WO2021036201A1 - 背接触太阳能电池组件生产方法及背接触太阳能电池组件 - Google Patents

背接触太阳能电池组件生产方法及背接触太阳能电池组件 Download PDF

Info

Publication number
WO2021036201A1
WO2021036201A1 PCT/CN2020/074297 CN2020074297W WO2021036201A1 WO 2021036201 A1 WO2021036201 A1 WO 2021036201A1 CN 2020074297 W CN2020074297 W CN 2020074297W WO 2021036201 A1 WO2021036201 A1 WO 2021036201A1
Authority
WO
WIPO (PCT)
Prior art keywords
piece
conductive
solar cell
stacking
site
Prior art date
Application number
PCT/CN2020/074297
Other languages
English (en)
French (fr)
Inventor
李华
刘继宇
Original Assignee
泰州隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910791309.XA external-priority patent/CN110571305B/zh
Priority claimed from CN201910792400.3A external-priority patent/CN110707170B/zh
Application filed by 泰州隆基乐叶光伏科技有限公司 filed Critical 泰州隆基乐叶光伏科技有限公司
Priority to US17/638,946 priority Critical patent/US20220302328A1/en
Priority to EP20858738.6A priority patent/EP4024478A4/en
Priority to AU2020340008A priority patent/AU2020340008B2/en
Publication of WO2021036201A1 publication Critical patent/WO2021036201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/14Printing or colouring
    • B32B38/145Printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of solar photovoltaic technology, and in particular to a method for producing a back-contact solar cell module, a back-contact solar cell module, a computer program, and a computer-readable medium.
  • the back-contact solar cell module has no busbar line on the front side, the positive and negative electrodes are both arranged on the back of the battery, which reduces shading, effectively increases the short circuit of the battery, improves the energy conversion efficiency of the module, and has a wide application prospect.
  • the production method of back-contact solar cell modules is mainly as follows: conductive glue is set between the back-contact solar cell and the metal circuit board. During the lamination process, the back-contact solar cell and the metal circuit board are electrically connected and connected through the conductive glue. Bonding.
  • the back-contact solar cell sheet and the metal circuit board are electrically connected and bonded by conductive glue.
  • the electrical connection is unreliable and the yield rate is low.
  • This application provides a back contact solar cell module, a back contact solar cell module production method, a computer program, and a computer readable medium, aiming to solve the problem of unreliable electrical connection of the back contact solar cell module and low yield rate. problem.
  • a method for producing a back-contact solar cell module including:
  • a first stacking piece is provided; the first stacking piece includes a first piece; the first piece is one of a metal circuit board or a back contact solar cell piece; the surface of the first piece has several A first conductive site; the first stacking member further includes a conductive boss formed on the first conductive site of the first piece;
  • a second stack is provided; the second stack includes a second sheet; the second sheet is the other of the metal circuit board and the back contact solar cell sheet; the second sheet
  • the surface of the piece has a number of second conductive sites; the outer periphery of the first conductive site or the outer periphery of the second conductive site is provided with adhesive insulating spacers;
  • the first stacking piece and the second stacking piece are stacked and laminated, so that the conductive boss abuts on the second conductive site, and the adhesive insulating spacer Bonding the first piece and the second piece together.
  • the material of the adhesive insulating spacer is an insulating adhesive material; the insulating adhesive material includes a liquid adhesive and an inert filler; and the inert filler includes silica particles.
  • the silica particles are fumed silica particles.
  • the liquid binder includes: siloxane; the mass ratio of the inert filler to the liquid binder is 7:3 to 3:7.
  • the first stack is obtained through the following steps:
  • a conductive material is printed on the first conductive site of the first piece to form the conductive boss.
  • the method before the stacking and laminating the first stacking piece and the second stacking piece, the method further includes:
  • the adhesive insulating spacer is printed and formed; or, on the periphery of the second conductive site of the second piece, the Bond insulating spacers.
  • the thickness of the adhesive insulating spacer is 1 to 100 microns.
