WO2021036753A1 - 天线及电子设备 - Google Patents

天线及电子设备 Download PDF

Info

Publication number
WO2021036753A1
WO2021036753A1 PCT/CN2020/107867 CN2020107867W WO2021036753A1 WO 2021036753 A1 WO2021036753 A1 WO 2021036753A1 CN 2020107867 W CN2020107867 W CN 2020107867W WO 2021036753 A1 WO2021036753 A1 WO 2021036753A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna body
section
point
electronic device
Prior art date
Application number
PCT/CN2020/107867
Other languages
English (en)
French (fr)
Inventor
王家明
薛亮
储嘉慧
尤佳庆
应李俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080058796.XA priority Critical patent/CN114258612A/zh
Priority to BR112022003337-0A priority patent/BR112022003337B1/pt
Priority to US17/637,370 priority patent/US20220278446A1/en
Priority to KR1020227007982A priority patent/KR102659469B1/ko
Priority to JP2022512425A priority patent/JP7336589B2/ja
Priority to EP20856523.4A priority patent/EP4016727A4/en
Publication of WO2021036753A1 publication Critical patent/WO2021036753A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • H01Q1/46Electric supply lines or communication lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • This application relates to the field of communication technology, and in particular to an antenna and an electronic device including the antenna.
  • the current design of antenna solutions for mobile phones and other electronic devices generally uses metal slits to achieve communication functions. That is, a plurality of spaced slots are arranged on the conductive frame, and the part between the adjacent slots forms the antenna body of the antenna.
  • slits are generally provided on opposite sides of the frame of the electronic device, so that the antenna mainly generates horizontal mode excitation or mainly vertical mode excitation, so that the horizontal mode excitation and the vertical mode excitation are unbalanced.
  • the present application provides an antenna and an electronic device, which aim to solve the imbalance of the horizontal mode excitation and the vertical mode excitation of the antenna, so that the antenna still has a better antenna radiation performance in a hand-held state.
  • this application provides an antenna.
  • the antenna includes an L-shaped antenna body, the antenna body includes a first section and a second section that intersects the first section; the antenna body includes feed points and ground points that are arranged at intervals, so The feeding point is used for connecting the radio frequency front end, the grounding point is used for grounding; the antenna body includes a first end and a second end that are away from each other, and the first end is the first section away from the first end.
  • One end of the second section is the end of the second section far away from the first section; the electrical length from the feeding point to the first end is greater than that from the feeding point to the The electrical length of the second end, the antenna body generates a quarter of the first wavelength resonance between the feeding point and the first end, and the antenna body is between the first end and the first end. A resonance of one-half of the second wavelength is generated between the second ends, and the first wavelength is greater than the second wavelength.
  • the antenna may be a frame antenna (that is, the frame of an electronic device is used as the antenna body), a flexible printed circuit (FPC) antenna form, a laser-direct-structuring (LDS) antenna form, or Microstrip antenna (Microstrip Disk Antenna, MDA) and other antenna forms.
  • FPC flexible printed circuit
  • LDS laser-direct-structuring
  • MDA Microstrip antenna
  • the antenna body may be a linear strip structure, and the antenna body is bent to form an L-shaped antenna body during use.
  • the antenna body produces a quarter of the first wavelength resonance between the feeding point and the first end, that is, the electrical length between the feeding point and the first end is about It is a quarter of the first wavelength, so that the antenna body can generate a quarter of the first wavelength resonance between the feeding point and the first end.
  • the antenna body generates a resonance of one-half of the second wavelength between the first end and the second end, that is, the electrical length between the first end and the second end is about two.
  • One-half of the second wavelength enables the antenna body to generate one-half of the second wavelength of resonance between the first end and the second end.
  • the first wavelength and the second wavelength are operating wavelengths of signals whose radiation frequencies are in the same frequency band (such as B28, B5, B8, etc.) under the LTE standard.
  • the section with a longer electrical length (the feeding The electrical length of the section between the point and the first end) is about one-quarter of the wavelength, so that the resonance between the feeding point and the first end generates one-fourth of the second wavelength.
  • the resonance of a quarter of the second wavelength in the embodiment of the present application can have a larger radiation aperture, so that the antenna has better radiation performance.
  • the resonance of a quarter of the second wavelength generated by the antenna body between the feeding point and the first end can generate a mode excitation in a direction perpendicular to the side where the first end is located.
  • the first end is the end of the first section away from the second section, and in some embodiments, the direction of the first section is in the horizontal direction or the longitudinal direction, that is, the four sides of the antenna.
  • the resonance of one part of the second wavelength can generate transverse mode excitation or longitudinal mode excitation. Since the resonance of one-half of the second wavelength is formed between the first end and the second end, and the antenna body is L-shaped, it can generate mode excitations perpendicular to the first section direction and perpendicular to the second section.
  • the mode excitation in the section direction in some embodiments, can generate the mode excitation in the lateral direction and the mode excitation in the longitudinal direction, and then can help to enhance the mode excitation generated by the resonance of a quarter of the second wavelength, so that the antenna
  • the horizontal mode excitation and the vertical mode excitation can be more balanced, and the antenna still has better antenna radiation performance in the hand-held state.
  • the antenna body resonance of the present application can generate a quarter of the second wavelength resonance, it can also generate a half of the second wavelength resonance, and pass the half of the second wavelength resonance. It can enhance the mode excitation generated by a quarter of the second wavelength resonance and the mode excitation in the other direction, so that the lateral mode excitation and the longitudinal mode excitation of the antenna are more balanced.
  • mode excitation means that the antenna produces different modes after adding port excitation to the antenna. It is manifested as the distribution of different characteristic currents excited on the antenna ground.
  • the resonance of a quarter of the second wavelength of the antenna produces a mode excitation perpendicular to the side where the first end is located, that is, the main flow direction of the characteristic current generated by the excitation on the ground of the antenna is perpendicular to The direction on the side where the first end is located.
  • the longitudinal mode excitation is mainly generated; when the direction on the side where the first end is located is the longitudinal direction, the transverse mode excitation is mainly generated;
  • One-half of the second wavelength resonance produces a mode excitation perpendicular to the direction of the first section and a mode excitation perpendicular to the direction of the second section, that is, the main flow direction of the characteristic current generated by the excitation on the antenna ground is perpendicular to the first section.
  • the first wavelength is greater than the second wavelength, that is, the frequency of the resonance generated between the feeding point and the first end is smaller than the frequency between the first end and the second end.
  • the difference between the frequency of the resonance generated between the feeding point and the first end and the frequency of the resonance generated between the first end and the second end is between 50 MHz and 200 MHz. Therefore, the fusion degree between the resonance of one-quarter of the first wavelength and the resonance of one-half of the second wavelength is better, so that the antenna can have good radiation in the free state and in the hand-held state. performance.
  • the antenna includes a first switching circuit, a first connection point is provided on the antenna body, and the first connection point is located at the feeding point and the ground point away from the second end. Side; one end of the first switching circuit is connected to the first connection point, and the other end is grounded; the first switching circuit is used to change the electrical length from the feeding point to the first end.
  • the first switching circuit is connected to the first connection point, that is, the first switching circuit is connected to the antenna body through the first connection point, so that the feeding point can be changed to the The electrical length of the first end is changed, and the electrical length from the first end to the second end is changed, thereby changing the working frequency of a quarter of the resonance of the first wavelength and a half of the resonance of the second wavelength.
  • the first connection point may also be located on the side of the feeding point and the grounding point away from the first end, thereby changing the electrical length from the feeding point to the second end, Changing the electrical length from the first end to the second end, thereby changing a half of the resonant working frequency of the second wavelength.
  • the antenna includes a second switching circuit
  • the antenna body is further provided with a second connection point
  • the feed point and the ground point are located between the first connection point and the second connection point.
  • One end of the second switching circuit is connected to the second connection point, and the other end is grounded; the second switching circuit is used to change the electrical length from the feeding point to the second end.
  • the second switching circuit is connected to the second connection point, that is, the second switching circuit is connected to the antenna body through the second connection point to change the feeding point to The electrical length of the second end.
  • the first switching circuit changes the electrical length from the feeding point to the first end, thereby changing a quarter of the working frequency of the resonance of the first wavelength, and the second switching circuit is switched with the first
  • the circuit is matched, so that the electrical length of the antenna body (that is, the electrical length from the first end to the second end) is changed, thereby changing a half of the resonant working frequency of the second wavelength.
  • the position of the first switching circuit and the position of the second switching circuit can be interchanged.
  • the first switching circuit includes a first switching switch and a plurality of different first tuning elements grounded, and the first switching circuit is switchably connected to the different first tuning elements to change all the first tuning elements.
  • the first tuning elements connected to the antenna body are different.
  • the different first tuning elements can be different types of tuning elements, such as capacitors, inductors, or resistors, etc.; they can also be the same types of tuning elements with different specifications and sizes.
  • each tuning element is an inductor, but each The inductance value of the tuning element is different.
  • the electrical length from the first end to the second end of the antenna body and the electrical length from the feeding point to the first end are changed, thereby adjusting the quarter generated by the antenna body
  • the working frequency of the resonance of the first wavelength and one-half of the resonance of the second wavelength is changed.
  • the first switching circuit includes a first switching switch and a plurality of different first tuning elements that are grounded, and the second switching circuit includes a second switching switch and a plurality of different second tuning elements that are grounded , A plurality of the first tuning elements correspond to a plurality of the second tuning elements; when the first switch is switchably connected to different first tuning elements, the second switch can be switched ⁇ is connected to a second tuning element corresponding to the first tuning element connected to the first switch.
  • the different second tuning elements can be different types of tuning elements, such as capacitors, inductors, or resistors, etc.; they can also be the same types of tuning elements with different specifications and sizes.
  • each tuning element is an inductor, but each The inductance value of the tuning element is different.
  • the second switch when the first switch is switchably connected to different first tuning elements, the second switch is switchably connected to the first tuning element connected to the first switch Corresponding to the second tuning element, the size of the first tuning element and the second tuning element connected to the antenna body is changed to change the feeding point to the first end and the first end to the second end
  • the electrical length of the antenna body can be adjusted to change the working frequency of one-fourth of the first wavelength resonance and one-half of the second wavelength resonance generated by the antenna body.
  • the antenna body since the second tuning element connected to the second switch corresponds to the first tuning element connected to the first switch, the antenna body produces a quarter of the first wavelength resonance and half of the second
  • the working frequency range of the resonance of the wavelength is always maintained between 50MHz and 200MHz, so that the fusion between the resonance of one-quarter of the first wavelength and the resonance of one-half of the second wavelength is better, so that the antenna It has good radiation performance in both free state and hand-held state.
  • the first switch includes a plurality of first stationary ends and a first movable end switchably connected to the plurality of first stationary ends, and the first movable end is connected to the first connection Point, each of the first stationary ends is connected to one of the first tuning elements;
  • the second switch includes a plurality of second stationary ends and a second switch connected to the plurality of second stationary ends. The moving end, the second moving end is connected to the second connection point, and each of the second fixed ends is connected to one of the second tuning elements.
  • the first moving end is switchably connected to different first fixed ends, so that the first tuning element connected to the different first fixed ends is connected to the antenna body;
  • the second moving end is switchable Is connected to a different second fixed end, so that the second tuning element connected to the different second fixed end is connected to the antenna body.
  • the first switch may be a single-pole multi-throw switch or a multi-pole multi-throw switch.
  • the first switch When the first switch is a single-pole multi-throw switch, there is one first movable end, and one first movable end is switchably connected to a plurality of first fixed ends; when the first switch is a multi-pole multi-throw switch, There are multiple first moving ends.
  • the number of the first moving ends is the same as the number of the first stationary ends, and the plurality of first moving ends corresponds to the plurality of first stationary ends in a one-to-one correspondence. Each first moving end can be connected to or disconnected from its corresponding first fixed end.
  • the first tuning element or the second tuning element is obtained by connecting any one or more of capacitors, inductors, and resistors in parallel or in series.
  • a third tuning element is connected between the ground point and the ground position of the ground point, and the third tuning element is used to adjust the electrical length of the antenna body.
  • a third tuning element is connected between the ground point and the ground position, so that the electrical length from the first end to the second end and the electrical length from the feeding point to the first end are changed, thereby adjusting the first end of the antenna body.
  • the resonance generated from one end to the second end and the resonance generated from the feeding point to the first end to obtain the required resonant mode (such as the resonance of a quarter of the first wavelength and half of the resonance of some embodiments of the present application)
  • the length of the first side is greater than the length of the second side, and the distance from the first slit to the second side is greater than the distance from the second slit to the first side.
  • the antenna body includes a first section and a second section that intersect each other.
  • the first section is the section from the first slot of the first side to the section of the second side
  • the second section is the first section.
  • the shaped antenna makes the antenna layout on the frame more reasonable.
  • the distance from the first slot to the second side is greater than or equal to 90mm, which can avoid holding the first slot when holding the electronic device to a certain extent, so that the antenna can still have Better radiation performance.
  • the feeding point is located on the first side. Since in some embodiments, the length of the first section of the antenna body is greater than the length of the second section of the antenna body, the feeding point being located on the first side means that the antenna body is located on the first section. Since the length of the first section of the antenna body is greater than the length of the second section of the antenna body, in some embodiments, the physical length from the feeding point to the first end is greater than the physical length from the feeding point to the second end.
  • this application provides an electronic device.
  • the electronic device includes a conductive frame, a radio frequency front end, and the antenna.
  • the frame includes a first side and a second side intersecting the first side.
  • the first side is provided with a first gap.
  • a second slot is provided on the second side, the part of the frame located between the first slot and the second slot forms the antenna body of the antenna, and the first slot of the frame extends to all
  • the section between the second side is the first section of the antenna body, and the section between the second slot of the frame and the first side is the second section of the antenna body
  • the radio frequency front end is connected to the feed point of the antenna body for feeding radio frequency signals to the antenna body or receiving radio frequency signals transmitted from the antenna body.
  • the first side of the electronic device is the longitudinal direction
  • the second side is the lateral direction
  • the first side of the electronic device is the lateral direction
  • the second side is the longitudinal direction.
  • the second slit of the frame extends to the The section between the first side is the second section of the antenna body.
  • a quarter of the second wavelength resonance of the antenna can generate excitation in the transverse direction or the longitudinal direction, and half of the antenna
  • the resonance of the second wavelength of the first wavelength can generate lateral and longitudinal excitations, so that the lateral and longitudinal mode excitations of the antenna are stronger, and the lateral and longitudinal mode excitations of the antenna are more balanced, so as to include the When the electronic equipment of the antenna is in the free state (FS) and in the hand-held state, the antenna can have better radiation performance.
  • using a part of the frame between the first slot and the second slot as the antenna body can reduce the volume occupied by the antenna, simplify the structure of the electronic device, and reduce the manufacturing process.
  • this application provides an electronic device.
  • the electronic device includes an insulated frame, a radio frequency front end, and the antenna.
  • the frame includes a first side and a second side that intersects the first side. A first section of the antenna abuts on the first side. The second section of the antenna is set against the second side; the radio frequency front end is connected to the feed point of the antenna body for feeding radio frequency signals to the antenna body or receiving from The radio frequency signal transmitted from the antenna body.
  • the first side of the electronic device is the longitudinal direction, and the second side is the lateral direction; or, the first side of the electronic device is the lateral direction, and the second side is the longitudinal direction.
  • the first side of the electronic device is the longitudinal direction, and the second side is the lateral direction; or, the first side of the electronic device is the lateral direction, and the second side is the longitudinal direction.
  • a quarter of the antenna is The resonance of the second wavelength can generate lateral excitation or longitudinal excitation, and the resonance of one half of the second wavelength of the antenna can generate lateral excitation and longitudinal excitation, so that the lateral mode excitation and the longitudinal mode excitation of the antenna can be generated. Both are strong, and the horizontal mode excitation and the vertical mode excitation of the antenna are relatively balanced, so that when the electronic device including the antenna is in a free state (FS) and a hand-held state, the antenna can have better radiation performance.
  • FS free state
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of an antenna according to an embodiment of the application.
  • FIG. 3 is a schematic diagram of the internal structure of the electronic device of the embodiment shown in FIG. 1 of this application;
  • Figure 4 is a schematic diagram of the internal structure of another electronic device
  • FIG. 5 is a schematic diagram of a holding state of the electronic device, the electronic device is in a vertical screen state;
  • Fig. 6 is a graph showing the return loss coefficient (S11) of the antenna of the electronic device shown in Fig. 3 in different states;
  • FIG. 7 is a simulation diagram of current and radiation direction when the antenna of the electronic device shown in FIG. 3 is in a free state
  • FIG. 8 is a radiation efficiency diagram of the antenna of the electronic device shown in FIG. 3;
  • FIG. 9 is a curve diagram of the return loss coefficient (S11) of the antenna of another electronic device of the present application.
  • FIG. 10 shows a system efficiency diagram of the antenna characterized in FIG. 9;
  • FIG. 11 is a schematic diagram of another holding state of the electronic device, the electronic device is in a horizontal screen state;
  • FIG. 12 shows a system efficiency diagram and a radiation efficiency diagram of the antenna of an example structure of the electronic device shown in FIG. 3 in a free state and a hand-held state;
