment shown in FIG. 3, and/or used to support other processes of the technology described herein.
  • the receiving module 802 and the sending module 803 are used for the offline fingerprint library generating device 800 to communicate with other modules, which can be circuits, devices, interfaces, buses, software modules, transceivers, or any other devices that can realize communication.
  • the receiving module 802 may be used to perform step 301 in the embodiment shown in FIG. 3, and/or used to support other processes of the technology described herein.
  • the sending module 803 may be used to perform step 303 in the embodiment shown in FIG. 3, and/or used to support other processes of the technology described herein.
  • FIG. 9 shows a schematic structural diagram of a positioning device 900.
  • the positioning device 900 may be a terminal device, which can realize the function of the terminal device in the method provided in the embodiment of this application; the positioning device 900 may also be a device that can support the terminal device to realize the function of the terminal device in the method provided in the embodiment of this application .
  • the positioning device 900 may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the positioning device 900 may be implemented by a chip system. In the embodiments of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the positioning device 900 may include a processing module 901 and an acquisition module 902.
  • the processing module 901 may be used to execute steps 402 to 404 in the embodiment shown in FIG. 4, and/or used to support other processes of the technology described herein.
  • the acquisition module 902 may be used to perform step 401 in the embodiment shown in FIG. 4, and/or used to support other processes of the technology described herein.
  • the acquisition module 902 is used for communication between the positioning device 900 and other modules, and it can be a circuit, a device, an interface, a bus, a software module, a transceiver, or any other device that can realize communication.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules.
  • FIG. 10 shows a communication device 1000 provided in an embodiment of this application, where the communication device 1000 may be the positioning server in the embodiment shown in FIG. 3, and can realize the function of the positioning server in the method provided in the embodiment of this application;
  • the communication device 1000 may also be a device capable of supporting an access network device to implement the function of the positioning server in the method provided in the embodiment of the present application.
  • the communication device 1000 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1000 includes at least one processor 1020, which is used to implement or support the communication device 1000 to implement the function of the positioning server in the method provided in the embodiment of the present application.
  • the processor 1020 matches the CellIDs of the M serving base stations with the signal identifiers and channel parameters in the information of the multiple base stations to generate P offline fingerprints, where P is greater than M; Offline fingerprints are stored in the offline fingerprint library; each offline fingerprint includes: a base station’s CellID, signal identification and channel parameters, a reference point position; M, N, P are positive integers; for each The offline fingerprint, where the CellID included is the CellID of any one of the M serving base stations, and the position of the reference point is related to the first position corresponding to the CellID carried in the offline fingerprint.
  • the processor 1020 matches the CellIDs of the M serving base stations with the signal identifiers and channel parameters in the information of the multiple base stations to generate P offline fingerprints, where P is greater than M; Offline fingerprints are stored in the offline fingerprint library; each offline fingerprint
  • the communication device 1000 may further include at least one memory 1030 for storing program instructions and/or data.
  • the memory 1030 and the processor 1020 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may operate in cooperation with the memory 1030.
  • the processor 1020 may execute program instructions stored in the memory 1030 to implement the functions of the processing module in FIG. 8 in the embodiment of the present application. At least one of the at least one memory may be included in the processor.
  • the communication device 1000 may further include a communication interface 1010 for communicating with other devices through a transmission medium, so that the device used in the communication device 1000 can communicate with other devices.
  • the other device may be a network device.
  • the processor 1020 may use the communication interface 1010 to send and receive data.
  • the antenna and the radio frequency circuit with the transceiver function can be regarded as the receiving module and the transmitting module of the positioning server, and the processor with the processing function can be regarded as the processing module of the positioning server.
  • the communication interface 1010 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processor 1020 may also be referred to as a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the communication interface 1010 can be regarded as a receiving module, and the device for implementing the sending function in the communication interface 1010 can be regarded as a sending module, that is, the communication interface 1010 includes a receiving module and a sending module.
  • the receiving module may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving module may sometimes be called a receiver, receiver, or receiving circuit.
  • the sending module may sometimes be called a transmitter, transmitter, or transmitting circuit.
  • the communication interface 1010 is used to perform the receiving and sending operations of the positioning server in the foregoing method embodiment
  • the processor 1020 is used to perform other operations on the positioning server in the foregoing method embodiment except for the receiving and sending operations.
  • the communication interface 1010 is used to perform the receiving and sending operations of the positioning server in step 301 and step 303 in FIG. 3, and/or the communication interface 1010 is also used to perform other functions of the positioning server in the embodiment of the present application.
  • the processor 1020 is configured to execute step 302 in FIG. 3, and/or the processor 1020 is further configured to execute other processing steps of the positioning server in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a receiving module, a sending module and a processing module.
  • the receiving module and the sending module may be an input/output circuit or a communication interface;
  • the processing module is a processor, a microprocessor, or an integrated circuit integrated on the chip.
  • connection medium between the aforementioned communication interface 1010, the processor 1020, and the memory 1030 is not limited in the embodiment of the present application.
  • the memory 1030, the processor 1020, and the communication interface 1010 are connected by a bus 1040.
  • the bus is represented by a thick line in FIG. 10, and the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor 1020 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement Or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 1030 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), For example, random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • FIG 11 shows a communication device 1100 provided by an embodiment of this application.
  • the communication device 1100 may be a terminal device, which can realize the function of the terminal device in the method provided in the embodiment of this application; the communication device 1100 may also be capable of supporting a terminal.
  • the communication device 1100 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1100 includes at least one processor 1120, configured to implement or support the communication device 1100 to implement the positioning function in the method provided in the embodiment of the present application.
  • the processor 1120 may use the CellID of the first base station to search for a first offline fingerprint matching the CellID of the first base station in an offline fingerprint database; according to the position of the reference point in the first offline fingerprint, And the channel parameters of the Q neighboring cell base stations, in the offline fingerprint library, search for multiple second offline fingerprints that meet the first condition, and based on the signal identification and reference point position in the first offline fingerprint, The signal identifiers and reference point positions in the multiple second offline fingerprints, and the Q+1 signal identifiers in the position fingerprints, determine the position of the terminal device.
  • the processor 1120 may use the CellID of the first base station to search for a first offline fingerprint matching the CellID of the first base station in an offline fingerprint database; according to the position of the reference point in the first offline fingerprint, And the channel parameters of the Q neighboring cell base stations, in the offline fingerprint library
