WO2021148040A1 - 信道监听的指示方法、装置及存储介质 - Google Patents

信道监听的指示方法、装置及存储介质 Download PDF

Info

Publication number
WO2021148040A1
WO2021148040A1 PCT/CN2021/074463 CN2021074463W WO2021148040A1 WO 2021148040 A1 WO2021148040 A1 WO 2021148040A1 CN 2021074463 W CN2021074463 W CN 2021074463W WO 2021148040 A1 WO2021148040 A1 WO 2021148040A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
physical downlink
control channel
monitoring
control information
Prior art date
Application number
PCT/CN2021/074463
Other languages
English (en)
French (fr)
Inventor
赵思聪
周化雨
高兴航
曲鑫
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2021148040A1 publication Critical patent/WO2021148040A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an indication method, device and storage medium for channel monitoring.
  • Packet-based data streams are usually bursty, with data transmission for a period of time, but no data transmission for a longer period of time.
  • the user equipment User Equipment, UE
  • PDCCH Physical Downlink Control Channel
  • a Discontinuous Reception (DRX) mechanism configures a discontinuous reception cycle (English: DRX cycle) for user equipment in a radio resource control (Radio Resource Control, RRC) connection state. , So that the user equipment may not receive the physical downlink control channel during the non-receiving time period of the discontinuous reception period.
  • RRC Radio Resource Control
  • the present disclosure proposes a method, device and storage medium for indicating channel monitoring.
  • the technical solution includes:
  • a method for indicating channel monitoring which is used in a user equipment, and the method includes:
  • Downlink Control Information Downlink Control Information
  • DCI Downlink Control Information
  • the downlink control information carries a first scheduling delay field, and the first scheduling delay field is used to indicate whether to stop monitoring the physical downlink control channel.
  • the method further includes:
  • the stopping monitoring the physical downlink control channel includes:
  • n is a value pre-configured by a higher layer or an integer determined based on the downlink control information
  • the time unit is Time slot or subframe or second or millisecond or the listening period of the physical downlink control channel or the listening timing of the physical downlink control channel.
  • the n is the number of pre-configured units corresponding to the scheduling delay indicated by the first scheduling delay field; or, the n is the number of the downlink control information Specify the number of units indicated by the domain.
  • the time domain resource allocation field of the downlink control information is used to indicate the duration of stopping monitoring the physical downlink control channel.
  • the method further includes:
  • the indication information When receiving indication information or the downlink control information carries a bit for instructing to stop monitoring the physical downlink control channel, stop monitoring the physical downlink control channel, and the indication information is used to indicate the minimum scheduling delay Make restrictions.
  • the time domain resource allocation field of the downlink control information carries a second scheduling delay
  • the second scheduling delay is used to indicate the duration of stopping monitoring the physical downlink control channel Is n time units
  • the n is the product of the second scheduling delay and a preset multiple; or, the n is a pre-configured unit number corresponding to the second scheduling delay. number.
  • an indicating device for channel monitoring which is used in user equipment, and the device includes:
  • the receiving module is configured to receive downlink control information, where the downlink control information is used to indicate whether to stop monitoring the physical downlink control channel and/or the duration of stopping monitoring the physical downlink control channel.
  • the downlink control information carries a first scheduling delay field, and the first scheduling delay field is used to indicate whether to stop monitoring the physical downlink control channel.
  • the device further includes: a first processing module; the first processing module is configured to: when the scheduling delay indicated by the first scheduling delay field is less than the minimum scheduling When the limit value is delayed, stop monitoring the physical downlink control channel.
  • the processing module is further configured to stop monitoring the physical downlink control channel within n time units after receiving the downlink control information, where n is pre-configured by a higher layer The value or an integer determined based on the downlink control information, and the time unit is a time slot or a subframe or a second or millisecond or a listening period of a physical downlink control channel or a listening timing of a physical downlink control channel.
  • the n is the number of pre-configured units corresponding to the scheduling delay indicated by the first scheduling delay field; or, the n is the number of the downlink control information Specify the number of units indicated by the domain.
  • the time domain resource allocation field of the downlink control information is used to indicate the duration of stopping monitoring the physical downlink control channel.
  • the device further includes: a second processing module; the second processing module is configured to instruct to stop listening when the instruction information is received or the downlink control information carries When the bits of the physical downlink control channel are stopped, monitoring the physical downlink control channel is stopped, and the indication information is used to indicate that the minimum scheduling delay is limited.
  • the time domain resource allocation field of the downlink control information carries a second scheduling delay
  • the second scheduling delay is used to indicate the duration of stopping monitoring the physical downlink control channel Is n time units
  • the device further includes: a third processing module; the third processing module is configured to stop monitoring the physical downlink control within the n time units after receiving the downlink control information Channel, the n is an integer, and the time unit is a time slot or a subframe or a second or millisecond or a listening period of a physical downlink control channel or a listening timing of a physical downlink control channel.
  • the n is the product of the second scheduling delay and a preset multiple; or, the n is a pre-configured unit number corresponding to the second scheduling delay. number.
  • a user equipment comprising: a processor; a memory for storing instructions executable by the processor;
  • the processor is configured to receive downlink control information, where the downlink control information is used to indicate whether to stop monitoring the physical downlink control channel and/or the duration of stopping monitoring the physical downlink control channel.
  • a non-volatile computer-readable storage medium having computer program instructions stored thereon, and the computer program instructions implement the above-mentioned method when executed by a processor.
  • the embodiments of the present disclosure receive downlink control information through a user equipment, and the downlink control information is used to indicate whether to stop monitoring the physical downlink control channel and/or the duration of stopping monitoring the physical downlink control channel; so that the information indicating the switching of the physical downlink control channel monitoring behavior is combined
  • the current downlink control information is merged to complete the switching instruction of the physical downlink control channel monitoring state, so that the user equipment monitors or stops monitoring the physical downlink control channel according to the indication of the downlink control information, without having to monitor each physical downlink control channel.
  • the power consumption of the user equipment is improved, and the monitoring behavior of the physical downlink control channel is optimized.
  • Fig. 1 shows a schematic structural diagram of a mobile communication system provided by an exemplary embodiment of the present disclosure
  • Fig. 2 shows a flowchart of a method for indicating channel monitoring provided by an exemplary embodiment of the present disclosure
  • FIG. 3 shows a flowchart of a method for indicating channel monitoring provided by another exemplary embodiment of the present disclosure
  • FIG. 4 shows a flowchart of a method for indicating channel monitoring according to another exemplary embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of a principle involved in a method for indicating channel monitoring provided by an exemplary embodiment of the present disclosure
  • Fig. 6 shows a schematic structural diagram of a channel monitoring indicating device provided by an exemplary embodiment of the present disclosure
  • Fig. 7 shows a schematic structural diagram of a user equipment provided by an exemplary embodiment of the present disclosure.
  • the battery life of the user equipment is an important indicator to measure the user equipment.
  • the 5G system introduces some technical features to indicate the switching of user equipment behavior, so that the user equipment can enter a power-saving state under appropriate conditions to save the power of the user equipment.
  • the switching of this state involves multiple configurations.
  • the changes include bandwidth unit (Bandwidth Part, BWP) switching (for example, switching to a smaller BWP), switching of the physical downlink control channel detection cycle (for example, switching to a larger period), and skipping part of the physical downlink control channel Monitoring (English: PDCCH monitoring skipping) and cross-slot scheduling (English: cross-slot scheduling) with a minimum scheduling interval greater than 0, etc., the signaling that triggers these configuration changes can be carried by downlink control information.
  • BWP Bandwidth Part
  • the embodiments of the present disclosure provide a channel monitoring instruction method, device, and storage medium.
  • the embodiments of the present disclosure receive downlink control information through a user equipment, and the downlink control information is used to indicate whether to stop monitoring the physical downlink control channel and/or Stop monitoring the duration of the physical downlink control channel; combine the information indicating the switching of the physical downlink control channel monitoring behavior with the current downlink control information, complete the switching instruction of the physical downlink control channel monitoring state, and make the user equipment according to the downlink control information Instructs to monitor or stop monitoring the physical downlink control channel without monitoring each physical downlink control channel, which reduces the power consumption of the user equipment and optimizes the monitoring behavior of the physical downlink control channel.
  • FIG. 1 shows a schematic structural diagram of a mobile communication system provided by an exemplary embodiment of the present disclosure.
  • the mobile communication system may be an LTE system or a 5G system.
  • the 5G system is also called an NR system, or a 5G next-generation mobile communication technology system, which is not limited in this embodiment.
  • the mobile communication system is applicable to different network architectures, including but not limited to a relay network architecture, a dual link architecture, a vehicle to everything (V2X) architecture, etc.
  • a relay network architecture including but not limited to a relay network architecture, a dual link architecture, a vehicle to everything (V2X) architecture, etc.
  • V2X vehicle to everything
  • the mobile communication system includes: a network side device 120 and a user equipment 140.
  • the network side device 120 may be a base station (base station, BS), and may also be referred to as a base station device, and is a device deployed on a radio access network (Radio Access Network, RAN) to provide wireless communication functions.
  • the equipment that provides the base station function in the 2G network includes the base transceiver station (BTS), the equipment that provides the base station function in the 3G network includes the NodeB (NodeB), and the equipment that provides the base station function in the 4G network includes the evolution Node B (evolved NodeB, eNB), the equipment that provides base station functions in wireless local area networks (WLAN) is an access point (access point, AP), and the equipment that provides base station functions in a 5G system is gNB, and the continuously evolving Node B (ng-eNB), the network-side device 120 in the embodiment of the present disclosure also includes devices that provide base station functions in a new communication system in the future, etc.
  • BTS base transceiver station
  • NodeB NodeB
  • the embodiment of the present disclosure has an effect on the network-side device 120
  • the specific implementation method is not limited.
  • the access network equipment may also include a home base station (Home eNB, HeNB), a relay (Relay), a pico base station, Pico, and so on.
  • Home eNB home base station
  • HeNB HeNB
  • Relay relay
  • pico base station Pico, and so on.
  • a base station controller is a device that manages a base station, such as a base station controller (BSC) in a 2G network, a radio network controller (RNC) in a 3G network, and it can also be a new communication in the future
  • BSC base station controller
  • RNC radio network controller
  • the network side device 120 includes the base station of the wireless access network, may also include the base station controller of the wireless access network, and may also include the device on the core network side.
  • the core network can be an evolved packet core (EPC), a 5G core network (5G Core Network), or a new type of core network in the future communication system.
  • the 5G Core Network is composed of a set of devices, and implements access and mobility management functions (Access and Mobility Management Function, AMF) for functions such as mobility management, and provides data packet routing and forwarding and Quality of Service (QoS) management User Plane Function (UPF) with other functions, Session Management Function (SMF), which provides functions such as session management, IP address allocation and management, etc.
  • AMF Access and Mobility Management Function
  • QoS Quality of Service
  • UPF User Plane Function
  • SMF Session Management Function
  • EPC can be composed of MME that provides functions such as mobility management and gateway selection, Serving Gateway (S-GW) that provides functions such as packet forwarding, and PDN Gateway (PDN) that provides functions such as terminal address allocation and rate control.
  • S-GW Serving Gateway
  • the network side device 120 and the user equipment 140 establish a wireless connection through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the 5G standard, for example, the wireless air interface is NR; or, the wireless air interface may also be a wireless air interface based on 5G-based next-generation mobile communication network technology standards; or, the wireless air interface It can also be a wireless air interface based on the 4G standard (LTE system).