  • FIG. 13 is an efficiency diagram and a radiation efficiency diagram of the antenna system of the electronic device shown in FIG. 3 in different states;
  • FIG. 14 is a schematic structural diagram of an antenna according to another embodiment
  • Fig. 15a is a schematic structural diagram of an antenna according to another embodiment
  • FIG. 15b is a schematic structural diagram of an antenna according to another embodiment
  • FIG. 16 is a schematic structural diagram of an antenna according to another embodiment
  • Fig. 17 is a return loss diagram of the antenna shown in Fig. 16 when the movable ends of the change-over switch are respectively switched and connected to three different tuning elements;
  • FIG. 18 is a diagram of system efficiency and radiation efficiency when the movable ends of the change-over switch of the antenna shown in FIG. 16 are switched and connected to three different tuning elements.
  • the present application provides an electronic device.
  • the electronic device includes an antenna for communicating with the outside world.
  • the antenna can have a good working effect, avoiding the antenna when holding the electronic device In particular, it can avoid the influence of the handheld electronic device on the low-band (LB) signal transmission of the antenna.
  • the frequency of the low-frequency signal of the antenna is generally between 699 MHz and 960 MHz.
  • the electronic device may be a portable electronic device or other suitable electronic device.
  • the electronic device may be a notebook computer, a tablet computer, a smaller device, such as a mobile phone, a watch, a pendant device or other wearable or micro devices, a cell phone, a media player, etc.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 according to an embodiment of the application.
  • the electronic device 100 is a mobile phone.
  • the electronic device 100 includes a frame 10 and a display screen 20.
  • the frame 10 is arranged around the display screen 20.
  • the frame 10 includes two oppositely arranged first sides 11 and two second sides 12 intersecting the two first sides 11, and the two first sides 11 and the two second sides 12 are connected end to end to form a square frame 10 .
  • the electronic device 100 has a square plate structure, that is, the frame 10 is square.
  • the frame 10 has chamfered corners, so that the frame 10 has a more beautiful effect.
  • the extension direction of the second side 12 is the transverse direction (X direction shown in the figure), and the extension direction of the first side 11 is the longitudinal direction (Y direction shown in the figure).
  • the length of the first side 11 is greater than the length of the second side 12.
  • the extension directions of the first side 11 and the second side 12 can be changed, and the lengths of the first side 11 and the second side 12 can also be changed, and there is no specific limitation again.
  • the extending direction of the first side 11 may be a transverse direction
  • the extending direction of the second side 12 may be a longitudinal direction.
  • the length of the first side 11 may also be less than the length of the second side 12.
  • the frame 10 may be formed of conductive materials such as metals, or non-conductive materials such as plastics and resins.
  • the display screen 20 is used to display images, videos, and the like.
  • the display screen 20 may be a flexible display screen or a rigid display screen.
  • the display screen 20 may be an organic light-emitting diode (OLED) display, an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (AMOLED).
  • OLED organic light-emitting diode
  • AMOLED active-matrix organic light-emitting diode
  • Display mini organic light-emitting diode display, micro organic light-emitting diode display, micro organic light-emitting diode display, quantum dot light-emitting diode (Quantum dot light emitting diodes, QLED) display, liquid crystal display (Liquid Crystal Display, LCD).
  • the electronic device 100 further includes an antenna 40 and a radio frequency front end 50.
  • the antenna 40 includes an antenna body 41, which is used to radiate radio frequency signals to the outside or receive radio frequency signals from the outside, so that the electronic device 100 can communicate with the outside world through the antenna body 41.
  • the radio frequency front end 50 is connected to the antenna body 41 for feeding radio frequency signals to the antenna body 41 or receiving external radio frequency signals received by the antenna body 41.
  • the radio frequency front end 50 includes a transmitting path and a receiving path.
  • the transmitting path includes power amplifiers, filters and other devices.
  • the signals are processed by power amplifiers, filters and other devices to perform power amplification, filtering, etc., and then transmitted to the antenna body 41, and transmitted to the outside through the antenna body 41;
  • the receiving path includes low noise amplifiers , Filters and other devices, through low-noise amplifiers, filters and other devices, the external signal received by the antenna body 41 is subjected to low-noise amplification, filtering, etc., and then transmitted to the radio frequency chip, so that the electronic device 100 is realized through the radio frequency front end 50 and the antenna 40 Communication with the outside world.
  • the antenna body 41 has an L-shaped structure and includes a first section 411 and a second section 412 intersecting the first section 411.
  • the end of the first section 411 away from the second section 412 is the first end A
  • the end of the second section 412 away from the first section 411 is the second end B.
  • the first end A and the second end B can be interchanged.
  • the end of the second section 412 away from the first section 411 is the first end A
  • the end of the first section 411 away from the second section 412 is the second end B.
  • the antenna body 41 includes a feeding point 413 and a grounding point 414 arranged at intervals.
  • the grounding point 414 may be located between the feeding point 413 and the first end A, or between the feeding point 413 and the second end B.
  • the feed point 413 is used for electrical connection with the radio frequency front end 50 so that the signal generated by the radio frequency front end 50 can be transmitted to the antenna body 41 through the feed point 413 and transmitted to the outside through the antenna body 41.
  • the external signal received by the antenna body 41 is transmitted to the radio frequency front end 50 through the feeding point 413.
  • the feeding point 413 in this application is not an actual point, and the position where the radio frequency front end 50 is connected to the antenna body 41 is the feeding point 413 referred to in this application.
  • the grounding point 414 is grounded. By adjusting the position of the grounding point 414, the electrical length of the antenna body 41 can be adjusted. Among them, the change of the electrical length can change the resonant frequency of the antenna body 41.
  • the grounding point 414 is grounded by a grounding element such as a grounding spring sheet or a grounding wire. One end of the grounding member is connected to the ground point 414 of the antenna main body 41, and the other end is grounded, so that the grounding of the ground point 414 is realized. It should be noted that the grounding point 414 in the present application is not an actual point, and the location where a grounding piece such as a grounding elastic piece or a grounding wire is connected to the antenna body 41 is the grounding point 414.
  • the electrical length of the antenna body 41 mentioned in this application can be measured in a variety of ways.
  • the electrical length of the antenna body 41 can be measured by a passive test method. Specifically, the antenna is made into a fixture, and then the first end A and the second end B of the antenna body 41 are respectively sealed with copper, and the changes in the return loss graph of the antenna measured at different times can be observed to determine the antenna The electrical length from the first end A to the second end B of the body 41 and the electrical length from the feeding point 413 to the first end A or the second end B.
  • FIG. 3 is a schematic diagram of the internal structure of the electronic device 100 shown in FIG. 1.
  • the electronic device 100 further includes a middle frame 30, the display screen 20 and the middle frame 30 are stacked and arranged, and the frame 10 is arranged around the middle frame 30.
  • the middle frame 30 is made of conductive materials (such as metal materials) such as metal, and the middle frame 30 is grounded.
  • the frame 10 is made of conductive material, at least a part of the frame 10 can be electrically connected to the middle frame 30 to realize the grounding of the frame 10 through the middle frame 30.
  • the electronic device 100 may not have the middle frame 30, and the frame 10 may be connected to other grounding positions through a grounding member for grounding.
  • the frame 10 is made of a metal material, and a part of the frame 10 can be used as the antenna body 41, so that the space occupied by the antenna 40 can be reduced.
  • a first slit 111 is provided on a first side 11
  • a second slit 121 is provided on a second side 12
  • the frame 10 between the first slit 111 and the second slit 121 is formed
  • the antenna body 41 of this embodiment A part of the first side 11 between the first slot 111 and the second side 12 is the first section 411 of the antenna body 41, and a part of the second side 12 between the second slot 121 and the first side 11 is the antenna body The second section 412 of 41.
  • the antenna body 41 is electrically isolated from other parts of the frame 10 except the antenna body 41 through the first slot 111 and the second slot 121. In addition, there is a gap 42 between the antenna body 41 and the middle frame 30, so as to ensure that the antenna body 41 has a good clearance environment, so that the antenna 40 has a good signal transmission function.
  • other parts of the frame 10 except for the antenna body 41 may be connected to the middle frame 30 and formed integrally. It is understandable that when other parts of the frame 10 except the antenna body 41 are used as the antenna body of other antennas of the electronic device (such as WIFI antennas, GPS antennas, etc.), the other parts of the frame 10 except the antenna body are also connected to the middle frame 30. There is a gap 42 between them to ensure that the antenna has a good clearance environment.
  • the antenna body 41 includes a first end A and a second end B.
  • the end surface of the first end A faces the first gap 111
  • the end surface of the second end B faces the second gap 121.
  • the first end A is located in the longitudinal direction of the electronic device 100
  • the second end B is located in the lateral direction of the electronic device 100. It can be understood that when the extension direction of the first side 11 of the antenna body A is the transverse direction and the extension direction of the second side 12 is the longitudinal direction, the first end A whose end face faces the first slot 111 is located in the transverse direction, and the end face The second end B facing the second slit 121 is arranged in the longitudinal direction.
  • the distance from the first slit 111 to the second side 12 and the distance from the second slit 121 to the first side 11 are not specifically limited. In some embodiments, the distance between the first gap 111 and the second side 12 or the distance between the second gap 121 and the first side 11 is greater than 90 mm, which can avoid holding the first gap 111 or the first gap 111 or the first gap when holding the electronic device to a certain extent.
  • the two slots 121 enable the antenna 40 to still have better radiation performance in the hand-held state.
  • the length of the first side 11 is greater than the length of the second side 12, and the distance from the first slit 111 to the second side 12 is greater than the distance from the second slit 121 to the first side, that is, the length of the first section 411 It is greater than the length of the second section 412. Since the shorter second section 412 of the antenna body 41 is located on the shorter second side 12 of the frame 10, the longer first section 411 of the antenna body 41 is located on the longer first side 11 of the frame 10, so that More L-shaped antennas are arranged on the frame 10, so that the antenna layout on the frame 10 is more reasonable.
  • the first gap 111 and the second gap 121 may be filled with a dielectric material to further enhance the electrical isolation effect of the antenna body 41 from other parts of the frame 10 except the antenna 40 body.
  • the frame 10 of the electronic device 100 when the frame 10 of the electronic device 100 is made of a non-conductive material, the frame 10 cannot serve as the antenna body 41.
  • the antenna body 41 is located in the electronic device 100.
  • the antenna body 41 is arranged against the frame 10 to minimize the volume occupied by the antenna 40 and to make the antenna 40 closer to the outside of the electronic device 100 to achieve a better signal transmission effect.
  • the provision of the antenna body 41 against the frame 10 in this application means that the antenna body 41 can be arranged close to the frame 10, or can be arranged close to the frame 10, that is, there can be a certain distance between the antenna body 41 and the frame 10. The tiny gap.
  • the frame 10 does not need to be provided with the first slot 111 and the second slot 121, and the radio frequency signal output or received by the antenna body 41 can be transmitted through the frame 10, thereby avoiding the frame 10 from restricting the transmission of the antenna 40 signal .
  • the antenna 40 may be in the form of a flexible printed circuit (FPC) antenna, a laser-direct-structuring (LDS) antenna form, or a microstrip disk antenna (MDA) or other antenna form .
  • FPC flexible printed circuit
  • LDS laser-direct-structuring
  • MDA microstrip disk antenna
  • the antenna body 41 and the middle frame 30 are connected through the ground spring 44. Since the middle frame 30 is grounded, the grounding point 414 is grounded through the grounding elastic piece 44. Specifically, one end of the ground elastic piece 44 is connected to the antenna body 41, and the other end is connected to the middle frame 30. The position where the ground spring 44 is connected to the antenna body 41 is the ground point 414 of the antenna body 41.
  • the antenna body 41 and the radio frequency front end 50 are connected through the feed spring 43. Specifically, one end of the feeding spring 43 is connected to the antenna body 41 and the other end is connected to the radio frequency front end 50.
  • the position where the feeding spring 43 is connected to the antenna body 41 is the feeding point 413 of the antenna body 41. It is understandable that in some other embodiments of the present application, the antenna body 41 may be connected to the middle frame 30 through other structures such as connecting leads, or may be connected to the radio frequency front end 50 through other structures such as connecting leads. Make specific restrictions.
  • the electrical length from the feeding point 413 to the first end A is greater than the electrical length from the feeding point 413 to the second end B, and the electrical length from the feeding point 413 to the first end A is about one-quarter
  • the section between the feeding point 413 of the antenna body 10 and the first end A can generate a quarter of the first wavelength of resonance.
  • a quarter of the resonance of the first wavelength generated in the section between the feeding point 413 of the antenna body 41 and the first end A can excite the mode excitation in the direction perpendicular to the first end A.
  • the first wavelength is a quarter of the resonant working wavelength of the first wavelength. For example, in the embodiment shown in FIG.
  • the extending direction of the first side 11 is the longitudinal direction (the Y direction in the figure), and the end surface of the first end A faces the first gap 111 on the first side 11, that is, the first end A Located in the longitudinal direction.
  • the resonance of a quarter of the first wavelength generated between the feeding point 413 of the antenna body 41 and the first end A will be excited to generate a transverse mode excitation.
  • the end surface of the first end A faces the first gap 111 on the first side 11, that is, the first end A is located in the transverse direction on.
  • a quarter of the resonance of the first wavelength generated in the section between the feeding point 413 and the first end A will be excited to generate longitudinal mode excitation.
  • the section with a longer electrical length (that is, the feeding point 413 to the first end B)
  • the section between one end A) is about a quarter of the first wavelength to generate a quarter of the first wavelength resonance, so that the quarter of the first wavelength resonance can have a larger radiation Aperture, so that the antenna 40 has better radiation performance.
  • the feeding point 413 can be set at any position of the antenna body 41. Specifically, the position of the feeding point 413 or the position of the first end A can be changed correspondingly according to the actual situation of the specific electronic device 100, so as to control the direction of the generated mode excitation.
  • the electronic device 100 shown in FIG. 3 is designed with a narrow chin structure
  • the bottom edge of the electronic device 100 (the side extending along the X-axis direction in FIG. 3) has a small headroom, while the side of the electronic device 100 When the side (the side extending in the Y direction in FIG.
  • the first side 11 of the frame 10 can be set at the side of the electronic device, that is, the first side 11 extends in the Y direction.
  • the first end A is located in the longitudinal direction to obtain the mode excitation in the lateral direction; when the side clearance environment of the electronic device 100 is not good, and the bottom clearance environment is good, the first side 11 of the frame 10 can be set on the electronic device.
  • the position of the bottom edge of the device is such that the extending direction of the first side 11 is the X direction, and the first end A is located in the transverse direction to obtain the mode excitation in the longitudinal direction.
  • the extending direction of the first side 11 is the Y direction, and the first end A is located in the longitudinal direction.
  • the feeding point 413 is located on the first section 411 of the antenna body 41.
  • the length of the first section 411 of the antenna body 41 is greater than the length of the second section 412, so that when the feeding point 413 is arranged on the first section 411, the feeding point 413 reaches the first end
  • the physical length of A will generally be greater than the physical length from the feeding point 413 to the second end B, so only a smaller tuning element or no tuning element needs to be connected between the feeding point 413 and the first end A.
  • the electrical length from the feeding point 413 to the first end A is greater than the electrical length from the feeding point 413 to the second end B, and the feeding point 413 to the first end A can resonate to generate a quarter of the first wavelength Resonance, which can reduce manufacturing costs.
  • the electrical length from the first end A to the second end B is about one-half of the second wavelength, and the antenna body 41 can generate a half between the first end A and the second end B.
  • the second wavelength is a resonance wavelength of one-half of the second wavelength formed by the first end A to the second end B.
  • the first wavelength and the second wavelength are operating wavelengths of signals whose radiation frequencies are in the same frequency band (such as B28, B5, B8, etc.) under the LTE standard.
  • the antenna body 41 Since the antenna body 41 is L-shaped, it can generate modal excitation in the direction perpendicular to the first section 411 and modal excitation in the direction perpendicular to the second section 412, that is, it can generate modal excitation in the lateral direction and modal excitation in the longitudinal direction. , In turn, by assisting in enhancing the mode excitation generated by the resonance of a quarter of the first wavelength, the lateral mode excitation and the longitudinal mode excitation of the antenna 40 can be stronger, that is, the lateral mode excitation and the longitudinal mode excitation of the antenna can be relatively strong. The balance makes the antenna 40 still have better antenna radiation performance in the hand-held state.
  • the antenna body 41 of the present application can generate a quarter of the first wavelength of resonance, it can also generate half of the second wavelength of resonance.
  • Resonance can enhance the mode excitation generated by the resonance of a quarter of the first wavelength, so that the horizontal mode excitation and the vertical mode excitation of the antenna 40 are more balanced, so that the electronic device 100 is in a free state (FS) and a hand held state.
  • All the antennas 40 can have better radiation performance.
  • one-quarter of the resonance of the first wavelength produces transverse mode excitation
  • one-half of the second wavelength of resonance produces transverse mode excitation and longitudinal mode excitation, so that the electronic device 100 is in a free state.
  • the lateral mode excitation and the longitudinal mode excitation are both strong, and the antenna 40 has better radiation performance.
  • the first side 11 of the electronic device 100 is held by the hand, which partially affects the magnitude of the horizontal mode excitation of the electronic device 100, but does not affect the intensity of the vertical mode excitation.
  • the antenna 40 still has good radiation performance.
  • the second side 12 of the electronic device 100 is held by the hand, which partially affects the magnitude of the vertical mode excitation of the electronic device 100, but does not affect the intensity of the horizontal mode excitation.
  • the antenna 40 still has good radiation performance.
  • the antenna 40 when the antenna 40 is in operation, a quarter of the resonance of the first wavelength and a half of the resonance of the second wavelength are generated.
  • the first wavelength is greater than the second wavelength, that is, one-quarter of the resonance frequency of the first wavelength is less than one-half of the resonance frequency of the second wavelength, so as to avoid operating in the same frequency band (such as the B28 frequency band, Efficiency pits are generated in the B5 frequency band, B8 frequency band, etc., so that the antenna 40 can have good radiation performance in the working frequency band.
  • the difference between the frequency of the resonance generated between the feeding point and the first end and the frequency of the resonance generated between the first end and the second end is between 50 MHz and 200 MHz. Therefore, the fusion degree between the resonance of one-quarter of the first wavelength and the resonance of one-half of the second wavelength is better, so that the antenna can have good radiation in the free state and in the hand-held state. performance.
  • the difference between the frequency of one-quarter of the resonance of the first wavelength and one-half of the frequency of the resonance of the second wavelength may be between 50 MHz and 150 MHz.