  • the communication device 1100 may further include at least one memory 1130 for storing program instructions and/or data.
  • the memory 1130 is coupled with the processor 1120.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1120 may operate in cooperation with the memory 1130.
  • the processor 1120 may execute program instructions stored in the memory 1130 to implement the functions of the processing module in FIG. 9 in the embodiment of the present application. At least one of the at least one memory may be included in the processor.
  • the communication apparatus 1100 may further include a communication interface 1110 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1100 can communicate with other devices.
  • the other device may be a terminal device.
  • the processor 1120 may use the communication interface 1110 to send and receive data.
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the receiving module and the transmitting module of the terminal device, and the processor with the processing function may be regarded as the processing module of the terminal device.
  • the communication interface 1110 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processor 1120 may also be referred to as a processor, a processing board, a processing module, a processing device, and so on.
  • the device used to implement the receiving function in the communication interface 1110 can be regarded as a receiving module or an acquisition module, and the device used to implement the sending function in the communication interface 1110 can be regarded as a sending module, that is, the communication interface 1110 includes a receiving module and Send the module.
  • the receiving module may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving module or the collecting module may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the sending module may sometimes be called a transmitter, transmitter, or transmitting circuit.
  • the communication interface 1110 is used to perform the collection operation of the terminal device in the foregoing method embodiment, and the processor 1120 is used to perform other operations on the terminal device except the collection operation in the foregoing method embodiment.
  • the communication interface 1110 is used to perform the collection operation of the terminal device in step 401 in FIG. 4, and/or the communication interface 1110 is also used to perform other collection steps of the terminal device in the embodiment of the present application.
  • the processor 1120 is configured to execute steps 402 to 404 in FIG. 4, and/or the processor 1120 is further configured to execute other processing steps of the terminal device in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes an acquisition module and a processing module.
  • the acquisition module may be an input/output circuit or a communication interface;
  • the processing module is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 1110, the processor 1120, and the memory 1130.
  • the memory 1130, the processor 1120, and the communication interface 1110 are connected by a bus 1140.
  • the bus is represented by a thick line in FIG. 11.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the processor 1120 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component. Or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 1130 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), For example, random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method executed by the positioning server in the embodiment shown in FIG. 3.
  • An embodiment of the present application also provides a computer program product, including instructions, which when run on a computer, cause the computer to execute the method executed by the positioning server in the embodiment shown in FIG. 3.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method executed by the terminal device in the embodiment shown in FIG. 4.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a computer, cause the computer to execute the method executed by the terminal device in the embodiment shown in FIG. 4.
  • the embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for realizing the function of the positioning server in the foregoing method.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for realizing the functions of the terminal device in the foregoing method.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • An embodiment of the present application provides a system, which includes the aforementioned positioning server and terminal equipment.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by the computer or a data storage device such as a server, data center, etc. integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, hard disk, Magnetic tape), optical media (for example, digital video disc (digital video disc, DVD for short)), or semiconductor media (for example, SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种定位、离线指纹库的生成方法及装置,其中,定位方法包括:终端设备采集位置指纹;终端设备通过所述第一基站的小区标识CellID,在离线指纹库中查找与所述第一基站CellID匹配的第一离线指纹;所述离线指纹库存储于所述终端设备,离线指纹库用于管理多个离线指纹;终端设备根据所述第一离线指纹中的参考点位置,以及所述Q个邻区基站的信道参数,在离线指纹库中,查找符合第一条件的多个第二离线指纹;终端设备基于第一离线指纹中的信号标识和参考点位置,多个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的Q+1个信号标识,确定所述终端设备的位置。

Description

一种定位、离线指纹库的生成方法及装置
相关申请的交叉引用
本申请要求在2019年08月30日提交中国专利局、申请号为201910817834.4、申请名称为“一种定位、离线指纹库的生成方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种定位、离线指纹库的生成方法及装置。
背景技术
随着无线通信技术的快速发展,智能终端设备数量越来越多,各种基于无线通信的定位技术应用而生,如:商场室内导航、精准位置广告推送、老人和小孩实时位置监控以及与网络优化相关的无线定位服务。
目前,比较常用的定位方法为无线特征信号匹配(radio finger-printing pattern matching,RFPM)定位方法,在该方法中,终端设备在需要定位时,需要向定位服务器发送定位请求,定位请求中包括终端设备上报的小区信息和接收信号强度(received signal strength,RSS),定位服务器根据定位请求中的小区信息和接收信号强度,采用匹配算法与历史定位数据进行比较,进而确定出终端设备的位置,定位服务器将确定的终端设备的位置下发至终端设备。
上述技术方案仅能在终端设备可以连接定位服务器时使用,在终端设备处于室内或隧道等信号较差、无法与定位服务器正常通信的场景中,定位服务器无法获取终端设备当前位置的小区信息和RSS,则无法进行定位。另外,针对终端设备隐私的考虑,终端设备可能需要关闭数据网络,避免定位服务器确定终端设备的定位结果,也导致终端设备无法确定自身当前的位置,进而使得相关业务的功能受限,影响用户的使用体验。
若在定位过程中,将历史定位数据下发至终端设备,终端设备需要根据本地存储的历史定位数据,查找与终端设备当前采集的小区信息和接收信号强度匹配的历史定位数据,实现定位所需的计算量大,得出定位结果需要较长时间,占用终端设备的处理资源过多,且定位结果精度低,使得这种用户的使用体验较差。
发明内容
本发明实施例提供一种定位、离线指纹库的生成方法及装置,该定位、离线指纹库的生成方法有助于解决现有技术中无线定位过程中终端设备需依赖与定位服务器的通信来保障定位精度的问题。
第一方面,提供一种定位方法,终端设备采集位置指纹;所述位置指纹包括:第一基站的信号标识,所述第一基站的小区标识(cell identification,CellID),所述第一基站的Q个邻区基站的信号标识及所述Q个邻区基站的信道参数;所述第一基站为所述终端设备接入的服务基站;Q为正整数;所述终端设备通过所述第一基站的CellID,在离线指纹库中查找与所述第一基站CellID匹配的第一离线指纹;所述离线指纹库存储于所述终端设备,所述离线指纹库用于管理多个离线指纹;每个离线指纹包括:一个基站的CellID、信号标 识和信道参数,以及一个参考点位置;所述终端设备根据所述第一离线指纹中的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的多个第二离线指纹,所述第一条件为离线指纹中携带的信道参数与所述Q个邻区基站的信道参数中的一个相同,且离线指纹中携带的参考点位置在第一邻区搜索范围内,所述第一邻区搜索范围为包括所述第一离线指纹中的参考点位置的一个有限区域;所述终端设备基于所述第一离线指纹中的信号标识和参考点位置,所述多个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的Q+1个信号标识,确定所述终端设备的位置。
通过上述方法,终端设备在利用本地存储的离线指纹库进行定位时,无需根据位置指纹特征中的服务基站信息及多个邻区基站信息,与目标位置指纹匹配,确定相似度较高的多个位置指纹特征,仅需根据第一基站的CellID,确定第一离线指纹,进而根据第以离线指纹中的参考点位置,确定多个第二离线指纹,进而,可以根据第一离线指纹和第二离线指纹确定终端设备的位置,可以减少终端设备定位所需的计算量,提高了定位的效率和定位的精度,且无需在定位过程中多次向定位服务器请求信息。
一种可能的设计中,终端设备以所述第一离线指纹中的参考点位置为中心,根据所述第一基站的信号覆盖范围,确定所述第一邻区基站搜索范围;终端设备根据所述第一邻区基站搜索范围,在所述离线指纹库中,查找参考点位置位于所述第一邻区基站搜索范围内的L1个离线指纹;终端设备在所述L1个离线指纹中,确定多个第二离线指纹,其中所述多个第二离线指纹为与所述Q个邻区基站的信道参数相同的多个离线指纹。
上述技术方案中,上述技术方案,通过第一位置和所述第一服务基站信息中服务基站对应的信号制式确定的信号覆盖范围,可以有效的确定第二邻区搜索范围,进而可以快速确定与目标位置指纹中的邻区基站匹配的第二离线指纹。
一种可能的设计中,所述离线指纹还包括:所述参考点位置所在网格的网格标识;所述终端设备确定所述第一离线指纹中的参考点位置所在第一网格的第一网格标识;所述终端设备确定与所述第一网格对应的R个相邻网格的网格标识对应的K1个离线指纹,其中,所述第一网格对应的R个相邻网格为所述第一邻区基站搜索范围;R,K1为正整数;所述终端设备在所述K1个离线指纹中,确定多个第二离线指纹,其中所述多个第二离线指纹为与所述Q个邻区基站的信道参数相同的多个离线指纹。
一种可能的设计中,终端设备根据所述Q个邻区基站的信号标识中的每个邻区基站的信号标识,与所述多个第二离线指纹中的信号标识匹配,确定所述多个第二离线指纹对应的权重;进而,终端设备根据所述第一离线指纹对应的权重,所述第一离线指纹的参考点位置,及所述多个第二离线指纹对应的权重,所述多个第二离线指纹的参考点位置,确定终端设备的位置。
相比现有技术中,定位服务器需根据最近邻匹配(k-NearestNeighbor,KNN)算法遍历位置指纹库中的所有位置指纹特征,确定相似度较高的多个位置指纹特征进行匹配的方法。本申请实施例中,通过上述方法,终端设备在利用本地存储的离线指纹库进行定位时,仅需根据服务基站的CellID和网格标识,即可以确定出匹配的第一离线指纹和多个第二离线指纹。进而根据匹配的第一离线指纹和第二离线指纹,确定位置,可以减少终端设备定位所需的计算量,有效提高离线定位的精度和离线定位效果。
一种可能的设计中,所述离线指纹库还包括:离线指纹的CellID与所述离线指纹所在网格的网格标识的关系;所述终端设备若确定所述离线指纹库中不存在与所述第一基站 CellID匹配的第一离线指纹,则根据所述离线指纹的CellID与所述离线指纹所在网格的网格标识的关系中,查找所述第一离线指纹,其中,所述第一离线指纹为所述第一基站的CellID所在网格的第二网格标识对应的离线指纹。
上述实施例中,通过筛选网格中的离线指纹,可以有效去除伪基站对定位的影响,并通过离线指纹的CellID与所述离线指纹所在网格的网格标识的关系,可以保证终端设备在定位过程中,通过CellID查找第一离线指纹的有效性,提高定位速度。
一种可能的设计中,所述第一离线指纹为N0个,其中N0大于1,终端设备根据所述N0个第一离线指纹中的每个离线指纹的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的W个第二离线指纹;W为正整数;终端设备基于所述N0个第一离线指纹中的信号标识和参考点位置,所述W个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的Q+1个信号标识,确定所述终端设备的位置。
上述技术方案中,终端设备基于所述N0个第一离线指纹中的信号标识和参考点位置,所述W个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的Q+1个信号标识,确定所述终端设备的位置,因此,终端设备利用更多的离线指纹,提高定位的精度。
第二方面,提供一种离线指纹库的生成方法,定位服务器接收来自终端设备的M个位置指纹特征,其中,所述M个位置指纹特征共包括M个第一位置以及多个基站的信息,所述多个基站为所述M个第一位置所在小区的M个服务基站,以及所述M个服务基站对应的N个邻区基站,所述多个位置指纹特征中包括所述M个服务基站的小区标识CellID、信号标识和信道参数,以及所述N个邻区基站的信号标识和信道参数;定位服务器将所述M个服务基站的CellID与所述多个基站的信息中的信号标识和信道参数进行匹配,以生成P个离线指纹,其中P大于M;所述多个离线指纹被保存在所述定位服务器的离线指纹库中;每个所述离线指纹都包括:一基站的CellID、信号标识和信道参数,一个参考点位置;M,N,P为正整数;对于每个离线指纹,其中包括的CellID为所述M个服务基站中任一服务基站的CellID,所述参考点位置与所述离线指纹中携带的CellID对应的第一位置有关;所述定位服务器向终端设备发送所述离线指纹库。
采用本申请实施例提供的技术方案,相比现有技术中的位置指纹特征,该实施例将所述M个服务基站的CellID与所述多个基站的信息中的信号标识和信道参数进行匹配,以生成P个离线指纹,可以有效的对位置指纹特征中的冗余信息进行处理,有效提高了位置指纹特征中的信息的利用,提高终端设备离线定位的精度,进而提高了终端设备在本地进行离线定位的可用性。