  • the network side device 120 may receive the uplink data sent by the user equipment 140 through a wireless connection.
  • the user equipment 140 may refer to a device that performs data communication with the network side device 120.
  • the user equipment 140 may communicate with one or more core networks via a wireless access network.
  • the user equipment 140 may be various forms of user equipment, access terminal equipment, user units, user stations, mobile stations, mobile stations (mobile stations, MS), remote stations, remote terminal equipment, mobile equipment, terminals, terminal equipment ( English: terminal equipment), wireless communication equipment, user agent or user device.
  • the user equipment 140 may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and wireless Communication function handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile communication network (Public Land Mobile Network, PLMN) Terminal equipment, etc.
  • PLMN Public Land Mobile Network
  • the user equipment 140 may receive the downlink data sent by the network-side device 120 through a wireless connection with the network-side device 120.
  • the mobile communication system shown in Figure 1 adopts the 5G system or the next-generation mobile communication technology system of 5G
  • the above-mentioned various network elements may be in the 5G system or the next-generation mobile communication technology system of 5G. They have different names, but have the same or similar functions, which are not limited in the embodiments of the present disclosure.
  • the mobile communication system shown in FIG. 1 may include multiple network-side devices 120 and/or multiple user equipment 140.
  • FIG. 1 shows one network-side device 120 and one user equipment. 140 for illustration, but the embodiment of the present disclosure does not limit this.
  • FIG. 2 shows a flowchart of a method for indicating channel monitoring provided by an exemplary embodiment of the present disclosure.
  • the method is used in the user equipment shown in FIG. 1 as an example. The method includes the following steps.
  • Step 201 Receive downlink control information, where the downlink control information is used to indicate whether to stop monitoring the physical downlink control channel and/or the duration of stopping monitoring the physical downlink control channel.
  • the user equipment receives the downlink control information sent by the network side device, and the downlink control information is used to instruct the switching of the physical downlink control channel monitoring behavior, that is, whether to stop monitoring the physical downlink control channel and/or the duration of stopping monitoring the physical downlink control channel.
  • the information indicating the switching of the physical downlink control channel monitoring behavior is combined with the existing information field in the current downlink control information, and the number of downlink control information bits is not increased or only 1 bit is increased.
  • the switching instruction of the monitoring behavior of the physical downlink control channel is completed, so that the user equipment enters the corresponding appropriate energy-saving state according to the service state.
  • the user equipment stops monitoring the physical downlink control channel, that is, the physical downlink control channel monitoring behavior is switched to skip monitoring of part of the physical downlink control channel.
  • the user stops monitoring the physical downlink control channel including: the user equipment does not receive and blindly detect the physical downlink control channel within a specified time period.
  • the network-side device can make the user equipment enter the dormant state of not receiving the physical downlink control channel when there is no data scheduling within a specified time period, so as to save the power of the user equipment.
  • the embodiments of the present disclosure receive downlink control information through the user equipment, and the downlink control information is used to indicate whether to stop monitoring the physical downlink control channel and/or the duration of stopping monitoring the physical downlink control channel; so that the physical downlink control channel monitoring will be instructed
  • the behavior switching information is combined with the current downlink control information to complete the switching instruction of the physical downlink control channel monitoring state, so that the user equipment monitors or stops monitoring the physical downlink control channel according to the indication of the downlink control information, without monitoring every physical downlink control channel.
  • the downlink control channel reduces the power consumption of the user equipment and optimizes the monitoring behavior of the physical downlink control channel.
  • the downlink control information carries the first scheduling delay field, or the time domain resource allocation field of the downlink control information carries the second scheduling delay; where the first scheduling delay field is used to indicate whether to stop The physical downlink control channel is monitored, and the second scheduling delay is used to indicate that the duration of stopping monitoring the physical downlink control channel is n time units, and n is a positive integer.
  • the first scheduling delay field is used to indicate whether to stop The physical downlink control channel is monitored
  • the second scheduling delay is used to indicate that the duration of stopping monitoring the physical downlink control channel is n time units, and n is a positive integer.
  • FIG. 3 shows a flowchart of a method for indicating channel monitoring according to another exemplary embodiment of the present disclosure.
  • the method is used in the user equipment shown in FIG. 1 as an example.
  • the method includes the following steps.
  • Step 301 Receive downlink control information, where the downlink control information carries a first scheduling delay field, and the scheduling delay indicated by the first scheduling delay field is used to indicate whether to stop monitoring the physical downlink control channel.
  • the user equipment receives the downlink control information that carries the first scheduling delay domain and is sent by the network side device.
  • the scheduling delay indicated by the first scheduling delay field is used to indicate whether to stop monitoring the physical downlink control channel.
  • the first scheduling delay field is the time interval between the physical downlink control channel and the physical downlink shared channel (Physical Downlink Share Channel, PDSCH), and the first scheduling delay field is used to indicate the time domain where the PDSCH scheduled by the downlink control information is located Location. For example, when the scheduling delay indicated by the first scheduling delay field is 1, the physical downlink control channel is in time slot m, and the corresponding physical downlink shared channel is in time slot m+1.
  • PDSCH Physical Downlink Share Channel
  • the user equipment obtains the limit value of the minimum scheduling delay, obtains the first scheduling delay field from the received downlink control information, and determines whether the scheduling delay indicated by the first scheduling delay field is less than the limit value of the minimum scheduling delay, If the scheduling delay indicated by the first scheduling delay field is less than the limit value of the minimum scheduling delay, perform step 302; if the scheduling delay indicated by the first scheduling delay field is greater than or equal to the limit value of the minimum scheduling delay , Then continue to monitor the physical downlink control channel.
  • the minimum scheduling delay is the minimum K0 value that can be indicated by the time domain resource allocation domain, and the minimum K0 value is used to indicate the direct time slot distance between the physical downlink control channel and the physical downlink shared channel.
  • the physical downlink control channel is in time slot n
  • the physical downlink shared channel is in time slot n+K0.
  • Obtaining the limit value of the minimum scheduling delay by the user equipment includes: the user equipment receives the instruction information sent by the network side device, and the instruction information carries the limit value of the minimum scheduling delay.
  • the limit value of the minimum scheduling delay includes one value or two values. This embodiment does not limit this.
  • Step 302 Stop monitoring the physical downlink control channel when the scheduling delay indicated by the first scheduling delay field is less than the limit value of the minimum scheduling delay.
  • the user equipment When the scheduling delay indicated by the first scheduling delay field is less than the limit value of the minimum scheduling delay, the user equipment considers that an error has occurred, and the code point corresponding to the Time Domain Resource Allocation (TDRA) field is an error Code point, the user equipment starts the monitoring mechanism that skips part of the physical downlink control channel, that is, stops monitoring the physical downlink control channel.
  • TDRA Time Domain Resource Allocation
  • the user equipment stops monitoring the physical downlink control channel within n time units after receiving the downlink control information, where n is a value pre-configured by a higher layer or an integer determined based on the downlink control information.
  • n is one or more values configured by higher layers.
  • the value of n is pre-configured by the upper layer to 5. That is, when the scheduling delay indicated by the first scheduling delay field is less than the limit value of the minimum scheduling delay, the user equipment stops monitoring the physical downlink control channel within 5 time units after receiving the downlink control information. This embodiment does not limit the specific value of n.
  • the duration of stopping monitoring the physical downlink control channel is n time units, and the time unit is the time slot or subframe or second or millisecond or the listening period of the physical downlink control channel or the listening timing of the physical downlink control channel. This embodiment does not limit this.
  • n is the number of pre-configured units corresponding to the scheduling delay indicated by the first scheduling delay field.
  • the higher layer configures different error code points to indicate different periods of stopping monitoring the physical downlink control channel.
  • the user equipment receives the pre-configured first correspondence and stores the first correspondence.
  • the first correspondence includes the correspondence between the scheduling delay indicated by the first scheduling delay field and the number n of units.
  • the first correspondence pre-configured by the higher layer is shown in Table 1.
  • the limit value of the minimum scheduling delay K0 min is 3, and the upper layer pre-configures the scheduling delay K0 indicated by the first scheduling delay field to 0, corresponding to n being 10, and the scheduling delay K0 indicated by the first scheduling delay field.
  • the corresponding n is 20, and the time unit is milliseconds.
  • K0 min is 3, if the K0 carried in the received downlink control information is 0, the user equipment stops monitoring the physical downlink control channel within 10 ms after receiving the downlink control information; If K0 carried in the downlink control information is 1, the user equipment stops monitoring the physical downlink control channel within 20 ms after receiving the downlink control information.
  • n is the number of units indicated by the designated field of the downlink control information.
  • the scheduling delay indicated by the first scheduling delay field is less than the limit value of the minimum scheduling delay, it indicates that this is an error code point. If the downlink control information cannot be used for data scheduling, other fields in the downlink control information can It is used to indicate the length of time to stop monitoring the physical downlink control channel, that is, the number of units n used to indicate to stop monitoring the physical downlink control channel.
  • the designated field is a bit field in the downlink control information that does not change the position and length of the field.
  • the designated field includes the bit field of the frequency domain resource in the downlink control information or the remaining bit field.
  • the user equipment stops monitoring the physical downlink control channel within n time units, it restarts monitoring the physical downlink control channel.
  • the embodiments of the present disclosure also receive downlink control information carrying the first scheduling delay field, and stop monitoring when the scheduling delay indicated by the first scheduling delay field is less than the limit value of the minimum scheduling delay.
  • Physical downlink control channel use the introduced cross-slot scheduling error code points to indicate whether to stop monitoring the physical downlink control channel, without adding additional fields, reducing the bit overhead of downlink control information, and further optimizing the physical downlink Control channel monitoring behavior.
  • FIG. 4 shows a flowchart of a method for indicating channel monitoring according to another exemplary embodiment of the present disclosure.
  • the method is used in the user equipment shown in FIG. 1 as an example.
  • the method includes the following steps.
  • Step 401 Receive downlink control information, where the time domain resource allocation field of the downlink control information is used to indicate the duration of stopping monitoring the physical downlink control channel.
  • the user equipment receives the downlink control information, and the time domain resource allocation field of the downlink control information is used to indicate the duration of stopping monitoring the physical downlink control channel.
  • the time domain resource allocation field of the downlink control information carries a second scheduling delay, and the second scheduling delay is used to indicate the time unit n for stopping monitoring the physical downlink control channel.
  • the second scheduling delay is the time interval between the physical downlink control channel and the PDSCH, and the second scheduling delay is used to indicate the time domain position of the PDSCH scheduled by the downlink control information. For example, when the second scheduling delay is 1, the physical downlink control channel is in time slot m, and the corresponding PDSCH is in time slot m+1.
  • Step 402 Stop monitoring the physical downlink control channel within n time units after receiving the downlink control information, where n is an integer.
  • the trigger condition to stop monitoring the physical downlink control channel includes but is not limited to the following two possible implementation manners.
  • the indication information when receiving the indication information, stop monitoring the physical downlink control channel, and the indication information is used to indicate to limit the minimum scheduling delay.
  • the user equipment receives the indication information used to indicate the limit value of the minimum scheduling delay sent by the network side device, that is, the monitoring mechanism for skipping part of the physical downlink control channel is enabled, that is, the monitoring of the physical downlink control channel is stopped.
