WO2021036308A1 - 检测电气设备热失控的装置、方法及系统 - Google Patents

检测电气设备热失控的装置、方法及系统 Download PDF

Info

Publication number
WO2021036308A1
WO2021036308A1 PCT/CN2020/086638 CN2020086638W WO2021036308A1 WO 2021036308 A1 WO2021036308 A1 WO 2021036308A1 CN 2020086638 W CN2020086638 W CN 2020086638W WO 2021036308 A1 WO2021036308 A1 WO 2021036308A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical equipment
thermal runaway
metal detection
signal
detection line
Prior art date
Application number
PCT/CN2020/086638
Other languages
English (en)
French (fr)
Inventor
蔡雄兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021036308A1 publication Critical patent/WO2021036308A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer

Definitions

  • This application relates to the technical field of disaster prevention and mitigation, and in particular to a device, method and system for detecting thermal runaway of electrical equipment.
  • the computer rooms of servers and data centers are usually equipped with a large number of electrical equipment such as computers and switches. These electrical equipment are supplied with power by themselves and externally equipped power supply equipment to maintain normal operation. Because of the numerous electrical equipment in the computer room and the large power consumption, it is very important to ensure the fire safety of the computer room.
  • the computer room In order to ensure the fire safety of the computer room, the computer room is generally equipped with a fire-fighting system, including setting up smoke sensors, temperature sensors, etc. to monitor the environment in the computer room in real time to determine whether a fire has occurred, and to take corresponding warning measures.
  • Various types of electrical equipment in the computer room are usually densely arranged in cabinets. If a fire occurs, the fire usually starts from a certain power supply device or a certain electrical component and spreads to other electrical equipment. It often takes a period of time from the occurrence of a fire to when the fire generates enough smoke to cause the smoke sensor to alarm, or the fire raises the temperature in the equipment room and causes the temperature sensor to alarm. During this period of time, the fire situation has reached a certain scale and has caused great losses. It can be seen that the current methods for detecting fires in electrical equipment have poor timeliness and cannot detect fires in time.
  • the embodiments of the present application provide a device, method, and system for detecting thermal runaway of electrical equipment, so as to solve the problem that the prior art method for detecting fire of electrical equipment has poor timeliness and cannot detect the fire in time.
  • an embodiment of the present application provides a device for detecting thermal runaway of electrical equipment.
  • the device includes: a metal detection line and a voltage divider resistor; one end of the metal detection line is coupled to the ground as a ground terminal; the other end of the metal detection line is used as a signal sampling terminal, which is connected in series with one end of the voltage divider resistor; the other end of the voltage divider resistor is coupled To the power supply voltage; the metal detection line is laid on the electrical equipment and passes through at least one preset detection area of the electrical equipment.
  • the detection area includes the area where the components are concentratedly distributed in the electrical equipment, and/or the area where the components with fire risk are located.
  • the signal sampling result can be obtained through the metal detection line laid in the electrical equipment, and based on the change or abnormality of the signal sampling result, the thermal runaway and initial fire of the electrical equipment can be detected in time. Specifically, when a thermal runaway or even a fire occurs in the preset detection area, the metal detection line near the preset detection area may be disconnected, and the detected signal sampling result may undergo abrupt changes, thereby detecting an abnormality The occurrence of fire. For example, when the electrical equipment does not have thermal runaway, since the resistance of the voltage divider resistor is much larger than the resistance of the metal detection line, the voltage drop between the power supply voltage and the ground terminal mainly occurs on the voltage divider resistor, so the signal is sampled The terminal can measure low-level signals.
  • the metal detection wire passing through the detection area will be burned out under the action of the thermal runaway high temperature to form an open circuit, resulting in a gap between the power supply voltage and the ground terminal.
  • the voltage drop mainly occurs at the position where the metal detection line is open, so the signal measured from the signal sampling end will flip from a low-level signal to a high-level signal, which indicates that the electrical equipment has a thermal runaway or even a fire. Therefore, the device for detecting thermal runaway of electrical equipment provided by the present application can detect thermal runaway and initial fire of electrical equipment in time, has a simple structure, flexible layout, easy implementation, and can be widely used in various electrical equipment and occasions.
  • the metal detection line further includes at least one auxiliary signal sampling terminal, which is located between the signal sampling terminal and the ground terminal of the metal detection line; when the metal detection line is laid on the electrical equipment, the auxiliary signal sampling terminal is located between the signal sampling terminal and the ground terminal of the metal detection line.
  • the signal sampling terminal is arranged between any two detection areas passing by the metal detection line. Therefore, the device for detecting thermal runaway of electrical equipment provided by the present application can not only detect the thermal runaway and initial fire of electrical equipment in time, but also accurately locate the location of thermal runaway. It has simple structure, flexible layout, easy implementation, and can be widely used. Used in various electrical equipment and occasions.
  • the metal detection line exhibits a continuous reciprocating serpentine distribution when passing through the detection area.
  • the length of the metal detection line in the detection area is longer, the distribution is more dense, and it can be closer to more components.
  • the components of electrical equipment are thermally out of control, they are more likely to be burned, which is beneficial to timely detection. To thermal runaway occurs.
  • the metal detection wire is a single-core wire or a multi-core wire.
  • Single-core conductors or multi-core conductors can be routed flexibly in electrical equipment, which is convenient to be arranged in areas where electrical equipment needs to detect thermal runaway, and does not change the original structure and wiring layout of electrical equipment. It is easy to implement and has low implementation costs.
  • the metal detection wire is a metal coated wire
  • the metal coated wire is etched on the PCB single board of the electrical device, and is electrically isolated from the conductive medium of the PCB single board.
  • the metal coating line can be etched into the PCB veneer during the production stage of the PCB veneer, so that the PCB veneer has the native ability to detect thermal runaway when it leaves the factory.
  • the high temperature will melt the PCB veneer and burn the metal coating wire etched on the PCB veneer, so that the device provided in this application can detect the thermal runaway of the PCB veneer.
  • the metal detection line is laid in the cabinet of the electrical equipment. Therefore, the device for detecting thermal runaway of electrical equipment provided by the present application can detect thermal runaway in the electrical equipment cabinet in time.
  • the metal detection line is arranged in a downward direction of the air duct formed by the heat dissipation fan in the detection area. Therefore, in the present application, the metal detection line is arranged in the downward direction of the air duct, which is beneficial for detecting the thermal runaway information of the electrical equipment as soon as possible.
  • the metal detection line includes a plurality of hot melt sections, and the hot melt sections are used to fuse when the temperature is higher than the melting point.
  • the hot melt section will fuse before the component ignites, so that the thermal runaway is detected before the electrical equipment ignites.
  • the embodiments of the present application provide a method for detecting thermal runaway of electrical equipment.
  • the method can also be applied to the device provided in the first aspect of the present application, and the method includes: measuring the indication signal of the signal sampling terminal; and determining that the electrical equipment has a thermal runaway according to the indication signal. Therefore, the method for detecting thermal runaway of electrical equipment provided by the embodiments of the present application can detect thermal runaway of electrical equipment in time, is easy to implement, and can be widely used in various occasions.
  • the indication signal is a level signal
  • the level signal includes a high-level signal and a low-level signal. Therefore, the method for detecting thermal runaway of an electrical device provided by the embodiment of the present application can determine whether the electrical device has thermal runaway according to the high-level signal and the low-level signal of the signal sampling terminal.
  • the indication signal when the indication signal is a high-level signal, it is determined that the electrical device has thermal runaway. Therefore, the indicating signal is a low-level signal when the electrical equipment does not have a thermal runaway, and turns to a high-level signal when the electrical equipment has a thermal runaway, so as to indicate that the electrical equipment has a thermal runaway.
  • the indication signal when the indication signal is a low-level signal, it is determined that the electrical device has thermal runaway. As a result, the indicating signal is a high-level signal when the electrical equipment does not have a thermal runaway, and turns to a low-level signal when the electrical equipment has a thermal runaway to indicate that the electrical equipment has a thermal runaway.
  • an embodiment of the present application provides an electrical device, a cabinet, multiple PCB single boards are arranged in the cabinet, and multiple PCB single boards are stacked and arranged in the cabinet; any possible implementation manner of the first aspect of the present application Provides a device for detecting thermal runaway of electrical equipment; the metal detection wire of the device is laid in the cabinet and interspersed between multiple PCB boards.
  • an embodiment of the present application provides a system for detecting thermal runaway of electrical equipment, including electrical equipment, and a device for detecting thermal runaway of electrical equipment provided by any one of the possible implementations of the first aspect of the present application.
  • the embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium stores program code, and when the program code is executed by a terminal or a processor in the terminal, the second aspect Any of the methods described in the possible implementation manners.
  • an embodiment of the present application provides a computer program product.
  • the program code included in the computer program product is executed by a processor in a terminal, the method as described in any one of the possible implementation manners of the second aspect is implemented.
  • FIG. 1 is a schematic structural diagram of a device for detecting thermal runaway of electrical equipment provided by the first embodiment of the present application;
  • FIG. 2 is a schematic diagram of the application of the device for detecting thermal runaway of electrical equipment provided by the second embodiment of the present application on a PCB single board;
  • FIG. 3 is a schematic diagram of the device for detecting thermal runaway of electrical equipment provided by the third embodiment of the present application applied to a PCB single board;
  • FIG. 4 is a schematic diagram of the device for detecting thermal runaway of electrical equipment provided by the fourth embodiment of the present application applied to a PCB single board;
  • FIG. 5 is a schematic diagram of the application of the device for detecting thermal runaway of electrical equipment provided by the fifth embodiment of the present application on a PCB single board;
  • FIG. 6 is a schematic diagram of the device for detecting thermal runaway of electrical equipment provided by the sixth embodiment of the present application applied to a PCB single board;
  • FIG. 7 is a schematic diagram of the device for detecting thermal runaway of electrical equipment provided by the seventh embodiment of the present application applied to a PCB single board;
  • FIG. 8 is a schematic structural diagram of a device for detecting thermal runaway of electrical equipment according to an eighth embodiment of the present application.
  • FIG. 9 is a schematic diagram of the device for detecting thermal runaway of electrical equipment provided by the ninth embodiment of the present application applied to a cabinet;
  • Fig. 10 is a flowchart of a method for detecting thermal runaway of electrical equipment according to a tenth embodiment of the present application.
  • the present application provides a device, method and system for detecting thermal runaway of electrical equipment, so as to solve the problem of poor timeliness of the fire detection method of electrical equipment in the prior art and failure to detect the fire in time.
  • FIG. 1 is a schematic diagram of the device. As shown in Fig. 1, the device includes: a metal detection line 10 and a voltage divider resistor R1.
  • the metal detection wire 10 in the embodiment of the present application can be composed of, but not limited to, various types of single-core wires, multi-core wires, coaxial cables, and aluminum foil wires with or without an insulating outer layer. , Copper foil wire and various wires with conductive ability are realized.
  • the metal detection wire 10 can be realized by wires including but not limited to gold, silver, iron, copper, zinc, iron, lead, tin, and other metal or non-metal conductive materials, alloys and compounds thereof.
  • the embodiment of the present application does not specifically limit the shape and material of the metal detection wire 10.
  • one end of the metal detection line 10 is coupled to the ground as a ground terminal GND.
  • the other end of the metal detection line 10 serves as a signal sampling end Vsam, which is connected in series with one end of the voltage divider resistor R1.
  • the other end of the voltage divider R1 is coupled to the power supply voltage VCC.
  • the metal detection line 10 is directly laid on the electrical equipment and passes through at least one preset detection area of the electrical equipment.
  • the detection area can be the area where the components of the electrical equipment are concentrated and/or the area where the components that are at risk of fire are located, for example: the area where the power supply, electrical interfaces, capacitors and resistors of the electrical equipment are located , And the area where the uninterruptible power system (UPS) and high-voltage direct current (HVDC) connected to the electrical equipment are located.
  • the detection area may also be an area where a metal oxide semiconductor field effect transistor (MOS), a resonance circuit LLC, a capacitor, etc. are located in the power supply of the electrical equipment.
  • MOS metal oxide semiconductor field effect transistor
  • the metal detection line 10 can be laid on the electrical equipment in a variety of ways.
  • the metal detection wire 10 can be directly laid on the surface of the PCB single board of the electrical equipment by means of wire bonding, and can be fixed by means of buckle, glue, or the like.
  • the metal detection wire 10 may also be fixed on the housing of the electrical device, and sequentially approach at least one preset detection area of the electrical device.
  • the metal detection wire 10 when the electrical equipment is inserted in the cabinet, the metal detection wire 10 can also be fixed on the cabinet body of the cabinet and approach multiple detection areas of the electrical equipment in sequence.
  • the signal sampling end of the metal detection line 10 is connected to any voltage measurement device (for example: a voltage comparator), which is used to measure the voltage of the signal sampling end and sample the measured signal The terminal voltage is compared with the preset voltage threshold, and an indicator signal is output to indicate the measurement result.
  • the specific form of the indication signal may be a level signal, such as a high-level signal and a low-level signal; or, a pulse signal, such as a long pulse signal and a short pulse signal; or, a current signal, such as a high current signal and a low current signal. Signal; or, light signal, sound signal.
  • the embodiment of the present application does not limit the specific form of the indication signal, and signals that can generate different signal states for indicating different information can be used as the indication signal in the embodiment of the present application.
  • the present application takes the indication signal as a level signal as an example to expand the description of the technical solution of the present application.
  • the voltage drop from the power supply voltage VCC to the ground terminal GND mainly occurs On the voltage divider resistor R1, the signal measured from the signal sampling terminal Vsam is a low-level signal.
  • the high temperature and flame will immediately burn the metal detection line 10 passing through the detection area, causing the metal detection line 10 to open, causing the signal measured from the signal sampling terminal Vsam to change from low voltage.
  • the flat signal is inverted to a high signal.
  • the device for detecting thermal runaway of electrical equipment provided by the embodiments of the present application can detect thermal runaway and initial fire of electrical equipment in time. It has a simple structure, flexible layout, easy implementation, and can be widely used in various electrical equipment and occasions. .
  • the second embodiment of the present application shows the application of the device for detecting thermal runaway of electrical equipment on the PCB single board.
  • Figure 2 is a schematic diagram of the application of a device for detecting thermal runaway of electrical equipment on a PCB single board.
  • a large number of components are installed on the PCB single board 20.
  • multiple detection areas can be divided on the PCB single board 20. These detection areas may be areas where the components are concentrated and/or the components that are at risk of fire are located Area.
  • the metal detection wire 10 is a single-core wire or a multi-core wire, one end is used as a signal sampling terminal Vsam, and the other end is used as a ground terminal GND to be coupled to the ground.
  • the metal detection line 10 is directly laid on the surface of the PCB single board 20 on the side where the components are installed, passes through each detection area in turn, and is close to the components that are at risk of fire in the detection area.
  • the metal detection line 10 can be fixed on the PCB veneer 20 by means of snaps, glue dispensing, etc., to ensure that the PCB veneer 20 will not detach from the detection area in any posture.
  • the metal detection line 10 when a certain component on the PCB single board 20 suffers from thermal runaway, such as an abnormal temperature rise or a fire, the metal detection line 10 will be burned at the position passing the component, causing the metal The detection line 10 is open, which causes the signal measured from the signal sampling terminal Vsam to be inverted from a low-level signal to a high-level signal to indicate that the PCB single board 20 is thermally out of control.
  • the relevant personnel can learn the thermal runaway information of the PCB single board 20 in the first time, so as to take timely treatment measures to extinguish the fire that may occur on the PCB single board 20 in the initial state. Therefore, the apparatus for detecting thermal runaway of electrical equipment provided by the embodiments of the present application can detect the thermal runaway of the PCB single board 20 in time, has a simple structure, flexible layout, and easy implementation, and can be widely used in various occasions.
  • the third embodiment of the present application shows the application of the device for detecting thermal runaway of electrical equipment in the PCB single board 20.
  • FIG. 3 is a schematic diagram of the application of the device for detecting thermal runaway of electrical equipment on the PCB single board 20.
  • the difference between the third embodiment of the present application and the second embodiment is that the metal detection wire 10 of the third embodiment of the present application includes a plurality of hot melt sections 11.
  • the hot melt section 11 is located in at least one detection area, and is close to the components with fire risk in the detection area.
  • the hot-melt section 11 can be made of a material with conductivity and a low melting point, such as lead-tin alloy, zinc, copper, silver, etc. used to make fuses.
  • the component when a component on the PCB single board 20 is thermally out of control, the component will experience two stages of an abnormal temperature rise and a fire after the temperature reaches the ignition point.
  • the melting point of the hot melt section 11 is relatively low (for example, a lead-tin alloy containing 60% tin and 40% lead has the lowest eutectic point of only 183°C)
  • the temperature of the component will first reach the melting point of the hot melt section 11 before reaching the ignition point.
  • the hot melt section 11 will fuse first before the component catches fire, allowing metal detection
  • the line 10 is open, which causes the signal measured from the signal sampling terminal Vsam to be inverted from a low-level signal to a high-level signal to indicate that the PCB single board 20 is thermally out of control.
  • relevant personnel can learn the thermal runaway information of the PCB single board 20 before the component catches fire, so as to take timely treatment measures to extinguish the fire that may occur on the PCB single board 20 in the initial state or even prevent the fire from occurring. Therefore, the apparatus for detecting thermal runaway of electrical equipment provided by the embodiments of the present application can detect the thermal runaway of the PCB single board 20 in time, has a simple structure, flexible layout, and easy implementation, and can be widely used in various occasions.
  • the fourth embodiment of the present application shows the application of the device for detecting thermal runaway of electrical equipment on the PCB single board 20.
  • FIG. 4 is a schematic diagram of the application of the device for detecting thermal runaway of electrical equipment on the PCB single board 20.
  • the metal detection wire 10 is a single-core wire or a multi-core wire, and the components facing the PCB single board 20 are arranged in On the housing 30 and pass through each detection area in turn.
  • the metal detection wire 10 can be fixed on the housing 30 by means of snaps, glue dispensing, etc., to ensure that the metal detection wire 10 will not detach from the detection area under any posture of the housing 30.
  • the heat generated by the component or the burning flame will flow upward (the hot and cold air) Convection causes the hot air to flow upwards) and acts on the metal detection line 10, causing the metal detection line 10 to be burnt and open, causing the signal measured from the signal sampling terminal Vsam to be reversed from a low-level signal to a high-level signal. It indicates that the PCB single board 20 has a thermal runaway.
  • the relevant personnel can learn the thermal runaway information of the PCB single board 20 in the first time, so as to take timely treatment measures to extinguish the fire that may occur on the PCB single board 20 in the initial state. Therefore, the device for detecting thermal runaway of electrical equipment provided by the embodiments of the present application can detect the thermal runaway of PCB single board 20 in time, has simple structure, flexible layout, easy implementation, and can be widely used in various occasions.
  • the fifth embodiment of the present application shows the application of the device for detecting thermal runaway of electrical equipment to the PCB single board 20.
  • FIG. 5 is a schematic diagram of the application of the device for detecting thermal runaway of electrical equipment on the PCB single board 20.
  • the difference between the third embodiment of the present application and the second embodiment is that the metal detection line 10 of the fifth embodiment of the present application further includes one or more signals between the signal sampling terminal Vsam and the ground terminal GND.
  • the metal detection line 10 in FIG. 5 includes five auxiliary signal sampling terminals, namely Vsam1, Vsam2, Vsam3, Vsam4, and Vsam5.
  • the auxiliary signal sampling end is located between any two detection areas that the metal detection line 10 passes through.
  • the auxiliary signal sampling terminal Vsam1 is located between the detection area 1 and the detection area 2;
  • the auxiliary signal sampling terminal Vsam2 is located between the detection area 2 and the detection area 3;
  • the auxiliary signal sampling terminal Vsam3 is located between the detection area 3 and the detection area 4;
  • the auxiliary signal sampling end Vsam4 is located between the detection area 4 and the detection area 5;
  • the auxiliary signal sampling end Vsam5 is located between the detection area 5 and the detection area 6.
  • each auxiliary signal sampling terminal is connected to a voltage measuring device (for example: a voltage comparator).
  • the voltage measuring device is used to measure the voltage of the auxiliary signal sampling terminal connected to it, and to combine the measured auxiliary signal
  • the voltage of the sampling terminal is compared with the preset voltage threshold. If the voltage of the auxiliary signal sampling terminal is greater than or equal to the voltage threshold, a high-level signal is output; if the voltage of the auxiliary signal sampling terminal is less than the voltage threshold, a low-level signal is output.
  • the metal detection line 10 when a component on the PCB single board 20 suffers from thermal runaway, such as an abnormal temperature rise or a fire, the metal detection line 10 will be burned at the position where the component passes by, causing the metal The detection line 10 is open, which causes the signal measured from the signal sampling terminal Vsam and/or the auxiliary signal sampling terminal to be inverted from a low-level signal to a high-level signal to indicate that the PCB single board 20 has a thermal runaway.
  • the fifth embodiment of the present application can also determine the specific location of the PCB single board 20 where thermal runaway occurs.
  • the metal detection line 10 is burned at the position of the detection area 1.
  • the signal sampling terminal Vsam From the direction to the ground terminal GND, the open circuit voltage of the signal sampling terminal Vsam located before the detection area 1 is the power supply voltage VCC. Therefore, a high-level signal can be measured from the signal sampling terminal Vsam; and the auxiliary signal located after the detection area 1
  • the sampling terminals Vsam1 to Vsam5 are grounded after the metal detection line 10 is opened. Therefore, low-level signals can be measured from the auxiliary signal sampling terminals Vsam1 to Vsam5.
  • the metal detection line 10 is burned at the position of the detection area 4.
  • the open circuit voltages of the signal sampling terminal Vsam and auxiliary signal sampling terminals Vsam1 ⁇ Vsam3 located before the detection area 4 are the power supply voltage VCC. Therefore, from the signal sampling terminal Vsam and auxiliary signal sampling terminals Vsam1 ⁇ Vsam3 High-level signals can be measured; and the auxiliary signal sampling terminals Vsam4 to Vsam5 located behind the detection area 4 are grounded after the metal detection line 10 is opened. Therefore, low-level signals can be measured from the auxiliary signal sampling terminals Vsam4 to Vsam5.
  • the method for determining the specific location of the PCB board 20 where thermal runaway occurs can be: if the signal measured from a certain signal sampling terminal Vsam or auxiliary signal sampling terminal is a high-level signal, and the signal sampling terminal Vsam or The signal measured by the other auxiliary signal sampling terminals adjacent to the auxiliary signal sampling terminal is a low-level signal, and the position where thermal runaway occurs is located between the two adjacent signal sampling terminals Vsam/auxiliary signal sampling terminals.
  • the device for detecting thermal runaway of electrical equipment provided by the embodiments of the present application can not only detect the thermal runaway and initial fire of electrical equipment in time, but also accurately locate the location of thermal runaway, with simple structure, flexible layout, and easy implementation. It can be widely used in various electrical equipment and occasions.
  • the sixth embodiment of the present application shows the application of the device for detecting thermal runaway of electrical equipment on the PCB single board 20.
  • FIG. 6 is a schematic diagram of the application of the device for detecting thermal runaway of electrical equipment on the PCB single board 20.
  • some PCB single boards 20 are arranged in the housing 30 of the electrical equipment, and the electrical equipment is also provided with a heat dissipation fan 50 on one side of the housing 30.
  • the metal detection wire 10 is a single-core wire or a multi-core wire, and the components facing the PCB single board 20 are arranged on the housing 30 and located in the downward direction of the air duct formed by the heat dissipation fan 50 in the detection area.
  • the metal detection wire 10 can be fixed on the housing 30 by means of snaps, glue dispensing, etc., to ensure that the metal detection wire 10 will not detach from the detection area under any posture of the housing 30.
  • the heat generated by the component or the burning flame will be affected by the action of the cooling fan 50 It radiates and spreads in the downward direction of the air duct, so it is easier to detect thermal runaway in the downward direction of the air duct.
  • the metal detection line 10 is set in the downward direction of the air duct, which is conducive to detecting the thermal runaway information of the PCB single board 20 as soon as possible, and is convenient for relevant personnel to take timely disposal measures to prevent possible fires from the PCB single board 20. Fight in the initial state. Therefore, the apparatus for detecting thermal runaway of electrical equipment provided by the embodiments of the present application can detect the thermal runaway of the PCB single board 20 in time, has a simple structure, flexible layout, and easy implementation, and can be widely used in various occasions.
  • the seventh embodiment of the present application shows the application of the device for detecting thermal runaway of electrical equipment on the PCB single board 20.
  • FIG. 7 is a schematic diagram of the application of the device for detecting thermal runaway of electrical equipment on the PCB single board 20.
  • the metal detection line 10 is a metal coating line etched on the surface of the PCB single board 20 or the inner layer of the PCB single board 20.
  • the metal coated wire can be formed by etching the surface or inner layer of the PCB single board 20 using materials such as metal copper, tin, lead-tin alloy, tin-copper alloy, gold, and silver, for example.
  • the metal-coated wire is electrically isolated from other conductive media of the PCB single board 20, and supplies power independently, so as not to affect other components mounted on the PCB single board 20.
  • the apparatus for detecting thermal runaway of electrical equipment can detect the thermal runaway of the PCB single board 20 in time, has a simple structure, flexible layout, and easy implementation, and can be widely used in various occasions.
  • the eighth embodiment of the present application provides a device for detecting thermal runaway of electrical equipment.
  • Fig. 8 is a schematic diagram of the structure of the device.
  • the difference between the eighth embodiment of the present application and the first embodiment is that the metal detection wire 10 is distributed in a continuous reciprocating serpentine shape in the detection area of the electrical device.
  • the length of the metal detection line 10 in the detection area is longer, and the distribution is more dense, and it can be close to more components.
  • the components of the electrical equipment are thermally out of control, they are more likely to be burned. It is helpful to detect the occurrence of thermal runaway in time. In this way, relevant personnel can learn about the thermal runaway information of the electrical equipment earlier, so as to take timely disposal measures to extinguish the fire that may occur in the electrical equipment in the initial state.
  • the ninth embodiment of the present application shows the application of a device for detecting thermal runaway of electrical equipment in a cabinet.
  • Fig. 9 is a schematic diagram of a device for detecting thermal runaway of electrical equipment applied in a cabinet.
  • multiple PCB single boards 20 are installed in the cabinet 40 of the electrical equipment, and the multiple PCB single boards 20 are stacked and arranged in the cabinet 40.
  • the metal detection wire 10 can be laid in the cabinet 40, for example, on the inner wall of the cabinet 40, or interspersed and laid between multiple PCB single boards 20.
  • a plurality of devices for detecting thermal runaway of electrical equipment provided in the present application can be arranged in the cabinet 40, so that multiple metal detection wires 10 are arranged in different areas in the cabinet 40 to increase the size of the electrical equipment.
  • the detection range of thermal runaway For key prevention areas of thermal runaway or high risk areas of thermal runaway of electrical equipment, the detection density can be increased by arranging multiple metal detection lines 10 to improve detection sensitivity and timeliness.
  • the apparatus for detecting thermal runaway of electrical equipment can detect thermal runaway in the electrical equipment cabinet 40 in time, has a simple structure, flexible layout, easy implementation, and can be widely used in various occasions.
  • the tenth embodiment of the present application provides a method for detecting thermal runaway of electrical equipment. This method can be applied to the device for detecting thermal runaway of electrical equipment provided by any of the foregoing embodiments.
  • Fig. 10 is a flowchart of a method for detecting thermal runaway of electrical equipment according to a tenth embodiment of the present application. As shown in Figure 10, the method includes the following steps:
  • Step S101 measuring the indication signal of the signal sampling terminal.
  • the indication signal of the measurement signal sampling terminal may be a level signal measured by connecting any voltage measurement device (for example, a voltage comparator) to the signal sampling terminal, and the level signal may include a low-level signal and a high-level signal.
  • any voltage measurement device for example, a voltage comparator
  • the level signal may include a low-level signal and a high-level signal.
  • Step S102 according to the indication signal, it is determined that the electrical equipment has a thermal runaway.
  • a voltage measuring device (such as a voltage comparator) can be set to output a high-level signal when the measured signal sampling terminal voltage is higher than a preset voltage threshold. Therefore, when a high-level signal is measured from the signal sampling terminal, it indicates that the electrical equipment has a thermal runaway, which burns the metal detection line and makes the metal detection line open.
  • a voltage measuring device for example, a voltage comparator
  • a voltage measuring device may be set to output a low-level signal when the measured signal sampling terminal voltage is higher than a preset voltage threshold. Therefore, when a low-level signal is measured from the signal sampling terminal, it indicates that the electrical equipment has experienced thermal runaway.
  • the high-level signal measured from the signal sampling terminal can also be used as a trigger signal for various fire protection systems, electrical safety systems and fire alarm systems to activate the above-mentioned various systems to take corresponding countermeasures, such as: isolating the fire point, Spray the extinguishing medium, cut off the power supply, and send fire alarms to relevant personnel. Therefore, the method for detecting thermal runaway of electrical equipment provided by the embodiments of the present application can detect thermal runaway of electrical equipment in time, is easy to implement, and can be widely used in various occasions.
  • An embodiment of the present application also provides a system for detecting thermal runaway of electrical equipment.
  • the system includes electrical equipment and the device for detecting thermal runaway of electrical equipment described in the foregoing embodiments of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, and the computer-readable storage medium stores program code.
  • the program code is executed by a terminal or a processor in the terminal, the program code is implemented as described in the foregoing embodiment of the present application. The method described.
  • the embodiment of the present application provides a computer program product, and the program code included in the computer program product is executed by a processor in a terminal to implement the method described in the foregoing embodiment of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

一种检测电气设备热失控的装置,包括:金属检测线(10)和分压电阻(R1);金属检测线(10)的一端作为接地端(GND)耦合至地;金属检测线(10)的另一端作为信号采样端(Vsam),与分压电阻的一端串联;分压电阻(R1)的另一端耦合至电源电压(VCC);金属检测线(10)铺设于电气设备,并途径电气设备的至少一个预设的检测区域。当电气设备未发生热失控时,从信号采样端(Vsam)测得的信号为低电平信号。当电气设备的某个检测区域发生热失控时,高温和火苗会烧断金属检测线(10),使金属检测线(10)开路,导致从信号采样端(Vsam)测得的信号由低电平信号翻转为高电平信号。还公开一种检测电气设备热失控的方法和一种检测电气设备热失控的系统。该装置、方法和系统能够及时检测到电气设备的热失控,结构简单,布置灵活、易于实施。

Description

检测电气设备热失控的装置、方法及系统
本申请要求于2019年08月30日提交到国家知识产权局、申请号为201910814511.X、发明名称为“检测电气设备热失控的装置、方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及防灾减灾技术领域,尤其涉及一种检测电气设备热失控的装置、方法及系统。
背景技术
服务器和数据中心的机房内通常设置有大量的计算机和交换机等电气设备,这些电气设备通过自身和外部配备的电源设备进行供电,以维持正常运行。由于,机房内的电气设备众多、用电功率大,保障机房的消防安全就先的十分重要。为了保障机房的消防安全,机房内一般配备有消防系统,包括设置烟雾传感器、温度传感器等实时监测机房内的环境状态、以判断是否有火情发生,并做出相应的警告措施。
机房内的各类电气设备通常密集地排列在机柜中,如果有火情发生,火情通常是从某个电源设备或者某个电器元件开始燃烧并向其他电气设备蔓延。从火情发生到火情产生足够的烟雾导致烟雾传感器报警,或者火情使机房内的温度升高导致温度传感器报警往往需要一段时间。在这一段时间内,火情已经一定规模,已经造成了很大的损失。可见目前检测电气设备火情的方法时效性较差,不能及时发现火情。
发明内容
本申请实施例提供了一种检测电气设备热失控的装置、方法及系统,以解决现有技术的检测电气设备火情的方法时效性较差,不能及时发现火情的问题。
第一方面,本申请实施例提供了一种检测电气设备热失控的装置。该装置包括:金属检测线和分压电阻;金属检测线的一端作为接地端耦合至地;金属检测线的另一端作为信号采样端,与分压电阻的一端串联;分压电阻的另一端耦合至电源电压;金属检测线铺设于电气设备,并途径电气设备的至少一个预设的检测区域。其中,检测区域包括元器件在电气设备集中分布的区域,和/或者,存在起火风险的元器件所在的区域。
应理解,通过上述铺设在电气设备内的金属检测线可获取信号采样结果,基于该信号采样结果的变化或异常,可以及时检测到电气设备的热失控和初期火情。具体地,预设的检测区域在发生热失控甚至是引起火情时,该预设的检测区域附近的金属检测线可能会发生断路,所检测到的信号采样结果会发生突变,从而检测到异常火情的发生。例如,当电气设备未发生热失控时,由于分压电阻的阻值远大于金属检测线的阻值,导致电源电压到接地端之间的压降主要发生在分压电阻上,因此从信号采样端能够测量到低电平信号。当某个检测区域内的元器件发生热失控甚至引起火情时,途经该检测区域的金属检测线在热失控的高温作用下会被烧断而形成开路,导致电源电压到接地端之间的压降主要发生在金 属检测线开路的位置,因此从信号采样端测量的信号会从低电平信号翻转到高电平信号,以此指示电气设备发生了热失控甚至火情。由此,本申请提供的检测电气设备热失控的装置,能够及时检测到电气设备的热失控和初期火情,结构简单,布置灵活、易于实施,能够广泛应用于各种电气设备和场合。
在一种可能的实施方式中,金属检测线还包括至少一个辅助信号采样端,辅助信号采样端位于金属检测线的信号采样端和接地端之间;当金属检测线铺设于电气设备时,辅助信号采样端设置在金属检测线途经的任意两个检测区域之间。由此,本申请提供的检测电气设备热失控的装置,不仅能够及时检测到电气设备的热失控和初期火情,还能够精确定位热失控的位置,结构简单,布置灵活、易于实施,能够广泛应用于各种电气设备和场合。
在一种可能的实施方式中,金属检测线在途经检测区域时,呈连续往复的蛇形分布。由此,金属检测线在检测区域内走线的长度更长,分布更加密集,能够贴近更多的元器件,当电气设备的元器件发生热失控时,更容易被烧断,有利于及时检测到热失控发生。
在一种可能的实施方式中,金属检测线为单芯导线或者多芯导线。单芯导线或者多芯导线可以在电气设备中灵活走线,方便布置到电气设备需要检测热失控的区域,并且不会改变电气设备原有的结构和线路布局,易于实施,且实施成本低。
在一种可能的实施方式中,金属检测线为金属涂层线,金属涂层线蚀刻于电气设备的PCB单板,并与PCB单板的导电介质形成电气隔离。金属涂层线可以在PCB单板的生产制造阶段刻蚀到PCB单板内,使PCB单板在出厂时就具备原生的检测热失控的能力,当PCB单板上的某个元器件发生热失控时,高温会融化PCB单板并烧断PCB单板上蚀刻的金属涂层线,使本申请提供的装置能够检测到PCB单板的热失控。
在一种可能的实施方式中,金属检测线铺设于电气设备的机柜内。由此,本申请提供的检测电气设备热失控的装置,能够及时检测到电气设备机柜内的热失控。
在一种可能的实施方式中,当电气设备包括散热风扇时,金属检测线设置在散热风扇在检测区域所形成的风道下行方向。由此,本申请将金属检测线设置于风道下行方向,有利于尽早检测到电气设备的热失控信息。
在一种可能的实施方式中,金属检测线包括多个热熔段,热熔段用于在温度高于熔点时熔断。当电气设备的某个元器件发生热失控而温度异常升高时,热熔段会在元器件起火之前率先熔断,从而在电气设备起火之前就检测到热失控。
第二方面,本申请实施例提供了一种检测电气设备热失控的方法。还方法可应用于本申请第一方面提供的装置,该方法包括:测量信号采样端的指示信号;根据指示信号,确定电气设备发生热失控。由此,本申请实施例提供的检测电气设备热失控的方法能够及时检测到电气设备的热失控,易于实施,能够广泛应用于各种场合。
在一种可能的实施方式中,指示信号为电平信号,电平信号包括高电平信号和低电平信号。由此,本申请实施例提供的检测电气设备热失控的方法可以根据信号采样端的高电平信号和低电平信号来确定电气设备是否发生热失控。
在一种可能的实施方式中,在指示信号为高电平信号时,确定电气设备发生热失控。由此,指示信号在电气设备未发生热失控时为低电平信号,在电气设备发生热失控时翻转到高电平信号,以指示电气设备发生热失控。
在一种可能的实施方式中,在指示信号为低电平信号时,确定电气设备发生热失控。 由此,指示信号在电气设备未发生热失控时为高电平信号,在电气设备发生热失控时翻转到低电平信号,以指示电气设备发生热失控。
第三方面,本申请实施例提供了一种电气设备,机柜,机柜内设置有多个PCB单板,多个PCB单板在机柜内堆叠设置;本申请第一方面任一种可能的实施方式提供的检测电气设备热失控的装置;该装置的金属检测线铺设于机柜内,并穿插于多个PCB单板之间。
第四方面,本申请实施例提供了一种检测电气设备热失控的系统,包括电气设备,以及本申请第一方面任一种可能的实施方式提供的检测电气设备热失控的装置。
第五方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储了程序代码,该程序代码被终端或终端中的处理器执行时,以实现如第二方面任一种可能的实施方式所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包含的程序代码被终端中的处理器执行时,以实现如第二方面任一种可能的实施方式所述的方法。
附图说明
图1是本申请第一实施例提供的一种检测电气设备热失控的装置的结构示意图;
图2是本申请第二实施例提供的检测电气设备热失控的装置在PCB单板应用的示意图;
图3是本申请第三实施例提供的检测电气设备热失控的装置在PCB单板应用的示意图;
图4是本申请第四实施例提供的检测电气设备热失控的装置在PCB单板应用的示意图;
图5是本申请第五实施例提供的检测电气设备热失控的装置在PCB单板应用的示意图;
图6是本申请第六实施例提供的检测电气设备热失控的装置在PCB单板应用的示意图;
图7是本申请第七实施例提供的检测电气设备热失控的装置在PCB单板应用的示意图;
图8是本申请第八实施例提供的一种检测电气设备热失控的装置的结构示意图;
图9是本申请第九实施例提供的检测电气设备热失控的装置在机柜应用的示意图;
图10是本申请第十实施例提供的一种检测电气设备热失控的方法的流程图。
具体实施方式
本申请提供了一种检测电气设备热失控的装置、方法及系统,以解决现有技术的检测电气设备火情的方法时效性较差,不能及时发现火情的问题。
下面是本申请的第一实施例。
本申请的第一实施例提供了一种检测电气设备热失控的装置。图1是该装置的结构示意图。如图1所示,该装置包括:金属检测线10和分压电阻R1。
在具体实现中,本申请实施例中的金属检测线10可以由包括但不限于各类带有绝缘外层或不带有绝缘外层的单芯导线、多芯导线、同轴电缆、铝箔线、铜箔线以及各类具有导电能力的线材等线材实现。金属检测线10可以由包括但不限于金、银、铁、铜、锌、铁、铅、锡以及其他金属或非金属导电材料及其合金和化合物等材质的线材实现。本申请实施例对金属检测线10的形态和材质不做具体限定。
本申请实施例中,金属检测线10一端作为接地端GND耦合至地。金属检测线10的另一端作为信号采样端Vsam,与分压电阻R1的一端串联。分压电阻R1的另一端耦合之电源电压VCC。为了及时检测到电气设备发生了热失控,例如电气设备的元器件温度异常升高或起火,金属检测线10直接铺设到电气设备上,并途径电气设备的至少一个预设的 检测区域。
在此需要说明的是,检测区域可以是电气设备的元器件分布集中的区域和/或者存在起火风险的元器件所在的区域,例如:电气设备的电源、电气接口、电容和电阻等所在的区域,以及电气设备外接的不间断电源(uninterruptible power system,UPS)、高压直流电源(high-voltage direct current,HVDC)等所在的区域。检测区域还可以是电气设备电源内的金属氧化物半导体场效应管(metal oxide semiconductor,MOS)、谐振电路LLC和电容等所在的区域。
在此需要说明的是,金属检测线10可以通过多种方式铺设到电气设备上。例如,金属检测线10可以用搭线的方式直接铺设在电气设备的PCB单板表面,并可以使用卡扣、点胶等方式进行固定。又例如,金属检测线10还可以固定在电气设备的壳体上,并依次接近电气设备的至少一个预设的检测区域。又例如,当电气设备插装在机柜内时,金属检测线10还可以固定在机柜的柜体上,并依次接近电气设备的多个的检测区域。
本申请第一实施例中,金属检测线10的信号采样端连接至任意的电压测量设备(例如:电压比较器),该电压测量设备用于测量信号采样端电压,并将测得的信号采样端电压与预设的电压阈值进行比较,并输出指示信号以示意测量结果。其中,指示信号的具体形式可以是电平信号,例如高电平信号和低电平信号;或者,脉冲信号,例如长脉冲信号和短脉冲信号;或者,电流信号,例如高电流信号和低电流信号;或者,光信号、声音信号。本申请实施例对指示信号的具体形式不做限定,能够产生不同的信号状态以用于指示不同信息的信号均可以作为本申请实施例中的指示信号。
为了便于表述,本申请以指示信号为电平信号为例对本申请的技术方案进行展开表述。
本申请第一实施例提供的装置,当电气设备未发生热失控时,由于分压电阻R1的阻值远大于金属检测线10的阻值,电源电压VCC到接地端GND的电压压降主要发生在分压电阻R1上,因此从信号采样端Vsam测得的信号为低电平信号。当电气设备的某个检测区域发生热失控时,高温和火苗会立即烧断途经该检测区域的金属检测线10,使金属检测线10开路,导致从信号采样端Vsam测得的信号由低电平信号翻转为高电平信号。那么,当从信号采样端Vsam测得的信号从低电平信号翻转到高电平信号时,则指示电气设备发生热失控。由此,本申请实施例提供的检测电气设备热失控的装置,能够及时检测到电气设备的热失控和初期火情,结构简单,布置灵活、易于实施,能够广泛应用于各种电气设备和场合。
下面是本申请的第二实施例。
本申请第二实施例示出了检测电气设备热失控的装置在PCB单板的应用。图2是检测电气设备热失控的装置在PCB单板应用的示意图。
如图2所示,PCB单板20上安装有大量的元器件。根据各类元器件在PCB单板20上安装的位置,可以在PCB单板20上划分出多个检测区域,这些检测区域可以是元器件分布集中的区域和/或者存在起火风险的元器件所在的区域。
如图2所示,金属检测线10为单芯导线或者多芯导线,一端作为信号采样端Vsam,另一端作为接地端GND耦合至地。金属检测线10直接铺设在PCB单板20安装有元器件一侧的表面,依次穿过各个检测区域,并贴近检测区域内存在起火风险的元器件。金属检测线10可以使用卡扣、点胶等方式固定在PCB单板20上,以保证PCB单板20在任何姿 态下,金属检测线10都不会从检测区域脱离。
根据本申请第二实施例,当PCB单板20上的某个元器件发生热失控时,例如温度异常升高或起火,金属检测线10会在途经该元器件的位置被烧断,使金属检测线10开路,导致从信号采样端Vsam测得的信号由低电平信号翻转为高电平信号,以指示PCB单板20发生了热失控。这样,相关人员就能够第一时间获知PCB单板20的热失控信息,从而及时采取处置措施,将PCB单板20可能发生的火情扑灭在初期状态。由此,本申请实施例提供的检测电气设备热失控的装置,能够及时检测到PCB单板20的热失控,结构简单,布置灵活、易于实施,能够广泛应用于各种场合。
下面是本申请的第三实施例。
本申请第三实施例示出了检测电气设备热失控的装置在PCB单板20的应用。图3是检测电气设备热失控的装置在PCB单板20应用的示意图。
如图3所示,本申请的第三实施例与第二实施例的区别在于:本申请的第三实施例的金属检测线10包括多个热熔段11。其中,热熔段11位于至少一个检测区域内,并贴近检测区域内存在起火风险的元器件。热熔段11可以使用具有导电性并且熔点较低的材料制成,例如用于制作保险丝的铅锡合金、锌、铜、银等。
一般来说,当PCB单板20上的某个元器件发生热失控时,元器件会先后经历温度异常升高和温度达到燃点而起火两个阶段。根据本申请的第三实施例,由于热熔段11的熔点较低(例如含锡60%、含铅40%的铅锡合金具有最低的共熔点只有183℃),当PCB单板20上的某个元器件发生热失控而温度异常升高时,元器件的温度在达到燃点之前会首先达到热熔段11的熔点,因此,热熔段11会在元器件起火之前率先熔断,使金属检测线10开路,导致从信号采样端Vsam测得的信号由低电平信号翻转为高电平信号,以指示PCB单板20发生了热失控。这样,相关人员就能够在元器件起火前获知PCB单板20的热失控信息,从而及时采取处置措施,将PCB单板20可能发生的火情扑灭在初期状态甚至避免火情发生。由此,本申请实施例提供的检测电气设备热失控的装置,能够及时检测到PCB单板20的热失控,结构简单,布置灵活、易于实施,能够广泛应用于各种场合。
下面是本申请的第四实施例。
本申请第四实施例示出了检测电气设备热失控的装置在PCB单板20的应用。图4是检测电气设备热失控的装置在PCB单板20应用的示意图。
如图4所示,一些PCB单板20设置于电气设备的壳体30内,在这种情况下,金属检测线10为单芯导线或者多芯导线,面向PCB单板20的元器件设置在壳体30上,并依次穿过各个检测区域上方。金属检测线10可以使用卡扣、点胶等方式固定在壳体30上,以保证壳体30在任何姿态下,金属检测线10都不会从检测区域脱离。
根据本申请第四实施例,当PCB单板20上的某个元器件发生热失控时,例如温度异常升高或起火,元器件产生的热量或燃烧的火苗会向上方流动(冷热空气的对流,使热空气向上流动)而作用到金属检测线10,使金属检测线10被烧断而开路,导致从信号采样端Vsam测得的信号由低电平信号翻转为高电平信号,以指示PCB单板20发生了热失控。这样,相关人员就能够第一时间获知PCB单板20的热失控信息,从而及时采取处置措施,将PCB单板20可能发生的火情扑灭在初期状态。由此,本申请实施例提供的检测电气设备热失控的装置,能够及时检测到PCB单板20的热失控,结构简单,布置灵活、易于实 施,能够广泛应用于各种场合。
下面是本申请的第五实施例。
本申请第五实施例示出了检测电气设备热失控的装置在PCB单板20的应用。图5是检测电气设备热失控的装置在PCB单板20应用的示意图。
如图5所示,本申请的第三实施例与第二实施例的区别在于:本申请的第五实施例的金属检测线10在信号采样端Vsam和接地端GND之间还包括一个或者多个辅助信号采样端Vsam1~VsamN,N为辅助信号采样端的数量,例如图5中的金属检测线10包括5个辅助信号采样端,分别为Vsam1、Vsam2、Vsam3、Vsam4和Vsam5。
如图5所示,当金属检测线10铺设在PCB单板20表面时,辅助信号采样端位于金属检测线10途经的任意两个检测区域之间。例如:辅助信号采样端Vsam1位于检测区域1和检测区域2之间;辅助信号采样端Vsam2位于检测区域2和检测区域3之间;辅助信号采样端Vsam3位于检测区域3和检测区域4之间;辅助信号采样端Vsam4位于检测区域4和检测区域5之间;辅助信号采样端Vsam5位于检测区域5和检测区域6之间。
本申请第五实施例中,每个辅助信号采样端分别连接一个电压测量设备(例如:电压比较器),电压测量设备用于其连接的辅助测量信号采样端的电压,并将测得的辅助信号采样端的电压与预设的电压阈值进行比较,如果辅助信号采样端的电压大于或者等于电压阈值,则输出高电平信号,如果辅助信号采样端的电压小于电压阈值,则输出低电平信号。
根据本申请第五实施例,当PCB单板20上的某个元器件发生热失控时,例如温度异常升高或起火,金属检测线10会在途经该元器件的位置被烧断,使金属检测线10开路,导致从信号采样端Vsam和/或辅助信号采样端测得的信号由低电平信号翻转为高电平信号,以指示PCB单板20发生了热失控。
另外,本申请第五实施例还能够确定PCB单板20发生热失控的具体位置。
例如:如图5所示,当位于PCB单板20的检测区域1内的元器件发生热失控时,金属检测线10在检测区域1的位置上被烧断,此时,沿信号采样端Vsam至接地端GND的方向看,位于检测区域1之前的信号采样端Vsam的开路电压为电源电压VCC,因此,从信号采样端Vsam能够测量到高电平信号;而位于检测区域1之后的辅助信号采样端Vsam1~Vsam5在金属检测线10开路后接地,因此,从辅助信号采样端Vsam1~Vsam5能够测量到低电平信号。
又例如,如图5所示,当位于PCB单板20的检测区域4内的元器件发生热失控时,金属检测线10在检测区域4的位置上被烧断,此时,沿信号采样端Vsam至接地端GND的方向看,位于检测区域4之前的信号采样端Vsam、辅助信号采样端Vsam1~Vsam3的开路电压为电源电压VCC,因此,从信号采样端Vsam、辅助信号采样端Vsam1~Vsam3能够测量到高电平信号;而位于检测区域4之后的辅助信号采样端Vsam4~Vsam5在金属检测线10开路后接地,因此,从辅助信号采样端Vsam4~Vsam5能够测量到低电平信号。
由此可以看出,当PCB单板20的某个检测区域内的元器件发生热失控时,该检测区域之前信号采样端Vsam/辅助信号采样端的信号会从低电平信号翻转到高电平信号,该检测区域之后的辅助信号采样端的信号依然会保持为低电平信号。根据上述结论,确定PCB单板20发生热失控的具体位置的方法可以为:如果从某个信号采样端Vsam或辅助信号采样端测量的信号为高电平信号,而从该信号采样端Vsam或辅助信号采样端相邻的其 他辅助信号采样端测量的信号为低电平信号,则发生热失控的位置位于这两个相邻的信号采样端Vsam/辅助信号采样端之间。
由此,本申请实施例提供的检测电气设备热失控的装置,不仅能够及时检测到电气设备的热失控和初期火情,还能够精确定位热失控的位置,结构简单,布置灵活、易于实施,能够广泛应用于各种电气设备和场合。
下面是本申请的第六实施例。
本申请第六实施例示出了检测电气设备热失控的装置在PCB单板20的应用。图6是检测电气设备热失控的装置在PCB单板20应用的示意图。
如图6所示,一些PCB单板20设置于电气设备的壳体30内,并且电气设备在壳体30一侧还设置有散热风扇50。在这种情况下,金属检测线10为单芯导线或者多芯导线,面向PCB单板20的元器件设置在壳体30上,并且位于散热风扇50在检测区域所形成的风道下行方向。金属检测线10可以使用卡扣、点胶等方式固定在壳体30上,以保证壳体30在任何姿态下,金属检测线10都不会从检测区域脱离。
根据本申请的第六实施例,当PCB单板20上的某个元器件发生热失控时,例如温度异常升高或起火,元器件产生的热量或燃烧的火苗在散热风扇50的作用下会向风道下行方向辐射和蔓延,因此在风道下行方向更容易检测到热失控。本申请第六实施例将金属检测线10设置于风道下行方向,有利于尽早检测到PCB单板20的热失控信息,便于相关人员及时采取处置措施,将PCB单板20可能发生的火情扑灭在初期状态。由此,本申请实施例提供的检测电气设备热失控的装置,能够及时检测到PCB单板20的热失控,结构简单,布置灵活、易于实施,能够广泛应用于各种场合。
下面是本申请的第七实施例。
本申请第七实施例示出了检测电气设备热失控的装置在PCB单板20的应用。图7是检测电气设备热失控的装置在PCB单板20应用的示意图。
如图7所示,金属检测线10为蚀刻在PCB单板20表面或者PCB单板20内层的金属涂层线。金属涂层线例如可以使用金属铜、锡、铅锡合金、锡铜合金、金、银等材料在PCB单板20的表面或内层蚀刻形成。金属涂层线与PCB单板20的其他导电介质形成电气隔离,独立供电,从而不对PCB单板20安装的其他元器件产生影响。
根据本申请的第七实施例,当PCB单板20上的某个元器件发生热失控时,例如温度异常升高或起火,高温会融化PCB单板20并烧断PCB单板20上蚀刻的金属涂层线,导致从金属涂层线的信号采样端Vsam测得的信号由低电平信号翻转为高电平信号,以指示PCB单板20发生了热失控。这样,相关人员就能够第一时间获知PCB单板20的热失控信息,从而及时采取处置措施,将PCB单板20可能发生的火情扑灭在初期状态。由此,本申请实施例提供的检测电气设备热失控的装置,能够及时检测到PCB单板20的热失控,结构简单,布置灵活、易于实施,能够广泛应用于各种场合。
下面是本申请的第八实施例。
本申请的第八实施例提供了一种检测电气设备热失控的装置。图8是该装置的结构示意图。如图8所示,本申请第八实施例与第一实施例的区别在于:金属检测线10在电气设备的检测区域内呈连续往复的蛇形分布。由此,金属检测线10在检测区域内走线的长度更长,并且分布的更加密集,能够贴近更多的元器件,当电气设备的元器件发生热失控 时,更容易被烧断,有利于及时检测到热失控发生。这样,相关人员就能够更早获知电气设备的热失控信息,从而及时采取处置措施,将电气设备可能发生的火情扑灭在初期状态。
下面是本申请的第九实施例。
本申请第九实施例示出了检测电气设备热失控的装置在机柜的应用。图9是检测电气设备热失控的装置在机柜应用的示意图。
如图9所示,电气设备的机柜40内安装有多个PCB单板20,多个PCB单板20堆叠设置于机柜40内。为了检测这些PCB单板20可能发生的热失控,可以将金属检测线10铺设于机柜40内,例如铺设于机柜40的内壁,或者穿插铺设于多个PCB单板20之间等。
可选的,如图9所示,机柜40内可以设置多个本申请提供的检测电气设备热失控的装置,使多个金属检测线10布置在机柜40内的不同区域,以增大电气设备热失控的检测范围。对于电气设备的热失控的重点防范区域或者热失控的高风险区域,可以通过布置多个金属检测线10的方式增大检测密度,以提高检测灵敏度和时效性。
根据本申请第九实施例,当电气设备的机柜40发生热失控时,例如温度异常升高或起火,设置于机柜40内的金属检测线10会被烧断而开路,导致从信号采样端Vsam测得的信号由低电平信号翻转为高电平信号,以指示机柜40内发生了热失控。这样,相关人员就能够第一时间获知机柜40内的热失控信息,从而及时采取处置措施,将机柜40内可能发生的火情扑灭在初期状态。由此,本申请实施例提供的检测电气设备热失控的装置,能够及时检测到电气设备机柜40内的热失控,结构简单,布置灵活、易于实施,能够广泛应用于各种场合。
下面是本申请的第十实施例。
本申请的第十实施例提供了一种检测电气设备热失控的方法。该方法可应用于前述任意实施例提供的检测电气设备热失控的装置。
图10是本申请第十实施例提供的一种检测电气设备热失控的方法的流程图。如图10所示,该方法包括以下步骤:
步骤S101,测量信号采样端的指示信号。
测量信号采样端的指示信号可以是通过在信号采样端连接任意的电压测量设备(例如:电压比较器)测得的电平信号,电平信号可以包括低电平信号和高电平信号。指示信号的其他可实现的具体形式可以参照前述实施例,此处不再赘述。
步骤S102,根据指示信号,确定电气设备发生热失控。
例如,电压测量设备(例如:电压比较器)可以设置在测得的信号采样端电压高于预设的电压阈值时,输出高电平信号。从而,当从信号采样端测量到高电平信号时,说明电气设备发生了热失控,烧断了金属检测线,使金属检测线开路。
又例如,电压测量设备(例如:电压比较器)可以设置在测得的信号采样端电压高于预设的电压阈值时,输出低电平信号。从而,当从信号采样端测量到低电平信号时,说明电气设备发生了热失控。
这样,相关人员就能够第一时间获知电气设备的热失控信息,从而及时采取处置措施,将电气设备可能发生的火情扑灭在初期状态。另外,从信号采样端测量的高电平信号还可以作为各类消防系统、用电安全系统和火灾报警系统的触发信号,用于激活上述各类系统采取相应的应对措施,例如:隔离着火点、喷淋灭火介质、切断电源、向相关人员推送火 情警报等。由此,本申请实施例提供的检测电气设备热失控的方法能够及时检测到电气设备的热失控,易于实施,能够广泛应用于各种场合。
本申请实施例还提供了一种检测电气设备热失控的系统,该系统包括电气设备以及本申请前述实施例所述的检测电气设备热失控的装置。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储了程序代码,该程序代码被终端或终端中的处理器执行时,以实现如本申请前述实施例所述的方法。
本申请实施例提供一种计算机程序产品,该计算机程序产品包含的程序代码被终端中的处理器执行时,以实现如本申请前述实施例所述的方法。
本说明书中各个实施例之间相同相似的部分互相参见即可,以上的本申请实施方式,并不构成对本申请保护范围的限定。

Claims (14)

  1. 一种检测电气设备热失控的装置,其特征在于,包括:
    金属检测线和分压电阻;
    所述金属检测线的一端作为接地端耦合至地;所述金属检测线的另一端作为信号采样端,与所述分压电阻的一端串联;所述分压电阻的另一端耦合至电源电压;
    所述金属检测线铺设于所述电气设备,并途径所述电气设备的至少一个预设的检测区域,其中,所述检测区域包括元器件在所述电气设备集中分布的区域,和/或者,存在起火风险的元器件所在的区域。
  2. 根据权利要求1所述的装置,其特征在于,
    所述金属检测线还包括至少一个辅助信号采样端,所述辅助信号采样端位于所述金属检测线的信号采样端和接地端之间;
    当所述金属检测线铺设于所述电气设备时,所述辅助信号采样端设置在所述金属检测线途经的任意两个所述检测区域之间。
  3. 根据权利要求1所述的装置,其特征在于,
    所述金属检测线在途经所述检测区域时,呈连续往复的蛇形分布。
  4. 根据权利要求1-3任意一项所述的装置,其特征在于,
    所述金属检测线为单芯导线或者多芯导线。
  5. 根据权利要求1-3任意一项所述的装置,其特征在于,
    所述金属检测线为金属涂层线,所述金属涂层线蚀刻于所述电气设备的PCB单板,并与所述PCB单板的导电介质形成电气隔离。
  6. 根据权利要求1-3任意一项所述的装置,其特征在于,
    所述电气设备包括机柜,所述机柜内设置有多个PCB单板,多个所述PCB单板在所述机柜内堆叠设置;所述金属检测线铺设于所述机柜内,并穿插于多个所述PCB单板之间。
  7. 根据权利要求4所述的装置,其特征在于,
    当所述电气设备包括散热风扇时,所述金属检测线设置在散热风扇在所述检测区域所形成的风道下行方向。
  8. 根据权利要求4所述的装置,其特征在于,
    所述金属检测线包括多个热熔段,所述热熔段用于在温度高于熔点时熔断。
  9. 一种检测电气设备热失控的方法,其特征在于,应用于权利要求1-8任意一项所述检测电气设备热失控的装置,所述方法包括:
    测量所述信号采样端的指示信号;
    根据所述指示信号,确定所述电气设备发生热失控。
  10. 根据权利要求9所述的方法,其特征在于,所述指示信号为电平信号,所述电平信号包括高电平信号和低电平信号。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述指示信号,确定所述电气设备发生热失控具体包括:
    在所述指示信号为高电平信号时,确定所述电气设备发生热失控。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述指示信号,确定所述电气设备发生热失控具体包括:在所述指示信号为低电平信号时,确定所述电气设备发生热失控。
  13. 一种电气设备,其特征在于,包括:
    机柜,所述机柜内设置有多个PCB单板,多个所述PCB单板在所述机柜内堆叠设置;
    权利要求1-8任意一项所述的检测电气设备热失控的装置;
    所述装置的金属检测线铺设于所述机柜内,并穿插于多个所述PCB单板之间。
  14. 一种检测电气设备热失控的系统,其特征在于,包括:电气设备,以及权利要求1-8任意一项所述的检测电气设备热失控的装置。
PCT/CN2020/086638 2019-08-30 2020-04-24 检测电气设备热失控的装置、方法及系统 WO2021036308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910814511.X 2019-08-30
CN201910814511.XA CN110553747A (zh) 2019-08-30 2019-08-30 检测电气设备热失控的装置、方法及系统

Publications (1)

Publication Number Publication Date
WO2021036308A1 true WO2021036308A1 (zh) 2021-03-04

Family

ID=68738505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086638 WO2021036308A1 (zh) 2019-08-30 2020-04-24 检测电气设备热失控的装置、方法及系统

Country Status (2)

Country Link
CN (1) CN110553747A (zh)
WO (1) WO2021036308A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553747A (zh) * 2019-08-30 2019-12-10 华为技术有限公司 检测电气设备热失控的装置、方法及系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418412A1 (en) * 2002-11-07 2004-05-12 Omron Corporation Temperature detecting device
CN201278018Y (zh) * 2008-09-19 2009-07-22 富港电子(东莞)有限公司 电池保护信号采集电路
CN101865733A (zh) * 2009-04-14 2010-10-20 凹凸电子(武汉)有限公司 温度检测电路、方法及电子系统
CN104634472A (zh) * 2013-11-07 2015-05-20 中兴通讯股份有限公司 终端电池温度检测装置,终端与过温保护方法
CN105371977A (zh) * 2015-12-01 2016-03-02 广东美的厨房电器制造有限公司 温度检测装置及烧烤器具
US20170328786A1 (en) * 2014-11-11 2017-11-16 Sumitomo Electric Industries, Ltd. Temperature detecting apparatus
CN207571614U (zh) * 2017-12-11 2018-07-03 深圳弘远电气有限公司 一种具有全面温度监测功能的驱动器
CN108650782A (zh) * 2018-06-25 2018-10-12 维沃移动通信有限公司 柔性电路板和终端设备
CN109540220A (zh) * 2018-12-28 2019-03-29 河南汉威智慧安全科技有限公司 水凝结检测电路及防爆接线箱内部环境检测仪
CN208736574U (zh) * 2018-08-09 2019-04-12 吉利汽车研究院(宁波)有限公司 一种温度监控系统及电动汽车
CN109781292A (zh) * 2019-01-31 2019-05-21 大禹电气科技股份有限公司 三线制铂热电阻断线检测电路和检测装置及检测方法
CN208921810U (zh) * 2018-08-30 2019-05-31 宁波科海翔电子科技有限公司 断路短路检测装置
CN110134055A (zh) * 2019-06-21 2019-08-16 厦门美图之家科技有限公司 自保护加热电路、美容仪、线路故障检测方法及装置
CN110553747A (zh) * 2019-08-30 2019-12-10 华为技术有限公司 检测电气设备热失控的装置、方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011107047A2 (zh) * 2011-04-19 2011-09-09 华为终端有限公司 集成电路装置
CN102928730B (zh) * 2012-10-31 2016-01-27 华东光电集成器件研究所 一种接地检测装置
CN104052022A (zh) * 2013-03-12 2014-09-17 天津永明新能源科技有限公司 一种火灾时通过安装高温熔断器切断光伏发电的方法
JP6547636B2 (ja) * 2016-01-15 2019-07-24 三菱電機株式会社 電力増幅器
CN205680751U (zh) * 2016-05-25 2016-11-09 烟台创为新能源科技有限公司 一种电池热失控检测系统

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418412A1 (en) * 2002-11-07 2004-05-12 Omron Corporation Temperature detecting device
CN201278018Y (zh) * 2008-09-19 2009-07-22 富港电子(东莞)有限公司 电池保护信号采集电路
CN101865733A (zh) * 2009-04-14 2010-10-20 凹凸电子(武汉)有限公司 温度检测电路、方法及电子系统
CN104634472A (zh) * 2013-11-07 2015-05-20 中兴通讯股份有限公司 终端电池温度检测装置,终端与过温保护方法
US20170328786A1 (en) * 2014-11-11 2017-11-16 Sumitomo Electric Industries, Ltd. Temperature detecting apparatus
CN105371977A (zh) * 2015-12-01 2016-03-02 广东美的厨房电器制造有限公司 温度检测装置及烧烤器具
CN207571614U (zh) * 2017-12-11 2018-07-03 深圳弘远电气有限公司 一种具有全面温度监测功能的驱动器
CN108650782A (zh) * 2018-06-25 2018-10-12 维沃移动通信有限公司 柔性电路板和终端设备
CN208736574U (zh) * 2018-08-09 2019-04-12 吉利汽车研究院(宁波)有限公司 一种温度监控系统及电动汽车
CN208921810U (zh) * 2018-08-30 2019-05-31 宁波科海翔电子科技有限公司 断路短路检测装置
CN109540220A (zh) * 2018-12-28 2019-03-29 河南汉威智慧安全科技有限公司 水凝结检测电路及防爆接线箱内部环境检测仪
CN109781292A (zh) * 2019-01-31 2019-05-21 大禹电气科技股份有限公司 三线制铂热电阻断线检测电路和检测装置及检测方法
CN110134055A (zh) * 2019-06-21 2019-08-16 厦门美图之家科技有限公司 自保护加热电路、美容仪、线路故障检测方法及装置
CN110553747A (zh) * 2019-08-30 2019-12-10 华为技术有限公司 检测电气设备热失控的装置、方法及系统

Also Published As

Publication number Publication date
CN110553747A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
US8139337B2 (en) Systems and methods for reducing electrically-caused fires in wiring devices
US20100073839A1 (en) Systems and Methods for Detecting Unsafe Thermal Conditions in Wiring Devices
US4453159A (en) Self-monitoring heat tracing system
US9502880B2 (en) Methods and apparatus to detect and control plasma fires
WO2021036308A1 (zh) 检测电气设备热失控的装置、方法及系统
KR100647089B1 (ko) 소화기를 내장한 세대분전반
CN111696303A (zh) 感温线缆、包括其的感温火灾探测系统及温度探测方法
JP6457751B2 (ja) 過熱検出用カプセルおよび火災予兆検出システム
TW201143595A (en) High voltage defend device
CN105449635B (zh) 具有过温保护装置的漏电保护器
KR101856710B1 (ko) 바이메탈을 이용한 화재 예방 충전 장치
TWI789113B (zh) 計算系統以及藉由計算系統中的控制器實施之方法
CN215735628U (zh) 一种pcb电路板防静电装置
US20070074897A1 (en) Thermal event detection on printed wire boards
JP2019078739A (ja) 電子装置及び過温の検出方法
CN107967200A (zh) 一种基于pcb区域温度侦测来防止hdd背板烧板的方法
CN213024708U (zh) 一种电气火灾点式探测器
CN109088278A (zh) 一种防火防断的电源线
US11251603B2 (en) Power backplane with distributed hotspot detection grid
CN206226869U (zh) 一种电气火灾监控探测器外壳
JPH02148296A (ja) 電子機器異常警報装置
CN219590916U (zh) 一种电气火灾探测报警器
CN106707092A (zh) 一种家电电阻过大智能报警提示电路装置
CN210981579U (zh) 一种电烙铁温度、漏电及接地电阻测试装置
CN107230604A (zh) 一种保险丝装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 120A DATED 10/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20856337

Country of ref document: EP

Kind code of ref document: A1