需要说明的是,M个服务基站和N个邻区基站之间有重合。
一种可能的设计中,定位服务器将符合第二条件的多个位置指纹特征中服务基站的CellID与所述M个服务基站对应的N个邻区基站中的信道参数进行匹配,确定所述M个服务基站对应的N个邻区基站的CellID;所述第二条件为位置指纹特征中携带的服务基站的信道制式与所述邻区基站对应的位置指纹特征中携带的服务基站的信道制式相同,且位置指纹特征中携带的第一位置在第二邻区搜索范围内;所述第二邻区搜索范围为包括所述邻区基站对应的位置指纹特征中的第一位置的一个有限区域;定位服务器根据所述M个位置指纹特征和所述M个服务基站对应的N个邻区基站的CellID,生成P个离线指纹。
上述实施例中,将符合第二条件的多个位置指纹特征中服务基站的CellID与所述M个服务基站对应的N个邻区基站中的信道参数进行匹配,确定所述M个服务基站对应的N 个邻区基站的CellID,可以将邻区基站的信息也作为位置指纹特征进行定位,因此实现了对位置指纹特征中的有效信息进行提取,可以更好的利用位置指纹特征的信息,提高定位的精度。
一种可能的设计中,定位服务器根据所述M个第一位置和所述M个服务基站的信息,生成M个离线指纹;定位服务器根据所述M个第一位置,所述M个服务基站对应的N个邻区基站的信息及所述M个服务基站对应的N个邻区基站的CellID,生成M×N个离线指纹;所述P等于M×(N+1)。
上述实施例中,根据所述M个第一位置,所述M个服务基站对应的N个邻区基站的信息及所述M个服务基站对应的N个邻区基站的CellID,生成M×N个离线指纹,可以有效的对位置指纹特征中的有效信息进行提取,可以更好的利用位置指纹特征的信息,提高定位的精度,并降低了定位服务器的处理复杂度。
一种可能的设计中,位置指纹特征还包括所述第一位置的定位来源;所述方法还包括:
定位服务器将所述M个第一位置的定位来源,确定为对应生成的离线指纹中的参考点位置的定位来源;定位服务器根据所述离线指纹中的参考点位置的定位来源,确定所述离线指纹的优先级,进而筛选所述基站的Cellid对应的离线指纹;所述离线指纹库中相同基站的Cellid对应的离线指纹为筛选后的基站的Cellid对应的离线指纹。
通过对离线指纹的筛选,使得离线指纹库中只保留了可靠的位置指纹特征的信息,可以有效提高终端设备离线定位的准确性。
一种可能的设计中,所述定位服务器根据所述M个服务基站的CellID和所述M个服务基站对应的N个邻区基站的CellID,查找对应相同CellID的P组基站的信息;定位服务器根据所述P组基站的信息及每组基站的信息所在的位置指纹特征中的第一位置,确定P个离线指纹;其中,每个离线指纹中的参考点与每组基站的信息中的第一位置有关;每个离线指纹中的信号标识与每组基站的信息中的信号标识有关。
上述实施例中,可以有效的对位置指纹特征中的有效信息进行压缩,可以降低离线指纹库的大小,以实现终端设备本地存储离线指纹库,提高终端设备离线定位的精度,进而提高了终端设备在本地进行离线定位的可用性。
一种可能的设计中,所述位置指纹特征还包括所述第一位置的定位来源;针对每组基站的信息对应的多个位置指纹特征中的每个位置指纹特征:定位服务器根据所述位置指纹特征中第一位置的定位来源,确定所述位置指纹特征的定位来源优先级;定位服务器根据所述位置指纹特征的定位来源优先级,及所述位置指纹特征中的信号标识,确定所述位置指纹特征对应的权重;定位服务器根据所述多个位置指纹特征对应的权重,及所述多个位置指纹特征中的第一位置,确定该组基站的信息对应的离线指纹特征中的参考点位置;定位服务器根据所述位置指纹特征对应的权重,及所述位置指纹特征中的信号标识,确定该组基站的信息对应的基站的信号标识。
上述实施例中,可以根据定位来源和信号标识,有效的提取位置指纹特征中的信息,可以提高离线指纹特征的可靠性,进而提高终端设备在本地进行离线定位的可用性。
一种可能的设计中,所述第二邻区搜索范围为所述定位服务器根据所述邻区基站对应的位置指纹特征中的第一位置为中心,根据所述邻区基站对应的位置指纹特征中服务基站对应的信号制式确定的信号覆盖范围确定的一个区域。
上述技术方案,通过待匹配的位置指纹特征中第一位置和所述服务基站的信息中服务基站对应的信号制式确定的信号覆盖范围,可以有效的确定第二邻区搜索范围,进而可以快速确定与待匹配的位置指纹中的邻区基站的信道参数匹配的服务基站的信息,实现了对邻区基站的信息的有效利用。
一种可能的设计中,第一邻区基站的信道参数对应K0个符合所述第二条件的服务基站的CellID,所述第一邻区基站为所述N个邻区基站中的一个;定位服务器根据所述K0个第一位置,确定所述K0个第一位置的中心;K0为正整数;定位服务器基于所述中心与所述K0个第一位置与所述中心的欧式距离,确定与所述第一邻区基站的信道参数匹配的服务基站的CellID;其中,所述与所述第一邻区基站的信道参数匹配的服务基站的CellID为最接近中心的第一位置对应的服务基站的CellID。
上述技术方案,通过中心与所述K0个第一位置与所述中心的欧式距离,筛选出与第一邻区基站的信道参数匹配的服务基站,解决了第一邻区基站的信道参数对应K0个符合所述第二条件的服务基站的CellID无法确定第一邻区基站的CellID的问题。
一种可能的设计中,所述离线指纹还包括:所述参考点位置所在网格的网格标识。
上述技术方案,通过包括参考点位置所在网格的网格标识,可以提高终端设备在定位过程中,查找第一离线指纹和第二离线指纹的查找效率,提高定位速度。
一种可能的设计中,所述定位服务器根据所述参考点位置所在的网格的网格标识,确定每个网格中的N1个离线指纹;所述定位服务器根据所述N1个离线指纹中的信号标识,筛选所述N1个离线指纹;N1为正整数;其中,网格筛选后的离线指纹为所述网格对应的离线指纹;网格筛选前的离线指纹中的CellID与所述网格筛选前的离线指纹所在网格的网格标识的关系存储与所述离线指纹库。
上述技术方案,通过筛选网格中的离线指纹,可以有效去除伪基站对定位的影响,并可以保证终端设备在定位过程中,通过CellID查找第一离线指纹的有效性,提高定位速度。
第三方面,本申请实施例提供一种定位装置,包括:
采集模块,用于采集位置指纹;所述位置指纹包括:第一基站的信号标识,所述第一基站的小区标识CellID,所述第一基站的Q个邻区基站的信号标识及所述Q个邻区基站的信道参数;所述第一基站为所述终端设备接入的服务基站;Q为大于1的整数;
处理模块,用于通过所述第一基站的CellID,在离线指纹库中查找与所述第一基站CellID匹配的第一离线指纹;所述离线指纹库存储于所述终端设备,所述离线指纹库用于管理多个离线指纹;每个离线指纹包括:一个基站的CellID、信号标识和信道参数,以及一个参考点位置;根据所述第一离线指纹中的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的多个第二离线指纹,所述第一条件为离线指纹中携带的信道参数与所述Q个邻区基站的信道参数中的一个相同,且离线指纹中携带的参考点位置在第一邻区搜索范围内,所述第一邻区搜索范围为包括所述第一离线指纹中的参考点位置的一个有限区域;基于所述第一离线指纹中的信号标识和参考点位置,所述多个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的Q+1个信号标识,确定所述终端设备的位置。
一种可能的设计中,所述处理模块,具体用于:以所述第一离线指纹中的参考点位置为中心,根据所述第一基站的信号覆盖范围,确定所述第一邻区基站搜索范围;根据所述第一邻区基站搜索范围,在所述离线指纹库中,查找参考点位置位于所述第一邻区基站搜 索范围内的L1个离线指纹;L1为正整数;在所述L1个离线指纹中,确定多个第二离线指纹,其中所述多个第二离线指纹为与所述N个邻区基站的信道参数相同的多个离线指纹。
一种可能的设计中,所述离线指纹还包括:所述参考点位置所在网格的网格标识;所述处理模块,具体用于:确定所述第一离线指纹中的参考点位置所在第一网格的第一网格标识;确定与所述第一网格对应的R个相邻网格的网格标识对应的K1个离线指纹,其中,所述第一网格对应的R个相邻网格为所述第一邻区基站搜索范围;R,K1为正整数;在所述K1个离线指纹中,确定多个第二离线指纹,其中所述多个第二离线指纹为与所述Q个邻区基站的信道参数相同的多个离线指纹。
一种可能的设计中,所述离线指纹库还包括:离线指纹的CellID与所述离线指纹所在网格的网格标识的关系;所述处理模块,具体用于:若确定所述离线指纹库中不存在与所述第一基站CellID匹配的第一离线指纹,则根据所述离线指纹的CellID与所述离线指纹所在网格的网格标识的关系中,查找所述第一离线指纹,其中,所述第一离线指纹为所述第一基站的CellID所在网格的第二网格标识对应的离线指纹。
一种可能的设计中,所述处理模块,具体用于:根据所述Q个邻区基站的信号标识中的每个邻区基站的信号标识,与所述多个第二离线指纹中的信号标识匹配,确定所述多个第二离线指纹对应的权重;进而,终端设备根据所述第一离线指纹对应的权重,所述第一离线指纹的参考点位置,及所述多个第二离线指纹对应的权重,所述多个第二离线指纹的参考点位置,确定终端设备的位置。
一种可能的设计中,所述第一离线指纹为N0个,其中N0大于1,所述处理模块,还用于:根据所述N0个第一离线指纹中的每个离线指纹的参考点位置,以及所述N个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的W个第二离线指纹;W为正整数;基于所述N0个第一离线指纹中的信号标识和参考点位置,所述W个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的N+1个信号标识,确定所述终端设备的位置。
第四方面,本申请实施例提供一种离线指纹库的生成装置,包括:
接收模块,用于接收来自终端设备的M个位置指纹特征,其中,所述M个位置指纹特征共包括M个第一位置以及多个基站的信息,所述多个基站为所述M个第一位置所在小区的M个服务基站,以及所述M个服务基站对应的N个邻区基站,所述多个位置指纹特征中包括所述M个服务基站的小区标识CellID、信号标识和信道参数,以及所述N个邻区基站的信号标识和信道参数。
处理模块,用于将所述M个服务基站的CellID与所述多个基站的信息中的信号标识和信道参数进行匹配,以生成P个离线指纹,其中P大于M;所述多个离线指纹被保存在定位服务器的离线指纹库中;每个所述离线指纹都包括:一基站的CellID、信号标识和信道参数,一个参考点位置;M,N,P为正整数;对于每个离线指纹,其中包括的CellID为所述M个服务基站中任一服务基站的CellID,所述参考点位置与所述离线指纹中携带的CellID对应的第一位置有关。
发送模块,用于向终端设备发送所述离线指纹库。
一种可能的设计中,所述处理模块,具体用于:将符合第二条件的多个位置指纹特征中服务基站的CellID与所述M个服务基站对应的N个邻区基站中的信道参数进行匹配,确定所述M个服务基站对应的N个邻区基站的CellID;所述第二条件为位置指纹特征中 携带的服务基站的信道制式与所述邻区基站对应的位置指纹特征中携带的服务基站的信道制式相同,且位置指纹特征中携带的第一位置在第二邻区搜索范围内;所述第二邻区搜索范围为包括所述邻区基站对应的位置指纹特征中的第一位置的一个有限区域;根据所述M个位置指纹特征和所述M个服务基站对应的N个邻区基站的CellID,生成P个离线指纹。
一种可能的设计中,所述处理模块,具体用于:根据所述M个第一位置和所述M个服务基站的信息,生成M个离线指纹;根据所述M个第一位置,所述M个服务基站对应的N个邻区基站的信息及所述M个服务基站对应的N个邻区基站的CellID,生成M×N个离线指纹;所述P等于M×(N+1)。
一种可能的设计中,位置指纹特征还包括所述第一位置的定位来源;所述处理模块,还用于:将所述M个第一位置的定位来源,确定为对应生成的离线指纹中的参考点位置的定位来源;根据所述离线指纹中的参考点位置的定位来源,确定所述离线指纹的优先级,进而筛选所述基站的Cellid对应的离线指纹;所述离线指纹库中相同基站的Cellid对应的离线指纹为筛选后的基站的Cellid对应的离线指纹。
一种可能的设计中,所述处理模块,具体用于:根据所述M个服务基站的CellID和所述M个服务基站对应的N个邻区基站的CellID,查找对应相同CellID的P组基站的信息;根据所述P组基站的信息及每组基站的信息所在的位置指纹特征中的第一位置,确定P个离线指纹;其中,每个离线指纹中的参考点与每组基站的信息中的第一位置有关;每个离线指纹中的信号标识与每组基站的信息中的信号标识有关。
一种可能的设计中,所述位置指纹特征还包括所述第一位置的定位来源;针对每组基站的信息对应的多个位置指纹特征中的每个位置指纹特征:所述处理模块,具体用于:根据所述位置指纹特征中第一位置的定位来源,确定所述位置指纹特征的定位来源优先级;根据所述位置指纹特征的定位来源优先级,及所述位置指纹特征中的信号标识,确定所述位置指纹特征对应的权重;根据所述多个位置指纹特征对应的权重,及所述多个位置指纹特征中的第一位置,确定该组基站的信息对应的离线指纹特征中的参考点位置;根据所述位置指纹特征对应的权重,及所述位置指纹特征中的信号标识,确定该组基站的信息对应的基站的信号标识。
一种可能的设计中,所述第二邻区搜索范围为所述定位服务器根据所述邻区基站对应的位置指纹特征中的第一位置为中心,根据所述第一服务基站信息中服务基站对应的信号制式确定的信号覆盖范围确定的一个区域。
一种可能的设计中,第一邻区基站的信道参数对应K0个符合所述第二条件的服务基站的CellID,所述第一邻区基站为所述N个邻区基站中的一个,所述处理模块,具体用于:根据所述K0个第一位置,确定所述K0个第一位置的中心;基于所述中心与所述K0个第一位置与所述中心的欧式距离,确定与所述第一邻区基站的信道参数匹配的服务基站的CellID;其中,所述与所述第一邻区基站的信道参数匹配的服务基站的CellID为最接近中心的第一位置对应的服务基站的CellID;K0为正整数。
一种可能的设计中,所述离线指纹还包括:所述参考点位置所在网格的网格标识。
一种可能的设计中,所述处理模块,还用于:根据所述参考点位置所在的网格的网格标识,确定每个网格中的N1个离线指纹;根据所述N1个离线指纹中的信号标识,筛选所 述N1个离线指纹;其中,筛选后的离线指纹为所述网格对应的离线指纹;网格筛选前的离线指纹中的CellID与所述网格筛选前的离线指纹所在网格的网格标识的关系存储与所述离线指纹库。
第五方面,本申请实施例提供一种通信装置,所述装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储指令和/或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第一方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为网络设备等。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
通信接口,用于采集位置指纹。
处理器,用于通过所述第一基站的CellID,在离线指纹库中查找与所述第一基站CellID匹配的第一离线指纹;所述离线指纹库存储于所述终端设备,所述离线指纹库用于管理多个离线指纹;每个离线指纹包括:一个基站的CellID、信号标识和信道参数,以及一个参考点位置;根据所述第一离线指纹中的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的多个第二离线指纹,所述第一条件为离线指纹中携带的信道参数与所述Q个邻区基站的信道参数中的一个相同,且离线指纹中携带的参考点位置在第一邻区搜索范围内,所述第一邻区搜索范围为包括所述第一离线指纹中的参考点位置的一个有限区域;基于所述第一离线指纹中的信号标识和参考点位置,所述多个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的Q+1个信号标识,确定所述终端设备的位置。
所述处理器和通信接口的功能,可以参考第一方面的记载,这里不再赘述。
第六方面,本申请实施例提供一通信种装置,所述装置包括处理器,用于实现上述第二方面描述的方法。所述装置还可以包括存储器,用于存储指令和/或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第二方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为终端设备等。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于将所述M个服务基站的CellID与所述多个基站的信息中的信号标识和信道参数进行匹配,以生成P个离线指纹,其中P大于M;所述多个离线指纹被保存在所述离线指纹库中;每个所述离线指纹都包括:一基站的CellID、信号标识和信道参数,一个参考点位置;M,N,P为正整数;对于每个离线指纹,其中包括的CellID为所述M个服务基站中任一服务基站的CellID,所述参考点位置与所述离线指纹中携带的CellID对应的第一位置有关。
通信接口,在第二方面的方法流程中,使用了接收功能,用于接收来自终端设备的M个位置指纹特征,及使用了发送功能,用于向终端设备发送定位服务器的离线指纹库。
所述处理器和通信接口的功能,可以参考第二方面的记载,这里不再赘述。
第七方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面中定位服务器执行的方法。
第八方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面中终端设备执行的方法。
第九方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面中定位服务器执行的方法。
第十方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面中终端设备执行的方法。
第十一方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面中定位服务器执行的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面中终端设备执行的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十三方面,本申请实施例提供了一种系统,所述系统包括第三方面所述的通信装置和第四方面所述的通信装置。
第十四方面,本申请实施例提供了一种系统,所述系统包括第五方面所述的通信装置和第六方面所述的通信装置。
上述第三方面至第十四方面及其实现方式的有益效果可以参考对第一方面的方法及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例提供的一种系统架构的示意图;
图2为本申请实施例提供的一种小区的示意图;
图3为本申请实施例提供的一种离线指纹库的生成方法的流程示意图;
图4为本申请实施例提供的一种定位方法示意图;
图5a为本申请实施例提供的一种第二邻区搜索范围的示意图;
图5b为本申请实施例提供的一种小区的示意图;
图6为本申请实施例提供的一种第一邻区搜索范围的示意图;
图7为本申请实施例提供的一种网格的示意图;
图8为本申请实施例中提供的一种离线指纹库的生成装置的结构示意图;
图9为本申请实施例中提供的一种定位装置的结构示意图;
图10为本申请实施例中提供的一种通信装置的结构示意图;
图11为本申请实施例中提供的一种通信装置的结构示意图。
具体实施方式
用户在使用与位置相关的天气预报、广告推送、位置搜索、新闻查询等应用时,应用对应的服务器需要根据终端设备的定位信息进行相关的信息推送。现有技术中,在GPS信号丢失区(比如终端设备中的GPS模块出现故障、或终端设备移动到搜索不到GPS信号的区域等),终端设备基于自身的GPS模块将无法获取终端设备的位置。在这种情况下,终端设备就需要采用现有的RFPM定位方法进行位置定位,该方法不需要依赖于GPS信号就可以实现终端设备的定位功能。在该方法中,终端设备在需要定位时,需要向定位服 务器发送定位请求,定位请求中包括终端设备上报的小区信息和信号标识采样信息,定位服务器根据定位请求中的小区信息和信号标识采样信息,采用匹配算法与位置指纹库中的位置指纹特征进行比较,进而确定出终端设备的位置,定位服务器将确定的终端设备的位置下发至终端设备。但是采用这种方法,在终端设备处于室内或隧道等信号较差、无法与定位服务器正常通信的场景中时,由于定位服务器无法获取终端设备当前位置的小区信息和信号标识采样信息,则无法实现对终端设备进行定位。
本申请基于上述技术问题,提出可以将定位服务器学习的位置指纹特征进行处理,有效提取位置指纹特征的定位信息,然后将处理后的位置指纹特征,生成离线指纹发送到终端设备进行存储。这样在终端设备采用RFPM定位方法时,终端设备仅需要根据自身采集的小区信息和信号标识采样信息在本地查询离线指纹就可以确定出自身当前所处的位置信息,而无需依赖于与定位服务之间的通信,可以实现终端设备在到达无法与定位服务器进行通信的区域时,也可以实现定位的目的。并且,由于有效提取了位置指纹特征的定位信息,减少了位置指纹特征中的冗余信息,可以在相同定位数据量的前期下,有效的提高终端设备的定位精度。
请参考图1,为本申请实施例可应用的一种网络架构示意图。如图1所示的网络架构中包括多个基站110-112、定位服务器120以及终端设备130,其中,定位服务器120可以用于采集终端设备130上报的位置指纹特征进行定位信息的处理,生成离线指纹,并向终端设备130发送离线指纹,以使终端设备130根据离线指纹进行定位。基站110可以用于为终端设备130提供服务,本申请中将为终端设备130提供服务的小区称为服务小区,基站111和基站112对应的小区为终端设备130的服务小区的邻小区。应理解,图1所示的网络架构中仅以包括一个终端设备为例进行说明,但本申请实施例并不限于此,例如,网络架构中还可以包括更多的终端设备;类似地,网络架构中也可以包括更多的基站以及定位服务器,并且还可以包括其它设备。需要说明的是,图1中以一个基站设备对应一个小区为例示意,并不引以为限。例如,在一些可能的网络架构中,一个基站设备也可以对应一个以上的小区。无论一个基站设备对应几个小区,本申请提供的方法均适用。
