WO2021036349A1 - 一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法 - Google Patents

一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法 Download PDF

Info

Publication number
WO2021036349A1
WO2021036349A1 PCT/CN2020/090249 CN2020090249W WO2021036349A1 WO 2021036349 A1 WO2021036349 A1 WO 2021036349A1 CN 2020090249 W CN2020090249 W CN 2020090249W WO 2021036349 A1 WO2021036349 A1 WO 2021036349A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
graphene
parts
anticorrosive coating
agent
Prior art date
Application number
PCT/CN2020/090249
Other languages
English (en)
French (fr)
Inventor
谢海
胡明
钱金均
Original Assignee
江苏冠军科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏冠军科技集团股份有限公司 filed Critical 江苏冠军科技集团股份有限公司
Publication of WO2021036349A1 publication Critical patent/WO2021036349A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2262Oxides; Hydroxides of metals of manganese
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the invention relates to the technical field of anticorrosive coatings, in particular to a graphene-perovskite doped epoxy anticorrosive coating and a preparation method thereof.
  • the problem of metal corrosion is widespread in the fields of ships, bridges, buildings, etc., which brings great harm to people's lives and social property.
  • the common method to prevent metal corrosion is to apply anti-corrosion coatings on the metal surface, thereby delaying the rate of metal corrosion and prolonging the service life.
  • graphene-based composite anti-corrosion coatings have been widely used in the field of metal material anti-corrosion.
  • Graphene has excellent chemical stability and mechanical strength, can enhance the anti-corrosion effect of the coating, and polymer resin has strong adhesion.
  • the graphene composite anticorrosive coating obtained by the combination of these has good film-forming properties and excellent comprehensive properties.
  • the anti-aging performance of graphene composite anticorrosive coatings still needs to be improved.
  • the purpose of the present invention is to provide a graphene-perovskite doped epoxy anticorrosive coating and a preparation method thereof.
  • the graphene-perovskite doped epoxy anticorrosive coating provided by the present invention has excellent anti-aging performance.
  • the present invention provides a graphene-perovskite doped epoxy anticorrosive coating, which includes the following components in parts by mass:
  • Graphene-perovskite composite 2-10 parts epoxy resin 10-30 parts; titanium dioxide 2-10 parts; film-forming assistant 5-15 parts; dispersant 1-2 parts; defoaming agent 0.2-0.8 Parts; 0.1 ⁇ 0.5 parts of active diluent; 1 ⁇ 5 parts of leveling agent; 2 ⁇ 10 parts of water; 5 ⁇ 30 parts of curing agent;
  • the graphene-perovskite composite is composed of graphene and perovskite, the particle size of the perovskite is nanometer, and the perovskite is distributed between graphene sheets.
  • the perovskite is lanthanum manganate perovskite.
  • the preparation method of the graphene-perovskite composite includes the following steps:
  • nano-scale perovskite particles After mixing the nano-scale perovskite particles and graphene oxide, they are calcined in a protective atmosphere to obtain a graphene-perovskite composite.
  • the mass ratio of the nano-scale perovskite particles to the graphene oxide is 0.5-1:1.
  • the sintering temperature is 600-900°C, and the time is 1 to 5 hours, and the heating rate to the temperature required for sintering is 2-10°C/min; the sintering temperature is 700-1000°C, and the time is 1-10h, the heating rate of heating to the temperature required for calcination is 5-20°C/min.
  • the epoxy resin includes at least one of bisphenol A epoxy resin, novolac epoxy resin and aliphatic epoxy resin.
  • the film-forming aid includes at least one of ethylene glycol butyl ether alkyd, dimethyl dibasic acid film-forming aid and diethyl dibasic acid film-forming aid;
  • the dispersant is a self-fluxing dispersant.
  • the defoamer includes at least one of an organic silicon defoamer, an inorganic silicon defoamer and a polyether defoamer;
  • the reactive diluent includes a polyacrylic reactive diluent.
  • the leveling agent includes at least one of an acrylic leveling agent and a silicone leveling agent;
  • the curing agent includes an aliphatic polyamine curing agent and a fatty amine adduct curing agent. At least one.
  • the present invention also provides a preparation method of the graphene-perovskite doped epoxy anticorrosive coating according to the above technical scheme, which includes the following steps:
  • the prefabricated coating and the curing agent are mixed to obtain the graphene-perovskite doped epoxy anticorrosive coating.
  • the present invention provides a graphene-perovskite doped epoxy anticorrosive coating, which includes the following components in parts by mass: 2-10 parts of graphene-perovskite composite; 10-30 parts of epoxy resin; and titanium 2 ⁇ 10 parts of white powder; 5 ⁇ 15 parts of film forming aid; 1 ⁇ 2 parts of dispersant; 0.2 ⁇ 0.8 parts of defoaming agent; 0.1 ⁇ 0.5 parts of active diluent; 1 ⁇ 5 parts of leveling agent; 2 ⁇ 10 parts of water Parts; curing agent 5-30 parts; the graphene-perovskite composite is composed of graphene and perovskite, the particle size of the perovskite is nanometer, and the perovskite is distributed in the graphene Between slices.
  • graphene-perovskite composite is added to epoxy anticorrosive coating, in which perovskite is rich in oxygen vacancies, which is beneficial to adsorb oxygen on metal surface, thereby delaying metal corrosion and improving the anti-aging of graphene composite anticorrosive coating Performance:
  • Graphene provides a two-dimensional plane for the loading of the perovskite.
  • the perovskite is dispersed between the graphene sheets, with good dispersibility, and this structure is also conducive to improving the stability and mechanical properties of the anticorrosive coating;
  • the invention replaces organic solvents with active diluents to obtain solvent-free epoxy resin coatings, which has the advantages of environmental friendliness.
  • the above-mentioned components and proportions cooperate with each other to further improve the overall performance of the anticorrosive coating.
  • the present invention provides a graphene-perovskite doped epoxy anticorrosive coating, which includes the following components in parts by mass:
  • Graphene-perovskite composite 2-10 parts epoxy resin 10-30 parts; titanium dioxide 2-10 parts; film-forming assistant 5-15 parts; dispersant 1-2 parts; defoaming agent 0.2-0.8 Parts; 0.1 ⁇ 0.5 parts of active diluent; 1 ⁇ 5 parts of leveling agent; 2 ⁇ 10 parts of water; 5 ⁇ 30 parts of curing agent;
  • the graphene-perovskite composite is composed of graphene and perovskite, the particle size of the perovskite is nanometer, and the perovskite is distributed between graphene sheets.