  • the limit value of the minimum scheduling delay is the value of the minimum scheduling delay.
  • the limit value of the minimum scheduling delay includes one value or two values. This embodiment does not limit this.
  • the downlink control information when the downlink control information carries a bit for instructing to stop monitoring the physical downlink control channel, stop monitoring the physical downlink control channel.
  • the user equipment stops monitoring the physical downlink control channel.
  • the user equipment obtains the second scheduling delay from the downlink control information, and determines that the duration of stopping monitoring the physical downlink control channel is n time units according to the second scheduling delay.
  • the user equipment stops monitoring the physical downlink control channel according to the trigger condition, that is, stops monitoring the physical downlink control channel within n time units after receiving the downlink control information.
  • the duration of stopping monitoring the physical downlink control channel is n time units, and the time unit is the time slot or subframe or second or millisecond or the listening period of the physical downlink control channel or the listening timing of the physical downlink control channel. This embodiment does not limit this.
  • the user equipment determines the number n of units to stop monitoring the physical downlink control channel according to the second scheduling delay, including but not limited to the following possible implementation manners.
  • n is the product of the second scheduling delay and the preset multiple value. That is, the user equipment determines that the product of the second scheduling delay and the preset multiple value is the unit number n.
  • the preset multiple value is configured by the higher layer.
  • the number n of units that stop monitoring the physical downlink control channel has a positive correlation with the second scheduling delay.
  • the number of units n is in a multiple relationship with the second scheduling delay, that is, the number of units n is an integer multiple of the second scheduling delay, and the integer multiple is a preset multiple value. This embodiment does not limit this.
  • the relationship between the number of units n and the multiple of the second scheduling delay K0 is shown in Table 2.
  • the preset multiplier value X is 4, and the time unit of the unit number n is a time slot or a subframe or a second or millisecond or the listening period of the physical downlink control channel or the listening timing of the physical downlink control channel.
  • the corresponding n is 0, when K0 is 1, the corresponding n is 4, when K0 is 2, the corresponding n is 8, and when K0 is 4, the corresponding n is 16.
  • n is a pre-configured number of units corresponding to the second scheduling delay. That is, the user equipment determines the number of units n of the time unit to stop monitoring the physical downlink control channel as the number of units corresponding to the second scheduling delay according to the second pre-configured correspondence.
  • the second correspondence is the correspondence between the pre-configured second scheduling delay and the number of units.
  • the number of units corresponding to at least two second scheduling delays in the second correspondence is the same.
  • the correspondence between multiple second scheduling delays K0 and multiple unit numbers n is shown in Table 3.
  • the time unit of the unit number n is a time slot or a subframe or a second or millisecond or a monitoring period of a physical downlink control channel or a monitoring timing of a physical downlink control channel.
  • K0 is 0 or 1 or 2 or 4
  • the corresponding n is X
  • K0 is 6 or 8 or 12 or 16
  • the corresponding n is Y.
  • the correspondence between multiple second scheduling delays K0 and multiple unit numbers n is shown in Table 4.
  • the time unit of the number of units n is a time slot or a subframe or a second or millisecond or a listening period of a physical downlink control channel or a listening timing of a physical downlink control channel.
  • the second correspondence relationship includes a one-to-one correspondence between multiple second scheduling delays and multiple unit numbers.
  • the one-to-one correspondence between multiple second scheduling delays K0 and multiple unit numbers n is shown in Table 5.
  • the time unit of the number of units n is a time slot or a subframe or a second or millisecond or a listening period of a physical downlink control channel or a listening timing of a physical downlink control channel.
  • the corresponding n is A, when K0 is 1, the corresponding n is B, when K0 is 2, the corresponding n is 4, and when K0 is 4, the corresponding n is D; when K0 is 6, it corresponds to When K0 is 8, the corresponding n is F, when K0 is 12, the corresponding n is G, and when K0 is 16, the corresponding n is H.
  • the user equipment stops monitoring the physical downlink control channel within n time units after receiving the downlink control information. After the user equipment stops monitoring the physical downlink control channel within n time units, it restarts monitoring the physical downlink control channel.
  • the user equipment receives downlink control information in time slot m, and the downlink control
  • the second scheduling delay K0 carried in the time domain resource allocation field of the information is 2, and the second scheduling delay K0 is used to indicate that n is 4, that is, the duration of stopping monitoring the PDCCH is 4 time slots.
  • the user equipment receives the PDSCH in the time slot m+2, stops monitoring the PDCCH in the time slots m+1 to m+4, and restarts monitoring the PDCCH when the time slot m+5 is reached.
  • the embodiment of the present disclosure also uses the time domain resource allocation field of the downlink control information to carry a second scheduling delay.
  • the second scheduling delay is used to indicate the time unit n to stop monitoring the physical downlink control channel, and does not need to be increased or only increased.
  • the 1-bit extra field reduces the bit overhead of the downlink control information and further optimizes the monitoring behavior of the physical downlink control channel.
  • FIG. 6 shows a schematic structural diagram of a channel monitoring indicating device provided by an exemplary embodiment of the present disclosure.
  • the indicating device for channel monitoring can be implemented as all or a part of the user equipment through software, hardware, and a combination of the two.
  • the indicating device for channel monitoring includes: a receiving module 610.
  • the receiving module 610 is configured to receive downlink control information, and the downlink control information is used to indicate whether to stop monitoring the physical downlink control channel and/or the duration of stopping monitoring the physical downlink control channel.
  • the downlink control information carries a first scheduling delay field, and the first scheduling delay field is used to indicate whether to stop monitoring the physical downlink control channel.
  • the device further includes: a first processing module; a first processing module, configured to: when the scheduling delay indicated by the first scheduling delay field is less than the limit value of the minimum scheduling delay , Stop monitoring the physical downlink control channel.
  • the processing module is further configured to stop monitoring the physical downlink control channel within n time units after receiving the downlink control information, where n is a value pre-configured by a higher layer or determined based on the downlink control information
  • the unit of time is the time slot or subframe or second or millisecond or the listening period of the physical downlink control channel or the listening timing of the physical downlink control channel.
  • n is the number of pre-configured units corresponding to the scheduling delay indicated by the first scheduling delay field; or, n is the number of units indicated by the designated field of the downlink control information .
  • the time domain resource allocation field of the downlink control information is used to indicate the length of time to stop monitoring the physical downlink control channel.
  • the device further includes: a second processing module; the second processing module is used to instruct to stop monitoring the physical downlink control channel when the instruction information or the downlink control information carries a bit At this time, stop monitoring the physical downlink control channel, and the indication information is used to indicate that the minimum scheduling delay is limited.
  • the time domain resource allocation field of the downlink control information carries a second scheduling delay, and the second scheduling delay is used to indicate that the duration of stopping monitoring the physical downlink control channel is n time units.
  • the device also includes: a third processing module; the third processing module is used to stop monitoring the physical downlink control channel within n time units after receiving the downlink control information, where n is an integer, and the time unit is a time slot or subframe or Seconds or milliseconds or the listening period of the physical downlink control channel or the listening timing of the physical downlink control channel.
  • n is the product of the second scheduling delay and the preset multiple value; or, n is a pre-configured number of units corresponding to the second scheduling delay.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used as an example.
  • the above functions can be allocated by different functional modules according to actual needs, i.e.
  • the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 7 shows a schematic structural diagram of a user equipment provided by an exemplary embodiment of the present disclosure.
  • the user equipment may be the user equipment 140 in the mobile communication system shown in FIG. 1.
  • the user equipment is a UE in an LTE system or a 5G system as an example for description.
  • the user equipment includes a processor 71, a receiver 72, a transmitter 73, a memory 74, and a bus 75.
  • the memory 74 is connected to the processor 71 through the bus 75.
  • the processor 71 includes one or more processing cores, and the processor 71 executes various functional applications and information processing by running software programs and modules.
  • the receiver 72 and the transmitter 73 may be implemented as a communication component, the communication component may be a communication chip, and the communication chip may include a receiving module, a transmitting module, a modem module, etc., which are used to modulate and/or demodulate information. , And receive or send the information via wireless signals.
  • the memory 74 may be used to store instructions executable by the processor 71.
  • the memory 74 can store at least one application module 76 with the described function.
  • the application module 76 may include: a receiving module 761.
  • the processor 71 is configured to execute the receiving module 761 to implement functions related to receiving steps executed by the user equipment in the foregoing method embodiments.
  • the application program module 76 may also include: a processing module.
  • the processor 71 is further configured to execute a processing module to implement the functions of the relevant processing steps executed by the user equipment in the foregoing method embodiments.
  • the memory 74 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static anytime access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Except for programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disks or optical disks.
  • SRAM static anytime access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable except for programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disks or optical disks.
  • the embodiments of the present disclosure also provide a user equipment, the user equipment includes: a processor; a memory for storing executable instructions of the processor; wherein, the processor is configured to: implement the execution of the user equipment in each of the foregoing method embodiments step.
  • the embodiments of the present disclosure also provide a non-volatile computer-readable storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the methods in the foregoing method embodiments are implemented.
  • the present disclosure may be a system, method and/or computer program product.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for enabling a processor to implement various aspects of the present disclosure.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Non-exhaustive list of computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon
  • the computer-readable storage medium used here is not interpreted as the instantaneous signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, light pulses through fiber optic cables), or through wires Transmission of electrical signals.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing/processing devices, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, optical fiber transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • the network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network, and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device .
  • the computer program instructions used to perform the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or in one or more programming languages.
  • Source code or object code written in any combination, the programming language includes object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as "C" language or similar programming languages.
  • Computer-readable program instructions can be executed entirely on the user's computer, partly on the user's computer, executed as a stand-alone software package, partly on the user's computer and partly executed on a remote computer, or entirely on the remote computer or server implement.
  • the remote computer can be connected to the user's computer through any kind of network-including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to connect to the user's computer) connect).
  • LAN local area network
  • WAN wide area network
  • an electronic circuit such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA), can be customized by using the status information of the computer-readable program instructions.
  • the computer-readable program instructions are executed to realize various aspects of the present disclosure.
  • These computer-readable program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine that makes these instructions when executed by the processor of the computer or other programmable data processing device , A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is produced. It is also possible to store these computer-readable program instructions in a computer-readable storage medium. These instructions make computers, programmable data processing apparatuses, and/or other devices work in a specific manner. Thus, the computer-readable medium storing the instructions includes An article of manufacture, which includes instructions for implementing various aspects of the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more components for realizing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or actions Or it can be realized by a combination of dedicated hardware and computer instructions.

