WO2018027921A1 - 一种通信设备 - Google Patents

一种通信设备 Download PDF

Info

Publication number
WO2018027921A1
WO2018027921A1 PCT/CN2016/094926 CN2016094926W WO2018027921A1 WO 2018027921 A1 WO2018027921 A1 WO 2018027921A1 CN 2016094926 W CN2016094926 W CN 2016094926W WO 2018027921 A1 WO2018027921 A1 WO 2018027921A1
Authority
WO
WIPO (PCT)
Prior art keywords
nfc
radiator
capacitor
communication device
circuit
Prior art date
Application number
PCT/CN2016/094926
Other languages
English (en)
French (fr)
Inventor
朱伟
呼延思雷
孙智勇
王毅
卢士强
余慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/325,181 priority Critical patent/US10498033B2/en
Priority to EP16912376.7A priority patent/EP3480892B1/en
Priority to CN201680057036.0A priority patent/CN108140948B/zh
Priority to JP2019504090A priority patent/JP6787610B2/ja
Priority to PCT/CN2016/094926 priority patent/WO2018027921A1/zh
Publication of WO2018027921A1 publication Critical patent/WO2018027921A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/43Antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communications device.
  • NFC Near Field Communication
  • This technology allows contactless point-to-point data transmission and exchange between communication devices.
  • the technology and mobile communication technology combine to realize various business functions such as electronic payment, identity authentication, ticket purchase, and anti-counterfeiting.
  • NFC antennas designed to support NFC functionality typically consist of a circuit coil and a ferrite material.
  • conventional NFC antennas implemented in this manner are large in area, costly, and increase the thickness of the communication device. Therefore, researchers have been working on new NFC antenna solutions.
  • Patent CN204760528U proposes an antenna structure and an electronic device.
  • the antenna structure can be configured to process signals associated with non-near-field communication circuits.
  • the antenna structure also has a portion that forms a near field communication loop antenna for processing signals associated with the near field communication circuit.
  • the near field communication circuit and the non-near field communication circuit are first connected to one node, and then connected to the antenna resonating element through the feed path.
  • the antenna structure since the non-near-field communication circuit, the near-field communication circuit and the antenna resonating element are connected to the same node, the length of the antenna resonating element corresponding to the near-field communication circuit is limited by the non-near-field communication circuit.
  • the length of the antenna resonating element thereby affecting the signal radiating capability of the near field communication circuit.
  • the non-near-field communication circuit operates in a plurality of frequency bands, it is necessary to separately design at least two branches, such as the low-band branch and the high-band branch mentioned in the patent, wherein the antenna is high.
  • the band branch has no shared portion with the antenna resonating element corresponding to the near field communication circuit. Therefore, in the case where the terminal space is limited, the antenna structure provided by the patent is large in size.
  • the antenna resonating element when the antenna resonating element is formed on the metal frame of the terminal, the end of the high frequency band branch and the low frequency A gap is reserved between the end of the branch and the ground, which requires at least two non-metallic strips to be placed on the metal frame of the communication device, thereby destabilizing the structure.
  • the patent US 2015/0249485 A1 discloses an electronic device comprising a near-field antenna using an inverted-F antenna structure, the non-near-field communication circuit and the near-field communication circuit sharing the antenna structure.
  • the antenna structure when the non-near-field communication circuit operates in a plurality of frequency bands, it is necessary to separately design at least two branches, such as the low-band branch and the high-band branch mentioned in the patent, the two branches.
  • the paths are respectively formed on both sides of the non-near-field circuit and the antenna resonating element connection node.
  • the antenna resonating element is the metal frame of the terminal, a gap is reserved between the end of the high-band branch and the low-band branch and the ground. Therefore, at least two non-metal strips need to be arranged on the metal frame, which breaks the continuity of the structure.
  • the present invention provides a communication device including an antenna structure that supports sharing of multiple non-NFC signals and NFC signals.
  • the present invention provides a communication device including: a near field communication NFC circuit for processing an NFC signal; a non-NFC circuit for processing at least one low frequency signal and one high frequency signal, wherein the low frequency signal and High frequency signals are not NFC signals.
  • An antenna structure is coupled to the NFC circuit and the non-NFC circuit, the antenna structure includes: a radiator and an antenna ground; wherein the NFC circuit and the radiator are coupled by an NFC feed path, the NFC feed
  • the non-NFC feeding path includes a a high-pass circuit and a first capacitor, wherein the first high-pass circuit includes a second capacitor, the capacitance value of the second capacitor is greater than a capacitance value of the first capacitor, and the connection point of the non-NFC feed path and the radiator is a second node;
  • the radiator forms a first portion between the first node and the second node; the radiator further includes a second portion, the first end of the second portion being coupled to the antenna ground portion; and the second end of the second portion Connected to the first portion of the radiator; the electrical length of the second portion is less than a quarter wavelength corresponding to the resonant frequency of the low frequency signal, and the electrical length of the second portion is greater than the electrical length of the first portion; Including from The first node
  • the communication device comprises a printed circuit board, and the antenna ground portion is formed on the printed circuit board.
  • the radiator is formed on the first conductive side frame of the communication device, so that the metal frame is used as the antenna.
  • the second conductive side frame of the communication device is connected to the antenna grounding portion, and a non-conductive material is filled between the end of the radiator and the second conductive side frame to form a gap, thereby expanding the area of the antenna ground portion.
  • the first high-pass circuit is disposed on the printed circuit board, and is connected to the radiator through a first electrical connection device; the antenna ground portion is connected to the radiator through a second electrical connection device; the low-pass circuit is disposed in the printing On the circuit board, the radiator is connected by a third electrical connection device, thereby increasing the flexibility of the internal construction of the device.
  • the first electrical connection device, the second electrical connection device or the third electrical connection device comprises a spring piece, a screw, a conductive foam, a spring foot, a conductive cloth or a conductive glue.
  • the capacitance value of the second capacitor is greater than the capacitance value of the first capacitor. Specifically, the capacitance value of the second capacitor is at least one order of magnitude larger than the capacitance value of the first capacitor.
  • the capacitance of the first capacitor is less than 3 pF, the capacitance of the second capacitor is greater than 32 pF, or the capacitance of the first capacitor is less than 0.9 pF, and the capacitance of the second capacitor is greater than 90 pF, so that the second capacitor is relatively
  • the NFC signal constitutes an obstruction, and the first capacitor can form a low frequency resonant structure with the rest of the radiator.
  • the low frequency signal operating frequency is less than 960 MHz, and the operating frequency of the high frequency signal is between 1710 MHz and 2690 MHz.
  • the grounding branch of the second part further comprises a single-pole multi-throw switch, and the throwing end is connected with a plurality of capacitors, inductors or combinations thereof having different electrical characteristics to increase the operating frequency of the antenna.
