WO2021036700A1 - 一种用于 igbt 散热的磁流体泵装置及测试方法 - Google Patents

一种用于 igbt 散热的磁流体泵装置及测试方法 Download PDF

Info

Publication number
WO2021036700A1
WO2021036700A1 PCT/CN2020/106578 CN2020106578W WO2021036700A1 WO 2021036700 A1 WO2021036700 A1 WO 2021036700A1 CN 2020106578 W CN2020106578 W CN 2020106578W WO 2021036700 A1 WO2021036700 A1 WO 2021036700A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid pump
magnetic fluid
igbt
igbt chip
heat dissipation
Prior art date
Application number
PCT/CN2020/106578
Other languages
English (en)
French (fr)
Inventor
宋学官
李昆鹏
周长安
宗超勇
李清野
孙伟
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/252,649 priority Critical patent/US11107750B1/en
Publication of WO2021036700A1 publication Critical patent/WO2021036700A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/02Electrodynamic pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/02Electrodynamic pumps
    • H02K44/04Conduction pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment

Definitions

  • the invention belongs to the related field of IGBT heat dissipation, and relates to a magnetic fluid pump device for IGBT heat dissipation and a testing method.
  • IGBTs As the core component of the power conversion system, IGBTs have a life span that is critical to the normal operation of the system. Most of the failures of power electronic equipment are caused by high temperature, and most of the existing heat dissipation systems are based on water cooling. As the power density of power electronics technology continues to increase, water cooling technology cannot dissipate excess heat. It is of great significance to find a new type of coolant with high thermal conductivity for heat dissipation. Liquid metal has better thermal conductivity than water and can absorb more heat, but currently there are few liquid metal as a cooling device for coolant.
  • the present invention provides a magnetic fluid pump device for IGBT heat dissipation and a testing method.
  • the magnetic fluid pump device for IGBT heat dissipation designed in the present invention absorbs more heat than the traditional water-cooled heat dissipation device, and has a better heat dissipation effect.
  • the test method of the magnetic fluid pump device for IGBT heat dissipation provided by the present invention is simple to operate, can well dissipate the IGBT, and can test the heat dissipation effect of the IGBT on the IGBT chip by liquid metal with different flow rates at different temperatures.
  • a magnetic fluid pump device for IGBT heat dissipation is used to dissipate heat for an IGBT chip set.
  • the IGBT chip set includes an IGBT chip A8, an IGBT chip B22, an IGBT chip C24 and an IGBT base plate 23.
  • the IGBT chip A8, the IGBT chip B22 and the IGBT chip C24 are soldered on the IGBT base plate 23 by soldering, and the IGBT chip set is arranged on the magnetic fluid pump.
  • the magnetic fluid pump device includes a magnetic fluid pump, a water-cooled heat dissipation device, a pressure measurement device, a temperature measurement device and a data acquisition system.
  • the said magnetic fluid pump includes a magnetic fluid pump upper housing 7, a magnetic fluid pump lower housing 2, a magnetic fluid pump pipe 3, a magnet S pole A9, a magnet N pole A10, a magnet S pole B11, a magnet N pole B12, a positive Electrode A18, negative electrode A19, negative electrode B39, and positive electrode B40.
  • the magnet S pole A9, magnet N pole A10, magnet S pole B11, magnet N pole B12, positive electrode A18, negative electrode A19, negative electrode B39 and positive electrode B40 are all embedded in the upper casing 7 of the magnetic fluid pump, from From left to right are magnet S pole A9, magnet N pole A10, magnet S pole B11, magnet N pole B12, positive electrode A18 and negative electrode B39 are located in front of the upper casing 7 of the magnetic fluid pump, and negative electrode A19 and positive electrode B40 are located in the magnetic fluid pump. Behind the upper casing 7 of the fluid pump.
  • the lower casing 2 of the magnetic fluid pump is connected to the water-cooled heat dissipation device through the magnetic fluid pump inlet pipe 1 and the magnetic fluid pump outlet pipe 16.
  • the upper casing 7 of the magnetic fluid pump and the lower casing 2 of the magnetic fluid pump are connected by a connecting bolt A6 and a connecting bolt B13.
  • the S pole A9 of the magnet and the N pole A10 of the magnet generate a magnetic field.
  • the positive electrode A18 and the negative electrode A19 generate an electric field.
  • the liquid metal has conductivity and magnetism, and will generate upward Lorentz force under the action of the electric and magnetic fields , So the liquid metal moves upward.
  • a downward Lorentz force will be generated, so the liquid metal moves downward.
  • An annular groove is provided between the IGBT base plate 23 and the upper casing 7 of the magnetic fluid pump, and an annular sealing ring 20 is provided in the annular groove for sealing, and is connected by a connecting bolt C21 and a connecting bolt D25;
  • the fluid pump pipe 3 and the upper casing 7 of the magnetic fluid pump are connected by a thread.
  • the inlet pipe 1 of the magnetic fluid pump and the lower housing 2 of the magnetic fluid pump are connected by a flange, and are fastened by connecting bolts E26 and F27.
  • the outlet pipe 16 of the magnetic fluid pump and the lower housing 2 of the magnetic fluid pump pass through Flange connection is fastened by connecting bolt G28 and connecting bolt H29, and the flange connection is equipped with a sealing ring for end face sealing.
  • the water-cooled heat dissipation device is a water-cooled device 17, which is connected to the magnetic fluid pump inlet pipe 1 and the magnetic fluid pump outlet pipe 16 to dissipate the liquid metal in the magnetic fluid pump.
  • the magnetic fluid pump outlet pipe 16 and the water cooling device 17 are connected by flanges
  • the two flanges are fastened by the connecting bolt I30 and the connecting bolt J31
  • the magnetic fluid pump inlet pipe 1 and the water cooling device 17 are also connected by a method.
  • the two flanges are fastened by connecting bolt K32 and connecting bolt L33, and the flange joints are equipped with sealing rings for end face sealing.
