WO2021036525A1 - 一种增强现实的光学叠加器和相关设备 - Google Patents

一种增强现实的光学叠加器和相关设备 Download PDF

Info

Publication number
WO2021036525A1
WO2021036525A1 PCT/CN2020/100827 CN2020100827W WO2021036525A1 WO 2021036525 A1 WO2021036525 A1 WO 2021036525A1 CN 2020100827 W CN2020100827 W CN 2020100827W WO 2021036525 A1 WO2021036525 A1 WO 2021036525A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
metasurface
stacker
super
light
Prior art date
Application number
PCT/CN2020/100827
Other languages
English (en)
French (fr)
Inventor
郭睿
李�根
李淑杰
耿东玉
涂敏海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20857463.2A priority Critical patent/EP4020056A4/en
Publication of WO2021036525A1 publication Critical patent/WO2021036525A1/zh
Priority to US17/682,159 priority patent/US20220179222A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • This application relates to the field of augmented reality technology, and in particular to an augmented reality optical stacker and related equipment.
  • AR Augmented Reality
  • new products using AR display technology such as AR glasses and vehicle head-up displays have emerged.
  • virtual images and real scenes are superimposed on each other through an optical combiner to form a realistic effect that increases reality. Therefore, the optical stacker is the core device of AR display technology.
  • one realization principle of the optical stacker is realized by the reflection and transmission of light.
  • a non-diffractive optical element such as a beam splitter, etc.
  • This method has a relatively simple structure, but the field of view of the virtual image in the human eye is not large, and the visible light transmittance is not high.
  • Another realization principle of the optical stacker is realized by the diffraction and transmission of light.
  • Two optical elements with diffractive function are used, one of which is used to couple the optical signal of the virtual image emitted by the optical engine into the optical waveguide, and the other is used to couple the light coupled to the optical waveguide.
  • Signal coupling output The output light signal and the natural light of the transmitted real scene enter the human eye together to form a superimposed picture. Since the grating is very sensitive to wavelength, it is prone to color crosstalk, resulting in low image uniformity.
  • the present application provides an optical stacker and related equipment for enhancing display.
  • the present application provides an optical stacker, including a transparent substrate and a super-surface layer, the super-surface layer is disposed on the surface of the transparent substrate, and the super-surface layer includes a plurality of super-surface units arranged two-dimensionally. Wherein, the interval between two adjacent metasurface units in the plurality of metasurface units gradually changes along one or two dimensions, and the relative angle between any two adjacent metasurface units is not zero.
  • the interval between two adjacent metasurface units gradually changes along one or two directions, and the relative angle between any two adjacent metasurface units is not zero, so that the optical stacker can enlarge the virtual image
  • the angle of view of the picture improves the transmittance of ambient light and the uniformity of the image.
  • the metasurface layer includes multiple regions, and the incident angles of the optical signals corresponding to different regions are different, so that the optical signals incident at different angles converge to one point.
  • the interval between two adjacent metasurface units is different, and the convergence point will be biased toward the area with a smaller interval.
  • the multiple areas of the super-surface layer can be divided physically or logically.
  • the incident angle and the exit angle of the light signal corresponding to different regions can be different, thereby increasing the field of view of the virtual image.
  • the metasurface layer is used to reflect light signals in a narrow linewidth band and transmit light signals in a wide linewidth band.
  • the narrow linewidth band refers to a band with a narrow spectral range.
  • the optical signal of the narrow linewidth band includes at least three wavelengths, such as red, green, and blue wavelengths.
  • the optical signal of the narrow linewidth band may include three wavelengths of red, green, and blue optical signals, which are used to carry virtual images.
  • the light signal of the wide line width band can be ambient light or visible light, which is used to carry real images.
  • the arrangement design of the super-surface unit in the super-surface layer can make the optical superimposer totally reflect the optical signal carrying the virtual image, and increase the transmittance of the optical superimposer to ambient light, thereby improving the uniformity of the image.
  • the interval between two adjacent metasurface units gradually increases or decreases along one or two dimensions.
  • the distance between two adjacent metasurface units may gradually change along the horizontal or vertical direction of the metasurface unit, and may vary linearly or non-linearly.
  • the relative angle between two adjacent metasurface units gradually changes along one or two dimensions.
  • the angle between two adjacent metasurface units may gradually change along the horizontal or vertical direction of the metasurface unit, and may change linearly or non-linearly.
  • the area of the metasurface unit gradually changes along one or two dimensions.
  • the area of the metasurface element may gradually change along the horizontal or vertical direction of the metasurface element, and may vary linearly or non-linearly.
  • the super-surface layer includes at least two layers of materials with different refractive indexes.
  • the exit angle of incident light can be adjusted and the field of view angle can be increased.
  • the optical stacker further includes a transparent conductive layer, the super-surface layer is disposed on the transparent conductive layer, and the transparent conductive layer is used to control the reflection angle of the optical signal on the super-surface layer.
  • the metasurface layer is covered with a refractive index control layer, and the refractive index control layer is used to adjust the refractive index of the metasurface layer, thereby controlling the reflection angle of the optical signal on the metasurface layer.
  • the exit angle of incident light can be dynamically adjusted, and the focal length and depth of field can also be dynamically adjusted.
  • the present application provides an augmented reality AR device, which includes an optical stacker, at least one projector, and a fixing device as in the first aspect or any possible implementation of the first aspect.
  • the fixing device is used to fix the optical superimposer and at least one projection light machine
  • the optical superimposer is used to reflect the light signal of the narrow linewidth waveband generated by the at least one projection light machine, and project the light signal of the wide linewidth waveband
  • the optical signal of the narrow linewidth band includes at least three wavelengths.
  • this application provides an augmented reality AR device, which includes an optical stacker and at least one optical projector as in the first aspect or any possible implementation of the first aspect.
  • the optical adder is used to reflect the light signal of the narrow linewidth waveband generated by the at least one projector, and project the light signal of the wide linewidth waveband, and the light signal of the narrow linewidth waveband includes at least three wavelengths.
  • the optical stacker of the present application can be used in AR devices such as AR glasses, AR helmets, vehicle head-up displays, automobile windshields, transparent displays, and various transparent curtain walls containing laser projection, which can increase the angle of view of the virtual image screen , Improve the transmittance of ambient light and the uniformity of the image.
  • Figure 1 is a schematic structural diagram of an AR device provided by an embodiment of the present invention.
  • FIGS. 2a-c are schematic diagrams of the structure of AR glasses provided by an embodiment of the present invention.
  • 3a and 3b are schematic diagrams of the principle of an optical stacker provided by an embodiment of the present invention.
  • FIGS. 4a and 4b are schematic diagrams of the structure of an optical stacker provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the logical structure of an optical superimposer provided by an embodiment of the present invention.
  • FIGS. 7a-j are schematic diagrams of eight designs of optical stackers provided by embodiments of the present invention.
  • Figures 8a-i are schematic diagrams of nine designs of optical stackers provided by embodiments of the present invention.
  • FIG. 9 is a schematic diagram of the design of an optical stacker provided by an embodiment of the present invention.
  • Figures 10a-c are schematic diagrams of the design of an optical stacker provided by an embodiment of the present invention.
  • 11a-c are schematic diagrams of the design of an optical stacker provided by an embodiment of the present invention.
  • the technical solutions of the embodiments of the present invention can be applied to any scene related to AR display technology, such as AR glasses, AR helmets, vehicle head-up displays, automobile windshields, transparent displays, and various transparent curtain walls containing laser projections. It can also be applied to scenes such as virtual reality (Virtual Reality, VR) and Mediated Reality (MR) display.
  • AR Virtual Reality
  • MR Mediated Reality
  • the embodiment of the present invention takes AR glasses as an example for description.