  • the method before the stacking and laminating the first stacking piece and the second stacking piece, the method further includes:
  • the method before the printing a conductive material on the first conductive site of the first piece to form the conductive boss, the method further includes:
  • the packaging material and the cover material are sequentially stacked on the first side of the first sheet; the first side is opposite to the side of the first sheet with the first conductive site;
  • the printing a conductive material on the first conductive site of the first piece to form the conductive boss includes:
  • the packaging material and the cover material are used as a printing support substrate, and a conductive material is printed on the first conductive site of the first piece to form a conductive boss.
  • a back contact solar cell module including: a first stacking member and a second stacking member;
  • the first stack includes a first piece; the first piece is one of a metal circuit board or a back contact solar cell piece; the surface of the first piece has a number of first conductive sites;
  • the first stacking member further includes a conductive boss formed on the first conductive site of the first sheet member;
  • the second stacking piece includes a second piece; the second piece is the other of the metal circuit board and the back contact solar cell piece; the surface of the second piece has a plurality of second pieces Conductive site; the periphery of the first conductive site or the periphery of the second conductive site is provided with an adhesive insulating spacer;
  • the first stacking piece and the second stacking piece are laminated and laminated together, and the conductive boss abuts on the second conductive site; the first piece and the second The pieces are bonded together by the bonding insulating spacer.
  • a computer program including computer readable code, when the computer readable code runs on a computing processing device, causing the computing processing device to execute any of the foregoing Back contact solar cell module production method.
  • a first stack is provided; the first stack includes a first piece; the first piece is one of a metal circuit board or a back contact solar cell; the first The surface of the sheet member has a plurality of first conductive sites; the first stacking member further includes conductive bosses formed on the first conductive sites of the first sheet member; a second stacking member is provided; The second stacking piece includes a second piece; the second piece is the other of the metal circuit board and the back contact solar cell piece; the surface of the second piece has a plurality of second pieces Conductive site; the periphery of the first conductive site or the periphery of the second conductive site is provided with an adhesive insulating spacer; the first stacking member and the second stacking member are stacked and combined Lamination, so that the conductive boss abuts on the second conductive site, and the adhesive insulating spacer is used to bond the first piece and the second piece together.
  • the electrical connection and bonding between the metal circuit board and the back-contact solar cell are realized by the conductive adhesive.
  • the above-mentioned electrical connection is mainly in the lamination process, the conductive adhesive and the metal circuit board The fusion is realized with the conductive sites on the back contact solar cell sheet, so that the reliability of the electrical connection is low and the yield rate is low.
  • the first stacking member includes a conductive boss formed on the first conductive site of the first sheet member, an adhesive insulating spacer is provided on the periphery of the first conductive site or the second conductive site, and a metal circuit
  • the electrical connection between the panel and the back contact solar cell is mainly realized by stacking the first stacking piece and the second stacking piece, and the conductive boss abuts on the second conductive site of the second piece, basically without The fusion can realize a stable electrical connection, which improves the reliability of the electrical connection and the yield rate.
  • the conductive boss and the second conductive site can be pressed tighter, and the reliability of the electrical connection and the yield rate are further improved.
  • Fig. 1 shows a flow chart of the production method of a back contact solar cell module in an embodiment of the present application
  • Fig. 2 shows a schematic structural diagram of a back-contact solar cell in an embodiment of the present application
  • FIG. 3 shows a schematic diagram of the structure of an electrode in an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a doped diffusion region in an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a bonded insulating spacer in an embodiment of the present application
  • Fig. 6 shows a schematic structural diagram of another bonded insulating spacer in an embodiment of the present application
  • Fig. 7 shows a schematic structural diagram of a back-contact solar cell module in an embodiment of the present application
  • Fig. 8 shows a flow chart of another method for producing a back-contact solar cell module in an embodiment of the present application
  • FIG. 9 shows a schematic structural view of stacking packaging materials on the first side of the first sheet in an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a structure in which conductive bosses are printed and formed on the first conductive sites of the back-contact solar cell in an embodiment of the present application
  • Fig. 11 schematically shows a block diagram of a computing processing device for executing the method according to the present application
  • Fig. 12 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present application.