上述图1中的终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、用户单元(subscriber unit)、用户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
上述图1中的网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空中接口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed ynit,DU),本申请实施例并不限定。
上述图1中的定位服务器,是指可以根据位置计算算法对终端设备进行定位的设备或网元。例如可以是计算机装置、服务器(server)、云服务平台、演进的服务移动位置中心(evolved serving mobile location center,E-SMLC)、服务定位协议(service location protocol,SLP)网元或本地管理功能(location management function,LMF)网元等,计算机装置例如可以包括台式计算机、平板电脑、车载计算机等。
请继续参考图1所示,终端设备130位于基站110-112的覆盖区域,例如,终端设备130因为交通导航或位置信息分享等需求,或者,终端设备130登录社交应用程序时,例如登录微信,社交网络服务器需要给终端设备提供位置信息时,终端设备130可以触发定位流程,终端设备将当前接入的服务小区和邻小区作为需测量的小区,将测量的小区信息和信号标识作为终端设备130当前需定位的目标位置指纹,例如,目标位置指纹可以包括基站110-112分别对应的各小区信息和终端设备130分别接收到基站110-112发射信号的信号强度(received signal strength,RSS)。终端设备根据目标位置指纹与预先下载至本地存储的离线指纹进行匹配,采用匹配算法就可以确定出该终端设备的位置,而无非必须与定位服务器建立通信连接后,才能获取到终端设备的当前位置的位置信息,从而不再像现有的RFPM定位方法一样,必须依赖于与定位服务器的通信才可以获取位置信息。
下面,首先对本申请中涉及的部分技术用语进行解释说明,以便于本领域技术人员理解。
1)基于位置指纹的定位方法,其原理是,由于终端设备可以在不同位置测量到不同基站发送的信号,因此,可以通过终端设备测量到的小区信息和接收信号强度(received signal strength,RSS)等信号标识作为终端设备当前所在位置的位置指纹特征。基于历史定位数据中每个已知位置上对应的位置指纹特征,与终端设备当前测量的位置指纹特征进行比较,就可以确定终端设备当前所在的位置。
2)信号标识可为终端设备的测量报告中的信息、接口上采集到的信息等,以及基站的参数。其中,终端设备的测量报告中的信息可包括参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、时间提前量(timing advance,TA)、演进型小区标识(evolved Node B identification,eNB-ID)、小区标识(cell identification,CellID),终端设备的发射功率,信道参数等;其中,CellID可以由移动设备国家代码(mobile country code,MCC),移动设备网络代码(mobile network code,MNC),移动基站编码(Cell Tower ID,CID),基站地区区域码(Location Area Code,LAC)和无线接入技术RAT等标识组成。其中,信道参数可以包括物理层小区标识(physical-layer Cell identity,PCI)和绝对无线频率信道号(absolute radio frequency channel number,ARFCN)等参数。具体的,PCI可以由主同步信号(PSS)与辅同步信号(Secondary Synchronization Signal,SSS)组成。其中,PSS频域上占系统带宽6个RB,指示一个物理小区组内的标识(Physical Indentity,PI),该标识可以有:0,1,2的3个不同的序列;SSS频域上占用6个RB,指示物理小区组号(Channel Number,CN),该标识可以有:0~167(168个);终端设备可以通过PCI区分在基站覆盖范围内的不同的小区。接口上采集到的信息可包括Gn接口、Gi接口、EC接口等接口上采集到的信号标识;基站的参数可包括基站的站高、基站的频段、基站的方向角、基站的下倾角、基站的经纬度和基站的小区发射功率等信息。
3)终端设备的位置信息可以是各个终端设备在对应接收多个无线信号时,获得的位置信息,例如,位置信息为对所述网络设备通过Gn口采集到的数据进行解析得到的位置信息,具体地,对通过Gn口采集到的数据进行深度包检测(deep packet inspection,简称DPI)解析后,得到统一资源定位符(uniform rsource locator,简称URL),进而得到全球定位系统(global positioning system,简称GPS)的位置信息。例如,从APP的URL中得到的GPS位置信息。然而,本申请并不局限于通过Gn口获取位置信息,例如,若运营商和位置服务提供商签署协议,则也可以直接获取位置服务提供的位置信息。
本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A,B,C,A和B,A和C,B和C,A和B和C。“至少两个”,可理解为两个或更多个。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,或单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
第一阶段,本申请实施例提供一种离线指纹库的生成方法的流程,如图3所示,该流程中的网络设备可为上述图1中的定位服务器120,终端设备可为上述图1中的终端设备130。可以理解的是,定位服务器的功能也可通过应用于定位服务器的芯片实现,或者通过其他装置来支持定位服务器实现,终端设备的功能也可通过应用于终端设备的芯片实现,或者通过其他装置来支持终端设备实现。该流程包括:
步骤301:定位服务器接收来自终端设备的M个位置指纹特征。
其中,所述M个位置指纹特征共包括M个第一位置以及多个基站的信息,所述多个基站为所述M个第一位置所在小区的M个服务基站,以及所述M个服务基站对应的N个邻区基站,所述多个位置指纹特征中包括所述M个服务基站的小区标识CellID、信号标识和信道参数,以及所述N个邻区基站的信号标识和信道参数。
这里以定位服务器接收位置指纹特征为例进行说明,当然本申请实施例也可以由其他具有数据处理功能的网络设备来接收位置指纹特征,本申请这里不做限定。定位服务器可以在不同时间接收不同终端设备上报的位置指纹特征,或在不同时间接收相同终端设备上报的位置指纹特征,或在相同时间接收不同终端设备上报的位置指纹特征。其中,位置指纹特征中可以包括作为上报者的终端设备处于一个位置时,测量到的服务小区和邻小区的信息以及分别接收服务小区和邻小区中各个小区发射信号的信号强度等信息。因此,位置指纹特征包括:所述终端设备上报的第一位置,所述终端设备在所述第一位置上采集的服务基站的信号标识、所述服务基站的CellID和所述服务基站的信道参数,及所述终端设备在所述第一位置上采集的N个邻区基站的信号标识和所述N个邻区基站的信道参数。
例如,如图1所示,终端设备130(为简化描述,下面简称为UE1)在第一位置1(X1,Y1)连接的服务基站为基站A,此刻UE1向定位服务器上报的一个位置指纹特征可以包括:UE1当前所在位置的经纬度坐标(longitude,latitude),以及服务基站A的小区标识Cell idA,信道参数(PIA,CNA),接收基站A发射信号的信号强度RSS1;邻区基站B的信道参数(PIB,CNB),接收基站B发射信号的信号强度RSS2;邻区基站C的信道参数(PIB,CNB),接收基站C发射信号的信号强度RSS3。另外,第一位置的位置信息还可以包括第一位置定位来源,和ACC参数。通过第一位置定位来源,可以表征该位置指纹特征的可靠性,针对第一位置的定位的精度,可以通过ACC表征。UE1上报的一个位置指纹特征的具体内容可以如下表1所示。
表1:
Figure PCTCN2020109305-appb-000001
其中,CellID用于唯一标识基站,具有全球唯一性;PI用于标识基站信道,全球非唯一,只在一定范围内唯一;CN用于标识基站信道的编号,全球非唯一,只在一定范围内唯一。另外,UE1的第一位置1的位置信息可以为UE1根据不同的定位方法获得的,例如,可以为根据GPS定位获得的,也可以为通过WIFI定位获得的,也可以为通过在线基站定位的方法获得的,通过不同的定位方法获得的位置的精度不同,其误差可以通过ACC记录。
当UE1在另一时刻,在第一位置1可能接入的服务基站为基站B,邻区基站变为基站A和基站C,此时,UE1向定位服务器上报的一个位置指纹特征可以如下表2所示:
表2:
Figure PCTCN2020109305-appb-000002
由此可见,表1所示的位置指纹特征和表2所示的位置指纹特征所包含的信息是冗余的,其中下述信息被表1和表2重复记录了2次,即UE1在第一位置1获取的基站为CellIDA的信号强度为RSS1;UE1在第一位置1获取的基站CellIDB的信号强度为RSS2、UE1在第一位置1获取的基站CellIDC的信号强度为RSS3。
当UE1的位置变化到第一位置2(X2,Y2),此时,UE1可能接入的服务基站为基站A;邻区基站为基站B,此时,UE1向定位服务器上报的一个位置指纹特征可以如下表3所示:
表3:
Figure PCTCN2020109305-appb-000003
当UE1移动到第一位置3(X3,Y3),可能接入的服务基站为基站B,邻区基站为基站A;此时,UE1向定位服务器上报的一个位置指纹特征可以如下表4所示:
表4:
Figure PCTCN2020109305-appb-000004
当UE1移动到第一位置4(X4,Y4),可能接入的服务基站为基站C,邻区基站为基站A;此时,UE1向定位服务器上报的一个位置指纹特征可以如下表5所示:
表5:
Figure PCTCN2020109305-appb-000005
再比如,UE1在基站A、基站C的信号覆盖范围外,第一位置5(X5,Y5)的位置上,可能接入的服务基站为基站F,邻区基站为基站D,此时,UE1向定位服务器上报的一个位置指纹特征可以如下表6所示:
表6:
Figure PCTCN2020109305-appb-000006
再比如,UE1在基站A、基站C的信号覆盖范围外,第一位置6(X6,Y6)的位置上,可能接入的服务基站为基站D,邻区基站为基站F,此时,UE1向定位服务器上报的一个位置指纹特征可以如下表6_1所示:
表6_1:
Figure PCTCN2020109305-appb-000007
综上,当终端设备的位置发生改变,或者终端设备接入的服务基站发生改变,或者终端设备的邻区基站发生改变,就会生成一条新的位置指纹特征上报至定位服务器。定位服务器可以根据终端设备上报的位置指纹特征对应的第一位置(即UE的坐标位置信息),对不同UE上报的众多位置指纹特征进行归纳处理,归纳至对应坐标位置下。另外,为使后续学习到的位置指纹库具有更强的针对性,进一步减少位置指纹库包含的数据量大小,本申请中可划定不同的地理范围,从而得到针对不同地理范围的位置指纹库。例如,可以根据不同的城区来进行划分,以上海市为例,针对浦东新区、嘉定区、黄浦区、金山区、徐汇区、静安区、杨浦区等不同的城区可分别对应学习不同的位置指纹库。
结合上述例子,若确定第一位置1,第一位置2,第一位置3,第一位置4,第一位置5都位于同一地理范围,则可以将表1至表6_1的位置指纹特征存储至同一位置指纹库中。此时,可以得到位置指纹库如下表7所示:
表7
Figure PCTCN2020109305-appb-000008
Figure PCTCN2020109305-appb-000009
步骤302:定位服务器将所述M个服务基站的CellID与所述多个基站的信息中的信号标识和信道参数进行匹配,以生成P个离线指纹。
其中,P大于M;P为正整数;所述多个离线指纹被保存在所述定位服务器的离线指纹库中;每个离线指纹都包括:一基站的CellID、信号标识和信道参数,一个参考点位置。
一种可能的场景,如图2所示,由于基站D与基站F位于基站A的信号覆盖范围外,基站D的信道参数可能设置为与基站C的信道参数相同。因此,定位服务器无法直接根据邻区基站的信道参数唯一对应基站,导致位置指纹库中的位置指纹特征中的信息难以完全利用,在定位过程中,必须将完整的位置指纹特征与目标位置指纹进行匹配,导致位置指纹库存在大量的冗余信息。另外,由于邻区基站信息中的信道参数不是全球唯一标识,在定位时,无法直接根据信道参数,确定对应的基站,导致邻区基站信息无法直接与服务基站的位置指纹特征中的信息进行整合。
举例来说,定位服务器通过查找CellIDA,可以在表7中查找到有关CellIDA相关的位置指纹特征,包括:表7第1行和第3行对应的2个位置指纹特征,但是,由于表7第1行的邻区基站信息有2个,表7第3行的邻区基站信息为1个,所以无法直接将第1行和第3行对应的这2个位置指纹特征进行整合。
另外,在表7中,有关CellIDA相关的信息实际上还包括第2行、第4行和第5行,这些信息是以邻区基站信息形式存在的,由于邻区基站的信道参数不是全球唯一标识,(例如,如图2所示,表7第6行中的(PIC,CNC)实际对应的基站为基站D),在定位时,无法直接根据信道参数,确定出邻区基站的CellID,即定位服务器无法直接根据小区标识CellIDA查找到邻区基站信息,因此,第2行、第4行和第5行中有关CellIDA的相关信息无法直接进行整合。
需要说明的是,定位服务器获取的M个位置指纹特征中的M个服务基站和N个邻区基站之间是有重合的,即不同的位置指纹特征中,同一个基站可能为服务基站,也可能为邻区基站。例如,如表7中的位置指纹特征中,以基站A为例,基站A在第1行中的位置指纹特征中为服务基站,而在第4行中的位置指纹特征中,基站A为邻区基站,因此,基于M个位置指纹特征中的M个服务基站,即可以查找到M个服务基站对应的N个邻区基站的CellID。基于此,本申请实施例中,可以通过先将位置指纹特征拆分为服务基站信息和邻区基站信息,并根据查找对应邻区基站的CellID,在邻区基站信息中补全邻区基站的 CellID,以解决位置指纹特征中邻区基站信息无法直接用于定位,位置指纹特征也无法直接整合,导致位置指纹库存在大量冗余信息的问题。具体的过程可以如下:
步骤3021:定位服务器可以将符合第二条件的多个位置指纹特征中服务基站的CellID与所述M个服务基站对应的N个邻区基站中的信道参数进行匹配,确定所述M个服务基站对应的N个邻区基站的CellID。M,N为正整数。
其中,所述第二条件为位置指纹特征中携带的服务基站的信道制式与所述邻区基站对应的位置指纹特征中携带的服务基站的信道制式相同,且位置指纹特征中携带的第一位置在第二邻区搜索范围内;所述第二邻区搜索范围为包括所述邻区基站对应的位置指纹特征中的第一位置的一个有限区域。
首先,定位服务器可以先将一个位置指纹特征划分为服务基站信息和N个邻区基站信息;
其中,所述服务基站信息包括:所述终端设备上报的第一位置,所述终端设备在所述第一位置上采集的服务基站的信号标识、所述服务基站的CellID和所述服务基站的信道参数;所述邻区基站信息包括:所述终端设备在所述第一位置上采集的邻区基站的信号标识和所述邻区基站的信道参数;邻区基站信息包括:终端设备上报的第一位置,终端设备在所述第一位置上采集的邻区基站的信号标识和所述邻区基站的信道参数。
下面以表7为例,对表7中的7条位置指纹特征进行拆分的过程。举例来说,上述表7第1行的位置指纹特征中包括1个服务基站信息和2个邻区基站信息(表8的第2行和第3行),可以将表7第1行拆分为如下表8所示:
表8
Figure PCTCN2020109305-appb-000010
同理,定位服务器可以将表7中第2行的位置指纹特征拆分为1个服务基站信息(表9第1行所示)和2个邻区基站信息(表9第2行和第3行所示),如下表9所示:
表9
Figure PCTCN2020109305-appb-000011
同理,定位服务器可以将表7中第3行的位置指纹特征拆分为1个服务基站信息(表10第1行所示)和1个邻区基站信息(表10第2行所示),如下表10所示:
表10
Figure PCTCN2020109305-appb-000012
同理,定位服务器可以将表7中第4行的位置指纹特征拆分为1个服务基站信息(表11第1行所示)和1个邻区基站信息(表11第2行所示)因此,可以拆分为如下表11所示:
表11
Figure PCTCN2020109305-appb-000013
同理,定位服务器可以将表7中第5行的位置指纹特征拆分为1个服务基站信息(表12第1行所示)和1个邻区基站信息(表12第2行所示)因此,可以拆分为如下表12所示:
表12
Figure PCTCN2020109305-appb-000014
同理,定位服务器可以将表7中第6行的位置指纹特征拆分为1个服务基站信息(表13第1行所示)和1个邻区基站信息(表13第2行所示),如下表13所示:
表13
Figure PCTCN2020109305-appb-000015
Figure PCTCN2020109305-appb-000016
同理,定位服务器可以将表7中第6行的位置指纹特征拆分为1个服务基站信息(表14第1行所示)和1个邻区基站信息(表14第2行所示),如下表14所示:
表14
Figure PCTCN2020109305-appb-000017
进而,定位服务器可以根据所述邻区基站信息及所述邻区基站信息对应的邻区基站的CellID,生成映射服务基站信息。下面以补全表8中的位置指纹特征中的邻区基站的CellID为例进行描述。其他位置指纹特征中的邻区基站的CellID的补全方法,可以参考该实施例,在此不再赘述。在具体实施过程中,可以包括:
首先,定位服务器可以根据位置指纹特征中的第一位置及所述位置指纹特征中服务基站,确定所述位置指纹特征对应的第二邻区基站搜索范围。
例如,以位置指纹特征为表8的位置指纹特征为例,第一服务基站信息为表8第1行的服务基站信息,位置指纹特征包括2个第二邻区基站信息,对应表8中的第2行和第3行。
针对不同信号制式的基站,其信号覆盖范围不同,比如2G制式的信号覆盖半径为20km,3G制式的信号覆盖半径为5km,4G制式的信号覆盖半径为3km。在基站的信号覆盖范围内,服务基站与邻区基站的信道参数基本上可以唯一对应一个基站,因此,可以根据位置指纹特征中的第一位置及基站的信号覆盖范围,划分出每个位置指纹特征对应的第二邻区基站搜索范围。一种可能的实现方式,所述第二邻区搜索范围为所述定位服务器根据所述邻区基站对应的位置指纹特征中的第一位置为中心,根据所述邻区基站对应的位置指纹特征中服务基站对应的信号制式确定的信号覆盖范围确定的一个区域。当然,还可以根据其他方式,确定第二邻区基站搜索范围的半径,在此不做限定。
以补全上述表8中的邻区基站的CellID为例,如图5a所示,表8对应的第一位置为第一位置1,因此,可以将以第一位置1为圆心,以服务基站A的信号覆盖范围对应的距离(比如3km)为半径构成的圆形区域,作为表8对应的第一服务基站信息对应的第二邻区基站搜索范围。
其次,所述定位服务器可以根据位置指纹特征中的第一位置,确定位于所述第二邻区基站搜索范围的N_0个第二服务基站信息。其中,所述第二服务基站信息对应的服务基站的信号制式与所述第一服务基站信息中服务基站对应的信号制式相同。
一种可能的实现方式,可以先在第二邻区基站搜索范围内查找位置满足第二邻区基站 搜索范围的服务基站信息,再根据信号制式,筛选与第一服务基站信息中服务基站对应的信号制式相同的第二服务基站信息。
结合上述例子,在表8至表14包含的多个第一位置中,查找位于确定出的第二邻区基站搜索范围内的第一位置,例如,如图5a所示的第二邻区基站搜索范围中包括表8至表13中的第一位置1、第一位置3、第一位置4和第一位置5。根据表9,确定出第一位置1对应的服务基站为基站B;根据表12,确定出第一位置3对应的服务基站为基站A;根据表13,确定出第一位置4对应的服务基站为基站C;根据表13,确定出第一位置5对应的服务基站为基站F。假设基站B,基站C,基站F与基站A的信号制式相同,则将基站B,基站C,基站F作为表8对应的可能的邻区基站,即确定出的4个第二服务基站信息包括:表9对应的服务基站信息,表11对应的服务基站信息,表12对应的服务基站信息,及表13对应的服务基站信息。
再次,定位服务器根据所述N_0个第二服务基站信息中的信道参数,确定与所述N个第二邻区基站信息匹配的N_1个第二服务基站信息。结合上述例子,可以确定与表8中第2行的第二邻区基站信息匹配的第二服务基站信息为表9对应的服务基站信息;与表8中第3行的第二邻区基站信息匹配的第二服务基站信息为表9对应的服务基站信息。