  • FIG. 1 is a schematic structural diagram of an AR device provided by an embodiment of the present invention.
  • the AR device 100 may include an optical stacker 101, an optical engine 102, a wireless communication device 103, a sensor 104, a positioning device 105, a camera device 106, a voice device 107, a battery system 108, and so on.
  • some modules shown in FIG. 1 are exemplary and not essential components.
  • the AR device 100 may also include modules not shown in FIG. 1.
  • the optical superimposer 101 may include a transparent substrate (for example, a transparent material such as glass or resin) and a super-surface layer for combining the optical signal (carrying virtual image information) emitted by the optical engine 102 and the optical signal of the real environment.
  • the optical engine 102 may be a projection light machine or a laser, and is used to generate an optical signal that carries virtual image information.
  • the wireless communication device 103 is used to send and receive wireless signals, and may be, for example, WIFI, Bluetooth, or a mobile communication device.
  • the sensor 104 may include a power sensor (such as a gyroscope), a biological sensor, a temperature sensor, a humidity sensor, and the like.
  • the positioning device 105 may include a GPS or Beidou positioning device.
  • the camera 106 may include a camera, an image processor, etc., for taking photos or videos.
  • the voice device 107 can be used to input or output sound, such as a microphone or a speaker.
  • the battery system 108 is used to provide power to the AR device.
  • AR glasses may include a supersurface layer 201, a transparent substrate 202 (lenses), an optical engine 203, and a fixing device 204 (glasses frame).
  • the optical stacker may include a super-surface layer 201 and a transparent substrate 202, and the super-surface layer 201 may be disposed on the surface of the transparent substrate 202.
  • the optical stacker 203 can be located on both sides of the fixing device 204 or on either side of the fixing device 204.
  • the optical engine 203 may be a laser or an optical projector, which is used to generate an optical signal carrying a virtual image and project it onto an optical superimposer.
  • the optical stacker 203 transmits ambient light or visible light (carrying real image information) to the human eye 205, and reflects or diffracts the light signal (carrying virtual image information) generated by the optical engine 203 to the human eye 205, realizing reality in the human eye The effect of superimposing image and virtual image.
  • the principle and structure of the optical stacker will be described in detail below.
  • Figures 3a and 3b are schematic diagrams of the principle of an optical stacker provided by an embodiment of the present invention, and the optical stacker can be applied to any of the AR glasses shown in Figures 2a-c.
  • the optical superimposer 301 almost completely transmits ambient light or visible light carrying real image information from various directions, and almost completely reflects the optical signal generated by the optical engine 302 carrying virtual image information.
  • the optical superimposer 301 can transmit all the optical signals of each wavelength generated by the optical engine 302 to the human eye 303 without affecting the transmission of ambient light, thereby superimposing the real image and the virtual image, and realizing the enhanced display of the real image .
  • the optical stacker has a relatively high transmittance to ambient light, thereby improving the uniformity of the image. Since the optical stacker has a higher reflectivity for the optical signal of the virtual image, the power consumption of the AR glasses can be reduced, and the volume of the AR glasses can be reduced. In addition, since the optical superimposer almost totally reflects the optical signal of the virtual image, the content of the virtual image cannot be seen by onlookers, which effectively improves the privacy of the AR glasses.
  • Figures 4a and 4b are schematic diagrams of the structure of an optical stacker provided by an embodiment of the present invention.
  • the optical stacker can be applied to any of the AR glasses shown in Figures 2a-c.
  • Fig. 4a is a top view (xy plane), and
  • Fig. 4b is a front view (xz plane).
  • the optical stacker 400 may include a super-surface layer 401 and a transparent substrate 402, and the super-surface layer 401 is disposed on the surface of the transparent substrate 402.
  • the optical superimposer 400 may include one or more super-surface layers 401.
  • the super-surface layer 401 may be an artificial layered material with a size smaller than or equal to its working wavelength.
  • the material of the super surface layer 401 may be a material transparent to the visible light band, such as titanium oxide, silicon nitride, and the like.
  • the super-surface layer 401 can realize flexible adjustment of one or more characteristics of electromagnetic wave polarization, amplitude, phase, polarization mode, propagation mode, etc., and has characteristics different from natural materials.
  • the transparent substrate 402 may be a transparent material such as glass or resin, which is equivalent to the lens of AR glasses.
  • the metasurface layer 401 may include a plurality of metasurface elements 403, and two adjacent metasurface elements 403 may form a metasurface element pair 404. Of course, if the number of metasurface elements is odd, one metasurface element cannot be paired.
  • Two metasurface elements 403 in each metasurface element pair 404 may be arranged in a " ⁇ " shape or a "V” shape.
  • the metasurface unit pairs 404 in the metasurface layer 401 can all be arranged in a " ⁇ ” shape, or all can be arranged in a "V” shape, and can also be partially arranged in a " ⁇ ” shape and some in a "V” shape to ensure phase The angle between two adjacent metasurface elements Not zero.
  • the plurality of metasurface units 403 of the metasurface layer 401 may be periodically arranged on a two-dimensional plane. The interval between two adjacent metasurface units 403 gradually changes along one or two dimensions, for example, along the x-direction or the y-direction.
  • the distance Px between two metasurface elements 403 in one metasurface element pair 404 may be smaller than the distance between two adjacent metasurface element pairs.
  • the metasurface unit 404 may be rectangular, elliptical, trapezoidal, or the like.
  • One or more dimensions of the length, width, and height of the metasurface unit 403 are less than or equal to its working wavelength (that is, the wavelength of incident light, transmitted light, or reflected light), thereby exciting different electric field modes to the incident light.
  • the width W of the metasurface unit can range from 5 to 5000 nm
  • the length L of the metasurface unit can range from 5 to 5000 nm
  • the angle between two adjacent metasurface units Non-zero, the value range can be -180 ⁇ +180 (not including 180 and -180)
  • the center distance Px of two adjacent metasurface units in the horizontal direction (x direction) can be 5 ⁇ 5000nm
  • the center distance Py of two adjacent metasurface units in the vertical direction (y direction) can range from 5 to 5000 nm.
  • the height H of the metasurface unit can range from 5 to 5000 nm.
  • the value of L is 260nm
  • the value of W is 60nm
  • the value of H is 230nm
  • the value of px is 230nm
  • the value of py is 280nm.
  • the value is 20 degrees.
  • the optical stacker provided by the embodiment of the present invention can have high reflectivity and almost total reflection for the light signal of the narrow linewidth band (the optical signal emitted by the optical engine); it has extremely low reflectivity for the ambient light of the wide linewidth waveband, Almost full transmission.
  • the narrow linewidth band refers to a band with a narrow spectral range, and the narrow linewidth band and the wide linewidth band are relative terms, and the embodiment of the present invention does not limit the specific linewidth range.
  • FIG. 5 is the reflection spectrum of the optical stacker provided by the embodiment of the present invention when the angle of incident light is 0 degrees and 45 degrees, respectively.
  • the optical stacker has three highly reflective narrow linewidth bands for 0 degree incident light and 45 degree incident light, respectively, corresponding to the red (about 625-740nm) and green (about 500- 565nm), blue (about 485-500nm) three wavelengths, its reflectivity is close to 1, almost total reflection.
  • the three high reflection peaks of the reflection spectrum are caused by the three electric field modes excited by the optical stacker in the narrow linewidth band, and these three electric field modes can be generated by different parts of the metasurface layer.
  • the first electric field mode is generated by the upper and lower surfaces of the metasurface layer
  • the second electric field mode is the position where the distance between two adjacent metasurface units is relatively wide (the lower part of " ⁇ ” or the "V” The upper part)
  • the third electric field mode is generated at a position (the upper part of " ⁇ ” or the lower part of "V") between two adjacent metasurface units. If the optical stacker includes multiple metasurface layers, the metasurface layers of different layers can excite different electric field modes.
  • the optical stacker adopts a super-surface layer with a special structure design (" ⁇ "-shaped or "V"-shaped arrangement) to fully reflect the optical signal bearing the virtual image, and can also improve the optical stacker's exposure to ambient light. The transmittance, thereby improving the uniformity of the image.
  • FIG. 6 is a schematic diagram of a logical structure of an optical superimposer provided by an embodiment of the present invention.