  • FIG. 1 shows a flow chart of a production method of a back contact solar cell module in an embodiment of the present application.
  • Step 101 Provide a first stacking piece; the first stacking piece includes a first piece; the first piece is one of a metal circuit board or a back contact solar cell piece; The surface has a plurality of first conductive sites; the first stacking member further includes conductive bosses formed on the first conductive sites of the first sheet member.
  • the first stacking member includes a first sheet member.
  • the first piece is one of a metal circuit board or a back contact solar cell piece.
  • the first piece may be a metal circuit board.
  • the first piece may be a back contact solar cell piece.
  • the number of back-contact solar cells is not specifically limited, and each back-contact solar cell may have substantially the same current characteristics or voltage characteristics. Specifically, it is set according to the needs of the back contact solar cell module.
  • the back-contact solar cell sheet may be a solar cell sheet with no busbars on the front side, and both the positive electrode and the negative electrode are arranged on the back side.
  • the back contact solar cell sheet may be an IBC battery, MWT battery, EWT battery, or the like.
  • FIG. 2 shows a schematic structural diagram of a back-contact solar cell in an embodiment of the present application.
  • 1 can be a silicon substrate
  • 2 can be a doped diffusion region
  • 3 can be an electrode.
  • 11 may be a surface that receives light, that is, 11 is the front surface of the silicon substrate 1.
  • 12 may be the back surface of the silicon substrate 1.
  • the doped diffusion region 2 and the electrode 3 are arranged on the back of the silicon substrate 1 in sequence.
  • FIG. 3 shows a schematic structural diagram of an electrode in an embodiment of the present application.
  • the electrode 3 may include a negative fine grid line 31, a positive fine grid line 32, a negative connection electrode 33 and a positive connection electrode 34.
  • the positive electrode connection electrode 34 is electrically connected to the positive electrode thin grid line 32
  • the negative electrode connection electrode 33 is electrically connected to the negative electrode thin grid line 31.
  • the positive electrode fine grid lines 32 and the negative electrode fine grid lines 31 may be segmented fine grid lines or continuous fine grid lines.
  • the positive electrode connection electrode 34 can be connected to all or part of the positive electrode fine grid lines 32 in the same row or the same column
  • the negative electrode connection electrode 33 can be connected to all or part of the negative electrode fine grid lines 31 in the same row or column.
  • the anode fine gate line 32 may be in electrical contact with the P-type doped diffusion region
  • the anode fine gate line 31 may be in electrical contact with the N-type doped diffusion region.
  • FIG. 4 shows a schematic structural diagram of a doped diffusion region in an embodiment of the present application.
  • the doped diffusion region 2 may include a P-type doped diffusion region 21 and an N-type doped diffusion region 22.
  • the P-type doped diffusion region 21 and the N-type doped diffusion region 22 may be alternately arranged.
  • the function of the metal circuit board is to collect the current of the back contact with the solar cell.
  • the metal circuit board may be a metal circuit board with isolation formed by a patterning process.
  • the patterning treatment may be to remove a part of the metal circuit board by means of laser, chemical etching or mechanical cutting to form a void, and the width of the void may be greater than 50 microns, such as 200 microns or greater.
  • the isolated part of the metal circuit board is used for subsequent connection with the P-type doped diffusion region of the back contact solar cell.
  • the other part isolated from the metal circuit board is used for subsequent connection with the N-type doped diffusion region of the back contact solar cell.
  • the material of the metal circuit board may be at least one of copper, silver, aluminum, nickel, magnesium, iron, titanium, molybdenum, tungsten, and alloys thereof.
  • the material of the metal circuit board may be at least one element of copper, silver, aluminum, nickel, magnesium, iron, titanium, molybdenum, and tungsten.
  • the material of the metal circuit board may be an alloy of at least two combinations of copper, silver, aluminum, nickel, magnesium, iron, titanium, molybdenum, and tungsten.
  • the material of the metal circuit board may be a combination of at least one element and at least one alloy.
  • the surface of the first piece has a number of first conductive sites.
