WO2021036813A1 - 数据传输方法、装置、设备及存储介质 - Google Patents
数据传输方法、装置、设备及存储介质 Download PDFInfo
- Publication number
- WO2021036813A1 WO2021036813A1 PCT/CN2020/109109 CN2020109109W WO2021036813A1 WO 2021036813 A1 WO2021036813 A1 WO 2021036813A1 CN 2020109109 W CN2020109109 W CN 2020109109W WO 2021036813 A1 WO2021036813 A1 WO 2021036813A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uplink
- terminal device
- resource unit
- indication signal
- sending
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/51—Allocation or scheduling criteria for wireless resources based on terminal or device properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present disclosure relates to the field of communication technologies, and in particular, to a data transmission method, device, equipment, and storage medium.
- UE user equipment
- Evolved Node B evolved Node B
- the UE when the UE is in a dormant state or an inactive state, when the UE has uplink data to be sent, the UE needs to initiate a random access process to enter the connected state.
- E sends an uplink scheduling request (Scheduling Request, SR) to the eNB; the eNB configures an uplink scheduling grant (Up Link Grant, UL Grant) to the UE according to the SR, and the UL Grant is used to configure the uplink for the UE Transmission resources.
- SR scheduling Request
- the UE decodes the UL Grant correctly, it sends uplink data to the eNB according to the uplink transmission resources configured by the eNB.
- the present disclosure proposes a data transmission method, device, equipment, and storage medium.
- the technical solution is as follows:
- a data transmission method for use in a terminal device the terminal device being in a dormant state or an inactive state, and the method includes:
- An uplink indication signal is sent on an uplink pre-configured resource unit, the uplink pre-configured resource unit is a pre-configured periodic uplink transmission resource unit, and the uplink indication signal includes an uplink sequence (English: preamble) or uplink data.
- the sending an uplink indication signal on the uplink pre-configured resource unit includes:
- the sending the uplink indication signal on the uplink pre-configured resource unit corresponding to the uplink indication signal sending timing includes:
- the uplink data When the uplink data needs to be sent at the uplink indication signal sending timing, the uplink data is sent on the specific uplink pre-configured resource unit corresponding to the uplink indication signal sending timing.
- the sending the uplink indication signal on the uplink pre-configured resource unit corresponding to the uplink indication signal sending timing includes:
- the method also includes:
- the uplink data is sent on the common pre-configured resources in the current period.
- the period of the uplink indication signal transmission opportunity is N+1 times the period of the common pre-configured resource, and the N is a positive integer.
- the uplink pre-configured resource unit is associated with one or more downlink transmission beams, and the receiving downlink indication information includes:
- the method further includes:
- the method further includes:
- the uplink indication signal sending timing includes a plurality of the uplink pre-configured resource units.
- the sending timing of the uplink indication signal is a starting position in an uplink pre-configured resource window, and the uplink pre-configured resource window includes a plurality of common pre-configured resources.
- a data transmission method for use in an access network device including:
- An uplink indication signal sent by a terminal device is received on an uplink pre-configured resource unit, the terminal device is in a dormant state or an inactive state, the uplink pre-configured resource unit is a pre-configured periodic uplink transmission resource unit, and the uplink The indication signal includes uplink sequence or uplink data.
- the receiving the uplink indication signal sent by the terminal device on the uplink pre-configured resource unit includes:
- the terminal data device On the uplink pre-configured resource unit corresponding to the uplink indication signal sending timing, receiving the uplink indication signal sent by the terminal data device.
- the receiving, on the uplink pre-configured resource unit corresponding to the uplink indicator signal sending timing, the uplink indicator signal sent by the terminal data device includes:
- the receiving, on the uplink pre-configured resource unit corresponding to the uplink indicator signal sending timing, the uplink indicator signal sent by the terminal data device includes:
- the method also includes:
- the period of the uplink indication signal transmission opportunity is N+1 times the period of the common pre-configured resource, and the N is a positive integer.
- the uplink pre-configured resource unit is associated with one or more downlink transmission beams, and the transmission of downlink indication information includes:
- the method further includes:
- the method further includes:
- the uplink indication signal sending timing includes a plurality of the uplink pre-configured resource units.
- the sending timing of the uplink indication signal is a starting position in an uplink pre-configured resource window, and the uplink pre-configured resource window includes a plurality of common pre-configured resources.
- a data transmission device for use in a terminal device, where the terminal device is in a dormant state or an inactive state, and the device includes:
- the sending module is configured to send an uplink indicator signal on an uplink pre-configured resource unit, the uplink pre-configured resource unit is a pre-configured periodic uplink transmission resource unit, and the uplink indicator signal includes an uplink sequence or uplink data.
- the sending module is further configured to send the uplink indication signal on the uplink pre-configured resource unit corresponding to the uplink indication signal sending timing.
- the sending module is further configured to, when the uplink data needs to be sent at the uplink indicator signal sending opportunity, set the specific address corresponding to the uplink indicator signal sending opportunity. Sending the uplink data on the uplink pre-configured resource unit.
- the sending module is further configured to send the uplink sequence at the uplink indicator signal sending opportunity when the uplink data needs to be sent at the uplink indicator signal sending opportunity ;
- the device also includes: a receiving module.
- the receiving module is configured to receive downlink indication information
- the sending module is further configured to send the uplink data on the common pre-configured resources in the current period.
- the period of the uplink indication signal transmission opportunity is N+1 times the period of the common pre-configured resource, and the N is a positive integer.
- the uplink pre-configured resource unit is associated with one or more downlink transmission beams, and the receiving module is further configured to receive the transmission on the one or more downlink transmission beams.
- Downlink instruction information is associated with one or more downlink transmission beams, and the receiving module is further configured to receive the transmission on the one or more downlink transmission beams.
- the device further includes: a processing module, configured to send random data when the uplink data needs to be sent when the downlink indication information is not received.
- a processing module configured to send random data when the uplink data needs to be sent when the downlink indication information is not received.
- the sending module is also used to send the uplink data in the connected state.
- the device further includes: a receiving module configured to receive a pre-configured uplink indicator signal transmission opportunity, and the uplink indicator signal transmission opportunity is periodically used for Indicate the sending timing of sending the uplink indication signal.
- the uplink indication signal sending timing includes a plurality of the uplink pre-configured resource units.
- the sending timing of the uplink indication signal is a starting position in an uplink pre-configured resource window, and the uplink pre-configured resource window includes a plurality of common pre-configured resources.
- a data transmission device for use in an access network device, the device including:
- the receiving module is configured to receive an uplink indication signal sent by a terminal device on an uplink pre-configured resource unit, the terminal device is in a dormant state or an inactive state, and the uplink pre-configured resource unit is a pre-configured periodic uplink transmission resource Unit, the uplink indication signal includes an uplink sequence or uplink data.
- the receiving module is further configured to receive the uplink indicator signal sent by the terminal data device on the uplink pre-configured resource unit corresponding to the uplink indicator signal sending timing.
- the receiving module is further configured to receive the uplink data sent by the terminal device on the specific uplink pre-configured resource unit corresponding to the sending timing of the uplink indication signal.
- the receiving module is further configured to receive the uplink sequence sent by the terminal device at the sending timing of the uplink indication signal
- the device also includes: a sending module
- the sending module is used to send downlink indication information
- the receiving module is further configured to receive the uplink data sent by the terminal device on the common pre-configured resource in the current cycle.
- the period of the uplink indication signal transmission opportunity is N+1 times the period of the common pre-configured resource, and the N is a positive integer.
- the uplink pre-configured resource unit is associated with one or more downlink transmission beams, and the transmission module is further configured to send the downlink indication on the one or more downlink transmission beams information.
- the device further includes: a processing module
- the processing module is configured to not respond after the uplink sequence sent by the terminal device is received at the uplink indication signal sending occasion;
- the receiving module is further configured to receive the uplink data sent by the terminal device in the connected state after receiving the random access request sent by the terminal device.
- the device further includes: a sending module
- the sending module is configured to send a pre-configured uplink indicator signal sending opportunity, and the uplink indicator signal sending opportunity is periodic and used to indicate a sending opportunity for sending the uplink indicator signal.
- the uplink indication signal sending timing includes a plurality of the uplink pre-configured resource units.
- the sending timing of the uplink indication signal is a starting position in an uplink pre-configured resource window, and the uplink pre-configured resource window includes a plurality of common pre-configured resources.
- a terminal device is provided, the terminal device is in a dormant state or an inactive state, and the terminal device includes: a processor; and a memory for storing executable instructions of the processor;
- the processor is configured to:
- An uplink indication signal is sent on an uplink pre-configuration resource unit, the uplink pre-configuration resource unit is a pre-configured periodic uplink transmission resource unit, and the uplink indication signal includes an uplink sequence or uplink data.
- an access network device comprising: a processor; a memory for storing executable instructions of the processor;
- the processor is configured to:
- An uplink indication signal sent by a terminal device is received on an uplink pre-configured resource unit, the terminal device is in a dormant state or an inactive state, the uplink pre-configured resource unit is a pre-configured periodic uplink transmission resource unit, and the uplink The indication signal includes uplink sequence or uplink data.
- a non-volatile computer-readable storage medium having computer program instructions stored thereon, and the computer program instructions implement the above-mentioned method when executed by a processor.
- a pre-configured periodic uplink transmission resource unit that is, an uplink pre-configured resource unit, is introduced when the terminal device is in a dormant state or an inactive state, so that the terminal device can directly send an uplink indication signal on the uplink pre-configured resource unit
- the uplink indication signal includes uplink sequence or uplink data; it avoids the situation that the terminal device needs to initiate random access to enter the connected state in related technologies, reduces the interaction process between the terminal device and the access network device, and reduces the signaling overhead and The equipment energy consumption of the terminal equipment improves the transmission efficiency of the uplink data.
- Fig. 1 shows a schematic structural diagram of a mobile communication system provided by an exemplary embodiment of the present disclosure
- Fig. 2 shows a flowchart of a data transmission method provided by an exemplary embodiment of the present disclosure
- FIG. 3 shows a flowchart of a data transmission method provided by another exemplary embodiment of the present disclosure
- Fig. 4 shows a flowchart of a data transmission method provided by another exemplary embodiment of the present disclosure
- 5 to 8 show schematic diagrams of the principle of a data transmission method provided by an exemplary embodiment of the present disclosure
- FIG. 9 shows a schematic structural diagram of a data transmission device provided by an embodiment of the present disclosure.
- FIG. 10 shows a schematic structural diagram of a data transmission device provided by another embodiment of the present disclosure.
- FIG. 11 shows a schematic structural diagram of a terminal device provided by an exemplary embodiment of the present disclosure
- Fig. 12 shows a schematic structural diagram of an access network device provided by an exemplary embodiment of the present disclosure.
- the UE when the UE is in a dormant state or an inactive state, when the UE has uplink data to be sent, the UE needs to initiate a random access process to enter the connected state.
- E sends an uplink scheduling request (Scheduling Request, SR) to the eNB; the eNB configures an uplink scheduling grant (Up Link Grant, UL Grant) to the UE according to the SR, and the UL Grant is used to configure the uplink for the UE Transmission resources.
- SR scheduling Request
- the UE decodes the UL Grant correctly, it sends uplink data to the eNB according to the uplink transmission resources configured by the eNB.