进而,定位服务器可以根据匹配的N_1个第二服务基站信息的CellID,确定所述位置指纹特征中的N个邻区基站信息中的邻区基站的CellID。结合上述例子,可以根据表9,可以确定基站B的CellID与信道参数(PIB,CNB)的对应关系;根据表12,可以确定基站C的CellID与信道参数(PIC,CNC)的对应关系;因此,根据上述对应关系,可以将表8中每条邻区基站信息中的邻区基站的CellID补全,生成映射服务基站信息。此时,映射服务基站信息,可以作为一条完整的离线指纹,用于终端设备进行离线定位。对表8进行补全后生成的映射服务基站信息可以如表15所示:
表15
Figure PCTCN2020109305-appb-000018
举例来说,由于第二邻区基站搜索范围是以第一位置为圆心确定出的,并不是根据基站A的位置确定的,因此,可能出现在第二邻区基站搜索范围内,邻区基站的信道参数并不是唯一对应一个基站的情况。
例如,如图5b所示,表8对应的第二邻区基站搜索范围为实线区域,是根据第一位置1为圆心,基站A的覆盖范围确定的,而以基站A的位置为圆心,基站A的覆盖范围确定的虚线区域与实线区域不重叠。此时,基站D的小区(基站D的虚线区域)与实线区域重叠,导致UE1在第一位置5的位置上,测量到了基站D的信号强度。出现了表12和 表14中,信道参数(PIC,CNC)对应了基站D和基站C的2个CellID。假设第三邻区基站信息的信道参数为(PIC,CNC),对应了K0个第四服务基站信息,第四服务基站信息对应的CellID为:CellIDC和CellIDD。此时,表12和表14中的邻区基站信息对应的2个第四服务基站信息可以如表16所示:
表16
Figure PCTCN2020109305-appb-000019
因此,基于上述问题,本申请提出一种解决上述问题的方法,以第一邻区基站的信道参数对应K0个符合所述第二条件的服务基站的CellID为例,其中,所述第一邻区基站为所述N个邻区基站中的一个,具体过程可以如下:定位服务器根据所述K0个第一位置,确定所述K0个第一位置的中心;例如,可以根据所述K0个符合第二条件的位置指纹特征中的K0个第一位置确定中心位置。中心位置可以为根据K0个第一位置的平均位置,也可以是根据信号强度加权后确定的质心位置。K0为正整数。
进而,定位服务器基于所述中心与所述K0个第一位置与所述中心的欧式距离,确定与所述第一邻区基站的信道参数匹配的服务基站的CellID;其中,所述与所述第一邻区基站的信道参数匹配的服务基站的CellID为最接近中心的第一位置对应的服务基站的CellID。
具体的,可以通过最大似然函数算法,确定该信道参数最可能对应的基站。定位服务器可以将所述K0个第一位置作为似然函数的参数。定位服务器根据所述质心位置与所述似然函数的参数,确定所述似然函数。定位服务器将所述似然函数最大时对应的符合第二条件的位置指纹特征中的服务基站的CellID,作为与所述第一邻区基站的信道参数匹配的服务基站的CellID。
结合上述例子,此时,可以将表16中,第四服务基站信息对应第一位置4和第一位置5作为似然函数的参数,通过第一位置1、第一位置4和第一位置5,确定一个质心位置。将该质心位置与似然函数的参数(第一位置4或第一位置5)间的欧式距离的倒数,作为似然函数。通过确定似然函数最大时,确定对应的参数是第一位置4还是第一位置5;举例来说,假设在第一位置4时,似然函数取最大,则将第一位置4对应的CellIDC作为信道参数(PIC,CNC)的小区标识。
同理,还可以根据上述方法,补全表9-表14中的邻区基站的CellID,在表7基础上进行邻区基站的CellID补全后就可以得到表9-表14对应的映射服务基站信息,如下表17所示:
表17
Figure PCTCN2020109305-appb-000020
Figure PCTCN2020109305-appb-000021
步骤3022:定位服务器根据所述M个位置指纹特征和所述M个服务基站对应的N个邻区基站的CellID,生成P个离线指纹。
一种可能的实现方式,定位服务器可以根据所述M个第一位置和所述M个服务基站的信息,生成M个离线指纹;还可以根据所述M个第一位置,所述M个服务基站对应的N个邻区基站的信息及所述M个服务基站对应的N个邻区基站的CellID,生成M×N个离线指纹;因此,根据M个位置指纹特征和所述M个服务基站对应的N个邻区基站的CellID生成的P个离线指纹即为M×(N+1)个离线指纹。
其中,一种可能的设计,定位服务器可以将位置指纹特征中的一个服务基站信息,作为一个离线指纹。以表17中的CellIDA的服务基站信息(第1、4、6、8行)为例,可以对应生成4条离线指纹。例如,以表17中的第1行的服务基站信息为例,表17中第1行的服务基站信息可以生成1条离线指纹。此时,表17中第1行的对应的服务基站信息中的第一位置为第一位置1,可以作为该离线指纹中的参考点位置,表17中第1行的对应的服务基站信息中的RSS1,可以作为该离线指纹中的基站的信号标识。
以表7中的7个位置指纹特征为例,此时,可以将表17中的每行对应的服务基站信息,作为一条离线指纹,生成的离线指纹库可以如表18_1所示:
表18_1
Figure PCTCN2020109305-appb-000022
相比现有技术中的位置指纹,该实施例可以有效的对位置指纹中的冗余信息进行压缩,可以降低离线指纹库的大小,以实现终端设备本地存储离线指纹库,进而实现终端设备在本地进行离线定位的目的。
另一种可能的设计,定位服务器将映射服务基站信息中的第一位置,作为离线指纹中的参考点位置;其中,所述映射服务基站信息为所述基站的CellID对应的服务基站信息中的任一个;所述定位服务器将所述映射服务基站信息中的信号标识,确定为所述参考点位置对应的基站的信号标识。
以表17中的CellIDA的CellIDA的映射服务基站信息(第7、9行)为例,可以对应生成2条离线指纹。例如,以表17中的第7行的映射服务基站信息为例,可以对应生成1条离线指纹。此时,表17中第7行的对应的映射服务基站信息中的第一位置为参考点3的位置,可以作为该离线指纹中的参考点位置,表17中第7行的对应的映射服务基站信息中的RSS8,可以作为该离线指纹中的基站的信号标识。即,根据表17可以生成的离线指纹库可以如表18_2所示:
表18_2
Figure PCTCN2020109305-appb-000023
Figure PCTCN2020109305-appb-000024
当然,还可以将服务基站信息和映射服务基站信息都作为离线指纹库中的离线指纹。结合上述例子,可以如表18_3所示。
表18_3
Figure PCTCN2020109305-appb-000025
Figure PCTCN2020109305-appb-000026
进一步的,为提高定位精度的可靠性,可以通过位置指纹特征中包括的第一位置的定位来源,对离线指纹进行定位来源的筛选。具体的,可以包括:定位服务器根据所述位置指纹特征的第一位置的定位来源,确定所述位置指纹特征的第一位置的定位来源优先级;进而,定位服务器根据所述位置指纹特征的第一位置的定位来源优先级,确定对应的离线指纹中参考点位置的定位来源优先级;从而,定位服务器根据所述离线指纹中参考点位置的定位来源优先级,筛选离线指纹;定位服务器将筛选后的离线指纹,作为离线指纹库中的离线指纹。
举例来说,若确定位置指纹特征中的第一位置的定位来源优先级从大到小的顺序为:GPS定位、WIFI定位、在线基站定位;则对应的离线指纹中参考点位置的定位来源优先级从大到小的顺序为:GPS定位、WIFI定位、在线基站定位。进而可以根据离线指纹中参考点位置的定位来源优先级,筛选离线指纹。例如,若确定存在高优先级的离线指纹,且基于同一位置或基于同一基站的离线指纹的数量超过预设阈值,则将优先级低的位置指纹特征删除。例如,若基于参考点位置1的CellIDA的离线指纹的有GPS定位和WIFI定位的离线指纹,则将WIFI定位的离线指纹删除;同理,可以将基于CellIDB的离线指纹中对应的WIFI定位的离线指纹删除,筛选后的离线指纹生成的离线指纹库可以为下表19所示:
表19:
Figure PCTCN2020109305-appb-000027
另一种可能的筛选方式,位置指纹特征中还包括位置信息对应的定位的误差参数ACC。因此,定位服务器还可以根据位置指纹特征中的定位来源及ACC,对离线指纹进行筛选。 通过对定位来源和误差共同确定该位置指纹特征对应的离线指纹的优先级,进而对离线指纹进行筛选,使得筛选后的离线指纹生成的离线指纹库的可靠性提高。
具体的,可以包括:首先,所述定位服务器根据所述离线指纹的参考点位置的定位来源和/或ACC,确定所述离线指纹的定位优先级;举例来说,可以根据位置指纹特征的定位来源,确定离线指纹的定位来源的优先级,或者,根据位置指纹特征的ACC及定位来源的优先级综合起来,确定离线指纹的定位优先级。例如,若确定表18_1中第1行的参考点位置的ACC小于第一阈值,定位来源的优先级为第一定位来源优先级,则确定第1行的离线指纹的优先级为第一定位优先级;若确定表18_1中第2行的ACC大于第一阈值,定位优先级为第一定位来源优先级,则可以确定第2行的离线指纹的定位优先级为第二定位优先级;若确定表18_1中第3行的ACC小于第一阈值,定位来源优先级为第二定位来源优先级,则可以确定第3行的离线指纹的定位优先级为第三定位优先级。其次,所述定位服务器根据所述离线指纹的定位优先级,筛选所述离线指纹;
举例来说,可以根据同一基站的CellID的离线指纹的数量筛选离线指纹,例如,若确定同一基站的CellID的离线指纹足够多,可以只保留优先级最高的离线指纹,当然,也可以按照其他方式筛选离线指纹,在此不作限定。进而,所述定位服务器将筛选后的离线指纹,作为所述离线指纹库中的离线指纹。
通过对离线指纹的筛选,使得离线指纹库中只保留了可靠的位置指纹特征的信息,可以有效提高终端设备离线定位的准确性。
进一步的,还可以根据离线指纹中的定位来源和/或ACC,对离线指纹进行筛选,以定位来源为例,具体可以包括:定位服务器可以将位置指纹特征的第一位置的定位来源,确定为所述位置指纹特征对应生成的离线指纹中的参考点位置的定位来源。举例来说,以位置指纹特征为表8中的第1行为例,可以确定表8中的第1行对应的离线指纹为表18_3中的第1行。因此,可以根据表8中的第1行对应的第一位置的定位来源,GPS,确定为离线指纹的参考点位置的定位来源,GPS。从而,定位服务器根据离线指纹中的参考点位置的定位来源,确定离线指纹的优先级,进而筛选基站的CellID对应的离线指纹。结合上述例子,基站为CellIDA对应的基站,因此,CellIDA对应的离线指纹包括:表18_3中的第1、4、7、9行;根据定位来源的优先级,则可以通过预设规则,筛选CellIDA对应的离线指纹。例如,GPS的优先级为第一优先级,WIFI的优先级为第二优先级,基站定位的优先级为第三优先级,预设规则可以为至保留最高优先级的离线指纹,则筛选后的CellIDA对应的离线指纹包括:表18_3中的第1行。进而,定位服务器将筛选后的基站的CellID对应的离线指纹,作为离线指纹库中基站的CellID对应的离线指纹。结合上述例子,可以将表18_3中的第1行作为离线指纹库中CellIDA对应的离线指纹。
另一种可能的实现方式中,离线指纹还可以包括离线指纹中的基站的状态标识。其中,基站的状态标识可以包括:移动,固定,重置,不确定等多种状态。其中,移动可能是短期内该基站对应的离线指纹的参考点位置的变化大于预设阈值的场景,重置可以为基站进行重启后的状态,固定状态表明在一定时间内,该基站对应的离线指纹是稳定的,通过新增的与该基站相关的位置指纹特征确定的更新后的离线位置指纹特征,与更新前的离线位置指纹的差距在允许范围内。因此,可以通过该离线指纹的状态标识,对离线指纹进行筛选,例如,只选择固定状态的离线指纹,用于生成离线指纹库,进而提高定位的准确性和可靠性。当然,还可以根据其他条件,例如,离线指纹的信号强度、参考点位置的ACC 参数、定位来源等因素,对离线指纹进行筛选,在此不做限定。
为进一步压缩离线指纹库的大小,可以根据基站的CellID,将相同CellID的服务基站信息和映射服务基站信息合并为一个离线指纹。
首先,定位服务器根据所述M个服务基站的CellID或所述M个服务基站对应的N个邻区基站的CellID,查找相同CellID的P组基站的信息.以表17为例,多个第一位置指纹中包括5个CellID:CellIDA,CellIDB,CellIDC,CellIDD,CellIDF。因此可以将表17中的服务基站信息或映射服务基站信息确定为5组基站的信息。以CellIDA为例,CellIDA对应的1组基站的信息可以包括表17中的第1、4、7、9行中的一个或多个。
其次,定位服务器根据所述P组基站的信息及每组基站的信息所在的位置指纹特征中的第一位置,确定P个离线指纹;其中,每个离线指纹中的参考点与每组基站的信息中的第一位置有关;每个离线指纹中的信号标识与每组基站的信息中的信号标识有关。
具体的,针对P组基站的信息中的1组:定位服务器可以将带有所述基站的CellID的服务基站信息中的第一位置或带有基站的CellID的映射服务基站信息中的第一位置进行加权平均,确定为参考点位置;进而,定位服务器可以将带有基站的CellID的服务基站信息中的信号标识或带有基站的CellID的映射服务基站信息中的信号标识进行加权平均,确定为参考点位置对应的基站的信号标识。
举例来说,上述表17中基于CellIDA的服务基站信息进行加权平均的方式,确定离线指纹为例。基于CellIDA的服务基站信息有2条:表17中的第1行和第4行。此时,可以通过RSS加权平均的方式合并为离线指纹。具体的,可以通过表17中的第1行中的信号强度RSS1,表17中的第4行中的信号强度RSS4,确定归一化的权重;假设RSS1=1,RSS4=4,则表17中的第1行对应的权重=1/(1+4)=0.25。同理,表17中的第4行对应的权重为0.75。若基于CellIDA的离线指纹的位置信息为(X01,Y01),则:X01=0.25*X1+0.75*X2,Y01=0.25*Y1+0.75*Y2。若CellIDA的离线指纹的信号强度为RSS1’,则RSS1’=0.25*RSS1+0.75*RSS4。
另一种可能的实现方式,首先,定位服务器根据所述M个服务基站的CellID和所述M个服务基站对应的N个邻区基站的CellID,查找相同CellID的P组基站的信息。
以表17为例,可以确定,包括5个CellID:CellIDA,CellIDB,CellIDC,CellIDD,CellIDF。因此可以将表17中的服务基站信息和映射服务基站信息确定为5组基站的信息。以CellIDA为例,CellIDA对应的1组基站的信息包括表17中的第1、4、7、9行。其次,定位服务器根据所述P组基站的信息及每组基站的信息所在的位置指纹特征中的第一位置,确定P个离线指纹;其中,每个离线指纹中的参考点与每组基站的信息中的第一位置有关;每个离线指纹中的信号标识与每组基站的信息中的信号标识有关。
以表17中CellID为CellIDA为例,基于CellIDA的服务基站信息和映射服务基站有4条(第1、4、7、9行),可以根据这4条服务基站信息和映射服务基站,生成1条离线指纹。
假设RSS1=1,RSS4=4,RSS8=8,RSS10=10,则表17中的第1行对应的权重=1/(1+4+8+10)=0.04。同理,表17中的第4行对应的权重为0.17,表17中的第7行对应的权重为0.34,表17中的第9行对应的权重为0.43。若基于CellIDA的离线指纹1的位置信息为(X1’,Y1’),则:X1’=0.04*X1+0.17*X2+0.34*X3+0.43*X4,Y1’=0.04*Y1+0.17*Y2+0.34*Y3+0.43*Y4。若CellIDA的离线指纹的信号强度为RSS1’,则 RSS1’=0.04*RSS1+0.17*RSS4+0.34*RSS8+0.43*RSS10=7.74。
同理,基于CellIDB的服务基站信息和映射服务基站信息有3条:表17中第2行、第5行和第6行,可以生成离线指纹2。基于CellIDC的服务基站信息和映射服务基站信息有2条:表17中第3行和第8行,可以生成离线指纹3。以服务基站信息和映射服务基站信息加权的方式,生成的3条离线指纹可以如下表20所示:
表20:
Figure PCTCN2020109305-appb-000028
由此可以看出,上述方案,将原表7中的位置指纹特征中的4条服务基站信息和6条邻区基站信息,压缩为3条离线指纹,即压缩为原有的1/4大小,并最大化的保留了原位置指纹库携带的信息,以保证定位的精度。在实际的位置指纹库的压缩中,可以将位置指纹库压缩至原有的位置指纹库1/74的大小,有利于终端设备在本地存储离线指纹库,进而实现高精度的离线定位。
需要说明的是,根据上述合并的方式确定的离线指纹中,参考点位置对应的定位来源可以为保留各服务基站信息的定位来源和/或映射服务基站信息对应的权重最大的定位来源,也可以为保存各服务基站信息的定位来源和/或映射服务基站信息的定位来源对应的权重。
一种可能的实现方式,可以根据信号标识和/或定位来源的优先级,综合确定每个服务基站信息和或映射服务基站信息对应的权重,进而将权重最大的定位来源作为该离线指纹的定位来源。下面以基于服务基站信息和映射服务基站信息加权的方式为例进行说明。以CellIDA的离线指纹为例。若确定GPS的优先级权重为0.6,WIFI的优先级权重为0.3,基站定位的优先级权重为0.1。表17中第1行为GPS,第4行和第7行为WIFI,第9行为基站定位。因此,可以确定表17中第1行的服务基站信息对应的权重为信号强度权重和优先级权重的乘积,即表17中第1行对应服务基站信息的权重为0.04×0.6=0.024;同理,表17中第4行对应服务基站信息的权重为0.17×0.3=0.051;表17中第7行对应的映射服务基站信息的权重为0.34×0.3=0.102;表17中第7行对应的映射服务基站信息的权重为0.43×0.1=0.043。因此,可以确定离线指纹1的定位来源为WIFI。
另一种可能的实现方式,可以根据信号标识先确定信号强度的权重,再根据信号强度的权重确定各定位来源的比例。结合上述例子,可以确定离线指纹1中,GPS的比例为0.04,WIFI的比例为0.51,基站定位的权重为0.43。因此,可以将离线指纹1的定位来源存储为GPS(0.04),WIFI(0.51),基站定位(0.43)。
通过上述方式,有助于终端设备根据离线指纹进行定位时,确定匹配的离线指纹的可靠程度,还可以根据定位来源进一步筛选匹配的离线指纹,进而提高定位的精度。
进一步的,为提高定位精度的可靠性,离线指纹在进行加权平均时,可以根据定位来源确定的优先级权重与信号标识确定的信号强度的权重,共同确定服务基站信息和/或映射 服务基站信息对应的权重。首先,定位服务器根据所述基站的CellID的服务基站信息中第一位置和/或所述基站的CellID对应的映射服务基站信息中第一位置的定位来源,确定所述服务基站信息的优先级和/或所述映射服务基站信息的优先级。还是以CellIDA为例,表17中第1行的服务基站信息的优先级对应的优先级权重可以设置为0.6/(0.6+0.3+0.3+0.1)=0.46,第4行对应的服务基站信息的优先级对应的优先级权重可以设置为0.3/(0.6+0.3+0.3+0.1)=0.23,第7行对应的映射服务基站信息的优先级对应的优先级权重可以设置为0.3/(0.6+0.3+0.3+0.1)=0.23,第9行对应的映射服务基站信息的优先级对应的优先级权重可以设置为0.1/(0.6+0.3+0.3+0.1)=0.08。
其次,定位服务器根据所述服务基站信息的优先级和/或所述映射服务基站信息的优先级,及所述服务基站信息中的信号标识和/或所述映射服务基站信息中的信号标识,确定所述服务基站信息对应的权重和/或所述映射服务基站信息对应的权重。结合上述例子,表17中第1行的服务基站信息的对应的权重可以为0.04×0.46/(0.0018+0.039+0.078+0.034)=0.10,第4行对应的服务基站信息的优先级对应的优先级权重可以设置为0.17×0.23/0.169=0.23,第7行对应的映射服务基站信息的优先级对应的优先级权重可以设置为0.34×0.23/0.169=0.46,第9行对应的映射服务基站信息的优先级对应的优先级权重可以设置为0.43×0.08/0.169=0.2。
再次,定位服务器根据所述服务基站信息对应的权重和/或所述映射服务基站信息对应的权重,及所述服务基站信息的第一位置和/或所述映射服务基站信息中的第一位置,确定所述参考点位置。结合上述例子,若基于CellIDA的离线指纹的位置信息为(X”,Y”),则:X11=0.1*X1+0.23*X2+0.46*X3+0.20*X4,Y11=0.2*Y1+0.23*Y2+0.46*Y3+0.20*Y4。
进而,定位服务器根据服务基站信息对应的权重和/或映射服务基站信息对应的权重,及服务基站信息的信号标识和/或映射服务基站信息中的信号标识,确定所述参考点位置对应的基站的信号标识。若CellIDA的离线指纹的信号强度为RSS1”,则RSS1”=0.1*RSS1+0.23*RSS4+0.46*RSS8+0.2*RSS10。
再一种可能的实现方式,在对服务基站信息和/或所述映射服务基站信息进行加权平均之前,还可以根据定位来源先对基站的CellID对应服务基站信息和/或映射服务基站信息进行筛选,再根据筛选后的服务基站信息和/或映射服务基站信息的信号标识,根据筛选后的服务基站信息和/或映射服务基站信息的信号标识,确定各筛选后的服务基站信息和/或映射服务基站信息对应的权重,进而通过筛选后的服务基站信息和/或映射服务基站信息对应的权重,进行加权平均,确定基站的CellID对应的离线指纹。
还是以CellIDA为例,以至保留GPS定位和WIFI定位的服务基站信息和映射服务基站信息为例,即,筛选后的服务基站信息和/或映射服务基站信息包括表17中的第1行、第4行和第7行。进而,可以根据表17中的第1行、第4行和第7行,生成CellIDA的离线指纹。具体实施方式可以参考上述实施例,在此不再赘述。
