WO2021036457A1 - 功率模块过热保护方法、计算机装置以及计算机可读存储介质 - Google Patents

功率模块过热保护方法、计算机装置以及计算机可读存储介质 Download PDF

Info

Publication number
WO2021036457A1
WO2021036457A1 PCT/CN2020/098028 CN2020098028W WO2021036457A1 WO 2021036457 A1 WO2021036457 A1 WO 2021036457A1 CN 2020098028 W CN2020098028 W CN 2020098028W WO 2021036457 A1 WO2021036457 A1 WO 2021036457A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
current
motor
power module
run
Prior art date
Application number
PCT/CN2020/098028
Other languages
English (en)
French (fr)
Inventor
陈兰兰
全威
王科
吴文贤
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021036457A1 publication Critical patent/WO2021036457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • H02H7/0844Fail safe control, e.g. by comparing control signal and controlled current, isolating motor on commutation error
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers

Definitions

  • the present application relates to the field of motor technology, in particular, to a power module overheating protection method, a computer device applying the power module overheating protection method, and a computer readable storage medium applying the power module overheating protection method.
  • IPM Intelligent Power Module
  • the first objective of the present application is to provide a power module overheating protection method that improves the reliability of power module overheating protection.
  • the second objective of the present application is to provide a computer device that improves the reliability of the power module overheating protection.
  • the third objective of the present application is to provide a computer-readable storage medium that improves the reliability of power module overheat protection.
  • the power module overheating protection method provided in the present application includes: obtaining the current temperature of the power module; and limiting the current of the motor or limiting the operating frequency of the motor according to the temperature range in which the current temperature is located.
  • the power module overheating protection method of the present application detects the current temperature of the power module, and can limit the current of the motor or limit the operating frequency of the motor according to the temperature range in which the current temperature is located. Since the motor current and the working frequency of the motor are the factors that affect the temperature of the power module, by controlling the motor current and the working frequency of the motor, it can prevent the protection from being delayed when the temperature rises quickly, eliminate the hidden danger of power module damage, and improve The reliability of the power module overheating protection improves the user experience.
  • the step of limiting the current of the motor or limiting the operating frequency of the motor according to the temperature range in which the current temperature is located includes: judging whether the current temperature is less than the lower threshold of the first temperature range, and if so, controlling the motor to Run with a preset current value; determine whether the current temperature is in the first temperature range, if so, control the motor to run at the first current limit value, where the first current limit value is less than the preset current value; determine whether the current temperature is in the second temperature range If yes, control the motor to run at the second current limit value, where the second current limit value is less than the first current limit value; determine whether the current temperature is greater than the upper limit threshold of the second temperature interval, and if so, control the motor to stop running.
  • the motor runs normally according to the preset current value. If the current temperature exceeds the protection threshold, continue to determine which temperature range the current temperature is in, and then execute different currents according to different temperature ranges Limits. Among them, the temperature is rising from the first temperature range to the second temperature range. If the temperature exceeds the second temperature range, it is considered that the internal IGBT junction temperature of the power module is close to the limit temperature, and the shutdown protection is executed at this time, thereby reducing the power module's Repeated stop and start improves the reliability of power module overheat protection.
  • the method further includes: determining whether the current temperature reaches the first recovery temperature threshold, and if so, controlling the motor to run at the preset current value.
  • the method further includes: judging whether the current temperature reaches the second recovery temperature threshold, and if so, controlling the motor to run at the first current limit value.
  • the step of limiting the current of the motor or limiting the operating frequency of the motor according to the temperature range in which the current temperature is located includes: judging whether the current temperature is less than the lower threshold of the first temperature range, and if so, controlling the motor to Run at the preset operating frequency; determine whether the current temperature is in the first temperature range, if so, control the motor to run at the first frequency limit value, where the first frequency limit value is less than the preset operating frequency; determine whether the current temperature is in the second temperature range If yes, control the motor to run at the second frequency limit value, where the second frequency limit value is less than the first frequency limit value; determine whether the current temperature is greater than the upper threshold of the second temperature interval, and if yes, control the motor to stop running.
  • the motor runs according to the preset operating frequency. If the current temperature exceeds the protection threshold, it continues to determine which temperature range the current temperature is in, and then performs different operations on the motor according to different temperature ranges. The operating frequency is limited. The temperature rises from the first temperature range to the second temperature range. If the temperature exceeds the second temperature range, it is considered that the internal IGBT junction temperature of the power module is close to the limit temperature, and the shutdown protection is executed at this time, thereby reducing the power module The repeated stop and start of the power module improves the reliability of the power module overheating protection.
  • the method further includes: judging whether the current temperature reaches the first recovery temperature threshold, and if so, controlling the motor to run at a preset operating frequency.
  • the method further includes: judging whether the current temperature reaches the second recovery temperature threshold, and if so, controlling the motor to run at the first limit frequency value.
  • the step of obtaining the current temperature of the power module includes: obtaining the current voltage of the thermistor detecting the temperature of the power module, and obtaining the current temperature according to the current voltage.
  • the temperature difference curve between the thermistor and the case temperature of the power module can be established to obtain the current temperature, which is convenient for detecting the temperature of the power module.
  • the present application provides a computer device including a processor and a memory, the memory stores a computer program, and the computer program is executed by the processor to implement the steps of the power module overheating protection method described above.
  • the computer-readable storage medium provided by the present application has a computer program stored thereon, and when the computer program is executed by a controller, the steps of the above-mentioned power module overheat protection method are implemented.
  • Fig. 1 is a flowchart of an embodiment of a power module overheating protection method according to the present application.
  • Fig. 2 is a flowchart of the steps of limiting the motor current in the embodiment of the power module overheating protection method of the present application.
  • FIG. 3 is a flowchart of the steps of limiting the operating frequency of the motor in the embodiment of the power module overheating protection method of the present application.