  • FIG. 6 is a graph of the return loss coefficient (S11) of the antenna 40 of the electronic device 100 shown in FIG. 3 in different states (including a free state, a left-handed state and a right-handed state) .
  • the first end A is located on the first side 11 of the frame 10, and the first side 11 is located in the longitudinal direction.
  • the abscissa of Fig. 6 is the frequency (unit is GHz), and the ordinate is the return loss coefficient (unit is dB).
  • curve a represents the return loss coefficient curve diagram of the antenna 40 when the electronic device 100 is in a free state
  • curve b and curve c are when the electronic device 100 is held by hand and the electronic device 100 is held in a vertical screen (as shown in FIG. 5
  • the curve b represents the return loss coefficient curve diagram of the antenna 40 when the electronic device 100 is in the left-handed state (ie the left-handed electronic device 100 is close to the left face);
  • the curve c represents the electronic device 100 is in the right-handed state (ie When the electronic device 100 is held in the right hand, close to the right face), the return loss coefficient curve diagram of the antenna 40.
  • FIG. 7 is a simulation diagram of the current and radiation direction when the antenna 40 of the electronic device 100 shown in FIG. 3 is in a free state.
  • FIG. 8 is a diagram showing the radiation efficiency of the antenna 40 of an exemplary structure of the electronic device 100 shown in FIG. 3.
  • the abscissa of Fig. 8 is frequency (unit is GHz), and the ordinate is radiation efficiency (unit is dB).
  • Curve a represents the radiation efficiency curve of the antenna 40 when the electronic device 100 is in a free state
  • curve b represents the radiation efficiency curve of the antenna 40 when the electronic device 100 is in the left-handed state (ie, holding the electronic device 100 in the left hand, close to the left face)
  • Curve c represents the radiation efficiency curve of the antenna 40 when the electronic device 100 is in the right-handed state (ie, when the electronic device 100 is held on the right and is close to the right face).
  • the antenna 40 has two antenna modes, so that the antenna 40 has a wider bandwidth.
  • the pattern of the two antenna modes will be complementary in a certain space, so that the antenna 40 can have better radiation efficiency in all directions, and avoid the situation of being gripped by the antenna 40 when the electronic device 100 is held. appear.
  • the complementary directional pattern is oblique, and it will not be completely grasped after being grasped by the hand, so that it will not cause the problem of gripping.
  • the radiation performance of the antenna 40 is slightly reduced in both the left-handed state and the right-handed state, but it is not completely gripped. It can be seen from FIG. 8 that the radiation efficiency of the antenna 40 in the head-hand state (including the left head-hand state or the right head-hand state) is about 5 dB lower than that of the free state antenna 40, which still has a good radiation efficiency.
  • FIG. 9 is a graph of the return loss coefficient (S11) of the antenna 40 of an exemplary structure of another electronic device 100 of the present application.
  • the first end A of the antenna 40 represented in FIG. 9 is located on the second side 12 of the frame 10 of the electronic device 100.
  • the abscissa of Fig. 9 is frequency (unit is GHz), and the ordinate is return loss coefficient (unit is dB).
  • curve a represents the return loss coefficient curve diagram of the antenna 40 when the electronic device 100 is in a free state
  • curve b and curve c are the return loss coefficients of the antenna 40 when the electronic device 100 is held by hand and the electronic device 100 is in the vertical screen state.
  • Wave loss coefficient graph wherein, the curve b represents the return loss coefficient curve diagram of the antenna 40 when the electronic device 100 is in the left-handed state (ie the left-handed electronic device 100 is close to the left face); the curve c represents the electronic device 100 is in the right-handed state (ie When the electronic device 100 is held in the right hand, close to the right face), the return loss coefficient curve diagram of the antenna 40.
  • FIG. 10 shows a system efficiency diagram of the antenna 40 represented in FIG. 9. The abscissa of Fig. 10 is frequency (unit is GHz), and the ordinate is radiation efficiency (unit is dB).
  • the antenna 40 when the first end A is located on the second side 12 of the frame 10, the antenna 40 has two antenna modes in the free state, so that the antenna 40 has a wider bandwidth. Moreover, in both the left-handed state and the right-headed state, the radiation performance of the antenna 40 is slightly reduced, but it is not completely gripped, and in the head-handed state (including the left-headed state or the right-headed state) Compared with the free state, the radiation efficiency of the antenna 40 is reduced, but it still has a better radiation efficiency.
  • FIG. 12 shows a system efficiency diagram and a radiation efficiency diagram of the antenna 40 of an exemplary structure of the electronic device 100 shown in FIG. 3 in a free state and a hand-held state.
  • the electronic device is in the horizontal screen state as shown in FIG. 11.
  • the hand is held on the second side 12 of the electronic device 100.
  • the abscissa of Fig. 12 is frequency (unit is GHz), and the ordinate is efficiency (unit is dB).
  • Curve a represents the radiation efficiency curve of the antenna 40 when the electronic device 100 is in a free state
  • curve b represents the radiation efficiency curve of the antenna 40 when the electronic device 100 is in a horizontal screen state and is held on the second side 12 of the electronic device 100
  • curve c represents the system efficiency curve of the antenna 40 when the electronic device 100 is in a free state
  • curve d represents the system of the antenna 40 when the electronic device 100 is in a horizontal screen state and is held on the second side 12 of the electronic device 100 Efficiency graph. It can be seen from the curve c and the curve d that when the electronic device 100 is in the landscape state, when the two opposite second sides 12 of the electronic device 100 are held by hand, the antenna 40 will not be completely gripped. Moreover, it can be seen from the curve a and the curve b that the radiation efficiency of the electronic device 100 relative to the free-state antenna 40 in the hand-held state is reduced by about 5 dB, and it still has a good radiation efficiency.
  • FIG. 13 shows the efficiency diagrams and radiation efficiency diagrams of the system of the antenna 40 of the electronic device 100 shown in FIG. 3 in different states.
  • the abscissa of Fig. 13 is frequency (unit is GHz), and the ordinate is efficiency (unit is dB).
  • Curve a represents the radiation efficiency curve of the antenna 40 when the electronic device 100 is in a free state
  • curve b represents the radiation efficiency curve of the antenna 40 when the electronic device 100 is held by the hand and the first slot 111 and the second slot 121 of the frame 10 are blocked
  • Curve c represents the system efficiency curve of the antenna 40 when the electronic device 100 is in a free state
  • curve d represents the system efficiency curve of the antenna 40 when the electronic device 100 is held by hand and shields the first slot 111 and the second slot 121 of the frame 10 Figure. It can be seen from the curve c and the curve d that when the electronic device 100 is held by the hand and the first slot 111 and the second slot 121 of the frame 10 are blocked, the antenna 40 will not be completely gripped.
  • FIG. 14 is a schematic structural diagram of an antenna 40 according to some other embodiments of the application.
  • the difference between the antenna 40 of the embodiment shown in FIG. 14 and the embodiment shown in FIG. 2 is that a third tuning element 45 is connected between the ground point 414 of the antenna body 41 and the ground position.
  • the third tuning element 45 may be a capacitor, an inductor, or a capacitor and an inductor arranged in parallel or in series.
  • the third tuning element 45 is connected between the ground point 414 and the ground position to change the electrical length of the antenna body 41 between the first end A to the second end B, and the feed point 413 to the first end A or the first end.
  • the electrical length of the antenna body 41 between the two ends B further adjusts the operating frequency of the antenna mode generated by the resonance of the antenna body 41.
  • the grounding position refers to the position where the grounding elastic piece 44 is connected to one end of the middle frame 30.
  • the antenna 40 further includes at least one switching circuit.
  • the switching circuit enables the antenna 40 to switch to different working frequency bands, so that the antenna 40 can realize communication in a variety of different working frequency bands.
  • FIG. 15a is a schematic structural diagram of an antenna 40 according to some other embodiments of the application. The difference between the antenna 40 in the embodiment shown in FIG. 15a and the embodiment shown in FIG. 3 is that the antenna 40 further includes a first switching circuit 46.
  • the antenna body 41 is provided with a first connection point 415.
  • the first connection point 415 is located on the side of the feeding point 413 and the grounding point 414 away from the first end A, or on the side of the feeding point 413 and the grounding point 414 away from the second end B. One side. It should be noted that the first connection point 415 in this application is not an actual point, and the position where the first switching circuit 46 is connected to the antenna body 41 is the first connection point 415.
  • the first switching circuit 46 includes a first switching switch 461 and at least one first tuning element 462 grounded.
  • the first tuning element 462 may be a capacitor, an inductance element, or a capacitor or an inductance element connected in parallel or in series. Among them, at least one refers to one or more than one.
  • Parallel or series capacitor or inductance element means that the first tuning element 462 may be a plurality of capacitor elements arranged in series or in parallel, a plurality of capacitor elements in series or parallel, or may be a capacitor element and an inductance element in series or in parallel. connected together.
  • One end of the first switch 461 is connected to the first connection point 415, and the other end can be switchably connected to different first tuning elements 462, thereby connecting different first tuning elements 462 (which can be different types of first tuning elements 462, The same type of first tuning elements 462) with different specifications and sizes may also be inserted into the antenna body 41.
  • the first connection point 415 is located on the side of the feeding point 413 and the grounding point 414 away from the second end B, so that the electrical length from the feeding point 413 to the first end A is changed, and the antenna length of the antenna body 41 is changed.
  • the electrical length (the electrical length between the first end A and the second end B), thereby changing one-quarter of the resonant frequency of the first wavelength and one-half of the resonant frequency of the second wavelength, so that the antenna 10 can cover different working frequency bands.
  • the first connection point 415 may also be located on the side of the feeding point 413 and the ground point 414 away from the first end A, thereby changing the electrical length from the feeding point 413 to the second end B and changing the first end A
  • the electrical length to the second end B in turn changes the frequency of the resonance of the second wavelength by one-half.
  • the first switch 461 may be various types of switches. For example, it can be a physical switch such as a single-pole single-throw switch, a single-pole multi-throw switch, a multi-pole multi-throw switch, etc. It can also be a mobile industry processor interface (MIPI), and a general-purpose input and output interface (General-purpose). Input/output, GPIO) and other switchable interfaces.
  • the first switch 461 includes a first moving end 461a and a plurality of first fixed ends 461b. One end of the first moving end 461a away from the first fixed end 461b is connected to the first connection point 415, and the other end is switchably electrically connected to each first fixed end 461b.
  • One end of the first tuning element 462 is connected to the first stationary end 461b, and the other end is grounded.
  • first moving end 461a is switched and connected to a different first fixed end 461b
  • different first tuning elements 462 are connected to the antenna body 41, thereby adjusting the electrical length of the antenna body 41, and changing a quarter of the first tuning element 462.
  • One-wavelength resonance frequency and one-half of the second wavelength resonance frequency may also be one or more, through the switching between different first moving ends 461a and different first fixed ends 461b , The size, type, and number of the first resonant element 52 connected to the antenna body 41 can be changed.
  • the first switch 461 is a single-pole multi-throw switch, that is, there are multiple first fixed ends 461b of the first switch 461.
  • Each first fixed end 461b is connected to a first tuning element 462, and the first tuning elements 462 connected to different first fixed ends 461b are different (different types or sizes), so that the first switch 461
  • the antenna body 41 is connected to a different first tuning element 462, so that each section of the antenna body 41 (including the feeding point 413 to the first end A, the electrical length of the first end A to the second end B, etc.) is changed, so that the antenna 40 can switch between different working frequency bands according to actual needs, so that the antenna 40 of the electronic device 100 can cover more working frequency bands .
  • first fixed ends 461b there are specifically four first fixed ends 461b, and the four first fixed ends 461b are respectively connected to inductances of different sizes and then grounded.
  • first moving end 461a is switched from one first stationary end 461b to another first stationary end 461b, the electrical length between the feeding point 413 and the first end A will change, so that the feeding point The frequency of the resonance of a quarter of the first wavelength generated between 413 and the first end A is changed, and at the same time, the electrical length between the first end A and the second end B is changed, thereby changing the antenna 40 The frequency of the resonance of one-half of the second wavelength.
  • FIG. 15b is a schematic structural diagram of another antenna 40 of this application.
  • the first switch 461 is a multi-pole multi-throw switch, and the number of the first moving ends 461a is the same as the number of the first fixed ends 461b.
  • the number of the first moving ends 461a and the first stationary ends 461b are both four, and the first moving ends 461a correspond to the first stationary ends 461b one-to-one.
  • One end of the four first moving ends 461a is connected to the first connection point 415, and the other end is connected or disconnected with the corresponding first fixed end 461b, so as to control the first tuning element 462 connected to the antenna body 41 To change the electrical length from the feeding point 413 of the antenna body 41 to the first end A and the overall electrical length from the first end A to the second end B, thereby changing the frequency of the resonance of a quarter of the first wavelength And one-half the second wavelength of the resonance frequency.
  • connection The number of the first tuning element 462 of the antenna body 41 is two, and the two first tuning elements 462 are arranged in parallel.
  • FIG. 16 is a schematic structural diagram of an antenna 40 according to some other embodiments of the application.
  • the antenna 40 further includes a second switching circuit 47.
  • the antenna body 41 is provided with a second connection point 416, and the second switching circuit 47 is connected to the second connection point 416.
  • the second connection point 416 in the present application is not an actual point, and the position where the second switching circuit 47 is connected to the antenna body 41 is the second connection point 416.
  • the feeding point 413 and the grounding point 414 are located between the first connection point 415 and the second connection point 416.
  • the second switching circuit 47 has a similar structure to the first switching circuit 46, and includes a second switching switch 471 and a plurality of second tuning elements 472, and the second switching switch 471 is switchably connected to different second tuning elements 472.
  • the operating frequencies of one-fourth of the resonance of the first wavelength and one-half of the resonance of the second wavelength are changed.
  • the first switch 461 of the first switching circuit 46 is switched so that different first tuning elements 462 are connected to the antenna body 41, and the second switch 471 of the second switching circuit 47 is switched to a different second tuning.
  • the element 472 changes the electrical length from the feeding point 413 to the first end A or the second end B and the electrical length from the first end A to the second end B, thereby changing the resonance of a quarter of the first wavelength and the second One part of the resonant working frequency of the second wavelength enables the antenna 40 to cover more working frequency bands.
  • the second switching circuit 47 is located on the side of the feeding point 413 and the ground point 414 away from the first terminal A, and the second switching switch 471 of the second switching circuit 47 is switched to a different second tuning element 472, from The electrical length from the feeding point 413 to the second end B and the electrical length from the first end A to the second end B are changed, so that the second switching circuit 47 changes the resonance frequency of one-half of the second wavelength of the antenna 10 .
  • the second switch 471 can also be a physical switch such as a single-pole single-throw switch, a single-pole multi-throw switch, a multi-pole multi-throw switch, etc., and can also be a mobile industry processor interface (MIPI), a general-purpose input and output interface (General-purpose input/output, GPIO) and other switchable interfaces.
  • the second switch 471 is a single-pole multi-throw switch, and includes a second moving end 471a and a plurality of second fixed ends 471b. One end of each second tuning element 472 is correspondingly connected to a second fixed end 471b, and the other end is grounded. One end of the second moving end 471a is connected to the second connection point 416, and the other end is switchably connected to a different second tuning element 472.
  • the second tuning element 472 connected to each second fixed terminal 471b of the second switching circuit 47 corresponds to the first tuning element 462 of each first fixed terminal 461b of the first switching circuit 46 in a one-to-one correspondence.
  • the first switch 461 is switched and connected to any first tuning element 462
  • the second switch 471 is switched and connected to the second tuning element 472 corresponding to the first tuning element 462 connected to the first switch 461, so that the corresponding Adjust the electrical length of each section of the antenna 40 so that the electrical length from the feeding point 413 to the first end A can always be greater than the electrical length from the feeding point 413 to the second end B, and to ensure that a quarter of the first wavelength is
  • the working frequency of the resonance is less than one-half of the second wavelength of the resonance frequency, and the difference between one-fourth of the first wavelength of the resonance frequency and one-half of the second wavelength of the resonance frequency is 50MHz ⁇ Between 200MHz.
  • FIG. 17 and FIG. 18 respectively show that the first moving end 461a of the first switch 461 of the antenna 40 shown in FIG. 16 is switchably connected to three different first tuning elements 462, and the switch The return loss diagram and the system efficiency and radiation efficiency diagrams when 62 is correspondingly switched and connected to the second tuning element 472 corresponding to the first tuning element 462 connected to the first switch 461.
  • the abscissa of Fig. 17 is frequency (unit is GHz), and the ordinate is return loss coefficient (unit is dB).
  • the abscissa of Fig. 18 is frequency (unit is GHz), and the ordinate is efficiency (unit is dB).
  • the antenna 40 can generate return loss curves of three different frequency bands.
  • curve a, curve b, and curve c in FIG. 17 respectively indicate that when the electronic device 100 is in a free state, the antenna 40 generates B28 (703MHz to 803MHz), B5 (824MHz to 894MHz), and B8 (880MHz to 960MHz) antennas.
  • the return loss curve of the frequency band It can be seen from FIG. 17 that by switching the first switch 461 and the second switch 471, the antenna 40 can resonate to generate different operating frequency bands.
  • the antenna 40 can generate two antenna modes (one-quarter of the first wavelength resonance and one-half of the second wavelength resonance), so that the antenna 40 is in a free state and It can have high radiation performance in the head-hand state.
  • the first switch 461 and the second switch 471 are switched, and the first tuning element 462 connected to the first switch 461 is connected to the second tuning element 472 connected to the second switch 471.
  • the resonant frequency of a quarter of the first wavelength of the antenna 10 is always less than half the resonant frequency of the second wavelength, and a quarter of the resonant frequency of the first wavelength is equal to half of the resonant frequency of the first wavelength.
  • the difference between the resonance frequencies of the second wavelength of one is between 50 MHz and 200 MHz.
  • Curve a, curve b, and curve c in FIG. 18 respectively indicate that when the electronic device 100 is in a free state, the antenna 40 generates radiation in the antenna frequency bands of B28 (703MHz to 803MHz), B5 (824MHz to 894MHz), and B8 (880MHz to 960MHz).
  • the efficiency curve graphs, curve d, curve e, and curve f respectively represent the system efficiency curve graphs of the antenna frequency bands B28, B5, and B8 generated by the antenna 40. It can be seen from FIG. 18 that the 80 MHz bandwidth of the antenna 40 in different working frequency bands (including B28, B5, and B8) is all within -6dB, which has good radiation performance.
  • the first switch 461 of the first switch circuit 46 and the first switch circuit 47 are both single-pole four-throw switches, so that the antenna 40 can realize the coverage of four different operating frequencies. It can be understood that, according to actual needs, by increasing the number of switching circuits, using different first switch 461 and second switch 471, etc., the antenna 40 can achieve more coverage of the working frequency band.
  • the first switch 461 of the first switch circuit 46 and the first switch circuit 47 of the second switch circuit 47 are both multi-pole four-throw switches, so that the antenna 40 can cover 24 operating frequencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供一种天线及包括天线的电子设备。天线包括天线本体以及位于天线本体上的馈电点及接地点。天线本体包括相交的第一区段以及第二区段。馈电点至天线本体的第一端的电长度大于馈电点至与第一端相对的第二端的电长度,且天线本体在馈电点至第一端之间产生四分之一的第一波长的谐振,天线本体在第一端至第二端之间产生二分之一的第二波长的谐振。本申请中,能够通过二分之一的第二波长的谐振增强四分之一的第一波长的谐振产生的模式激励,使得天线的横向模式激励以及纵向模式激励较为的平衡,从而使得电子设备处于自由状态(FS)以及手握状态下时,天线均能够具有较好的辐射性能。