  • the above-mentioned first conductive site is mainly used for collecting or deriving current.
  • the first conductive site may be: an electrode that back-contacts the back-light surface of the solar cell sheet or an electrode to be connected point or the like.
  • the first conductive site may be: a negative fine grid line and a positive fine grid line that back-contact the backlight surface of the solar cell.
  • the first conductive site may be: a negative electrode connecting electrode, a positive electrode connecting electrode, etc., back contacting the backlight surface of the solar cell.
  • the first conductive site may be a position on the surface of the metal circuit board that is electrically connected to the electrode of the back contacting solar cell.
  • the first conductive site may be a point on the surface of the metal circuit board that is electrically connected to the negative fine grid line and the positive fine grid line back contacting the backlight surface of the solar cell.
  • the first conductive site may be a point on the surface of the metal circuit board that is electrically connected to the negative electrode connecting electrode, the positive electrode connecting electrode, etc., which are back in contact with the backlight surface of the solar cell.
  • the first stacking member further includes a conductive boss formed on the first conductive site of the first sheet member.
  • the main function of the conductive boss is to electrically connect the first conductive site on the first piece and the second conductive site on the second piece to collect or derive current.
  • the height of the conductive boss is set to be able to electrically connect the first conductive site and the second conductive site well. In the embodiment of the present application, the height of the conductive boss is not specifically limited.
  • the material of the conductive boss may be at least one of solder paste, tin paste, isotropic conductive glue, anisotropic conductive glue, conductive ink, and conductive paste.
  • the shape of the conductive boss may be a circle or a rectangle.
  • the conductive boss may include: a conductive boss contacting the positive electrode of the back-contact solar cell and a conductive boss contacting the negative electrode of the back-contact solar cell.
  • the conductive boss may include: a conductive boss contacting the positive fine grid line of the back-contacting solar cell sheet and a conductive boss contacting the negative electrode fine grid line of the back-contacting solar cell sheet.
  • the conductive bumps may include: conductive bumps in contact with the P-type doped diffusion region of the back-contact solar cell and conductive bumps in contact with the N-type doped diffusion region of the back-contact solar cell.
  • the number of conductive protrusions may be the same as or different from the number of first conductive sites.
  • the number of conductive bumps corresponding to a single back contact solar cell sheet can be 20-5000.
  • the number of conductive protrusions corresponding to the entire back-contact solar cell module can be 1,000 to 50,000.
  • the above-mentioned number of conductive bumps is beneficial to the collection and conduction of current. In the embodiments of the present application, this is not specifically limited.
  • the single back-contact solar cell sheet may include 20-5000 conductive bumps.
  • Step 102 providing a second stacking piece; the second stacking piece includes a second piece; the second piece is the other of the metal circuit board and the back contact solar cell piece;
  • the surface of the second piece has a plurality of second conductive sites; the periphery of the first conductive site or the periphery of the second conductive site is provided with adhesive insulating spacers.
  • the second piece may be a metal circuit board or a back contact solar cell piece other than the first piece.
  • the second piece may be a back contact solar cell piece.
  • the first piece is a back contact solar cell piece.
  • the second piece may be a metal circuit board.
  • the surface of the second piece has a number of second conductive sites.
  • the above-mentioned second conductive site is mainly used for collecting or deriving current.
  • the second conductive site may be an electrode that back-contacts the backlight surface of the solar cell or a point to be connected to the electrode.
  • the second conductive site may be: a negative fine grid line and a positive fine grid line that back-contact the backlight surface of the solar cell sheet.
  • the second conductive site may be: a negative electrode connecting electrode, a positive electrode connecting electrode, etc., back contacting the backlight surface of the solar cell.
  • the second conductive site may be a position on the surface of the metal circuit board that is electrically connected to the electrode of the back contacting solar cell.
  • the second conductive site may be a point on the surface of the metal circuit board that is electrically connected to the negative fine grid line and the positive fine grid line that are back in contact with the backlight surface of the solar cell.