  • the graphene-perovskite doped epoxy anticorrosive coating includes 2-10 parts of graphene-perovskite composite, preferably 4-6 parts; Preferably, it is lanthanum manganate perovskite; the mass ratio of the perovskite to graphene is preferably 1:0.5-1.
  • the perovskite is rich in oxygen holes, which is beneficial to adsorb oxygen on the metal surface, thereby delaying metal corrosion and improving the anti-aging performance of the graphene composite anticorrosive coating; graphene provides a two-dimensional plane for the loading of the perovskite , Perovskite is dispersed between graphene sheets, with good dispersibility, and this structure is also conducive to improving the stability and mechanical properties of anti-corrosion coatings.
  • the preparation method of the graphene-perovskite composite preferably includes the following steps:
  • nano-scale perovskite particles After mixing the nano-scale perovskite particles and graphene oxide, they are calcined in a protective atmosphere to obtain a graphene-perovskite composite.
  • the sol-gel reaction is performed, and then drying and sintering are performed sequentially to obtain nano-level perovskite particles.
  • the raw materials are hydrolyzed in a solvent to generate reactive monomers, and the reactive monomers are polymerized to form a sol under the action of a reducing agent.
  • the sol slowly polymerizes between the aged colloidal particles to form a three-dimensional network structure gel, a gel network
  • the space is filled with solvents that have lost fluidity, forming a gel, and the gel is dried and sintered to solidify to prepare a nanostructured material
  • the reducing agent is preferably citric acid.
  • the molar ratio of the lanthanum nitrate, manganese nitrate and reducing agent is preferably 1:1:1 ⁇ 5.
  • the temperature of the sol-gel reaction is preferably 60 to 80°C, more preferably 65 to 75°C, and the time is preferably 1 to 5 hours.
  • the obtained reaction system is directly dried and then sintered to obtain nano-scale perovskite particles.
  • the present invention has no particular limitation on the drying method, as long as a product of constant weight can be obtained.
  • the sintering temperature is preferably 600 to 900°C, more preferably 700 to 800°C; the time is preferably 1 to 5 hours; the heating rate to the temperature required for sintering is preferably 2 to 10°C/min, More preferably, it is 4 to 6°C/min.
  • the average particle size of the nano-perovskite is preferably 50-200 nm.
  • the present invention mixes the nano-scale perovskite particles and graphene oxide, and then calcines them in a protective atmosphere to obtain a graphene-perovskite composite.
  • the present invention there are abundant oxygen-containing groups on the surface of graphene oxide. After it is mixed with nano-scale perovskite particles, it is beneficial for the nano-scale perovskite particles to be evenly distributed among the layers, and the graphite oxide is sintered. The oxygen-containing groups in the alkene are removed to obtain graphene.
  • the mixing method of the nano-scale perovskite particles and graphene oxide is preferably to mix the nano-scale perovskite particles, graphene oxide and water, and then dry to obtain perovskite oxide and graphene oxide. It is more preferable to first mix graphene oxide and water to obtain a graphene oxide dispersion, then add nano-scale perovskite particles, mix, and dry to obtain a mixture of perovskite oxide and graphene oxide; Drying is preferably freeze-drying.
  • the present invention does not specifically limit the freeze-drying conditions, as long as the moisture can be removed; the mass ratio of the nano-scale perovskite particles to graphene oxide is preferably 0.5-1:1, and more Preferably it is 0.7 to 0.8:1.
  • the amount of the water is not particularly limited, as long as it can uniformly disperse nano-scale perovskite particles and graphene oxide.
  • the present invention does not specifically limit the source of the graphene oxide.
  • the graphene oxide is preferably prepared by the Hummers method.
  • the protective atmosphere is preferably nitrogen or inert gas atmosphere.
  • the calcination temperature is preferably 700-1000°C, more preferably 800-900°C, and the time is preferably 1-10h; the heating rate to the temperature required for calcination is preferably 5-20°C/min, More preferably, it is 10-15 degreeC/min.
  • the graphene-perovskite doped epoxy anticorrosive coating includes 10-30 parts of epoxy resin, preferably 15-25 parts;
  • the epoxy resin preferably includes at least one of bisphenol A epoxy resin, novolac epoxy resin, and aliphatic epoxy resin.
  • the epoxy resin is the main film-forming substance, which has the advantages of strong adhesion, chemical resistance, corrosion resistance, water resistance, thermal stability and electrical insulation.
  • the graphene-perovskite doped epoxy anticorrosive coating includes 2-10 parts of titanium dioxide, preferably 5-8 parts;
  • the average particle diameter of the titanium dioxide is preferably 10 to 200 nm.
  • the role of the titanium dioxide is to improve the physical and chemical properties of the coating, enhance the chemical stability, and even improve the hiding power, decoloring power, corrosion resistance, light resistance, weather resistance, and enhance the mechanical strength and adhesion of the paint film. .
  • the graphene-perovskite doped epoxy anticorrosive coating includes 5-15 parts of film-forming aids, preferably 8-12 parts
  • the film-forming aids include at least one of ethylene glycol butyl ether alkyd, dimethyl dibasic acid film-forming aids and diethyl dibasic acid film-forming aids;
  • the binary Dimethyl acid film-forming aids preferably include at least one of dimethyl adipate, dimethyl succinate and dimethyl glutarate;
  • the diethyl dibasic acid film-forming aids It preferably includes at least one of diethyl malonate and diethyl glutarate.
  • the film-forming auxiliary agent can promote the plastic flow and elastic deformation of the polymer compound, improve the coalescence performance, and enable the coating to form a film in a wider range of application temperature.
  • the graphene-perovskite doped epoxy anticorrosive coating includes 1 to 2 parts of a dispersant; the dispersant is preferably self-melting
  • the dispersant is more preferably BYK101, BYK161 or BYK163 type dispersant produced by BYK in Germany, or Efka5044 type dispersant produced by Efka Company.
  • the graphene-perovskite doped epoxy anticorrosive coating includes 0.2-0.8 parts of defoamer, preferably 0.4-0.6 parts;
  • the defoaming agent preferably includes at least one of an organosilicon type defoaming agent, an inorganic silicon type defoaming agent, and a polyether defoaming agent.
  • the defoaming agent breaks the thin layer by reducing the surface tension, or forms a monomolecular film, so that its adhesion is reduced, and the thin layer is easily broken, thereby playing the role of defoaming and suppressing foam.
  • Antifoaming agent has the advantages of fast defoaming speed and long foam suppression time.
  • the graphene-perovskite doped epoxy anticorrosive coating includes 0.1-0.5 parts of active diluent, preferably 0.2-0.4 parts;
  • the reactive diluent is preferably a polyacrylic acid reactive diluent; in the embodiment of the present invention, the polyacrylic acid reactive diluent is preferably derived from the SRA-15 type polyacrylic acid reactive diluent of Western Company.
  • the reactive diluent replaces organic solvents, so that the coating does not need to use organic solvents. During the curing process, it can participate in the curing reaction of epoxy resin and become part of the cured epoxy resin, which is environmentally friendly. Advantage.
  • the graphene-perovskite doped epoxy anticorrosive coating includes 1 to 5 parts of leveling agent, preferably 2 to 4 parts;
  • the leveling agent is preferably at least one of an acrylic leveling agent and a silicone leveling agent.
  • the leveling agent helps to obtain a flat, smooth and uniform coating film.
  • the above-mentioned leveling agent can not only promote the flow and leveling of the coating film, but also does not affect the interlayer adhesion of the coating film, and also has a defoaming effect.
  • the graphene-perovskite doped epoxy anticorrosive coating includes 5-30 parts of curing agent, more preferably 15-20 parts;
  • the curing agent preferably includes at least one of an aliphatic polyamine curing agent and an aliphatic amine adduct curing agent.
  • the curing agent described above has good miscibility with the epoxy resin, and the cured epoxy resin has excellent chemical resistance.
  • the anti-corrosion coating obtained by the above-mentioned components and proportions has excellent anti-aging properties and excellent comprehensive performance.
  • the present invention also provides a preparation method of the graphene-perovskite doped epoxy anticorrosive coating according to the above technical scheme, which includes the following steps:
  • the prefabricated coating and the curing agent are mixed to obtain the graphene-perovskite doped epoxy anticorrosive coating.
  • the preparation method of graphene-perovskite doped epoxy anticorrosive coating provided by the present invention can obtain anticorrosive coating with more uniform dispersion.
  • the mixing in the preparation process of the graphene-perovskite doped epoxy anticorrosive coating is not particularly limited, as long as a uniformly mixed mixture can be obtained.
  • the resulting mixture is subjected to a sol-gel reaction at 70°C for 6 hours, and then dried and heated at 2°C The heating rate is heated to 600°C/min, and the temperature is kept for 1 hour to obtain nano-perovskite particles.
  • the average particle size of the nano-perovskite particles is 50nm after testing; the nano-perovskite particles are dispersed in graphene oxide water with a concentration of 1wt.% In the dispersion, the mass ratio of nanometer-sized perovskite particles and graphene oxide is 0.5:1, and then freeze-dried to obtain a mixture. The obtained mixture is heated to 700°C at a heating rate of 5°C/min under the protection of nitrogen. Insulate for 1 hour to obtain a graphene-perovskite composite;
  • the raw materials are calculated in parts by weight to prepare graphene-perovskite doped epoxy anticorrosive coating:
  • the prefabricated paint is mixed with 5 parts of aliphatic polyamine curing agent curing agent to obtain graphene-perovskite doped epoxy anticorrosive paint.
  • the resulting mixture is subjected to a sol-gel reaction at 80°C for 5 hours, and then dried for moisture, and then heated at 5°C The heating rate was heated to 700°C/min, and the temperature was kept for 3h to obtain nano-perovskite particles.
  • the average particle size of the nano-perovskite particles was 100nm after testing; the nano-perovskite particles were dispersed in graphene oxide water with a concentration of 5wt.% In the dispersion, the mass ratio of nano-scale perovskite particles and graphene oxide is 0.8:1, and then freeze-dried to obtain a mixture. The obtained mixture is heated to 800°C at a temperature increase rate of 10°C/min under the protection of nitrogen. Insulate for 5 hours to obtain a graphene-perovskite composite;
  • the raw materials are calculated in parts by weight to prepare graphene-perovskite doped epoxy anticorrosive coating:
  • the prefabricated paint is mixed with 15 parts of aliphatic polyamine curing agent to obtain graphene-perovskite doped epoxy anticorrosive paint.
  • the resulting mixture is subjected to a sol-gel reaction at 90°C for 3 hours, and then dried for moisture, and then heated at 10°C The heating rate is heated to 900°C/min, and the temperature is kept for 5 hours to obtain nano-perovskite particles.
  • the average particle size of the nano-perovskite particles is 200 nm after testing; the nano-perovskite particles are dispersed in graphene oxide water with a concentration of 10wt.% In the dispersion, the mass ratio of nano-scale perovskite particles and graphene oxide is 1:1, and then freeze-dried to obtain a mixture. The obtained mixture is heated to 1000°C at a heating rate of 20°C/min under the protection of nitrogen. Keep the temperature for 10 hours to obtain the graphene-perovskite composite;
  • the raw materials are calculated in parts by weight to prepare graphene-perovskite doped epoxy anticorrosive coating:
  • the prefabricated coating is mixed with 30 parts of aliphatic amine adduct curing agent to obtain a graphene-perovskite doped epoxy anticorrosive coating.
  • the anticorrosive coating was prepared according to the method of Example 3, except that the graphene-perovskite composite was replaced with graphene.
  • the water resistance, alkali resistance, salt spray resistance, impact resistance and aging resistance of the anticorrosive coatings obtained in Examples 1 to 3 and Comparative Example 1 were tested.
  • the results are shown in Table 1.
  • the water resistance, alkali resistance and salt spray resistance are expressed by the longest water resistance time, the longest alkali resistance time, and the longest salt spray resistance time respectively.
  • the impact resistance is expressed by the maximum height that causes damage to the paint film, and the anti-aging
  • the performance is expressed in terms of the longest non-discoloration time under ultraviolet accelerated aging irradiation.
  • the graphene-perovskite-doped epoxy anticorrosive coating obtained in Examples 1 to 3 has better water resistance, alkali resistance, salt spray resistance, and anti-corrosion resistance compared with graphene-doped epoxy anticorrosive coating. Impact and aging resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Paints Or Removers (AREA)

Abstract

一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法,属于防腐涂料技术领域。石墨烯-钙钛矿掺杂环氧防腐涂料,包括如下质量份数的组分:石墨烯-钙钛矿复合物2~10份;环氧树脂10~30份;钛白粉2~10份;成膜助剂5~15份;分散剂1~2份;消泡剂0.2~0.8份;活性稀释剂0.1~0.5份;流平剂1~5份;水2~10份;固化剂5~30份;所述石墨烯-钙钛矿复合物由石墨烯和钙钛矿组成,所述钙钛矿的粒径为纳米级,所述钙钛矿分布于石墨烯的片层之间。上述组分和配比相互配合,能够进一步提高防腐涂料的综合性能。

Description

一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法 技术领域
本发明涉及防腐涂料技术领域,尤其涉及一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法。
背景技术
金属腐蚀问题普遍存在于船舶、桥梁、建筑等领域,对人们生活和社会财产带来巨大危害。防止金属腐蚀的常用手段是在金属表面涂覆防腐涂料,从而延缓金属被腐蚀的速率,增长使用寿命。近年来,基于石墨烯的复合防腐涂料在金属材料防腐领域得到广泛应用,石墨烯具有优异的化学稳定性和机械强度,能够增强涂层的防腐作用,聚合物树脂具有较强的附着力,两者结合得到的石墨烯复合防腐涂料成膜性好,且具有优异的综合性能。但是石墨烯复合防腐涂料的抗老化性能仍然有待提高。
发明内容
本发明的目的在于提供一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法,本发明提供的石墨烯-钙钛矿掺杂环氧防腐涂料具有优异的抗老化性能。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种石墨烯-钙钛矿掺杂环氧防腐涂料,包括如下质量份数的组分:
石墨烯-钙钛矿复合物2~10份;环氧树脂10~30份;钛白粉2~10份;成膜助剂5~15份;分散剂1~2份;消泡剂0.2~0.8份;活性稀释剂0.1~0.5份;流平剂1~5份;水2~10份;固化剂5~30份;
所述石墨烯-钙钛矿复合物由石墨烯和钙钛矿组成,所述钙钛矿的粒径为纳米级,所述钙钛矿分布于石墨烯的片层之间。
优选的,所述钙钛矿为锰酸镧钙钛矿。
优选的,所述石墨烯-钙钛矿复合物的制备方法包括如下步骤:
将硝酸镧、硝酸锰、还原剂和水混合后,进行溶胶凝胶反应,然后依次进行干燥和烧结,得到纳米级钙钛矿颗粒;
将所述纳米级钙钛矿颗粒和氧化石墨烯混合后,在保护气氛中煅烧,得到石墨烯-钙钛矿复合物。
优选的,所述纳米级钙钛矿颗粒与氧化石墨烯的质量比为0.5~1:1。
优选的,所述烧结的温度为600~900℃,时间为1~5h,升温至烧结所需温度的升温速率为2~10℃/min;所述煅烧的温度为700~1000℃,时间为1~10h,升温至煅烧所需温度的升温速率为5~20℃/min。
优选的,所述环氧树脂包括双酚A环氧树脂、酚醛环氧树脂和脂肪族环氧树脂中的至少一种。
优选的,所述成膜助剂包括乙二醇丁醚醇酸脂、二元酸二甲酯类成膜助剂和二元酸二乙酯类成膜助剂中的至少一种;所述分散剂为自熔性分散剂。
优选的,所述消泡剂包括有机硅类消泡剂、无机硅类消泡剂和聚醚消泡剂中的至少一种;所述活性稀释剂包括聚丙烯酸类活性稀释剂。
优选的,所述流平剂包括丙烯酸类流平剂和有机硅类流平剂中的至少一种;所述固化剂包括脂肪族多元胺类固化剂和脂肪胺加成物类固化剂中的至少一种。
本发明还提供了上述技术方案所述石墨烯-钙钛矿掺杂环氧防腐涂料的制备方法,包括如下步骤:
将石墨烯-钙钛矿复合物、成膜助剂、分散剂、消泡剂、活性稀释剂、流平剂和水混合,得到石墨烯-钙钛矿浆料;
将所述石墨烯-钙钛矿浆料、环氧树脂和钛白粉混合,得到预制涂料;
将所述预制涂料和固化剂混合,得到石墨烯-钙钛矿掺杂环氧防腐涂料。
本发明提供了一种石墨烯-钙钛矿掺杂环氧防腐涂料,包括如下质量份数的组分:石墨烯-钙钛矿复合物2~10份;环氧树脂10~30份;钛白粉2~10份;成膜助剂5~15份;分散剂1~2份;消泡剂0.2~0.8份;活性稀释剂0.1~0.5份;流平剂1~5份;水2~10份;固化剂5~30份;所述石墨烯-钙钛矿复合物由石墨烯和钙钛矿组成,所述钙钛矿的粒径为纳米级,所述钙钛矿分布于石墨烯的片层之间。本发明在环氧防腐涂料中添加石墨烯-钙钛矿复合物,其中钙钛矿富含氧空穴,有利于吸附金属表面的氧,从而延缓金属腐蚀,提高石墨烯复合防腐涂料的抗老化性能;石墨烯为钙钛矿的负载提供二维平 面,钙钛矿分散于石墨烯片层之间,具有良好的分散性,且这种结构还有利于提高防腐涂料的稳定性和机械性能;本发明以活性稀释剂替代有机溶剂,得到无溶剂的环氧树脂涂料,具有环境友好的优点。此外,上述组分和配比相互配合,能够进一步提高防腐涂料的综合性能。
具体实施方式
本发明提供了一种石墨烯-钙钛矿掺杂环氧防腐涂料,包括如下质量份数的组分:
石墨烯-钙钛矿复合物2~10份;环氧树脂10~30份;钛白粉2~10份;成膜助剂5~15份;分散剂1~2份;消泡剂0.2~0.8份;活性稀释剂0.1~0.5份;流平剂1~5份;水2~10份;固化剂5~30份;
所述石墨烯-钙钛矿复合物由石墨烯和钙钛矿组成,所述钙钛矿的粒径为纳米级,所述钙钛矿分布于石墨烯的片层之间。
在本发明中,以重量份计,所述石墨烯-钙钛矿掺杂环氧防腐涂料包括石墨烯-钙钛矿复合物2~10份,优选为4~6份;所述钙钛矿优选为锰酸镧钙钛矿;所述钙钛矿和石墨烯的质量比优选为1:0.5~1。在本发明中,钙钛矿富含氧空穴,有利于吸附金属表面的氧,从而延缓金属腐蚀,提高石墨烯复合防腐涂料的抗老化性能;石墨烯为钙钛矿的负载提供二维平面,钙钛矿分散于石墨烯片层之间,具有良好的分散性,且这种结构还有利于提高防腐涂料的稳定性和机械性能。
在本发明中,所述石墨烯-钙钛矿复合物的制备方法优选包括如下步骤:
将硝酸镧、硝酸锰、还原剂和水混合后,进行溶胶凝胶反应,然后依次进行干燥和烧结,得到纳米级钙钛矿颗粒;
将所述纳米级钙钛矿颗粒和氧化石墨烯混合后,在保护气氛中煅烧,得到石墨烯-钙钛矿复合物。
本发明将硝酸镧、硝酸锰、还原剂和水混合后,进行溶胶凝胶反应,然后依次进行干燥和烧结,得到纳米级钙钛矿颗粒。在本发明中,原料在溶剂中水解反应生成活性单体,活性单体在还原剂作用下进行聚合成为溶胶,溶胶经陈化胶粒间缓慢聚合,形成三维网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶,凝胶经过干燥、烧结固化制备出纳米结构的材 料
在本发明中,所述还原剂优选为柠檬酸。
在本发明中,所述硝酸镧、硝酸锰和还原剂的摩尔比优选为1:1:1~5。
在本发明中,所述溶胶凝胶反应的温度优选为60~80℃,更优选为65~75℃,时间优选为1~5h。
溶胶凝胶反应完成后,本发明将所得反应体系直接进行干燥,然后烧结,得到纳米级钙钛矿颗粒。
本发明对所述干燥的方式的没有特殊限定,能够得到恒重的产物即可。
在本发明中,所述烧结的温度优选为600~900℃,更优选为700~800℃;时间优选为1~5h;升温至烧结所需温度的升温速率优选为2~10℃/min,更优选为4~6℃/min。
在本发明中,所述纳米级钙钛矿的平均粒径优选为50~200nm。
得到纳米级钙钛矿颗粒后,本发明将所述纳米级钙钛矿颗粒和氧化石墨烯混合后,在保护气氛中煅烧,得到石墨烯-钙钛矿复合物。在本发明中,氧化石墨烯表面存在丰富的含氧基团,其与纳米级钙钛矿颗粒混合后,有利于纳米级钙钛矿颗粒在其片层间均匀分布,而煅烧过程中氧化石墨烯中的含氧基团被除去,得到石墨烯。
在本发明中,所述纳米级钙钛矿颗粒和氧化石墨烯的混合方式优选为将纳米级钙钛矿颗粒、氧化石墨烯和水混合后,干燥,得到钙钛矿氧化物和氧化石墨烯的混合物,更优选先将氧化石墨烯和水混合得到氧化石墨烯的分散液,然后加入纳米级钙钛矿颗粒,混合后,干燥,得到钙钛矿氧化物和氧化石墨烯的混合物;所述干燥优选为冷冻干燥,本发明对所述冷冻干燥的条件没有特殊限定,能够将水分去除即可;所述纳米级钙钛矿颗粒与氧化石墨烯的质量比优选为0.5~1:1,更优选为0.7~0.8:1。本发明对所述水的用量没有特殊限定,能够均匀分散纳米级钙钛矿颗粒和氧化石墨烯即可。
本发明对所述氧化石墨烯的来源没有特殊限定,在本发明实施例中,所述氧化石墨烯优选采用Hummers法制备得到。
在本发明中,所述保护气氛优选为氮气或惰性气体氛围。
在本发明中,所述煅烧的温度优选为700~1000℃,更优选为800~900℃, 时间优选为1~10h;升温至煅烧所需温度的升温速率优选为5~20℃/min,更优选为10~15℃/min。
在本发明中,以石墨烯-钙钛矿复合物的重量份为基准,所述石墨烯-钙钛矿掺杂环氧防腐涂料包括环氧树脂10~30份,优选为15~25份;所述环氧树脂优选包括双酚A环氧树脂、酚醛环氧树脂和脂肪族环氧树脂中的至少一种。在本发明中,所述环氧树脂为主要成膜物质,具有附着力强,耐化学品性、防腐性、耐水性、热稳定性和电绝缘性优良等优点。
在本发明中,以石墨烯-钙钛矿复合物的重量份为基准,所述石墨烯-钙钛矿掺杂环氧防腐涂料包括钛白粉2~10份,优选为5~8份;所述钛白粉的平均粒径优选为10~200nm。在本发明中,所述钛白粉的作用为改善涂料的物化性能,增强化学稳定性,以至提高遮盖力、消色力、防腐蚀性、耐光、耐候性,增强漆膜的机械强度和附着力。
在本发明中,以石墨烯-钙钛矿复合物的重量份为基准,所述石墨烯-钙钛矿掺杂环氧防腐涂料包括成膜助剂5~15份,优选为8~12份;所述成膜助剂包括乙二醇丁醚醇酸脂、二元酸二甲酯类成膜助剂和二元酸二乙酯类成膜助剂中的至少一种;所述二元酸二甲酯类成膜助剂优选包括己二酸二甲酯、丁二酸二甲酯和戊二酸二甲酯中的至少一种;所述二元酸二乙酯类成膜助剂优选包括丙二酸二乙酯和戊二酸二乙酯中的至少一种。在本发明中,所述成膜助剂能够促进高分子化合物的塑性流动和弹性变形,改善聚结性能,使涂料能在较广泛施工温度范围内成膜。
在本发明中,以石墨烯-钙钛矿复合物的重量份为基准,所述石墨烯-钙钛矿掺杂环氧防腐涂料包括分散剂1~2份;所述分散剂优选为自熔性分散剂,更优选为德国毕克公司生产的BYK101、BYK161或BYK163型号的分散剂,或埃夫卡公司生产的Efka5044型号的分散剂。
在本发明中,以石墨烯-钙钛矿复合物的重量份为基准,所述石墨烯-钙钛矿掺杂环氧防腐涂料包括消泡剂0.2~0.8份,优选为0.4~0.6份;所述消泡剂优选包括有机硅类消泡剂、无机硅类消泡剂和聚醚消泡剂中的至少一种。在本发明中,所述消泡剂通过表面张力的降低使薄层破裂,或形成单分子膜,使其附着力降低,易于薄层破裂,从而起到消泡、抑泡的作用,而上 述消泡剂具有消泡速度快、抑泡时间长的优点。
在本发明中,以石墨烯-钙钛矿复合物的重量份为基准,所述石墨烯-钙钛矿掺杂环氧防腐涂料包括活性稀释剂0.1~0.5份,优选为0.2~0.4份;所述活性稀释剂优选为聚丙烯酸类活性稀释剂;在本发明实施例中,所述聚丙烯酸类活性稀释剂优选来源于Western公司的SRA-15型号的聚丙烯酸类活性稀释剂。在本发明中,所述活性稀释剂替代了有机溶剂,使得涂料不需要使用有机溶剂,在固化过程中,可参与环氧树脂的固化反应,成为环氧树脂固化物的一部分,具有环境友好的优势。
在本发明中,以石墨烯-钙钛矿复合物的重量份为基准,所述石墨烯-钙钛矿掺杂环氧防腐涂料包括流平剂1~5份,优选为2~4份;所述流平剂优选为丙烯酸类流平剂和有机硅类流平剂中的至少一种。在本发明中,所述流平剂有助于得到平整、光滑、均匀的涂膜。在本发明中,上述流平剂不仅可以促进涂膜的流动和流平,还不会影响涂膜的层间附着力,并且还有消泡的作用。
在本发明中,以石墨烯-钙钛矿复合物的重量份为基准,所述石墨烯-钙钛矿掺杂环氧防腐涂料包括固化剂5~30份,更优选为15~20份;所述固化剂优选包括脂肪族多元胺类固化剂和脂肪胺加成物类固化剂中的至少一种。在本发明中,上述固化剂与环氧树脂有很好的混溶性,且固化后的环氧树脂耐药品性优良。
在本发明中,上述组分和配比得到的防腐涂料具有优异的抗老化性,且综合性能优异。
本发明还提供了上述技术方案所述石墨烯-钙钛矿掺杂环氧防腐涂料的制备方法,包括如下步骤:
将石墨烯-钙钛矿复合物、成膜助剂、分散剂、消泡剂、活性稀释剂、流平剂和水混合,得到石墨烯-钙钛矿浆料;
将所述石墨烯-钙钛矿浆料、环氧树脂和钛白粉混合,得到预制涂料;
将所述预制涂料和固化剂混合,得到石墨烯-钙钛矿掺杂环氧防腐涂料。
本发明所提供的石墨烯-钙钛矿掺杂环氧防腐涂料的制备方法能够得到分散更加均匀的防腐涂料。
本发明对石墨烯-钙钛矿掺杂环氧防腐涂料中的制备过程中的混合没有特殊限定,能够得到混合均匀的混合物即可。
下面结合实施例对本发明提供的一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
将硝酸镧、硝酸锰和无水柠檬酸以摩尔比为1:1:1的比例溶于水中混合均匀,将所得混合物在70℃进行溶胶凝胶反应6h,然后烘干水分,再以2℃/min的升温速率加热至600℃,保温1h,得到纳米级钙钛矿颗粒,经测试得到其平均粒径为50nm;将纳米级钙钛矿颗粒分散于浓度为1wt.%的氧化石墨烯水分散液中,其中纳米级钙钛矿颗粒和氧化石墨烯的质量比为0.5:1,然后冷冻干燥得到混合物,将所得混合物在氮气保护下,以5℃/min的升温速率加热至700℃,保温1h,得到石墨烯-钙钛矿复合物;
各原料以重量份计,制备石墨烯-钙钛矿掺杂环氧防腐涂料:
将石墨烯-钙钛矿复合物2份、乙二醇丁醚醇酸脂5份、BYK101分散剂(德国毕克公司)1份、有机硅类消泡剂0.2份、聚丙烯酸活性稀释剂0.1份、丙烯酸类流平剂1份与水2份混合,得到石墨烯-钙钛矿浆料;
将所述石墨烯-钙钛矿浆料、双酚A环氧树脂10份与钛白粉2份混合,得到预制涂料;钛白粉的平均粒径为10nm;
将所述预制涂料与脂肪族多元胺类固化剂固化剂5份混合,得到石墨烯-钙钛矿掺杂环氧防腐涂料。
实施例2
将硝酸镧、硝酸锰和无水柠檬酸以摩尔比为1:1:2的比例溶于水中混合均匀,将所得混合物在80℃进行溶胶凝胶反应5h,然后烘干水分,再以5℃/min的升温速率加热至700℃,保温3h,得到纳米级钙钛矿颗粒,经测试得到其平均粒径为100nm;将纳米级钙钛矿颗粒分散于浓度为5wt.%的氧化石墨烯水分散液中,其中纳米级钙钛矿颗粒和氧化石墨烯的质量比为0.8:1,然后冷冻干燥得到混合物,将所得混合物在氮气保护下,以10℃/min的升温速率加热至800℃,保温5h,得到石墨烯-钙钛矿复合物;
各原料以重量份计,制备石墨烯-钙钛矿掺杂环氧防腐涂料:
将石墨烯-钙钛矿复合物5份、己二酸二甲酯10份、BYK161分散剂(德国毕克公司)1.5份、无机硅类消泡剂0.5份、聚丙烯酸活性稀释剂0.2份、有机硅类流平剂3份与水10份混合,得到石墨烯-钙钛矿浆料;
将所述石墨烯-钙钛矿浆料、酚醛环氧树脂20份与钛白粉5份混合,得到预制涂料;钛白粉的平均粒径为100nm;
将所述预制涂料与脂肪族多元胺类固化剂15份混合,得到石墨烯-钙钛矿掺杂环氧防腐涂料。
实施例3
将硝酸镧、硝酸锰和无水柠檬酸以摩尔比为1:1:4的比例溶于水中混合均匀,将所得混合物在90℃进行溶胶凝胶反应3h,然后烘干水分,再以10℃/min的升温速率加热至900℃,保温5h,得到纳米级钙钛矿颗粒,经测试得到其平均粒径为200nm;将纳米级钙钛矿颗粒分散于浓度为10wt.%的氧化石墨烯水分散液中,其中纳米级钙钛矿颗粒和氧化石墨烯的质量比为1:1,然后冷冻干燥得到混合物,将所得混合物在氮气保护下,以20℃/min的升温速率加热至1000℃,保温10h,得到石墨烯-钙钛矿复合物;
各原料以重量份计,制备石墨烯-钙钛矿掺杂环氧防腐涂料:
将石墨烯-钙钛矿复合物10份、丙二酸二乙酯15份、分散剂(埃夫卡公司生产的Efka5044型号的分散剂)2份、无机硅类消泡剂0.8份、聚丙烯酸活性稀释剂0.5份、有机硅类流平剂5份与水10份混合,得到石墨烯-钙钛矿浆料;
将所述石墨烯-钙钛矿浆料、脂肪族环氧树脂30份与钛白粉10份混合,得到预制涂料;钛白粉的平均粒径为200nm;
将所述预制涂料与脂肪胺加成物类固化剂30份混合,得到石墨烯-钙钛矿掺杂环氧防腐涂料。
对比例1
按照实施例3的方法制备防腐涂料,不同之处在于,将石墨烯-钙钛矿复合物替换为石墨烯。
按照国家标准(HG/T 4759-2014)测试实施例1~3和对比例1所得防腐涂料的耐水性、耐碱性、耐盐雾性、抗冲击性和抗老化性,结果如表1所示,其中耐水性、耐碱性和耐盐雾性分别以最长耐水时间、最长耐碱时间和最长耐盐雾时间表示,抗冲击性以引起漆膜破坏的最大高度表示,抗老化性以紫外线加速老化照射下的最长不变色时间表示。由表1可知实施例1~3所得石墨烯-钙钛矿掺杂环氧防腐涂料与石墨烯掺杂环氧防腐涂料相比具有更好的耐水性、耐碱性、耐盐雾性、抗冲击性及抗老化性。
表1实施例1~3和对比例1所得防腐涂料的耐水性、耐碱性、耐盐雾性和抗冲击性测试结果
组别 耐水性 耐碱性 耐盐雾性 抗冲击性 抗老化性
实施例1 1480h 3810h 2860h 79cm 1200h
实施例2 1620h 4580h 3530h 88cm 1400h
实施例3 1530h 4020h 3070h 82cm 1300h
对比例1 1240h 3500h 2580h 72cm 1000h
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种石墨烯-钙钛矿掺杂环氧防腐涂料,其特征在于,包括如下质量份数的组分:
    石墨烯-钙钛矿复合物2~10份;环氧树脂10~30份;钛白粉2~10份;成膜助剂5~15份;分散剂1~2份;消泡剂0.2~0.8份;活性稀释剂0.1~0.5份;流平剂1~5份;水2~10份;固化剂5~30份;
    所述石墨烯-钙钛矿复合物由石墨烯和钙钛矿组成,所述钙钛矿的粒径为纳米级,所述钙钛矿分布于石墨烯的片层之间。
  2. 根据权利要求1所述石墨烯-钙钛矿掺杂环氧防腐涂料,其特征在于,所述钙钛矿为锰酸镧钙钛矿。
  3. 根据权利要求2所述石墨烯-钙钛矿掺杂环氧防腐涂料,其特征在于,所述石墨烯-钙钛矿复合物的制备方法包括如下步骤:
    将硝酸镧、硝酸锰、还原剂和水混合后,进行溶胶凝胶反应,然后依次进行干燥和烧结,得到纳米级钙钛矿颗粒;
    将所述纳米级钙钛矿颗粒和氧化石墨烯混合后,在保护气氛中煅烧,得到石墨烯-钙钛矿复合物。
  4. 根据权利要求3所述石墨烯-钙钛矿掺杂环氧防腐涂料,其特征在于,所述纳米级钙钛矿颗粒与氧化石墨烯的质量比为0.5~1:1。
  5. 根据权利要求3所述石墨烯-钙钛矿掺杂环氧防腐涂料,其特征在于,所述烧结的温度为600~900℃,时间为1~5h,升温至烧结所需温度的升温速率为2~10℃/min;所述煅烧的温度为700~1000℃,时间为1~10h,升温至煅烧所需温度的升温速率为5~20℃/min。
  6. 根据权利要求1所述石墨烯-钙钛矿掺杂环氧防腐涂料,其特征在于,所述环氧树脂包括双酚A环氧树脂、酚醛环氧树脂和脂肪族环氧树脂中的至少一种。
  7. 根据权利要求1所述石墨烯-钙钛矿掺杂环氧防腐涂料,其特征在于,所述成膜助剂包括乙二醇丁醚醇酸脂、二元酸二甲酯类成膜助剂和二元酸二乙酯类成膜助剂中的至少一种;所述分散剂为自熔性分散剂。
  8. 根据权利要求1所述石墨烯-钙钛矿掺杂环氧防腐涂料,其特征在于,所述消泡剂包括有机硅类消泡剂、无机硅类消泡剂和聚醚消泡剂中的至少一 种;所述活性稀释剂包括聚丙烯酸类活性稀释剂。
  9. 根据权利要求1所述石墨烯-钙钛矿掺杂环氧防腐涂料,其特征在于,所述流平剂包括丙烯酸类流平剂和有机硅类流平剂中的至少一种;所述固化剂包括脂肪族多元胺类固化剂和脂肪胺加成物类固化剂中的至少一种。
  10. 权利要求1~9任一项所述石墨烯-钙钛矿掺杂环氧防腐涂料的制备方法,其特征在于,包括如下步骤:
    将石墨烯-钙钛矿复合物、成膜助剂、分散剂、消泡剂、活性稀释剂、流平剂和水混合,得到石墨烯-钙钛矿浆料;
    将所述石墨烯-钙钛矿浆料、环氧树脂和钛白粉混合,得到预制涂料;
    将所述预制涂料和固化剂混合,得到石墨烯-钙钛矿掺杂环氧防腐涂料。
PCT/CN2020/090249 2019-08-27 2020-05-14 一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法 WO2021036349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910794751.8 2019-08-27
CN201910794751.8A CN110484093A (zh) 2019-08-27 2019-08-27 一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021036349A1 true WO2021036349A1 (zh) 2021-03-04

Family

ID=68554368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090249 WO2021036349A1 (zh) 2019-08-27 2020-05-14 一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法

Country Status (3)

Country Link
CN (1) CN110484093A (zh)
CH (1) CH716599A2 (zh)
WO (1) WO2021036349A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484093A (zh) * 2019-08-27 2019-11-22 江苏冠军科技集团股份有限公司 一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法
CN113527932A (zh) * 2021-08-09 2021-10-22 江苏冠军科技集团股份有限公司 一种离子液体-钙钛矿-碳材料掺杂水性环保防腐涂料及其制备方法与应用
CN116589876A (zh) * 2023-03-03 2023-08-15 贵州师范大学 一种层状石墨烯-无机钙钛矿复合防火涂料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104231815A (zh) * 2014-09-30 2014-12-24 济宁利特纳米技术有限责任公司 石墨烯功能性防污防腐涂料及制备、涂刷方法
CN106410226A (zh) * 2016-12-08 2017-02-15 深圳大学 石墨烯掺杂改性纳米钙钛矿型La1‑xSrxMnO3复合材料及其制备方法和应用
CN106675336A (zh) * 2016-12-29 2017-05-17 宁波墨西科技有限公司 一种石墨烯防腐涂料及其制备方法
KR20180101272A (ko) * 2017-03-03 2018-09-12 주식회사 아모그린텍 방열 분체 도료 조성물, 이를 통해 제조된 방열 분체 도료 및 그 제조방법
CN109337557A (zh) * 2018-09-29 2019-02-15 安徽兆拓新能源科技有限公司 一种高效能太阳能板表面涂料的制备方法
CN110484093A (zh) * 2019-08-27 2019-11-22 江苏冠军科技集团股份有限公司 一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860616A (zh) * 2016-06-28 2016-08-17 项敬来 一种包含纳米复合材料的阻燃耐腐蚀涂料的制备方法
CN109181476A (zh) * 2018-08-16 2019-01-11 恒力盛泰(厦门)石墨烯科技有限公司 一种石墨烯防腐涂料及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104231815A (zh) * 2014-09-30 2014-12-24 济宁利特纳米技术有限责任公司 石墨烯功能性防污防腐涂料及制备、涂刷方法
CN106410226A (zh) * 2016-12-08 2017-02-15 深圳大学 石墨烯掺杂改性纳米钙钛矿型La1‑xSrxMnO3复合材料及其制备方法和应用
CN106675336A (zh) * 2016-12-29 2017-05-17 宁波墨西科技有限公司 一种石墨烯防腐涂料及其制备方法
KR20180101272A (ko) * 2017-03-03 2018-09-12 주식회사 아모그린텍 방열 분체 도료 조성물, 이를 통해 제조된 방열 분체 도료 및 그 제조방법
CN109337557A (zh) * 2018-09-29 2019-02-15 安徽兆拓新能源科技有限公司 一种高效能太阳能板表面涂料的制备方法
CN110484093A (zh) * 2019-08-27 2019-11-22 江苏冠军科技集团股份有限公司 一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法

Also Published As

Publication number Publication date
CH716599A2 (de) 2021-03-15
CN110484093A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021036349A1 (zh) 一种石墨烯-钙钛矿掺杂环氧防腐涂料及其制备方法
CN107868567B (zh) 环氧锌粉底漆、油漆配套组合物及应用
WO2019233161A1 (zh) 水性耐高温漆及其制备方法
CN101230224A (zh) 氟硅橡胶纳米复合合金三防涂料及其生产方法
CN108641419B (zh) 一种超亲水涂层溶胶及其制备和使用方法
CN107974162B (zh) 一种云母氧化铁改性的防锈防水耐磨型酚醛树脂漆的制备方法
CN107987698B (zh) 一种含改性氧化石墨烯的水性防腐涂料及其制备方法
CN114106608B (zh) 一种低voc水性双组分环氧富锌涂料及其制备方法
CN116970325B (zh) 一种建筑防火涂料及其制备方法
CN115044279B (zh) 二维聚多巴胺增强水性环氧复合防腐涂料及其制法与应用
WO2023142977A1 (zh) 一种天冬聚脲涂料及其制备方法
CN107828313B (zh) 一种含改性氧化石墨烯的环氧树脂涂料及其制备方法
CN112521834A (zh) 一种水性石墨烯导静电防腐涂料及其制备方法
CN113801572B (zh) 一种超疏水、高稳定纳米陶瓷涂料及其使用方法
CN113980557A (zh) 一种无溶剂酚醛环氧隔热防腐涂料及其制备方法
CN113527932A (zh) 一种离子液体-钙钛矿-碳材料掺杂水性环保防腐涂料及其制备方法与应用
CN112029408A (zh) 一种环保防水涂料及其制备方法
CN114891409B (zh) 金属材料用单涂层水性陶瓷隔热防腐涂料及其制备方法
CN114574043B (zh) 一种纳米/聚乙烯蜡复合改性石墨烯涂料及其制备方法
CN112680076A (zh) 一种功能化石墨烯增强水性聚氨酯防腐涂层的制备方法
CN110591517A (zh) 一种水性氨基烤漆及其制备方法
CN112375416B (zh) 一种阻燃耐候有机-无机复合水性地坪漆及其制备方法与应用
CN115678384A (zh) 一种水性树脂涂料组合物及其制备方法
CN108329807A (zh) 一种快干单组份水性丙烯酸-醇酸石墨烯防腐涂料
CN115093768A (zh) 一种无溶剂改性环氧防腐涂层及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857669

Country of ref document: EP

Kind code of ref document: A1