Description

天线及电子设备
本申请要求于2019年8月23日提交中国专利局,申请号为201910794483.X、申请名称为“天线及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线及包括所述天线的电子设备。
背景技术
目前的手机等电子设备的天线方案的设计一般采用金属断缝来实现通信功能。即在导电边框上设置间隔的多个缝隙,相邻的缝隙之间的部分形成天线的天线本体。目前的电子设备中,开缝一般设在电子设备的边框的相对的两边,使得天线主要产生横向模式激励或者主要产生纵向模式激励,使得横向模式激励以及纵向模式激励不平衡。手握电子设备的时,容易遮挡边框上的缝隙,从而减弱天线的横向模式激励或者纵向模式激励,产生死亡之握,影响天线的辐射性能。
发明内容
本申请提供一种天线及电子设备,旨在解决天线的横向模式激励以及纵向模式激励不平衡,使得天线在手握状态下仍然具有较好的天线辐射性能。
第一方面,本申请提供一种天线。所述天线包括L形的天线本体,所述天线本体包括第一区段以及与所述第一区段相交的第二区段;所述天线本体包括间隔设置的馈电点及接地点,所述馈电点用于连接射频前端,所述接地点用于接地;所述天线本体包括相背离的第一端以及第二端,所述第一端为所述第一区段远离所述第二区段的一端,所述第二端为所述第二区段远离所述第一区段的一端;所述馈电点至所述第一端的电长度大于所述馈电点至所述第二端的电长度,所述天线本体在所述馈电点至所述第一端之间产生四分之一的第一波长的谐振,所述天线本体在所述第一端至所述第二端之间产生二分之一的第二波长的谐振,所述第一波长大于所述第二波长。
其中,所述天线可以为边框天线(即以电子设备的边框作为天线本体)、柔性主板(Flexible Printed Circuit,FPC)的天线形式,激光直接成型(Laser-Direct-structuring,LDS)的天线形式或者微带天线(Microstrip Disk Antenna,MDA)等天线形式。当天线为柔性主板的天线形式时,天线本体可以为直线带状结构,使用时将所述天线本体弯曲以形成L形的天线本体。
其中,所述天线本体在所述馈电点至所述第一端之间产生四分之一的第一波长的谐振,即所述馈电点至所述第一端之间的电长度约为四分之一的第一波长,使得天线本体在所述馈电点至所述第一端之间能够产生四分之一的第一波长的谐振。所述天线本体在所述第一端至所述第二端之间产生二分之一的第二波长的谐振,即所述第一端至所述第二端之间的电长度约为二分之一的第二波长,使得天线本体在所述第一端至所述第二端之间能够产生二分之一的第二波长的谐振。一些实施例中,所述第一波长及第二波长为辐射频率在LTE标准下的同一频带(如B28、B5、B8等)内的信号的工作波长。
本申请实施例中,由于所述馈电点至所述第一端的电长度大于所述馈电点至所述第二 端的电长度,通过使得电长度较长的区段(所述馈电点至所述第一端之间的区段)的电长度约为四分之一的波长,使得所述馈电点至所述第一端之间谐振产生四分之一的第二波长的谐振,因此本申请实施例的四分之一的第二波长的谐振能够具有较大的辐射口径,使得天线具有较好的辐射性能。所述馈电点至所述第一端之间的天线本体产生的四分之一的第二波长的谐振,能够产生垂直于所述第一端所在侧的方向的模式激励。本申请实施例中,所述第一端为第一区段远离第二区段的一端,而一些实施例中,第一区段所在方向为在横向方向上或者纵向方向上,即天线的四分之一的第二波长的谐振能够产生横向模式激励或者纵向模式激励。由于所述第一端至所述第二端之间形成二分之一的第二波长的谐振,且天线本体为L形,能够产生垂直于第一区段方向的模式激励以及垂直于第二区段方向的模式激励,一些实施例中,即能够产生横向方向上的模式激励以及纵向方向上的模式激励,进而能够辅助增强四分之一的第二波长的谐振产生的模式激励,使得天线的横向模式激励以及纵向模式激励能够较为平衡,天线在手握状态下仍然具有较好的天线辐射性能。换句话说,本申请的天线本体谐振能够产生四分之一的第二波长的谐振的同时,还能够产生二分之一的第二波长的谐振,通过二分之一的第二波长的谐振能够增强四分之一的第二波长的谐振产生的模式激励以及另一方向的模式激励,使得天线的横向模式激励以及纵向模式激励较为的平衡。
其中,模式激励是指天线上添加端口激励后天线产生不同的模式。其表现为在天线地上激励产生不同特征电流的分布。例如,本申请实施例中,天线的四分之一的第二波长的谐振产生垂直于第一端所在侧的方向的模式激励,即在天线地上激励产生的特征电流的主要流动方向为垂直于第一端所在侧的方向,当第一端所在侧的方向为横向方向时,则主要产生纵向模式激励,当第一端所在侧的方向为纵向方向时,则主要产生横向模式激励;天线的二分之一的第二波长的谐振产生垂直于第一区段方向的模式激励以及垂直于第二区段方向的模式激励,即在天线地上激励产生的特征电流的主要流动方向为垂直于第一端所在侧的方向以及垂直于第二端所在侧的方向。
本申请实施例中,所述第一波长大于所述第二波长,即所述馈电点至所述第一端之间产生的谐振的频率小于所述第一端至所述第二端之间产生的谐振的频率,从而避免在所述四分之一的第一波长的谐振与所述二分之一的第二波长的谐振在同一工作频段内产生效率凹坑,使得天线在工作频段内能够具有良好的辐射性能。
一些实施例中,所述馈电点至所述第一端之间产生的谐振的频率与所述第一端至所述第二端之间产生的谐振的频率的差值在50MHz~200MHz之间,从而使得四分之一的第一波长的谐振与二分之一的第二波长的谐振之间的融合度更好,使得天线在自由状态下以及手握状态下均能够具有良好的辐射性能。
一些实施例中,所述天线包括第一切换电路,所述天线本体上设有第一连接点,所述第一连接点位于所述馈电点及所述接地点远离所述第二端的一侧;所述第一切换电路一端连接至所述第一连接点,另一端接地;所述第一切换电路用于改变所述馈电点至所述第一端的电长度。本申请实施例中,第一切换电路连接至第一连接点,即第一切换电路通过第一连接点接入天线本体,从而能够通过所述第一切换电路改变所述馈电点至所述第一端的电长度,并改变所述第一端至第二端的电长度,进而改变四分之一的第一波长的谐振及二分之一的第二波长的谐振的工作频率。
一些实施例中,所述第一连接点也可以位于所述馈电点与所述接地点远离所述第一端 的一侧,从而改变所述馈电点至所述第二端的电长度,改变所述第一端至所述第二端的电长度,进而改变二分之一的第二波长的谐振的工作频率。
一些实施例中,所述天线包括第二切换电路,所述天线本体上还设有第二连接点,所述馈电点及所述接地点位于所述第一连接点与所述第二连接点之间;所述第二切换电路一端连接至所述第二连接点,另一端接地;所述第二切换电路用于改变所述馈电点至所述第二端的电长度。本申请实施例中,所述第二切换电路连接至所述第二连接点,即所述第二切换电路通过所述第二连接点接入所述天线本体,以改变所述馈电点至所述第二端的电长度。所述第一切换电路改变所述馈电点至所述第一端的电长度,从而改变四分之一的第一波长的谐振的工作频率,所述第二切换电路与所述第一切换电路配合,使得所述天线本体的电长度(即第一端至第二端的电长度)发生改变,从而改变二分之一的第二波长的谐振的工作频率。
可以理解的是,一些实施例中,所述第一切换电路的位置与所述第二切换电路的位置可以互换。
一些实施例中,所述第一切换电路包括第一切换开关以及接地的多个不同的第一调谐元件,所述第一切换开关可切换地连接不同的所述第一调谐元件,以改变所述馈电点至所述第一端的电长度。通过将第一切换开关可切换的连接至不同的第一调谐元件,使得接入天线本体中的第一调谐元件不同。其中,不同的第一调谐元件可以为不同类型的调谐元件,如可以为电容、电感或者电阻等;也可以为不同规格大小的同种类型的调谐元件,如各调谐元件均为电感,但各调谐元件的电感值大小不同。通过在天线本体中接入不同的第一调谐元件,使得天线本体的第一端至第二端的电长度以及馈电点至第一端的电长度变化,进而调整天线本体产生的四分之一的第一波长的谐振及二分之一的第二波长的谐振的工作频率发生变化。
一些实施例中,所述第一切换电路包括第一切换开关以及接地的多个不同的第一调谐元件,所述第二切换电路包括第二切换开关以及接地的多个不同的第二调谐元件,多个所述第一调谐元件与多个所述第二调谐元件一一对应;所述第一切换开关可切换地连接不同的所述第一调谐元件时,所述第二切换开关可切换的连接至与所述第一切换开关连接的第一调谐元件对应的第二调谐元件。其中,不同的第二调谐元件可以为不同类型的调谐元件,如可以为电容、电感或者电阻等;也可以为不同规格大小的同种类型的调谐元件,如各调谐元件均为电感,但各调谐元件的电感值大小不同。
本申请实施例中,所述第一切换开关可切换地连接不同的所述第一调谐元件时,所述第二切换开关可切换的连接至与所述第一切换开关连接的第一调谐元件对应的第二调谐元件,使得接入至天线本体中的第一调谐元件及第二调谐元件的大小产生变化,以改变馈电点至第一端之间以及第一端至第二端之间的电长度,从而调整天线本体产生的四分之一的第一波长的谐振及二分之一的第二波长的谐振的工作频率发生变化。并且,由于第二切换开关连接的第二调谐元件与第一切换开关连接的第一调谐元件相对应,使得天线本体产生的四分之一的第一波长的谐振及二分之一的第二波长的谐振的工作频率的范围始终保持在50MHz~200MHz之间,从而使得四分之一的第一波长的谐振与二分之一的第二波长的谐振之间的融合度更好,使得天线在自由状态下以及手握状态下均能够具有良好的辐射性能。
一些实施例中,所述第一切换开关包括多个第一不动端以及与多个第一不动端可切换 连接的第一动端,所述第一动端连接至所述第一连接点,每个所述第一不动端与一个所述第一调谐元件连接;所述第二切换开关包括多个第二不动端以及与多个第二不动端可切换连接的第二动端,所述第二动端连接至所述第二连接点,每个所述第二不动端与一个所述第二调谐元件连接。本申请实施例中,第一动端可切换的连接至不同的第一不动端,使得与不同的第一不动端连接的第一调谐元件接入天线本体中;第二动端可切换的连接至不同的第二不动端,使得与不同的第二不动端连接的第二调谐元件接入天线本体中。
一些实施例中,所述第一切换开关可以为单刀多掷开关或者多刀多掷开关。当第一切换开关为单刀多掷开关时,第一动端为一个,一个第一动端可切换的与多个第一不动端连接;当第一切换开关为多刀多掷开关时,第一动端为多个。一些实施例中,第一动端的数量与第一不动端的数量相同,且多个第一动端与多个第一不动端一一对应。每个第一动端均能够与其对应的第一不动端连接或者断开连接。
其中,所述第一调谐元件或所述第二调谐元件为电容、电感、电阻中任一种或多种并联或者串联得到。
一些实施例中,所述接地点与接地点的接地位置之间连接有第三调谐元件,所述第三调谐元件用于调节天线本体的电长度。本申请实施例中,接地点与接地位置之间连接有第三调谐元件,使得第一端至第二端的电长度以及馈电点至第一端的电长度发生变化,从而调节天线本体的第一端至第二端产生的谐振以及馈电点至第一端产生的谐振,以得到所需的谐振模式(如本申请一些实施例的四分之一的第一波长的谐振以及二分之一的第二波长的谐振)。
一些实施例中,所述第一边的长度大于第二边的长度,所述第一缝隙至所述第二边的距离大于所述第二缝隙至第一边的距离。
本申请实施例中,所述第一缝隙至所述第二边的距离大于所述第二缝隙至第一边的距离。换句话说,一些实施例中,天线本体包括相交的第一区段以及第二区段,第一区段为第一边的第一缝隙至第二边的区段,第二区段为第二边的第二缝隙至第一边的区段。由于天线本体较短的第二区段位于边框较短的第二边上,天线本体较长的第一区段位于边框较长的第一边上,从而还能够在边框上布局更多的L形的天线,使得边框上天线布局较为合理。
一些实施例中,所述第一缝隙至所述第二边的距离大于或等于90mm,能够在一定程度上避免手握电子设备时握住第一缝隙,使得天线在手握状态下仍然能够具有较好的辐射性能。
一些实施例中,所述馈电点位于所述第一边上。由于一些实施例中,天线本体的第一区段的长度大于天线本体的第二区段的长度,馈电点位于第一边上即是指天线本体位于第一区段上。由于天线本体的第一区段的长度大于天线本体的第二区段的长度,则一些实施例中,馈电点至第一端的物理长度会大于馈电点至第二端的物理长度,从而仅需要在馈电点至第一端之间连接较小的调谐元件或者不连接调谐元件即可实现馈电点至第一端的电长度大于馈电点至第二端的电长度,并使得馈电点至第一端能够产生四分之一的第一波长的谐振,从而能够减小制作成本。
第二方面,本申请提供一种电子设备。所述电子设备包括导电的边框、射频前端以及所述天线,所述边框包括第一边以及与所述第一边相交的第二边,所述第一边上设有第一缝隙,所述第二边上设有第二缝隙,所述边框位于所述第一缝隙与所述第二缝隙之间的部 分形成所述天线的所述天线本体,所述边框的所述第一缝隙至所述第二边之间的区段为所述天线本体的第一区段,所述边框的所述第二缝隙至所述第一边之间的区段为所述天线本体的第二区段;所述射频前端连接所述天线本体的所述馈电点,用于向所述天线本体馈入射频信号或接收从所述天线本体传输来的射频信号。本申请一些实施例中,以电子设备的第一边为纵向方向,第二边为横向方向;或者,以电子设备的第一边为横向方向,第二边为纵向方向。
本申请实施例中,由于所述边框的所述第一缝隙至所述第二边之间的区段为所述天线本体的第一区段,所述边框的所述第二缝隙至所述第一边之间的区段为所述天线本体的第二区段,所述天线的四分之一的第二波长的谐振能够产生横向方向激励或纵向方向激励,所述天线的二分之一的第二波长的谐振能够产生横向方向激励及纵向方向激励,以使得天线的横向模式激励以及纵向模式激励均较强,天线的横向模式激励以及纵向模式激励较为的平衡,从而使得包括所述天线的电子设备处于自由状态(FS)以及手握状态下时,天线均能够具有较好的辐射性能。并且,以第一缝隙以及第二缝隙之间的部分边框作为天线本体,能够减小天线占用的体积,并简化电子设备的结构,减小制作工序。
第三方面,本申请提供一种电子设备。所述电子设备包括绝缘的边框、射频前端以及所述天线,所述边框包括第一边以及与所述第一边相交的第二边,所述天线的第一区段贴靠所述第一边设置,所述天线的第二区段贴靠所述第二边设置;所述射频前端连接所述天线本体的所述馈电点,用于向所述天线本体馈入射频信号或接收从所述天线本体传输来的射频信号。本申请一些实施例中,以电子设备的第一边为纵向方向,第二边为横向方向;或者,以电子设备的第一边为横向方向,第二边为纵向方向。本申请一些实施例中,以电子设备的第一边为纵向方向,第二边为横向方向;或者,以电子设备的第一边为横向方向,第二边为纵向方向。
本申请实施例中,由于所述天线的第一区段贴靠所述第一边设置,所述天线的第二区段贴靠所述第二边设置,所述天线的四分之一的第二波长的谐振能够产生横向方向激励或纵向方向激励,所述天线的二分之一的第二波长的谐振能够产生横向方向激励及纵向方向激励,以使得天线的横向模式激励以及纵向模式激励均较强,天线的横向模式激励以及纵向模式激励较为的平衡,从而使得包括所述天线的电子设备处于自由状态(FS)以及手握状态下时,天线均能够具有较好的辐射性能。
附图说明
为更清楚地阐述本申请的构造特征和功效,下面结合附图与具体实施例来对其进行详细说明。
图1为本申请一种实施例的电子设备的结构示意图;
图2为本申请一种实施例的天线的结构示意图;
图3为本申请图1所示实施例的电子设备的内部结构示意图;
图4为另一种电子设备的内部结构示意图;
图5为电子设备的一种握持状态示意图,电子设备处于竖屏状态;
图6为图3所示电子设备的天线在不同状态下的回波损耗系数(S11)曲线图;
图7为图3所示电子设备的天线处于自由状态时的电流及辐射方向的仿真图;
图8为图3所示电子设备的天线的辐射效率图;
图9是本申请另一种电子设备的天线的回波损耗系数(S11)曲线图;
图10所示为图9表征的天线的系统效率图;
图11为电子设备的另一种握持状态示意图,电子设备处于横屏状态;
图12所示为图3所示电子设备的一种示例结构的天线在自由状态以及手握状态下的系统效率图及辐射效率图;
图13为图3所示电子设备的天线的系统在不同状态下的效率图及辐射效率图;
图14为另一种实施例的天线的结构示意图;
图15a为另一种实施例的天线的结构示意图;
图15b为另一种实施例的天线的结构示意图;
图16为另一种实施例的天线的结构示意图;
图17为图16所示天线的切换开关的动端分别切换连接至三个不同调谐元件时的回波损耗图;