- a pre-configured periodic uplink transmission resource unit that is, an uplink pre-configured resource unit, is introduced when the terminal device is in a dormant state or an inactive state, so that the terminal device can directly send an uplink indication signal on the uplink pre-configured resource unit
- the uplink indication signal includes uplink sequence or uplink data; it avoids the situation that the terminal device needs to initiate random access to enter the connected state in related technologies, reduces the interaction process between the terminal device and the access network device, and reduces the signaling overhead and The equipment energy consumption of the terminal equipment improves the transmission efficiency of the uplink data.
- FIG. 1 shows a schematic structural diagram of a mobile communication system provided by an exemplary embodiment of the present disclosure.
- the mobile communication system can be a Long Term Evolution (LTE) system, or a 5G system.
- the 5G system is also known as a New Radio (NR) system, and it can also be a 5G next-generation mobile communication technology system.
- NR New Radio
- the embodiment does not limit this.
- the mobile communication system is applicable to different network architectures, including but not limited to a relay network architecture, a dual link architecture, a vehicle to everything (V2X) architecture, etc.
- a relay network architecture including but not limited to a relay network architecture, a dual link architecture, a vehicle to everything (V2X) architecture, etc.
- V2X vehicle to everything
- the mobile communication system includes: an access network device 120 and a terminal device 140.
- the access network device 120 may be a base station (base station, BS), and may also be referred to as a base station device, and is a device deployed in a radio access network (Radio Access Network, RAN) to provide wireless communication functions.
- the equipment that provides the base station function in the 2G network includes a base transceiver station (BTS)
- the equipment that provides the base station function in the 3G network includes Node B (English: NodeB)
- the equipment that provides the base station function in the 4G network Including evolved NodeB (evolved NodeB, eNB), in wireless local area networks (wireless local area networks, WLAN)
- the equipment that provides the base station function is the access point (AP), in the 5G system, the equipment that provides the base station function
- the device is a gNB and a Node B (English: ng-eNB) that continues to evolve.
- the access network device 120 in the embodiment of the present disclosure also includes a device that provides base station functions in a new communication system in the future.
- the specific implementation manner of the access network device 120 is not limited.
- the access network equipment may also include a home base station (Home eNB, HeNB), a relay (English: Relay), a pico base station Pico, and so on.
- a base station controller is a device that manages a base station, such as a base station controller (BSC) in a 2G network, a radio network controller (RNC) in a 3G network, and it can also be a new communication in the future
- BSC base station controller
- RNC radio network controller
- the network side network (English: network) in the embodiment of the present disclosure is a communication network that provides communication services for the terminal device 140, and includes the base station of the wireless access network, and may also include the base station controller of the wireless access network, and may also include the core Equipment on the network side.
- the core network can be an evolved packet core (EPC), a 5G core network (English: 5G Core Network), or a new type of core network in the future communication system.
- 5G Core Network consists of a set of devices, and implements access and mobility management functions (Access and Mobility Management Function, AMF) for functions such as mobility management, and provides data packet routing and forwarding and Quality of Service (QoS) management User Plane Function (UPF) with other functions, Session Management Function (SMF), which provides functions such as session management, IP address allocation and management, etc.
- AMF Access and Mobility Management Function
- QoS Quality of Service
- UPF User Plane Function
- SMF Session Management Function
- EPC can be composed of MME that provides functions such as mobility management and gateway selection, Serving Gateway (S-GW) that provides functions such as packet forwarding, and PDN Gateway (PDN) that provides functions such as terminal address allocation and rate control.
- S-GW Serving Gateway
- the access network device 120 and the terminal device 140 establish a wireless connection through a wireless air interface.
- the wireless air interface is a wireless air interface based on the 5G standard, for example, the wireless air interface is NR; or, the wireless air interface may also be a wireless air interface based on 5G-based next-generation mobile communication network technology standards; or, the wireless air interface It can also be a wireless air interface based on the 4G standard (LTE system).
- the access network device 120 may receive the uplink data sent by the terminal device 140 through a wireless connection.
- the terminal device 140 may refer to a device that performs data communication with the access network device 120.
- the terminal device 140 may communicate with one or more core networks via a wireless access network.
- the terminal device 140 may be various forms of user equipment (UE), access terminal equipment, user unit, user station, mobile station, mobile station (mobile station, MS), remote station, remote terminal equipment, mobile equipment , User terminal equipment, terminal equipment (English: terminal equipment), wireless communication equipment, user agent or user device.
- the terminal device 140 may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and a wireless Communication function handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile communication network (Public Land Mobile Network, PLMN)
- the terminal equipment, etc. are not limited in this embodiment.
- the terminal device 140 may receive the downlink data sent by the access network device 120 through a wireless connection with the access network device 120.
- the mobile communication system shown in Figure 4 adopts the 5G system or the next-generation mobile communication technology system of 5G
- the above-mentioned network elements may be affected in the 5G system or the next-generation mobile communication technology system of 5G. They have different names, but have the same or similar functions, which are not limited in the embodiments of the present disclosure.
- the mobile communication system shown in FIG. 4 may include multiple access network devices 120 and/or multiple terminal devices 140.
- FIG. 4 shows one access network device 120 and one terminal device.
- the terminal device 140 is used as an example for illustration, but the embodiment of the present disclosure does not limit this.
- FIG. 2 shows a flowchart of a data transmission method provided by an exemplary embodiment of the present disclosure.
- the method is used in the mobile communication system shown in FIG. 1 as an example. The method includes the following steps.
- Step 201 When the terminal device is in a dormant state or an inactive state, it sends an uplink indication signal on the uplink pre-configured resource unit.
- the state of the terminal device includes one of a dormant state, an inactive state, and a connected state.
- the connected state is a state in which a radio resource control (Radio Resource Control, RRC) connection exists between the terminal device and the access network device.
- the dormant state is also called idle state (English: idle), which is a state in which there is no RRC connection between the terminal device and the access network device, and the context information of the terminal device is saved or not saved in the terminal device and the access network device.
- the inactive state is also called the inactive state (English: inactive), which is a state different from the idle state and the connected state.
- the mobile communication network triggers the terminal device in the connected state to enter the inactive state. At this time, the terminal device and the mobile The communication network saves the context information of the terminal device in the connected state before the inactive state.
- the uplink indication signal is sent on the uplink pre-configured resource unit.
- the uplink pre-configured resource unit is a pre-configured periodic uplink transmission resource unit
- the uplink indicator signal includes an uplink sequence or uplink data
- Step 202 The access network device receives the uplink indication signal sent by the terminal device on the uplink pre-configured resource unit.
- the access network device receives the uplink indication signal sent by the terminal device on the uplink pre-configured resource unit.
- the uplink pre-configured resource unit is a pre-configured periodic uplink transmission resource unit
- the uplink indicator signal includes an uplink sequence or uplink data.
- the method further includes: the access network device pre-configures the uplink pre-configuration resource unit to the terminal device, and the terminal device receives the uplink pre-configuration resource unit pre-configured by the access network device. Configure resource units.
- the embodiments of the present disclosure introduce a pre-configured periodic uplink transmission resource unit when the terminal device is in a dormant state or an inactive state, that is, an uplink pre-configured resource unit, so that the terminal device can be configured on the uplink pre-configured resource unit.
- an uplink pre-configured resource unit Directly send the uplink indication signal.
- the access network device receives the uplink indication signal sent by the terminal device on the uplink pre-configured resource unit; this avoids the situation that the terminal device in the related technology needs to initiate random access to enter the connected state, and reduces the number of terminals.
- the interaction process between the equipment and the access network equipment reduces the signaling overhead and the equipment energy consumption of the terminal equipment, and improves the transmission efficiency of the uplink data.
- FIG. 3 shows a flowchart of a data transmission method provided by another exemplary embodiment of the present disclosure.
- the method is used in the terminal device shown in FIG. 1 as an example. The method includes the following steps.
- Step 301 The terminal device sends the uplink indication signal on the uplink pre-configured resource unit corresponding to the uplink indication signal sending timing.
- the terminal device before the terminal device sends the uplink indicator signal on the uplink pre-configured resource unit corresponding to the uplink indicator signal transmission timing, it further includes: the access network device pre-configures the uplink indicator signal transmission timing to the terminal device, and correspondingly, the terminal device receives The uplink indication signal transmission timing pre-configured by the access network equipment.
- the uplink indication signal transmission timing is a periodic transmission timing for indicating the transmission of the uplink indication signal.
- the uplink indication signal sending timing includes multiple uplink pre-configured resource units.
- each of the multiple uplink pre-configured resource units can only send an uplink sequence.
- each uplink pre-configured resource unit of the plurality of uplink pre-configured resource units can send both uplink sequence and uplink data.
- the terminal device sends the uplink indicator signal on the uplink pre-configured resource unit corresponding to the uplink indicator signal transmission timing, including but not limited to the following possible implementation methods:
- the terminal device when there is uplink data to be sent at the uplink indicator signal transmission timing, transmits the uplink data on a specific uplink pre-configured resource unit corresponding to the uplink indicator signal transmission timing.
- the uplink indicator signal sending timing includes multiple uplink pre-configured resource units, and the specific uplink pre-configured resource unit corresponding to the uplink indicator signal sending timing is at least one of the multiple uplink pre-configured resource units.
- the specific uplink pre-configured resource unit corresponding to the sending timing of the uplink indication signal may be pre-configured or predefined. This embodiment does not limit this.
- the terminal device when there is uplink data to be sent at the uplink indicator signal transmission timing, transmits the uplink sequence at the uplink indicator signal transmission timing; receives the downlink indicator information, and performs general pre-configuration in the current cycle Send uplink data on the resource.
- the terminal device transmits the uplink sequence on a specific uplink pre-configured resource unit corresponding to the uplink indicator signal transmission timing.
- the period of the uplink indicator signal transmission timing is N+1 times the period of the common pre-configured resource, that is, the terminal device sends the uplink indicator signal on the uplink pre-configured resource unit, which can activate N common pre-configured resources, where N Is a positive integer.
- the common pre-configured resource in the current period is at least one common pre-configured resource in the period when the terminal device sends the uplink indication signal transmission timing of the uplink sequence.
- the terminal device sends uplink data on the common pre-configured resource in the current period, that is, the terminal device selects at least one common pre-configured resource in the period of the uplink indication signal transmission timing, and sends it on the at least one common pre-configured resource Upstream data.
- the uplink indication signal transmission timing is associated with multiple common pre-configured resources.
- the sending timing of the uplink indication signal is the start position in the uplink pre-configured resource window, and the uplink pre-configured resource window includes a plurality of common pre-configured resources.
- Step 302 The access network device receives the uplink indicator signal sent by the terminal data device on the uplink pre-configured resource unit corresponding to the uplink indicator signal transmission timing.
- the access network device receives the uplink data sent by the terminal device on the specific uplink pre-configured resource unit corresponding to the uplink indication signal sending timing. Or, the access network device receives the uplink sequence sent by the terminal device at the time when the uplink indication signal is sent; sends the downlink indication information, and receives the uplink data sent by the terminal device on the common pre-configured resource in the current period.
- the uplink indication signal transmission timing is pre-configured by the access network equipment.
- the access network device does not respond after receiving the uplink sequence sent by the terminal device at the uplink indication signal sending timing.