  • the second conductive site may be a point on the surface of the metal circuit board that is electrically connected to the negative electrode connecting electrode, the positive electrode connecting electrode, etc., which are back in contact with the backlight surface of the solar cell sheet.
  • an adhesive insulating spacer is arranged on the periphery of the first conductive site on the first piece, or an adhesive insulating spacer is arranged on the periphery of the second conductive site on the second piece, which is Adhesive insulating spacers are arranged on the periphery of the conductive sites, which are not specifically limited.
  • the function of the adhesive insulating spacer can be mainly to isolate each conductive boss and avoid short circuit of each conductive boss; at the same time, the first piece and the second piece are bonded during the lamination process. In some cases, it provides certain thermal conductivity, hydrophobic properties, etc. In the embodiments of the present application, this is not specifically limited.
  • the number of adhesive insulating spacers can be equal to the number of conductive bosses that are subsequently buckled with it.
  • the shape of the inner ring of the adhesive insulating spacer ring can be matched with the shape of the conductive boss that is subsequently buckled with it. In the embodiments of the present application, this is not specifically limited.
  • the thickness of the bonded insulating spacer can be 1 to 100 microns.
  • the use of polyolefins to form a thickness of 150 microns or more not only reduces the thickness of the back contact solar cell module, but at the same time, the adhesive insulating spacer of this thickness is bonded during the subsequent lamination process. Reliability is good, and it has good thermal conductivity, hydrophobic properties, etc.
  • the material for bonding the insulating spacer is an insulating adhesive material.
  • the insulating adhesive material may include a liquid adhesive and an inert filler.
  • the above-mentioned inert filler includes silica particles.
  • the adhesive insulating spacer of the above-mentioned material not only has low cost, but also has good adhesive performance and good thermal conductivity.
  • the above-mentioned insulating adhesive material may include a liquid adhesive and an inert filler.
  • the inert filler may include silica particles.
  • the use of silica particles not only has low cost, but also has good bonding performance of the insulating adhesive material and good thermal conductivity, which will help reduce the production cost of back-contact solar cell modules and improve bonding reliability and heat conduction. Sex and so on.
  • the reliability of adhesion can be further improved.
  • the silica particles are fumed silica particles.
  • fumed silica particles are smaller, have good dispersibility, are not prone to precipitation, can provide better bonding performance, and have a lower cost, and also have better thermal conductivity.
  • the fumed silica particles have good hydrophobicity, which can greatly reduce or prevent moisture from remaining in the manufacturing process of the back-contact solar cell module, and improve the reliability of the back-contact solar cell module.
  • the above-mentioned inert filler may also include at least one of alumina particles, talc powder, and boron nitride particles.
  • the above-mentioned materials can further reduce the production cost of back-contact solar cell modules, and improve bonding reliability and thermal conductivity.
  • the liquid adhesive is mainly used for bonding.
  • the liquid adhesive includes: siloxane.
  • siloxane can make the printed adhesive insulating spacers more dense, increase the hydrophobicity of the adhesive insulating spacers, and reduce or prevent moisture from contacting the back of the solar cell module to a greater extent. Residues in the process improve the reliability of back-contact solar cell modules.
  • the mass ratio of the inert filler to the liquid binder is 7:3 to 3:7.
  • the adhesive insulating spacer formed in this way has lower cost, better adhesive reliability, thermal conductivity, hydrophobicity, etc.
  • the mass ratio of the inert filler to the liquid binder in the insulating adhesive material is 6:4.
  • the liquid binder further includes at least one of an organic solvent, a resin, a curing agent, a coloring agent, a wetting agent, and a dispersing agent.
  • the organic solvent may be: 1,4-butanediol diglycidyl ether, dibutyl phthalate, and the like.
  • the resin may be a thermosetting resin, a thermoplastic resin, or the like.
  • the thermosetting resin may be: unsaturated polyester, vinyl ester, epoxy, phenolic, bismaleimide (BMI), polyimide resin, and the like.
  • the thermoplastic resin may be: polypropylene (PP), polycarbonate (PC), nylon (NYLON), polyether ether ketone (PEEK), polyether sulfone (PES), and the like.