Abstract

本公开涉及通信技术领域,尤其涉及一种信道监听的指示方法、装置及存储介质。所述方法包括:用户设备接收下行控制信息,所述下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听所述物理下行控制信道的时长。本公开实施例通过将指示物理下行控制信道监听行为切换的信息与当前的下行控制信息进行合并,完成物理下行控制信道监听状态的切换指示,进而使得用户设备根据下行控制信息的指示对物理下行控制信道进行监听或者停止监听,无需监听每个物理下行控制信道,降低了用户设备的功耗,优化了对物理下行控制信道的监听行为。

Description

信道监听的指示方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种信道监听的指示方法、装置及存储介质。
背景技术
基于包的数据流通常是突发性的,在一段时间内有数据传输,但在接下来的一段较长时间内没有数据传输。在没有数据传输的时候,用户设备(User Equipment,UE)可以通过停止监听物理下行控制信道(Physical Downlink Control Channel,PDCCH)来降低功耗,从而提升电池使用寿命。
相关技术中,提供了一种非连续接收(Discontinuous Reception,DRX)机制,DRX机制为处于无线资源控制(Radio Resource Control,RRC)连接态的用户设备配置一个非连续接收周期(英文:DRX cycle),使得用户设备在非连续接收周期的不接收时间段内,可以不接收物理下行控制信道。
但是,针对如何优化对物理下行控制信道监听行为的指示,相关技术中尚未提供一种合适的解决方案。
发明内容
有鉴于此,本公开提出了一种信道监听的指示方法、装置及存储介质。所述技术方案包括:
根据本公开的一方面,提供了一种信道监听的指示方法,用于用户设备中,所述方法包括:
接收下行控制信息(Downlink Control Information,DCI),所述下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听所述物理下行控制信道的时长。
在一种可能的实现方式中,所述下行控制信息中携带有第一调度时延域,所述第一调度时延域用于指示是否停止监听所述物理下行控制信道。
在另一种可能的实现方式中,所述接收下行控制信息之后,还包括:
当所述第一调度时延域所指示的调度时延小于最小调度时延的限制值时,停止监听所述物理下行控制信道。
在另一种可能的实现方式中,所述停止监听所述物理下行控制信道,包括:
在接收到所述下行控制信息之后的n个时间单位内停止监听所述物理下行控制信道,所述n为高层 预配置的值或基于所述下行控制信息确定出的整数,所述时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。
在另一种可能的实现方式中,所述n为预配置的与所述第一调度时延域所指示的调度时延对应的单位个数;或者,所述n为所述下行控制信息的指定域所指示的单位个数。
在另一种可能的实现方式中,所述下行控制信息的时域资源分配域用于指示停止监听所述物理下行控制信道的时长。
在另一种可能的实现方式中,所述方法还包括:
当接收到指示信息或者所述下行控制信息中携带有用于指示停止监听所述物理下行控制信道的比特位时,停止监听所述物理下行控制信道,所述指示信息用于指示对最小调度时延进行限制。
在另一种可能的实现方式中,所述下行控制信息的时域资源分配域中携带有第二调度时延,所述第二调度时延用于指示停止监听所述物理下行控制信道的时长为n个时间单位,所述方法还包括:
在接收到所述下行控制信息之后的所述n个时间单位内停止监听所述物理下行控制信道,所述n为整数,所述时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。
在另一种可能的实现方式中,所述n为所述第二调度时延与预设倍数值的乘积;或者,所述n为预配置的与所述第二调度时延对应的单位个数。
根据本公开的另一方面,提供了一种信道监听的指示装置,用于用户设备中,所述装置包括:
接收模块,用于接收下行控制信息,所述下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听所述物理下行控制信道的时长。
在一种可能的实现方式中,所述下行控制信息中携带有第一调度时延域,所述第一调度时延域用于指示是否停止监听所述物理下行控制信道。
在另一种可能的实现方式中,所述装置,还包括:第一处理模块;所述第一处理模块,用于当所述第一调度时延域所指示的调度时延小于最小调度时延的限制值时,停止监听所述物理下行控制信道。
在另一种可能的实现方式中,所述处理模块,还用于在接收到所述下行控制信息之后的n个时间单位内停止监听所述物理下行控制信道,所述n为高层预配置的值或基于所述下行控制信息确定出的整数,所述时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。
在另一种可能的实现方式中,所述n为预配置的与所述第一调度时延域所指示的调度时延对应的单位个数;或者,所述n为所述下行控制信息的指定域所指示的单位个数。
在另一种可能的实现方式中,所述下行控制信息的时域资源分配域用于指示停止监听所述物理下行控制信道的时长。
在另一种可能的实现方式中,所述装置还包括:第二处理模块;所述第二处理模块,用于当接收到指示信息或者所述下行控制信息中携带有用于指示停止监听所述物理下行控制信道的比特位时,停止监听所述物理下行控制信道,所述指示信息用于指示对最小调度时延进行限制。
在另一种可能的实现方式中,所述下行控制信息的时域资源分配域中携带有第二调度时延,所述第二调度时延用于指示停止监听所述物理下行控制信道的时长为n个时间单位,所述装置还包括:第三处理模块;所述第三处理模块,用于在接收到所述下行控制信息之后的所述n个时间单位内停止监听所述物理下行控制信道,所述n为整数,所述时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。
在另一种可能的实现方式中,所述n为所述第二调度时延与预设倍数值的乘积;或者,所述n为预配置的与所述第二调度时延对应的单位个数。
根据本公开的另一方面,提供了一种用户设备,所述用户设备包括:处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:接收下行控制信息,所述下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听所述物理下行控制信道的时长。
根据本公开的另一方面,提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述的方法。
本公开实施例通过用户设备接收下行控制信息,下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听物理下行控制信道的时长;使得将指示物理下行控制信道监听行为切换的信息与当前的下行控制信息进行合并,完成物理下行控制信道监听状态的切换指示,进而使得用户设备根据下行控制信息的指示对物理下行控制信道进行监听或者停止监听,无需监听每个物理下行控制信道,降低了用户设备的功耗,优化了对物理下行控制信道的监听行为。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出了本公开一个示例性实施例提供的移动通信系统的结构示意图;
图2示出了本公开一个示例性实施例提供的信道监听的指示方法的流程图;
图3示出了本公开另一个示例性实施例提供的信道监听的指示方法的流程图;
图4示出了本公开另一个示例性实施例提供的信道监听的指示方法的流程图;
图5示出了本公开一个示例性实施例提供的信道监听的指示方法涉及的原理示意图;
图6示出了本公开一个示例性实施例提供的信道监听的指示装置的结构示意图;
图7示出了本公开一个示例性实施例提供的用户设备的结构示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
用户设备的电池寿命是衡量用户设备的一个重要指标。为此,5G系统引入了一些技术特征用于指示用户设备行为的切换,使得用户设备可以在适当的条件下进入一种省电状态以节省用户设备电能,这种状态的切换涉及到多种配置的改变,包括带宽单元(Bandwidth Part,BWP)的切换(比如,切换至较小的BWP),物理下行控制信道检测周期的切换(比如,切换至较大周期),跳过部分物理下行控制信道的监听(英文:PDCCH monitoring skipping)和采用最小调度间隔大于0的跨时隙调度(英文:cross-slot scheduling)等等,触发这些配置改变的信令可以由下行控制信息来承载。
针对如何优化对物理下行控制信道监听行为的指示,相关技术中尚未提供一种合适的解决方案。
为此,本公开实施例提供了一种信道监听的指示方法、装置及存储介质,本公开实施例通过用户设备接收下行控制信息,下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听物理下行控制信道的时长;使得将指示物理下行控制信道监听行为切换的信息与当前的下行控制信息进行合并,完成物理下行控制信道监听状态的切换指示,进而使得用户设备根据下行控制信息的指示对物理下行控制信道进行监听或者停止监听,无需监听每个物理下行控制信道,降低了用户设备的功耗,优化了对物理下行控制信道的监听行为。
请参考图1,其示出了本公开一个示例性实施例提供的移动通信系统的结构示意图。移动通信系统可以是LTE系统,还可以是5G系统,5G系统又称NR系统,还可以是5G的更下一代移动通信技术系统,本实施例对此不作限定。
可选的,该移动通信系统适用于不同的网络架构,包括但不限于中继网络架构、双链接架构、车联网(Vehicle to Everything,V2X)架构等。
在本公开实施例中,仅以该移动通信系统为NB-IoT系统为例进行说明。该移动通信系统包括:网络侧设备120和用户设备140。
网络侧设备120可以是基站(base station,BS),也可称为基站设备,是一种部署在无线接入网(Radio Access Network,RAN)用以提供无线通信功能的装置。例如,在2G网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS),3G网络中提供基站功能的设备包括节点B(NodeB),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在无线局域网络(wireless local area networks,WLAN)中提供基站功能的设备为接入点(access point,AP),在5G系统中的提供基站功能的设备为gNB,以及继续演进的节点B(ng-eNB),本公开实施例中的网络侧设备120还包括在未来新的通信系统中提供基站功能的设备等,本公开实施例对网络侧设备120的具体实现方式不加以限定。接入网设备还可以包括家庭基站(Home eNB,HeNB)、中继(Relay)、微微基站Pico等。