  • the optical stacker needs to converge the light incident from different angles to one place (the human eye). Therefore, the optical stacker can be divided into multiple regions to achieve angle control on different regions.
  • the optical stacker includes multiple different areas of MSa (Metasurface a), MSb, ..., MSm. Each area corresponds to a different exit angle.
  • the exit angle can be the exit angle of the light emitted by the optical engine, or the exit angle of the ambient light.
  • Each region can include multiple metasurface units, and the same metasurface unit can belong to multiple regions, or it can belong to only one region. Different areas can be divided logically, and there can be no clear boundaries physically.
  • FIGs 7a-j are schematic diagrams of eight designs of optical stackers provided by embodiments of the present invention.
  • Figures 7a-g show five changes in the x-y plane.
  • Figure 7a in the horizontal direction (x direction), the distance between two adjacent metasurface units gradually increases from left to right.
  • Figure 7b in the horizontal direction (x direction), the distance between two adjacent metasurface units gradually increases from right to left.
  • Figure 7c in the horizontal direction (x direction), the distance between two adjacent metasurface units gradually increases from the middle to the two sides; in the vertical direction (y direction), the distance between two adjacent metasurface units Gradually increase from the middle to both sides.
  • the distance between two adjacent metasurface units gradually increases from bottom to top.
  • the distance between two adjacent metasurface units gradually increases from top to bottom.
  • two adjacent metasurface units in the horizontal direction (x direction) constitute a metasurface unit pair, and the distance between the two adjacent metasurface unit pairs can be changed periodically, for example, according to the spacing d1, d2 , D3 changes periodically.
  • the scattering angle of incident light in the z-x plane can be adjusted by changing the distance between two adjacent metasurface element pairs.
  • FIG. 7g in the vertical direction (y direction) adjacent multiple metasurface units constitute a metasurface unit area, and the distance between two adjacent metasurface unit areas can be changed periodically, for example, according to the distance d1, d2 changes periodically.
  • the scattering angle of incident light in the z-y plane can be adjusted by changing the distance between two adjacent metasurface unit regions.
  • Figure 7h-j shows three changes in the x-z plane.
  • the distance between two adjacent metasurface units gradually increases from left to right, and the convergence point of light rays incident at different angles is close to the left side of the optical stacker.
  • Fig. 7g in the vertical direction (y direction) adjacent multiple metasurface units constitute a metasurface unit area, and the distance between two adjacent metasurface unit areas can be changed periodically, for example, according to the distance d1, d2 changes periodically.
  • the scattering angle of incident light in the z-y plane can be adjusted by changing the distance between two adjacent metasurface unit regions.
  • Figure 7h-j shows three changes in the x-z plane
  • the distance between two adjacent metasurface units gradually increases from right to left, and the convergence point of light rays incident at different angles is close to the right side of the optical stacker.
  • Fig. 7j in the horizontal direction (x-direction), the distance between two adjacent metasurface units gradually increases from the middle to the two sides, and the convergent point of light incident from different angles is close to the middle of the optical stacker.
  • the change of the pitch of the metasurface unit can be linear or non-linear, and the law of change can be set according to the convergence point of the light.
  • FIGs 8a-i are schematic diagrams of nine designs of optical stackers provided by embodiments of the present invention.
  • Figure 8a-f shows the six changing laws in the x-y plane.
  • Fig. 8a in the horizontal direction (x direction), the rotation angle of the metasurface unit relative to the vertical direction (y direction) gradually increases from left to right.
  • Fig. 8b in the horizontal direction (x direction), the rotation angle of the metasurface unit relative to the vertical direction (y direction) gradually increases from both sides to the middle.
  • Fig. 8a in the horizontal direction (x direction)
  • Fig. 8h can be a view of Fig. 8b or 8e on the x-z plane, where the convergent point of light rays incident at different angles is close to the center of the optical stacker.
  • Fig. 8i may be a view of Fig. 8c or 8f on the x-z plane, and the converging point of light rays incident at different angles is close to the left side of the optical stacker. It can be seen that the convergence point of light rays incident from different angles is close to the position where the metasurface unit has a larger rotation angle or a larger area of the metasurface unit.
  • the change of the rotation angle or area of the metasurface unit can be linear or non-linear, and the law of change can be set according to the convergence point of the light.
  • FIG. 9 is a schematic diagram of the design of an optical stacker provided by an embodiment of the present invention.
  • the metasurface layer may include multiple layers of materials with different refractive indexes, for example, three layers of materials with refractive indexes n1, n2, and n3, respectively.
  • the super-surface layer may also include one, two, or three or more layers of materials with different refractive indexes, and the number of layers of the material and the corresponding refractive index can be set according to the convergence point of the light.
  • the exit angle of light can be adjusted, thereby realizing a large field of view.
  • the control of the light exit angle on the metasurface layer can be statically configured (that is, set at the factory), or dynamically adjustable.
  • 10a-c are schematic diagrams of the design of the optical stacker provided by the embodiment of the present invention.
  • the metasurface unit can be arranged on the transparent conductive layer.
  • the material of the transparent conductive layer can be indium tin oxide or tin-doped indium oxide (ITO), PEDOT (PSS or polystyrene sulfonate is two types).
  • the transparent conductive layer may be a Micro-Electro-Mechanical System (MEMS).
  • MEMS Micro-Electro-Mechanical System
  • the transparent conductive layer can be divided into multiple regions, such as three regions 1001, 1002, 1003, and one or more regions of the transparent conductive layer can be controlled to rotate to different directions by modulating the voltage.
  • Fig. 10a in the initial state, the convergence point of the light rays is close to the center of the optical stacker.
  • the rotation angle of the first area 1001 and the third area 1003 is adjusted to change the exit angle of the light, so that the light exits in parallel.
  • the exit angle of the light can be dynamically adjusted, and the depth of field and focal length can also be dynamically adjusted.
  • a refractive index control layer can also be covered on the supersurface layer to dynamically adjust the exit angle of the light.
  • FIGs. 11a-c are schematic diagrams of the design of an optical stacker provided by an embodiment of the present invention. As shown in Figs. 11a-c, the super-surface layer 1101 may be covered with a refractive index control layer 1102.
  • the refractive index control layer 1102 can be realized by using materials such as liquid crystal (such as ferroelectric liquid crystal), indium tin oxide, lithium niobate, and the like.
  • the refractive index control layer 1102 is divided into multiple regions, and a voltage can be applied to the refractive index control layer 1102 so that different regions have different refractive indexes, thereby changing the exit angle of light.
  • a voltage can be applied to the refractive index control layer 1102 so that different regions have different refractive indexes, thereby changing the exit angle of light.
  • the refractive index control layer 1102 is divided into three regions, the applied voltage values are respectively 3V, 1V, and -3V, and the light converging point is close to the center of the optical stacker.
  • the refractive index control layer 1102 is divided into three regions, and the applied voltage values are 5V, 3V, and 1V respectively, and the light converging point is close to the right side of the optical stacker.
  • the refractive index of a part or all of the refractive index control layer can be changed, thereby realizing the dynamic adjustment of the light exit angle, as well as the dynamic adjustment of the depth of field and the focal length.
  • the exit angle of light can be dynamically adjusted, and parameters such as depth of field and focal length can also be dynamically adjusted to make the virtual image more realistic.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a program product in whole or in part.
  • the program product includes one or more instructions.
  • the instructions may be stored in a readable storage medium, or transmitted from a readable storage medium of one device to a readable storage medium of another device.
  • the readable storage medium may be any available medium that can be accessed by an optical transceiver or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种增强现实的光学叠加器(101,301,400)及相关设备。光学叠加器(101,301,400)包括透明衬底(202,402)和超表面层(201,401),超表面层(201,401)设置于透明衬底(202,402)的表面。超表面层(201,401)包括二维排列的多个超表面单元(403);其中,多个超表面单元(403)中相邻的两个超表面单元(403)之间的间隔沿着一个或两个维度逐渐变化,且任意相邻的两个超表面单元(403)之间的相对角度不为零。光学叠加器(101,301,400)能够提高环境光的透过率,提高图像的均匀度和视场角。