  • the pressure measuring devices are pressure sensor A4 and pressure sensor B14, which are arranged on the magnetic fluid pump inlet pipe 1 and the magnetic fluid pump outlet pipe 16, and are used to measure the magnetic fluid pump inlet pipe 1 and the magnetic fluid pump outlet pipe 16. Pressure within. Specifically: the pressure sensor A4 and the pressure sensor A base 35 are connected by a thread, the pressure sensor A base 35 and the magnetic fluid pump water inlet pipe 1 are connected by a thread, and all connections are equipped with sealing rings, and the pressure sensor B14 The installation method is the same.
  • the temperature measuring device is a temperature sensor A5, a temperature sensor B15 and a thermal imager 36, which are arranged on the magnetic fluid pump inlet pipe 1, the magnetic fluid pump outlet pipe 16 and the IGBT chipset, and are used to measure the magnetic fluid pump inlet water The temperature of the pipe 1, the magnetic fluid pump outlet pipe 16 and the IGBT chipset.
  • the temperature sensor A5 and the temperature sensor A base 34 are connected by a thread
  • the temperature sensor A base 34 and the magnetic fluid pump water inlet pipe 1 are connected by a thread. All connections are equipped with sealing rings
  • the installation method is the same.
  • the thermal imager 36 is 30 cm away from the IGBT chip A8, the IGBT chip B22, and the IGBT chip C24 to measure the temperature change of the chip.
  • the data acquisition system is an industrial computer 38, which is used to control external circuits to heat IGBT chip A8, IGBT chip B22, and IGBT chip C24 to a certain temperature, and collect pressure sensor A4, pressure sensor B14, temperature sensor A5, and temperature sensor B15.
  • the data information of the thermal imager 36 is electrically connected to each sensor.
  • a test method for a magnetic fluid pump device for IGBT heat dissipation including the following steps:
  • the first step is to start the system, turn on the water cooling equipment 17, adjust the appropriate flow and pressure to dissipate the heat of the magnetic fluid pump, and collect the data information of the pressure sensor A4, pressure sensor B14, temperature sensor A5 and temperature sensor B15 through the industrial computer 38 for real-time monitoring The heat dissipation of the magnetic fluid pump.
  • the external circuit is controlled to heat the IGBT chip A8, the IGBT chip B22, and the IGBT chip C24, and the temperature of the chip is observed by the thermal imager 36 to heat the chip to a certain temperature.
  • the second step is to control the external circuit through the industrial computer 38 to supply power to the positive electrode A18, the negative electrode A19, the negative electrode B39, and the positive electrode B40.
  • the liquid metal generates Lorentz force under the action of the electric field and the magnetic field to flow and dissipate heat. By controlling the voltage of the two pairs of electrodes, the flow rate of the liquid metal can be controlled.
  • the thermal imager 36 collects the surface temperatures of the IGBT chip A8, the IGBT chip B22, and the IGBT chip C24, and uploads it to the industrial computer 38 for data processing.
  • the third step is to analyze the heat dissipation effect of the magnetic fluid pump device by comparing the temperature changes before and after heat dissipation of IGBT chip A8, IGBT chip B22, and IGBT chip C24. Determine whether the test is completed. If the test is not completed, continue to control the external circuit to heat the IGBT chip A8, IGBT chip B22, and IGBT chip C24 to another temperature or adjust the electrode voltage to control the flow rate of the liquid metal. If the test is complete, then the end and shut down the system.
  • the liquid metal is a GaInSn alloy material, in which (68% Ga, 22% In and 10% Sn, mass fraction), the material has a density of 6400 kg/m 3 , an electrical conductivity of 3.46 ⁇ 10 6 S/m, and a thermal conductivity. It is 16.5W/(m°C), which has better thermal conductivity than water.
  • the magnetic fluid pump device for IGBT heat dissipation proposed in the present invention has a better heat dissipation effect than ordinary water cooling devices.
  • the use of GaInSn liquid metal as a coolant can absorb more heat than water, and better heat dissipation for IGBT chips .
  • the magnetic fluid pump device for IGBT heat dissipation proposed in the present invention can monitor the temperature and pressure changes in the inlet pipe and outlet pipe of the magnetic fluid pump in real time through the temperature sensor and the pressure sensor, and can monitor the IGBT chip in real time through the thermal imager. The heat dissipation effect.
  • the test method of the magnetic fluid pump device for IGBT heat dissipation proposed in the present invention is simple and easy to implement. Under the action of a magnetic field, the positive and negative electrodes in the magnetic fluid pump can be energized to drive the flow of liquid metal, and the water cooling device can be in the magnetic fluid pump. The liquid metal dissipates heat.
  • the test method proposed by the present invention can test the heat dissipation effect of the IGBT with different flow rates of the magnetic fluid at different temperatures on the IGBT chip.
  • Figure 1 The overall structure diagram of the magnetic fluid pump device
  • FIG. 1 Schematic diagram of liquid metal flow
  • FIG. 3 Schematic diagram of the connection between the upper casing of the magnetic fluid pump and the IGBT base plate
  • Figure 4 Schematic diagram of the sealing between the upper casing of the magnetic fluid pump and the annular sealing ring
  • FIG. 5 Schematic diagram of the connection of the lower casing of the magnetic fluid pump with the water inlet pipe and the water outlet pipe;
  • FIG. 6 Schematic diagram of the connection between water cooling equipment and water inlet and outlet pipes
  • FIG. 7 Schematic diagram of temperature sensor and pressure sensor and pipeline installation
  • Figure 8 The signal flow diagram of the magnetic fluid pump device used for IGBT heat dissipation
  • Figure 9 Flow chart of the test method of the magnetic fluid pump device for IGBT heat dissipation.
  • the overall structure of the magnetic fluid pump device is shown in Figure 1, Figure 2 and Figure 3.