基站控制器是一种管理基站的装置,例如2G网络中的基站控制器(base station controller,BSC)、3G网络中的无线网络控制器(radio network controller,RNC)、还可以是未来新的通信系统中控制管理基站的装置。
网络侧设备120包含无线接入网的基站,还可以包含无线接入网的基站控制器,还可以包含核心 网侧的设备。
核心网可以是演进型分组核心网(evolved packet core,EPC)、5G核心网(5G Core Network),还可以是未来通信系统中的新型核心网。5G Core Network由一组设备组成,并实现移动性管理等功能的接入和移动性管理功能(Access and Mobility Management Function,AMF)、提供数据包路由转发和服务质量(Quality of Service,QoS)管理等功能的用户面功能(User Plane Function,UPF)、提供会话管理、IP地址分配和管理等功能的会话管理功能(Session Management Function,SMF)等。EPC可由提供移动性管理、网关选择等功能的MME、提供数据包转发等功能的服务网关(Serving Gateway,S-GW)Serving Gateway、提供终端地址分配、速率控制等功能的PDN网关(PDN Gateway,P-GW)组成。
网络侧设备120和用户设备140通过无线空口建立无线连接。可选的,该无线空口是基于5G标准的无线空口,比如该无线空口是NR;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口;或者,该无线空口也可以是基于4G标准(LTE系统)的无线空口。网络侧设备120可以通过无线连接接收用户设备140发送的上行数据。
用户设备140可以是指与网络侧设备120进行数据通信的设备。用户设备140可以经无线接入网与一个或多个核心网进行通信。用户设备140可以是各种形式的用户设备、接入终端设备、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端设备、移动设备、终端、终端设备(英文:terminal equipment)、无线通信设备、用户代理或用户装置。用户设备140还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等。图1中仅以示出的用户设备140为手机来举例说明,本实施例对用户设备140的类型不作限定。用户设备140可以通过与网络侧设备120之间的无线连接,接收网络侧设备120发送的下行数据。
需要说明的一点是,当图1所示的移动通信系统采用5G系统或5G的更下一代移动通信技术系统时,上述各个网元在5G系统或5G的更下一代移动通信技术系统中可能会具有不同的名称,但具有相同或相似的功能,本公开实施例对此不作限定。
需要说明的另一点是,在图1所示的移动通信系统中,可以包括多个网络侧设备120和/或多个用 户设备140,图1中以示出一个网络侧设备120和一个用户设备140来举例说明,但本公开实施例对此不作限定。
下面,采用几个示例性实施例对本公开实施例提供的信道监听的指示方法的进行介绍。
请参考图2,其示出了本公开一个示例性实施例提供的信道监听的指示方法的流程图,本实施例以该方法用于图1所示的用户设备中来举例说明。该方法包括以下几个步骤。
步骤201,接收下行控制信息,下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听物理下行控制信道的时长。
用户设备接收网络侧设备发送的下行控制信息,该下行控制信息用于指示物理下行控制信道监听行为的切换,即是否停止监听物理下行控制信道和/或停止监听物理下行控制信道的时长。
基于下行控制信息的方法中,可以通过在下行控制信息中增加数比特的方式指示物理下行控制信道监听行为的切换,但是下行控制信息的比特大小直接影响着小区的覆盖性能,对于当前已在进行或者已完成部分5G基站部署的运营商来说,直接在下行控制信息中增加多个比特指示域的方式并不可取,因此如何在不增加比特或尽可能少地增加比特的基础上来设计下行控制信息,以指示物理下行控制信道监听行为的切换是需要解决的问题。针对上述问题,本公开实施例中,将指示物理下行控制信道监听行为切换的信息与当前下行控制信息中已有的信息域进行合并,在不增加下行控制信息比特数或仅增加1比特的情况下,完成物理下行控制信道监听行为的切换指示,进而使得用户设备根据业务状态进入到对应合适的节能状态。
当接收到的下行控制信息用于指示停止监听物理下行控制信道时,用户设备停止监听物理下行控制信道,即将物理下行控制信道监听行为切换为跳过部分物理下行控制信道的监听。
用户停止监听物理下行控制信道,包括:用户设备在指定时间段内不对物理下行控制信道进行接收和盲检。
在一个示意性的例子中,以物理下行控制信道周期为1个时隙为例,若用户设备在时隙m收到下行控制信息,且该下行控制信息用于指示停止监听物理下行控制信道且停止监听物理下行控制信道的时长为3个时隙,则用户设备将不会对时隙m+1至m+3中的物理下行控制信道进行接收和盲检,到达时隙m+4时重新开始接收物理下行控制信道。通过这种方式,网络侧设备可以让用户设备在指定时间段内没有数据调度时进入不接收物理下行控制信道的休眠状态,以节省用户设备的电能。
综上所述,本公开实施例通过用户设备接收下行控制信息,下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听物理下行控制信道的时长;使得将指示物理下行控制信道监听行为切换的信息与当前的下行控制信息进行合并,完成物理下行控制信道监听状态的切换指示,进而使得用户设备根据下行控制信息的指示对物理下行控制信道进行监听或者停止监听,无需监听每个物理下行控制信道,降低了用户设备的功耗,优化了对物理下行控制信道的监听行为。
可选的,下行控制信息中携带有第一调度时延域,或者,下行控制信息的时域资源分配域中携带有第二调度时延;其中,第一调度时延域用于指示是否停止监听物理下行控制信道,第二调度时延用于指示停止监听物理下行控制信道的时长为n个时间单位,n为正整数。下面采用示例性的实施例对几种可能的信道监听的指示方式进行说明。
请参考图3,其示出了本公开另一个示例性实施例提供的信道监听的指示方法的流程图,本实施例以该方法用于图1所示的用户设备中来举例说明。该方法包括以下几个步骤。
步骤301,接收下行控制信息,下行控制信息中携带有第一调度时延域,第一调度时延域所指示的调度时延用于指示是否停止监听物理下行控制信道。
用户设备接收网络侧设备发送的携带有第一调度时延域的下行控制信息。其中,第一调度时延域所指示的调度时延用于指示是否停止监听物理下行控制信道。
第一调度时延域为物理下行控制信道与物理下行共享信道(Physical Downlink Share Channel,PDSCH)之间的时间间隔,第一调度时延域用于指示下行控制信息所调度的PDSCH所在的时域位置。比如,当第一调度时延域所指示的调度时延为1时,物理下行控制信道在时隙m,则对应的物理下行共享信道在时隙m+1中。
用户设备获取最小调度时延的限制值,从接收到的下行控制信息中获取第一调度时延域,判断第一调度时延域所指示的调度时延是否小于最小调度时延的限制值,若第一调度时延域所指示的调度时延小于最小调度时延的限制值,则执行步骤302;若第一调度时延域所指示的调度时延大于或者等于最小调度时延的限制值,则继续监听物理下行控制信道。
最小调度时延为时域资源分配域所能指示的最小K0值,最小K0值用于指示物理下行控制信道与物理下行共享信道直接的时隙距离。比如,物理下行控制信道在时隙n,物理下行共享信道在时隙n+K0。
用户设备获取最小调度时延的限制值,包括:用户设备接收网络侧设备发送的指示信息,该指示 信息中携带有最小调度时延的限制值。
可选的,最小调度时延的限制值包括一个数值或者两个数值。本实施例对此不加以限定。
步骤302,当第一调度时延域所指示的调度时延小于最小调度时延的限制值时,停止监听物理下行控制信道。
当第一调度时延域所指示的调度时延小于最小调度时延的限制值时,用户设备认为发生了错误情况,对应时域资源分配(Time Domain Resource Allocation,TDRA)域的码点为错误码点,用户设备开启跳过部分物理下行控制信道的监听机制,即停止监听物理下行控制信道。
可选的,用户设备在接收到下行控制信息之后的n个时间单位内停止监听物理下行控制信道,n为高层预配置的值或基于下行控制信息确定出的整数。
可选的,n为高层配置的一个或多个值。比如,高层预配置n的值为5。即当第一调度时延域所指示的调度时延小于最小调度时延的限制值时,用户设备在接收到下行控制信息之后的5个时间单位内停止监听物理下行控制信道。本实施例对n的具体取值不加以限定。
停止监听物理下行控制信道的时长为n个时间单位,时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。本实施例对此不加以限定。
在一种可能的实现方式中,n为预配置的与第一调度时延域所指示的调度时延对应的单位个数。
高层配置不同的错误码点用于指示不同的停止监听物理下行控制信道的时长。用户设备接收预配置的第一对应关系,并存储该第一对应关系,第一对应关系包括第一调度时延域所指示的调度时延与单位个数n之间的对应关系。
在一个示意性的例子中,高层预配置的第一对应关系如表一所示。最小调度时延K0 min的限制值为3,高层预配置第一调度时延域所指示的调度时延K0为0时对应的n为10,第一调度时延域所指示的调度时延K0为1时对应的n为20,时间单位为毫秒。在用户设备被指示K0 min为3之后,若接收到的下行控制信息中携带的K0为0,则用户设备在接收到该下行控制信息之后的10ms内停止监听物理下行控制信道;若接收到的下行控制信息中携带的K0为1,则用户设备在接收到该下行控制信息之后的20ms内停止监听物理下行控制信道。
表一
Figure PCTCN2021074463-appb-000001
Figure PCTCN2021074463-appb-000002
在另一种可能的实现方式中,n为下行控制信息的指定域所指示的单位个数。
由于第一调度时延域所指示的调度时延小于最小调度时延的限制值,表示这是一个错误码点,该下行控制信息不能用于数据调度,则该下行控制信息中的其它域可以用于指示停止监听物理下行控制信道的时长,即用于指示停止监听物理下行控制信道的单位个数n。
指定域为下行控制信息中不改变域的位置和长度的比特域,比如,指定域包括下行控制信息中频域资源的比特域或者剩余的比特域。
可选的,用户设备在n个时间单位内停止监听物理下行控制信道之后,重新开始监听物理下行控制信道。