Description

一种增强现实的光学叠加器和相关设备
本申请要求于2019年8月29日提交中国专利局、申请号为201910810425.1,发明名称为“一种增强现实的光学叠加器和相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及增强现实技术领域,尤其涉及一种增强现实的光学叠加器和相关设备。
背景技术
近年来,增强现实(Augmented Reality,AR)显示技术被应用到越来越多的电子设备中,例如,出现了AR眼镜、车载抬头显示等应用AR显示技术的新产品。使用AR显示技术的产品中,通过光学叠加器(optical combiner)将虚拟图像和现实场景相互叠加,形成增加现实的现实效果。因此,光学叠加器是AR显示技术的核心器件。
目前,光学叠加器的一种实现原理是是通过光的反射和透射实现。利用非衍射的光学元件(如分束器等)对光学引擎发出的虚拟图像的光信号进行反射,同时对现实场景中的可见光进行透射。反射光和透射光一起进入人眼,从而形成叠加画面。这种方式结构比较简单,但人眼中虚拟图像画面的视场角不大,并且可见光透过率不高。光学叠加器的另一种实现原理是通过光的衍射和透射实现。利用两块具有衍射功能的光学元件(如光栅或浮雕),其中一块衍射元件用于将光学引擎发出的虚拟图像的光信号耦合进入光波导,另一块衍射元件用于将耦合至光波导的光信号耦合输出。输出的光信号和经过透射的现实场景的自然光一起进入人眼,从而形成叠加画面。由于光栅对波长非常敏感,所以容易出现颜色串扰,导致图像均匀度较低。
因此,需要解决现有技术中光学叠加器的虚拟图像画面的视场角小、环境光透过率低、图像均匀度低等问题。
发明内容
有鉴于此,本申请提供一种增强显示的光学叠加器和相关设备。
第一方面,本申请提供一种光学叠加器,包括透明衬底和超表面层,该超表面层设置于透明衬底的表面,超表面层包括二维排列的多个超表面单元。其中,多个超表面单元中相邻的两个超表面单元之间的间隔沿着一个或两个维度逐渐变化,且任意相邻的两个超表面单元之间的相对角度不为零。
相邻的两个超表面单元之间的间隔沿着一个或两个方向逐渐变化,并且任意相邻的两个超表面单元之间的相对角度不为零,使得光学叠加器能够增大虚拟图像画面的视场角,提升对环境光的透射率和图像的均匀度。
一种可能的实现方式中,超表面层包括多个区域,不同区域对应的光信号的入射角度不同,使得不同角度入射的光信号汇聚到一点。例如,超表面层的不同区域上,相邻的两个超表面单元之间的间隔不同,汇聚点会偏向间隔较小的区域。超表面层的多个区域可以是物理上划分,也可以是逻辑上划分的。不同区域对应的光信号的入射角和出射角度可以不同,从而增大虚拟画面的视场角。
一种可能的实现方式中,超表面层用于对窄线宽波段的光信号进行反射,对宽线宽波段的光信号进行透射,其中,窄线宽波段指的是光谱范围较窄的波段,窄线宽波段的光信号包括至少三种波长,例如红、绿、蓝三种波长。
窄线宽波段的光信号可以包括红、绿、蓝三种波长光信号,用于承载虚拟图像。宽线宽 波段的光信号可以是环境光或可见光,用于承载现实图像。超表面层中通过超表面单元的排列设计可以使光学叠加器对承载虚拟图像的光信号进行全反射,提高光学叠加器对环境光的透过率,从而提高图像的均匀度。
一种可能的实现方式中,相邻的两个超表面单元之间的间隔沿着一个或两个维度逐渐增大或逐渐减小。
相邻两个超表面单元之间的间距可以沿着超表面单元的水平方向或垂直方向逐渐变化,可以是线性变化的,也可以是非线性变化的。
一种可能的实现方式中,相邻的两个超表面单元之间的相对角度沿着一个或两个维度逐渐变化。
相邻两个超表面单元之间的角度可以沿着超表面单元的水平方向或垂直方向逐渐变化,可以是线性变化的,也可以是非线性变化的。
一种可能的实现方式中,超表面单元的面积沿着一个或两个维度逐渐变化。
超表面单元的面积可以沿着超表面单元的水平方向或垂直方向逐渐变化,可以是线性变化的,也可以是非线性变化的。
一种可能的实现方式中,超表面层包括至少两层折射率不同的材料。
通过对相邻两个超表面单元的间距、角度,超表面单元的面积,超表面层的材料等方面的设计,可以调节入射光的出射角度,增大视场角。
一种可能的实现方式中,光学叠加器还包括透明导电层,超表面层设置在透明导电层上,透明导电层用于控制超表面层上光信号的反射角度。
一种可能的实现方式中,超表面层上面覆盖一层折射率调控层,折射率调控层用于调节超表面层的折射率,从而控制超表面层上光信号的反射角度。
采用透明导电层或折射率调控层,可以动态调节入射光的出射角度,还可以动态调节焦距和景深。
第二方面,本申请提供一种增强现实AR设备,包括如第一方面或第一方面任一可能的实现方式的光学叠加器、至少一个投影光机和固定装置。固定装置用于固定光学叠加器和至少一个投影光机,光学叠加器用于对所述至少一个投影光机产生的窄线宽波段的光信号进行反射,对宽线宽波段的光信号进行投射,窄线宽波段的光信号包括至少三种波长。
第三方面,本申请提供一种增加现实AR设备,包括如第一方面或第一方面任一可能的实现方式的光学叠加器和至少一个投影光机。光学叠加器用于对所述至少一个投影光机产生的窄线宽波段的光信号进行反射,对宽线宽波段的光信号进行投射,所述窄线宽波段的光信号包括至少三种波长。
本申请的光学叠加器可以用于AR眼镜、AR头盔、车载抬头显示、汽车挡风玻璃、透明显示器、各类包含激光投影的透明幕墙等AR设备中,可以增大虚拟图像画面的视场角,提升对环境光的透射率和图像的均匀度。
附图说明
为了说明本发明实施例的技术方案,下面将对描述实施例时所使用的附图作简单的介绍。
图1为本发明实施例提供的一种AR设备结构示意图;
图2a-c为本发明实施例提供的AR眼镜的结构示意图;
图3a、3b为本发明实施例提供的光学叠加器的原理示意图;
图4a、4b为本发明实施例提供的光学叠加器的结构示意图;
图5为本发明实施例提供的光学叠加器分别在入射光的角度为0度和45度时的反射谱;
图6为本发明实施例提供的一种光学叠加器的逻辑结构示意图;
图7a-j为本发明实施例提供的光学叠加器的八种设计示意图;
图8a-i为本发明实施例提供的光学叠加器的九种设计示意图。
图9为本发明实施例提供的光学叠加器的设计示意图;
图10a-c为本发明实施例提供的光学叠加器的设计示意图;
图11a-c为本发明实施例提供的一种光学叠加器的设计示意图。
具体实施方式
以下结合附图及实施例,对本发明进行进一步详细说明。
本发明实施例的技术方案可以应用于AR显示技术相关的任意场景中,例如,AR眼镜、AR头盔、车载抬头显示、汽车挡风玻璃、透明显示器、各类包含激光投影的透明幕墙等。还可以应用于虚拟现实(Virtual Reality,VR)、介导现实(Mediated Reality,MR)显示等场景中。本发明实施例以AR眼镜为例进行说明。
图1为本发明实施例提供的一种AR设备结构示意图。如图1所示,AR设备100可以包括光学叠加器101、光学引擎102、无线通信设备103、传感器104、定位设备105、照相设备106、语音设备107、电池系统108等。当然,图1中所示的有些模块为示例性的,并非是必要的部件,AR设备100也可以包括图1中未示出的模块。其中,光学叠加器101可以包括透明衬底(例如,可以是玻璃或树脂等透明材料)和超表面层,用于将光学引擎102发出的光信号(承载虚拟图像信息)和现实环境的光信号(承载现实图像信息)反射或透射至人眼。光学引擎102可以为投影光机或激光器,用于产生承载虚拟图像信息的光信号。无线通信设备103用于收发无线信号,例如,可以是WIFI、蓝牙或者移动通信装置。传感器104可以包括动力传感器(如陀螺仪)、生物传感器、温度传感器、湿度传感器等。定位设备105可以包括GPS或北斗定位设备。照相设备106可以包括摄像头、图像处理器等,用于拍摄照片或视频。语音设备107可以用于输入或输出声音,例如麦克风或扬声器。电池系统108用于为AR设备提供电源。