图18为图16所示天线的切换开关的动端分别切换连接至三个不同调谐元件时的系统效率与辐射效率图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请提供一种电子设备,电子设备包括与外界进行通信的天线。当电子设备处于自然状态(free style,FS)下或者头手状态(包括左头手状态及右头手状态)下时,天线均能够具有较好的工作效果,避免手握电子设备时对天线的信号传输产生影响,尤其能够避免手握电子设备对天线低频(low band,LB)信号传输的影响。其中,天线的低频信号的频率一般在699MHz~960MHz之间。电子设备可以是便携式电子装置或其他合适的电子装置。例如,电子设备可以是笔记本电脑、平板电脑、较小的设备,例如手机、手表、挂件设备或其他可穿戴或微型设备、蜂窝电话、媒体播放器等。
请参阅图1,图1所示为本申请一实施例的电子设备100的结构示意图。本实施例中,电子设备100为手机。电子设备100包括边框10及显示屏20。边框10环绕显示屏20设置。边框10包括相对设置的两条第一边11以及与两条第一边11相交的两条第二边12,两条第一边11与两条第二边12首尾相连从而成为方形的边框10。本实施例中,电子设备100为方形板状结构,即边框10为方形。一些实施例中,边框10具有倒角,使得边框10具有更加美观的效果。第二边12的延伸方向为横向方向(图中所示X方向),第一边11的延伸方向为纵向方向(图中所示Y方向)。本实施例中,第一边11的长度大于第二边12的长度。可以理解的是,一些实施例中,第一边11以及第二边12的延伸方向可以变化,且第一边11以及第二边12的长度也可以进行变化,再次不进行具体限定。例如,一些实施例中,第一边11的延伸方向可以为横向方向,第二边12的延伸方向可以为纵向方向。第一边11的长度也可以小于第二边12的长度。本实施例中,边框10的形成材料可以为金属等导电材料,也可以为塑胶、树脂等非导电材料。
显示屏20用于显示图像、视频等。显示屏20可以采用柔性显示屏,也可以采用刚性显示屏。例如,显示屏20可以为有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic  light-emitting diode,AMOLED)显示屏,迷你发光二极管(mini organic light-emitting diode)显示屏,微型发光二极管(micro organic light-emitting diode)显示屏,微型有机发光二极管(micro organic light-emitting diode)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏、液晶显示屏(Liquid Crystal Display,LCD)。
请参阅图2,电子设备100还包括天线40以及射频前端50。天线40包括天线本体41,天线本体41用于向外界辐射射频信号或者接收外界的射频信号,使得能够通过天线本体41实现电子设备100与外界的通信。射频前端50与天线本体41连接,用于向天线本体41馈入射频信号或者接收天线本体41接收到的外界的射频信号。一些实施例中,射频前端50包括发射通路以及接收通路。发射通路包括功率放大器、滤波器等器件,通过功率放大器、滤波器等器件将信号进行功率放大、滤波等处理后传输至天线本体41,并经天线本体41传输至外界;接收通路包括低噪声放大器、滤波器等器件,通过低噪声放大器、滤波器等器件将天线本体41接收到的外界信号进行低噪声放大、滤波等处理后传输至射频芯片,从而通过射频前端50及天线40实现电子设备100与外界的通信。
天线本体41为L形结构,包括第一区段411以及与第一区段411相交的第二区段412。第一区段411远离第二区段412的一端为第一端A,第二区段412远离第一区段411的一端为第二端B。需要强调的是,本申请的其它一些实施例中,第一端A与第二端B可以互换。换句话说,一些实施例中,第二区段412远离第一区段411的一端为第一端A,第一区段411远离第二区段412的一端为第二端B。
天线本体41包括间隔设置的馈电点413及接地点414,接地点414可以位于馈电点413与第一端A之间,也可以位于馈电点413与第二端B之间。馈电点413用于与射频前端50进行电连接,使得射频前端50产生的信号能够通过馈电点413传输至天线本体41,并通过天线本体41传输至外界。或者,将天线本体41接收到的外界的信号通过馈电点413传输至射频前端50。需要说明的是,本申请的馈电点413并非为实际存在的点,射频前端50与天线本体41连接的位置即为本申请所说的馈电点413。
接地点414接地,通过调整接地点414的位置,能够调节天线本体41的电长度。其中,电长度的变化能够改变天线本体41的谐振频率。一些实施例中,接地点414通过接地弹片或者接地导线等接地件进行接地。接地件的一端连接至天线主体41的接地点414,另一端接地,从而实现接地点414的接地。需要说明的是,本申请的接地点414并非为实际存在的点,接地弹片或者接地导线等接地件与天线主体41连接的位置即为接地点414。
需要说明的是,本申请中所说的天线本体41的电长度可以通过多种方式测得。例如,一些实施例中,天线本体41的电长度可以通过无源测试法测得。具体的,将天线制作成治具,再分别用铜皮封住天线本体41的第一端A及第二端B,观察不同时刻测得的天线的回波损耗图的变化,即可判断天线本体41的第一端A至第二端B的电长度以及馈电点413至第一端A或者第二端B的电长度。
请参阅图3,图3所示为图1所示电子设备100的内部结构示意图。电子设备100还包括中框30,显示屏20与中框30层叠设置,边框10围绕中框30设置。本实施例中,中框30为金属等导电材料(如金属材料)制成,且中框30接地。当边框10为导电材料制成时,至少部分的边框10可以与中框30进行电连接,以通过中框30实现边框10的接地。可以理解的是,本申请的其它一些实施例中,电子设备100可以没有中框30,边框 10可以通过接地件连接至其它的接地位置以进行接地。
本申请的一些实施例中,边框10为金属材料制成,能够将边框10的部分区段作为天线本体41,从而能够减小天线40占用的空间。图3所示实施例中,一条第一边11上设有第一缝隙111,一条第二边12上设有第二缝隙121,第一缝隙111与第二缝隙121之间的边框10即形成本实施的天线本体41。第一缝隙111至第二边12之间的部分第一边11即为天线本体41的第一区段411,第二缝隙121至第一边11之间的部分第二边12即为天线本体41的第二区段412。天线本体41通过第一缝隙111以及第二缝隙121与边框10除天线本体41外的其它部分电隔离。并且,天线本体41与中框30之间存在间隙42,从而保证天线本体41具有良好的净空环境,使得天线40具有良好的信号传输功能。一些实施例中,边框10除天线本体41外的其它部分可以与中框30连接并一体成型得到。可以理解的是,当边框10除天线本体41外的其它部分作为电子设备的其它天线(如WIFI天线、GPS天线等)的天线本体时,边框10除天线本体外的其它部分也与中框30之间有间隙42,以保证天线具有良好的净空环境。
天线本体41包括第一端A及第二端B。本实施例中,第一端A的端面朝向第一缝隙111,第二端B的端面朝向第二缝隙121。此时,第一端A位于电子设备100的纵向方向上,第二端B位于电子设备100的横向方向上。可以理解的是,当天线本体A的第一边11的延伸方向为横向方向,第二边12的延伸方向为纵向方向时,端面朝向第一缝隙111的第一端A位于横向方向上,端面朝向第二缝隙121的第二端B设于纵向方向上。
本申请中,第一缝隙111至第二边12的距离以及第二缝隙121至第一边11的距离没有具体的限制。一些实施例中,第一缝隙111至第二边12的距离或者第二缝隙121至第一边11的距离大于90mm,能够在一定程度上避免手握电子设备时握住第一缝隙111或者第二缝隙121,使得天线40在手握状态下仍然能够具有较好的辐射性能。
一些实施例中,第一边11的长度大于第二边12的长度,第一缝隙111至第二边12的距离大于第二缝隙121至第一边的距离,即第一区段411的长度大于第二区段412的长度。由于天线本体41较短的第二区段412位于边框10较短的第二边12上,天线本体41较长的第一区段411位于边框10较长的第一边11上,从而还能够在边框10上布局更多的L形的天线,使得边框10上天线布局更为合理。
一些实施例中,第一缝隙111与第二缝隙121内可以填充介电材料,进一步增强天线本体41能够与除天线40主体外的边框10的其它部分的电隔离效果。
请参阅图4,一些实施例中,当电子设备100的边框10为非导电材料时,边框10不能作为天线本体41。本实施例与图3所示实施例的差别在于:天线本体41位于电子设备100内。本实施例中,天线本体41贴靠边框10设置,以尽量减小天线40占用的体积,并使得天线40更加的靠近电子设备100的外部,实现更好的信号传输效果。需要说明的是,本申请所说的天线本体41贴靠边框10设置是指天线本体41可以紧贴边框10设置,也可以为靠近边框10设置,即天线本体41与边框10之间能够具有一定的微小缝隙。本实施例中,边框10上不需要设置第一缝隙111及第二缝隙121,天线本体41输出或接收的射频信号能够穿过边框10进行传输,从而避免边框10对天线40信号的传输进行限制。其中,天线40的形式可以为柔性主板(Flexible Printed Circuit,FPC)的天线形式,激光直接成型(Laser-Direct-structuring,LDS)的天线形式或者微带天线(Microstrip Disk Antenna,MDA)等天线形式。
图3及图4所示实施例中,通过接地弹片44连接天线本体41以及中框30。由于中框30接地,从而使得通过接地弹片44实现接地点414的接地。具体的,接地弹片44的一端连接至天线本体41,另一端连接至中框30。其中,接地弹片44与天线本体41连接的位置为天线本体41的接地点414。图3及图4所示实施例中,通过馈电弹片43连接天线本体41以及射频前端50。具体的,馈电弹片43的一端连接至天线本体41,另一端连接至射频前端50。其中,馈电弹片43与天线本体41连接的位置即为天线本体41的馈电点413。可以理解的是,本申请其它一些实施例中,天线本体41可以通过连接引线等其它的结构与中框30进行连接,也可以通过连接引线等其它的结构与射频前端50进行连接,在此不进行具体限定。
一些实施例中,馈电点413至第一端A的电长度大于馈电点413至第二端B的电长度,且馈电点413至第一端A的电长度约为四分之一的第一波长,使得天线本体10的馈电点413至第一端A之间的区段能够产生四分之一的第一波长的谐振。天线40工作时,天线本体41的馈电点413至第一端A之间的区段产生的四分之一的第一波长的谐振能够激励产生垂直于第一端A方向的模式激励。其中,第一波长为四分之一的第一波长的谐振的工作波长。例如,图3所示实施例中,第一边11的延伸方向为纵向方向(图中Y方向),第一端A的端面朝向第一边11上的第一缝隙111,即第一端A位于纵向方向上。此时,天线本体41的馈电点413至第一端A之间产生的四分之一的第一波长的谐振会激励产生横向模式激励。一些实施例中,当第一边11的延伸方向为横向方向(图中X方向)时,第一端A的端面朝向第一边11上的第一缝隙111,即第一端A位于横向方向上。此时,馈电点413至第一端A之间的区段产生的四分之一的第一波长的谐振会激励产生纵向模式激励。
本申请实施例中,由于馈电点413至第一端A的电长度大于馈电点413至第二端B的电长度,通过使得电长度较长的区段(即馈电点413至第一端A之间的区段)约为四分之一的第一波长,以产生四分之一的第一波长的谐振,使得四分之一的第一波长的谐振能够具有较大的辐射口径,从而使得天线40具有较好的辐射性能。
本申请实施例中,馈电点413可以设于天线本体41的任一位置。具体的,根据具体电子设备100的实际情况可以相应的改变馈电点413的位置或者第一端A的位置,从而控制产生的模式激励的方向。例如,当图3中所示的电子设备100设计为窄下巴的结构时,电子设备100的底边(图3中沿X轴方向延伸的边)的净空空间较小,而电子设备100的侧边(图3中沿Y方向延伸的边)具有较好的净空环境时,可以将边框10的第一边11设于电子设备的侧边位置,即使得第一边11延伸方向为Y方向,第一端A位于纵向方向上,以得到横向方向上的模式激励;当电子设备100的侧边净空环境不好,而底板净空环境较好时,可以使得边框10的第一边11设于电子设备的底边位置,使得第一边11的延伸方向为X方向,第一端A位于横向方向上,以得到纵向方向上的模式激励。本实施例中,第一边11延伸方向为Y方向,第一端A位于纵向方向上。馈电点413位于天线本体41的第一区段411上。由于本实施例中,天线本体41的第一区段411的长度大于第二区段412的长度,使得将馈电点413设于第一区段411上时,馈电点413至第一端A的物理长度会一般会大于馈电点413至第二端B的物理长度,从而仅需要在馈电点413至第一端A之间连接规格较小的调谐元件或者不连接调谐元件即可实现馈电点413至第一端A的电长度大于馈电点413至第二端B的电长度,并使得馈电点413至第一端A能够谐振产生四分之一 的第一波长的谐振,从而能够减小制作成本。
本申请的一些实施例中,第一端A至第二端B的电长度约为二分之一的第二波长,天线本体41在第一端A至第二端B之间能够产生二分之一的第二波长的谐振。第二波长为第一端A至第二端B形成的二分之一的第二波长的谐振的波长。一些实施例中,所述第一波长及第二波长为辐射频率在LTE标准下的同一频带(如B28、B5、B8等)内的信号的工作波长。由于天线本体41为L形,能够产生垂直于第一区段411方向的模式激励以及垂直于第二区段412方向的模式激励,即能够产生横向方向上的模式激励以及纵向方向上的模式激励,进而能够通过辅助增强四分之一的第一波长的谐振产生的模式激励,使得天线40的横向模式激励以及纵向模式激励均能够较强,即天线的横向模式激励以及纵向模式激励均能够较为平衡,使得天线40在手握状态下仍然具有较好的天线辐射性能。换句话说,本申请的天线本体41谐振能够产生四分之一的第一波长的谐振的同时,还能够产生二分之一的第二波长的谐振,通过二分之一的第二波长的谐振能够增强四分之一的第一波长的谐振产生的模式激励,使得天线40的横向模式激励以及纵向模式激励较为的平衡,从而使得电子设备100处于自由状态(FS)以及手握状态下时,天线40均能够具有较好的辐射性能。例如,图3实施例中,四分之一的第一波长的谐振产生横向模式激励,二分之一的第二波长的谐振产生横向模式激励以及纵向模式激励,使得电子设备100处于自由状态下时,横向模式激励以及纵向模式激励均较强,天线40具有较好的辐射性能。当手握电子设备100使得电子设备100处于竖屏方向时,手握持电子设备100的第一边11,部分影响电子设备100的横向模式激励的大小,但是不会影响纵向模式激励的强度,从而使得天线40仍然具有良好的辐射性能。当手握电子设备100使得电子设备100处于横屏方向时,手握持电子设备100的第二边12,部分影响电子设备100的纵向模式激励的大小,但是不会影响横向模式激励的强度,从而使得天线40仍然具有良好的辐射性能。
本申请中,天线40工作时产生四分之一的第一波长的谐振以及二分之一的第二波长的谐振。一些实施例中,第一波长大于第二波长,即四分之一的第一波长的谐振的频率小于二分之一的第二波长的谐振的频率,避免在同一工作频段(如B28频段、B5频段、B8频段等)内产生效率凹坑,使得天线40在工作频段内能够具有良好的辐射性能。
一些实施例中,所述馈电点至所述第一端之间产生的谐振的频率与所述第一端至所述第二端之间产生的谐振的频率的差值在50MHz~200MHz之间,从而使得四分之一的第一波长的谐振与二分之一的第二波长的谐振之间的融合度更好,使得天线在自由状态下以及手握状态下均能够具有良好的辐射性能。一些实施例中,四分之一的第一波长的谐振的频率与二分之一的第二波长的谐振的频率之间差值可以在50MHz~150MHz之间。