综上所述,本公开实施例还通过接收携带有第一调度时延域的下行控制信息,当第一调度时延域所指示的调度时延小于最小调度时延的限制值时,停止监听物理下行控制信道;利用已引入的跨时隙调度的错误码点来指示是否停止监听物理下行控制信道,不需要增加额外域,降低了下行控制信息的比特开销的同时,进一步优化了对物理下行控制信道的监听行为。
请参考图4,其示出了本公开另一个示例性实施例提供的信道监听的指示方法的流程图,本实施例以该方法用于图1所示的用户设备中来举例说明。该方法包括以下几个步骤。
步骤401,接收下行控制信息,下行控制信息的时域资源分配域用于指示停止监听物理下行控制信道的时长。
用户设备接收下行控制信息,该下行控制信息的时域资源分配域用于指示停止监听物理下行控制信道的时长。
可选的,下行控制信息的时域资源分配域中携带有第二调度时延,第二调度时延用于指示停止监听物理下行控制信道的时间单位n。
第二调度时延为物理下行控制信道与PDSCH之间的时间间隔,第二调度时延用于指示下行控制信息所调度的PDSCH所在的时域位置。比如,当第二调度时延为1时,物理下行控制信道在时隙m,则 对应的PDSCH在时隙m+1中。
步骤402,在接收到下行控制信息之后的n个时间单位内停止监听物理下行控制信道,n为整数。
在本实施例中,停止监听物理下行控制信道的触发条件包括但不限于以下两种可能的实现方式。
在一种可能的实现方式中,当接收到指示信息时停止监听物理下行控制信道,指示信息用于指示对最小调度时延进行限制。
用户设备接收网络侧设备发送的用于指示最小调度时延的限制值的指示信息,即开启跳过部分物理下行控制信道的监听机制,即停止监听物理下行控制信道。
最小调度时延的限制值为最小调度时延的数值。最小调度时延的限制值包括一个数值或者两个数值。本实施例对此不加以限定。
在另一种可能的实现方式中,当下行控制信息中携带有用于指示停止监听物理下行控制信道的比特位时,停止监听物理下行控制信道。
当下行控制信息中携带有用于指示停止监听物理下行控制信道的一个比特位时,用户设备停止监听物理下行控制信道。
用户设备从下行控制信息中获取第二调度时延,根据第二调度时延确定停止监听物理下行控制信道的时长为n个时间单位。用户设备根据触发条件停止监听物理下行控制信道,即在接收到下行控制信息之后的n个时间单位内停止监听物理下行控制信道。
其中,停止监听物理下行控制信道的时长为n个时间单位,时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。本实施例对此不加以限定。
用户设备根据第二调度时延确定停止监听物理下行控制信道的单位个数n,包括但不限于以下几种可能的实现方式。
在一种可能的实现方式中,n为第二调度时延与预设倍数值的乘积。即用户设备确定第二调度时延与预设倍数值的乘积为单位个数n。
其中,预设倍数值由高层配置。停止监听物理下行控制信道的单位个数n与第二调度时延呈正相关关系。单位个数n与第二调度时延呈倍数关系,即单位个数n为第二调度时延的整数倍,整数倍为预设倍数值。本实施例对此不加以限定。
在一个示意性的例子中,单位个数n与第二调度时延K0的倍数关系如表二所示。其中,预设倍数值X为4,单位个数n的时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行 控制信道的监听时机。当K0为0时对应的n为0,当K0为1时对应的n为4,当K0为2时对应的n为8,当K0为4时对应的n为16。
表二
序号 K0 n(X=4)
0 0 0
1 1 4
2 2 8
3 4 16
在另一种可能的实现方式中,n为预配置的与第二调度时延对应的单位个数。即用户设备根据预配置的第二对应关系,将停止监听物理下行控制信道的时间单位的单位个数n确定为与第二调度时延对应的单位个数。其中,第二对应关系为预配置的第二调度时延与单位个数之间的对应关系。
可选的,第二对应关系中存在至少两个第二调度时延各自对应的单位个数是相同的。
在一个示意性的例子中,多个第二调度时延K0与多个单位个数n之间的对应关系如表三所示。其中,单位个数n的时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。当K0为0或1或2或4时对应的n为X,当K0为6或8或12或16时对应的n为Y。
表三
Figure PCTCN2021074463-appb-000003
在另一个示意性的例子中,多个第二调度时延K0与多个单位个数n之间的对应关系如表四所示。其中,单位个数n的时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。当K0为0或2或6或12时对应的n为X,当K0为1或4或8或16时对应的n为Y。
表四
序号 K0 n
0 0 X
1 1 Y
2 2 X
3 4 Y
4 6 X
5 8 Y
6 12 X
7 16 Y
可选的,第二对应关系包括多个第二调度时延与多个单位个数之间一一对应的关系。
在一个示意性的例子中,多个第二调度时延K0与多个单位个数n之间一一对应的关系如表五所示。其中,单位个数n的时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。当K0为0时对应的n为A,当K0为1时对应的n为B,当K0为2时对应的n为4,当K0为4时对应的n为D;当K0为6时对应的n为E,当K0为8时对应的n为F,当K0为12时对应的n为G,当K0为16时对应的n为H。
表五
序号 K0 n
0 0 A
1 1 B
2 2 4
3 4 D
4 6 E
5 8 F
6 12 G
7 16 H
用户设备在接收到下行控制信息之后的n个时间单位内停止监听物理下行控制信道。用户设备在n个时间单位内停止监听物理下行控制信道之后,重新开始监听物理下行控制信道。
在一个示意性的例子中,基于上述表五所示的对应关系,以n的时间单位为时隙为例,如图5所示,用户设备在时隙m接收到下行控制信息,该下行控制信息的时域资源分配域中携带的第二调度时延K0为2,该第二调度时延K0用于指示n为4,即停止监听PDCCH的时长为4个时隙。用户设备根据该下行控制信息,在时隙m+2上接收PDSCH,在时隙m+1至m+4内停止监听PDCCH,达到时隙m+5时重新开始监听PDCCH。
本公开实施例还通过利用下行控制信息的时域资源分配域中携带有第二调度时延,第二调度时延用于指示停止监听物理下行控制信道的时间单位n,不需要增加或仅增加1比特的额外域,降低了下行控制信息的比特开销的同时,进一步优化了对物理下行控制信道的监听行为。
以下为本公开实施例的装置实施例,对于装置实施例中未详细阐述的部分,可以参考上述方法实施例中公开的技术细节。
请参考图6,其示出了本公开一个示例性实施例提供的信道监听的指示装置的结构示意图。该信道监听的指示装置可以通过软件、硬件以及两者的组合实现成为用户设备的全部或一部分。该信道监听的指示装置包括:接收模块610。
接收模块610,用于接收下行控制信息,下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听物理下行控制信道的时长。
在一种可能的实现方式中,下行控制信息中携带有第一调度时延域,第一调度时延域用于指示是否停止监听物理下行控制信道。
在另一种可能的实现方式中,该装置,还包括:第一处理模块;第一处理模块,用于当第一调度 时延域所指示的调度时延小于最小调度时延的限制值时,停止监听物理下行控制信道。
在另一种可能的实现方式中,处理模块,还用于在接收到下行控制信息之后的n个时间单位内停止监听物理下行控制信道,n为高层预配置的值或基于下行控制信息确定出的整数,时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。
在另一种可能的实现方式中,n为预配置的与第一调度时延域所指示的调度时延对应的单位个数;或者,n为下行控制信息的指定域所指示的单位个数。
在另一种可能的实现方式中,下行控制信息的时域资源分配域用于指示停止监听物理下行控制信道的时长。
在另一种可能的实现方式中,该装置还包括:第二处理模块;第二处理模块,用于当接收到指示信息或者下行控制信息中携带有用于指示停止监听物理下行控制信道的比特位时,停止监听物理下行控制信道,指示信息用于指示对最小调度时延进行限制。
在另一种可能的实现方式中,下行控制信息的时域资源分配域中携带有第二调度时延,第二调度时延用于指示停止监听物理下行控制信道的时长为n个时间单位,该装置还包括:第三处理模块;第三处理模块,用于在接收到下行控制信息之后的n个时间单位内停止监听物理下行控制信道,n为整数,时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。
在另一种可能的实现方式中,n为第二调度时延与预设倍数值的乘积;或者,n为预配置的与第二调度时延对应的单位个数。
需要说明的是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图7,其示出了本公开一个示例性实施例提供的用户设备的结构示意图,该用户设备可以是图1所示的移动通信系统中的用户设备140。本实施例以用户设备为LTE系统或5G系统中的UE为例进行说明,该用户设备包括:处理器71、接收器72、发送器73、存储器74和总线75。存储器74通过总线75与处理器71相连。
处理器71包括一个或者一个以上处理核心,处理器71通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器72和发送器73可以实现为一个通信组件,该通信组件可以是通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制和/或解调,并通过无线信号接收或发送该信息。
存储器74可用于存储处理器71可执行指令。
存储器74可存储至少一个功能所述的应用程序模块76。应用程序模块76可以包括:接收模块761。处理器71用于执行接收模块761以实现上述各个方法实施例中由用户设备执行的有关接收步骤的功能。
应用程序模块76还可以包括:处理模块。处理器71还用于执行处理模块以实现上述各个方法实施例中由用户设备执行的有关处理步骤的功能。
此外,存储器74可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本公开实施例还提供了一种用户设备,用户设备包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为:实现上述各个方法实施例中由用户设备执行的步骤。
本公开实施例还提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,计算机程序指令被处理器执行时实现上述各个方法实施例中的方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线 电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在 计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (12)