  • the communication device further includes a switching circuit, one end of the switching circuit is connected between the first capacitor and the first high-pass circuit, and the other end of the switching circuit is coupled to the antenna ground.
  • the switching circuit includes a single-pole multi-throw switch, and a different capacitance, inductance, or a combination thereof connected to the plurality of throwing ends. In this way, To further increase the operating frequency of the antenna.
  • a gap is formed between the end of the radiator and the grounding portion of the antenna, and the slit and the second portion are respectively located at two sides of the NFC feeding path; and the radiator and the side of the NFC feeding path are close to the second portion There is no gap between the side frames, so that the communication device can realize the above-mentioned antenna structure by opening only one slit, so that the total number of slits on the communication device is reduced, and the structural integrity is enhanced.
  • FIG. 1 is a schematic structural diagram of an external structure of a communication device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of internal components of a communication device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 4a is a schematic diagram of a communication device according to an embodiment of the present invention.
  • 4b is a schematic diagram of a communication device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a communication device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a switching circuit according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an external structure of a communication device according to an embodiment of the present invention.
  • the communication device to which the present invention relates includes a mobile phone, a tablet computer, a laptop computer, a router, a home gateway, a set top box, an in-vehicle device, and the like.
  • the term "communication device” as a term may be replaced by terms such as terminal products, electronic devices, communication products, handheld terminals, portable terminals, and the like.
  • the communication device 100 has a cube-like shape including a front case 120, a side frame 130, and a back cover (not shown).
  • the side frame 130 can be divided into an upper border, a lower border, and a left border.
  • the right border, these frames are connected to each other, and a certain arc or chamfer can be formed at the joint.
  • the button, the card cover, the speaker opening, the USB hole, the earphone hole, the microphone port, and the like may be disposed on the side frame.
  • the USB hole 150 disposed on the lower frame is schematically shown.
  • a screen, a button area, a speaker opening, and the like may be disposed on the surface of the front case 120.
  • a speaker opening 140 disposed at a position near the upper frame of the front case surface is schematically shown.
  • FIG. 2 is a schematic diagram of the internal composition of a communication device 100 according to an embodiment of the present invention.
  • the communication device 100 includes a baseband processing circuit 201 and a radio frequency communication circuit 202.
  • the radio frequency communication circuit 202 can be used to support wireless communication in a plurality of radio frequency communication bands.
  • the radio frequency communication band includes a Long Term Evolution (LTE) band, for example, 704 MHz-716 MHz, 1700 MHz-1755 MHz, 1850 MHz-1900 MHz, Global System for Mobile Communications (GSM) band, for example, 824 MHz- 849 MHz, Wideband Code Division Multiple Access (WCDMA) band, for example, 1920 MHz-1980 MHz.
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • Different radio frequency communication bands correspond to different radio frequency communication circuits, for example, the GSM band corresponds to the GSM circuit 203, the LTE band corresponds to the LTE circuit 204, and the WCDMA band corresponds to the WCDMA circuit 205.
  • These circuits may be independently set, or may be shared by multiple circuits. section.
  • the radio frequency communication circuit 202 also includes an antenna structure 207 that can be disposed within the communication device 100, for example, disposed over a printed circuit board or disposed on a surface of a dielectric support.
  • the antenna structure 207 may also be formed, in part or in whole, by a portion of the conductive bezel of the communication device 100.
  • the conductive bezel may be the side bezel 130 of the communication device 100, or the conductive bezel is located on the front or back of the communication device 100, for example, for a communication device including a screen, the conductive bezel of the communication device utilizes the edge of the screen. Metal part.
  • the communication device 100 includes an NFC circuit 301 for processing an NFC signal, and a non-NFC circuit 302 for processing at least one low frequency signal and one high frequency signal.
  • the signal structure and the high frequency signal are both non-NFC signals; the antenna structure 303 is coupled to the NFC circuit 301 and the non-NFC circuit 302.
  • the antenna structure 303 includes: a radiator 304, an antenna grounding portion 305; the NFC circuit 301 and the radiator 304 are coupled by an NFC feeding path 306, and a connection point of the NFC feeding path 306 and the radiator 304 is a first node A, the NFC feeding
  • the electrical path includes a low-pass circuit 310; the non-NFC circuit 302 and the radiator 304 are coupled by a non-NFC feed path 307, and the connection point of the non-NFC feed path 307 and the radiator 304 is a second node B,
  • the non-NFC feed path 307 includes a first high pass circuit 308 and a first capacitor 309, wherein the first high pass circuit 308 includes a second capacitor (not shown), the capacitance of the second capacitor being greater than the capacitance of the first capacitor 309
  • the radiator 304 forms a first portion 311 between the first node A and the second node B; the radiator 304 further includes a second portion 312, the first end of which is coupled to
  • the end C of the radiator when the end C of the radiator is adjacent to the antenna ground, the end of the radiator C and the ground of the antenna include a gap.
  • the radiator 304 is made of materials such as aluminum, copper, silver, gold, etc., and these materials may be used singly or in combination.
  • the radiator 304 may be a continuous structure or may appear to include a plurality of radiation sub-portions that are coupled to each other by air, inductance or capacitance.
  • the communication device 100 includes a printed circuit board 401.
  • the antenna ground portion 305 is formed on the printed circuit board 401. Since those skilled in the art are familiar with how to form an antenna ground on a printed circuit board, this I won't go into details here.
  • FIG. 4b when the radiator 304 is implemented by the conductive housing of the communication device 100, another portion of the conductive housing is connected to the antenna ground portion 305, for example, an antenna ground portion 305 is formed on the printed circuit board 401, and the side frame 130 passes.
  • the frame grounding portion 403 is connected to the antenna grounding portion 305, and a non-conductive material such as glass, plastic or the like is filled between the radiator end C and the grounded side frame 130 to form a slit 402.
  • the "antenna grounding portion” may be replaced with the words “ground”, “antenna ground”, and “ground plane”, and they are all used to mean substantially the same meaning.
  • the antenna grounding portion It is connected to the ground of the RF transceiver circuit, and the antenna ground has a larger size than the operating wavelength of the antenna.
  • the printed circuit board is provided with electrical connecting devices such as a spring foot, a screw, a spring piece, a conductive cloth, a conductive foam or a conductive adhesive.
  • the first high-pass circuit 308 is disposed on the printed circuit board and connected to the radiator 304 through an electrical connection device; the antenna ground portion 305 is connected to the radiator 304 through another electrical connection device; the low-pass circuit 310 is disposed in the printing On the circuit board, the radiator 304 is connected by a further electrical connection means.
  • the radiator 304 and the antenna ground 305 are filled with air, plastic, ceramic or other dielectric material.