请参阅图5至图8,图6是图3所示电子设备100的天线40在不同状态下(包括自由状态以及左头手状态以及右头手状态)的回波损耗系数(S11)曲线图。图3所示实施例中,第一端A位于边框10的第一边11,第一边11位于纵向方向上。图6的横坐标为频率(单位为GHz),纵坐标为回波损耗系数(单位为dB)。其中,曲线a表示电子设备100处于自由状态时,天线40的回波损耗系数曲线图;曲线b及曲线c为手握电子设备100并使得电子设备100处于竖屏握持状态时(如图5所示的握持状态)的曲线天线40的回波损耗系数曲线图。其中,曲线b表示电子设备100处于左头手状态(即左手持电子设备100,靠近左边脸)时,天线40的回波损耗系数曲线图;曲线c表示电子设备100处于右头手状态(即右手持电子设备100,靠近右边脸)时,天线40的回波损耗系数曲 线图。图7为图3所示电子设备100的天线40处于自由状态时的电流及辐射方向的仿真图。图8所示为图3所示电子设备100的一种示例结构的天线40的辐射效率图。图8的横坐标为频率(单位为GHz),纵坐标为辐射效率(单位为dB)。曲线a表示电子设备100处于自由状态时,天线40的辐射效率曲线图;曲线b表示电子设备100处于左头手状态(即左手持电子设备100,靠近左边脸)时,天线40的辐射效率曲线图;曲线c表示电子设备100处于右头手状态(即右手持电子设备100,靠近右边脸)时,天线40的辐射效率曲线图。
从图6及图7中可以容易看出,在自由状态下,天线40存在两种天线模式,使得天线40具有较宽的带宽。并且,两种天线模式的方向图在一定的空间内会产生互补,从而使得天线40在各个方向均能够具有较好的辐射效率,避免在手握电子设备100时被天线40被握死的情况出现。一些实施例中,互补后的方向图为斜向的,手握后不会完全握住,因而不会产生握死的问题。并且,从图6及图8中还能够看出,在左头手状态下以及右头手状态下,天线40的辐射性能均稍有降低,但是并没有完全被握死。从图8中可以看出,头手状态下(包括左头手状态或者右头手状态)相对于自由状态天线40的辐射效率降幅约为5dB,仍然具有较好的辐射效率。
一些实施例中,天线40的第一端A位于边框10的第二边12上时,天线40在自由状态下以及头手状态下依然能够有较好的辐射性能。请参阅图9及图10,图9是本申请另一种电子设备100的一种示例结构的天线40的回波损耗系数(S11)曲线图。其中,图9表征的天线40的第一端A位于电子设备100的边框10的第二边12上。图9的横坐标为频率(单位为GHz),纵坐标为回波损耗系数(单位为dB)。其中,曲线a表示电子设备100处于自由状态时,天线40的回波损耗系数曲线图;曲线b及曲线c为手握电子设备100并使得电子设备100处于竖屏状态时的曲线天线40的回波损耗系数曲线图。其中,曲线b表示电子设备100处于左头手状态(即左手持电子设备100,靠近左边脸)时,天线40的回波损耗系数曲线图;曲线c表示电子设备100处于右头手状态(即右手持电子设备100,靠近右边脸)时,天线40的回波损耗系数曲线图。图10所示为图9表征的天线40的系统效率图。图10的横坐标为频率(单位为GHz),纵坐标为辐射效率(单位为dB)。
从图9及图10可以看出,当第一端A位于边框10的第二边12时,自由状态下天线40存在两种天线模式,使得天线40具有较宽的带宽。并且,在左头手状态下以及右头手状态下,天线40的辐射性能均稍有降低,但是并没有完全被握死,且头手状态下(包括左头手状态或者右头手状态)相对于自由状态下天线40的辐射效率均有下降,但是仍然具有较好的辐射效率。
请参阅图11至图12,图12所示为图3所示电子设备100的一种示例结构的天线40在自由状态以及手握状态下的系统效率图及辐射效率图。其中,手握电子设备时电子设备处于如图11所示的横屏状态,此时,手握持于电子设备100的第二边12。图12的横坐标为频率(单位为GHz),纵坐标为效率(单位为dB)。曲线a表示电子设备100处于自由状态时,天线40的辐射效率曲线图;曲线b表示电子设备100处于横屏状态,手握持于电子设备100的第二边12时的天线40的辐射效率曲线图;曲线c表示电子设备100处于自由状态时,天线40的系统效率曲线图;曲线d表示电子设备100处于横屏状态,手握持于电子设备100的第二边12时的天线40的系统效率曲线图。从曲线c及曲线d可知, 在电子设备100处于横屏状态时,手握电子设备100的相对的两条第二边12时,也不会完全将天线40握死。并且,从曲线a及曲线b可以看出,电子设备100在手握状态下相对于自由状态天线40的辐射效率降幅约为5dB,仍然具有较好的辐射效率。
示例性的,请参阅图13,图13所示为图3所示电子设备100的天线40的系统在不同状态下的效率图及辐射效率图。图13的横坐标为频率(单位为GHz),纵坐标为效率(单位为dB)。曲线a表示电子设备100处于自由状态时,天线40的辐射效率曲线图;曲线b表示手握持电子设备100并遮挡边框10的第一缝隙111及第二缝隙121的天线40的辐射效率曲线图;曲线c表示电子设备100处于自由状态时,天线40的系统效率曲线图;曲线d表示手握持电子设备100并遮挡边框10的第一缝隙111及第二缝隙121的天线40的系统效率曲线图。从曲线c及曲线d可知,手握持电子设备100并遮挡边框10的第一缝隙111及第二缝隙121时也不会完全将天线40握死。并且,从曲线a及曲线b可以看出,电子设备100在手握状态并遮挡边框10的第一缝隙111及第二缝隙121时相对于自由状态天线40的辐射效率降幅约为7dB,仍然具有较好的辐射效率。
请参阅图14,图14为本申请另一些实施例的天线40的结构示意图。图14所示实施例与图2所示实施例的天线40的差别在于:天线本体41的接地点414与接地位置之间连接有第三调谐元件45。本实施例中,第三调谐元件45可以为电容、电感或者并联或串联设置的电容及电感。通过在接地点414与接地位置之间连接第三调谐元件45,以改变第一端A至第二端B之间的天线本体41的电长度,以及馈电点413至第一端A或第二端B之间的天线本体41的电长度,进而调整天线本体41谐振产生的天线模式的工作频率。本实施例中,接地位置是指接地弹片44连接至中框30的一端的位置。
本申请的一些实施例中,天线40还包括至少一个切换电路,通过切换电路使得天线40切换至不同的工作频段,以使得天线40能够实现多种不同的工作频段的通信。请参阅图15a,图15a为本申请另一些实施例的天线40的结构示意图。图15a所示实施例与图3所示实施例的天线40的差别在于:天线40还包括第一切换电路46。天线本体41上设有第一连接点415,第一连接点415位于馈电点413与接地点414远离第一端A的一侧或者位于馈电点413与接地点414远离第二端B的一侧。需要说明的是,本申请中的第一连接点415并非实际存在的点,第一切换电路46与天线本体41连接的位置即为第一连接点415。第一切换电路46包括第一切换开关461以及至少一个接地的第一调谐元件462。第一调谐元件462可以为电容、电感元件或者并联或者串联的电容或电感元件。其中,至少一个是指一个或者一个以上。并联或者串联的电容或电感元件是指第一调谐元件462可以为多个串联或并联设置的电容元件,多个串联或者并联的电容元件,或者可以为电容元件以及电感元件通过串联或者并联的方式连接在一起。第一切换开关461一端与第一连接点415连接,另一端能够可切换地连接不同的第一调谐元件462,从而将不同的第一调谐元件462(可以为不同类型的第一调谐元件462,也可以为规格大小不同的同种类型的第一调谐元件462)接入至天线本体41中。本实施例中,第一连接点415位于馈电点413与接地点414远离第二端B的一侧,从而馈电点413至第一端A的电长度,并改变天线本体41的天线长度的电长度(第一端A至第二端B之间的电长度),从而改变四分之一的第一波长的谐振的频率及二分之一的第二波长的谐振的频率,使得天线10能够覆盖不同的工作频段。一些实施例中,第一连接点415也可以位于馈电点413与接地点414远离第一端A的一侧,从而改变馈电点413至第二端B的电长度,改变第一端A至第二端B的电长 度,进而改变二分之一的第二波长的谐振的频率。
第一切换开关461可以为各种类型的切换开关。例如,可以为单刀单掷开关、单刀多掷开关、多刀多掷开关等物理开关,也可以为移动行业处理器接口(Mobile Industry Processor Interface,MIPI)、通用型之输入输出接口(General-purpose input/output,GPIO)等可切换接口。第一切换开关461包括第一动端461a以及多个第一不动端461b。第一动端461a远离第一不动端461b的一端连接至第一连接点415,另一端可切换的电连接至各个第一不动端461b。第一调谐元件462一端与第一不动端461b连接,另一端接地。第一动端461a切换连接至不同的第一不动端461b时,即将不同的第一调谐元件462接入至天线本体41中,从而调整天线本体41的电长度,改变四分之一的第一波长的谐振的频率及二分之一的第二波长的谐振的频率。根据第一切换开关461的类型不同,第一切换开关461的第一动端511也可以为一个或者多个,通过不同的第一动端461a与不同的第一不动端461b之间的切换,能够改变连接至天线本体41的第一谐振元件52的大小、种类及数量。例如,图15a所示实施例中,第一切换开关461为单刀多掷开关,即第一切换开关461的第一不动端461b为多个。每个第一不动端461b均与一个第一调谐元件462连接,不同的第一不动端461b连接的第一调谐元件462不同(类型不同或者规格大小不同),从而使得第一切换开关461的第一动端461a切换至不同的第一不动端461b时,天线本体41与不同的第一调谐元件462进行连接,从而使得天线本体41的各区段(包括馈电点413至第一端A,第一端A至第二端B等)的电长度发生改变,使得天线40能够根据实际需要在不同的工作频段之间切换,从而使得电子设备100的天线40能够覆盖更多的工作频段。例如,图15a所示的实施例的第一不动端461b具体有四个,四个第一不动端461b分别连接至不同大小的电感后再接地。当第一动端461a在从一个第一不动端461b切换至另一个第一不动端461b时,馈电点413至第一端A之间的电长度会发生变化,从而使得馈电点413至第一端A之间产生的四分之一的第一波长的谐振的频率发生变化,同时,也使得第一端A至第二端B之间的电长度发生变化,从而改变天线40的二分之一的第二波长的谐振的频率。
请参阅图15b,图15b为本申请的另一种天线40的结构示意图。本实施例中,第一切换开关461为多刀多掷开关,第一动端461a的数量与第一不动端461b的数量相同。具体的,本实施例中,第一动端461a的数量与第一不动端461b均为四个,且第一动端461a与第一不动端461b一一对应。四个第一动端461a的一端均连接至第一连接点415,另一端与同其对应的第一不动端461b连接或断开,从而能够控制接入天线本体41的第一调谐元件462的数量,以改变天线本体41的馈电点413至第一端A的电长度以及第一端A至第二端B整体的电长度,从而改变四分之一的第一波长的谐振的频率及二分之一的第二波长的谐振的频率。例如,当有两个第一动端461a与同其对应的第一不动端461b连接,另外两个第一动端461a与同其对应的第一不动端461b断开时,则接入天线本体41的第一调谐元件462的数量为两个,且两个第一调谐元件462并联设置。
请参阅图16,图16为本申请另一些实施例的天线40的结构示意图。图16所示实施例与图15a所示实施例的差别在于:天线40还包括第二切换电路47。天线本体41上设有第二连接点416,第二切换电路47连接至第二连接点416。需要说明的是,本申请中的第二连接点416并非实际存在的点,第二切换电路47与天线本体41连接的位置即为第二连接点416。馈电点413及接地点414位于第一连接点415与第二连接点416之间。其中, 第二切换电路47与第一切换电路46类似的结构,包括第二切换开关471以及多个第二调谐元件472,第二切换开关471可切换的连接不同的第二调谐元件472。通过第一切换电路46与第二切换电路47的配合以改变四分之一的第一波长的谐振及二分之一的第二波长的谐振的工作频率。具体的,通过第一切换电路46的第一切换开关461切换使得不同的第一调谐元件462接入天线本体41上,通过第二切换电路47的第二切换开关471切换至不同的第二调谐元件472,从改变馈电点413至第一端A或第二端B的电长度以及第一端A至第二端B的电长度,进而改变四分之一的第一波长的谐振及二分之一的第二波长的谐振的工作频率,使得天线40能够覆盖更多的工作频段。本实施例中,第二切换电路47位于馈电点413及接地点414远离第一端A的一侧,第二切换电路47的第二切换开关471切换至不同的第二调谐元件472,从改变馈电点413至第二端B的电长度以及第一端A至第二端B的电长度,从而通过第二切换电路47改变天线10的二分之一的第二波长的谐振的频率。
第二切换开关471也可以为单刀单掷开关、单刀多掷开关、多刀多掷开关等物理开关,也可以为移动行业处理器接口(Mobile Industry Processor Interface,MIPI)、通用型之输入输出接口(General-purpose input/output,GPIO)等可切换接口。本实施例中,第二切换开关471为单刀多掷开关,包括第二动端471a以及多个第二不动端471b。每个第二调谐元件472的一端对应连接至一个第二不动端471b上,另一端接地。第二动端471a的一端连接至第二连接点416,另一端可切换的连接至不同的第二调谐元件472。
一些实施例中,第二切换电路47的各第二不动端471b连接的第二调谐元件472与第一切换电路46的各第一不动端461b的第一调谐元件462一一对应。当第一切换开关461切换连接至任一第一调谐元件462时,第二切换开关471切换连接至与第一切换开关461连接的第一调谐元件462对应的第二调谐元件472,从而相应的调节天线40的各区段的电长度,使得馈电点413至第一端A的电长度能够始终大于馈电点413至第二端B的电长度,并保证四分之一的第一波长的谐振的工作频率小于二分之一的第二波长的谐振的频率,四分之一的第一波长的谐振的频率与二分之一的第二波长的谐振的频率之间差值在50MHz~200MHz之间。
请参阅图17及图18,图17及图18所示分别为图16所示天线40的第一切换开关461的第一动端461a分别切换连接至三个不同第一调谐元件462,切换开关62相应切换连接至与第一切换开关461连接的第一调谐元件462对应的第二调谐元件472时的回波损耗图及系统效率与辐射效率图。图17的横坐标为频率(单位为GHz),纵坐标为回波损耗系数(单位为dB)。图18的横坐标为频率(单位为GHz),纵坐标为效率(单位为dB)。
从图17中可以看出,通过切换第一切换开关461并相对应的切换第二切换开关471,使得天线40能够产生三种不同频段的回波损耗曲线。具体的,图17中曲线a、曲线b、曲线c分别表示电子设备100在自由状态下时,天线40产生B28(703MHz至803MHz)、B5(824MHz至894MHz)、B8(880MHz至960MHz)的天线频段的回波损耗曲线。从图17中可以看出,通过切换第一切换开关461以及第二切换开关471,能够使得天线40谐振产生不同的工作频段。并且,在不同的工作频段下,天线40均能够产生两种天线模式(四分之一的第一波长的谐振及二分之一的第二波长的谐振),从而使得天线40在自由状态以及头手状态下均能具有较高的辐射性能。从图中还可以看出,在切换第一切换开关461及第二切换开关471,并使得第一切换开关461连接的第一调谐元件462与第二切换 开关471连接的第二调谐元件472相对应,使得天线10的四分之一的第一波长的谐振的频率始终小于二分之一的第二波长的谐振的频率,且四分之一的第一波长的谐振的频率与二分之一的第二波长的谐振的频率的差值在50MHz~200MHz之间。图18中曲线a、曲线b、曲线c分别表示电子设备100在自由状态下时,天线40产生B28(703MHz至803MHz)、B5(824MHz至894MHz)、B8(880MHz至960MHz)的天线频段的辐射效率曲线图,曲线d、曲线e、曲线f分别表示天线40产生B28、B5、B8的天线频段的系统效率曲线图。从图18中可以看出,天线40在不同的工作频段下(包括B28、B5、B8)的80MHz带宽都做到-6dB以内,具有良好的辐射性能。
本实施例中,第一切换电路46及第二切换电路47的第一切换开关461均为单刀四掷开关,使得天线40能够实现四种不同的工作频率的覆盖。可以理解的是,根据实际的需要,通过增加切换电路的数量、使用不同的第一切换开关461及第二切换开关471等方式,使得天线40能够实现更多的工作频段的覆盖。例如,一些实施例中,第一切换电路46及第二切换电路47的第一切换开关461均为多刀四掷开关,使得天线40能覆盖24种工作频率的覆盖。
以上为本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (14)