  1. 一种信道监听的指示方法,其特征在于,用于用户设备中,所述方法包括:
    接收下行控制信息,所述下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听所述物理下行控制信道的时长。
  2. 根据权利要求1所述的方法,其特征在于,所述下行控制信息中携带有第一调度时延域,所述第一调度时延域用于指示是否停止监听所述物理下行控制信道。
  3. 根据权利要求2所述的方法,其特征在于,所述接收下行控制信息之后,还包括:
    当所述第一调度时延域所指示的调度时延小于最小调度时延的限制值时,停止监听所述物理下行控制信道。
  4. 根据权利要求3所述的方法,其特征在于,所述停止监听所述物理下行控制信道,包括:
    在接收到所述下行控制信息之后的n个时间单位内停止监听所述物理下行控制信道,所述n为高层预配置的值或基于所述下行控制信息确定出的整数,所述时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。
  5. 根据权利要求4所述的方法,其特征在于,
    所述n为预配置的与所述第一调度时延域所指示的调度时延对应的单位个数;或者,
    所述n为所述下行控制信息的指定域所指示的单位个数。
  6. 根据权利要求1所述的方法,其特征在于,所述下行控制信息的时域资源分配域用于指示停止监听所述物理下行控制信道的时长。
  7. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    当接收到指示信息或者所述下行控制信息中携带有用于指示停止监听所述物理下行控制信道的比特位时,停止监听所述物理下行控制信道,所述指示信息用于指示对最小调度时延进行限制。
  8. 根据权利要求7所述的方法,其特征在于,所述下行控制信息的时域资源分配域中携带有第二调度时延,所述第二调度时延用于指示停止监听所述物理下行控制信道的时长为n个时间单位,所述方法还包括:
    在接收到所述下行控制信息之后的所述n个时间单位内停止监听所述物理下行控制信道,所述n为整数,所述时间单位为时隙或子帧或秒或毫秒或物理下行控制信道的监听周期或物理下行控制信道的监听时机。
  9. 根据权利要求8所述的方法,其特征在于,
    所述n为所述第二调度时延与预设倍数值的乘积;或者,
    所述n为预配置的与所述第二调度时延对应的单位个数。
  10. 一种信道监听的指示装置,其特征在于,用于用户设备中,所述装置包括:
    接收模块,用于接收下行控制信息,所述下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听所述物理下行控制信道的时长。
  11. 一种用户设备,其特征在于,所述用户设备包括:处理器;用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收下行控制信息,所述下行控制信息用于指示是否停止监听物理下行控制信道和/或停止监听所述物理下行控制信道的时长。
  12. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至9中任意一项所述的方法。
PCT/CN2021/074463 2020-01-21 2021-01-29 信道监听的指示方法、装置及存储介质 WO2021148040A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010071411.5 2020-01-21
CN202010071411.5A CN111278096B (zh) 2020-01-21 2020-01-21 信道监听的指示方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021148040A1 true WO2021148040A1 (zh) 2021-07-29