  • the NFC feed path 306, the non-NFC feed path 307, a portion of the second portion (the ground path 404, see FIG. 4a or 4b) spans the area formed by the air, plastic, ceramic or other dielectric material.
  • the NFC circuit 301 processes the transmitted and received NFC signals.
  • the NFC circuit 301 may include a signal generation circuit, a modulation or demodulation circuit, a power amplification circuit, a filter circuit, a duplex circuit, a balun circuit, a matching circuit, and the like.
  • the NFC circuit 301 may be a circuit composed of a capacitor, an inductor, a switch, or the like, and these elements may be connected in series, in parallel, or the like.
  • the NFC circuit 301 includes a processor having processing capabilities, or the NFC circuit 301 is coupled to a processor having such processing capabilities, and the processor can invoke a predetermined code to execute a predetermined algorithm.
  • the NFC circuit 301 controls the on/off of the switch, the magnitude of the capacitance value or the inductance value, and the like in the circuit according to an algorithm preset by the processor.
  • the NFC signal to be transmitted starts from the NFC circuit 301, is fed to the first node A via the NFC feed path 306, and passes through the first portion 311 and the second portion 312 to the antenna.
  • the ground portion 305 forms a loop current path (refer to the dotted line with an arrow).
  • the non-NFC circuit 302 is configured to process at least one low frequency signal and one high frequency signal, and the low frequency signal and the high frequency signal are both non-NFC signals.
  • the non-NFC circuit 302 may include a signal generation circuit, a modulation or demodulation circuit, a power amplification circuit, a filter circuit, a duplex circuit, a balun circuit, a matching circuit, etc., and the non-NFC circuit 302 may be a capacitor, an inductor, a switch. a circuit composed of components, these elements Parts can be connected by series, parallel, and the like.
  • the non-NFC circuit 302 includes a processor having processing capabilities, or the non-NFC circuit 302 is coupled to a processor having such processing capabilities, and the processor can invoke a preset code to execute a predetermined algorithm.
  • the non-NFC circuit 302 controls the on/off of the switch, the value of the capacitance or the value of the inductance, and the like in the circuit according to an algorithm preset by the processor. Still taking the transmission signal as an example, according to the algorithm preset by the processor, the low frequency signal to be transmitted starts from the non-NFC circuit 302, is fed to the second node B via the non-NFC feed path 307, and mainly utilizes the second of the radiator 304.
  • the portion 312 radiates, optionally, the low frequency signal operating frequency is less than 960 MHz.
  • the first capacitor 309, the second portion 312, and the antenna ground portion 305 constitute a low frequency resonant structure, and the first portion 311 and the third portion AC are mainly used for impedance matching.
  • the electrical length of the low frequency resonant structure is less than a quarter wavelength corresponding to the resonant frequency of the low frequency signal,
  • the capacitance value of the first capacitor 309 is less than 3 pF
  • the capacitance value of the second capacitor is greater than the capacitance value of the first capacitor 309, specifically: the capacitance of the second capacitor
  • the value is at least an order of magnitude greater than the capacitance of the first capacitor 309.
  • the capacitance value of the first capacitor 309 is less than 3 pF
  • the capacitance value of the second capacitor is greater than 33 pF
  • the capacitance value of the second capacitor is 10 times larger than the capacitance value of the first capacitor 309
  • the capacitance value of the first capacitor 309 is less than 0.9.
  • the capacitance value of the second capacitor is greater than 90 pF
  • the capacitance value of the second capacitor is 100 times larger than the capacitance value of the first capacitor 309.
  • the first capacitor 309 is a lumped element or is implemented by means of a trace coupling on a printed circuit board.
  • the capacitance value of the second capacitor is large, multiple capacitors are connected in parallel.
  • the second capacitor acts primarily to prevent the NFC signal from being connected to the antenna ground via the non-NFC feed path. However, for non-NFC signals, the second capacitor has no obstructive effect.
  • the positions of the first capacitor 309 and the first high-pass circuit 308 in the non-NFC feed path 307 can be interchanged.
  • the non-NFC feed path 307 may also include a matching circuit.
  • the high frequency signal to be transmitted starts from the non-NFC circuit 302, and after being fed to the second node B via the non-NFC feed path, the first and third portions are mainly used for radiation.
  • the operating frequency of the high frequency signal is between 1710 MHz and 2690 MHz.
  • a ground branch 502 is added between the second portion 312 of the radiator 304, i.e., the antenna ground 305 and the non-NFC feed path 307, the ground branch One end of the 502 is connected to the radiator 304, and the other end is coupled to the antenna ground 305.
  • the grounding branch 502 includes a second high-pass circuit 501.
  • the second high-pass circuit 501 includes at least one third capacitor.
  • the capacitance of the third capacitor is similar to the capacitance of the second capacitor.
  • grounding branch 502 further includes a single-pole multi-throw switch, and the throwing end is connected with a plurality of capacitors, inductors or combinations thereof having different electrical characteristics to increase the operating frequency of the antenna.
  • the communication device further includes a switching circuit 503.
  • One end D of the switching circuit 503 is connected between the first capacitor 309 and the first high-pass circuit 308, and the other end of the switching circuit 503 is coupled to the antenna ground. 305.
  • FIG. 6 shows an implementation of a switching circuit provided by an embodiment of the present invention.
  • the switching circuit 503 includes a switching device, such as a single-pole multi-throw switch, and a capacitor, an inductor, or a combination thereof connected to different throwing ends. In this way, the operating frequency of the antenna can be further increased.
  • the radiator 304 is a part of the side frame 130 of the communication device 100, and the side frame 130 is made of a conductive material, such as metal, and the radiator 304 and the A gap 402 is disposed between the other side frames 130 of the communication device 100, and the slit 402 is filled with a dielectric material such as glass, plastic, or the like.
  • the NFC circuit 301 and the non-NFC circuit 302 are connected to the radiator 304 via respective feed paths (306, 307), which are also connected to the antenna ground 305 via a ground path 404, which will not be described in detail.
  • the slot 402 and the ground path 404 are respectively located on both sides of the feeding path (306, 307), and on the side of the ground path 404, the radiator 304 and other side frames 130 may not be set. Gap. Therefore, the embodiment of the present invention can reduce the number of slits on the frame of the communication device 100 and enhance structural continuity.
  • a and B are “coupled", which means that the electrical signal passing through A is physically determined to be related to the electrical signal passing through B. This includes A and B passing through wires, shrapnel, etc. Directly connected, or indirectly connected by another component C, also includes the correlation between A and B through electromagnetic induction through their respective electrical signals.
  • the frequency mentioned in the embodiment of the present invention can be understood as a resonant frequency.
  • the antenna has a resonant frequency of 1800 MHz and an operating bandwidth of 10% of the resonant frequency.
  • the antenna operates from 1620 MHz to 1980 MHz.
  • capacitors and inductors mentioned in the above embodiments may be a lumped capacitor and a lumped inductor, or may be a capacitor and an inductor, or a distributed capacitor and a distributed inductor.
  • the embodiments of the present invention are not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)
  • Telephone Set Structure (AREA)
  • Transceivers (AREA)