  • the dispersant can be used to improve the dispersion performance of the insulating adhesive material, make the performance uniform, and improve the fluidity.
  • the curing agent can improve the anti-sagging performance, and improve the shaping of the bonded insulating spacer after printing.
  • the colorant can make the insulating adhesive material have a specific color, which is convenient for subsequent identification and inspection. In the embodiments of the present application, this is not specifically limited.
  • the material formula of the above-mentioned adhesive insulating spacer can be: 50% silica particles, 10% siloxane, 30% 1,4-butanediol diglycidyl ether, 10% Of vinyl esters.
  • the material formula of the above-mentioned adhesive insulating spacer can be: 50% silica particles, 9% siloxane, 20% 1,4-butanediol diglycidyl ether, 11 % Dibutyl phthalate, 10% polyether ether ketone.
  • the insulating and adhesive spacers are also composed of insulating adhesive materials, etc., so that the adhesion performance of the first piece and the second piece is better.
  • FIG. 5 shows a schematic structural diagram of a bonded insulating spacer in an embodiment of the present application.
  • 42 may be an inner ring for bonding an insulating spacer, and other positions other than the inner ring 42 may be made of insulating adhesive materials or the like.
  • the space between each adhesive insulating spacer is empty, and no insulating adhesive material or the like is provided. Furthermore, fewer insulating adhesive materials are used, and production costs are lower.
  • FIG. 6 shows a schematic structural diagram of another bonded insulating spacer in an embodiment of the present application.
  • the 40 selected by the dashed rectangle can be an adhesive insulating spacer.
  • 42 can be the inner ring of the bonded insulating spacer.
  • step 101 and step 102 can be performed at the same time. Alternatively, step 101 is performed first and then step 102 is performed, or step 102 is performed first and then step 101 is performed. In the embodiments of the present application, this is not specifically limited.
  • both the above-mentioned first stacking member and the second stacking member may further include: packaging material and cover material.
  • the packaging material and the cover material may be sequentially arranged on the side of the first piece or the second piece away from the conductive site.
  • the packaging material may include a sealing material such as EVA or polyolefin, and the cover material may be a tempered glass cover or a polymer cover such as TPT, TPE, KPE, KPK, KPC or KPF.
  • the packaging material and the cover material can be hot pressed or bonded. It should be noted that both the packaging material and the cover material located on the light-receiving side of the first sheet or the second sheet may have good light permeability.
  • Step 103 stacking and laminating the first stacking piece and the second stacking piece, so that the conductive boss abuts on the second conductive site, and the bonding
  • the insulating spacer bonds the first piece and the second piece together.
  • the second stack and the first stack are stacked and laminated, and the conductive boss abuts on the second conductive site to achieve electrical contact between the conductive boss and the second piece.
  • the bonding insulating spacer bonds the first piece and the second piece together.
  • the side where the conductive bosses of the first piece are provided is attached to the side of the second piece that has the second conductive sites, so that the conductive bosses abut on the second conductive sites, thereby realizing the first
  • the piece is in electrical contact with the second piece.
  • the first conductive site is in electrical contact with the conductive bump, and the conductive bump abuts on the second conductive site to achieve electrical contact between the first conductive site and the second conductive site, thereby achieving current collection and conduction.
  • the role of the pass is
  • the first stack and the second stack are stacked and laminated, and the insulating spacer is bonded to cross-link and bond the first sheet and the second sheet during the lamination process, and the first sheet and the second sheet are bonded together.
  • the pieces are bonded together to obtain a back contact solar cell module.
  • the above-mentioned bonding insulating spacer is used for bonding the first piece and the second piece during the lamination process.
  • the conductive boss is abutted on the second conductive site to realize the electrical connection between the metal circuit board and the back contact solar cell.
  • the conductive adhesive is fused with the conductive sites on the metal circuit board and the back contact solar cell to realize the electrical connection between the metal circuit board and the back contact solar cell, and the reliability of the electrical connection is low. In terms of low yield.
  • the conductive boss abuts on the second conductive site of the second piece to realize the electrical connection between the metal circuit board and the back contact solar cell, and realizes stable electrical connection without fusion, which improves the electrical connection. Reliability and yield rate.
  • the conductive boss and the second conductive site can be pressed tighter, and the reliability of the electrical connection and the yield rate are further improved.
  • FIG. 7 shows a schematic structural diagram of a back contact solar cell module in an embodiment of the present application.
  • 10 can be a front cover material
  • 20 can be a front encapsulation material, such as light-permeable EVA or POE
  • 30 can be a back contact solar cell
  • 40 can be an adhesive insulating spacer
  • 41 can be The conductive boss
  • 42 may be an inner ring for bonding insulating spacers
  • 50 may be a metal circuit board
  • 60 may be a rear packaging material
  • 70 may be a rear cover material.
  • the front cover material 10 may be the back contacting the side of the solar cell module to receive light
  • the rear cover material 70 may be the back contacting the side of the solar cell module backlight.
  • the front cover material 10 and the front packaging material 20 may have good light transmittance.
  • the electrical connection and bonding between the metal circuit board and the back-contact solar cell are realized through conductive glue.
  • the above-mentioned electrical connection is mainly in the lamination process.
  • the conductive glue is fused with the conductive sites on the metal circuit board and the back contact solar cell sheet, so that the reliability of the electrical connection is low and the yield is low.
  • the first stacking member includes conductive bumps formed on the first conductive site of the first sheet member, and the electrical connection between the metal circuit board and the back contact solar cell is mainly through the first stacking member and The second stacking member is stacked, and the conductive boss abuts on the second conductive site of the second sheet member, so that stable electrical connection can be realized without fusion, and the reliability of electrical connection and the yield rate are improved.
  • the conductive boss and the second conductive site can be pressed tighter, and the reliability of the electrical connection and the yield rate are further improved.
  • FIG. 8 shows a flow chart of another method for producing a back contact solar cell module in an embodiment of the present application.
  • Step 201 providing the first piece; the first piece is one of a metal circuit board or a back contact solar cell piece; the surface of the first piece has a number of first conductive sites; the first piece A stacking member further includes a conductive boss formed on the first conductive site of the first sheet member.
  • step 201 the first piece, the first conductive site, the conductive boss, the adhesive insulating spacer, etc. can be referred to the specific description of the foregoing step 101, and will not be repeated here in order to avoid repetition.
  • the method may further include: sequentially stacking the packaging material and the cover material on the first side of the first piece; The side of the first piece with the first conductive site is opposite.
  • the first side of the first sheet is the opposite side of the first sheet with the first conductive site.
  • the first side may be the side of the first piece opposite to receiving light.
  • the first conductive site is located on the side of the metal circuit board opposite to receiving light
  • the first side may be the side of the metal circuit board opposite to the backlight.
  • the packaging material can be stacked on the first side of the first piece first, and then the cover material can be stacked.
  • FIG. 9 shows a schematic structural view of a packaging material stacked on a first side of a first sheet in an embodiment of the present application.
  • the first piece may be a back contact solar cell piece 30. Since the packaging material is located on the back side of the solar cell sheet that is opposite to receiving light, the packaging material may be the front packaging material 20.
  • Step 202 Print a conductive material on the first conductive site of the first piece to form the conductive boss.
  • a printing screen corresponding to the first conductive site can be produced before step 202 described above.
  • the conductive protrusions can be formed by printing conductive materials on the first conductive sites of the first sheet by means of screen printing or inkjet printing to obtain the first stack.
  • the above-mentioned printing can be full-page printing to improve production efficiency.
  • the first piece is a metal circuit board
  • a conductive material is printed on the first conductive site of the metal circuit board to form a conductive boss.
  • the first conductive site of the back-contact solar cell sheet is printed and conductive to form a conductive boss.
  • it can be printed on the entire page, and printed conductive bumps on 100 first conductive sites of back-contact solar cells at one time, instead of separately on the first conductive sites of each back-contact solar cell. Print conductive to form conductive bumps to improve production efficiency.