  • the power module overheating protection method of the present application is an application program applied to a motor to realize temperature control of the power module.
  • the present application also provides a computer device, which includes a controller, and the controller is used to implement the steps of the power module overheating protection method when executing the computer program stored in the memory.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a controller, the steps of the above-mentioned power module overheating protection method are realized.
  • the power module overheating protection method of the present application is an application program applied to a motor to realize temperature control of the power module.
  • step S1 is first performed to obtain the current temperature of the power module.
  • the current temperature of the power module needs to be acquired.
  • the step of obtaining the current temperature of the power module includes: obtaining the current voltage of the thermistor detecting the temperature of the power module, and obtaining the current temperature according to the current voltage. Due to the differences in the setting positions of different controllers on the circuit board, it is necessary to determine the temperature difference curve between the thermistor temperature and the power module temperature through testing before parameter setting. In each control cycle of the motor operation, the voltage across the thermistor is collected. The thermistor voltage reflects the temperature of the thermistor, and then according to the temperature difference curve between the thermistor temperature and the temperature of the power module The current temperature of the power module can be estimated.
  • step S2 is executed to limit the current of the motor or limit the operating frequency of the motor according to the temperature interval in which the current temperature is located. Since the motor current and the working frequency of the motor are the factors that affect the temperature of the power module, by controlling the motor current and the working frequency of the motor, it can prevent the protection from being delayed when the temperature rises quickly, eliminate the hidden danger of damage to the power module, and improve the power module Reliability of overheating protection.
  • step S11 is first executed to determine whether the current temperature is less than the lower limit threshold of the first temperature interval.
  • the current temperature of the power module will be sampled. After the current temperature of the power module is obtained, it is necessary to determine whether the temperature is greater than the set protection threshold.
  • the temperature is controlled. Among them, the first temperature range can be obtained according to experimental data.
  • step S12 is executed to control the motor to run at the preset current value.
  • the current temperature is less than the lower threshold value of the first temperature interval, indicating that the temperature of the power module is still at the normal operating temperature, and the motor can be controlled to run at a preset current value, which is the current value when the motor is working normally.
  • step S13 is executed to determine whether the current temperature is in the first temperature interval. When the current temperature does not meet the condition of being less than the lower limit threshold of the first temperature interval, it means that the temperature of the power module has exceeded the normal operating temperature, and cooling control is required. If the current temperature is in the first temperature interval, step S14 is executed to control the motor to run at the first current limit value. Wherein, the first current limit value is less than the preset current value. When the current temperature is in the first temperature range, controlling the operation of the motor with the first current limit value less than the preset current value can reduce the heat generation of the power module, thereby delaying the temperature rise of the power module.
  • step S15 is executed to determine whether the current temperature reaches the first recovery temperature threshold.
  • the first recovery temperature threshold can be obtained according to experimental data, that is, the first recovery temperature threshold is a preset temperature value.
  • the power module cools down due to the decrease in the current value.
  • the current temperature does not reach the first recovery temperature threshold, it is necessary to continue to perform step S13 to determine whether the current temperature is in the first temperature interval.
  • Step S12 is executed to control the motor to run at the preset current value.
  • step S16 is executed to determine whether the current temperature is within the second temperature interval.
  • the current temperature does not fall into the first temperature range, it means that the temperature of the power module is not controlled after the motor is controlled to run at the first current limit value, and the temperature of the power module has further increased, and further control is required at this time.
  • step S17 is executed to control the motor to run at the second current limit value.
  • the second current limit value is less than the first current limit value. Controlling the motor to run at a second current limit value that is less than the first current limit value can further reduce the heat generation of the power module, thereby further delaying the temperature rise of the power module.
  • step S18 is executed to determine whether the current temperature reaches the second recovery temperature threshold.
  • the second recovery temperature threshold can be obtained according to experimental data, that is, the second recovery temperature threshold is a preset temperature value.
  • the power module will be cooled to improve the working performance of the motor, and it is necessary to determine whether the current temperature reaches the second recovery temperature threshold.
  • the current temperature does not reach the second recovery temperature threshold, it is necessary to continue to perform step S16 to determine whether the current temperature is in the second temperature range.
  • the current temperature reaches the second recovery temperature threshold it means that the temperature of the power module is controlled and the working power of the motor can be further increased.
  • Step S14 is executed to control the motor to run at the first current limit value.
  • step S19 is executed to determine whether the current temperature is greater than the upper threshold of the second temperature interval.
  • the current temperature does not fall into the second temperature range, it means that the temperature of the power module is not controlled after the motor is controlled to run at the second current limit value, and the temperature of the power module has further increased. At this time, it is necessary to further determine whether the current temperature is greater than the upper threshold of the second temperature interval to prevent detection failure.
  • step S20 is executed to control the motor to stop running.
  • step S21 is first executed to determine whether the current temperature is less than the lower limit threshold of the first temperature interval.
  • the current temperature of the power module will be sampled. After the current temperature of the power module is obtained, it is necessary to determine whether the temperature is greater than the set protection threshold.
  • the temperature is controlled. Among them, the first temperature range can be obtained according to experimental data.
  • step S22 is executed to control the motor to run at the preset operating frequency.
  • the current temperature is less than the first temperature range, indicating that the temperature of the power module is still at the normal operating temperature, and the motor can be controlled to run at a preset operating frequency, which is the operating frequency of the motor during normal operation.
  • step S23 is executed to determine whether the current temperature is in the first temperature interval. When the current temperature does not meet the condition of being less than the lower limit threshold of the first temperature interval, it means that the temperature of the power module has exceeded the normal operating temperature, and cooling control is required. If the current temperature is in the first temperature interval, step S24 is executed to control the motor to run at the first limit frequency value. Wherein, the first frequency limit value is less than the preset operating frequency. When the current temperature is in the first temperature range, controlling the operation of the motor with a first frequency limit value less than the preset operating frequency can reduce the heat generation of the power module, thereby delaying the temperature rise of the power module.
  • step S25 is executed to determine whether the current temperature reaches the first recovery temperature threshold.
  • the first recovery temperature threshold can be obtained according to experimental data, that is, the first recovery temperature threshold is a preset temperature value. In the process of controlling the motor to run at the first limit frequency value, the temperature of the power module will be lowered. In order to keep the power module in a normal working state and improve the working performance of the motor, it is necessary to determine whether the current temperature reaches the first recovery temperature threshold. When the current temperature does not reach the first recovery temperature threshold, it is necessary to continue to perform step S23 to determine whether the current temperature is in the first temperature interval. When the current temperature reaches the first recovery temperature threshold, it means that the temperature of the power module is controlled and normal operation can be resumed. Step S22 is executed to control the motor to run at the preset operating frequency.
  • step S26 is executed to determine whether the current temperature is within the second temperature interval.
  • the current temperature does not fall into the first temperature range, it means that the temperature of the power module is not controlled after the motor is controlled to run at the first frequency limit value, and the temperature of the power module has further increased, and further control is required at this time.
  • step S27 is executed to control the motor to run at the second limit frequency value.
  • the second frequency limit value is smaller than the first frequency limit value. Controlling the motor to run at a second frequency limit value that is less than the first frequency limit value can further reduce the heat generation of the power module, thereby further delaying the temperature rise of the power module.
  • step S28 is executed to determine whether the current temperature reaches the second recovery temperature threshold.
  • the second recovery temperature threshold can be obtained according to experimental data, that is, the second recovery temperature threshold is a preset temperature value.
  • the power module will be cooled to improve the working performance of the motor. At this time, it is necessary to determine whether the current temperature reaches the second recovery temperature threshold.
  • step S26 needs to be continued to determine whether the current temperature is in the second temperature range.
  • the current temperature reaches the second recovery temperature threshold it means that the temperature of the power module is controlled, and the working power of the motor can be further increased.
  • Step S24 is executed to control the motor to run at the first frequency limit value.
  • step S29 is executed to determine whether the current temperature is greater than the upper threshold of the second temperature interval.
  • the current temperature does not fall into the second temperature range, it means that the temperature of the power module is not controlled after the motor is controlled to run at the second limit frequency value, and the temperature of the power module has further increased. At this time, it is necessary to further determine whether the current temperature is greater than the upper threshold of the second temperature interval to prevent detection failure.
  • step S30 is executed to control the motor to stop running.
  • the temperature is individually controlled by limiting the current of the motor or limiting the operating frequency of the motor.
  • the method of limiting the current of the motor and limiting the operating frequency of the motor can be combined to control the temperature, making the control more diversified.
  • the computer device of this embodiment includes a controller, and the controller implements the steps in the embodiment of the power module overheating protection method when the controller executes the computer program.
  • the computer program may be divided into one or more modules, and the one or more modules are stored in the memory and executed by the controller to complete the application.
  • One or more modules may be a series of computer program instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the computer program in the computer device.
  • the computer device may include, but is not limited to, a controller and a memory. Those skilled in the art can understand that the computer device may include more or fewer components, or some components may be combined, or different components. For example, the computer device may also include input and output devices, network access devices, buses, and the like.
  • the controller can be a central processing unit (Central Processing Unit, CPU), other general-purpose controllers, digital signal controllers (Digital Signal Processor, DSP), application specific integrated circuits (ASIC), off-the-shelf Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general controller can be a microcontroller or the controller can also be any conventional controller or the like.
  • the controller is the control center of the computer device, using various interfaces and lines to connect the various parts of the entire computer device.
  • the memory may be used to store computer programs and/or modules, and the controller implements various functions of the computer device by running or executing the computer programs and/or modules stored in the memory and calling data stored in the memory.
  • the memory may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, an application program required by at least one function (such as a sound receiving function, a sound conversion function, etc.), etc.; a data storage area Data (such as audio data, text data, etc.) created according to the use of the mobile phone can be stored.
  • the memory can include high-speed random access memory, and can also include non-volatile memory, such as hard disks, memory, plug-in hard disks, smart media cards (SMC), and secure digital (SD) cards.
  • non-volatile memory such as hard disks, memory, plug-in hard disks, smart media cards (SMC), and secure digital (SD) cards.
  • Flash Card at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the integrated modules of the computer device in the above embodiments are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • all or part of the processes in the above-mentioned power module overheating protection method embodiments can also be implemented by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium.
  • the computer program When executed by the controller, the steps of the above-mentioned power module overheating protection method embodiment can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the storage medium may include: any entity or device capable of carrying computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), electric carrier signal, telecommunications signal, and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electric carrier signal telecommunications signal
  • software distribution media etc.
  • the power module overheating protection method of the present application detects the current temperature of the power module, and can limit the current of the motor or limit the working frequency of the motor according to the temperature range in which the current temperature is located. Since the motor current and the working frequency of the motor are the factors that affect the temperature of the power module, by controlling the motor current and the working frequency of the motor, it can prevent the protection from being delayed when the temperature rises quickly, eliminate the hidden danger of power module damage, and improve The reliability of the power module overheating protection improves the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

一种功率模块过热保护方法、计算机装置以及计算机可读存储介质,该功率模块过热保护方法包括:获取功率模块的当前温度(S1);根据当前温度所处的温度区间对电机电流进行限流或者对电机的工作频率进行限频(S2)。该计算机装置包括控制器,控制器用于执行存储器中存储的计算机程序时实现上述的功率模块过热保护方法。该计算机可读存储介质,其上存储有计算机程序,计算机程序被控制器执行时实现上述的功率模块过热保护方法。应用该功率模块过热保护方法可提高功率模块过热保护可靠性。

Description

功率模块过热保护方法、计算机装置以及计算机可读存储介质
相关申请
本申请要求2019年08月30日申请的,申请号为201910817478.6,名称为“功率模块过热保护方法、计算机装置以及计算机可读存储介质”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电机技术领域,具体的,涉及一种功率模块过热保护方法,还涉及应用该功率模块过热保护方法的计算机装置,还涉及应用该功率模块过热保护方法的计算机可读存储介质。
背景技术
IPM(Intelligent Power Module,即智能功率模块)是永磁同步电机驱动中的关键性元器件,其工作原理是通过控制其内部的6个IGBT的开通或关断来控制电机的运行状态,由于IGBT的开通、关断瞬间及导通状态均存在损耗,而控制频率通常都能达到10K以上,因此IPM通常是电机驱动中发热最严重的元器件。通常情况下,IPM内部自带过热保护,当其检测到自身温度超过设定值时,会强制关断6路IGBT的控制信号,电机停止运行,但停机给用户的体验不好,且如果出现温度急剧上升的情况,IPM自身的过热保护可能会不及时,而导致IPM烧毁。
发明内容
本申请的第一目的是提供一种提高功率模块过热保护可靠性的功率模块过热保护方法。
本申请的第二目的是提供一种提高功率模块过热保护可靠性的计算机装置。
本申请的第三目的是提供一种提高功率模块过热保护可靠性的计算机可读存储介质。
为了实现上述第一目的,本申请提供的功率模块过热保护方法包括:获取功率模块的当前温度;根据当前温度所处的温度区间对电机电流进行限流或者对电机的工作频率进行限频。
由上述方案可见,本申请的功率模块过热保护方法通过检测功率模块的当前温度,可 根据当前温度所处的温度区间对电机电流进行限流或者对电机的工作频率进行限频。由于电机电流和电机的工作频率是影响功率模块温度的因素,通过对电机电流和电机的工作频率进行控制,可防止温度上升较快时可能保护不及时,消除了功率模块损坏的隐患,提高了功率模块过热保护的可靠性,改善了用户体验。
进一步的方案中,根据当前温度所处的温度区间对电机电流进行限流或者对电机的工作频率进行限频的步骤包括:判断当前温度是否小于第一温度区间的下限阈值,若是,控制电机以预设电流值运行;判断当前温度是否处于第一温度区间,若是,控制电机以第一限流值运行,其中,第一限流值小于预设电流值;判断当前温度是否处于第二温度区间,若是,控制电机以第二限流值运行,其中,第二限流值小于第一限流值;判断当前温度是否大于第二温度区间的上限阈值,若是,控制电机停止运行。
由此可见,在当前温度未达到保护阈值时,电机按照预设电流值正常运行,如果当前温度超过保护阈值,则继续判断当前温度处于哪一温度区间,然后根据不同的温度区间执行不同的电流限制,其中第一温度区间到第二温度区间,温度呈上升趋势,超过第二温度区间,则认为功率模块内部IGBT结温已接近极限温度,此时才执行停机保护,从而减少了功率模块的反复停启,提高了功率模块过热保护的可靠性。
进一步的方案中,在控制电机以第一限流值运行的步骤后,方法还包括:判断当前温度是否达到第一恢复温度阈值,若是,控制电机以预设电流值运行。
由此可见,在控制电机以第一限流值运行后,若当前温度降低达到第一恢复温度阈值,则说明功率模块的温度得到控制,可以恢复正常的工作。
进一步的方案中,在控制电机以第二限流值运行的步骤后,方法还包括:判断当前温度是否达到第二恢复温度阈值,若是,控制电机以第一限流值运行。
由此可见,在控制电机以第二限流值运行后,若当前温度降低达到第二恢复温度阈值,则说明功率模块的温度得到控制,可以可进一步增大电机电流,提高用户体验。
进一步的方案中,根据当前温度所处的温度区间对电机电流进行限流或者对电机的工作频率进行限频的步骤包括:判断当前温度是否小于第一温度区间的下限阈值,若是,控制电机以预设工作频率运行;判断当前温度是否处于第一温度区间,若是,控制电机以第一限频值运行,其中,第一限频值小于预设工作频率;判断当前温度是否处于第二温度区间,若是,控制电机以第二限频值运行,其中,第二限频值小于第一限频值;判断当前温度是否大于第二温度区间的上限阈值,若是,控制电机停止运行。
由此可见,在当前温度未达到保护阈值时,电机按照预设工作频率运行,如果当前温度超过保护阈值,则继续判断当前温度处于哪一温度区间,然后根据不同的温度区间对电 机执行不同的工作频率限制,第一温度区间到第二温度区间,温度呈上升趋势,超过第二温度区间,则认为功率模块内部IGBT结温已接近极限温度,此时才执行停机保护,从而减少了功率模块的反复停启,提高了功率模块过热保护的可靠性。
进一步的方案中,在控制电机以第一限频值运行的步骤后,方法还包括:判断当前温度是否达到第一恢复温度阈值,若是,控制电机以预设工作频率运行。
由此可见,在控制电机以第一限频值运行后,若当前温度降低达到第一恢复温度阈值,则说明功率模块的温度得到控制,可以恢复正常的工作。
进一步的方案中,在控制电机以第二限频值运行的步骤后,方法还包括:判断当前温度是否达到第二恢复温度阈值,若是,控制电机以第一限频值运行。
由此可见,在控制电机以第二限频值运行后,若当前温度降低达到第二恢复温度阈值,则说明功率模块的温度得到控制,可以可进一步增大电机电流,提高用户体验。
进一步的方案中,获取功率模块的当前温度的步骤包括:获取检测功率模块温度的热敏电阻的当前电压,根据当前电压获得当前温度。
由此可见,通过外置热敏电阻,建立热敏电阻与功率模块壳温之间的温差曲线,可获得当前温度,便于检测功率模块的温度。
为了实现本申请的第二目的,本申请提供计算机装置包括处理器以及存储器,存储器存储有计算机程序,计算机程序被处理器执行时实现上述的功率模块过热保护方法的步骤。
为了实现本申请的第三目的,本申请提供的计算机可读存储介质,其上存储有计算机程序,计算机程序被控制器执行时实现上述的功率模块过热保护方法的步骤。
附图说明
图1是本申请功率模块过热保护方法实施例的流程图。
图2是本申请功率模块过热保护方法实施例中对电机电流进行限流步骤的流程图。
图3是本申请功率模块过热保护方法实施例中对电机的工作频率进行限频步骤的流程图。
以下结合附图及实施例对本申请作进一步说明。
具体实施方式
本申请的功率模块过热保护方法是应用在电机中的应用程序,用于实现对功率模块的温度控制。本申请还提供一种计算机装置,该计算机装置包括控制器,控制器用于执行存 储器中存储的计算机程序时实现上述的功率模块过热保护方法的步骤。本申请还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被控制器执行时实现上述的功率模块过热保护方法的步骤。
功率模块过热保护方法实施例:
本申请的功率模块过热保护方法是应用在电机中的应用程序,用于实现对功率模块的温度控制。
参见图1,本申请的功率模块过热保护方法在进行功率模块的温度控制时,首先执行步骤S1,获取功率模块的当前温度。为了便于对功率模块的温度进行检测控制,需要对功率模块的当前温度进行获取。本实施例中,获取功率模块的当前温度的步骤包括:获取检测功率模块温度的热敏电阻的当前电压,根据当前电压获得当前温度。由于不同控制器在电路板上设置位置的差异,需要在参数设定前通过测试确定热敏电阻温度与功率模块温度之间的温差关系曲线。在电机运行的每个控制周期,都会对热敏电阻两端的电压进行采集,热敏电阻的电压体现的是热敏电阻的温度,再根据热敏电阻温度与功率模块温度之间的温差关系曲线就可以估算出功率模块的当前温度。
获得功率模块的当前温度后,执行步骤S2,根据当前温度所处的温度区间对电机电流进行限流或者对电机的工作频率进行限频。由于电机电流和电机的工作频率是影响功率模块温度的因素,通过对电机电流和电机的工作频率进行控制,可防止温度上升较快时可能保护不及时,消除功率模块损坏的隐患,提高功率模块过热保护的可靠性。
参见图2,本实施例中,在对电机电流进行限流时,先执行步骤S11,判断当前温度是否小于第一温度区间的下限阈值。在电机驱动的每个控制周期,都会对功率模块的当前温度进行采样,得到功率模块的当前温度后,需判断温度是否大于设定的保护阈值,在当前温度超过保护阈值时才对功率模块的温度进行控制。其中,第一温度区间可根据实验数据获得。
若当前温度小于第一温度区间的下限阈值,则执行步骤S12,控制电机以预设电流值运行。当前温度小于第一温度区间的下限阈值则说明功率模块的温度还处于正常工作温度,可控制电机以预设电流值运行,预设电流值是电机正常工作时的电流值。
若当前温度不满足小于第一温度区间的下限阈值的条件时,则执行步骤S13,判断当前温度是否处于第一温度区间。当前温度不满足小于第一温度区间的下限阈值的条件时,则说明功率模块的温度已经超过正常的工作温度,需要进行降温控制。若当前温度处于第一温度区间时,则执行步骤S14,控制电机以第一限流值运行。其中,第一限流值小于预设电流值。在当前温度处于第一温度区间时,以小于预设电流值的第一限流值控制电机运 行,可使得功率模块的发热量减少,从而起到延缓功率模块的温度升高。
在控制电机以第一限流值运行后,执行步骤S15,判断当前温度是否达到第一恢复温度阈值。其中,第一恢复温度阈值可根据实验数据获得,即第一恢复温度阈值是预先设定的温度值。在控制电机以第一限流值运行的过程中,功率模块由于电流值的降低而降温。为了使功率模块处于正常的工作状态,提高电机的工作性能,需要判断当前温度是否达到第一恢复温度阈值。在当前温度未达到第一恢复温度阈值时,则需要继续执行步骤S13,判断当前温度是否处于第一温度区间。在当前温度达到第一恢复温度阈值时,此时说明功率模块的温度得到控制,可以恢复正常的工作,则执行步骤S12,控制电机以预设电流值运行。
在执行步骤S13时,若判断当前温度没有落入第一温度区间,则执行步骤S16,判断当前温度是否处于第二温度区间。当前温度没有落入第一温度区间时,则说明功率模块的温度在控制电机以第一限流值运行后,没有得到控制,功率模块的温度已经进一步升高,此时需要进一步的控制。在判断当前温度处于第二温度区间,则说明当前温度还处于可调节状态,此时,执行步骤S17,控制电机以第二限流值运行。其中,第二限流值小于第一限流值。控制电机以小于第一限流值的第二限流值运行,可进一步减少功率模块的发热量,从而进一步延缓功率模块的温度升高。
在控制电机以第二限流值运行后,执行步骤S18,判断当前温度是否达到第二恢复温度阈值。其中,第二恢复温度阈值可根据实验数据获得,即第二恢复温度阈值是预先设定的温度值。在控制电机以第二限流值运行的过程中,会对功率模块进行降温,提高电机的工作性能,需要判断当前温度是否达到第二恢复温度阈值。在当前温度未达到第二恢复温度阈值时,则需要继续执行步骤S16,判断当前温度是否处于第二温度区间。在当前温度达到第二恢复温度阈值时,此时说明功率模块的温度得到控制,可以进一步提高电机的工作功率,则执行步骤S14,控制电机以第一限流值运行。
在执行步骤S16时,若当前温度没有落入第二温度区间,则执行步骤S19,判断当前温度是否大于第二温度区间的上限阈值。当前温度没有落入第二温度区间时,则说明功率模块的温度在控制电机以第二限流值运行后,没有得到控制,功率模块的温度已经进一步升高。此时,需进一步确定当前温度是否大于第二温度区间的上限阈值,防止检测故障。在判断当前温度大于第二温度区间的上限阈值时,则执行步骤S20,控制电机停止运行。在判断当前温度大于第二温度区间的上限阈值时,由于温度的响应较转速变化要慢,因此在高转速、重负载情况下,即使转速下降,功率模块的温度来不及响应,此时就执行停机保护,在进行检测或恢复正常温度后再重新启动。
参见图3,本实施例中,在对电机的工作频率进行限频时,先执行步骤S21,判断当前温度是否小于第一温度区间的下限阈值。在电机驱动的每个控制周期,都会对功率模块的当前温度进行采样,得到功率模块的当前温度后,需判断温度是否大于设定的保护阈值,在当前温度超过保护阈值时才对功率模块的温度进行控制。其中,第一温度区间可根据实验数据获得。
若当前温度小于第一温度区间的下限阈值,则执行步骤S22,控制电机以预设工作频率运行。当前温度小于第一温度区间则说明功率模块的温度还处于正常工作温度,可控制电机以预设工作频率运行,预设工作频率是电机正常工作时的工作频率。
若当前温度不满足小于第一温度区间的下限阈值的条件时,则执行步骤S23,判断当前温度是否处于第一温度区间。当前温度不满足小于第一温度区间的下限阈值的条件时,则说明功率模块的温度已经超过正常的工作温度,需要进行降温控制。若当前温度处于第一温度区间时,则执行步骤S24,控制电机以第一限频值运行。其中,第一限频值小于预设工作频率。在当前温度处于第一温度区间时,以小于预设工作频率的第一限频值控制电机运行,可使得功率模块的发热量减少,从而起到延缓功率模块的温度升高。
在控制电机以第一限频值运行后,执行步骤S25,判断当前温度是否达到第一恢复温度阈值。其中,第一恢复温度阈值可根据实验数据获得,即第一恢复温度阈值是预先设定的温度值。在控制电机以第一限频值运行的过程中,会对功率模块进行降温。为了使功率模块处于正常的工作状态,提高电机的工作性能,需要判断当前温度是否达到第一恢复温度阈值。在当前温度未达到第一恢复温度阈值时,则需要继续执行步骤S23,判断当前温度是否处于第一温度区间。在当前温度达到第一恢复温度阈值时,此时说明功率模块的温度得到控制,可以恢复正常的工作,则执行步骤S22,控制电机以预设工作频率运行。
在执行步骤S23时,若判断当前温度没有落入第一温度区间,则执行步骤S26,判断当前温度是否处于第二温度区间。当前温度没有落入第一温度区间时,则说明功率模块的温度在控制电机以第一限频值运行后,没有得到控制,功率模块的温度已经进一步升高,此时需要进一步的控制。在判断当前温度处于第二温度区间,则说明当前温度还处于可调节状态,此时,执行步骤S27,控制电机以第二限频值运行。其中,第二限频值小于第一限频值。控制电机以小于第一限频值的第二限频值运行,可进一步减少功率模块的发热量,从而进一步延缓功率模块的温度升高。
在控制电机以第二限频值运行后,执行步骤S28,判断当前温度是否达到第二恢复温度阈值。其中,第二恢复温度阈值可根据实验数据获得,即第二恢复温度阈值是预先设定的温度值。在控制电机以第二限频值运行的过程中,会对功率模块进行降温,提高电机的 工作性能,此时,需要判断当前温度是否达到第二恢复温度阈值。在当前温度未达到第二恢复温度阈值时,则需要继续执行步骤S26,判断当前温度是否处于第二温度区间。在当前温度达到第二恢复温度阈值时,此时说明功率模块的温度得到控制,可以进一步提高电机的工作功率,则执行步骤S24,控制电机以第一限频值运行。
在执行步骤S26时,若当前温度没有落入第二温度区间,则执行步骤S29,判断当前温度是否大于第二温度区间的上限阈值。当前温度没有落入第二温度区间时,则说明功率模块的温度在控制电机以第二限频值运行后,没有得到控制,功率模块的温度已经进一步升高。此时,需进一步确定当前温度是否大于第二温度区间的上限阈值,防止检测故障。在判断当前温度大于第二温度区间的上限阈值时,则执行步骤S30,控制电机停止运行。在判断当前温度大于第二温度区间的上限阈值时,由于温度的响应较转速变化要慢,因此在高转速、重负载情况下,即使转速下降,功率模块的温度来不及响应,此时就执行停机保护,在进行检测或恢复正常温度后再重新启动。
需要说明的是,本申请的功率模块过热保护方法在对进行功率模块的温度进行控制时,通过对电机电流进行限流或者对电机的工作频率进行限频的方式单独控制温度,在进一步的方案中,还可将对电机电流进行限流和对电机的工作频率进行限频的方式进行结合控制温度,使控制更加多样化。
计算机装置实施例:
本实施例的计算机装置包括控制器,控制器执行计算机程序时实现上述功率模块过热保护方法实施例中的步骤。
例如,计算机程序可以被分割成一个或多个模块,一个或者多个模块被存储在存储器中,并由控制器执行,以完成本申请。一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序在计算机装置中的执行过程。
计算机装置可包括,但不仅限于,控制器、存储器。本领域技术人员可以理解,计算机装置可以包括更多或更少的部件,或者组合某些部件,或者不同的部件,例如计算机装置还可以包括输入输出设备、网络接入设备、总线等。
例如,控制器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用控制器、数字信号控制器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用控制器可以是微控制器或者该控制器也可以是任何常规的控制器等。控制器是计算机装置的控制中心,利用各种接口和线路连接整个计算机装置的各个 部分。
存储器可用于存储计算机程序和/或模块,控制器通过运行或执行存储在存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现计算机装置的各种功能。例如,存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(例如声音接收功能、声音转换成文字功能等)等;存储数据区可存储根据手机的使用所创建的数据(例如音频数据、文本数据等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
计算机可读存储介质实施例:
上述实施例的计算机装置集成的模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,实现上述功率模块过热保护方法实施例中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一计算机可读存储介质中,该计算机程序在被控制器执行时,可实现上述功率模块过热保护方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。存储介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
由上述可知,本申请的功率模块过热保护方法通过检测功率模块的当前温度,可根据当前温度所处的温度区间对电机电流进行限流或者对电机的工作频率进行限频。由于电机电流和电机的工作频率是影响功率模块温度的因素,通过对电机电流和电机的工作频率进行控制,可防止温度上升较快时可能保护不及时,消除了功率模块损坏的隐患,提高了功率模块过热保护的可靠性,改善了用户体验。
需要说明的是,以上仅为本申请的较佳实施例,但申请的设计构思并不局限于此,凡利用此构思对本申请做出的非实质性修改,也均落入本申请的保护范围之内。

Claims (10)

  1. 一种功率模块过热保护方法,其特征在于:包括:
    获取功率模块的当前温度;
    根据所述当前温度所处的温度区间对电机电流进行限流或者对电机的工作频率进行限频。
  2. 根据权利要求1所述的功率模块过热保护方法,其特征在于:
    所述根据所述当前温度所处的温度区间对电机电流进行限流或者对电机的工作频率进行限频的步骤包括:
    判断所述当前温度是否小于第一温度区间的下限阈值,若是,控制所述电机以预设电流值运行;
    判断所述当前温度是否处于所述第一温度区间,若是,控制所述电机以第一限流值运行,其中,所述第一限流值小于所述预设电流值;
    判断所述当前温度是否处于第二温度区间,若是,控制所述电机以第二限流值运行,其中,所述第二限流值小于所述第一限流值;
    判断所述当前温度是否大于所述第二温度区间的上限阈值,若是,控制所述电机停止运行。
  3. 根据权利要求2所述的功率模块过热保护方法,其特征在于:
    在所述控制电机以第一限流值运行的步骤后,所述方法还包括:
    判断所述当前温度是否达到第一恢复温度阈值,若是,控制所述电机以所述预设电流值运行。
  4. 根据权利要求2所述的功率模块过热保护方法,其特征在于:
    在所述控制电机以第二限流值运行的步骤后,所述方法还包括:
    判断所述当前温度是否达到第二恢复温度阈值,若是,控制所述电机以所述第一限流值运行。
  5. 根据权利要求1所述的功率模块过热保护方法,其特征在于:
    所述根据所述当前温度所处的温度区间对电机电流进行限流或者对电机的工作频率进行限频的步骤包括:
    判断所述当前温度是否小于第一温度区间的下限阈值,若是,控制所述电机以预设工作频率运行;
    判断所述当前温度是否处于所述第一温度区间,若是,控制所述电机以第一限频值运行,其中,所述第一限频值小于所述预设工作频率;
    判断所述当前温度是否处于第二温度区间,若是,控制所述电机以第二限频值运行,其中,所述第二限频值小于所述第一限频值;
    判断所述当前温度是否大于所述第二温度区间的上限阈值,若是,控制所述电机停止运行。
  6. 根据权利要求5所述的功率模块过热保护方法,其特征在于:
    在所述控制电机以第一限频值运行的步骤后,所述方法还包括:
    判断所述当前温度是否达到第一恢复温度阈值,若是,控制所述电机以所述预设工作频率运行。
  7. 根据权利要求5所述的功率模块过热保护方法,其特征在于:
    在所述控制电机以第二限频值运行的步骤后,所述方法还包括:
    判断所述当前温度是否达到第二恢复温度阈值,若是,控制所述电机以所述第一限频值运行。
  8. 根据权利要求1至7任一项所述的功率模块过热保护方法,其特征在于:
    所述获取功率模块的当前温度的步骤包括:
    获取检测功率模块温度的热敏电阻的当前电压,根据所述当前电压获得所述当前温度。
  9. 一种计算机装置,包括处理器以及存储器,其特征在于:所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任意一项所述的功率模块过热保护方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于:所述计算机程序被控制器执行时实现如权利要求1至8中任意一项所述的功率模块过热保护方法的步骤。
PCT/CN2020/098028 2019-08-30 2020-06-24 功率模块过热保护方法、计算机装置以及计算机可读存储介质 WO2021036457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910817478.6A CN110518550B (zh) 2019-08-30 2019-08-30 功率模块过热保护方法、计算机装置以及计算机可读存储介质
CN201910817478.6 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021036457A1 true WO2021036457A1 (zh) 2021-03-04

Family

ID=68628627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098028 WO2021036457A1 (zh) 2019-08-30 2020-06-24 功率模块过热保护方法、计算机装置以及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110518550B (zh)
WO (1) WO2021036457A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518550B (zh) * 2019-08-30 2021-04-27 珠海格力电器股份有限公司 功率模块过热保护方法、计算机装置以及计算机可读存储介质
CN111324156B (zh) * 2020-02-13 2021-08-24 施耐德电气(中国)有限公司 一种无源器件过热保护方法、装置和电力电子设备
CN111431390A (zh) * 2020-04-22 2020-07-17 海信(山东)空调有限公司 一种变频设备及其控制方法
CN111914426A (zh) * 2020-08-07 2020-11-10 山东德佑电气股份有限公司 一种基于关联分析的变压器智能维护方法
CN113566381B (zh) * 2021-07-28 2022-09-16 佛山市顺德区美的电子科技有限公司 一种家电设备及其过热保护控制方法、装置及存储介质
CN118367766A (zh) * 2023-01-17 2024-07-19 广东美的制冷设备有限公司 功率变换器运行控制方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187129A (zh) * 2007-09-04 2008-05-28 南京乐金熊猫电器有限公司 衣物处理装置的控制方法
US7446494B2 (en) * 2006-10-10 2008-11-04 Honeywell International Inc. HVAC actuator having torque compensation
CN101619722A (zh) * 2008-07-01 2010-01-06 海尔集团公司 一种控制功率模块温度的方法和电路
CN103427670A (zh) * 2013-09-06 2013-12-04 海信(山东)空调有限公司 一种智能功率模块的温度控制方法及变频设备
CN105371437A (zh) * 2015-12-01 2016-03-02 青岛海尔空调器有限总公司 一种空调控制方法
CN207766026U (zh) * 2017-12-18 2018-08-24 富士电机(中国)有限公司 不间断电源装置
CN110518550A (zh) * 2019-08-30 2019-11-29 珠海格力电器股份有限公司 功率模块过热保护方法、计算机装置以及计算机可读存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5985178B2 (ja) * 2011-11-24 2016-09-06 Ntn株式会社 モータの制御装置
CN102566434A (zh) * 2012-02-13 2012-07-11 范示德汽车技术(上海)有限公司 电动助力转向系统用基于电机热力学模型的过温保护方法
CN103376859B (zh) * 2012-04-26 2016-12-14 华为技术有限公司 芯片性能的控制方法及装置
CN103427615B (zh) * 2013-09-06 2015-07-01 海信(山东)空调有限公司 通用化的智能功率模块温控方法及变频设备
CN104534619B (zh) * 2014-12-11 2017-06-06 广东美的制冷设备有限公司 变频除湿机的控制方法和控制装置
US9520821B1 (en) * 2015-08-19 2016-12-13 Nidec Motor Corporation System and method for optimizing flux regulation in electric motors
CN106225186B (zh) * 2016-09-28 2019-07-30 广东美的制冷设备有限公司 变频空调系统及其的功率模块的发热控制方法、装置
CN107084124B (zh) * 2017-05-18 2019-04-30 广州视源电子科技股份有限公司 一种用于变频压缩机的限频控制方法及系统
CN108731185A (zh) * 2018-05-17 2018-11-02 广东美的制冷设备有限公司 用电设备的控制方法、装置、用电设备和可读存储介质
CN109163430A (zh) * 2018-08-30 2019-01-08 珠海格力电器股份有限公司 一种压缩机限、降频的控制方法及变频空调器
CN109347056B (zh) * 2018-10-22 2020-04-24 合肥阳光电动力科技有限公司 一种功率器件的低温运行保护方法及装置
CN110160245B (zh) * 2019-05-27 2023-06-27 广东美的暖通设备有限公司 压缩机频率的控制方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446494B2 (en) * 2006-10-10 2008-11-04 Honeywell International Inc. HVAC actuator having torque compensation
CN101187129A (zh) * 2007-09-04 2008-05-28 南京乐金熊猫电器有限公司 衣物处理装置的控制方法
CN101619722A (zh) * 2008-07-01 2010-01-06 海尔集团公司 一种控制功率模块温度的方法和电路
CN103427670A (zh) * 2013-09-06 2013-12-04 海信(山东)空调有限公司 一种智能功率模块的温度控制方法及变频设备
CN105371437A (zh) * 2015-12-01 2016-03-02 青岛海尔空调器有限总公司 一种空调控制方法
CN207766026U (zh) * 2017-12-18 2018-08-24 富士电机(中国)有限公司 不间断电源装置
CN110518550A (zh) * 2019-08-30 2019-11-29 珠海格力电器股份有限公司 功率模块过热保护方法、计算机装置以及计算机可读存储介质

Also Published As

Publication number Publication date
CN110518550A (zh) 2019-11-29
CN110518550B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2021036457A1 (zh) 功率模块过热保护方法、计算机装置以及计算机可读存储介质
JP3769200B2 (ja) 冷却ファンの制御方法および装置
CA2918488C (en) High-frequency heating device and power supply control method and power supply control apparatus for same
CN109532514B (zh) 一种电驱动系统堵转保护方法、电机控制器及电动汽车
CN106095022B (zh) 一种控制方法及电子设备
CN106354046A (zh) 智能功率模块的控制方法和装置
CN104427124A (zh) 一种控制终端温度的方法、装置及终端
WO2021238984A1 (zh) 电子设备散热方法、装置及存储介质
WO2022127872A1 (zh) 一种设备运动方法及电子设备
CN102099990A (zh) 用于提供控制信号的系统和方法
CN110011279B (zh) 一种开关电源保护电路及开关电源保护方法
CN103821746B (zh) 风扇监控方法及服务器系统
CN110566492A (zh) 一种风扇调速方法、装置、设备及介质
US11812389B2 (en) Thermal management method for multiple heat sources and wireless communication apparatus having multiple heat sources
WO2016197651A1 (zh) 一种实现发热控制的方法及终端
CN111053437B (zh) 一种可控硅加热控制方法、装置、存储介质和家用电器
CN112212463B (zh) 变频空调频率控制方法、计算机装置以及计算机可读存储介质
JP6414440B2 (ja) スイッチング素子の駆動装置
US20150005947A1 (en) Electronic device and method for controlling rotation speed of fan thereof
AU2018396277A1 (en) Power factor correction circuit control method and device
US20140168829A1 (en) Gate Drive Circuits that Control Electromagnetic Interference and Switching Losses and Related Methods
CN111277173A (zh) 一种电机启动控制方法、装置、电器设备及存储介质
CN107508509B (zh) 无刷直流电机控制方法及装置和其低速重载控制方法
TW201216025A (en) Apparatus and method for controlling fan speed
JP6835275B1 (ja) 短絡判定装置、スイッチ装置、および、短絡判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855907

Country of ref document: EP

Kind code of ref document: A1