  • the IGBT chip set includes an IGBT chip A8, an IGBT chip B22, an IGBT chip C24 and an IGBT base plate 23.
  • the magnetic fluid pump includes a magnetic fluid pump upper casing 7 , Magnetic fluid pump lower casing 2, magnetic fluid pump pipe 3, magnet S pole A9, magnet N pole A10, magnet S pole B11, magnet N pole B12, positive electrode A18, negative electrode A19, negative electrode B39 and positive electrode B40.
  • the IGBT chipset is arranged on the magnetic fluid pump.
  • the magnetic fluid pump is connected to the water-cooling device 17 through the magnetic fluid pump inlet pipe 1 and the magnetic fluid pump outlet pipe 16.
  • the magnetic fluid pump upper casing 7 and the magnetic fluid pump lower casing 2 are connected to each other. They are connected by connecting bolt A6 and connecting bolt B13.
  • the principle of liquid metal flow is shown in Figure 2.
  • the magnetic field is generated by the magnet S pole A9 and the magnet N pole A10.
  • the positive electrode 18 and the negative electrode 19 generate an electric field.
  • the liquid metal will generate Lorentz under the action of the electric field and the magnetic field at the same time. According to the left-hand rule, the direction of the Lorentz force is upward, so the liquid metal moves upward.
  • a downward Lorentz force is generated, and the liquid metal moves downward.
  • the schematic diagram of the connection between the upper casing 7 of the magnetic fluid pump and the IGBT base plate 23 is shown in Figures 3 and 4.
  • the IGBT chip A8, the IGBT chip B22 and the IGBT chip C24 are soldered to the IGBT base plate 23, and the IGBT base plate 23 and the magnetic fluid pump are
  • An annular groove is provided between the housing 7 and an annular sealing ring 20 is provided in the annular groove for sealing, and is connected by connecting bolt C21 and connecting bolt D25.
  • the magnetic fluid pump pipe 3 and the upper housing 7 of the magnetic fluid pump are connected with each other. Threaded connection between.
  • connection diagram of the lower housing 2 of the magnetic fluid pump with the inlet pipe 1 of the magnetic fluid pump and the outlet pipe 16 of the magnetic fluid pump is shown in Fig. 5.
  • a flange is passed between the inlet pipe 1 of the magnetic fluid pump and the lower housing 2 of the magnetic fluid pump.
  • the connection is fastened by connecting bolt E26 and connecting bolt F27.
  • the outlet pipe 16 of the magnetic fluid pump and the lower casing 2 of the magnetic fluid pump are connected by a flange.
  • the connection bolt G28 and connecting bolt H29 are used to fasten the flange connection.
  • a sealing ring is provided for end face sealing.
  • connection diagram of the water cooling equipment 17 with the magnetic fluid pump inlet pipe 1 and the magnetic fluid pump outlet pipe 16 is shown in Figure 6.
  • the magnetic fluid pump outlet pipe 16 and the water cooling equipment 17 are connected by flanges, and the two flanges are connected by connecting bolts I30.
  • Fasten connection with the connecting bolt J31, the magnetic fluid pump inlet pipe 1 and the water-cooling equipment 17 are also connected by flanges, the two flanges are fastened by connecting bolts K32 and connecting bolts L33, and the flange joints are equipped with seals.
  • the ring is used for end face sealing.
  • the connection diagram of temperature sensor A5 and pressure sensor A4 with the inlet pipe 1 of the magnetic fluid pump is shown in Figure 7.
  • the temperature sensor A5 is connected with the base 34 of the temperature sensor A through threads, and the base 34 of the temperature sensor A is connected with the inlet pipe of the magnetic fluid pump. 1 is connected by thread, pressure sensor A4 and pressure sensor A base 35 are connected by thread, pressure sensor A base 35 and magnetic fluid pump water inlet pipe 1 are connected by thread, all connections are equipped with sealing rings,
  • the pressure sensor B14 and temperature sensor B15 are installed in the same way.
  • the signal flow of the magnetic fluid pump device for IGBT heat dissipation is shown in Figure 8.
  • the power supply circuit 37 supplies power for IGBT chip A8, IGBT chip B22, IGBT chip C24, temperature sensor A5, temperature sensor B15, pressure sensor A4 and pressure sensor B14.
  • the thermal imager 36 collects the temperature information of the IGBT chip A8, IGBT chip B22, and IGBT chip C24 and transmits it to the industrial computer 38.
  • the data information of the temperature sensor A5, temperature sensor B15, pressure sensor A4 and pressure sensor B14 is directly transmitted to the industrial computer 38 To process.
  • the test method flow of the magnetic fluid pump device for IGBT heat dissipation is shown in Figure 9.
  • the external circuit is controlled to heat the IGBT chip A8, the IGBT chip B22, and the IGBT chip C24 to 80°C, and the heating temperature is fed back through the thermal imager 36.
  • the industrial computer 38 controls the external circuit to adjust the voltage of the positive electrode 18, the negative electrode 19, the negative electrode 39 and the positive electrode 40 to 12V, and drives the liquid metal to flow for heat dissipation.
  • the thermal imager 36 collects the surface temperatures of the IGBT chip A8, the IGBT chip B22, and the IGBT chip C24, and uploads them to the industrial computer 38 for processing. By comparing the temperature changes of IGBT chip A8, IGBT chip B22, and IGBT chip C24 before and after heat dissipation, the heat dissipation effect of the magnetic fluid pump device is analyzed. Determine whether the test is completed. If the test is not completed, continue to control the external circuit to heat the IGBT chip A8, IGBT chip B22, and IGBT chip C24 to 100°C, or adjust the electrode voltage to 24V to change the flow rate of the liquid metal to continue the test. If the test is complete, then the end and shut down the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明属于IGBT散热相关领域,提供一种用于IGBT散热的磁流体泵装置及测试方法。本发明所设计的磁流体泵装置采用液态金属作为冷却剂,比普通的水冷装置能够吸收更多的热量,更好的为IGBT芯片散热。通过温度传感器和压力传感器可以实时监测磁流体泵进口管道和出口管道内温度和压力变化,通过热成像仪可以实时观察IGBT芯片的温度变化。本发明所提出的用于IGBT散热的磁流体泵装置的测试方法简单易行,在磁场的作用下给磁流体泵内的正负电极通电可以驱动磁流体流动,水冷设备可以为磁流体泵内的磁流体散热。本发明所提出的测试方法可以测试不同流速的磁流体对不同功率下的IGBT芯片的散热效果,为IGBT芯片的正常工作提供保障。