Family

ID=71001248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074463 WO2021148040A1 (zh) 2020-01-21 2021-01-29 信道监听的指示方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN111278096B (zh)
WO (1) WO2021148040A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022023138A1 (en) * 2020-07-28 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Reducing power consumption for pdcch monitoring
WO2023185819A1 (zh) * 2022-03-28 2023-10-05 维沃移动通信有限公司 Pdcch监听方法、终端、网络侧设备及介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278096B (zh) * 2020-01-21 2023-07-04 展讯通信(上海)有限公司 信道监听的指示方法、装置及存储介质
CN114501489A (zh) * 2020-11-12 2022-05-13 维沃移动通信有限公司 节能指示方法、装置、设备及可读存储介质
CN114696970A (zh) * 2020-12-25 2022-07-01 展讯通信(上海)有限公司 指示物理下行共享信道监听方法及装置、介质
CN117812671A (zh) * 2022-09-23 2024-04-02 荣耀终端有限公司 非连续接收的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106604376A (zh) * 2016-12-20 2017-04-26 北京小米移动软件有限公司 信道监听控制方法、装置和用户终端
US20180077734A1 (en) * 2012-05-09 2018-03-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
CN109429258A (zh) * 2017-07-17 2019-03-05 中国移动通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN110278564A (zh) * 2014-01-28 2019-09-24 华为技术有限公司 信道监听方法及设备
CN110351898A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 非连续接收的通信方法、装置、通信设备和通信系统
CN111278096A (zh) * 2020-01-21 2020-06-12 展讯通信(上海)有限公司 信道监听的指示方法、装置及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017075787A1 (zh) * 2015-11-05 2017-05-11 华为技术有限公司 用户设备、接入网设备、上行控制信息的收发方法及装置
CN108633070A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 半静态资源调度方法、功率控制方法及相应用户设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180077734A1 (en) * 2012-05-09 2018-03-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
CN110278564A (zh) * 2014-01-28 2019-09-24 华为技术有限公司 信道监听方法及设备
CN106604376A (zh) * 2016-12-20 2017-04-26 北京小米移动软件有限公司 信道监听控制方法、装置和用户终端
CN109429258A (zh) * 2017-07-17 2019-03-05 中国移动通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN110351898A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 非连续接收的通信方法、装置、通信设备和通信系统
CN111278096A (zh) * 2020-01-21 2020-06-12 展讯通信(上海)有限公司 信道监听的指示方法、装置及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022023138A1 (en) * 2020-07-28 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Reducing power consumption for pdcch monitoring
WO2023185819A1 (zh) * 2022-03-28 2023-10-05 维沃移动通信有限公司 Pdcch监听方法、终端、网络侧设备及介质

Also Published As

Publication number Publication date
CN111278096B (zh) 2023-07-04
CN111278096A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2021148040A1 (zh) 信道监听的指示方法、装置及存储介质
WO2021128931A1 (zh) 跨载波调度方法、装置及存储介质
WO2021128932A1 (zh) 上行srs传输方法、装置及存储介质
CN111278028B (zh) 小区测量方法、装置及存储介质
WO2021036813A1 (zh) 数据传输方法、装置、设备及存储介质
WO2021082729A1 (zh) 资源控制方法、装置及存储介质
JP6698523B2 (ja) 混合フォーマットを使用するワイヤレス通信のための方法および装置
CN109150445B (zh) 一种下行控制信息发送与接收方法及设备
JP2022501904A (ja) ネットワークデバイスにおける方法、及び統合アクセスバックホールノードにおける方法
JP2017514371A (ja) 共有スペクトルにおける不連続受信(drx)認識キャリア感知適応送信(csat)
CN111314953B (zh) 寻呼消息的接收方法、装置及存储介质
TW202044882A (zh) 具有功率節省功能的波束管理電子設備和方法
JP2019536358A (ja) データ送信/受信装置、方法及び通信システム
CN112020881A (zh) 5g nr快速低功率模式
US20220174718A1 (en) Method, device, and storage medium for instructing minimum scheduling offset
CN111294899B (zh) 用于drx的不活动定时器控制方法及装置、存储介质、终端、基站
CN112385304B (zh) 用于不连续接收操作中的功率节省的系统和方法
WO2020243931A1 (zh) 调整pdcch监听周期的方法和设备
WO2018207102A1 (en) Methods and apparatuses for short discontinuous reception (sdrx) in a wireless communication network
KR102501134B1 (ko) 무선 통신들에서의 유연한 다운링크 제어 신호 모니터링
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
US10887827B2 (en) Communication message sending method and apparatus based on backoff duration
WO2023051265A1 (zh) 确定pdcch监听自适应行为的方法及装置
US11419054B2 (en) Energy savings on multihomed mobile devices using a dynamically adjusted inactivity timer
TWI813728B (zh) 一種訊號傳輸方法及適用該方法的裝置、網路設備及終端設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744329

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21744329

Country of ref document: EP

Kind code of ref document: A1