Abstract

一种通信设备包括:NFC电路和非NFC电路共用的天线结构,该天线结构包括:辐射体,天线接地部;NFC电路和辐射体通过NFC馈电路径在第一节点处耦接;非NFC电路和辐射体通过非NFC馈电路径在第二节点处耦接,非NFC馈电路径包括第一电容和第二电容,第二电容的电容值大于第一电容的电容值;辐射体在第一节点和第二节点间形成第一部分;辐射体还包括第二部分,第二部分的一端与天线接地部耦接,另一端与第一部分连接;第二部分的电长度小于低频信号谐振频率对应的四分之一波长,且第二部分的电长度大于第一部分的电长度;辐射体还包括从所述第一节点到辐射体末端的第三部分。

Description

一种通信设备 技术领域
本发明涉及通信技术领域,特别涉及一种通信设备。
背景技术
近场通信(Near Field Communication,NFC)是一种近距离的非接触式通信技术,其工作频率为13.56MHz。
该技术允许通信设备之间进行非接触式的点对点数据传输、交换。该技术和移动通信技术相结合,可实现电子支付、身份认证、票务购买、防伪等多种业务功能。
为支持NFC功能而设计的传统NFC天线通常由电路线圈与铁氧体材料组成。然而,由这种方式实现的传统NFC天线面积大、成本高、而且会增加通信设备厚度。所以,研究人员一直致力于提出新的NFC天线解决方案。
专利CN204760528U提出了一种天线结构和电子设备。该天线结构可被配置为处理与非近场通信电路相关联的信号。该天线结构还具有形成近场通信环形天线以用于处理与近场通信电路相关联的信号的部分。在该天线结构中,近场通信电路和非近场通信电路先连接到一个节点,再通过馈电路径连接到天线谐振元件。在该天线结构中,由于非近场通信电路、近场通信电路与天线谐振元件的连接的是同一个节点,近场通信电路对应的天线谐振元件的长度会受制于非近场通信电路对应的天线谐振元件的长度,从而影响近场通信电路的信号辐射能力。而且,在该天线结构中,当非近场通信电路工作在多个频带时,需要分别设计至少两路支路,例如该专利中提到的低频带支路以及高频带支路,其中高频带支路与近场通信电路对应的天线谐振元件没有共用部分。因此,在终端空间有限的情况下,采用该专利提供的天线结构尺寸较大。另外,在一种场景下,当天线谐振元件形成在终端的金属边框上,高频带支路的末端和低频 带支路的末端与地之间都要预留出缝隙,这使得通信设备的金属边框上至少需要设置两条非金属带,从而会破坏结构的连贯性。
专利US2015/0249485 A1公开了一种包括近场天线的电子设备,该近场天线采用倒F天线结构,非近场通信电路和近场通信电路共用该天线结构。在该天线结构中,当非近场通信电路工作在多个频带时,需要分别设计至少两路支路,例如该专利中提到的低频带支路以及高频带支路,这两条支路分别形成在非近场电路和天线谐振元件连接节点两侧,当天线谐振元件是终端的金属边框时,高频带支路和低频带支路的末端与地之间都要预留出缝隙,使得金属边框上至少需要设置两条非金属带,破坏了结构的连贯性。
发明内容
本发明提供一种通信设备,该通信设备包括支持多路非NFC信号和NFC信号共用的天线结构。
一方面,本发明提供一种通信设备,该通信设备包括:用于处理NFC信号的近场通信NFC电路;用于处理至少一路低频信号和一路高频信号的非NFC电路,其中该低频信号和高频信号均非NFC信号。天线结构,该天线结构耦接至该NFC电路和该非NFC电路,该天线结构包括:辐射体和天线接地部;其中,该NFC电路和该辐射体通过NFC馈电路径耦接,该NFC馈电路径包括低通电路,该NFC馈电路径与该辐射体的连接点为第一节点;该非NFC电路和该辐射体通过非NFC馈电路径耦接,该非NFC馈电路径包括第一高通电路和第一电容,其中第一高通电路包括第二电容,该第二电容的电容值大于第一电容的电容值,该非NFC馈电路径与该辐射体的连接点为第二节点;该辐射体在该第一节点和该第二节点间形成第一部分;该辐射体还包括第二部分,该第二部分的第一端与天线接地部耦接;该第二部分的第二端与该辐射体的第一部分连接;该第二部分的电长度小于该低频信号谐振频率对应的四分之一波长,且该第二部分的电长度大于该第一部分的电长度;该辐射体还包括从该第一节点到该辐射体末 端的第三部分。采用该设备,可以使一个天线结构同时支持NFC信号和多个非NFC信号,而且天线结构的尺寸较小。
其中,该通信设备包括印刷电路板,该天线接地部形成在该印刷电路板上。
其中,该辐射体形成在该通信设备的第一导电侧边框上,从而利用金属边框作为天线。
其中,该通信设备的第二导电侧边框与该天线接地部连接,该辐射体末端与该第二导电侧边框间填充非导电材料,形成缝隙,从而扩大天线接地部的面积。
其中,该第一高通电路设置在该印刷电路板上,通过第一电连接器件与该辐射体连接;该天线接地部通过第二电连接器件与该辐射体连接;该低通电路设置在印刷电路板上,通过第三电连接器件与该辐射体连接,从而增加设备内部构造的灵活性。
其中,该第一电连接器件、第二电连接器件或第三电连接器件包括弹片、螺钉、导电泡棉、弹脚、导电布或者导电胶。
其中,该第二电容的电容值大于第一电容的电容值具体是指:第二电容的电容值比第一电容的电容值至少大一个数量级。
其中,该第一电容的电容值小于3pF,该第二电容的电容值大于32pF,或该第一电容的电容值小于0.9pF,该第二电容的电容值大于90pF,从而使得第二电容相对NFC信号构成阻碍作用,而第一电容可以和辐射体其他部分形成低频谐振结构。
其中,该低频信号工作频率小于960MHz,该高频信号的工作频率位于1710MHz~2690MHz之间。
其中,第二部分的接地支路还包括单刀多掷开关,掷端和多个电特性不同的电容、电感或其组合连接,以便增加天线的工作频率。