Description

一种用于IGBT散热的磁流体泵装置及测试方法 技术领域
本发明属于IGBT散热相关领域,涉及一种用于IGBT散热的磁流体泵装置及测试方法。
背景技术
海上风电、海底钻井和铁路等相关领域需要具有高可靠性的电力转换系统,IGBT作为电力转换系统的核心部件,其寿命的长短对于系统的正常运行是至关重要的。大多数电力电子设备的失效都是由于温度过高导致的,目前已有的散热系统大多都是基于水冷散热的。随着电力电子技术的功率密度不断增加,水冷技术无法消散多余的热量,寻找一种新型的导热性高的冷却剂用于散热具有重要意义。液态金属具有比水更好的导热性,能够吸收更多的热量,但目前很少有液态金属作为冷却剂的散热装置。
温度是影响IGBT寿命的重要因素,如何利用液态金属作为冷却剂对IGBT进行充分散热,使其保持在合适的工作温度下具有十分重要的意义。因此,需要发明一种用于IGBT散热的磁流体泵装置及测试方法。
技术问题
针对现有技术存在的问题,本发明提供一种用于IGBT散热的磁流体泵装置及测试方法。本发明设计的用于IGBT散热的磁流体泵装置比传统的水冷散热装置吸收热量更多,散热效果更好。本发明所提出来的用于IGBT散热的磁流体泵装置的测试方法操作简单,能够很好的对IGBT进行散热,可以测试IGBT在不同温度下不同流速的液态金属对IGBT芯片的散热效果。
技术解决方案
为了达到上述目的,本发明采用的技术方案如下:
一种用于IGBT散热的磁流体泵装置,该磁流体泵装置用于为IGBT芯片组散热,所述的IGBT芯片组包括IGBT芯片A8、IGBT芯片B22、IGBT芯片C24和IGBT底板23。所述的IGBT芯片A8、IGBT芯片B22和IGBT芯片C24通过焊锡焊接在IGBT底板23上,IGBT芯片组设置在磁流体泵上。所述的磁流体泵装置包括磁流体泵、水冷散热装置、压力测量装置、温度测量装置和数据采集系统。
所述的磁流体泵包括磁流体泵上壳体7、磁流体泵下壳体2、磁流体泵管道3、磁体S极A9、磁体N极A10、磁体S极B11、磁体N极B12、正电极A18、负电极A19、负电极B39和正电极B40。所述的磁体S极A9、磁体N极A10、磁体S极B11、磁体N极B12、正电极A18、负电极A19、负电极B39和正电极B40均嵌在磁流体泵上壳体7内,从左至右依次是磁体S极A9、磁体N极A10、磁体S极B11、磁体N极B12,正电极A18和负电极B39位于磁流体泵上壳体7前面,负电极A19和正电极B40位于磁流体泵上壳体7后面。所述的磁流体泵下壳体2通过磁流体泵进水管道1和磁流体泵出水管道16与水冷散热装置连接。所述的磁流体泵上壳体7和磁流体泵下壳体2之间通过连接螺栓A6和连接螺栓B13连接。所述磁体S极A9和磁体N极A10产生磁场,正电极A18和负电极A19产生电场,液态金属具有导电性和导磁性,在同时受到电场和磁场的作用下会产生向上的洛伦兹力,因此液态金属向上运动。同理在磁体S极B11、磁体N极B12形成的磁场和负电极B39、正电极B40形成的电场作用下会产生方向向下的洛伦兹力,因此液态金属向下运动。
所述的IGBT底板23和磁流体泵上壳体7之间设有环形凹槽,环形凹槽内设有环形密封圈20用于密封,并通过连接螺栓C21和连接螺栓D25连接;所述磁流体泵管道3与磁流体泵上壳体7之间通过螺纹连接。磁流体泵进水管道1与磁流体泵下壳体2之间通过法兰连接,通过连接螺栓E26和连接螺栓F27紧固,磁流体泵出水管道16与磁流体泵下壳体2之间通过法兰连接,通过连接螺栓G28和连接螺栓H29紧固,法兰连接处均设有密封圈用于端面密封。
所述的水冷散热装置为水冷设备17,与磁流体泵进水管道1和磁流体泵出水管道16连接,为磁流体泵内的液态金属散热。具体为:磁流体泵出水管道16和水冷设备17之间通过法兰连接,两法兰通过连接螺栓I30和连接螺栓J31紧固,磁流体泵进水管道1和水冷设备17之间也通过法兰连接,两法兰通过连接螺栓K32和连接螺栓L33紧固,法兰连接处均设有密封圈用于端面密封。
所述的压力测量装置为压力传感器A4和压力传感器B14,设置在磁流体泵进水管道1和磁流体泵出水管道16上,用于测量磁流体泵进水管道1和磁流体泵出水管道16内的压力。具体为:压力传感器A4与压力传感器A底座35之间通过螺纹连接,压力传感器A底座35与磁流体泵进水管道1之间通过螺纹连接,所有连接处均设有密封圈,压力传感器B14的安装方式与此相同。