  1. 一种天线,其特征在于,包括L形的天线本体,所述天线本体包括第一区段以及与所述第一区段相交的第二区段;所述天线本体包括间隔设置的馈电点及接地点,所述馈电点用于连接射频前端,所述接地点用于接地;
    所述天线本体包括相背离的第一端以及第二端,所述第一端为所述第一区段远离所述第二区段的一端,所述第二端为所述第二区段远离所述第一区段的一端;所述馈电点至所述第一端的电长度大于所述馈电点至所述第二端的电长度,所述天线本体在所述馈电点至所述第一端之间产生四分之一的第一波长的谐振,所述天线本体在所述第一端至所述第二端之间产生二分之一的第二波长的谐振,所述第一波长大于所述第二波长。
  2. 如权利要求1所述的天线,其特征在于,所述馈电点至所述第一端之间产生的谐振的频率与所述第一端至所述第二端之间产生的谐振的频率的差值在50MHz~200MHz之间。
  3. 如权利要求1或2所述的天线,其特征在于,所述天线包括第一切换电路,所述天线本体上设有第一连接点,所述第一连接点位于所述馈电点及所述接地点远离所述第二端的一侧;所述第一切换电路的一端连接至所述第一连接点,另一端接地;所述第一切换电路用于改变所述馈电点至所述第一端的电长度。
  4. 如权利要求3所述的天线,其特征在于,所述天线包括第二切换电路,所述天线本体上还设有第二连接点,所述馈电点及所述接地点位于所述第一连接点与所述第二连接点之间;所述第二切换电路的一端连接至所述第二连接点,另一端接地;所述第二切换电路用于改变所述馈电点至所述第二端的电长度。
  5. 如权利要求3或4所述的天线,其特征在于,所述第一切换电路包括第一切换开关以及接地的多个不同的第一调谐元件,所述第一切换开关可切换地连接不同的所述第一调谐元件,以改变所述馈电点至所述第一端的电长度。
  6. 如权利要求4所述的天线,其特征在于,所述第一切换电路包括第一切换开关以及接地的多个不同的第一调谐元件,所述第二切换电路包括第二切换开关以及接地的多个不同的第二调谐元件,多个所述第一调谐元件与多个所述第二调谐元件一一对应;所述第一切换开关可切换地连接不同的所述第一调谐元件时,所述第二切换开关可切换的连接至与所述第一切换开关连接的第一调谐元件对应的第二调谐元件。
  7. 如权利要求6所述的天线,其特征在于,所述第一切换开关包括多个第一不动端以及与多个第一不动端可切换连接的第一动端,所述第一动端连接至所述第一连接点,每个所述第一不动端与一个所述第一调谐元件连接;
    所述第二切换开关包括多个第二不动端以及与多个第二不动端可切换连接的第二动端,所述第二动端连接至所述第二连接点,每个所述第二不动端与一个所述第二调谐元件连接。
  8. 如权利要求6或7所述的天线,其特征在于,所述第一调谐元件或所述第二调谐元件为电容、电感、电阻中任一种或多种并联或者串联得到。
  9. 如权利要求1所述的天线,其特征在于,所述接地点与所述接地点的接地位置之间连接有第三调谐元件,所述第三调谐元件用于调节所述天线本体的电长度。
  10. 如权利要求1所述的天线,其特征在于,所述第一边的长度大于第二边的长度,所述第一缝隙至所述第二边的距离大于所述第二缝隙至第一边的距离。
  11. 如权利要求10所述的天线,其特征在于,所述第一缝隙至所述第二边的距离大于或等于90mm。
  12. 如权利要求10或11所述的天线,其特征在于,所述馈电点位于所述第一边上。
  13. 一种电子设备,其特征在于,包括导电的边框、射频前端以及如权利要求1-12任一项所述的天线,所述边框包括第一边以及与所述第一边相交的第二边,所述第一边上设有第一缝隙,所述第二边上设有第二缝隙,所述边框位于所述第一缝隙与所述第二缝隙之间的部分形成所述天线的所述天线本体,所述边框的所述第一缝隙至所述第二边之间的区段为所述天线本体的第一区段,所述边框的所述第二缝隙至所述第一边之间的区段为所述天线本体的第二区段;
    所述射频前端连接所述天线本体的所述馈电点,用于向所述天线本体馈入射频信号或接收从所述天线本体传输来的射频信号。
  14. 一种电子设备,其特征在于,包括绝缘的边框、射频前端以及如权利要求1-12任一项所述的天线,所述边框包括第一边以及与所述第一边相交的第二边,所述天线的第一区段贴靠所述第一边设置,所述天线的第二区段贴靠所述第二边设置;
    所述射频前端连接所述天线本体的所述馈电点,用于向所述天线本体馈入射频信号或接收从所述天线本体传输来的射频信号。
PCT/CN2020/107867 2019-08-23 2020-08-07 天线及电子设备 WO2021036753A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080058796.XA CN114258612A (zh) 2019-08-23 2020-08-07 天线及电子设备
BR112022003337-0A BR112022003337B1 (pt) 2019-08-23 2020-08-07 Antena e dispositivo eletrônico
US17/637,370 US20220278446A1 (en) 2019-08-23 2020-08-07 Antenna and electronic device
KR1020227007982A KR102659469B1 (ko) 2019-08-23 2020-08-07 안테나 및 전자 장치
JP2022512425A JP7336589B2 (ja) 2019-08-23 2020-08-07 アンテナ及び電子装置
EP20856523.4A EP4016727A4 (en) 2019-08-23 2020-08-07 ANTENNA AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910794483.XA CN112421211B (zh) 2019-08-23 2019-08-23 天线及电子设备
CN201910794483.X 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021036753A1 true WO2021036753A1 (zh) 2021-03-04