- the terminal device when there is uplink data to be sent, it sends a random access request to switch the device state of the terminal device to the connected state; and sends the uplink data in the connected state.
- the terminal device does not receive the downlink indication information, which is used to indicate that the common pre-configured resources in the current period cannot be used to transmit the uplink data of the terminal device, and the terminal device needs to fall back to related technologies when sending uplink data in the current period. In the transmission mechanism, that is, fall back to the random access process.
- the access network device After the terminal device sends a random access request to the access network device, the access network device receives the random access request. After receiving the random access request sent by the terminal device, the access network device receives the uplink data sent by the terminal device in the connected state.
- the embodiment of the present disclosure also uses the terminal device to send the uplink indication signal and does not receive a response from the access network device, then it falls back to the random access process, that is, sends a random access request when there is uplink data to be sent. , Switch the terminal device's device state to connected state, and send uplink data in the connected state; make the common pre-configured resources in the current cycle available to the access network device for other scheduling, effectively solving the uplink pre-configured resource unit The resource expenditure problem brought about.
- the embodiments of the present disclosure also associate each uplink pre-configured resource unit with one or more downlink transmission beams, so that the access network device can correspond to the uplink indication signal.
- the position of the uplink pre-configured resource unit is used to determine the downlink transmission beam.
- FIG. 4 shows a flowchart of a data transmission method provided by another exemplary embodiment of the present disclosure.
- the method is used in the terminal device shown in FIG. 4 as an example. The method includes the following steps.
- Step 401 When there is uplink data to be sent at the uplink indicator signal transmission timing, the terminal device transmits the uplink sequence at the uplink indicator signal transmission timing.
- the terminal device may refer to the relevant details in the foregoing embodiment for the uplink sequence at the uplink indicator signal transmission timing, which will not be repeated here.
- Step 402 After receiving the uplink sequence sent by the terminal device at the uplink indicator signal sending timing, the access network device sends the downlink indicator information on the downlink transmission beam.
- the uplink indication signal transmission timing includes multiple uplink pre-configured resource units, and each uplink pre-configured resource unit of the multiple uplink pre-configured resource units is associated with one or more downlink transmission beams.
- the access network device stores the association relationship between the uplink pre-configured resource unit and the downlink transmission beam.
- the terminal device determines one or more downlink transmission beams corresponding to the uplink indicator signal transmission timing according to the stored association relationship.
- the access network device sends the downlink indication information on one or more downlink transmission beams.
- the access network device After the access network device receives the uplink sequence, the access network device sends the downlink indication information on the downlink transmission beam and executes step 403; or the access network device does not respond after receiving the uplink sequence, and the terminal device If no response from the access network device is received, it falls back to the random access process.
- Step 403 The terminal device receives the downlink indication information sent on the downlink transmission beam.
- the terminal device After the access network device sends the downlink indication information on the downlink transmission beam, the terminal device receives the downlink indication information sent by the access network device on the downlink transmission beam.
- the terminal device receives the downlink indication information sent on one or more downlink transmission beams.
- Step 404 The terminal device sends uplink data on the common pre-configured resource in the current period.
- the terminal device selects at least one common pre-configured resource in the current period, and sends uplink data on the selected at least one common pre-configured resource.
- the current cycle is a cycle at which the terminal device sends the uplink indication signal transmission timing of the uplink sequence.
- the period of the uplink indication signal sending opportunity is N+1 times the period of the common pre-configured resource. That is, the terminal device sends the uplink indication signal on the uplink pre-configured resource unit to activate N common pre-configured resources, where N is a positive integer.
- Step 405 The access network device receives the uplink data sent by the terminal device on the common pre-configured resource in the current period.
- the access network device After the terminal device sends uplink data on the common pre-configured resource in the current period, correspondingly, the access network device receives the uplink data sent by the terminal device on the common pre-configured resource.
- a pre-configured periodic (for example, a period of T) uplink indicator signal transmission opportunity is introduced, that is, the terminal device transmits an uplink sequence at a specific uplink indicator signal transmission opportunity 51.
- the terminal device transmits an uplink sequence at a specific uplink indicator signal transmission opportunity 51.
- Each uplink pre-configured resource unit 52 can only send uplink sequences, and each uplink pre-configured resource unit 52 is associated If the downlink transmission beam of one or more access network devices is used, the access network device may determine the downlink transmission beam according to the position of the uplink pre-configured resource unit 52 corresponding to the uplink indication signal.
- the access network device After the access network device receives the uplink indication signal sent by the terminal device, it will issue a response to the terminal device. After the terminal device receives the response issued by the access network device in the downlink receiving window 53, it can use the current cycle T.
- the general pre-configured resource 54 sends uplink data. If the terminal device does not receive a response from the access network device after sending the indication signal, the uplink pre-configured resources in the current period T cannot be used to transmit the uplink data of the terminal device, and the terminal device needs to send uplink data in the current period Fall back to the data transmission mechanism in the related technology, that is, fall back to the random access process.
- a pre-configured periodic (for example, period is T) uplink indicator signal transmission timing 61 is introduced, that is, the terminal device transmits an uplink sequence at a specific uplink indicator signal transmission timing 61 Or uplink data.
- the terminal device transmits an uplink sequence at a specific uplink indicator signal transmission timing 61 Or uplink data.
- the terminal device may select a specific uplink pre-configured resource unit 62 in the uplink indicator signal sending opportunity 61 to send the uplink data.
- Each uplink pre-configured resource unit 62 is associated with one or more downlink transmission beams of the access network device, and the access network device can determine the downlink transmission beam according to the position of the uplink pre-configured resource unit 62 corresponding to the uplink indication signal.
- the access network device After the access network device receives the uplink indication signal sent by the terminal device, it will issue a response to the terminal device. After the terminal device receives the response issued by the access network device in the downlink receiving window 63, it can use the current cycle T The common pre-configured resource 64 sends uplink data. If the terminal device does not receive a response from the access network device after sending the indication signal, the uplink pre-configured resources in the current period T cannot be used to transmit the uplink data of the terminal device, and the terminal device needs to send uplink data in the current period Fall back to the data transmission mechanism in the related technology, that is, fall back to the random access process.
- each uplink pre-configured resource window 73 there are multiple common pre-configured resources 75 in the uplink pre-configured resource window 73, and the period of the uplink pre-configured resource window 73 is T, and each uplink pre-configured resource window 73 The starting position of is the uplink indicator signal sending opportunity 71, that is, the terminal device sends the uplink sequence at a specific uplink indicator signal sending opportunity 71.
- the uplink pre-configured resource units 72 for each uplink indicator signal transmission timing 71, and each uplink pre-configured resource unit 72 can only send uplink sequences.
- Each uplink pre-configuration resource unit 72 is associated with one or more downlink transmission beams of the access network device, and the access network device can determine the downlink transmission beam according to the position of the uplink pre-configuration resource unit 72 corresponding to the uplink indication signal.
- the access network device After the access network device receives the uplink indication signal sent by the terminal device, it will issue a response to the terminal device. After the terminal device receives the response issued by the access network device in the downlink receiving window 74, it can use the current cycle T.
- the common pre-configured resource 75 sends uplink data. If the terminal device does not receive a response from the access network device after sending the indication signal, the uplink pre-configured resources in the current period T cannot be used to transmit the uplink data of the terminal device, and the terminal device needs to send uplink data in the current period Fall back to the data transmission mechanism in the related technology, that is, fall back to the random access process.
- each uplink pre-configured resource window 83 there are multiple common pre-configured resources 85 in the uplink pre-configured resource window 83, and the period of the uplink pre-configured resource window 83 is T, and each uplink pre-configured resource window 83
- the starting position of is the uplink indicator signal sending opportunity 81, that is, the terminal device sends the uplink sequence or uplink data at a specific uplink indicator signal sending opportunity 81.
- the terminal device When the terminal device has uplink data to be sent at the uplink indicator signal sending timing 81, the terminal device can select a specific uplink pre-configured resource unit 82 to send the uplink data at the uplink indicator signal sending timing 81.
- Each uplink pre-configured transmission resource unit is associated with one or more downlink transmission beams of the access network device, and the access network device can determine the downlink transmission beam according to the position of the uplink pre-configured resource unit 82 corresponding to the uplink indication signal.
- the access network device After the access network device receives the uplink indication signal sent by the terminal device, it will issue a response to the terminal device. After the terminal device receives the response issued by the access network device in the downlink receiving window 84, it can use the current cycle T
- the general pre-configured resource 85 sends uplink data. If the terminal device does not receive a response from the access network device after sending the indication signal, the uplink pre-configured resources in the current period T cannot be used to transmit the uplink data of the terminal device, and the terminal device needs to send uplink data in the current period Fall back to the data transmission mechanism in the related technology, that is, fall back to the random access process.
- the embodiments of the present disclosure also associate each uplink pre-configured resource unit with one or more downlink transmission beams, so that the access network device can respond according to the uplink indication signal.
- the position of the uplink pre-configured resource unit is used to determine the downlink transmission beam, so that the terminal device can receive the downlink indication information sent on the downlink transmission beam, thereby ensuring the alignment of the uplink and downlink beams.
- FIG. 9 shows a schematic structural diagram of a data transmission device provided by an embodiment of the present disclosure.
- the data transmission device can be implemented as all or a part of the terminal device through software, hardware, and a combination of the two, and the terminal device is in a dormant state or an inactive state.
- the data transmission device includes: a sending module 910.
- the sending module 910 is configured to send an uplink indicator signal on an uplink pre-configured resource unit, the uplink pre-configured resource unit is a pre-configured periodic uplink transmission resource unit, and the uplink indicator signal includes an uplink sequence or uplink data.
- the sending module 910 is further configured to send the uplink indicator signal on the uplink pre-configured resource unit corresponding to the uplink indicator signal transmission timing.
- the sending module 910 is further configured to send uplink data on a specific uplink pre-configured resource unit corresponding to the uplink indicator signal sending timing when there is uplink data to be sent at the uplink indicator signal sending timing. data.
- the sending module 910 is further configured to send the uplink sequence at the uplink indicator signal sending timing when there is uplink data to be sent at the uplink indicator signal sending timing;
- the device also includes: a receiving module.
- the receiving module is used to receive downlink indication information;
- the sending module 910 is also used to send uplink data on the common pre-configured resources in the current period.
- the period of the uplink indication signal transmission opportunity is N+1 times the period of the common pre-configured resource, and N is a positive integer.
- the uplink pre-configured resource unit is associated with one or more downlink transmission beams, and the receiving module is further configured to receive downlink indication information sent on one or more downlink transmission beams.
- the device further includes: a processing module, which is configured to send a random access request when there is uplink data to be sent when the downlink indication information is not received, and the terminal device's The device state is switched to the connected state;
- the sending module 910 is also used to send uplink data in the connected state.
- the device further includes: a receiving module configured to receive a pre-configured uplink indicator signal transmission timing, and the uplink indicator signal transmission timing is periodically used to indicate the transmission timing of the uplink indicator signal. .
- the uplink indication signal sending timing includes multiple uplink pre-configured resource units.
- the uplink indication signal transmission timing is the start position in the uplink pre-configured resource window, and the uplink pre-configured resource window includes a plurality of common pre-configured resources.
- the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used as an example.
- the above functions can be allocated by different functional modules according to actual needs, i.e.
- the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
- FIG. 10 shows a schematic structural diagram of a data transmission device provided by another embodiment of the present disclosure.
- the data transmission device can be implemented as all or a part of the access network equipment through software, hardware and a combination of the two.
- the data transmission device includes: a receiving module 1010.
- the receiving module 1010 is configured to receive the uplink indication signal sent by the terminal device on the uplink pre-configured resource unit.
- the terminal device is in a dormant state or in an inactive state.
- the uplink pre-configured resource unit is a pre-configured periodic uplink transmission resource unit.
- the indication signal includes uplink sequence or uplink data.
- the receiving module 1010 is further configured to receive the uplink indicator signal sent by the terminal data device on the uplink pre-configured resource unit corresponding to the uplink indicator signal transmission timing.
- the receiving module 1010 is further configured to receive the uplink data sent by the terminal device on a specific uplink pre-configured resource unit corresponding to the sending timing of the uplink indication signal.
- the receiving module 1010 is further configured to receive the uplink sequence sent by the terminal device at the time when the uplink indicator signal is sent;
- the device also includes: a sending module
- the sending module is used to send downlink indication information
- the receiving module 1010 is also configured to receive uplink data sent by the terminal equipment on the common pre-configured resources in the current cycle.
- the period of the uplink indication signal transmission opportunity is N+1 times the period of the common pre-configured resource, and N is a positive integer.
- the uplink pre-configured resource unit is associated with one or more downlink transmission beams, and the transmission module is further configured to send the downlink indication information on the one or more downlink transmission beams.
- the device further includes: a processing module
- a processing module configured to not respond after the uplink sequence sent by the terminal device is received at the uplink indication signal transmission timing
- the receiving module 1010 is further configured to receive the uplink data sent by the terminal device in the connected state after receiving the random access request sent by the terminal device.
- the device further includes: a sending module
- the sending module is used to send a pre-configured uplink indicator signal sending opportunity, and the uplink indicator signal sending opportunity is periodic and used to indicate the sending opportunity of sending the uplink indicator signal.
- the uplink indication signal sending timing includes multiple uplink pre-configured resource units.
- the uplink indication signal transmission timing is the start position in the uplink pre-configured resource window, and the uplink pre-configured resource window includes a plurality of common pre-configured resources.
- the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used as an example.
- the above functions can be allocated by different functional modules according to actual needs, i.e.
- the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
- FIG. 11 shows a schematic structural diagram of a terminal device provided by an exemplary embodiment of the present disclosure.
- the terminal device may be the terminal device 140 in the mobile communication system shown in FIG. 1.
- the terminal device is a UE in an LTE system or a 5G system as an example for description.
- the terminal device includes a processor 111, a receiver 112, a transmitter 113, a memory 114, and a bus 115.
- the memory 114 is connected to the processor 111 through a bus 115.
- the processor 111 includes one or more processing cores, and the processor 111 executes various functional applications and information processing by running software programs and modules.
- the receiver 112 and the transmitter 113 may be implemented as a communication component, the communication component may be a communication chip, the communication chip may include a receiving module, a transmitting module, a modem module, etc., used to modulate and/or demodulate information , And receive or send the information via wireless signals.
- the communication component may be a communication chip
- the communication chip may include a receiving module, a transmitting module, a modem module, etc., used to modulate and/or demodulate information , And receive or send the information via wireless signals.
- the memory 114 may be used to store executable instructions of the processor 111.
- the memory 114 can store at least one application module 116 with the described function.
- the application program module 116 may include: a sending module 1161.
- the processor 111 is configured to execute the sending module 1161 to implement functions related to sending steps executed by the terminal device in the foregoing method embodiments.
- the memory 114 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static anytime access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Except programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
- SRAM static anytime access memory
- EEPROM electrically erasable programmable read-only memory
- EPROM erasable except programmable read only memory
- PROM programmable read only memory
- ROM read only memory
- magnetic memory flash memory
- flash memory magnetic disk or optical disk.
- FIG. 12 shows a schematic structural diagram of an access network device provided by an exemplary embodiment of the present disclosure.
- the access network device may be the access network device 120 in the implementation environment shown in FIG. 1.
- the access network device is an eNB in an LTE system, or gNB in a 5G system as an example.
- the access network device includes: a processor 121, a receiver 122, a transmitter 123, a memory 124, and a bus 125 .
- the memory 124 is connected to the processor 121 through the bus 125.
- the processor 121 includes one or more processing cores, and the processor 121 executes various functional applications and information processing by running software programs and modules.
- the receiver 122 and the transmitter 123 can be implemented as a communication component.
- the communication component can be a communication chip.
- the communication chip can include a receiving module, a transmitting module, a modem module, etc., which are used to modulate and demodulate information, and The information is received or sent via wireless signals.
- the memory 124 may be used to store executable instructions of the processor 101.
- the memory 124 can store at least one application module 126 with the described function.
- the application module 126 may include: a receiving module 1261.
- the processor 121 is configured to execute the receiving module 1261 to implement functions related to receiving steps executed by the access network device in the foregoing method embodiments.
- the memory 124 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static anytime access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Except programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
- SRAM static anytime access memory
- EEPROM electrically erasable programmable read-only memory
- EPROM erasable except programmable read only memory
- PROM programmable read only memory
- ROM read only memory
- magnetic memory flash memory
- flash memory magnetic disk or optical disk.
- the embodiment of the present disclosure also provides a data transmission system, which includes a terminal device and an access network device.
- the terminal equipment includes the data transmission apparatus provided in Figure 9 above
- the access network equipment includes the data transmission apparatus provided in Figure 10 above.
- the terminal device includes the terminal device provided in FIG. 11, and the access network device includes the access network device provided in FIG. 12.
- the present disclosure may be a system, method and/or computer program product.
- the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for enabling a processor to implement various aspects of the present disclosure.
- the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
- the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
- Non-exhaustive list of computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon
- RAM random access memory
- ROM read-only memory
- EPROM erasable programmable read-only memory
- flash memory flash memory
- SRAM static random access memory
- CD-ROM compact disk read-only memory
- DVD digital versatile disk
- memory stick floppy disk
- mechanical encoding device such as a printer with instructions stored thereon
- the computer-readable storage medium used here is not interpreted as the instantaneous signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, light pulses through fiber optic cables), or through wires Transmission of electrical signals.
- the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing/processing devices, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
- the network may include copper transmission cables, optical fiber transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
- the network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network, and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device .
- the computer program instructions used to perform the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or in one or more programming languages.
- Source code or object code written in any combination, the programming language includes object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as "C" language or similar programming languages.
- Computer-readable program instructions can be executed entirely on the user's computer, partly on the user's computer, executed as a stand-alone software package, partly on the user's computer and partly executed on a remote computer, or entirely on the remote computer or server carried out.
- the remote computer can be connected to the user's computer through any kind of network-including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to connect to the user's computer) connection).
- LAN local area network
- WAN wide area network
- an electronic circuit such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA), can be customized by using the status information of the computer-readable program instructions.
- FPGA field programmable gate array
- PDA programmable logic array
- the computer-readable program instructions are executed to realize various aspects of the present disclosure.
- These computer-readable program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine that makes these instructions when executed by the processor of the computer or other programmable data processing device , A device that implements the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams is produced. It is also possible to store these computer-readable program instructions in a computer-readable storage medium. These instructions make computers, programmable data processing apparatuses, and/or other devices work in a specific manner. Thus, the computer-readable medium storing the instructions includes An article of manufacture, which includes instructions for implementing various aspects of the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams.
- each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more components for realizing the specified logical function.
- Executable instructions may also occur in a different order than the order marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
- each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or actions Or it can be realized by a combination of dedicated hardware and computer instructions.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开涉及通信技术领域,尤其涉及一种数据传输方法、装置、设备及存储介质。所述方法用于终端设备中,所述终端设备处于休眠态或者不活跃态,所述方法包括:在上行预配置资源单元上发送上行指示信号,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。本公开实施例通过在终端设备处于休眠态或者不活跃态下引入预配置的周期性的上行传输资源单元即上行预配置资源单元,使得终端设备可以在上行预配置资源单元上直接发送上行指示信号,避免了相关技术中终端设备需要发起随机接入进入连接态的情况,提高了上行数据的传输效率。
Description
本公开涉及通信技术领域,尤其涉及一种数据传输方法、装置、设备及存储介质。
在第五代移动通信技术(The 5th Generation Mobile Communication,5G)系统中,用户设备(User Equipment,UE)通常基于调度的发送方式向演进型基站(Evolved Node B,eNB)发送上行数据。
相关技术中,在UE处于休眠态或者不活跃态下,当UE存在待发送的上行数据时,UE需要发起随机接入过程进入连接态。在UE进入连接态之后,E向eNB发送上行调度请求(Scheduling Request,SR);eNB根据该SR向UE配置一个上行调度授权(Up Link Grant,UL Grant),该UL Grant用于向UE配置上行传输资源。UE在正确解码得到UL Grant时,根据eNB配置的上行传输资源向eNB发送上行数据。
但是在上述的数据传输机制中,UE和eNB之间的交互流程较为繁琐,整个过程耗时较长,导致上行数据的传输效率较低。
发明内容
有鉴于此,本公开提出了一种数据传输方法、装置、设备及存储介质。所述技术方案如下:
根据本公开的一方面,提供了一种数据传输方法,用于终端设备中,所述终端设备处于休眠态或者不活跃态,所述方法包括:
在上行预配置资源单元上发送上行指示信号,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列(英文:preamble)或者上行数据。
在一种可能的实现方式中,所述在上行预配置资源单元上发送上行指示信号,包括:
在上行指示信号发送时机对应的所述上行预配置资源单元上发送所述上行指示信号。
在另一种可能的实现方式中,所述在上行指示信号发送时机对应的所述上行预配置资源单元上发送所述上行指示信号,包括:
当在所述上行指示信号发送时机上存在所述上行数据需要发送时,在所述上行指示信号发送时机对应的特定的所述上行预配置资源单元上发送所述上行数据。
在另一种可能的实现方式中,所述在上行指示信号发送时机对应的所述上行预配置资源单元上发送所述上行指示信号,包括:
当在所述上行指示信号发送时机上存在所述上行数据需要发送时,在所述上行指示信号发送时机发送所述上行序列;
所述方法还包括:
接收下行指示信息;
在当前周期内的普通预配置资源上发送所述上行数据。
在另一种可能的实现方式中,所述上行指示信号发送时机的周期是所述普通预配置资源的周期的N+1倍,所述N为正整数。
在另一种可能的实现方式中,所述上行预配置资源单元关联一个或者多个下行发送波束,所述接收下行指示信息,包括:
接收在所述一个或者多个下行发送波束上发送的所述下行指示信息。
在另一种可能的实现方式中,所述方法还包括:
在未接收到所述下行指示信息的情况下,当存在所述上行数据需要发送时发送随机接入请求,将所述终端设备的设备状态切换为连接态;
在所述连接态下发送所述上行数据。
在另一种可能的实现方式中,所述方法还包括:
接收预配置的所述上行指示信号发送时机,所述上行指示信号发送时机是周期性的用于指示发送所述上行指示信号的发送时机。
在另一种可能的实现方式中,所述上行指示信号发送时机包括多个所述上行预配置资源单元。
在另一种可能的实现方式中,所述上行指示信号发送时机为上行预配置资源窗内的开始位置,所述上行预配置资源窗包括多个普通预配置资源。
根据本公开的另一方面,提供了一种数据传输方法,用于接入网设备中,所述方法包括:
在上行预配置资源单元上接收终端设备发送的上行指示信号,所述终端设备处于休眠态或者不活跃态,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
在一种可能的实现方式中,所述在上行预配置资源单元上接收终端设备发送的上行指示信号,包括:
在上行指示信号发送时机对应的所述上行预配置资源单元上,接收所述终端数设备发送的所述上行指示信号。
在另一种可能的实现方式中,所述在上行指示信号发送时机对应的所述上行预配置资源单元上,接收所述终端数设备发送的所述上行指示信号,包括:
在所述上行指示信号发送时机对应的特定的所述上行预配置资源单元上接收所述终端设备发送的所述上行数据。
在另一种可能的实现方式中,所述在上行指示信号发送时机对应的所述上行预配置资源单元上,接收所述终端数设备发送的所述上行指示信号,包括:
在所述上行指示信号发送时机接收所述终端设备发送的所述上行序列;
所述方法还包括:
发送下行指示信息;
在当前周期内的普通预配置资源上,接收所述终端设备发送的所述上行数据。
在另一种可能的实现方式中,所述上行指示信号发送时机的周期是所述普通预配置资源的周期的N+1倍,所述N为正整数。
在另一种可能的实现方式中,所述上行预配置资源单元关联一个或者多个下行发送波束,所述发送下行指示信息,包括:
在所述一个或者多个下行发送波束上发送所述下行指示信息。
在另一种可能的实现方式中,所述方法还包括:
在所述上行指示信号发送时机接收到所述终端设备发送的所述上行序列之后不进行响应;
在接收到所述终端设备发送的随机接入请求后,接收处于所述连接态的所述终端设备发送的所述上行数据。
在另一种可能的实现方式中,所述方法还包括:
发送预配置的所述上行指示信号发送时机,所述上行指示信号发送时机是周期性的用于指示发送 所述上行指示信号的发送时机。
在另一种可能的实现方式中,所述上行指示信号发送时机包括多个所述上行预配置资源单元。
在另一种可能的实现方式中,所述上行指示信号发送时机为上行预配置资源窗内的开始位置,所述上行预配置资源窗包括多个普通预配置资源。
根据本公开的另一方面,提供了一种数据传输装置,用于终端设备中,所述终端设备处于休眠态或者不活跃态,所述装置包括:
发送模块,用于在上行预配置资源单元上发送上行指示信号,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
在一种可能的实现方式中,所述发送模块,还用于在上行指示信号发送时机对应的所述上行预配置资源单元上发送所述上行指示信号。
在另一种可能的实现方式中,所述发送模块,还用于当在所述上行指示信号发送时机上存在所述上行数据需要发送时,在所述上行指示信号发送时机对应的特定的所述上行预配置资源单元上发送所述上行数据。
在另一种可能的实现方式中,所述发送模块,还用于当在所述上行指示信号发送时机上存在所述上行数据需要发送时,在所述上行指示信号发送时机发送所述上行序列;
所述装置还包括:接收模块。所述接收模块,用于接收下行指示信息;
所述发送模块,还用于在当前周期内的普通预配置资源上发送所述上行数据。
在另一种可能的实现方式中,所述上行指示信号发送时机的周期是所述普通预配置资源的周期的N+1倍,所述N为正整数。
在另一种可能的实现方式中,所述上行预配置资源单元关联一个或者多个下行发送波束,所述接收模块,还用于接收在所述一个或者多个下行发送波束上发送的所述下行指示信息。
在另一种可能的实现方式中,所述装置还包括:处理模块,所述处理模块,用于在未接收到所述下行指示信息的情况下,当存在所述上行数据需要发送时发送随机接入请求,将所述终端设备的设备状态切换为连接态;
所述发送模块,还用于在所述连接态下发送所述上行数据。
在另一种可能的实现方式中,所述装置还包括:接收模块,所述接收模块用于接收预配置的所述上行指示信号发送时机,所述上行指示信号发送时机是周期性的用于指示发送所述上行指示信号的发送时机。
在另一种可能的实现方式中,所述上行指示信号发送时机包括多个所述上行预配置资源单元。
在另一种可能的实现方式中,所述上行指示信号发送时机为上行预配置资源窗内的开始位置,所述上行预配置资源窗包括多个普通预配置资源。
根据本公开的另一方面,提供了一种数据传输装置,用于接入网设备中,所述装置包括:
接收模块,用于在上行预配置资源单元上接收终端设备发送的上行指示信号,所述终端设备处于休眠态或者不活跃态,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
在一种可能的实现方式中,所述接收模块,还用于在上行指示信号发送时机对应的所述上行预配置资源单元上,接收所述终端数设备发送的所述上行指示信号。
在另一种可能的实现方式中,所述接收模块,还用于在所述上行指示信号发送时机对应的特定的所述上行预配置资源单元上接收所述终端设备发送的所述上行数据。
在另一种可能的实现方式中,所述接收模块,还用于在所述上行指示信号发送时机接收所述终端设备发送的所述上行序列;
所述装置还包括:发送模块;
所述发送模块,用于发送下行指示信息;
所述接收模块,还用于在当前周期内的普通预配置资源上,接收所述终端设备发送的所述上行数据。
在另一种可能的实现方式中,所述上行指示信号发送时机的周期是所述普通预配置资源的周期的N+1倍,所述N为正整数。
在另一种可能的实现方式中,所述上行预配置资源单元关联一个或者多个下行发送波束,所述发送模块,还用于在所述一个或者多个下行发送波束上发送所述下行指示信息。
在另一种可能的实现方式中,所述装置还包括:处理模块;
所述处理模块,用于在所述上行指示信号发送时机接收到所述终端设备发送的所述上行序列之后不进行响应;
所述接收模块,还用于在接收到所述终端设备发送的随机接入请求后,接收处于所述连接态的所述终端设备发送的所述上行数据。
在另一种可能的实现方式中,所述装置还包括:发送模块;
所述发送模块,用于发送预配置的所述上行指示信号发送时机,所述上行指示信号发送时机是周期性的用于指示发送所述上行指示信号的发送时机。
在另一种可能的实现方式中,所述上行指示信号发送时机包括多个所述上行预配置资源单元。
在另一种可能的实现方式中,所述上行指示信号发送时机为上行预配置资源窗内的开始位置,所述上行预配置资源窗包括多个普通预配置资源。
根据本公开的另一方面,提供了一种终端设备,所述终端设备处于休眠态或者不活跃态,所述终端设备包括:处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在上行预配置资源单元上发送上行指示信号,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
根据本公开的另一方面,提供了一种接入网设备,所述接入网设备包括:处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在上行预配置资源单元上接收终端设备发送的上行指示信号,所述终端设备处于休眠态或者不活跃态,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
根据本公开的另一方面,提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述的方法。
本公开实施例通过在终端设备处于休眠态或者不活跃态下引入预配置的周期性的上行传输资源单元即上行预配置资源单元,使得终端设备可以在上行预配置资源单元上直接发送上行指示信号,上行指示信号包括上行序列或者上行数据;避免了相关技术中终端设备需要发起随机接入进入连接态的情况,减少了终端设备与接入网设备之间的交互流程,降低了信令开销和终端设备的设备能耗,提高了上行数据的传输效率。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出了本公开一个示例性实施例提供的移动通信系统的结构示意图;
图2示出了本公开一个示例性实施例提供的数据传输方法的流程图;
图3示出了本公开另一个示例性实施例提供的数据传输方法的流程图;
图4示出了本公开另一个示例性实施例提供的数据传输方法的流程图;
图5至图8示出了本公开一个示例性实施例提供的数据传输方法的原理示意图;
图9示出了本公开一个实施例提供的数据传输装置的结构示意图;
图10示出了本公开另一个实施例提供的数据传输装置的结构示意图;
图11示出了本公开一个示例性实施例提供的终端设备的结构示意图;
图12示出了本公开一个示例性实施例提供的接入网设备的结构示意图。
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
相关技术中,在UE处于休眠态或者不活跃态下,当UE存在待发送的上行数据时,UE需要发起随机接入过程进入连接态。在UE进入连接态之后,E向eNB发送上行调度请求(Scheduling Request,SR);eNB根据该SR向UE配置一个上行调度授权(Up Link Grant,UL Grant),该UL Grant用于向UE配置上行传输资源。UE在正确解码得到UL Grant时,根据eNB配置的上行传输资源向eNB发送上行数据。
但是在上述的数据传输机制中,UE和eNB之间的交互流程较为繁琐,整个过程耗时较长,导致上行数据的传输效率较低。
本公开实施例通过在终端设备处于休眠态或者不活跃态下引入预配置的周期性的上行传输资源单元即上行预配置资源单元,使得终端设备可以在上行预配置资源单元上直接发送上行指示信号,上行指示信号包括上行序列或者上行数据;避免了相关技术中终端设备需要发起随机接入进入连接态的情况,减少了终端设备与接入网设备之间的交互流程,降低了信令开销和终端设备的设备能耗,提高了上行数据的传输效率。
请参考图1,其示出了本公开一个示例性实施例提供的移动通信系统的结构示意图。移动通信系统可以是长期演进(Long Term Evolution,LTE)系统,还可以是5G系统,5G系统又称新空口(New Radio, NR)系统,还可以是5G的更下一代移动通信技术系统,本实施例对此不作限定。
可选的,该移动通信系统适用于不同的网络架构,包括但不限于中继网络架构、双链接架构、车联网(Vehicle to Everything,V2X)架构等。
该移动通信系统包括:接入网设备120和终端设备140。
接入网设备120可以是基站(base station,BS),也可称为基站设备,是一种部署在无线接入网(Radio Access Network,RAN)用以提供无线通信功能的装置。例如,在2G网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS),3G网络中提供基站功能的设备包括节点B(英文:NodeB),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在无线局域网络(wireless local area networks,WLAN)中提供基站功能的设备为接入点(access point,AP),在5G系统中的提供基站功能的设备为gNB,以及继续演进的节点B(英文:ng-eNB),本公开实施例中的接入网设备120还包括在未来新的通信系统中提供基站功能的设备等,本公开实施例对接入网设备120的具体实现方式不加以限定。接入网设备还可以包括家庭基站(Home eNB,HeNB)、中继(英文:Relay)、微微基站Pico等。
基站控制器是一种管理基站的装置,例如2G网络中的基站控制器(base station controller,BSC)、3G网络中的无线网络控制器(radio network controller,RNC)、还可以是未来新的通信系统中控制管理基站的装置。
本公开实施例中的网络侧网络(英文:network)是为终端设备140提供通信服务的通信网络,包含无线接入网的基站,还可以包含无线接入网的基站控制器,还可以包含核心网侧的设备。
核心网可以是演进型分组核心网(evolved packet core,EPC)、5G核心网(英文:5G Core Network),还可以是未来通信系统中的新型核心网。5G Core Network由一组设备组成,并实现移动性管理等功能的接入和移动性管理功能(Access and Mobility Management Function,AMF)、提供数据包路由转发和服务质量(Quality of Service,QoS)管理等功能的用户面功能(User Plane Function,UPF)、提供会话管理、IP地址分配和管理等功能的会话管理功能(Session Management Function,SMF)等。EPC可由提供移动性管理、网关选择等功能的MME、提供数据包转发等功能的服务网关(Serving Gateway,S-GW)Serving Gateway、提供终端地址分配、速率控制等功能的PDN网关(PDN Gateway,P-GW)组成。
接入网设备120和终端设备140通过无线空口建立无线连接。可选的,该无线空口是基于5G标准的无线空口,比如该无线空口是NR;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口;或者,该无线空口也可以是基于4G标准(LTE系统)的无线空口。接入网设备120可以通过无线连接接收终端设备140发送的上行数据。
终端设备140可以是指与接入网设备120进行数据通信的设备。终端设备140可以经无线接入网与一个或多个核心网进行通信。终端设备140可以是各种形式的用户设备(user equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端设备、移动设备、用户终端设备、终端设备(英文:terminal equipment)、无线通信设备、用户代理或用户装置。终端设备140还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本实施例对此不作限定。终端设备140可以通过与接入网设备120 之间的无线连接,接收接入网设备120发送的下行数据。
需要说明的一点是,当图4所示的移动通信系统采用5G系统或5G的更下一代移动通信技术系统时,上述各个网元在5G系统或5G的更下一代移动通信技术系统中可能会具有不同的名称,但具有相同或相似的功能,本公开实施例对此不作限定。
需要说明的另一点是,在图4所示的移动通信系统中,可以包括多个接入网设备120和/或多个终端设备140,图4中以示出一个接入网设备120和一个终端设备140来举例说明,但本公开实施例对此不作限定。
请参考图2,其示出了本公开一个示例性实施例提供的数据传输方法的流程图,本实施例以该方法用于图1所示的移动通信系统中来举例说明。该方法包括以下几个步骤。
步骤201,终端设备处于休眠态或者不活跃态下,在上行预配置资源单元上发送上行指示信号。
其中,终端设备的状态包括休眠态、不活跃态和连接态中的一种。
可选的,连接态是终端设备和接入网设备之间存在无线资源控制(Radio Resource Control,RRC)连接的状态。休眠态也称为空闲态(英文:idle),是终端设备和接入网设备之间没有RRC连接的状态,并且终端设备和接入网设备中保存或未保存终端设备的上下文信息。不活跃态也称为非激活态(英文:inactive),是不同于空闲态和连接态的一种状态,由移动通信网触发处于连接态的终端设备进入非激活态,此时终端设备和移动通信网均保存在非激活态之前的连接态时的终端设备的上下文信息。
可选的,在终端设备处于休眠态或者不活跃态的情况下,当终端设备存在上行数据需要发送时,在上行预配置资源单元上发送上行指示信号。
其中,上行预配置资源单元为预配置的周期性的上行传输资源单元,上行指示信号包括上行序列或者上行数据。
步骤202,接入网设备在上行预配置资源单元上接收终端设备发送的上行指示信号。
对应的,接入网设备在上行预配置资源单元上接收终端设备发送的上行指示信号。其中,上行预配置资源单元为预配置的周期性的上行传输资源单元,上行指示信号包括上行序列或者上行数据。
可选的,在终端设备在上行预配置资源单元上发送上行指示信号之前,还包括:接入网设备向终端设备预配置上行预配置资源单元,终端设备接收接入网设备预配置的上行预配置资源单元。
综上所述,本公开实施例通过在终端设备处于休眠态或者不活跃态下引入预配置的周期性的上行传输资源单元即上行预配置资源单元,使得终端设备可以在上行预配置资源单元上直接发送上行指示信号,对应的,接入网设备在上行预配置资源单元上接收终端设备发送的上行指示信号;避免了相关技术中终端设备需要发起随机接入进入连接态的情况,减少了终端设备与接入网设备之间的交互流程,降低了信令开销和终端设备的设备能耗,提高了上行数据的传输效率。
请参考图3,其示出了本公开另一个示例性实施例提供的数据传输方法的流程图,本实施例以该方法用于图1所示的终端设备中来举例说明。该方法包括以下几个步骤。
步骤301,终端设备在上行指示信号发送时机对应的上行预配置资源单元上发送上行指示信号。
可选的,终端设备在上行指示信号发送时机对应的上行预配置资源单元上发送上行指示信号之前,还包括:接入网设备向终端设备预配置上行指示信号发送时机,对应的,终端设备接收接入网设备预配置的上行指示信号发送时机。其中,上行指示信号发送时机是周期性的用于指示发送上行指示信号的发送时机。
可选的,上行指示信号发送时机包括多个上行预配置资源单元。
在一种可能的实现方式中,多个上行预配置资源单元中的每个上行预配置资源单元只能发送上行序列。在另一种可能的实现方式中,多个上行预配置资源单元中的每个上行预配置资源单元既能发送上行序列,又能发送上行数据。
终端设备在上行指示信号发送时机对应的上行预配置资源单元上发送上行指示信号,包括但不限于以下几种可能的实现方式:
在一种可能的实现方式中,当在上行指示信号发送时机上存在上行数据需要发送时,终端设备在上行指示信号发送时机对应的特定的上行预配置资源单元上发送上行数据。
可选的,上行指示信号发送时机包括多个上行预配置资源单元,上行指示信号发送时机对应的特定的上行预配置资源单元为多个上行预配置资源单元中的至少一个。
上行指示信号发送时机对应的特定的上行预配置资源单元可以是预配置的,或者是预定义的。本实施例对此不加以限定。
在另一种可能的实现方式中,当在上行指示信号发送时机上存在上行数据需要发送时,终端设备在上行指示信号发送时机发送上行序列;接收下行指示信息,在当前周期内的普通预配置资源上发送上行数据。
可选的,当在上行指示信号发送时机上存在上行数据需要发送时,终端设备在上行指示信号发送时机对应的特定的上行预配置资源单元上发送上行序列。
可选的,上行指示信号发送时机的周期是普通预配置资源的周期的N+1倍,即终端设备在上行预配置资源单元上发送上行指示信号,可以激活N个普通预配置资源,其中N为正整数。
可选的,当前周期内的普通预配置资源为终端设备发送上行序列的上行指示信号发送时机的周期内的至少一个普通预配置资源。
可选的,终端设备在当前周期内的普通预配置资源上发送上行数据,即终端设备在该上行指示信号发送时机的周期内选择至少一个普通预配置资源,在至少一个普通预配置资源上发送上行数据。
上行指示信号发送时机关联多个普通预配置资源。可选的,上行指示信号发送时机为上行预配置资源窗内的开始位置,上行预配置资源窗包括多个普通预配置资源。
步骤302,接入网设备在上行指示信号发送时机对应的上行预配置资源单元上,接收终端数设备发送的上行指示信号。
对应的,接入网设备在上行指示信号发送时机对应的特定的上行预配置资源单元上接收终端设备发送的上行数据。或者,接入网设备在上行指示信号发送时机接收终端设备发送的上行序列;发送下行指示信息,在当前周期内的普通预配置资源上,接收终端设备发送的上行数据。
其中,上行指示信号发送时机为接入网设备预配置的。
可选的,接入网设备在上行指示信号发送时机接收到终端设备发送的上行序列之后不进行响应。
对应的,终端设备在未接收到下行指示信息的情况下,当存在上行数据需要发送时发送随机接入请求,将终端设备的设备状态切换为连接态;在连接态下发送上行数据。
可选的,终端设备未接收到下行指示信息,用于指示当前周期内的普通预配置资源不能用于传输该终端设备的上行数据,终端设备在当前周期内上行数据发送需要回退至相关技术中的传输机制,即回退至随机接入过程。
在终端设备向接入网设备发送随机接入请求之后,接入网设备接收该随机接入请求。接入网设备在接收到终端设备发送的随机接入请求后,接收处于连接态的终端设备发送的上行数据。
综上所述,本公开实施例还通过终端设备发送上行指示信号后没有接收到接入网设备的响应,则回退至随机接入过程,即当存在上行数据需要发送时发送随机接入请求,将终端设备的设备状态切换为连接态,在连接态下发送上行数据;使得当前周期内的普通预配置资源可以空出来给接入网设备作其他调度,有效地解决了上行预配置资源单元所带来的资源开销问题。
需要说明的是,由于可能存在的上下行波束对齐问题,本公开实施例还通过将每个上行预配置资源单元关联一个或者多个下行发送波束,使得接入网设备可以根据上行指示信号对应的上行预配置资源单元位置来确定下行发送波束。请参考图4,其示出了本公开另一个示例性实施例提供的数据传输方法的流程图,本实施例以该方法用于图4所示的终端设备中来举例说明。该方法包括以下几个步骤。
步骤401,当在上行指示信号发送时机上存在上行数据需要发送时,终端设备在上行指示信号发送时机发送上行序列。
需要说明的是,当在上行指示信号发送时机上存在上行数据需要发送时,终端设备在上行指示信号发送时机发送上行序列可参考上述实施例中的相关细节,在此不再赘述。
步骤402,接入网设备在接收到终端设备在上行指示信号发送时机发送上行序列后,在下行发送波束上发送下行指示信息。
可选的,上行指示信号发送时机包括多个上行预配置资源单元,多个上行预配置资源单元中的每个上行预配置资源单元关联一个或者多个下行发送波束。
接入网设备中存储有上行预配置资源单元与下行发送波束的关联关系。
可选的,终端设备在接收到终端设备在上行指示信号发送时机发送上行序列后,根据存储的关联关系确定与该上行指示信号发送时机对应的一个或者多个下行发送波束。接入网设备在一个或者多个下行发送波束上发送下行指示信息。
接入网设备在接收到该上行序列后,接入网设备在下行发送波束上发送下行指示信息,执行步骤403;或者,接入网设备在接收到该上行序列后,不进行响应,终端设备未接收到接入网设备的响应,回退至随机接入过程。
步骤403,终端设备接收下行发送波束上发送的下行指示信息。
接入网设备在下行发送波束上发送下行指示信息后,终端设备接收接入网设备在下行发送波束上发送的下行指示信息。
可选的,终端设备接收到在一个或者多个下行发送波束上发送的下行指示信息。
步骤404,终端设备在当前周期内的普通预配置资源上发送上行数据。
可选的,终端设备在当前周期内选择至少一个普通预配置资源,在选择的至少一个普通预配置资源上发送上行数据。
可选的,当前周期为终端设备发送上行序列的上行指示信号发送时机的周期。上行指示信号发送时机的周期是普通预配置资源的周期的N+1倍,即终端设备在上行预配置资源单元上发送上行指示信号,可以激活N个普通预配置资源,其中N为正整数。
步骤405,接入网设备在当前周期内的普通预配置资源上接收终端设备发送的上行数据。
终端设备在当前周期内的普通预配置资源上发送上行数据后,对应的,接入网设备在该普通预配置资源上接收终端设备发送的上行数据。
在一个示意性的例子中,如图5所示,引入预配置的周期性(比如,周期为T)的上行指示信号发送时机,即终端设备在特定的上行指示信号发送时机51发送上行序列。此外,由于存在上下行波束对 齐问题,上行指示信号发送时机51存在多个上行预配置资源单元52,每个上行预配置资源单元52只能发送上行序列,且每个上行预配置资源单元52关联了一个或者多个接入网设备的下行发送波束,接入网设备可以根据上行指示信号对应的上行预配置资源单元52的位置来确定下行发送波束。
接入网设备接收到终端设备发送的上行指示信号后,会下发的响应给终端设备,终端设备在下行接收窗53接收到接入网设备下发的响应后,才能利用当前周期T内的普通预配置资源54发送上行数据。如果终端设备发送指示信号后,没有收到接入网设备下发的响应,当前周期T内的上行预配置资源不能用于传输该终端设备的上行数据,终端设备在当前周期内上行数据发送需要回退到相关技术中的数据传输机制,即回退到随机接入过程。
在一个示意性的例子中,如图6所示,引入预配置的周期性(比如,周期为T)的上行指示信号发送时机61,即终端设备在特定的上行指示信号发送时机61发送上行序列或上行数据。此外,由于存在上下行波束对齐问题,每个上行指示信号发送时机61存在多个上行预配置资源单元62,每个上行预配置资源单元62既能发送上行序列,又能发送上行数据。当终端设备在上行指示信号发送时机61存在上行数据需要发送时,终端设备可以在该上行指示信号发送时机61中选择特定的上行预配置资源单元62发送上行数据。每个上行预配置资源单元62关联了一个或者多个接入网设备的下行发送波束,接入网设备可以根据上行指示信号对应的上行预配置资源单元62的位置来确定下行发送波束。
接入网设备接收到终端设备发送的上行指示信号后,会下发的响应给终端设备,终端设备在下行接收窗63接收到接入网设备下发的响应后,才能利用当前周期T内的普通预配置资源64发送上行数据。如果终端设备发送指示信号后,没有收到接入网设备下发的响应,当前周期T内的上行预配置资源不能用于传输该终端设备的上行数据,终端设备在当前周期内上行数据发送需要回退到相关技术中的数据传输机制,即回退到随机接入过程。
在一个示意性的例子中,如图7所示,上行预配置资源窗73内存在多个普通预配置资源75,且上行预配置资源窗73的周期为T,每个上行预配置资源窗73的开始位置为上行指示信号发送时机71,即终端设备在特定的上行指示信号发送时机71发送上行序列。此外,由于存在上下行波束对齐问题,每个上行指示信号发送时机71存在多个上行预配置资源单元72,每个上行预配置资源单元72只能发送上行序列。每个上行预配置资源单元72关联了一个或者多个接入网设备的下行发送波束,接入网设备可以根据上行指示信号对应的上行预配置资源单元72的位置来确定下行发送波束。
接入网设备接收到终端设备发送的上行指示信号后,会下发的响应给终端设备,终端设备在下行接收窗74接收到接入网设备下发的响应后,才能利用当前周期T内的普通预配置资源75发送上行数据。如果终端设备发送指示信号后,没有收到接入网设备下发的响应,当前周期T内的上行预配置资源不能用于传输该终端设备的上行数据,终端设备在当前周期内上行数据发送需要回退到相关技术中的数据传输机制,即回退到随机接入过程。
在一个示意性的例子中,如图8所示,上行预配置资源窗83内存在多个普通预配置资源85,且上行预配置资源窗83的周期为T,每个上行预配置资源窗83的开始位置为上行指示信号发送时机81,即终端设备在特定的上行指示信号发送时机81发送上行序列或者上行数据。此外,由于存在上下行波束对齐问题,每个上行指示信号发送时机81存在多个上行预配置资源单元82,每个上行预配置资源单元82既能发送上行序列,又能发送上行数据。当终端设备在上行指示信号发送时机81存在上行数据需要发送时,终端设备可以该上行指示信号发送时机81选择特定的上行预配置资源单元82发送上行数据。每个上行预配置传输资源单元关联了一个或者多个接入网设备的下行发送波束,接入网设备可以根据上行指示信号对应的上行预配置资源单元82的位置来确定下行发送波束。
接入网设备接收到终端设备发送的上行指示信号后,会下发的响应给终端设备,终端设备在下行接收窗84接收到接入网设备下发的响应后,才能利用当前周期T内的普通预配置资源85发送上行数据。如果终端设备发送指示信号后,没有收到接入网设备下发的响应,当前周期T内的上行预配置资源不能用于传输该终端设备的上行数据,终端设备在当前周期内上行数据发送需要回退到相关技术中的数据传输机制,即回退到随机接入过程。
综上所述,由于可能存在的上下行波束对齐问题,本公开实施例还通过将每个上行预配置资源单元关联一个或者多个下行发送波束,使得接入网设备可以根据上行指示信号对应的上行预配置资源单元位置来确定下行发送波束,进而使得终端设备接收到在该下行发送波束上发送的下行指示信息,保证了上下行波束的对齐。
以下为本公开实施例的装置实施例,对于装置实施例中未详细阐述的部分,可以参考上述方法实施例中公开的技术细节。
请参考图9,其示出了本公开一个实施例提供的数据传输装置的结构示意图。该数据传输装置可以通过软件、硬件以及两者的组合实现成为终端设备的全部或一部分,终端设备处于休眠态或者不活跃态。该数据传输装置包括:发送模块910。
发送模块910,用于在上行预配置资源单元上发送上行指示信号,上行预配置资源单元为预配置的周期性的上行传输资源单元,上行指示信号包括上行序列或者上行数据。
在一种可能的实现方式中,发送模块910,还用于在上行指示信号发送时机对应的上行预配置资源单元上发送上行指示信号。
在另一种可能的实现方式中,发送模块910,还用于当在上行指示信号发送时机上存在上行数据需要发送时,在上行指示信号发送时机对应的特定的上行预配置资源单元上发送上行数据。
在另一种可能的实现方式中,发送模块910,还用于当在上行指示信号发送时机上存在上行数据需要发送时,在上行指示信号发送时机发送上行序列;
装置还包括:接收模块。接收模块,用于接收下行指示信息;
发送模块910,还用于在当前周期内的普通预配置资源上发送上行数据。
在另一种可能的实现方式中,上行指示信号发送时机的周期是普通预配置资源的周期的N+1倍,N为正整数。
在另一种可能的实现方式中,上行预配置资源单元关联一个或者多个下行发送波束,接收模块,还用于接收在一个或者多个下行发送波束上发送的下行指示信息。
在另一种可能的实现方式中,装置还包括:处理模块,处理模块,用于在未接收到下行指示信息的情况下,当存在上行数据需要发送时发送随机接入请求,将终端设备的设备状态切换为连接态;
发送模块910,还用于在连接态下发送上行数据。
在另一种可能的实现方式中,装置还包括:接收模块,接收模块用于接收预配置的上行指示信号发送时机,上行指示信号发送时机是周期性的用于指示发送上行指示信号的发送时机。
在另一种可能的实现方式中,上行指示信号发送时机包括多个上行预配置资源单元。
在另一种可能的实现方式中,上行指示信号发送时机为上行预配置资源窗内的开始位置,上行预配置资源窗包括多个普通预配置资源。
需要说明的是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例 说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图10,其示出了本公开另一个实施例提供的数据传输装置的结构示意图。该数据传输装置可以通过软件、硬件以及两者的组合实现成为接入网设备的全部或一部分。该数据传输装置包括:接收模块1010。
接收模块1010,用于在上行预配置资源单元上接收终端设备发送的上行指示信号,终端设备处于休眠态或者不活跃态,上行预配置资源单元为预配置的周期性的上行传输资源单元,上行指示信号包括上行序列或者上行数据。
在一种可能的实现方式中,接收模块1010,还用于在上行指示信号发送时机对应的上行预配置资源单元上,接收终端数设备发送的上行指示信号。
在另一种可能的实现方式中,接收模块1010,还用于在上行指示信号发送时机对应的特定的上行预配置资源单元上接收终端设备发送的上行数据。
在另一种可能的实现方式中,接收模块1010,还用于在上行指示信号发送时机接收终端设备发送的上行序列;
装置还包括:发送模块;
发送模块,用于发送下行指示信息;
接收模块1010,还用于在当前周期内的普通预配置资源上,接收终端设备发送的上行数据。
在另一种可能的实现方式中,上行指示信号发送时机的周期是普通预配置资源的周期的N+1倍,N为正整数。
在另一种可能的实现方式中,上行预配置资源单元关联一个或者多个下行发送波束,发送模块,还用于在一个或者多个下行发送波束上发送下行指示信息。
在另一种可能的实现方式中,装置还包括:处理模块;
处理模块,用于在上行指示信号发送时机接收到终端设备发送的上行序列之后不进行响应;
接收模块1010,还用于在接收到终端设备发送的随机接入请求后,接收处于连接态的终端设备发送的上行数据。
在另一种可能的实现方式中,装置还包括:发送模块;
发送模块,用于发送预配置的上行指示信号发送时机,上行指示信号发送时机是周期性的用于指示发送上行指示信号的发送时机。
在另一种可能的实现方式中,上行指示信号发送时机包括多个上行预配置资源单元。
在另一种可能的实现方式中,上行指示信号发送时机为上行预配置资源窗内的开始位置,上行预配置资源窗包括多个普通预配置资源。
需要说明的是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图11,其示出了本公开一个示例性实施例提供的终端设备的结构示意图,该终端设备可以是图1所示的移动通信系统中的终端设备140。本实施例以终端设备为LTE系统或5G系统中的UE为例进行说明,该终端设备包括:处理器111、接收器112、发送器113、存储器114和总线115。存储器114通过总线115与处理器111相连。
处理器111包括一个或者一个以上处理核心,处理器111通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器112和发送器113可以实现为一个通信组件,该通信组件可以是通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制和/或解调,并通过无线信号接收或发送该信息。
存储器114可用于存储处理器111可执行指令。
存储器114可存储至少一个功能所述的应用程序模块116。应用程序模块116可以包括:发送模块1161。
处理器111用于执行发送模块1161以实现上述各个方法实施例中由终端设备执行的有关发送步骤的功能。
此外,存储器114可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
请参考图12,其示出了本公开一个示例性实施例提供的接入网设备的结构示意图,该接入网设备可以是图1所示的实施环境中的接入网设备120。本实施例以接入网设备为LTE系统中eNB,或者,5G系统中的gNB为例进行说明,该接入网设备包括:处理器121、接收器122、发送器123、存储器124和总线125。存储器124通过总线125与处理器121相连。
处理器121包括一个或者一个以上处理核心,处理器121通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器122和发送器123可以实现为一个通信组件,该通信组件可以是一块通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制解调,并通过无线信号接收或发送该信息。
存储器124可用于存储处理器101可执行指令。
存储器124可存储至少一个功能所述的应用程序模块126。应用程序模块126可以包括:接收模块1261。
处理器121用于执行接收模块1261以实现上述各个方法实施例中由接入网设备执行的有关接收步骤的功能。
此外,存储器124可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本公开实施例还提供一种数据传输系统,该系统包括终端设备和接入网设备。
在一种可能的实现方式中,终端设备包括上述图9所提供的数据传输装置,接入网设备包括上述 图10所提供的数据传输装置。
在另一种可能的实现方式中,终端设备包括上述图11所提供的终端设备,接入网设备包括上述图12所提供的接入网设备。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
Claims (25)
- 一种数据传输方法,其特征在于,用于终端设备中,所述终端设备处于休眠态或者不活跃态,所述方法包括:在上行预配置资源单元上发送上行指示信号,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
- 根据权利要求1所述的方法,其特征在于,所述在上行预配置资源单元上发送上行指示信号,包括:在上行指示信号发送时机对应的所述上行预配置资源单元上发送所述上行指示信号。
- 根据权利要求2所述的方法,其特征在于,所述在上行指示信号发送时机对应的所述上行预配置资源单元上发送所述上行指示信号,包括:当在所述上行指示信号发送时机上存在所述上行数据需要发送时,在所述上行指示信号发送时机对应的特定的所述上行预配置资源单元上发送所述上行数据。
- 根据权利要求2所述的方法,其特征在于,所述在上行指示信号发送时机对应的所述上行预配置资源单元上发送所述上行指示信号,包括:当在所述上行指示信号发送时机上存在所述上行数据需要发送时,在所述上行指示信号发送时机发送所述上行序列;所述方法还包括:接收下行指示信息;在当前周期内的普通预配置资源上发送所述上行数据。
- 根据权利要求4所述的方法,其特征在于,所述上行指示信号发送时机的周期是所述普通预配置资源的周期的N+1倍,所述N为正整数。
- 根据权利要求4所述的方法,其特征在于,所述上行预配置资源单元关联一个或者多个下行发送波束,所述接收下行指示信息,包括:接收在所述一个或者多个下行发送波束上发送的所述下行指示信息。
- 根据权利要求4所述的方法,其特征在于,所述方法还包括:在未接收到所述下行指示信息的情况下,当存在所述上行数据需要发送时发送随机接入请求,将所述终端设备的设备状态切换为连接态;在所述连接态下发送所述上行数据。
- 根据权利要求2至7任一所述的方法,其特征在于,所述方法还包括:接收预配置的所述上行指示信号发送时机,所述上行指示信号发送时机是周期性的用于指示发送所述上行指示信号的发送时机。
- 根据权利要求2至7任一所述的方法,其特征在于,所述上行指示信号发送时机包括多个所述 上行预配置资源单元。
- 根据权利要求2至7任一所述的方法,其特征在于,所述上行指示信号发送时机为上行预配置资源窗内的开始位置,所述上行预配置资源窗包括多个普通预配置资源。
- 一种数据传输方法,其特征在于,用于接入网设备中,所述方法包括:在上行预配置资源单元上接收终端设备发送的上行指示信号,所述终端设备处于休眠态或者不活跃态,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
- 根据权利要求11所述的方法,其特征在于,所述在上行预配置资源单元上接收终端设备发送的上行指示信号,包括:在上行指示信号发送时机对应的所述上行预配置资源单元上,接收所述终端数设备发送的所述上行指示信号。
- 根据权利要求12所述的方法,其特征在于,所述在上行指示信号发送时机对应的所述上行预配置资源单元上,接收所述终端数设备发送的所述上行指示信号,包括:在所述上行指示信号发送时机对应的特定的所述上行预配置资源单元上接收所述终端设备发送的所述上行数据。
- 根据权利要求12所述的方法,其特征在于,所述在上行指示信号发送时机对应的所述上行预配置资源单元上,接收所述终端数设备发送的所述上行指示信号,包括:在所述上行指示信号发送时机接收所述终端设备发送的所述上行序列;所述方法还包括:发送下行指示信息;在当前周期内的普通预配置资源上,接收所述终端设备发送的所述上行数据。
- 根据权利要求14所述的方法,其特征在于,所述上行指示信号发送时机的周期是所述普通预配置资源的周期的N+1倍,所述N为正整数。
- 根据权利要求14所述的方法,其特征在于,所述上行预配置资源单元关联一个或者多个下行发送波束,所述发送下行指示信息,包括:在所述一个或者多个下行发送波束上发送所述下行指示信息。
- 根据权利要求14所述的方法,其特征在于,所述方法还包括:在所述上行指示信号发送时机接收到所述终端设备发送的所述上行序列之后不进行响应;在接收到所述终端设备发送的随机接入请求后,接收处于所述连接态的所述终端设备发送的所述上行数据。
- 根据权利要求12至17任一所述的方法,其特征在于,所述方法还包括:发送预配置的所述上行指示信号发送时机,所述上行指示信号发送时机是周期性的用于指示发送所述上行指示信号的发送时机。
- 根据权利要求12至17任一所述的方法,其特征在于,所述上行指示信号发送时机包括多个所述上行预配置资源单元。
- 根据权利要求12至17任一所述的方法,其特征在于,所述上行指示信号发送时机为上行预配置资源窗内的开始位置,所述上行预配置资源窗包括多个普通预配置资源。
- 一种数据传输装置,其特征在于,用于终端设备中,所述终端设备处于休眠态或者不活跃态,所述装置包括:发送模块,用于在上行预配置资源单元上发送上行指示信号,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
- 一种数据传输装置,其特征在于,用于接入网设备中,所述装置包括:接收模块,用于在上行预配置资源单元上接收终端设备发送的上行指示信号,所述终端设备处于休眠态或者不活跃态,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
- 一种终端设备,其特征在于,所述终端设备处于休眠态或者不活跃态,所述终端设备包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:在上行预配置资源单元上发送上行指示信号,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
- 一种接入网设备,其特征在于,所述接入网设备包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:在上行预配置资源单元上接收终端设备发送的上行指示信号,所述终端设备处于休眠态或者不活跃态,所述上行预配置资源单元为预配置的周期性的上行传输资源单元,所述上行指示信号包括上行序列或者上行数据。
- 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至20中任意一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022513948A JP7313549B2 (ja) | 2019-08-30 | 2020-08-14 | データ送信方法、装置、デバイス及び記憶媒体 |
US17/681,792 US20220272692A1 (en) | 2019-08-30 | 2022-02-27 | Methods for data transmission and a terminal device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910815683.9A CN110493876B (zh) | 2019-08-30 | 2019-08-30 | 数据传输方法、装置、设备及存储介质 |
CN201910815683.9 | 2019-08-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/681,792 Continuation US20220272692A1 (en) | 2019-08-30 | 2022-02-27 | Methods for data transmission and a terminal device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021036813A1 true WO2021036813A1 (zh) | 2021-03-04 |
Family
ID=68555644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/109109 WO2021036813A1 (zh) | 2019-08-30 | 2020-08-14 | 数据传输方法、装置、设备及存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220272692A1 (zh) |
JP (1) | JP7313549B2 (zh) |
CN (1) | CN110493876B (zh) |
WO (1) | WO2021036813A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110493876B (zh) * | 2019-08-30 | 2023-07-07 | 展讯半导体(南京)有限公司 | 数据传输方法、装置、设备及存储介质 |
CN110958103B (zh) * | 2019-12-23 | 2021-04-27 | 展讯半导体(南京)有限公司 | 上行数据传输方法、用户设备及可读存储介质 |
WO2021189330A1 (zh) * | 2020-03-25 | 2021-09-30 | Oppo广东移动通信有限公司 | 数据传输方法、装置、设备及存储介质 |
CN113709867A (zh) * | 2020-05-21 | 2021-11-26 | 展讯半导体(南京)有限公司 | 数据传输方法、装置及设备 |
CN113747574A (zh) * | 2020-05-28 | 2021-12-03 | 华为技术有限公司 | 数据传输方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108207020A (zh) * | 2016-12-19 | 2018-06-26 | 中国电信股份有限公司 | 上行免调度传输方法、终端和基站 |
WO2018145302A1 (zh) * | 2017-02-10 | 2018-08-16 | 广东欧珀移动通信有限公司 | 无线通信方法、终端设备和网络设备 |
WO2019015157A1 (zh) * | 2017-07-18 | 2019-01-24 | 华为技术有限公司 | 数据传输的方法和装置 |
CN110493876A (zh) * | 2019-08-30 | 2019-11-22 | 展讯半导体(南京)有限公司 | 数据传输方法、装置、设备及存储介质 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110492913B (zh) * | 2017-01-06 | 2020-09-29 | 华为技术有限公司 | 一种信号传输方法和装置 |
CN107205222B (zh) * | 2017-04-25 | 2023-03-07 | 北京理工大学珠海学院 | 一种低功耗的定位方法、装置及系统 |
-
2019
- 2019-08-30 CN CN201910815683.9A patent/CN110493876B/zh active Active
-
2020
- 2020-08-14 JP JP2022513948A patent/JP7313549B2/ja active Active
- 2020-08-14 WO PCT/CN2020/109109 patent/WO2021036813A1/zh active Application Filing
-
2022
- 2022-02-27 US US17/681,792 patent/US20220272692A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108207020A (zh) * | 2016-12-19 | 2018-06-26 | 中国电信股份有限公司 | 上行免调度传输方法、终端和基站 |
WO2018145302A1 (zh) * | 2017-02-10 | 2018-08-16 | 广东欧珀移动通信有限公司 | 无线通信方法、终端设备和网络设备 |
WO2019015157A1 (zh) * | 2017-07-18 | 2019-01-24 | 华为技术有限公司 | 数据传输的方法和装置 |
CN110493876A (zh) * | 2019-08-30 | 2019-11-22 | 展讯半导体(南京)有限公司 | 数据传输方法、装置、设备及存储介质 |
Non-Patent Citations (1)
Title |
---|
OPPO: "Issues on Data Transmission in INACTIVE State", 3GPP DRAFT; R2-1700963_DATA TRANSMISSION IN INACTIVE STATE_V1, vol. RAN WG2, 4 February 2017 (2017-02-04), Athens, Greece, pages 1 - 6, XP051223321 * |
Also Published As
Publication number | Publication date |
---|---|
CN110493876A (zh) | 2019-11-22 |
JP7313549B2 (ja) | 2023-07-24 |
JP2022545972A (ja) | 2022-11-01 |
CN110493876B (zh) | 2023-07-07 |
US20220272692A1 (en) | 2022-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021128931A1 (zh) | 跨载波调度方法、装置及存储介质 | |
WO2021036813A1 (zh) | 数据传输方法、装置、设备及存储介质 | |
WO2021128932A1 (zh) | 上行srs传输方法、装置及存储介质 | |
US11147048B2 (en) | Method for resource scheduling and related devices | |
WO2021082729A1 (zh) | 资源控制方法、装置及存储介质 | |
US11968565B2 (en) | User plane information reporting method and apparatus | |
US10623981B2 (en) | Information transmission method, apparatus, and system | |
WO2021148040A1 (zh) | 信道监听的指示方法、装置及存储介质 | |
US10917834B2 (en) | Method for transmitting system information and related devices | |
US20210185578A1 (en) | Data transmission method, radio access network device, and terminal device | |
JP2022501904A (ja) | ネットワークデバイスにおける方法、及び統合アクセスバックホールノードにおける方法 | |
JP7111421B2 (ja) | IoTデバイス、MME、IoTデバイスの通信方法、及びMMEの通信方法 | |
JP2023078303A (ja) | V2xトラフィックに対応するための制御チャネル構造設計 | |
CN111314953B (zh) | 寻呼消息的接收方法、装置及存储介质 | |
WO2023061255A1 (zh) | 一种通信方法 | |
US20220174718A1 (en) | Method, device, and storage medium for instructing minimum scheduling offset | |
EP3654726A1 (en) | Data repeat transmission method and device | |
KR20200108305A (ko) | 데이터 전송 방법 및 장치, 컴퓨터 저장 매체 | |
WO2022077351A1 (zh) | 通信方法和通信装置 | |
WO2024017082A1 (zh) | 配置信息的指示方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20856625 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022513948 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20856625 Country of ref document: EP Kind code of ref document: A1 |