需要说明的是,表17中第11行对应的基站为基站D,可以根据其他位置指纹特征确定的基站D的相关信息进行合并,表17中第10行对应的基站为基站F,可以根据其他位置指纹特征确定的基站F的相关信息进行合并。
此时,离线指纹库中的离线指纹,是一个CellID对应一个离线指纹,在新的位置指纹特征加入至位置指纹库后,可以根据新增的位置指纹特征更新离线指纹库中的离线指纹,该更新方式,并不会影响离线指纹库的大小,使得终端设备无需占用大量存储空间和内存, 实现离线定位。
具体的更新的方式可以包括:根据新增的位置指纹特征,拆分为服务基站信息和映射服务基站信息,将新增的服务基站信息或映射服务基站信息,与原有的CellID对应的多条服务基站信息和/或映射服务基站信息合并,重新生成服务基站信息和/或映射服务基站信息对应的权重,进而将新增的服务基站信息或映射服务基站信息,与原有的CellID对应的多条服务基站信息和/或映射服务基站信息合并,生成更新的离线指纹。
以表17的CellIDA为例,若确定新增1条服务基站信息和1条映射服务基站信息,则将表17中第1行和第4行对应的服务基站信息,第7行和第9行的映射服务基站信息与新增的1条服务基站信息和1条映射服务基站信息合并,重新生成CellIDA对应的离线指纹。具体确定权重的过程与前述实施例中确定权重的方式类似,可以参考上述实施例,在此不再赘述。
通过上述方法,终端设备在利用本地存储的离线指纹库进行定位时,可以有效利用邻区基站信息进行定位,无需通过完整匹配的位置指纹特征中的服务基站和邻区基站的方式进行当前位置的确定,可以有效减少终端设备定位所需的计算量,匹配的耗时也较短;另外,相比直接通过服务基站信息进行定位的方法,可以有效提高终端设备离线定位的精度。
此时,离线指纹库中的离线指纹,是一个服务基站信息或一个映射服务基站信息对应一个离线指纹,在新的位置指纹特征加入至位置指纹库后,可以根据新增的位置指纹特征更新离线指纹库中的离线指纹,更新的方式可以包括:根据新增的位置指纹特征,拆分为服务基站信息和映射服务基站信息,将新增的服务基站信息或映射服务基站信息,生成对应的离线指纹,作为更新的离线指纹,将向至终端设备发送更新的离线指纹。进一步的,还可以根据更新的离线指纹与原有的离线指纹进行定位来源等筛选,进而,提高离线指纹库的定位精度。
为便于终端设备根据离线指纹库快速查找匹配的离线指纹,进一步提高终端设备的定位效率,本申请实施例中,离线指纹还可以包括离线指纹的参考点位置所在网格的网格标识。
具体的,定位服务器可以根据离线指纹中的参考点位置,将离线指纹划分至对应的经纬度网格中,使得终端设备可以通过网格ID,快速确定各离线指纹间的位置关系,进而可以通过各离线指纹间的位置关系,快速查找与目标位置指纹匹配的离线指纹,以加快定位速度,减少终端设备定位的计算量。具体的经纬度网格的大小可以根据定位的精度确定,在此不做限定。
结合表20,若确定参考点位置1’和参考点位置2’位于同一个经纬度网格中,且对应的网格ID为1,参考点位置3’位于另一个经纬度网格中,对应的网格ID为2,则离线指纹可以如下表21所示:
表21:
Figure PCTCN2020109305-appb-000029
Figure PCTCN2020109305-appb-000030
假设如图7所示,同一区域可以包括9个网格,定位服务器还可以根据不同终端设备上报的其他位置指纹特征,获得位于该区域的网格对应的多个离线指纹,例如,通过上述实施例中确定离线指纹的方法,可以得到如表22所示的离线指纹库:
表22
Figure PCTCN2020109305-appb-000031
需要说明的是,网格的大小可以根据定位精度的需要确定,若需要提高精度,可以将网格大小缩小,若需要提升查找速度,可以将网格的大小扩大,可以根据实际需要确定。
在不影响定位精度的前提下,为进一步压缩向终端设备发送的离线指纹库的大小,并减少伪基站对定位的影响,并减少终端设备在位置指纹库查找需匹配的位置指纹特征的数量,提高定位效率,减少终端设备定位的内存消耗,一个经纬度网格可以只保留信号强度最强的一个或多个离线指纹。具体过程如下:首先,定位服务器根据参考点位置所在的网格的网格标识,确定每个网格中的N1个离线指纹;其次,定位服务器根据所述N1个离线指纹中的信号标识,筛选所述N1个离线指纹;N1为正整数;一种可能的实现方式,定位服务器将N1个离线指纹中的信号标识的信号强度最高的离线指纹,作为筛选后的所述网格对应的离线指纹。当然也可以根据实际需要,确定筛选方式,例如,根据网格大小确 定需要筛选的个数等方式进行筛选。进而,网格筛选后的离线指纹可以为所述网格对应的离线指纹。
针对一个CellID对应一个离线指纹的实施例,可以将一个网格内只保留信号强度最强的一个离线指纹。结合表21,假设RSS1’大于RSS2’,则可以将表21中的第2行删除,生成的离线指纹库可以如下表23所示:
表23:
Figure PCTCN2020109305-appb-000032
上述实施例中,通过网格筛选离线指纹的方式,避免了终端设备根据一个经纬度网格确定出过多的离线指纹进行匹配度的计算,减少了终端设备的计算量,另外,若筛选条件为离线指纹为信号强度最强的离线指纹,避免了可能的伪基站对定位的准确度进行干扰的问题,提高了定位的准确性。
另外,一种可能的场景中,若终端设备在定位时,终端设备若确定所述离线指纹库中不存在目标位置指纹中的第一基站的CellID对应的离线指纹,例如,测量到的服务基站为CellIDB,而表23中,并不能查找到CellIDB对应的离线指纹,因此,可能导致无法定位。基于该问题,定位服务器可以将网格筛选前的离线指纹所在的网格的网格标识与网格筛选前的离线指纹的CellID的关系存储至离线指纹库中。另一种可能的实现方式,还可以在离线指纹库中存储删除的离线指纹对应的CellID与网格标识的对应关系。以表23中删除了离线指纹2为例,可以将离线指纹2中的CellIDB与网格1的对应关系加入离线指纹库中,可以如表24所示:
表24:
Figure PCTCN2020109305-appb-000033
该场景主要是由于CellIDB可能是伪基站导致的,为避免伪基站的信号对定位精度的影响,本申请实施例中,可以通过每个网格只保留信号强度最高的离线指纹,将伪基站生成的离线指纹删除。此时,所述离线指纹库中的离线指纹可以为所述定位服务器根据所述离线指纹所在的网格筛选后的离线指纹;所述离线指纹库还可以包括:网格筛选前的离线指纹中的CellID与所述网格筛选前的离线指纹所在网格的网格标识的关系。
步骤303:定位服务器向终端设备发送所述离线指纹库。
其中,定位服务器将生成的离线指纹,进一步通过压缩文本的方式,生成离线指纹库, 并下发至终端设备,终端设备可以根据接收到的离线指纹库,进行离线定位。
相比现有技术中,定位服务器需根据KNN算法遍历位置指纹库中的所有位置指纹特征,并根据匹配位置指纹特征中的服务基站的信息和邻区基站的信息,确定相似度较高的多个位置指纹特征,进而根据多个位置指纹特征与目标位置指纹进行匹配的方法,无法有效利用位置指纹特征中邻区基站的相关信息的问题。本申请实施例中,通过定位服务器根据各位置指纹特征中的邻区基站的信道参数映射至对应的服务基站的CellID获得的邻区基站的CellID。因此,终端设备在利用本地存储的离线指纹库进行定位时,可以有效利用位置指纹特征中的所有指纹信息,可以保证提高精度的同时,保证了离线指纹库不随时间的增加而增加,有效保证了离线指纹库的压缩程度的同时,提高了终端设备的定位精度。可以在不提高离线指纹库的大小的前提下,有效提高离线定位的精度和离线定位效果。
第二阶段,定位阶段
基于上述实施例,终端设备可以根据定位服务器预先下发的离线指纹库,进行离线定位,具体的定位过程,如图4所示,可以包括:
步骤401:终端设备采集目标位置指纹;
其中,所述目标位置指纹包括:第一基站的信号标识,所述第一基站的小区标识CellID,所述第一基站的Q个邻区基站的信号标识及所述Q个邻区基站的信道参数;所述第一基站为所述终端设备接入的服务基站;Q为正整数;
举例来说,假设终端设备当前时刻接入的服务基站为基站F,小区标识为CellIDF;邻小区的信道参数为(PIC,CNC)和(PIA,CNA),通过测量接收的基站(PIA,CNA)、基站(PIC,CNC)、基站F的基站信号强度,获取当前时刻测量的第一目标位置指纹。此时,第一目标位置指纹可以如下表25所示:
表25:
Figure PCTCN2020109305-appb-000034
步骤402:所述终端设备通过所述第一基站的CellID,在离线指纹库中查找与所述第一基站CellID匹配的第一离线指纹。
其中,所述离线指纹库存储于所述终端设备,所述离线指纹库用于管理多个离线指纹;每个离线指纹包括:一个基站的CellID、信号标识和信道参数,以及一个参考点位置。
结合上述例子,与所述目标位置指纹匹配的N0个第一离线指纹可以为:包括有所述第一基站的CellID的N0个第一离线指纹。
以表18_3为例的离线指纹库举例,其他实施例中生成的离线指纹也适用该离线定位方法,可参考该举例。针对基站F的服务基站信息有1条,即表18_3中的第6行的离线指纹,此时N为1,终端设备可以将表18_3中的第6行的离线指纹作为与所述目标位置指纹匹配的第一离线指纹。
针对离线指纹包括网格的场景,终端设备可以根据第一目标位置指纹中的小区标识CellIDF,在表22中查找小区标识为CellIDF的离线指纹为离线指纹11和离线指纹6。
另一种可能场景,终端设备接收的服务基站的CellID可能不存在所述离线指纹库中,
举例来说,终端设备采集第二目标位置指纹;其中,第二目标位置指纹中的第一基站为基站B,小区标识为CellIDB;邻小区为基站C和基站E,通过测量接收的基站B、基站C、基站E的发送的信号的信号强度,获取当前时刻测量的第二目标位置指纹。此时,第二目标位置指纹可以如表26所示:
表26:
Figure PCTCN2020109305-appb-000035
此时,终端设备若确定所述离线指纹库中不存在第二目标位置指纹中第一基站的CellID对应的离线指纹,则在根据网格筛选前的离线指纹的CellID与所述根据网格筛选前的离线指纹所在网格的网格标识的关系中,查找所述第一基站的CellID对应的第二网格的第二网格标识。结合上述例子,终端设备在表23中无法获得CellIDB对应的离线指纹。因此,终端设备可以根据表24,查找CellIDB与网格的对应关系,确定CellIDB所在的网格为网格1。进而,终端设备将所述第二网格标识对应的N0个离线指纹,作为与所述第一基站匹配的N0个第一离线指纹。
通过上述设计,终端设备可以通过CellIDB查找到网格1,通过网格1对应的离线指纹1,作为与第二目标位置指纹匹配的第一离线指纹。通过上述方法,在保证了离线指纹库的压缩同时,有助于实现终端设备的快速定位。
步骤403:终端设备根据所述第一离线指纹中的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的多个第二离线指纹。
其中,所述第一条件为离线指纹中携带的信道参数与所述Q个邻区基站的信道参数中的一个相同,且离线指纹中携带的参考点位置在第一邻区搜索范围内,所述第一邻区搜索范围为包括所述第一离线指纹中的参考点位置的一个有限区域。
针对没有网格标识的场景,具体的过程可以如下:
首先,终端设备以所述第一离线指纹中的参考点位置为中心,根据所述第一基站的信号覆盖范围,确定所述第一邻区基站搜索范围。
一种可能的实现方式,可以根据不同的信号制式,可以确定不同的基站的信号覆盖半径。比如,2G信号制式的信号覆盖半径为20km,3G信号制式的信号覆盖半径为5km,4G信号制式的信号覆盖半径为3km。
进而,终端设备以所述第一离线指纹中的参考点位置为中心,根据所述第一基站的信号制式确定的信号覆盖范围,确定所述第一邻区基站搜索范围。当然,还可以根据其他方式确定第一邻区基站搜索范围的半径,在此不做限定。
结合上述例子,可以根据参考点位置5,以基站F的信号制式对应的信号覆盖半径为第一邻区基站搜索范围的半径,确定出第一离线指纹对应的第一邻区基站搜索范围。
其次,终端设备根据所述第一邻区基站搜索范围,在所述离线指纹库中,查找参考点位置位于所述第一邻区基站搜索范围内的L1个离线指纹;L1为正整数。如图6所示,若确定参考点位置1、参考点位置2和参考点位置4在第一邻区基站搜索范围内,则将参考点位置1对应的表18_3中的第1行的服务基站信息,参考点位置2对应的表18_3中第3 行的服务基站信息,参考点位置3对应的表18_3中的第4行的离线指纹,作为于所述第一邻区基站搜索范围内的3个第二离线指纹。
然后,终端设备在所述L1个离线指纹中,确定多个第二离线指纹,其中所述多个第二离线指纹为与所述Q个邻区基站的信道参数相同的多个离线指纹。
进而,终端设备将所述多个离线指纹,作为所述符合条件的多个第二离线指纹。举例来说,参考点位置1对应的表18_3中的第1行的服务基站信息的信道参数与(PIA,CNA)对应的邻区基站信息匹配,参考点位置3对应的表18_3中的第4行的服务基站信息与(PIC,CNC)对应的邻区基站信息匹配,因此,可以将其作为所述第一邻区基站搜索范围内的2个第二离线指纹。
至此,终端设备可以将所述第一离线指纹及所述多个第二离线指纹作为与所述目标位置指纹匹配的重构指纹特征。
结合上述例子,与第一目标位置指纹匹配的重构指纹特征为1个,根据第一离线指纹(表22中的第6行的服务基站信息)和第二离线指纹(表22中的第1、4行的服务基站信息),确定的重构指纹特征,可用如下表27所示:
表27:
Figure PCTCN2020109305-appb-000036
针对离线指纹包括网格的场景,以第一目标位置指纹为例,在步骤402中,可以将离线指纹6确定2个第一离线指纹。一种可能的实现方式,可以包括:
首先,所述终端设备确定所述第一离线指纹中的参考点位置所在第一网格的第一网格标识;所述第一网格对应的R个相邻网格为所述第一邻区基站搜索范围。R为正整数。
以第一离线指纹为离线指纹6为例,离线指纹6所在的网格为网格5,可以确定网格5的相邻网格。具体的相邻网络的确定方式,可以根据东西南北四个方向的网格作为相邻网格,例如:网格5的相邻网格为:网格2,网格4,网格6,网格8。另一种相邻网络的确定方式,可以选择一个扇区范围内的网格作为相邻网格,例如:网格4的相邻网格为:网格1,网格2,网格4。具体选择相邻网格的方式可以根据需要确定,在此不做限定。
其次,所述终端设备确定与所述第一网格对应的R个相邻网格的网格标识对应的K1个离线指纹。
以网格5的相邻网格为:网格2,网格4,网格6,网格8为例,其相邻网格对应的离线指纹为离线指纹3,离线指纹5,离线指纹7,离线指纹9。
再次,所述终端设备在所述K1个离线指纹中,确定多个第二离线指纹。K1为正整数。
其中,多个第二离线指纹为与所述Q个邻区基站的信道参数相同的多个离线指纹。
进而,终端设备可以根据所述K1个离线指纹及所述第一离线指纹,确定重构指纹特征。由于一个网格中可以存在多个离线指纹,同时,还可以根据相邻网格确定出多个第二 离线指纹,进而可以组成多个重构指纹特征,一种可能的方式,可以仅根据第一离线指纹的数量,确定重构指纹特征的数量。假设确定的第一离线指纹为2个,则可以确定重构指纹特征也为2个。根据每个第一离线指纹,确定的多个第二离线指纹都为该重构指纹特征中的邻区基站信息。
一种可能的实现方式,终端设备根据每个第一离线指纹,生成一个重构指纹特征;针对每个第一离线指纹,将所述K1个离线指纹及所述第一离线指纹,作为重构指纹特征。
结合上述例子,可以将离线指纹6作为重构指纹特征中的服务基站信息;将相邻网格对应的离线指纹3,离线指纹5,离线指纹7,离线指纹9作为重构指纹特征中的邻区基站信息。此时,重构指纹特征可以如表28所示:
表28:
Figure PCTCN2020109305-appb-000037
另一种可能的方式,为压缩重构指纹的大小,可以在K1个离线指纹中,确定与第一目标位置指纹中邻区基站的信道参数匹配的多个第二离线指纹。具体的,可以包括:
终端设备将所述K1个离线指纹中每个离线指纹的信道参数,与所述Q个邻区基站的信道参数匹配。结合上述例子,网格2对应的离线指纹与第一目标位置指纹中的(PIC,CNC)匹配,网格4对应的离线指纹与第一目标位置指纹中的(PIE,CNE)匹配。进而,终端设备将匹配的多个离线指纹,作为与所述Q个邻区基站的信道参数匹配的多个第二离线指纹。因此,可以确定第二离线指纹包括2个,即,网格2对应的离线指纹和网格4对应的离线指纹。因此,终端设备可以将所述第一离线指纹及所述多个第二离线指纹,作为与所述目标位置指纹匹配的一个重构指纹特征。
结合上述例子,此时,重构指纹特征可以如表29所示:
表29:
Figure PCTCN2020109305-appb-000038
Figure PCTCN2020109305-appb-000039
针对一个网格出现多个离线指纹的场景,以第一离线指纹为网格5为例,假设网格2中包括2个离线指纹,网格4中包括2个离线指纹,网格6中包括1个离线指纹,网格8中包括1个离线指纹;则K1为6,对应生成的重构指纹特征中,包括:网格5对应的1个离线指纹,网格2对应的2个离线指纹,网格4对应的2个离线指纹,网格6对应的1个离线指纹,网格8对应的1个离线指纹。
进一步的,假设可以在6个离线指纹中,确定与第一目标位置指纹中邻区基站的信道参数匹配的4个第二离线指纹。此时,生成重构指纹特征的过程可以包括:首先,终端设备将所述6个离线指纹中每个离线指纹的信道参数,与所述2个第一邻区基站的信道参数匹配。结合上述例子,网格2对应的2个离线指纹与第一目标位置指纹中的(PIC,CNC)匹配,网格4对应的2个离线指纹与第一目标位置指纹中的(PIE,CNE)匹配。因此,终端设备可以将匹配的4个离线指纹,作为与所述2个第一邻区基站的信道参数匹配的4个第二离线指纹。即终端设备可以确定第二离线指纹包括4个,即,网格2对应的2个离线指纹和网格4对应的2个离线指纹。进而,终端设备将所述第一离线指纹及所述2个第二离线指纹,作为与所述第一目标位置指纹匹配的一个重构指纹特征。
另一种可能的实现方式,可以根据相邻网络中存在的第二离线指纹的数量,确定一个离线指纹可以生成的重构指纹特征的数量,进而根据每个第一离线指纹,确定可以生成的重构指纹特征。
以第一离线指纹为网格5为例,若确定网格2中存在2个离线指纹(离线指纹2-1,离线指纹2-2),网格4中包括2个离线指纹(离线指纹4-1,离线指纹4-2),网格6中包括1个离线指纹,网格8中包括1个离线指纹;则可以生成4个重构指纹特征。此时,K1为6,其中,每个网格选取1个离线指纹作为该网格对应的离线指纹。
因此,重构指纹特征1-1可以包括:离线指纹2-1,离线指纹4-1,网格6对应的离线指纹,网格8对应的离线指纹,网格2对应的离线指纹。重构指纹特征1-2可以包括:离线指纹2-1,离线指纹4-2,网格6对应的离线指纹,网格8对应的离线指纹,网格2对应的离线指纹。重构指纹特征1-3可以包括:离线指纹2-2,离线指纹4-1,网格6对应的离线指纹,网格8对应的离线指纹,网格2对应的离线指纹。重构指纹特征1-4可以包括:离线指纹2-2,离线指纹4-2,网格6对应的离线指纹,网格8对应的离线指纹,网格2对应的离线指纹。
步骤404:所述终端设备基于所述第一离线指纹中的信号标识和参考点位置,所述多个第二离线指纹中的信号标识和参考点位置,以及所述目标位置指纹中的Q+1个信号标识,确定所述终端设备的位置。
针对没有网格标识的场景,以一个重构指纹特征与所述第一目标位置指纹匹配,确定终端设备的第一目标位置为例,具体的过程可以包括:
首先,终端设备根据所述第一离线指纹的信号标识与所述第一基站的第一目标位置指纹的信号标识匹配,确定所述第一离线指纹对应的权重。
例如,针对基站F,重构指纹特征的信号强度RSS11与第一目标位置指纹中的信号强度RSS01的相似度为0.8。
进而,终端设备根据所述多个第二离线指纹的信号标识与所述Q个邻区基站的目标位置指纹的信号标识,确定所述多个第二离线指纹对应的权重。
例如,针对基站C,重构指纹特征的信号强度RSS9与第一目标位置指纹中的信号强度RSS02的相似度为0.6;针对基站A,重构指纹特征的信号强度RSS1与第一目标位置指纹中的信号强度RSS03的相似度为0.3。
其次,终端设备根据所述重构指纹特征中的参考点位置及对应的权重,确定所述终端设备的第二位置。
具体的,终端设备根据所述第一离线指纹对应的权重、所述多个第二离线指纹对应的权重,及所述参考点位置、所述多个第二离线指纹的参考点位置,确定第二位置;例如,若确定终端设备的第二位置为(X’,Y’),则:
X’=0.8*X5+0.6*X4+0.3*X1,Y’=0.8*Y5+0.6*Y4+0.3*Y1。
相比现有技术中,定位服务器需根据KNN算法遍历位置指纹库中的所有位置指纹特征,确定相似度较高的多个位置指纹特征进行匹配的方法。本申请实施例中,通过上述方法,终端设备在利用本地存储的离线指纹库进行定位时,仅需根据服务基站的CellID和网格标识,即可以确定出匹配的多个离线指纹,并根据加权平均,直接确定位置,可以减少终端设备定位所需的计算量,有效提高离线定位的精度和离线定位效果。
针对离线指纹包括网格标识的场景,以一个重构指纹特征与所述第一目标位置指纹匹配,确定终端设备的第一目标位置为例,具体的过程可以包括:
首先,终端设备根据所述第一离线指纹中的信号标识与所述第一基站的信号标识匹配,确定所述第一离线指纹对应的权重。举例来说,以重构指纹特征中的第一离线指纹为离线指纹6为例,此时,针对基站F,重构指纹特征的信号强度RSS6与第一目标位置指纹中的信号强度RSS01的相似度为0.8。
其次,针对所述多个第二离线指纹中的每个第二离线指纹,所述终端设备通过信道参数,确定与所述第二离线指纹匹配的第一邻区基站;所述终端设备根据所述匹配的第一邻区基站的信号标识,及所述第二离线指纹中的信号标识,确定所述第二离线指纹对应的权重;针对基站C,重构指纹特征的信号强度RSS3与第一目标位置指纹中的信号强度RSS02的相似度为0.6;针对基站E,重构指纹特征的信号强度RSS05与第一目标位置指纹中的信号强度RSS03的相似度为0.3。