其中,通信设备还包括切换电路,切换电路的一端连接到第一电容和第一高通电路之间,切换电路的另一端耦接到天线接地部。该切换电路包括开单刀多掷开关,以及与多个掷端连接的不同电容、电感或其组合。采用这种方式,可 以进一步增加天线的工作频率。
其中,该辐射体末端与该天线接地部间包括缝隙,该缝隙和该第二部分分别位于该NFC馈电路径的两侧;在NFC馈电路径靠近第二部分一侧,该辐射体和该侧边框间不设置缝隙,从而使得通信设备可以只开一条缝隙就可以实现上述天线结构,使得通信设备上总的开缝数量减少,增强结构的完整性。
附图说明
图1为本发明实施例提供的一种通信设备外部结构示意图;
图2为本发明实施例提供的通信设备内部组成示意图;
图3为本发明实施例提供的天线结构示意图;
图4a为本发明实施例提供的通信设备示意图;
图4b为本发明实施例提供的通信设备示意图;
图5为本发明实施例提供的通信设备示意图;
图6为本发明实施例提供的切换电路示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,为本发明实施例提供的一种通信设备外部结构示意图。本发明涉及的通信设备包括手机、平板电脑、膝上型电脑、路由器、家庭网关、机顶盒、车载设备等。全文中作为术语出现的“通信设备”,可以用终端产品、电子设备、通信产品、手持终端、便携终端等术语替换。
示例性地,该通信设备100具有类似立方体的形状,包括前壳120,侧边框130和背盖(图中未示出)。该侧边框130可以分为上边框、下边框、左边框、 右边框,这些边框相互连接,在连接处可以形成一定的弧度或倒角。
按键、卡托盖、扬声器开口、USB孔、耳机孔、麦克口等可以设置在侧边框上,在图1中,示意性的给出了设置在下边框上的USB孔150。
屏幕、按键区、扬声器开口等可以设置在前壳120的表面,在图1中,示意性的给出了在前壳表面靠近上边框的位置设置的扬声器开口140。
请参考图2,为本发明实施例提供的通信设备100内部组成示意图。所述通信设备100包括基带处理电路201和射频通信电路202。
所述射频通信电路202可用于支持多个射频通信频带中的无线通信。所述射频通信频带包括长期演进(Long Term Evolution,LTE)频带,例如,704MHz-716MHz,1700MHz-1755MHz,1850MHz-1900MHz、全球移动通信系统(Global System for Mobile Communications,GSM)频带,例如,824MHz-849MHz、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)频带,例如,1920MHz-1980MHz等。不同的射频通信频带对应不同的射频通信电路,例如,GSM频带对应GSM电路203、LTE频带对应LTE电路204、WCDMA频带对应WCDMA电路205等,这些电路可以是独立设置,也可以多个电路包括共用部分。
所述射频通信电路202还包括天线结构207,该天线结构207可以设置在通信设备100内,例如,设置在印刷电路板上方,或设置在电介质支架表面。
该天线结构207也可以部分或全部由该通信设备100导电边框的一部分形成。结合图1,该导电边框可以是通信设备100的侧边框130,或者该导电边框位于通信设备100的正面或背面,例如,对包括屏幕的通信设备,所述通信设备的导电边框利用屏幕边缘的金属部分。
图3示出了本发明实施例提供的天线结构示意图,该通信设备100包括NFC电路301,用于处理NFC信号;非NFC电路302,用于处理至少一路低频信号和一路高频信号,该低频信号和高频信号均非NFC信号;天线结构303,该天线结构303耦接至所述NFC电路301和非NFC电路302,该天线结构303包括: 辐射体304,天线接地部305;该NFC电路301和该辐射体304通过NFC馈电路径306耦接,该NFC馈电路径306与该辐射体304的连接点为第一节点A,该NFC馈电路径包括低通电路310;该非NFC电路302和该辐射体304通过非NFC馈电路径307耦接,该非NFC馈电路径307与该辐射体304的连接点为第二节点B,该非NFC馈电路径307包括第一高通电路308和第一电容309,其中第一高通电路308包括第二电容(图中未示出),该第二电容的电容值大于第一电容309的电容值;该辐射体304在该第一节点A和该第二节点B间形成第一部分311;该辐射体304还包括第二部分312,该第二部分312的第一端与天线接地部305耦接;该第二部分312的第二端与该辐射体304的第一部分311连接;该第二部分312的电长度小于该低频信号谐振频率对应的四分之一波长,且该第二部分312的电长度大于该第一部分311的电长度;该辐射体304还包括从该第一节点A到该辐射体末端C的第三部分。
可以理解的,当辐射体末端C与天线接地部临近时,该辐射体末端C与该天线接地部间包括缝隙。
可选的,该辐射体304采用铝、铜、银、金等材料制成,这些材料可以单独或组合使用。该辐射体304可以是连续结构,也可以看起来包括多个辐射子部分,这多个辐射子部分间通过空气、电感或电容相互耦接。
该通信设备100包括印刷电路板401,可选的,参见图4a,该天线接地部305形成在该印刷电路板401上,由于本领域技术人员熟悉如何在印刷电路板上形成天线接地部,此处不再赘述。或者,参见图4b,当辐射体304利用通信设备100的导电外壳实现时,导电外壳的另一部分与天线接地部305连接,例如,在印刷电路板401上形成天线接地部305,侧边框130通过边框接地部403和天线接地部305连接,辐射体末端C与该接地的侧边框130间填充非导电材料,如玻璃、塑料等,形成缝隙402。