所述的温度测量装置为温度传感器A5、温度传感器B15和热成像仪36,设置在磁流体泵进水管道1、磁流体泵出水管道16和IGBT芯片组上,用于测量磁流体泵进水管道1、磁流体泵出水管道16和IGBT芯片组的温度。具体为:温度传感器A5与温度传感器A底座34之间通过螺纹连接,温度传感器A底座34与磁流体泵进水管道1之间通过螺纹连接,所有连接处均设有密封圈,温度传感器B15的安装方式与此相同,热成像仪36与IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24距离30cm,用于测量芯片的温度变化。
所述的数据采集系统为工控机38,用于控制外电路给IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24加热至某一温度,和采集压力传感器A4、压力传感器B14、温度传感器A5、温度传感器B15、热成像仪36的数据信息,与各传感器之间电连接。
一种用于IGBT散热的磁流体泵装置的测试方法,包括以下步骤:
第一步、启动系统,开启水冷设备17,调节适当的流量和压力为磁流体泵散热,通过工控机38采集压力传感器A4、压力传感器B14、温度传感器A5和温度传感器B15的数据信息,实时监测磁流体泵的散热情况。控制外电路给IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24加热,通过热成像仪36观察芯片的温度,使芯片加热至某一温度。
第二步、通过工控机38控制外电路给正电极A18、负电极A19、负电极B39和正电极B40供电,液态金属在电场和磁场作用下产生洛伦兹力从而流动进行散热。通过控制两对电极电压的大小,可以控制液态金属的流动速度。热成像仪36采集IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24表面的温度后,上传至工控机38进行数据的处理。
第三步、通过对比IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24散热前和散热后的温度变化,分析磁流体泵装置的散热效果。判断测试是否完成,如果测试没有完成,那么继续控制外电路加热IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24至另一温度或者调节电极电压的大小来控制液态金属的流动速度。如果测试完成,那么结束关闭系统。
所述的液态金属为GaInSn合金材料,其中(68%Ga,22%In和10%Sn,质量分数),该材料密度为6400kg/m 3,电导率为3.46×10 6S/m,导热系数为16.5W/(m℃),具有比水更好的导热性。
有益效果
本发明技术方案的优点主要体现在:
(1)本发明所提出的用于IGBT散热的磁流体泵装置比普通的水冷装置散热效果更好,采用GaInSn液态金属作为冷却剂能够比水吸收更多的热量,更好的为IGBT芯片散热。
(2)本发明所提出的用于IGBT散热的磁流体泵装置通过温度传感器和压力传感器可以实时监测磁流体泵进口管道和出口管道内的温度和压力变化,通过热成像仪可以实时监测IGBT芯片的散热效果。
本发明所提出的用于IGBT散热的磁流体泵装置的测试方法简单易行,在磁场的作用下给磁流体泵内的正负电极通电可以驱动液态金属流动,水冷设备可以为磁流体泵内的液态金属散热。本发明所提出的测试方法可以测试IGBT在不同温度下不同流速的磁流体对IGBT芯片的散热效果。
附图说明
图1 磁流体泵装置的总体结构图;
图2 液态金属流动的原理图;
图3 磁流体泵上壳体与IGBT底板连接示意图;
图4 磁流体泵上壳体与环形密封圈密封示意图;
图5 磁流体泵下壳体与进水管道和出水管道连接示意图;
图6 水冷设备与进水管道和出水管道连接示意图;
图7 温度传感器和压力传感器与管道安装示意图;
图8 用于IGBT散热的磁流体泵装置的信号流向图;
图9 用于IGBT散热的磁流体泵装置的测试方法流程图。
图中:1磁流体泵进水管道;2磁流体泵下壳体;3磁流体泵管道;4压力传感器A;5温度传感器A;6连接螺栓A;7磁流体泵上壳体;8 IGBT芯片A;9磁体S极A;10磁体N极A;11磁体S极B;12磁体N极B;13连接螺栓B;14压力传感器B;15温度传感器B;16磁流体泵出水管道;17水冷设备;18正电极A;19负电极A;20环形密封圈;21连接螺栓C;22 IGBT芯片B;23 IGBT底板;24 IGBT芯片C;25连接螺栓D;26连接螺栓E;27连接螺栓F;28连接螺栓G;29连接螺栓H;30连接螺栓I;31连接螺栓J;32连接螺栓K;33连接螺栓L;34温度传感器A底座;35压力传感器A底座;36热成像仪;37电源电路;38工控机;39负电极B;40正电极B。
本发明的实施方式
下面结合附图对本发明作更详细的描述:
磁流体泵装置的总体结构如图1、图2和图3所示,IGBT芯片组包括IGBT芯片A8、IGBT芯片B22、IGBT芯片C24和IGBT底板23,磁流体泵包括磁流体泵上壳体7、磁流体泵下壳体2、磁流体泵管道3、磁体S极A9、磁体N极A10、磁体S极B11、磁体N极B12、正电极A18、负电极A19、负电极B39和正电极B40。IGBT芯片组设置在磁流体泵上,磁流体泵通过磁流体泵进水管道1和磁流体泵出水管道16与水冷设备17连接,磁流体泵上壳体7和磁流体泵下壳体2之间通过连接螺栓A6和连接螺栓B13连接。
液态金属流动的原理如图2所示,由磁体S极A9和磁体N极A10产生磁场,正电极18和负电极19产生电场,液态金属在同时受到电场和磁场的作用下会产生洛伦兹力,根据左手定则,洛伦兹力的方向向上,因此液态金属向上运动。同理在磁体S极B11、磁体N极B12形成的磁场和负电极B39、正电极B40形成的电场作用下产生方向向下的洛伦兹力,液态金属向下运动。
磁流体泵上壳体7与IGBT底板23连接示意图如图3和图4所示,IGBT芯片A8、IGBT芯片B22和IGBT芯片C24通过焊锡焊接在IGBT底板23上,IGBT底板23和磁流体泵上壳体7之间设有环形凹槽,环形凹槽内设有环形密封圈20用于密封,并通过连接螺栓C21和连接螺栓D25连接,磁流体泵管道3与磁流体泵上壳体7之间通过螺纹连接。
磁流体泵下壳体2与磁流体泵进水管道1和磁流体泵出水管道16连接示意图如图5所示,磁流体泵进水管道1与磁流体泵下壳体2之间通过法兰连接,通过连接螺栓E26和连接螺栓F27紧固,磁流体泵出水管道16与磁流体泵下壳体2之间通过法兰连接,通过连接螺栓G28和连接螺栓H29紧固,法兰连接处均设有密封圈用于端面密封。
水冷设备17与磁流体泵进水管道1和磁流体泵出水管道16连接示意图如图6所示,磁流体泵出水管道16和水冷设备17之间通过法兰连接,两法兰通过连接螺栓I30和连接螺栓J31紧固连接,磁流体泵进水管道1和水冷设备17之间也通过法兰连接,两法兰通过连接螺栓K32和连接螺栓L33紧固连接,法兰连接处均设有密封圈用于端面密封。
温度传感器A5和压力传感器A4与磁流体泵进水管道1连接示意图如图7所示,温度传感器A5与温度传感器A底座34之间通过螺纹连接,温度传感器A底座34与磁流体泵进水管道1之间通过螺纹连接,压力传感器A4与压力传感器A底座35之间通过螺纹连接,压力传感器A底座35与磁流体泵进水管道1之间通过螺纹连接,所有连接处均设有密封圈,压力传感器B14和温度传感器B15的安装方式与此相同。
用于IGBT散热的磁流体泵装置的信号流向如图8所示,电源电路37为 IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24、温度传感器A5、温度传感器B15、压力传感器A4和压力传感器B14供电,热成像仪36采集IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24温度信息后传给工控机38,温度传感器A5、温度传感器B15、压力传感器A4和压力传感器B14的数据信息直接传至工控机38进行处理。
用于IGBT散热的磁流体泵装置的测试方法流程如图9所示,首先启动系统,开启水冷设备17,并调节压力为0.1MPa和流量为0.5m 3/min,通过工控机38采集压力传感器A4、压力传感器B14、温度传感器A5和温度传感器B15的数据信息。控制外电路给IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24加热至80℃,通过热成像仪36反馈加热的温度。通过工控机38控制外电路将正电极18、负电极19、负电极39和正电极40的电压调至12V,驱动液态金属流动进行散热。热成像仪36采集IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24表面的温度后,上传至工控机38进行处理。通过对比IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24散热前和散热后的温度变化,分析磁流体泵装置的散热效果。判断测试是否完成,如果测试没有完成,那么继续控制外电路加热IGBT芯片A8、 IGBT芯片B22、IGBT芯片C24至100℃,或者调节电极电压至24V来改变液态金属的流动速度继续测试。如果测试完成,那么结束关闭系统。
本说明书仅仅是对发明构思的实现形式的列举,本发明的保护范围不应该局限于实施例所述的具体形式,还应该涉及本领域技术人员根据本发明构思所能想到的同等技术手段。