进而,终端设备根据所述第一离线指纹对应的权重,所述第一离线指纹的参考点位置,及所述多个第二离线指纹对应的权重,所述多个第二离线指纹的参考点位置,确定一个第二位置。结合上述例子,以重构指纹特征中的第一离线指纹为离线指纹6为例,若确定终端设备的第二位置为(X1’,Y1’),则:X1’=0.8*X6’+0.6*X3’+0.3*X5’,Y1’=0.8*Y6’+0.6*Y3’+0.3*Y5’。
进一步的,针对重构指纹特征有N0个的场景:终端设备若确定所述第一离线指纹为N0个,则根据所述N0个第一离线指纹中的每个离线指纹的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的W个第二离线指纹;W为正整数。终端设备基于所述N0个第一离线指纹中的信号标识和参考点位置,所述W个第二离线指纹中的信号标识和参考点位置,以及所述目标位置指纹中的Q+1个信号标识,确定所述终端设备的位置。
针对所述N0个重构指纹特征中的每个重构指纹特征,都可以生成一个第二位置,因此,终端设备可以对所述N0个第二位置进行加权平均,确定终端设备的位置。其中,权重可以根据各第二位置对应的重构指纹特征中的定位来源确定,也可以根据各第二位置对应的定位来源和重构指纹特征的信号强度确定,在此不做限定。
通过上述方法,终端设备在利用本地存储的离线指纹库进行定位时,无需根据位置指纹特征中的服务基站信息及多个邻区基站信息,与目标位置指纹匹配,确定相似度较高的多个位置指纹特征,仅需根据网格标识,即确定出匹配的多个离线指纹,并根据加权平均,直接确定位置,可以减少终端设备定位所需的计算量,提高了定位的效率和定位的精度。
上述本申请提供的实施例中,分别从定位服务器、终端设备以及二者之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,定位服务器、至少一个终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图8示出了一种通信装置800的结构示意图。其中,离线指纹库的生成装置800可以是网络设备,能够实现本申请实施例提供的方法中定位服务器的功能;离线指纹库的生成装置800也可以是能够支持定位服务器实现本申请实施例提供的方法中定位服务器的功能的装置。离线指纹库的生成装置800可以是硬件结构、软件模块、或硬件结构加软件模块。离线指纹库的生成装置800可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
离线指纹库的生成装置800可以包括处理模块801,接收模块802和发送模块803。
处理模块801可以用于执行图3所示的实施例中的步骤,和/或用于支持本文所描述的技术的其它过程。接收模块802和发送模块803用于离线指纹库的生成装置800和其它模块进行通信,其可以是电路、器件、接口、总线、软件模块、收发器或者其它任意可以实现通信的装置。
接收模块802可以用于执行图3所示的实施例中的步骤301,和/或用于支持本文所描述的技术的其它过程。发送模块803可以用于执行图3所示的实施例中的步骤303,和/或用于支持本文所描述的技术的其它过程。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图9示出了一种定位装置900的结构示意图。其中,定位装置900可以是终端设备,能够实现本申请实施例提供的方法中终端设备的功能;定位装置900也可以是能够支持终端设备实现本申请实施例提供的方法中终端设备的功能的装置。定位装置900可以是硬件结构、软件模块、或硬件结构加软件模块。定位装置900可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
定位装置900可以包括处理模块901和采集模块902。
处理模块901可以用于执行图4所示的实施例中的步骤402至步骤404,和/或用于支持本文所描述的技术的其它过程。
采集模块902可以用于执行图4所示的实施例中的步骤401,和/或用于支持本文所描述的技术的其它过程。采集模块902用于定位装置900和其它模块进行通信,其可以是电 路、器件、接口、总线、软件模块、收发器或者其它任意可以实现通信的装置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图10所示为本申请实施例提供的通信装置1000,其中,通信装置1000可以是图3所示的实施例中的定位服务器,能够实现本申请实施例提供的方法中定位服务器的功能;通信装置1000也可以是能够支持接入网设备实现本申请实施例提供的方法中定位服务器的功能的装置。其中,该通信装置1000可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1000包括至少一个处理器1020,用于实现或用于支持通信装置1000实现本申请实施例提供的方法中定位服务器的功能。示例性地,处理器1020:将所述M个服务基站的CellID与所述多个基站的信息中的信号标识和信道参数进行匹配,以生成P个离线指纹,其中P大于M;所述多个离线指纹被保存在所述离线指纹库中;每个所述离线指纹都包括:一基站的CellID、信号标识和信道参数,一个参考点位置;M,N,P为正整数;对于每个离线指纹,其中包括的CellID为所述M个服务基站中任一服务基站的CellID,所述参考点位置与所述离线指纹中携带的CellID对应的第一位置有关。具体参见方法示例中的详细描述,此处不做赘述。
通信装置1000还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令,以实现本申请实施例中图8中处理模块的功能。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1000还可以包括通信接口1010,用于通过传输介质和其它设备进行通信,从而用于通信装置1000中的装置可以和其它设备进行通信。示例性地,该其它设备可以是网络设备。处理器1020可以利用通信接口1010收发数据。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为定位服务器的接收模块和发送模块,将具有处理功能的处理器视为定位服务器的处理模块。通信接口1010也可以称为收发器、收发机、收发装置等。处理器1020也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信接口1010中用于实现接收功能的器件视为接收模块,将通信接口1010中用于实现发送功能的器件视为发送模块,即通信接口1010包括接收模块和发送模块。接收模块有时也可以称为收发机、收发器、或收发电路等。接收模块有时也可以称为接收机、接收器、或接收电路等。发送模块有时也可以称为发射机、发射器或者发射电路等。
应理解,通信接口1010用于执行上述方法实施例中定位服务器的收发操作,处理器1020用于执行上述方法实施例中定位服务器上除了收发操作之外的其他操作。
例如,在一种实现方式中,通信接口1010用于执行图3中的步骤301和步骤303中 定位服务器的收发操作,和/或通信接口1010还用于执行本申请实施例中定位服务器的其他收发步骤。处理器1020,用于执行图3中的步骤302,和/或处理器1020还用于执行本申请实施例中定位服务器的其他处理步骤。
当该通信装置为芯片时,该芯片包括接收模块,发送模块和处理模块。其中,接收模块和发送模块可以是输入输出电路、通信接口;处理模块为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例中不限定上述通信接口1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及通信接口1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1020可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1030可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
如图11所示为本申请实施例提供的通信装置1100,其中,通信装置1100可以是终端设备,能够实现本申请实施例提供的方法中终端设备的功能;通信装置1100也可以是能够支持终端设备实现本申请实施例提供的方法中终端设备的功能的装置。其中,该通信装置1100可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1100包括至少一个处理器1120,用于实现或用于支持通信装置1100实现本申请实施例提供的方法中定位的功能。示例性地,处理器1120可以通过所述第一基站的CellID,在离线指纹库中查找与所述第一基站CellID匹配的第一离线指纹;根据所述第一离线指纹中的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的多个第二离线指纹,基于所述第一离线指纹中的信号标识和参考点位置,所述多个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的Q+1个信号标识,确定所述终端设备的位置。具体参见方法示例中的详细描述,此处不做赘述。
通信装置1100还可以包括至少一个存储器1130,用于存储程序指令和/或数据。存储器1130和处理器1120耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1120可能和存储器1130协同操作。处理器1120可能执行存储器1130中存储的程序指令,以实现本申请实施例中图9中处理模块的功能。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1100还可以包括通信接口1110,用于通过传输介质和其它设备进行通信,从而用于装置1100中的装置可以和其它设备进行通信。示例性地,该其它设备可以是终端设备。处理器1120可以利用通信接口1110收发数据。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收模块和发送模块,将具有处理功能的处理器视为终端设备的处理模块。通信接口1110也可以称为收发器、收发机、收发装置等。处理器1120也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信接口1110中用于实现接收功能的器件视为接收模块或采集模块,将通信接口1110中用于实现发送功能的器件视为发送模块,即通信接口1110包括接收模块和发送模块。接收模块有时也可以称为收发机、收发器、或收发电路等。接收模块或采集模块有时也可以称为接收机、接收器、或接收电路等。发送模块有时也可以称为发射机、发射器或者发射电路等。
应理解,通信接口1110用于执行上述方法实施例中终端设备的采集操作,处理器1120用于执行上述方法实施例中终端设备上除了采集操作之外的其他操作。
例如,在一种实现方式中,通信接口1110用于执行图4中的步骤401中终端设备的采集操作,和/或通信接口1110还用于执行本申请实施例中终端设备的其他采集步骤。处理器1120,用于执行图4中的步骤402至步骤404,和/或处理器1120还用于执行本申请实施例中终端设备的其他处理步骤。
当该通信装置为芯片时,该芯片包括采集模块和处理模块。其中,采集模块可以是输入输出电路、通信接口;处理模块为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例中不限定上述通信接口1110、处理器1120以及存储器1130之间的具体连接介质。本申请实施例在图11中以存储器1130、处理器1120以及通信接口1110之间通过总线1140连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1120可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1130可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图3所示的实施例中定位服务器执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图3所示的实施例中定位服务器执行的方法。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时, 使得计算机执行图4所示的实施例中终端设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图4所示的实施例中终端设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中定位服务器的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供了一种系统,所述系统包括前述所述的定位服务器和终端设备。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (29)

  1. 一种定位方法,其特征在于,包括:
    终端设备采集位置指纹;所述位置指纹包括:第一基站的信号标识,所述第一基站的小区标识CellID,所述第一基站的Q个邻区基站的信号标识及所述Q个邻区基站的信道参数;所述第一基站为所述终端设备接入的服务基站;Q为正整数;
    所述终端设备通过所述第一基站的CellID,在离线指纹库中查找与所述第一基站CellID匹配的第一离线指纹;所述离线指纹库存储于所述终端设备,所述离线指纹库用于管理多个离线指纹;每个离线指纹包括:一个基站的CellID、信号标识和信道参数,以及一个参考点位置;
    所述终端设备根据所述第一离线指纹中的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的多个第二离线指纹,所述第一条件为离线指纹中携带的信道参数与所述Q个邻区基站的信道参数中的一个相同,且离线指纹中携带的参考点位置在第一邻区搜索范围内,所述第一邻区搜索范围为包括所述第一离线指纹中的参考点位置的一个有限区域;
    所述终端设备基于所述第一离线指纹中的信号标识和参考点位置,所述多个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的Q+1个信号标识,确定所述终端设备的位置。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备根据所述第一离线指纹中的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的多个第二离线指纹,包括:
    所述终端设备以所述第一离线指纹中的参考点位置为中心,根据所述第一基站的信号覆盖范围,确定所述第一邻区基站搜索范围;L1为正整数;
    所述终端设备根据所述第一邻区基站搜索范围,在所述离线指纹库中,查找参考点位置位于所述第一邻区基站搜索范围内的L1个离线指纹;
    所述终端设备在所述L1个离线指纹中,确定多个第二离线指纹,其中所述多个第二离线指纹为与所述Q个邻区基站的信道参数相同的多个离线指纹。
  3. 如权利要求1所述的方法,其特征在于,所述离线指纹还包括:所述参考点位置所在网格的网格标识;所述终端设备根据所述第一离线指纹中的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的多个第二离线指纹,包括:
    所述终端设备确定所述第一离线指纹中的参考点位置所在第一网格的第一网格标识;
    所述终端设备确定与所述第一网格对应的R个相邻网格的网格标识对应的K1个离线指纹,其中,所述第一网格对应的R个相邻网格为所述第一邻区基站搜索范围;R,K1为正整数;
    所述终端设备在所述K1个离线指纹中,确定多个第二离线指纹,其中所述多个第二离线指纹为与所述Q个邻区基站的信道参数相同的多个离线指纹。
  4. 如权利要求3所述的方法,其特征在于,所述离线指纹库还包括:离线指纹的CellID与所述离线指纹所在网格的网格标识的关系;所述终端设备通过所述第一基站的CellID,在离线指纹库中查找与所述第一基站CellID匹配的第一离线指纹,包括:
    所述终端设备若确定所述离线指纹库中不存在与所述第一基站CellID匹配的第一离线指纹,则根据所述离线指纹的CellID与所述离线指纹所在网格的网格标识的关系中,查找所述第一离线指纹,其中,所述第一离线指纹为所述第一基站的CellID所在网格的第二网格标识对应的离线指纹。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一离线指纹为N0个,其中N0为大于1的整数,所述方法还包括:
    所述终端设备根据所述N0个第一离线指纹中的每个离线指纹的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的W个第二离线指纹;W为正整数;
    所述终端设备基于所述N0个第一离线指纹中的信号标识和参考点位置,所述W个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的Q+1个信号标识,确定所述终端设备的位置。
  6. 一种离线指纹库的生成方法,其特征在于,包括:
    定位服务器接收来自终端设备的M个位置指纹特征,其中,所述M个位置指纹特征共包括M个第一位置以及多个基站的信息,所述多个基站为所述M个第一位置所在小区的M个服务基站,以及所述M个服务基站对应的N个邻区基站,所述多个位置指纹特征中包括所述M个服务基站的小区标识CellID、信号标识和信道参数,以及所述N个邻区基站的信号标识和信道参数;
    所述定位服务器将所述M个服务基站的CellID与所述多个基站的信息中的信号标识和信道参数进行匹配,以生成P个离线指纹,其中P大于M;所述多个离线指纹被保存在所述定位服务器的离线指纹库中;每个所述离线指纹都包括:一基站的CellID、信号标识和信道参数,一个参考点位置;M,N,P为正整数;
    对于每个离线指纹,其中包括的CellID为所述M个服务基站中任一服务基站的CellID,所述参考点位置与所述离线指纹中携带的CellID对应的第一位置有关;
    所述定位服务器向终端设备发送所述离线指纹库。
  7. 如权利要求6所述的方法,其特征在于,所述定位服务器将所述M个服务基站的CellID与所述多个基站的信息中的信号标识和信道参数进行匹配,以生成P个离线指纹,包括:
    所述定位服务器将符合第二条件的多个位置指纹特征中服务基站的CellID与所述M个服务基站对应的N个邻区基站中的信道参数进行匹配,确定所述M个服务基站对应的N个邻区基站的CellID;所述第二条件为位置指纹特征中携带的服务基站的信道制式与所述邻区基站对应的位置指纹特征中携带的服务基站的信道制式相同,且位置指纹特征中携带的第一位置在第二邻区搜索范围内;所述第二邻区搜索范围为包括所述邻区基站对应的位置指纹特征中的第一位置的一个有限区域;
    所述定位服务器根据所述M个位置指纹特征和所述M个服务基站对应的N个邻区基站的CellID,生成P个离线指纹。
  8. 如权利要求7所述的方法,其特征在于,所述定位服务器根据所述M个位置指纹特征和所述M个服务基站对应的N个邻区基站的CellID,生成P个离线指纹,包括:
    所述定位服务器根据所述M个第一位置和所述M个服务基站的信息,生成M个离线指纹;
    所述定位服务器根据所述M个第一位置,所述M个服务基站对应的N个邻区基站的信息及所述M个服务基站对应的N个邻区基站的CellID,生成M×N个离线指纹;所述P等于M×(N+1)。
  9. 如权利要求7所述的方法,其特征在于,所述定位服务器根据所述M个位置指纹特征和所述M个服务基站对应的N个邻区基站的CellID,生成P个离线指纹,包括:
    所述定位服务器根据所述M个服务基站的CellID和所述M个服务基站对应的N个邻区基站的CellID,查找对应相同CellID的P组基站的信息;
    所述定位服务器根据所述P组基站的信息及每组基站的信息所在的位置指纹特征中的第一位置,确定P个离线指纹;其中,每个离线指纹中的参考点与每组基站的信息中的第一位置有关;每个离线指纹中的信号标识与每组基站的信息中的信号标识有关。
  10. 如权利要求7所述的方法,其特征在于,所述第二邻区搜索范围为所述定位服务器根据所述邻区基站对应的位置指纹特征中的第一位置为中心,根据所述邻区基站对应的位置指纹特征中服务基站对应的信号制式确定的信号覆盖范围确定的一个区域。
  11. 如权利要求7所述的方法,其特征在于,第一邻区基站的信道参数对应K0个符合所述第二条件的服务基站的CellID,所述第一邻区基站为所述N个邻区基站中的一个,所述定位服务器将符合第二条件的多个位置指纹特征中服务基站的CellID与所述M个服务基站对应的N个邻区基站中的信道参数进行匹配,包括:
    所述定位服务器根据所述K0个第一位置,确定所述K0个第一位置的中心;K0为正整数;
    所述定位服务器基于所述中心与所述K0个第一位置与所述中心的欧式距离,确定与所述第一邻区基站的信道参数匹配的服务基站的CellID;其中,所述与所述第一邻区基站的信道参数匹配的服务基站的CellID为最接近中心的第一位置对应的服务基站的CellID。
  12. 如权利要求7-11任一项所述的方法,其特征在于,所述离线指纹还包括:所述参考点位置所在网格的网格标识。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述定位服务器根据所述参考点位置所在的网格的网格标识,确定每个网格中的N1个离线指纹;