需要说明的是,在本发明各实施例中,“天线接地部”可以用“地”、“天线地”、“地平面”等词替代,它们均用于表示基本相同的含义。所述天线接地部 和射频收发电路的地线相连接,并且,天线接地部具有比天线工作波长更大的尺寸。
可选的,印刷电路板上设置有弹脚、螺钉、弹片、导电布、导电泡棉或者导电胶等电连接器件。该第一高通电路308设置在印刷电路板上,通过电连接器件与该辐射体304连接;该天线接地部305通过另一个电连接器件与该辐射体304连接;该低通电路310设置在印刷电路板上,通过再一个电连接器件与该辐射体304连接。
该辐射体304和天线接地部305之间填充空气、塑料、陶瓷或其他电介质材料。
该NFC馈电路径306、非NFC馈电路径307、第二部分中的一部分(接地路径404,参见图4a或图4b)跨越所述空气、塑料、陶瓷或其他电介质材料形成的区域。
请结合图1和图4a,该NFC电路301处理发送和接收的NFC信号。NFC电路301可包括信号生成电路、调制或解调电路、功率放大电路、滤波电路、双工电路、巴伦电路、匹配电路等。该NFC电路301可以是由电容器、电感器、开关等元件构成的电路,这些元件可以通过串联、并联等方式连接。该NFC电路301包括具有处理能力的处理器,或者该NFC电路301与具有这样处理能力的处理器连接,处理器可以调用预设的代码,执行预设的算法。NFC电路301根据处理器预设的算法来控制电路中的开关通断、电容值或电感值的大小等。以发送NFC信号为例,根据处理器预设的算法,待发送的NFC信号从NFC电路301出发,经NFC馈电路径306馈送到第一节点A,通过第一部分311、第二部分312到天线接地部305,形成环电流路径(参考带箭头的虚线所示)。
该非NFC电路302,用于处理至少一路低频信号和一路高频信号,该低频信号和高频信号均非NFC信号。该非NFC电路302可包括信号生成电路、调制或解调电路、功率放大电路、滤波电路、双工电路、巴伦电路、匹配电路等,该非NFC电路302可以是由电容器、电感器、开关等元件构成的电路,这些元 件可以通过串联、并联等方式连接。非NFC电路302包括具有处理能力的处理器,或者非NFC电路302与具有这样处理能力的处理器连接,处理器可以调用预设的代码,执行预设的算法。非NFC电路302根据处理器预设的算法来控制电路中的开关通断、电容值或电感值的大小等。仍以发送信号为例,根据处理器预设的算法,待发送的低频信号从非NFC电路302出发,经非NFC馈电路径307馈送到第二节点B,并主要利用辐射体304的第二部分312辐射,可选的,所述低频信号工作频率小于960MHz。
进一步说明的是,对低频信号而言,第一电容309,第二部分312,以及天线接地部305构成了低频谐振结构,而第一部分311和第三部分AC主要用于阻抗匹配。该低频谐振结构的电长度小于低频信号谐振频率对应的四分之一波长,
进一步说明的是,为形成该低频谐振结构,优选的,第一电容309的电容值小于3pF,而该第二电容的电容值大于第一电容309的电容值具体是指:第二电容的电容值比第一电容309的电容值至少大一个数量级。例如,第一电容309的电容值小于3pF,第二电容的电容值大于33pF,第二电容的电容值比第一电容309的电容值大10倍,或者,第一电容309的电容值小于0.9pF,第二电容的电容值大于90pF,第二电容的电容值比第一电容309的电容值大100倍。
可选的,第一电容309采用集总元件,或者采用在印刷电路板上走线耦合的方式实现。可选的,当第二电容的电容值较大时,采用多个电容并联的方式实现。
对NFC信号来说,第二电容主要起阻碍作用,避免NFC信号经非NFC馈电路径连接到天线接地部。但对非NFC信号,第二电容并无阻碍作用。
需要说明的是,第一电容309和第一高通电路308在非NFC馈电路径307中的位置可以互换。所述非NFC馈电路径307还可以包括匹配电路。
再请参考图1,当发送高频信号时,待发送的高频信号从非NFC电路302出发,经非NFC馈电路径馈送到第二节点B后主要利用第一和第三部分辐射,可选的,高频信号的工作频率位于1710MHz~2690MHz之间。
为了进一步增加信号的覆盖范围,参考图3和图5,在辐射体304的第二部分312,即天线接地部305和非NFC馈电路径307之间,增加接地支路502,该接地支路502的一端与辐射体304连接,另一端与天线接地部305耦接。该接地支路502包括第二高通电路501,该第二高通电路501包括至少一个第三电容,可选的,该第三电容的电容值与第二电容的电容值相近。
进一步的,接地支路502还包括单刀多掷开关,掷端和多个电特性不同的电容、电感或其组合连接,以便增加天线的工作频率。
另外,结合图5和图6,通信设备还包括切换电路503,切换电路503的一端D连接到第一电容309和第一高通电路308之间,切换电路503的另一端耦接到天线接地部305。图6给出了本发明实施例提供的一种切换电路的实现方式,该切换电路503包括开关器件,例如单刀多掷开关,以及与不同掷端连接的电容、电感或其组合等。采用这种方式,可以进一步增加天线的工作频率。
进一步参阅图4b或图5,在该实施例中,所述辐射体304为所述通信设备100侧边框130的一部分,所述侧边框130采用导电材质,例如金属,所述辐射体304与所述通信设备100的其他侧边框130间设置有缝隙402,所述缝隙402填充电介质材料,如玻璃、塑料等。NFC电路301和非NFC电路302通过各自的馈电路径(306,307)和该辐射体304连接,该辐射体304还通过接地路径404连接到天线接地部305,相关内部不再赘述。在该实施例中,所述缝隙402和所述接地路径404分别位于所述馈电路径(306,307)的两侧,并且在接地路径404一侧,辐射体304和其他侧边框130间可以不设置缝隙。因此,本发明实施例可以减少在通信设备100边框上开缝的数量,增强结构连贯性。