Claims (6)

  1. 一种用于IGBT散热的磁流体泵装置,该磁流体泵装置用于为IGBT芯片组散热,IGBT芯片组包括IGBT芯片A(8)、IGBT芯片B(22)、IGBT芯片C(24)和IGBT底板(23),所述IGBT芯片A(8)、IGBT芯片B(22)和IGBT芯片C(24)通过焊锡焊接在IGBT底板(23)上,IGBT芯片组设置在磁流体泵上;其特征在于,所述的磁流体泵装置包括磁流体泵、水冷散热装置、压力测量装置、温度测量装置和数据采集系统;
    所述的磁流体泵内设有液态金属,磁流体泵包括磁流体泵上壳体(7)、磁流体泵下壳体(2),及上下壳体内的磁流体泵管道(3),及磁流体泵上壳体(7)内从左至右依次设置的磁体S极A(9)、磁体N极A(10)、磁体S极B(11)、磁体N极B(12),磁流体泵上壳体(7)前面设有正电极(18)和负电极(39),磁流体泵上壳体(7)后面设有负电极(19)和正电极(40);所述的磁流体泵上壳体(7)与下方磁流体泵下壳体(2)之间通过连接螺栓连接,与上方IGBT底板(23)之间通过连接螺栓连接;所述磁流体泵下壳体(2)通过磁流体泵进水管道(1)、磁流体泵出水管道(16)与水冷散热装置连接,其中,磁流体泵出水管道(16)与磁流体泵下壳体(2)之间通过法兰连接,磁流体泵进水管道(1)与磁流体泵下壳体(2)之间通过法兰连接;所述磁流体泵管道(3)与磁流体泵上壳体(7)之间通过螺纹连接;所述磁体S极A(9)和磁体N极A(10)产生磁场,正电极(18)和负电极(19)产生电场,在同时受到电场和磁场的作用下液态金属向上运动;同理在磁体S极B(11)、磁体N极B(12)形成的磁场和负电极(39)、正电极(40)形成的电场作用下,液态金属向下运动;
    所述的水冷散热装置为水冷设备(17),为磁流体泵内的液态金属散热;所述水冷设备(17)与磁流体泵进水管道(1)、磁流体泵出水管道(16)之间均通过法兰连接;
    所述的压力测量装置为压力传感器A(4)和压力传感器B(14),分别设置在磁流体泵进水管道(1)和磁流体泵出水管道(16)上,用于测量磁流体泵进水管道(1)和磁流体泵出水管道(16)内的压力;
    所述的温度测量装置为温度传感器A(5)、温度传感器B(15)和热成像仪(36),分别设置在磁流体泵进水管道(1)、磁流体泵出水管道(16)和IGBT芯片组上,用于测量磁流体泵进水管道(1)、磁流体泵出水管道(16)和IGBT芯片组的温度;
    所述的数据采集系统为工控机(38),用于控制外电路给IGBT芯片A(8)、 IGBT芯片B(22)、IGBT芯片C(24)加热至某一温度,并采集压力传感器A(4)、压力传感器B(14)、温度传感器A(5)、温度传感器B(15)、热成像仪(36)的数据信息,与各传感器之间电连接。
  2. 根据权利要求1所述的一种用于IGBT散热的磁流体泵装置,其特征在于,所述的磁流体泵上壳体(7)与IGBT底板(23)之间设有环形凹槽,环形凹槽内设有环形密封圈(20)用于密封。
  3. 根据权利要求1所述的一种用于IGBT散热的磁流体泵装置,其特征在于,所述的法兰连接处均设有密封圈用于端面密封。
  4. 根据权利要求1所述的一种用于IGBT散热的磁流体泵装置,其特征在于,所述的热成像仪(36)与IGBT芯片A(8)、 IGBT芯片B(22)、IGBT芯片C(24)距离30cm,用于测量芯片的温度变化。
  5. 根据权利要求1所述的一种用于IGBT散热的磁流体泵装置,其特征在于,所述的液态金属为GaInSn合金材料,包括质量分数为68%的Ga、22%的In、10%的Sn。
  6. 根据权利要求1-5任一所述的用于IGBT散热的磁流体泵装置的测试方法,其特征在于,包括以下步骤:
    第一步、启动系统,开启水冷设备(17),调节适当的流量和压力为磁流体泵散热;通过工控机(38)采集压力传感器A(4)、压力传感器B(14)、温度传感器A(5)和温度传感器B(15)的数据信息,实时监测磁流体泵的散热情况;控制外电路给IGBT芯片A(8)、 IGBT芯片B(22)、IGBT芯片C(24)加热,通过热成像仪(36)观察芯片的温度,使芯片加热至某一温度;
    第二步、通过工控机(38)控制外电路给正电极(18)、负电极(19)、负电极(39)和正电极(40)供电,洛伦兹力驱动液态金属流动进行散热;通过控制两对电极电压的大小,控制液态金属的流动速度;热成像仪(36)采集IGBT芯片A(8)、 IGBT芯片B(22)、IGBT芯片C(24)表面的温度后,上传至工控机(38)进行数据的处理;
    第三步、通过对比IGBT芯片A(8)、 IGBT芯片B(22)、IGBT芯片C(24)散热前和散热后的温度变化,分析磁流体泵装置的散热效果;判断测试是否完成,如果测试没有完成,那么继续控制外电路加热IGBT芯片A(8)、 IGBT芯片B(22)、IGBT芯片C(24)至另一温度或者调节电极电压的大小来控制液态金属的流动速度;如果测试完成,那么结束关闭系统。
PCT/CN2020/106578 2019-08-25 2020-08-03 一种用于 igbt 散热的磁流体泵装置及测试方法 WO2021036700A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/252,649 US11107750B1 (en) 2019-08-25 2020-08-03 Magnetofluid pump device for IGBT heat dissipation and test method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910787108.2A CN110534488B (zh) 2019-08-25 2019-08-25 一种用于igbt散热的磁流体泵装置及测试方法
CN201910787108.2 2019-08-25