图2a-c为本发明实施例提供的AR眼镜的结构示意图。如图2a-c所示,AR眼镜可以包括超表面层201、透明衬底202(镜片)、光学引擎203、固定装置204(眼镜架)。其中,光学叠加器可以包括超表面层201和透明衬底202,超表面层201可以设置在透明衬底202的表面。光学叠加器203可以位于固定装置204的两侧,也可以位于固定装置204的任意一侧。光学引擎203可以为激光器或投影光机,用于产生承载虚拟图像的光信号,并投影到光学叠加器上。光学叠加器203把环境光或可见光(承载现实图像信息)透射到人眼205,并把光学引擎203产生的光信号(承载虚拟图像信息)反射或衍射到人眼205,在人眼处实现现实图像和虚拟图像叠加的效果。光学叠加器的原理及结构将在下文进行详细的描述。
图3a、3b为本发明实施例提供的光学叠加器的原理示意图,该光学叠加器可以应用于图2a-c任一所示的AR眼镜。如图3a、3b所示,光学叠加器301对来自各个方向的承载现实图像信息的环境光或可见光几乎全透射,以及对光学引擎302产生的承载虚拟图像信息的光信号几乎全反射。光学叠加器301可以在不影响环境光透射的情况下,把光学引擎302产生的各个波长的光信号全发射到人眼303,从而对现实图像和虚拟图像进行叠加,实现对现实图像的增强显示。
本发明实施例中,光学叠加器对环境光的具有较高的透过率,从而提高图像的均匀度。由于光学叠加器对虚拟图像的光信号具有较高的反射率,可以降低AR眼镜的功耗,减小AR眼镜的体积。此外,由于光学叠加器对虚拟图像的光信号几乎全反射,使旁观者无法看到虚 拟图像的内容,有效提高了AR眼镜的私密性。
图4a、4b为本发明实施例提供的光学叠加器的结构示意图,该光学叠加器可以应用于图2a-c任一所示的AR眼镜。图4a为俯视图(x-y平面),图4b为正视图(x-z平面)。如图4a、4b所示,光学叠加器400可以包括超表面层401和透明衬底402,超表面层401设置于透明衬底402的表面。光学叠加器400可以包括一层或多层超表面层401。其中,超表面层401可以是一种尺寸小于或等于其工作波长的人工层状材料。例如,超表面层401的材料可以采用氧化钛、氮化硅等对可见光波段透明的材料。超表面层401可实现对电磁波偏振、振幅、相位、极化方式、传播模式等一种或多种特性的灵活调控,具有不同于自然材料的特性。透明衬底402可以采用玻璃或树脂等透明材料,相当于AR眼镜的镜片。如图4a所示,超表面层401可以包括多个超表面单元403,相邻的两个超表面单元403可以形成一个超表面单元对404。当然,如果超表面单元的个数为奇数,则有一个超表面单元不能成对。每一个超表面单元对404中两个超表面单元403可以按照“Λ”字形或“V”字形排列。超表面层401中的超表面单元对404可以均为“Λ”字形排列,也可以均为“V”字形排列,还可以部分为“Λ”字形排列,部分为“V”字形排列,确保相邻两个超表面单元之间的角度
Figure PCTCN2020100827-appb-000001
不为零。超表面层401的多个超表面单元403可以在二维平面上周期性地排列。相邻的两个超表面单元403之间的间隔沿着一个或两个维度逐渐变化,例如,沿着x方向或y方向变化。一个超表面单元对404中两个超表面单元403的间距Px可以比相邻两个超表面单元对之间的间距小。超表面单元404可以为长方形、椭圆形、梯形等。超表面单元403的长、宽、高的一个或多个尺寸小于或等于其工作波长(即入射光、透射光或反射光的波长),从而对入射光激发出不同的电场模式。例如,超表面单元的宽度W的取值范围可以为5~5000nm,超表面单元的长度L的取值范围可以为5~5000nm,相邻两个超表面单元之间的夹角
Figure PCTCN2020100827-appb-000002
不为零,取值范围可以为-180~+180(不包含180和-180),水平方向上(x方向)相邻两个超表面单元的中心距离Px的取值范围可以为5~5000nm,垂直方向上(y方向)相邻两个超表面单元的中心距离Py的取值范围可以为5~5000nm。如图4b所示,超表面单元的高度H取值范围可以为5~5000nm。一个例子中,L取值为260nm,W取值为60nm,H取值为230nm,px取值为为230nm,py取值为为280nm,
Figure PCTCN2020100827-appb-000003
取值为20度。
本发明实施例提供的光学叠加器,能够对窄线宽波段的光信号(光学引擎发出的光信号)具有高反射率,几乎全反射;对宽线宽波段的环境光极低的反射率,几乎全透射。窄线宽波段指的是光谱范围较窄的波段,窄线宽波段和宽线宽波段是相对而言的,本发明实施例并不限制具体的线宽范围。图5为本发明实施例提供的光学叠加器分别在入射光的角度为0度和45度时的反射谱。如图5所示,光学叠加器在0度入射光和45度入射光分别均有三个高反射的窄线宽波段,分别对应光学引擎产生的红(约625—740nm)、绿(约500—565nm)、蓝(约485—500nm)三种波长,其反射率接近1,几乎全反射。反射谱的三个高反射峰是由于光学叠加器在窄线宽波段激发的三种电场模式产生的,这三种电场模式可以通过不同超表面层不同的部位产生的。例如,第一个电场模式是超表面层的上下两个表面产生的,第二个电场模式是相邻两个超表面单元之间距离较宽的位置(“Λ”的下部或“V”的上部)产生的,第三个电场模式是相邻两个超表面单元之间距离较窄的位置(“Λ”的上部或“V”的下部)产生的。如果光学叠加器包括多层超表面层,不同层的超表面层可以激发不同的电场模式。
本发明实施例中,光学叠加器采用特殊结构设计(“Λ”字形或“V”字形排列)的超表面层,对承载虚拟图像的光信号进行全反射,还可以提高光学叠加器对环境光的透过率,从 而提高图像的均匀度。
超表面层除了具有窄线宽波段高反射率的特性,还可以使入射光的出射角度随着不同的区域而改变。图6为本发明实施例提供的一种光学叠加器的逻辑结构示意图。如图6所示,光学叠加器需要对不同角度入射的光线汇聚到一处(人眼处),因此,光学叠加器可以划分成多个区域来实现不同区域上的角度控制。例如,光学叠加器包括MSa(Metasurface a),MSb,…,MSm多个不同的区域。每个区域对应不同的出射角。出射角可以是光学引擎发出的光线的出射角,也可以是环境光的出射角。每个区域可以包括多个超表面单元,同一个超表面单元可以从属于多个区域,也可以只属于一个区域。不同的区域可以是逻辑上的划分,在物理上可以没有明确的界限。
超表面层上光线出射角的控制可以通过改变超表面单元的间距来实现。图7a-j为本发明实施例提供的光学叠加器的八种设计示意图。图7a-g给出了x-y平面内的五种变化规律。如图7a所示,在水平方向上(x方向),相邻两个超表面单元的间距从左到右逐渐增大。如图7b所示,在水平方向上(x方向),相邻两个超表面单元的间距从右到左逐渐增大。如图7c所示,在水平方向上(x方向),相邻两个超表面单元的间距从中间向两边逐渐增大;在垂直方向上(y方向),相邻两个超表面单元的间距从中间向两边逐渐增大。如图7d所示,在垂直方向上(y方向),相邻两个超表面单元的间距从下到上逐渐增大。如图7e所示,在垂直方向上(y方向),相邻两个超表面单元的间距从上到下逐渐增大。如图7f所示,水平方向上(x方向)相邻两个超表面单元构成一个超表面单元对,相邻两个超表面单元对的距离可以周期性地变化,例如,按照间距d1、d2、d3周期性变化。通过相邻两个超表面单元对的距离变化可以调节入射光在z-x平面的散射角度。如图7g所示,垂直方向上(y方向)相邻多个超表面单元构成一个超表面单元区,相邻两个超表面单元区的距离变化可以周期性地变化,例如,按照间距d1、d2周期性变化。通过相邻两个超表面单元区的距离变化可以调节入射光在z-y平面的散射角度。图7h-j给出了x-z平面内的三种变化规律。如图7h所示,在水平方向上(x方向),相邻两个超表面单元的间距从左到右逐渐增大,不同角度入射的光线的汇聚点靠近光学叠加器的左侧。如图7i所示,在水平方向上(x方向),相邻两个超表面单元的间距从右到左逐渐增大,不同角度入射的光线的汇聚点靠近光学叠加器的右侧。如图7j所示,在水平方向上(x方向),相邻两个超表面单元的间距从中间向两边逐渐增大,不同角度入射的光线的汇聚点接近光学叠加器的中间。图7a-j的例子中,超表面单元的间距的变化可以是线性的,也可以是非线性的,变化规律可以根据光线的汇聚点来设置。
超表面层上光线出射角的控制可以通过改变超表面单元的旋转角度或者超表面单元的面积来实现。图8a-i为本发明实施例提供的光学叠加器的九种设计示意图。图8a-f给出了x-y平面内的六种变化规律。如图8a所示,在水平方向上(x方向),超表面单元相对于垂直方向(y方向)的旋转角度从左到右逐渐增大。如图8b所示,在水平方向上(x方向),超表面单元相对于垂直方向(y方向)的旋转角度从两边向中间逐渐增大。如图8c所示,在水平方向上(x方向),超表面单元相对于垂直方向(y方向)的旋转角度从右到左逐渐增大。如图8d所以,在水平方向上(x方向),超表面单元的面积从左到右逐渐增大。如图8e所示,在水平方向上(x方向),超表面单元的面积从两边向中间逐渐增大。如图8f所示,在水平方向上(x方向),超表面单元的面积从右到左逐渐增大。图8g-i给出了x-z平面内的三种变化规律。图8g可以是图a或d在x-z平面上的视图,不同角度入射的光线的汇聚点靠近光学叠加器的右侧。图8h可以是图8b或8e在x-z平面上的视图,不同角度入射的光线的汇聚点靠近光 学叠加器的中心。图8i可以是图8c或8f在x-z平面上的视图,不同角度入射的光线的汇聚点靠近光学叠加器的左侧。可见,不同角度入射的光线的汇聚点靠近超表面单元旋转角度较大或超表面单元面积较大的位置。图8a-i的例子中,超表面单元的旋转角度或面积的变化可以是线性的,也可以是非线性的,变化规律可以根据光线的汇聚点来设置。
超表面层上光线出射角的控制可以通过超表面层的多层材料来实现。图9为本发明实施例提供的光学叠加器的设计示意图。如图9所示,在垂直方向上(z方向),超表面层可以包括多层折射率不同的材料,例如,三层折射率分别为n1、n2、n3的材料。当然,超表面层还可以包括一层、两层或三层以上折射率不同的材料,可以根据光线的汇聚点来设置材料的层数以及相应的折射率。
本发明实施例中,通过改变超表面单元的间距、旋转角度、面积、超表面层材料的折射率等一种或多种条件,可以调节光线的出射角度,从而实现大视场角。
超表面层上光线出射角的控制可以是静态配置的(即出厂时设置好),也可以是动态可调的。图10a-c为本发明实施例提供的光学叠加器的设计示意图。如图10a-c所示,超表面单元可以设置在透明导电层上,透明导电层的材料可以采用氧化铟锡或掺锡氧化铟(ITO)、PEDOT(PSS或聚苯乙烯磺酸盐是两种离聚物的聚合物混合物)、银纳米线、碳纳米管、石墨烯等透明材料。透明导电层可以是微机电系统(Micro-Electro-Mechanical System,MEMS)。透明导电层可以划分为多个区域,例如三个区域1001、1002、1003,通过调制电压可以控制透明导电层的一个或多个区域旋转到不同的方向。例如,如图10a所示,在初始状态时,光线的汇聚点在靠近光学叠加器的中心。如图10b所示,调整第一个区域1001和第二个区域1002旋转角度,改变光线的出射角度,使得光线的汇聚点靠近光学叠加器的右侧。如图10c所示,调整第一个区域1001和第三个区域1003的旋转角度,改变光线的出射角度,使得光线平行出射。通过对透明导电层进行角度调整,可以动态调整光线的出射角度,还可以实现景深、焦距的动态调整。
除了通过透明导电层对光线的出射角度进行动态调整,还可以在超表面层上覆盖一层折射率调控层对光线的出射角度进行动态调整。图11a-c为本发明实施例提供的一种光学叠加器的设计示意图。如图11a-c所示,超表面层1101上可以覆盖一层折射率调控层1102。折射率调控层1102可以采用液晶(如铁电液晶)、铟锡氧化物、铌酸锂等材料实现。折射率调控层1102划分为多个区域,可以在折射率调控层1102加载电压使得不同的区域具有不同的折射率,从而改变光线的出射角度。例如,如图11b所示,折射率调控层1102划分为三个区域,加载的电压值分别为3V、1V、-3V,光线的汇聚点靠近光学叠加器的中心。如图11c所示,折射率调控层1102划分为三个区域,加载的电压值的分别为5V、3V、1V,光线的汇聚点靠近光学叠加器的右侧。通过对折射率调控层加载电压,可以改变折射率调控层的局部或全部区域的折射率,从而实现光线出射角的动态调整,还可以实现景深、焦距的动态调整。
本发明实施例中,通过透明导电层或折射率调控层等动态可调元件,可以对光线的出射角度进行动态调整,还可以对景深、焦距等参数进行动态调整,使得虚拟图像的画面更逼真。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以程序产品的形式实现。所述程序产品包括一个或多个指令。在光学叠加器上加载和执行所述程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述指令可以存储在可读存储介质中,或者从一个设备的可读存储介质向另一个设备的可读存储介质传输。所述可读存储介质可以是光收发机机能够存取的任何可用 介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种光学叠加器,其特征在于,所述光学叠加器包括透明衬底和超表面层,所述超表面层设置于所述透明衬底的表面,所述超表面层包括二维排列的多个超表面单元;其中,多个超表面单元中相邻的两个超表面单元之间的间隔沿着一个或两个维度逐渐变化,且任意相邻的两个超表面单元之间的相对角度不为零。
  2. 如权利要求1所述的光学叠加器,其特征在于,所述超表面层包括多个区域,不同区域对应的光信号的出射角度不同,使得不同角度出射的光信号汇聚到一点。
  3. 如权利要求1或2所述的光学叠加器,其特征在于,所述超表面层用于对窄线宽波段的光信号进行反射,对宽线宽波段的光信号进行透射,其中,所述窄线宽波段的光信号包括至少三种波长。
  4. 如权利要求1-3任一所述的光学叠加器,其特征在于,所述相邻的两个超表面单元之间的间隔沿着一个或两个维度逐渐增大或逐渐减小。
  5. 如权利要求1-4任一所述的光学叠加器,其特征在于,所述相邻的两个超表面单元之间的相对角度沿着一个或两个维度逐渐变化。
  6. 如权利要求1-5任一所述的光学叠加器,其特征在于,所述超表面单元的面积沿着一个或两个维度逐渐变化。
  7. 如权利要求1-6任一所述的光学叠加器,其特征在于,所述超表面单元的长、宽、高中的一个或多个的尺寸小于或等于所述超表面单元的工作波长。
  8. 如权利要求1-7任一所述的光学叠加器,其特征在于,所述相邻的两个超表面单元之间具有不同的高度。
  9. 如权利要求1-8任一所述的光学叠加器,其特征在于,所述超表面层包括至少两层折射率不同的材料。
  10. 如权利要求1-9任一所述的光学叠加器,其特征在于,所述光学叠加器还包括透明导电层,所述超表面层设置在所述透明导电层上,所述透明导电层用于控制所述超表面层上光信号的反射角度。
  11. 如权利要求1-10任一所述的光学叠加器,其特征在于,所述超表面层上面覆盖一层折射率调控层,所述折射率调控层用于调节所述超表面层的折射率,从而控制所述超表面层上光信号的反射角度。
  12. 一种增强现实AR设备,其特征在于,所述AR设备包括如权利要求1-11任一所述的光学叠加器、至少一个投影光机和固定装置,所述固定装置用于固定所述光学叠加器和所述至少一个投影光机,所述光学叠加器用于对所述至少一个投影光机产生的窄线宽波段的光信号进行反射,对宽线宽波段的光信号进行投射,所述窄线宽波段的光信号包括至少三种波长。
  13. 一种增加现实AR设备,其特征在于,所述AR设备包括如权利要1-11任一所述的 光学叠加器和至少一个投影光机,所述光学叠加器用于对所述至少一个投影光机产生的窄线宽波段的光信号进行反射,对宽线宽波段的光信号进行投射,所述窄线宽波段的光信号包括至少三种波长。
PCT/CN2020/100827 2019-08-29 2020-07-08 一种增强现实的光学叠加器和相关设备 WO2021036525A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20857463.2A EP4020056A4 (en) 2019-08-29 2020-07-08 AUGMENTED REALITY OPTICAL COMBINATOR AND RELATED DEVICE
US17/682,159 US20220179222A1 (en) 2019-08-29 2022-02-28 Optical combiner and related device for augmented reality

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910810425.1 2019-08-29
CN201910810425.1A CN112444968B (zh) 2019-08-29 2019-08-29 一种增强现实的光学叠加器和相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/682,159 Continuation US20220179222A1 (en) 2019-08-29 2022-02-28 Optical combiner and related device for augmented reality

Publications (1)

Publication Number Publication Date
WO2021036525A1 true WO2021036525A1 (zh) 2021-03-04

Family

ID=74685637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100827 WO2021036525A1 (zh) 2019-08-29 2020-07-08 一种增强现实的光学叠加器和相关设备

Country Status (4)

Country Link
US (1) US20220179222A1 (zh)
EP (1) EP4020056A4 (zh)
CN (1) CN112444968B (zh)
WO (1) WO2021036525A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023018554A1 (en) * 2021-08-13 2023-02-16 Applied Materials, Inc. Full-field metrology tool for waveguide combiners and meta-surfaces
EP4206790A1 (en) * 2021-12-30 2023-07-05 3M Innovative Properties Company Optical devices with zone folded metasurfaces
TWI829489B (zh) * 2021-12-29 2024-01-11 進康醫電股份有限公司 光感測裝置
US12019242B2 (en) 2022-07-28 2024-06-25 Applied Materials, Inc. Full-field metrology tool for waveguide combiners and meta-surfaces

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210042217A (ko) * 2019-10-08 2021-04-19 삼성전자주식회사 평판형 광결합기를 포함하는 증강 현실 장치 및 이를 포함하는 전자 장치
KR20220021952A (ko) * 2020-08-13 2022-02-23 삼성디스플레이 주식회사 가상 영상 표시 장치
CN113934004B (zh) * 2021-10-26 2023-06-09 深圳迈塔兰斯科技有限公司 一种图像生成装置、抬头显示器及交通工具
CN113934005B (zh) * 2021-10-26 2023-06-13 深圳迈塔兰斯科技有限公司 一种中继转向器、显示装置及近眼显示系统
CN114200571B (zh) * 2022-02-15 2022-07-26 北京亮亮视野科技有限公司 具有两种超表面光栅的光波导和头戴式设备
CN114609787A (zh) * 2022-04-19 2022-06-10 电子科技大学 一种消除彩虹纹的ar眼镜镜片、制作方法及ar眼镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676314A (zh) * 2016-03-31 2016-06-15 中国科学院光电技术研究所 一种多光谱位相型超表面器件
CN108227072A (zh) * 2017-12-15 2018-06-29 北京理工大学 一种扩大出瞳紧凑型纳米结构波导显示方法及系统
CN109188688A (zh) * 2018-11-14 2019-01-11 上海交通大学 基于衍射光元件的近眼显示装置
US20190033683A1 (en) * 2017-12-18 2019-01-31 Intel Corporation Broadband flat optical elements and methods of manufacture
CN110133758A (zh) * 2019-03-29 2019-08-16 中山大学 一种实现多维光操控图像变换的超表面结构设计方法
CN110161678A (zh) * 2019-04-18 2019-08-23 深圳市麓邦技术有限公司 光束扫描器及其扫描方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170047499A1 (en) * 2013-04-07 2017-02-16 The Regents Of The University Of Colorado A Body Corporate Phononic Metamaterials
WO2015187221A2 (en) * 2014-03-06 2015-12-10 California Institute Of Technology Systems and methods for implementing electrically tunable metasurfaces
US20170125911A1 (en) * 2014-06-17 2017-05-04 Board Of Regents, The University Of Texas System Parity-time symmetric metasurfaces and metamaterials
CN104570352B (zh) * 2015-01-06 2018-03-09 华为技术有限公司 一种近眼显示器
US10514296B2 (en) * 2015-07-29 2019-12-24 Samsung Electronics Co., Ltd. Spectrometer including metasurface
WO2017091845A1 (en) * 2015-12-01 2017-06-08 Macquarie University A directional antenna with a variable beam direction
EP3205512B1 (en) * 2016-02-09 2018-06-13 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Optical security device
WO2018009258A2 (en) * 2016-04-08 2018-01-11 President And Fellows Of Harvard College Super-dispersive off-axis meta-lenses for high resolution compact spectroscopy
WO2018052750A1 (en) * 2016-09-15 2018-03-22 Magna International Inc. Metasurface lens assembly for chromatic separation
US10838110B2 (en) * 2017-03-03 2020-11-17 Microsoft Technology Licensing, Llc Metasurface optical coupling elements for a display waveguide
CN107045246B (zh) * 2017-03-06 2019-04-30 东南大学 一种可见光波段反射式超表面器件及反射光波长调制方法
US10802301B2 (en) * 2017-09-08 2020-10-13 California Institute Of Technology Active metasurfaces for dynamic polarization conversion
WO2019119101A1 (en) * 2017-12-21 2019-06-27 Macinnis Brent Eyewear and methods for making eyewear
US10333217B1 (en) * 2018-01-12 2019-06-25 Pivotal Commware, Inc. Composite beam forming with multiple instances of holographic metasurface antennas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676314A (zh) * 2016-03-31 2016-06-15 中国科学院光电技术研究所 一种多光谱位相型超表面器件
CN108227072A (zh) * 2017-12-15 2018-06-29 北京理工大学 一种扩大出瞳紧凑型纳米结构波导显示方法及系统
US20190033683A1 (en) * 2017-12-18 2019-01-31 Intel Corporation Broadband flat optical elements and methods of manufacture
CN109188688A (zh) * 2018-11-14 2019-01-11 上海交通大学 基于衍射光元件的近眼显示装置
CN110133758A (zh) * 2019-03-29 2019-08-16 中山大学 一种实现多维光操控图像变换的超表面结构设计方法
CN110161678A (zh) * 2019-04-18 2019-08-23 深圳市麓邦技术有限公司 光束扫描器及其扫描方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4020056A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023018554A1 (en) * 2021-08-13 2023-02-16 Applied Materials, Inc. Full-field metrology tool for waveguide combiners and meta-surfaces
TWI829489B (zh) * 2021-12-29 2024-01-11 進康醫電股份有限公司 光感測裝置
EP4206790A1 (en) * 2021-12-30 2023-07-05 3M Innovative Properties Company Optical devices with zone folded metasurfaces
US12019242B2 (en) 2022-07-28 2024-06-25 Applied Materials, Inc. Full-field metrology tool for waveguide combiners and meta-surfaces

Also Published As

Publication number Publication date
CN112444968B (zh) 2022-04-22
CN112444968A (zh) 2021-03-05
EP4020056A1 (en) 2022-06-29
US20220179222A1 (en) 2022-06-09
EP4020056A4 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2021036525A1 (zh) 一种增强现实的光学叠加器和相关设备
CN111051938B (zh) 具有体相位光栅的显示器
JP6851992B2 (ja) 多重化された光流を内部結合するための光学要素を有するディスプレイシステム
JP6740366B2 (ja) ヘッドマウント結像装置
KR102618440B1 (ko) 광 확장 커플러들을 갖는 광학 시스템들
JP6391952B2 (ja) 表示装置及び光学装置
JP2022539970A (ja) 視野貼り合わせ導波路ディスプレイ
KR101506587B1 (ko) 액정 적응 광학을 사용하여 오토 포커스를 행하기 위한 방법 및 장치
KR20190084099A (ko) 나노-스케일 패턴을 갖는 액정 회절 디바이스들 및 이를 제조하는 방법들
JP7063328B2 (ja) 光学装置、画像表示装置及び表示装置
JP2021532392A (ja) ヘッドマウントディスプレイにおける切り替え可能な反射型円偏光子
JPWO2016084831A1 (ja) 光学装置及び表示装置
JP7268674B2 (ja) 光学装置、画像表示装置及び表示装置
JP2015184560A (ja) 導光装置、画像表示装置及び表示装置
CN110582717B (zh) 显示器照明系统
WO2020149053A1 (ja) 光学装置、画像表示装置及び表示装置
US11099386B1 (en) Display device with optical combiner
US20240085740A1 (en) Display backplanes with integrated electronics, photonics and color conversion
US20230333380A1 (en) Pbp micro-lens for micro-oled beam tuning
WO2024059053A1 (en) Display backplanes with integrated electronics, photonics and color conversion components
TW202235961A (zh) 波導顯示器中的光重定向特徵
WO2023034967A1 (en) Head worn augmented reality displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020857463

Country of ref document: EP

Effective date: 20220322