需要说明的是,本发明各实施例提到A和B“耦接”,是指通过A的电信号与通过B的电信号发生物理上的确定关联,这包括A与B通过导线、弹片等直接连接,或者通过另一个部件C间接相连,也包括A与B之间通过电磁感应使经过各自的电信号发生关联。
需要说明的是,本发明实施例中提到的频率可以理解为谐振频率。对于本 领域普通技术人员而言,谐振频率7-13%范围内的频率可以理解为天线的工作带宽。例如,天线的谐振频率为1800MHz,工作带宽为谐振频率的10%,则天线的工作范围为1620MHz-1980MHz。
需要说明的是,上述实施例中提到的电容和电感可以为集总电容和集总电感,也可以为电容器和电感器,或则为分布电容和分布电感。本发明实施例对此并不限制。
需要说明的是,当本发明各实施例提及“第一”、“第二”、“第三”等序数词时,除非根据上下文其确实表达顺序之意,应当理解为仅仅是起区分之用。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种通信设备,所述通信设备包括:
    近场通信NFC电路,用于处理NFC信号;
    非NFC电路,用于处理至少一路低频信号和一路高频信号,其中所述低频信号和高频信号均非NFC信号;
    天线结构,所述天线结构耦接至所述NFC电路和所述非NFC电路,其特征在于,所述天线结构包括:辐射体,天线接地部;
    所述NFC电路和所述辐射体通过NFC馈电路径耦接,所述NFC馈电路径包括低通电路,所述NFC馈电路径与所述辐射体的连接点为第一节点;
    所述非NFC电路和所述辐射体通过非NFC馈电路径耦接,所述非NFC馈电路径包括第一高通电路和第一电容,其中第一高通电路包括第二电容,所述第二电容的电容值大于第一电容的电容值,所述非NFC馈电路径与所述辐射体的连接点为第二节点;
    所述辐射体在所述第一节点和所述第二节点间形成第一部分;
    所述辐射体还包括第二部分,所述第二部分的第一端与天线接地部耦接;所述第二部分的第二端与所述辐射体的第一部分连接;所述第二部分的电长度小于所述低频信号谐振频率对应的四分之一波长,且所述第二部分的电长度大于所述第一部分的电长度;
    所述辐射体还包括从所述第一节点到所述辐射体末端的第三部分。
  2. 如权利要求1所述的通信设备,其特征在于,所述通信设备包括印刷电路板,所述天线接地部形成在所述印刷电路板上。
  3. 如权利要求2所述的通信设备,其特征在于,所述辐射体形成在所述通信设备的第一导电侧边框上。
  4. 如权利要求3所述的通信设备,其特征在于,所述通信设备的第二导电侧边框与所述天线接地部连接,所述辐射体末端与所述第二导电侧边框间填充非导电材料,形成缝隙。
  5. 如权利要求2~4所述的任一通信设备,其特征在于,所述第一高通电路设置在所述印刷电路板上,通过第一电连接器件与所述辐射体连接;所述天线接地部通过第二电连接器件与所述辐射体连接;所述低通电路设置在印刷电路板上,通过第三电连接器件与所述辐射体连接。
  6. 如权利要求5所述的通信设备,其特征在于,所述第一电连接器件、第二电连接器件或第三电连接器件包括螺钉或弹片。
  7. 如权利要求1~6任一所述的通信设备,其特征在于,所述第二电容的电容值大于第一电容的电容值具体是指:第二电容的电容值比第一电容的电容值至少大一个数量级。
  8. 如权利要求7所述的通信设备,其特征在于,所述第一电容的电容值小于3pF,所述第二电容的电容值大于32pF,或所述第一电容的电容值小于0.9pF,所述第二电容的电容值大于90pF。
  9. 如权利要求1~7任一所述的通信设备,其特征在于,所述低频信号工作频率小于960MHz,所述高频信号的工作频率位于1710MHz~2690MHz之间。
  10. 如权利要求1~7任一所述的通信设备,其特征在于,所述辐射体末端与所述天线接地部间包括缝隙,所述缝隙和所述第二部分分别位于所述NFC馈电路径的两侧;在所述NFC馈电路径靠近所述第二部分一侧,所述辐射体和所 述侧边框间不设置缝隙。
PCT/CN2016/094926 2016-08-12 2016-08-12 一种通信设备 WO2018027921A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/325,181 US10498033B2 (en) 2016-08-12 2016-08-12 Communications device
EP16912376.7A EP3480892B1 (en) 2016-08-12 2016-08-12 Communications device
CN201680057036.0A CN108140948B (zh) 2016-08-12 2016-08-12 一种通信设备
JP2019504090A JP6787610B2 (ja) 2016-08-12 2016-08-12 通信デバイス
PCT/CN2016/094926 WO2018027921A1 (zh) 2016-08-12 2016-08-12 一种通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094926 WO2018027921A1 (zh) 2016-08-12 2016-08-12 一种通信设备