Publications (1)

Publication Number Publication Date
WO2021036700A1 true WO2021036700A1 (zh) 2021-03-04

Family

ID=68662732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106578 WO2021036700A1 (zh) 2019-08-25 2020-08-03 一种用于 igbt 散热的磁流体泵装置及测试方法

Country Status (3)

Country Link
US (1) US11107750B1 (zh)
CN (1) CN110534488B (zh)
WO (1) WO2021036700A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534488B (zh) 2019-08-25 2020-11-13 大连理工大学 一种用于igbt散热的磁流体泵装置及测试方法
CN112153880B (zh) * 2020-10-28 2022-06-07 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种双面换热微细通道液冷散热器
DE102021210606A1 (de) * 2021-09-23 2023-03-23 Robert Bosch Gesellschaft mit beschränkter Haftung Temperieranordnung für ein mikroelektrisches System
CN114390772B (zh) * 2021-12-29 2024-03-08 江苏密特科智能装备制造有限公司 一种半导体设备精密组件
WO2024092261A1 (en) * 2022-10-27 2024-05-02 Unm Rainforest Innovations Miniature dc electromagnetic pumps of heavy and alkali liquid metals at up to 500 °c for nuclear and industrial applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426902A (zh) * 2011-11-17 2012-04-25 江苏中联电气股份有限公司 一种防爆变压器磁流体自循环散热装置
CN109271008A (zh) * 2018-11-05 2019-01-25 北京小米移动软件有限公司 外部冷却系统和电子设备
CN110534488A (zh) * 2019-08-25 2019-12-03 大连理工大学 一种用于igbt散热的磁流体泵装置及测试方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942018B2 (en) * 2001-09-28 2005-09-13 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic microchannel cooling system
CN102162589B (zh) * 2011-02-07 2012-10-03 林智勇 磁流体散热led
CN106505052B (zh) * 2016-11-17 2019-02-15 云南电网有限责任公司电力科学研究院 用于绝缘栅双极型晶体管的散热装置
CN106787601A (zh) * 2017-01-05 2017-05-31 南京航空航天大学 用于电能削峰填谷的蓄热式液态金属磁流体发电装置及方法
CN109103160A (zh) * 2018-08-02 2018-12-28 李双玲 一种基于液态金属的大功率芯片冷却系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426902A (zh) * 2011-11-17 2012-04-25 江苏中联电气股份有限公司 一种防爆变压器磁流体自循环散热装置
CN109271008A (zh) * 2018-11-05 2019-01-25 北京小米移动软件有限公司 外部冷却系统和电子设备
CN110534488A (zh) * 2019-08-25 2019-12-03 大连理工大学 一种用于igbt散热的磁流体泵装置及测试方法

Also Published As

Publication number Publication date
CN110534488B (zh) 2020-11-13
US11107750B1 (en) 2021-08-31
CN110534488A (zh) 2019-12-03
US20210257278A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2021036700A1 (zh) 一种用于 igbt 散热的磁流体泵装置及测试方法
CN105283035A (zh) 一种柔性防凝露保护系统
BRPI0116197B8 (pt) Método para diagnosticar uma condição de um comutador de derivação, aparelho para diagnosticar tal condição, um comutador de derivação, sistema de dispositivo indutivo de energia, e processo para geração de sinal de dados
CN104065325A (zh) 具备异常检测功能的电动机驱动装置
CN106383562A (zh) 制冷片水冷散热装置
CN203616155U (zh) 一种水冷散热器的散热性能测试系统
US20140202658A1 (en) Temperature Equalization Apparatus Jetting Fluid for Thermal Conduction Used in Electrical Equipment
CN110767411A (zh) 一种变压器冷却装置及运行监测系统
Yerasimou et al. Thermal management system for press-pack IGBT based on liquid metal coolant
CN203503964U (zh) 水冷式激光电源
CN113867502A (zh) 一种散热机构及服务器
WO2022237531A1 (zh) 一种加氢空冷器管束内铵盐沉积特性识别消除方法
CN104677015A (zh) 冷却水分配装置及多路温度检测控制设备
CN205213244U (zh) 一种液冷板
KR20190057034A (ko) 발전기의 온도를 제어하기 위한 시스템
CN107466187B (zh) 一种液冷换热装置及其控制方法
CN117215390A (zh) 一种液冷服务器系统及液冷数据中心
TW201318802A (zh) 模具裝置
CN206248235U (zh) 高压变频器功率模块温度监测装置
CN206331315U (zh) X射线检测设备的水冷机保护控制电路
CN106502205A (zh) 一种雕刻机水冷主轴温度控制系统及控制方法
WO2020062620A1 (zh) 一种机器人内部冷却系统
CN105159036A (zh) 一种用于直写式光刻机曝光光源的温度控制系统
JP5063119B2 (ja) 状態検知装置
CN104422476B (zh) 一种判断冷却系统能否满足电力电子箱的冷却要求的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855937

Country of ref document: EP

Kind code of ref document: A1