    所述定位服务器根据所述N1个离线指纹中的信号标识,筛选所述N1个离线指纹;其中,网格筛选后的离线指纹为所述网格对应的离线指纹;网格筛选前的离线指纹中的CellID与所述网格筛选前的离线指纹所在网格的网格标识的关系存储与所述离线指纹库。
  14. 一种定位装置,其特征在于,包括:
    采集模块,用于采集位置指纹;所述位置指纹包括:第一基站的信号标识,所述第一基站的小区标识CellID,所述第一基站的Q个邻区基站的信号标识及所述Q个邻区基站的信道参数;所述第一基站为所述终端设备接入的服务基站;Q为大于1的正整数;
    处理模块,用于通过所述第一基站的CellID,在离线指纹库中查找与所述第一基站CellID匹配的第一离线指纹;所述离线指纹库存储于所述终端设备,所述离线指纹库用于管理多个离线指纹;每个离线指纹包括:一个基站的CellID、信号标识和信道参数,以及一个参考点位置;根据所述第一离线指纹中的参考点位置,以及所述Q个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的多个第二离线指纹,所述第一条件为离线指纹中携带的信道参数与所述Q个邻区基站的信道参数中的一个相同,且离线指纹中携 带的参考点位置在第一邻区搜索范围内,所述第一邻区搜索范围为包括所述第一离线指纹中的参考点位置的一个有限区域;基于所述第一离线指纹中的信号标识和参考点位置,所述多个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的Q+1个信号标识,确定所述终端设备的位置。
  15. 如权利要求14所述的装置,其特征在于,所述处理模块,具体用于:
    以所述第一离线指纹中的参考点位置为中心,根据所述第一基站的信号覆盖范围,确定所述第一邻区基站搜索范围;根据所述第一邻区基站搜索范围,在所述离线指纹库中,查找参考点位置位于所述第一邻区基站搜索范围内的L1个离线指纹;在所述L1个离线指纹中,确定多个第二离线指纹,L1为正整数;其中,所述多个第二离线指纹为与所述N个邻区基站的信道参数相同的多个离线指纹。
  16. 如权利要求14所述的装置,其特征在于,所述离线指纹还包括:所述参考点位置所在网格的网格标识;所述处理模块,具体用于:
    确定所述第一离线指纹中的参考点位置所在第一网格的第一网格标识;确定与所述第一网格对应的R个相邻网格的网格标识对应的K1个离线指纹,其中,所述第一网格对应的R个相邻网格为所述第一邻区基站搜索范围;R,K1为正整数;在所述K1个离线指纹中,确定多个第二离线指纹,其中所述多个第二离线指纹为与所述Q个邻区基站的信道参数相同的多个离线指纹。
  17. 如权利要求16所述的装置,其特征在于,所述离线指纹库还包括:离线指纹的CellID与所述离线指纹所在网格的网格标识的关系;所述处理模块,具体用于:若确定所述离线指纹库中不存在与所述第一基站CellID匹配的第一离线指纹,则根据所述离线指纹的CellID与所述离线指纹所在网格的网格标识的关系中,查找所述第一离线指纹,其中,所述第一离线指纹为所述第一基站的CellID所在网格的第二网格标识对应的离线指纹。
  18. 如权利要求14-17任一项所述的装置,其特征在于,所述第一离线指纹为N0个,其中N0大于1,所述处理模块,还用于:根据所述N0个第一离线指纹中的每个离线指纹的参考点位置,以及所述N个邻区基站的信道参数,在所述离线指纹库中,查找符合第一条件的W个第二离线指纹;W为正整数;基于所述N0个第一离线指纹中的信号标识和参考点位置,所述W个第二离线指纹中的信号标识和参考点位置,以及所述位置指纹中的N+1个信号标识,确定所述终端设备的位置。
  19. 一种离线指纹库的生成装置,其特征在于,包括:
    接收模块,用于接收来自终端设备的M个位置指纹特征,其中,所述M个位置指纹特征共包括M个第一位置以及多个基站的信息,所述多个基站为所述M个第一位置所在小区的M个服务基站,以及所述M个服务基站对应的N个邻区基站,所述多个位置指纹特征中包括所述M个服务基站的小区标识CellID、信号标识和信道参数,以及所述N个邻区基站的信号标识和信道参数;
    处理模块,用于将所述M个服务基站的CellID与所述多个基站的信息中的信号标识和信道参数进行匹配,以生成P个离线指纹,其中P大于M;所述多个离线指纹被保存在定位服务器的离线指纹库中;每个所述离线指纹都包括:一基站的CellID、信号标识和信道参数,一个参考点位置;M,N,P为正整数;对于每个离线指纹,其中包括的CellID为所述M个服务基站中任一服务基站的CellID,所述参考点位置与所述离线指纹中携带的CellID对应的第一位置有关;
    发送模块,用于向终端设备发送所述离线指纹库。
  20. 如权利要求19所述的装置,其特征在于,所述处理模块,具体用于:
    将符合第二条件的多个位置指纹特征中服务基站的CellID与所述M个服务基站对应的N个邻区基站中的信道参数进行匹配,确定所述M个服务基站对应的N个邻区基站的CellID;所述第二条件为位置指纹特征中携带的服务基站的信道制式与所述邻区基站对应的位置指纹特征中携带的服务基站的信道制式相同,且位置指纹特征中携带的第一位置在第二邻区搜索范围内;所述第二邻区搜索范围为包括所述邻区基站对应的位置指纹特征中的第一位置的一个有限区域;根据所述M个位置指纹特征和所述M个服务基站对应的N个邻区基站的CellID,生成P个离线指纹。
  21. 如权利要求20所述的装置,其特征在于,所述处理模块,具体用于:
    根据所述M个第一位置和所述M个服务基站的信息,生成M个离线指纹;根据所述M个第一位置,所述M个服务基站对应的N个邻区基站的信息及所述M个服务基站对应的N个邻区基站的CellID,生成M×N个离线指纹;所述P等于M×(N+1)。
  22. 如权利要求20所述的装置,其特征在于,所述处理模块,具体用于:
    根据所述M个服务基站的CellID和所述M个服务基站对应的N个邻区基站的CellID,查找对应相同CellID的P组基站的信息;根据所述P组基站的信息及每组基站的信息所在的位置指纹特征中的第一位置,确定P个离线指纹;其中,每个离线指纹中的参考点与每组基站的信息中的第一位置有关;每个离线指纹中的信号标识与每组基站的信息中的信号标识有关。
  23. 如权利要求20所述的装置,其特征在于,所述第二邻区搜索范围为所述定位服务器根据所述邻区基站对应的位置指纹特征中的第一位置为中心,根据所述邻区基站对应的位置指纹特征中服务基站对应的信号制式确定的信号覆盖范围确定的一个区域。
  24. 如权利要求20所述的装置,其特征在于,第一邻区基站的信道参数对应K0个符合所述第二条件的服务基站的CellID,所述第一邻区基站为所述N个邻区基站中的一个,所述处理模块,具体用于:
    根据所述K0个第一位置,确定所述K0个第一位置的中心;K0为正整数;基于所述中心与所述K0个第一位置与所述中心的欧式距离,确定与所述第一邻区基站的信道参数匹配的服务基站的CellID;其中,所述与所述第一邻区基站的信道参数匹配的服务基站的CellID为最接近中心的第一位置对应的服务基站的CellID。
  25. 如权利要求19-24任一项所述的装置,其特征在于,所述离线指纹还包括:所述参考点位置所在网格的网格标识。
  26. 如权利要求25所述的装置,其特征在于,所述处理模块,还用于:
    根据所述参考点位置所在的网格的网格标识,确定每个网格中的N1个离线指纹;根据所述N1个离线指纹中的信号标识,筛选所述N1个离线指纹;其中,网格筛选后的离线指纹为所述网格对应的离线指纹;网格筛选前的离线指纹中的CellID与所述网格筛选前的离线指纹所在网格的网格标识的关系存储与所述离线指纹库。
  27. 一种装置,其特征在于,其特征在于,包括处理器、收发器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置通过所述收发器执行权利要求1-5或6-13中任意一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机 程序,所述计算机程序包括程序指令,所述程序指令当被计算机执行时,使所述计算机执行如权利要求1-5或6-13中任意一项所述的方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被计算机执行时,使所述计算机执行如权利要求1-5或6-13中任意一项所述的方法。
PCT/CN2020/109305 2019-08-30 2020-08-14 一种定位、离线指纹库的生成方法及装置 WO2021036829A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20855826.2A EP3833122A4 (en) 2019-08-30 2020-08-14 METHOD AND APPARATUS FOR POSITIONING AND GENERATING AN OFFLINE FINGERPRINT DATABASE
US17/208,792 US20210232610A1 (en) 2019-08-30 2021-03-22 Positioning method and apparatus, and offline fingerprint database generation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910817834.4A CN112449302B (zh) 2019-08-30 2019-08-30 一种定位、离线指纹库的生成方法及装置
CN201910817834.4 2019-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/208,792 Continuation US20210232610A1 (en) 2019-08-30 2021-03-22 Positioning method and apparatus, and offline fingerprint database generation method and apparatus

Publications (1)

Publication Number Publication Date
WO2021036829A1 true WO2021036829A1 (zh) 2021-03-04

Family

ID=74685058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109305 WO2021036829A1 (zh) 2019-08-30 2020-08-14 一种定位、离线指纹库的生成方法及装置

Country Status (4)

Country Link
US (1) US20210232610A1 (zh)
EP (1) EP3833122A4 (zh)
CN (1) CN112449302B (zh)
WO (1) WO2021036829A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11017347B1 (en) * 2020-07-09 2021-05-25 Fourkites, Inc. Supply chain visibility platform
US20220201644A1 (en) * 2020-12-22 2022-06-23 Here Global B.V. Method and apparatus to enable selective positioning requests based upon the availability of radio models
CN115914980A (zh) * 2021-08-06 2023-04-04 大唐移动通信设备有限公司 定位方法、装置及处理器可读存储介质
CN113723234B (zh) * 2021-08-17 2023-07-07 中铁第四勘察设计院集团有限公司 指纹无源感知定位方法、装置及存储介质
CN115002700B (zh) * 2021-11-16 2023-03-31 荣耀终端有限公司 一种室内定位中指纹库的更新方法和装置
CN113949992B (zh) * 2021-11-24 2024-03-29 上海瑾盛通信科技有限公司 定位方法、装置、电子设备和计算机可读存储介质
CN114390437A (zh) * 2021-12-27 2022-04-22 广西交控智维科技发展有限公司 定位信号处理方法及装置
CN117495137B (zh) * 2023-11-14 2024-05-10 东北大学 一种基于大数据技术的光伏设备装机量预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480677A (zh) * 2010-11-24 2012-05-30 中国移动通信集团公司 一种指纹定位误差的确定方法和设备
CN104717740A (zh) * 2013-12-12 2015-06-17 中国电信股份有限公司 收集与训练定位数据的方法、装置与系统
WO2017211153A1 (zh) * 2016-06-07 2017-12-14 中兴通讯股份有限公司 一种基于指纹进行定位的方法、装置及计算机存储介质
CN107807346A (zh) * 2017-10-26 2018-03-16 南京华苏科技有限公司 基于ott与mr数据的自适应wknn室外定位方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269246B1 (en) * 1998-09-22 2001-07-31 Ppm, Inc. Location determination using RF fingerprinting
US6944465B2 (en) * 1998-09-22 2005-09-13 Polaris Wireless, Inc. Estimating the location of a mobile unit based on the elimination of improbable locations
US7433693B2 (en) * 2004-10-27 2008-10-07 Qualcomm Incorporated Location-sensitive calibration data
US8483704B2 (en) * 2005-07-25 2013-07-09 Qualcomm Incorporated Method and apparatus for maintaining a fingerprint for a wireless network
CN101998705A (zh) * 2009-08-19 2011-03-30 中兴通讯股份有限公司 一种获取邻接eNB信息的方法和系统
US8660577B2 (en) * 2009-12-04 2014-02-25 Nokia Corporation Method and apparatus for on-device positioning using compressed fingerprint archives
US9119085B2 (en) * 2011-05-04 2015-08-25 Telefonaktiebolaget L M Ericsson (Publ) Method and server for collecting radio fingerprint positioning data
CN105338619B (zh) * 2014-08-08 2020-03-10 中兴通讯股份有限公司 定位方法及装置
CN106899930B (zh) * 2015-12-17 2020-07-28 阿里巴巴集团控股有限公司 指纹数据库构建方法、定位方法及装置
CN108024197A (zh) * 2016-10-31 2018-05-11 中国电信股份有限公司 定位方法和装置
CN108282860B (zh) * 2017-01-05 2020-07-17 中国移动通信集团山西有限公司 数据处理方法及装置
EP3735790A1 (en) * 2018-01-05 2020-11-11 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for configuration of signaling associated with multiple aoa positioning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480677A (zh) * 2010-11-24 2012-05-30 中国移动通信集团公司 一种指纹定位误差的确定方法和设备
CN104717740A (zh) * 2013-12-12 2015-06-17 中国电信股份有限公司 收集与训练定位数据的方法、装置与系统
WO2017211153A1 (zh) * 2016-06-07 2017-12-14 中兴通讯股份有限公司 一种基于指纹进行定位的方法、装置及计算机存储介质
CN107807346A (zh) * 2017-10-26 2018-03-16 南京华苏科技有限公司 基于ott与mr数据的自适应wknn室外定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3833122A4 *

Also Published As

Publication number Publication date
EP3833122A4 (en) 2022-04-27
CN112449302B (zh) 2022-06-07
CN112449302A (zh) 2021-03-05
EP3833122A1 (en) 2021-06-09
US20210232610A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2021036829A1 (zh) 一种定位、离线指纹库的生成方法及装置
US11588538B2 (en) Positioning beam information obtaining method and apparatus
WO2020042081A1 (en) Method and apparatus for location services
JP2022516948A (ja) Rrcアイドルモードおよび非アクティブ状態におけるrsrp/rsrq測定を低減するためのueプロシージャ
CN111818634B (zh) 一种5g场景下的定位方法、定位平台及用户终端
CN110381566B (zh) 一种小区搜索方法及通信装置
US11844041B2 (en) Method and apparatus for fingerprinting positioning
US11310729B2 (en) Cell search method and communications apparatus
JP7382487B2 (ja) オンデマンド位置決め関連アプリケーションデータのための方法及びデバイス
US11706588B2 (en) Positioning method and apparatus for UE
CN106535327B (zh) 一种无线定位方法及装置
WO2022090315A1 (en) Dual asset tracking based on different radio access technologies
WO2022141219A1 (zh) 一种定位方法及相关装置
CN111294811B (zh) 一种小区扩容方法及网络设备
CN106664580A (zh) 一种邻区确定方法及设备
EP3556144A1 (en) Wireless device, network node, and methods and computer programs for the same
CN106535111B (zh) 移动终端及其定位方法
CN115150937B (zh) 一种通信方法和装置
US20230403532A1 (en) Dynamic tracing in wireless communication networks
US20230379804A1 (en) Automated discovery schedules for telecommunication service networks
US20230103717A1 (en) Method and apparatus for providing time synchronization between wireless user equipment
US20220078759A1 (en) Selective symbol measurement for positioning
CN117941416A (zh) 通信方法及通信装置
CN118201074A (zh) 双连接场景下终端设备的定位方法、系统及电子设备
JP2024507483A (ja) 基準信号に基づく通信方法および関連装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020855826

Country of ref document: EP

Effective date: 20210302

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE