WO2021036612A1 - 一种玻纤增强聚碳酸酯复合材料及其制备方法与应用 - Google Patents

一种玻纤增强聚碳酸酯复合材料及其制备方法与应用 Download PDF

Info

Publication number
WO2021036612A1
WO2021036612A1 PCT/CN2020/103914 CN2020103914W WO2021036612A1 WO 2021036612 A1 WO2021036612 A1 WO 2021036612A1 CN 2020103914 W CN2020103914 W CN 2020103914W WO 2021036612 A1 WO2021036612 A1 WO 2021036612A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
composite material
polycarbonate
temperature
fiber reinforced
Prior art date
Application number
PCT/CN2020/103914
Other languages
English (en)
French (fr)
Inventor
岑茵
艾军伟
陈勇文
李明昆
董相茂
田征宇
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2021036612A1 publication Critical patent/WO2021036612A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the invention relates to the technical field of engineering plastics, in particular to a glass fiber reinforced polycarbonate composite material and a preparation method and application thereof.
  • Polycarbonate resin PC is a thermoplastic engineering plastic with excellent comprehensive properties.
  • its high transparency, good flame retardancy, heat resistance, electrical insulation and dimensional stability, low water absorption and other characteristics have been widely used in the automotive, electronic and electrical, communication industries, construction industries, etc. field.
  • polycarbonate has higher requirements for its impact strength, flexural modulus, tensile strength, fluidity, dielectric loss and other properties.
  • Simple polycarbonate or ordinary polycarbonate The material still cannot meet the requirements, therefore, the polycarbonate material needs to be modified.
  • glass fiber reinforcement is generally used to improve its processability and modification.
  • the existing glass fiber reinforced polycarbonate composite materials cannot maintain rigidity and toughness at the same time under high temperature aging in long-term high temperature environment work, and the electrical performance retention rate is not high, so they cannot maintain stable long-term stability in high temperature environments.
  • the performance and appearance quality cannot guarantee the best performance during the service period.
  • the composite material limits its application in the automotive, electronic and electrical, communications, and construction industries.
  • the purpose of the present invention is to provide a glass fiber reinforced polycarbonate composite material that maintains rigidity and toughness under high temperature aging and has a high electrical performance retention rate.
  • Another object of the present invention is to provide a method for preparing the above-mentioned glass fiber reinforced polycarbonate composite material.
  • Another object of the present invention is to provide the use of the above-mentioned glass fiber reinforced polycarbonate composite material.
  • a glass fiber reinforced polycarbonate composite material in parts by weight, includes the following components:
  • the compound weight ratio of the interface binding agent to the glass fiber is (0.005-0.5):1, preferably (0.01-0.02):1.
  • the compound weight ratio of the antioxidant to the auxiliary antioxidant is 1:(1-3), preferably 1:2.
  • the polycarbonate is selected from one or more of aromatic polycarbonate, aliphatic polycarbonate, aromatic-aliphatic polycarbonate, branched polycarbonate, and siloxane copolycarbonate; Preferably, it is an aromatic polycarbonate.
  • the aromatic polycarbonate is an aromatic polycarbonate with a viscosity average molecular weight of 13,000 to 40,000, preferably an aromatic polycarbonate with a viscosity average molecular weight of 18,000 to 28,000.
  • the viscosity average molecular weight is within the above range, the mechanical strength is good and excellent moldability can be maintained.
  • the viscosity average molecular weight is calculated by using dichloromethane as a solvent and the solution viscosity at a test temperature of 25°C.
  • the above-mentioned preparation method of polycarbonate can be prepared by interfacial polymerization method and transesterification method, and the content of terminal hydroxyl groups can be controlled in the process.
  • the interfacial bonding agent is selected from polymers or grafted polymers containing epoxy groups, preferably one of epoxy, epoxy polyolefin, epoxy grafted acrylic resin with a certain polymer or Several; preferably epoxy polymer or epoxy grafted PDMS acrylate copolymer.
  • the antioxidant belongs to the type of chain-terminated antioxidants, a phenolic compound with a sterically hindered structure, which prevents polymer materials from being oxidized and degraded due to the attack of oxygen atoms during high-temperature processing or use.
  • the antioxidant is selected from monohydric hindered phenols and/or multi-element hindered phenols; preferably multi-element hindered phenols, more preferably antioxidant 1010 and/or antioxidant 1076.
  • the auxiliary antioxidant is a compound containing an acidic group, preferably an organic acid substance containing sulfur; more preferably, phosphorous acid and/or toluenesulfonic acid.
  • the polycarbonate composition of the present invention may also include component F: 0-10 parts of other additives; the other additives are selected from stabilizers and flame retardants , Anti-dripping agent, lubricant, release agent, plasticizer, filler, antistatic agent, antibacterial agent, one or more of coloring agents.
  • Suitable stabilizers may include organic phosphites, such as triphenyl phosphite, tris-(2,6-dimethylphenyl) phosphite, tris-nonylphenyl phosphite, dimethylbenzene Phosphonates, trimethyl phosphate, etc., organic phosphites, alkylated monohydric phenols or polyhydric phenols, alkylation reaction products of polyhydric phenols and dienes, butylation of p-cresol or dicyclopentadiene Reaction products, alkylated hydroquinones, hydroxylated thiodiphenyl ethers, alkylene-bisphenols, benzyl compounds, polyol esters, benzotriazoles, benzophenones One or more combinations.
  • organic phosphites such as triphenyl phosphite, tris-(2,6-dimethylphenyl) phosphite, tris-nonyl
  • Suitable flame retardants may include phosphate-based flame retardants or sulfonate flame retardants.
  • Preferred phosphate flame retardants include bisphenol A diphosphate tetraphenyl ester, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, bisphenol A diphosphate tetraphenyl ester, resorcinol tetra( 2,6-Dimethylphenyl ester) and tetramethylbenzylpiperidine amide;
  • sulfonates can also be selected as flame retardants, such as Rimar salt potassium perfluorobutanesulfonate, KSS potassium diphenylsulfone sulfonate, benzenesulfonate Sodium and the like are suitable.
  • the preparation method of the glass fiber reinforced polycarbonate composite material includes the following steps:
  • the length-to-diameter ratio of the twin-screw extruder is 46:1-50:1; the temperature of the twin-screw extruder from the feeding section to the die is as follows: the temperature of the first zone is 120°C-160°C, and the temperature of the twin-screw extruder is 120°C-160°C.
  • Zone temperature 200°C-230°C three zone temperature 200°C-230°C, four zone temperature 200°C-220°C, five zone temperature 200°C-220°C, six zone temperature 200°C-220°C, seven zone temperature 200°C- 220°C, eight zone temperature 200°C-220°C, nine zone temperature 200°C-220°C, ten zone temperature 200°C-220°C, eleven zone temperature 200°C-220°C, machine head temperature 220°C-240°C, host The rotation speed is 350 rpm-500 rpm.
  • the application of the glass fiber reinforced polycarbonate composite material obtained by the above preparation method in the automobile, electronic and electrical, communication industries, and the construction industry is preferably the application in the 5G communication industry.
  • the present invention has the following beneficial effects:
  • the invention chooses to add a specific content of interfacial bonding agent and a specific compound antioxidant to the glass fiber reinforced polycarbonate composite material formula, so that the prepared composite material has both rigidity and toughness under high temperature aging, and electrical performance is maintained.
  • High rate which can ensure stable long-term performance and appearance quality in long-term high-temperature environment work, and ensure the best performance during the service cycle. It is suitable for the automotive, electronic and electrical, communications industry, construction industry and other fields, especially for the 5G communications industry .
  • Test method of tensile strength retention rate after aging at 150°C for 2000h According to the requirements, 10 ASTM standard tensile specimens are injected, and 5 samples are randomly selected and placed at room temperature 23°C, 50% humidity is adjusted for 48h, and then the tensile strength is tested. Record and calculate the average value as TS1, put it in a well-adjusted temperature constant temperature blast oven, take out the sample after aging at 150°C for 2000h, and test the tensile strength after 48h at room temperature 23°C and 50% humidity. All tests are carried out. The average value TS2 of the tensile strength of 5 splines is calculated. According to the calculation formula 1-((TS1-TS2)/TS1)%, the tensile strength retention rate is obtained. The higher the retention rate, the long-term thermal oxygen of the composite material The better the stability, on the contrary, the worse.
  • Test method of impact strength retention rate after aging at 150°C for 2000h According to the requirements, 10 ASTM standard impact samples are injected, 5 samples are randomly selected and placed at room temperature 23°C, 50% humidity is adjusted for 48h, and then the impact strength is tested, recorded and calculated The average value is IMP1, put it in a well-adjusted temperature constant temperature blast oven, 150°C constant temperature aging for 2000h, take out the sample, after the room temperature 23°C, 50% humidity adjustment 48h, the impact strength test, a total of 5 samples are tested Calculate the average tensile strength IMP2, according to the calculation formula 1-((IMP1-IMP2)/IMP1)%, the impact strength retention rate is obtained. The higher the retention rate, the better the long-term thermal and oxygen stability of the composite material. On the contrary, the worse.
  • Test method for dielectric strength retention rate after aging at 150°C for 2000h According to the requirements, 10 pieces of ASTM standard dielectric samples are molded, and 5 pieces are randomly selected and placed at room temperature 23°C, 50% humidity is adjusted for 48h, and then the dielectric strength is tested. Records And calculate the average value as DS1, put it in a well-adjusted temperature constant temperature blast oven, take out the sample after aging at 150°C for 2000h, and test the dielectric strength after 48h of room temperature 23°C, 50% humidity, a total of 5 tests The average value IMP2 of the dielectric strength of the sheet spline is calculated. According to the calculation formula 1-((DS1-DS2)/DS1)%, the dielectric strength retention rate is obtained. The higher the retention rate, the long-term thermal oxygen stability of the composite material The better the sex, on the contrary, the worse.
  • Component A-1 Aromatic polycarbonate with a viscosity average molecular weight of 19,000, Idemitsu, Japan;
  • Component A-2 Aromatic polycarbonate with a viscosity average molecular weight of 28000, Idemitsu, Japan;
  • Component A-3 Aromatic polycarbonate with a viscosity average molecular weight of 38000, Idemitsu, Japan;
  • Component B-1 Chongqing glass fiber
  • Component C-1 Epoxy polymer, 1901, Mitsubishi Japan;
  • Component C-2 Epoxy grafted PDMS acrylate copolymer, S2200, Mitsubishi;
  • Antioxidant used in the present invention is a compound having the following antioxidants:
  • Component D-1 Antioxidant 1010, the manufacturer is BASF;
  • Component D-2 Antioxidant 1076, manufactured by BASF;
  • Component E-1 Phosphorous acid, the manufacturer is Aladdin;
  • Component E-2 Toluenesulfonic acid, the manufacturer is Aladdin;
  • Component F-1 Lubricant: pentaerythritol stearate, PETS-AP, manufactured by Fargi.
  • Example 1-11 and Comparative Example 1-2 Preparation of glass fiber reinforced polycarbonate composite material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

一种玻纤增强聚碳酸酯复合材料,按重量份计,包括以下组成:组分A:聚碳酸酯70份-90份;组分B:玻纤3份-55份;组分C:界面结合剂0.01份-1份;组分D:抗氧剂0.01份-10份;组分E:辅助抗氧剂0.01份-10份。通过在玻纤增强聚碳酸酯复合材料配方中添加特定含量的界面结合剂、特定复配的抗氧剂,使制备得到的复合材料兼具高温老化下保持刚性和韧性,且电气性能保持率高,从而能够保证在长期高温环境工作中具有稳定的长期性能和外观质量,保证服役周期内的性能最佳,适用于汽车、电子电气、通讯行业、建筑行业等领域,尤其针对5G通讯行业。

Description

一种玻纤增强聚碳酸酯复合材料及其制备方法与应用 技术领域
本发明涉及工程塑料技术领域,特别涉及一种玻纤增强聚碳酸酯复合材料及其制备方法与应用。
背景技术
聚碳酸酯树脂PC是一种综合性能优良的热塑性工程塑料。近年来,其较高的透明度,良好的阻燃性、耐热性、电绝缘性和尺寸稳定性,较低的吸水率等特点而被广泛应用于汽车、电子电气、通讯行业、建筑行业等领域。随着其应用领域的扩展,聚碳酸酯的冲击强度、弯曲模量、拉伸强度、流动性、介电损耗等性能都有了较高的要求,单纯的聚碳酸酯或普通的聚碳酸酯材料仍无法满足要求,因此,需要对聚碳酸酯材料进行改性处理。为了提升材料性能和档次,满足最终部件和客户的需求,一般通过玻璃纤维增强来改进其加工性和改性。
但是,现有玻纤增强聚碳酸酯复合材料在长期高温环境工作中,存在高温老化下无法同时保持刚性和韧性的缺陷,且电气性能保持率不高,从而无法在高温环境中保持稳定的长期性能和外观质量,因而无法保证在服务周期内的性能最佳,严重该复合材料限制了其在汽车、电子电气、通讯行业、建筑行业等领域中的应用。
发明内容
为了克服现有技术的缺点与不足,本发明的目的在于提供一种兼具高温老化下保持刚性和韧性,且电气性能保持率高的玻纤增强聚碳酸酯复合材料。
本发明的另一目的是提供上述玻纤增强聚碳酸酯复合材料的制备方法。
本发明的再一目的是提供上述玻纤增强聚碳酸酯复合材料的用途。
本发明是通过以下技术方案实现的:
一种玻纤增强聚碳酸酯复合材料,按重量份计,包括以下组成:
Figure PCTCN2020103914-appb-000001
优选地,所述界面结合剂与玻纤的复配重量比为(0.005-0.5):1,优选为(0.01-0.02):1。
优选地,所述抗氧剂与辅助抗氧剂的复配重量比为1:(1-3),优选为1:2。
其中,所述聚碳酸酯选自芳香族聚碳酸酯、脂肪族聚碳酸酯、芳香族-脂肪族聚碳酸酯、支化聚碳酸酯、硅氧烷共聚碳酸酯中的一种或几种;优选为芳香族聚碳酸酯。
优选地,所述芳香族聚碳酸酯为粘均分子量13000-40000的芳香族聚碳酸酯,优选为粘均分子量18000-28000的芳香族聚碳酸酯。当粘均分子量在上述范围内,机械强度良好 并且能保持优异的成型性。其中,粘均分子量是通过使用二氯甲烷作为溶剂在测试温度为25℃的溶液粘度计算出来的。
上述聚碳酸酯的制备方法可以通过界面聚合法和酯交换法制得,并且可以在过程中控制端羟基的含量。
其中,所述界面结合剂选自含有环氧基团的聚合物或接枝聚合物,优选为具有一定聚合物的环氧、环氧聚烯烃、环氧接枝的丙烯酸树脂中的一种或几种;优选为环氧聚合物或环氧接枝PDMS丙烯酸酯共聚物。