Family

ID=74685021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107867 WO2021036753A1 (zh) 2019-08-23 2020-08-07 天线及电子设备

Country Status (7)

Country Link
US (1) US20220278446A1 (zh)
EP (1) EP4016727A4 (zh)
JP (1) JP7336589B2 (zh)
KR (1) KR102659469B1 (zh)
CN (3) CN114447583B (zh)
BR (1) BR112022003337B1 (zh)
WO (1) WO2021036753A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422619A (zh) * 2021-06-18 2021-09-21 安徽安努奇科技有限公司 一种调谐电路及通讯设备
CN115117602A (zh) * 2021-03-23 2022-09-27 北京小米移动软件有限公司 一种天线模组和终端设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113314828B (zh) * 2021-05-27 2023-09-01 维沃移动通信有限公司 电子设备
CN114122693B (zh) * 2021-11-24 2024-01-02 Oppo广东移动通信有限公司 天线装置和电子设备
CN116130947A (zh) * 2022-09-09 2023-05-16 华为技术有限公司 天线装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160352017A1 (en) * 2015-05-26 2016-12-01 Kyocera Corporation Tunable antenna
CN108631040A (zh) * 2018-03-28 2018-10-09 广东欧珀移动通信有限公司 电子装置
CN108808221A (zh) * 2018-06-19 2018-11-13 深圳市万普拉斯科技有限公司 天线系统及移动终端
CN109462016A (zh) * 2018-09-29 2019-03-12 Oppo广东移动通信有限公司 天线装置及电子设备
CN209169370U (zh) * 2018-11-30 2019-07-26 维沃移动通信有限公司 一种终端设备

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362787B1 (en) * 1999-04-26 2002-03-26 Andrew Corporation Lightning protection for an active antenna using patch/microstrip elements
TWI237419B (en) * 2003-11-13 2005-08-01 Hitachi Ltd Antenna, method for manufacturing the same and portable radio terminal employing it
US7193565B2 (en) * 2004-06-05 2007-03-20 Skycross, Inc. Meanderline coupled quadband antenna for wireless handsets
JP4707495B2 (ja) * 2005-08-09 2011-06-22 株式会社東芝 アンテナ装置および無線装置
KR100830568B1 (ko) * 2005-08-18 2008-05-21 노키아 코포레이션 셀룰러 통신 단말기용 안테나 장치
US7688273B2 (en) * 2007-04-20 2010-03-30 Skycross, Inc. Multimode antenna structure
KR101727303B1 (ko) * 2009-05-26 2017-04-14 스카이크로스 인코포레이티드 통신 장치에서 근거리 방사 및 전자파 흡수율값을 감소시키는 방법
US8477069B2 (en) * 2009-08-21 2013-07-02 Mediatek Inc,. Portable electronic device and antenna thereof
CN102013568A (zh) * 2010-12-01 2011-04-13 惠州Tcl移动通信有限公司 一种四频段的内置天线及其移动通信终端
WO2012097623A2 (zh) * 2011-10-28 2012-07-26 华为终端有限公司 一种天线和终端
CN102544774B (zh) * 2012-02-23 2014-05-07 上海安费诺永亿通讯电子有限公司 一种多模谐振天线系统
TWI539676B (zh) 2013-09-03 2016-06-21 宏碁股份有限公司 通訊裝置
US9786994B1 (en) * 2014-03-20 2017-10-10 Amazon Technologies, Inc. Co-located, multi-element antenna structure
US10224605B2 (en) * 2014-03-28 2019-03-05 Huawei Device (Dongguan) Co., Ltd. Antenna and mobile terminal
US10270170B2 (en) * 2014-04-15 2019-04-23 QuantalRF AG Compound loop antenna system with isolation frequency agility
KR102306080B1 (ko) * 2015-08-13 2021-09-30 삼성전자주식회사 안테나 장치 및 안테나 장치를 포함하는 전자 장치
JP6701351B2 (ja) 2015-12-31 2020-05-27 華為技術有限公司Huawei Technologies Co.,Ltd. アンテナ装置及び端末
CN107204511B (zh) * 2016-03-16 2019-02-12 北京小米移动软件有限公司 一种分集天线
CN107275753B (zh) * 2016-04-08 2020-06-19 北京小米移动软件有限公司 终端的天线
US10389010B2 (en) * 2016-07-21 2019-08-20 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
WO2018027921A1 (zh) 2016-08-12 2018-02-15 华为技术有限公司 一种通信设备
US10511083B2 (en) * 2016-09-22 2019-12-17 Apple Inc. Antennas having symmetrical switching architecture
KR102586064B1 (ko) * 2017-02-16 2023-10-05 엘에스엠트론 주식회사 안테나 장치
CN106876897A (zh) * 2017-02-28 2017-06-20 北京小米移动软件有限公司 移动终端及其金属后壳
CN107437661B (zh) * 2017-04-21 2021-07-09 瑞声科技(新加坡)有限公司 天线及移动终端
CN107181045B (zh) * 2017-06-19 2024-02-20 上海传英信息技术有限公司 一种移动终端的天线及具有该天线的移动终端
US10700416B2 (en) * 2017-08-30 2020-06-30 Lg Electronics Inc. Mobile terminal
EP3451636A1 (en) * 2017-08-30 2019-03-06 LG Electronics Inc. Mobile terminal
US10804617B2 (en) * 2017-09-11 2020-10-13 Apple Inc. Electronic devices having shared antenna structures and split return paths
CN108183332A (zh) * 2017-12-25 2018-06-19 重庆宝力优特科技有限公司 一种金属边框手机天线、控制系统及通讯终端
CN107959103A (zh) * 2017-12-28 2018-04-24 上海传英信息技术有限公司 一种移动终端的天线及具有该天线的移动终端
CN108336483B (zh) * 2018-02-02 2021-03-02 Oppo广东移动通信有限公司 天线组件、电子设备及天线切换方法
US10833410B2 (en) * 2018-02-22 2020-11-10 Apple Inc. Electronic device antennas having multiple signal feed terminals
CN208622935U (zh) * 2018-06-20 2019-03-19 深圳鼎智通讯股份有限公司 一种环形缝隙可重构的全金属天线
CN108879116B (zh) * 2018-06-25 2021-06-18 维沃移动通信有限公司 一种天线系统及终端
CN109149086B (zh) * 2018-08-03 2020-07-07 瑞声科技(南京)有限公司 天线系统及移动终端
CN109149072B (zh) * 2018-08-20 2020-11-17 瑞声科技(新加坡)有限公司 天线模组及移动终端
US11258163B2 (en) * 2018-08-30 2022-02-22 Apple Inc. Housing and antenna architecture for mobile device
CN109687151B (zh) * 2018-12-26 2021-12-14 维沃移动通信有限公司 一种天线结构及移动终端
CN109687111B (zh) * 2018-12-29 2021-03-12 维沃移动通信有限公司 一种天线结构及通信终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160352017A1 (en) * 2015-05-26 2016-12-01 Kyocera Corporation Tunable antenna
CN108631040A (zh) * 2018-03-28 2018-10-09 广东欧珀移动通信有限公司 电子装置
CN108808221A (zh) * 2018-06-19 2018-11-13 深圳市万普拉斯科技有限公司 天线系统及移动终端
CN109462016A (zh) * 2018-09-29 2019-03-12 Oppo广东移动通信有限公司 天线装置及电子设备
CN209169370U (zh) * 2018-11-30 2019-07-26 维沃移动通信有限公司 一种终端设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115117602A (zh) * 2021-03-23 2022-09-27 北京小米移动软件有限公司 一种天线模组和终端设备
CN115117602B (zh) * 2021-03-23 2023-08-29 北京小米移动软件有限公司 一种天线模组和终端设备
CN113422619A (zh) * 2021-06-18 2021-09-21 安徽安努奇科技有限公司 一种调谐电路及通讯设备
CN113422619B (zh) * 2021-06-18 2022-05-27 安徽安努奇科技有限公司 一种调谐电路及通讯设备

Also Published As

Publication number Publication date
US20220278446A1 (en) 2022-09-01
CN114447583A (zh) 2022-05-06
EP4016727A1 (en) 2022-06-22
BR112022003337B1 (pt) 2024-02-27
EP4016727A4 (en) 2022-10-05
KR20220041929A (ko) 2022-04-01
KR102659469B1 (ko) 2024-04-19
JP2022545894A (ja) 2022-11-01
CN112421211B (zh) 2022-01-14
CN114447583B (zh) 2023-09-01
BR112022003337A2 (pt) 2022-05-24
JP7336589B2 (ja) 2023-08-31
CN114258612A (zh) 2022-03-29
CN112421211A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021036753A1 (zh) 天线及电子设备
EP2704252B1 (en) Mobile device and antenna structure
KR101205196B1 (ko) 슬롯화된 다중 대역 안테나
US7170456B2 (en) Dielectric chip antenna structure
TWI637561B (zh) 行動裝置
JP6465109B2 (ja) マルチアンテナ及びそれを備える無線装置
TWI466381B (zh) 行動通訊裝置及其天線
TWI484772B (zh) 多輸入多輸出天線裝置
US8823595B2 (en) Communication device and antenna structure therein
US20120032862A1 (en) Antenna arrangement, dielectric substrate, pcb & device
US20110102272A1 (en) Mobile Communication Device and Antenna Thereof
US9692099B2 (en) Antenna-matching device, antenna device and mobile communication terminal
US8207895B2 (en) Shorted monopole antenna
JP2020014232A (ja) アンテナ装置および通信端末装置
WO2010105274A1 (en) Multi-band serially connected antenna element for multi-band wireless communication devices
US9306274B2 (en) Antenna device and antenna mounting method
CN113745809B (zh) 电子设备
KR20220014294A (ko) 용량 결합성 피드 요소를 구비한 멀티피드 안테나 시스템
CN109088168B (zh) 一种移动终端天线和移动终端
WO2014203967A1 (ja) アンテナ装置及びそれを備える無線装置
EP1858113A1 (en) Antenna device and portable radio communication device comprising such antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512425

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 122022013876

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022003337

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227007982

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020856523

Country of ref document: EP

Effective date: 20220318

ENP Entry into the national phase

Ref document number: 112022003337

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220222