Publications (1)

Publication Number Publication Date
WO2018027921A1 true WO2018027921A1 (zh) 2018-02-15

Family

ID=61161315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094926 WO2018027921A1 (zh) 2016-08-12 2016-08-12 一种通信设备

Country Status (5)

Country Link
US (1) US10498033B2 (zh)
EP (1) EP3480892B1 (zh)
JP (1) JP6787610B2 (zh)
CN (1) CN108140948B (zh)
WO (1) WO2018027921A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301479A (zh) * 2018-10-31 2019-02-01 广东小天才科技有限公司 具有天线结构的智能穿戴设备
CN111509374A (zh) * 2019-01-31 2020-08-07 北京小米移动软件有限公司 终端
JP2022545894A (ja) * 2019-08-23 2022-11-01 華為技術有限公司 アンテナ及び電子装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448142B (zh) * 2019-08-30 2022-05-17 Oppo广东移动通信有限公司 天线装置及电子设备
JP7457225B2 (ja) * 2019-10-15 2024-03-28 Fcnt合同会社 アンテナ装置および無線通信装置
CN113839181B (zh) * 2020-06-23 2024-05-24 北京小米移动软件有限公司 一种天线模组和终端设备
WO2024071988A1 (ko) * 2022-09-26 2024-04-04 삼성전자 주식회사 안테나를 포함하는 전자 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201758180U (zh) * 2010-05-25 2011-03-09 美磊科技股份有限公司 多频段的天线的改进结构
CN104471789A (zh) * 2012-12-21 2015-03-25 株式会社村田制作所 天线装置及电子设备
US20150249292A1 (en) * 2014-03-03 2015-09-03 Apple Inc. Electronic Device With Shared Antenna Structures and Balun

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798554B2 (en) * 2012-02-08 2014-08-05 Apple Inc. Tunable antenna system with multiple feeds
US9793616B2 (en) * 2012-11-19 2017-10-17 Apple Inc. Shared antenna structures for near-field communications and non-near-field communications circuitry
US9621230B2 (en) * 2014-03-03 2017-04-11 Apple Inc. Electronic device with near-field antennas
CN108321542B (zh) * 2015-06-12 2020-08-21 Oppo广东移动通信有限公司 天线系统及应用该天线系统的通信终端
KR102388353B1 (ko) 2015-06-29 2022-04-19 삼성전자주식회사 근거리 무선 통신 안테나, 근거리 무선 통신 장치 및 이를 포함하는 모바일 장치
CN105826679A (zh) * 2016-05-12 2016-08-03 惠州硕贝德无线科技股份有限公司 一种三段式金属后盖的近场天线装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201758180U (zh) * 2010-05-25 2011-03-09 美磊科技股份有限公司 多频段的天线的改进结构
CN104471789A (zh) * 2012-12-21 2015-03-25 株式会社村田制作所 天线装置及电子设备
US20150249292A1 (en) * 2014-03-03 2015-09-03 Apple Inc. Electronic Device With Shared Antenna Structures and Balun

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3480892A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301479A (zh) * 2018-10-31 2019-02-01 广东小天才科技有限公司 具有天线结构的智能穿戴设备
CN109301479B (zh) * 2018-10-31 2023-12-22 广东小天才科技有限公司 具有天线结构的智能穿戴设备
CN111509374A (zh) * 2019-01-31 2020-08-07 北京小米移动软件有限公司 终端
JP2022545894A (ja) * 2019-08-23 2022-11-01 華為技術有限公司 アンテナ及び電子装置
JP7336589B2 (ja) 2019-08-23 2023-08-31 華為技術有限公司 アンテナ及び電子装置

Also Published As

Publication number Publication date
CN108140948B (zh) 2020-05-08
CN108140948A (zh) 2018-06-08
JP2019528602A (ja) 2019-10-10
EP3480892B1 (en) 2021-10-06
JP6787610B2 (ja) 2020-11-18
US10498033B2 (en) 2019-12-03
EP3480892A4 (en) 2019-07-24
EP3480892A1 (en) 2019-05-08
US20190198996A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2018027921A1 (zh) 一种通信设备
US10720695B2 (en) Near field communication antenna modules for devices with metal frame
US10033089B2 (en) Antenna device and electronic apparatus including antenna device
TWI425713B (zh) 諧振產生之三頻段天線
TWI658650B (zh) 多頻天線及具有該多頻天線的無線通訊裝置
CN108496278B (zh) 一种天线结构及通信终端
CN110556619B (zh) 天线结构及具有该天线结构的无线通信装置
CN109193153A (zh) 天线系统、方法以及移动通信装置
TWI539676B (zh) 通訊裝置
WO2016012507A1 (en) Slim radiating systems for electronic devices
TWI594504B (zh) 無線通訊裝置
GB2533358A (en) Reconfigurable multi-band multi-function antenna
TWI648906B (zh) 行動裝置和天線結構
TW202002396A (zh) 天線結構
WO2016186091A1 (ja) アンテナ装置および電子機器
TWI663775B (zh) 天線結構及具有該天線結構之無線通訊裝置
CN108432048B (zh) 一种缝隙天线和终端
US9148180B2 (en) Communication device and antenna element therein
TWI530025B (zh) 可攜式電子裝置之多頻天線
TW201306379A (zh) 通訊電子裝置及其多頻槽孔天線
CN117525893A (zh) 电子设备
TWM598542U (zh) 混合天線結構
CN117791093A (zh) 天线组件及电子设备
JP2013012936A (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504090

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016912376

Country of ref document: EP

Effective date: 20190130

NENP Non-entry into the national phase

Ref country code: DE