其中,所述抗氧剂属于链终止型抗氧剂类型,具有空间受阻结构的酚类化合物,阻止聚合物材料在高温加工或使用过程中,由于氧原子的袭击会使其发生氧化降解。所述抗氧剂选自一元受阻酚和/或多元受阻酚;优选为多元受阻酚,更优选为抗氧剂1010和/或抗氧剂1076。
其中,所述辅助抗氧剂为含有酸性基团的化合物,优选为含有硫元素的有机酸类物质;更有选为亚磷酸和/或甲苯磺酸。
本发明所述的聚碳酸酯组合物,基于玻纤增强聚碳酸酯复合材料重量,还可以包括组分F:其它助剂0-10份;所述其它助剂选自稳定剂、阻燃剂、抗滴落剂、润滑剂、脱模剂、增塑剂、填料、抗静电剂、抗菌剂、着色剂的一种或几种。
合适的稳定剂,可以包括有机亚磷酸酯,如亚磷酸三苯酯,亚磷酸三-(2,6-二甲基苯基)酯,亚磷酸三-壬基苯基酯,二甲基苯膦酸酯,磷酸三甲酯等,有机亚磷酸酯,烷基化的一元酚或者多元酚,多元酚和二烯的烷基化反应产物,对甲酚或者二环戊二烯的丁基化反应产物,烷基化的氢醌类,羟基化的硫代二苯基醚类,亚烷基-双酚,苄基化合物,多元醇酯类,苯并三唑类,二苯甲酮类的一种或者多种组合。
合适的阻燃剂,可以包括基于磷酸酯的阻燃剂或者磺酸盐阻燃剂。较好的磷酸酯阻燃剂包括双酚A二磷酸四苯酯,磷酸三苯酯、磷酸三甲苯酯、磷酸甲苯基二苯酯、双酚A二磷酸四甲苯酯、间苯二酚四(2,6-二甲基苯酯)和四甲苄基哌啶酰胺;也可以阻燃剂选择磺酸盐,如Rimar盐全氟丁基磺酸钾、KSS二苯砜磺酸钾、苯磺酸钠等均为合适。
上述玻纤增强聚碳酸酯复合材料的制备方法,包括如下步骤:
1)按照配比称取聚碳酸酯、界面结合剂、抗氧剂、辅助抗氧剂、其它助剂在高混机中搅拌共混1-3min,得到预混料;
2)将得到的预混料置于双螺杆挤出机的主喂料口中,在侧喂料口加入玻纤进行熔融挤出,造粒干燥,即得。
其中,所述双螺杆挤出机长径比为46:1-50:1;所述双螺杆挤出机的温度从喂料段到机头依次为:一区温度120℃-160℃,二区温度200℃-230℃,三区温度200℃-230℃,四区温度200℃-220℃,五区温度200℃-220℃,六区温度200℃-220℃,七区温度200℃-220℃,八区温度200℃-220℃,九区温度200℃-220℃,十区温度200℃-220℃,十一区温度200℃-220℃,机头温度220℃-240℃,主机转速350转/分钟-500转/分钟。
上述制备方法得到的玻纤增强聚碳酸酯复合材料在汽车、电子电气、通讯行业、建筑行业中的应用,优选在5G通讯行业中的应用。
本发明与现有技术相比,具有如下有益效果:
本发明选用在玻纤增强聚碳酸酯复合材料配方中添加特定含量的界面结合剂、特定复 配的抗氧剂,使得制备得到的复合材料兼具高温老化下保持刚性和韧性,且电气性能保持率高,从而能够保证在长期高温环境工作中具有稳定的长期性能和外观质量,保证服役周期内的性能最佳,适用于汽车、电子电气、通讯行业、建筑行业等领域,尤其针对5G通讯行业。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
各性能的测试标准或方法:
150℃老化2000h的拉伸强度保持率的测试方法:根据要求注塑好ASTM标准拉伸样条10根,随机抽取5根放于室温23℃,50%湿度调节48h后进行拉伸强度的测试,记录并计算出平均值为TS1,放入调节好温度恒温鼓风烘箱中,150℃恒温老化2000h后取出样条,经过室温23℃,50%湿度调节48h后进行拉伸强度的测试,一共测试5根样条的拉伸强度计算平均值TS2,根据计算公式1-((TS1-TS2)/TS1)%,得出拉伸强度保持率,其中保持率越高,说明复合材料的长期热氧稳定性越好,反之,越差。
150℃老化2000h的冲击强度保持率的测试方法:根据要求注塑好ASTM标准冲击样条10根,随机抽取5根放于室温23℃,50%湿度调节48h后进行冲击强度的测试,记录并计算出平均值为IMP1,放入调节好温度恒温鼓风烘箱中,150℃恒温老化2000h后取出样条,经过室温23℃,50%湿度调节48h后进行冲击强度的测试,一共测试5根样条的拉伸强度计算平均值IMP2,根据计算公式1-((IMP1-IMP2)/IMP1)%,得出冲击强度保持率,其中保持率越高,说明复合材料的长期热氧稳定性越好,反之,越差。
150℃老化2000h的介电强度保持率的测试方法:根据要求注塑好ASTM标准介电样板10片,随机抽取5片放于室温23℃,50%湿度调节48h后进行介电强度的测试,记录并计算出平均值为DS1,放入调节好温度恒温鼓风烘箱中,150℃恒温老化2000h后取出样条,经过室温23℃,50%湿度调节48h后进行介电强度的测试,一共测试5片样条的介电强度计算平均值IMP2,根据计算公式1-((DS1-DS2)/DS1)%,得出介电强度保持率,其中保持率越高,说明复合材料的长期热氧稳定性越好,反之,越差。
本发明中使用的聚碳酸酯:
组分A-1:粘均分子量为19000的芳香族聚碳酸酯,日本出光;
组分A-2:粘均分子量为28000的芳香族聚碳酸酯,日本出光;
组分A-3:粘均分子量为38000的芳香族聚碳酸酯,日本出光;
本发明中使用的玻纤:
组分B-1:重庆玻纤;
本发明中使用的界面结合剂:
组分C-1:环氧聚合物,1901,日本三菱;
组分C-2:环氧接枝PDMS丙烯酸酯共聚物,S2200,日本三菱;
本发明中使用的抗氧剂:
组分D-1:抗氧剂1010,厂家为巴斯夫;
组分D-2:抗氧剂1076,厂家为巴斯夫;
本发明中使用的辅助抗氧剂:
组分E-1:亚磷酸,厂家为阿拉丁;
组分E-2:甲苯磺酸,厂家为阿拉丁;
本发明中使用的其它助剂:
组分F-1:润滑剂:季戊四醇硬脂酸酯,PETS-AP,厂家为法基。
实施例1-11及对比例1-2:玻纤增强聚碳酸酯复合材料的制备
按照配比称取聚碳酸酯、界面结合剂、抗氧剂、辅助抗氧剂、其它助剂在高混机中搅拌共混1-3min,得到预混料;将得到的预混料置于双螺杆挤出机的主喂料口中,在侧喂料口加入玻纤进行熔融挤出,造粒干燥,即得玻纤增强聚碳酸酯复合材料。对上述玻纤增强聚碳酸酯复合材料在150℃老化2000h的拉伸强度保持率、冲击强度保持率和介电强度保持率进行测试,测试得到的数据如表1所示。
表1实施例1-11及对比例1-2的具体配比(重量份)及其测试性能结果
Figure PCTCN2020103914-appb-000002
续1
Figure PCTCN2020103914-appb-000003

Claims (11)

  1. 一种玻纤增强聚碳酸酯复合材料,按重量份计,包括以下组成:
    Figure PCTCN2020103914-appb-100001
  2. 根据权利要求1所述的玻纤增强聚碳酸酯复合材料,其特征在于,所述界面结合剂与玻纤的复配重量比为(0.005-0.5):1,优选为(0.01-0.02):1。
  3. 根据权利要求1所述的玻纤增强聚碳酸酯复合材料,其特征在于,所述抗氧剂与辅助抗氧剂的复配重量比为1:(1-3),优选为1:2。
  4. 根据权利要求1所述的玻纤增强聚碳酸酯复合材料,其特征在于,所述聚碳酸酯选自芳香族聚碳酸酯、脂肪族聚碳酸酯、芳香族-脂肪族聚碳酸酯、支化聚碳酸酯、硅氧烷共聚碳酸酯中的一种或几种;优选为芳香族聚碳酸酯;所述芳香族聚碳酸酯为粘均分子量13000-40000的芳香族聚碳酸酯,优选为粘均分子量18000-28000的芳香族聚碳酸酯。
  5. 根据权利要求1或2所述的玻纤增强聚碳酸酯复合材料,其特征在于,所述界面结合剂选自含有环氧基团的聚合物或接枝聚合物,优选为具有一定聚合物的环氧、环氧聚烯烃、环氧接枝的丙烯酸树脂中的一种或几种;优选为环氧聚合物或环氧接枝PDMS丙烯酸酯共聚物。
  6. 根据权利要求1或3所述的玻纤增强聚碳酸酯复合材料,其特征在于,所述抗氧剂选自一元受阻酚和/或多元受阻酚;优选为多元受阻酚,更优选为抗氧剂1010和/或抗氧剂1076。
  7. 根据权利要求1或3所述的玻纤增强聚碳酸酯复合材料,其特征在于,所述辅助抗氧剂为含有酸性基团的化合物,优选为含有硫元素的有机酸类物质。
  8. 根据权利要求1所述的玻纤增强聚碳酸酯复合材料,其特征在于,基于玻纤增强聚碳酸酯复合材料重量,还包括组分F:其它助剂0-10份;所述其它助剂选自稳定剂、阻燃剂、抗滴落剂、润滑剂、脱模剂、增塑剂、填料、抗静电剂、抗菌剂、着色剂的一种或几种。
  9. 一种如权利要求1-8任一项所述的玻纤增强聚碳酸酯复合材料的制备方法,其特征在于,包括如下步骤:
    1)按照配比称取聚碳酸酯、界面结合剂、抗氧剂、辅助抗氧剂、其它助剂在高混机中搅拌共混1-3min,得到预混料;
    2)将得到的预混料置于双螺杆挤出机的主喂料口中,在侧喂料口加入玻纤进行熔融挤出,造粒干燥,即得。
  10. 根据权利要求9所述的玻纤增强聚碳酸酯复合材料的制备方法,其特征在于,所述双螺杆挤出机长径比为46:1-50:1;所述双螺杆挤出机的温度从喂料段到机头依次为:一区温度120℃-160℃,二区温度200℃-230℃,三区温度200℃-230℃,四区温度200℃-220℃,五区温度200℃-220℃,六区温度200℃-220℃,七区温度200℃-220℃,八区温度200℃-220℃,九区温度200℃-220℃,十区温度200℃-220℃,十一区温度200℃-220℃,机头温度220℃-240℃,主机转速350转/分钟-500转/分钟。
  11. 如权利要求10所述的制备方法得到的玻纤增强聚碳酸酯复合材料在汽车、电子电 气、通讯行业、建筑行业中的应用,优选在5G通讯行业中的应用。
PCT/CN2020/103914 2019-08-30 2020-07-24 一种玻纤增强聚碳酸酯复合材料及其制备方法与应用 WO2021036612A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910816924.1A CN110591322B (zh) 2019-08-30 2019-08-30 一种玻纤增强聚碳酸酯复合材料及其制备方法与应用
CN201910816924.1 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021036612A1 true WO2021036612A1 (zh) 2021-03-04

Family

ID=68857035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103914 WO2021036612A1 (zh) 2019-08-30 2020-07-24 一种玻纤增强聚碳酸酯复合材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN110591322B (zh)
WO (1) WO2021036612A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110591322B (zh) * 2019-08-30 2024-03-22 金发科技股份有限公司 一种玻纤增强聚碳酸酯复合材料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851407A (zh) * 2010-03-09 2010-10-06 上海锦湖日丽塑料有限公司 高表面光泽玻璃纤维增强阻燃聚碳酸脂组合物及制备方法
CN102432987A (zh) * 2011-10-26 2012-05-02 贵州省复合改性聚合物材料工程技术研究中心 一种抗静电聚碳酸酯复合材料及其制备方法
US20140050815A1 (en) * 2012-08-14 2014-02-20 Ginar Technology Co., Ltd Injection molding means
JP2015059138A (ja) * 2013-09-17 2015-03-30 帝人株式会社 難燃性ガラス繊維強化ポリカーボネート樹脂組成物
CN104804397A (zh) * 2015-04-28 2015-07-29 上海锦湖日丽塑料有限公司 具有低翘曲度的增强聚碳酸酯树脂及其制备方法
CN109721993A (zh) * 2018-12-25 2019-05-07 金发科技股份有限公司 一种聚碳酸酯复合材料和环氧官能团接枝聚合物在提高聚碳酸酯光泽度和加工窗口的应用
CN110591322A (zh) * 2019-08-30 2019-12-20 金发科技股份有限公司 一种玻纤增强聚碳酸酯复合材料及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153814C (zh) * 2001-08-01 2004-06-16 上海杰事杰新材料股份有限公司 高韧性玻璃纤维增强聚碳酸酯组合物
CN105462223B (zh) * 2015-12-21 2017-11-07 广东金发科技有限公司 一种玻纤增强聚碳酸酯再生料组合物及其制备方法
CN107793724A (zh) * 2016-11-29 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851407A (zh) * 2010-03-09 2010-10-06 上海锦湖日丽塑料有限公司 高表面光泽玻璃纤维增强阻燃聚碳酸脂组合物及制备方法
CN102432987A (zh) * 2011-10-26 2012-05-02 贵州省复合改性聚合物材料工程技术研究中心 一种抗静电聚碳酸酯复合材料及其制备方法
US20140050815A1 (en) * 2012-08-14 2014-02-20 Ginar Technology Co., Ltd Injection molding means
JP2015059138A (ja) * 2013-09-17 2015-03-30 帝人株式会社 難燃性ガラス繊維強化ポリカーボネート樹脂組成物
CN104804397A (zh) * 2015-04-28 2015-07-29 上海锦湖日丽塑料有限公司 具有低翘曲度的增强聚碳酸酯树脂及其制备方法
CN109721993A (zh) * 2018-12-25 2019-05-07 金发科技股份有限公司 一种聚碳酸酯复合材料和环氧官能团接枝聚合物在提高聚碳酸酯光泽度和加工窗口的应用
CN110591322A (zh) * 2019-08-30 2019-12-20 金发科技股份有限公司 一种玻纤增强聚碳酸酯复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN110591322A (zh) 2019-12-20
CN110591322B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2021036614A1 (zh) 玻纤增强聚碳酸酯复合材料及其制备方法与应用
CN101914276A (zh) 聚碳酸酯组合物及其制备方法
CN112795183B (zh) 一种高强度、低收缩、低析出环保阻燃聚酰胺组合物及其制备方法
CN104693772A (zh) 一种玻纤云母混合增强聚碳酸酯材料及其制备方法
WO2021036613A1 (zh) 一种玻纤增强聚碳酸酯复合材料及其制备方法与应用
CN109111712B (zh) 一种低气味阻燃pc材料及其制备方法
CN111548613A (zh) 一种高强度阻燃耐老化pbt/pc合金树脂材料及制备方法
CN112280027A (zh) 含磷硅共聚聚碳酸酯及其制备方法和组合物及该组合物的制备方法和应用
WO2005007737A1 (en) Fire-retarded polycarbonate resin composition
CN107922718B (zh) 聚对苯二甲酸丁二醇酯树脂组合物
WO2021036612A1 (zh) 一种玻纤增强聚碳酸酯复合材料及其制备方法与应用
CN112322020B (zh) 一种聚苯醚树脂组合物及其制备方法和线槽及其制备方法
CN114031915A (zh) 一种稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用
CN116515190B (zh) 一种耐老化低迁移聚乙烯管材及其制备方法
CN115785572B (zh) 一种超耐热氧老化聚丙烯组合物及其制备方法和应用
KR20210033591A (ko) 할로겐-무함유의 난연성 폴리카보네이트/abs 복합 재료
CN112480630A (zh) 一种高铁用良外观无卤阻燃聚碳酸酯组合物及其制备方法
CN112029254A (zh) 一种耐湿热老化的无卤阻燃pc/abs合金材料及其制备方法
CN112778755A (zh) 一种高填充导热pa/pp复合材料及其应用
CN115491013B (zh) 一种阻燃玻纤增强聚碳酸酯组合物及其制备方法和应用
CN111286182A (zh) 一种低成本无卤阻燃pcabs合金及其制备方法
CN115746535B (zh) 一种高模量高韧性薄壁阻燃聚碳酸酯复合材料及其制备方法
CN115819944B (zh) 一种易脱模阻燃聚碳酸酯组合物
RU2814520C1 (ru) Полимерная композиция на основе полифениленсульфида
KR20220077568A (ko) 수지 조성물 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857977

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/08/2022).

122 Ep: pct application non-entry in european phase

Ref document number: 20857977

Country of ref document: EP

Kind code of ref document: A1