  • a printing screen with spacers corresponding to the first conductive sites can be produced before step 202 described above.
  • the insulating adhesive material can be printed by means of screen printing or inkjet printing on the periphery of the first conductive site on the first sheet through the printing screen to form an adhesive insulating spacer.
  • an adhesive insulating spacer is provided on the periphery of the first conductive member, then a conductive material may be printed on the first conductive site of the first piece to form a conductive boss. Then, an adhesive insulating spacer is formed by printing on the periphery of the first conductive site of the first piece. Or, it is possible to print and form an adhesive insulating spacer on the periphery of the first conductive site of the first piece. Then, a conductive material is printed on the first conductive site of the first piece to form a conductive boss. In the embodiments of the present application, this is not specifically limited.
  • the first printed parts can be dried to make them have a certain surface dryness and hardness, and they will not stick to the screen and be crushed. It can avoid defects such as collapse of the first printed part and spread to the surrounding area during the second printing to form short circuit, pollution and other defects.
  • the conductive boss can be dried before printing the adhesive insulating spacer. If the insulating spacers are printed and bonded first, the conductive bumps can be dried before the conductive bumps are printed.
  • the printing support substrate may be heated or the conductive boss, or the adhesive insulating spacer may be locally heated or irradiated for drying or pre-curing.
  • the heating temperature may be 50-100°C, and the heating time may be 10-300 seconds. In the embodiments of the present application, this is not specifically limited.
  • an adhesive insulating spacer is arranged on the periphery of the first conductive member, a conductive material is printed on the first conductive site of the first piece to form a conductive boss, and on the first piece of The periphery of a conductive site is printed to form an adhesive insulating spacer.
  • the conductive boss and the adhesive insulating spacer are printed on the same piece, and the adhesive insulating spacer is arranged around the conductive boss at the same time of printing, and the subsequent buckling operation is not required, and the operation is simple.
  • the printing on the periphery of the first conductive site on the first piece forms an adhesive insulating spacer, which can usually be obtained by one-time printing without laser opening one by one, and the production efficiency is high; Adhesive insulating spacers are printed around, eliminating the need for openings to remove the insulating adhesive material, reducing costs; at the same time, there is no need for laser ablation of the opening, reducing damage to the insulating adhesive material, and improving insulation reliability and bonding Reliability etc.
  • the above step 202 may include: using the packaging material and the cover material as a printing support substrate, and printing a conductive material on the first conductive site of the first piece , Forming the conductive boss.
  • the laminated packaging material and the cover material may be used as a printing support substrate, and a conductive material may be printed on the first conductive site of the first piece to form a conductive boss. Furthermore, after the conductive bosses are printed, the above-mentioned laminated encapsulation material and cover material may not be removed, thereby reducing the number of steps and improving the production efficiency of the back-contact solar cell module.
  • the first conductive outer periphery is provided with an adhesive insulating spacer
  • the laminated packaging material and cover material can be used as the printing support substrate, and the conductive material can be printed on the first conductive site of the first piece to form a conductive boss.
  • an adhesive insulating spacer is printed on the periphery of the first conductive site of the first piece.
  • FIG. 10 shows a schematic diagram of a structure in which conductive bumps are printed and formed on the first conductive sites of the back-contact solar cell in an embodiment of the present application.
  • the conductive bump 41 includes a conductive bump that is in electrical contact with the P-type doped diffusion region 21 and a conductive bump that is in electrical contact with the N-type doped diffusion region 22.
  • Step 203 providing a second stacking piece; the second stacking piece includes a second piece; the second piece is the other of the metal circuit board and the back contact solar cell piece;
  • the surface of the second piece has a plurality of second conductive sites; the periphery of the first conductive site or the periphery of the second conductive site is provided with adhesive insulating spacers.
  • the foregoing step 203 can refer to the related description of the foregoing step 102. It should be noted that the formation of the second conductive site can refer to the foregoing formation process of the first conductive site. At the same time, if adhesive insulating spacers are arranged on the periphery of the second conductive sites, a printing screen with spacers corresponding to the second conductive sites can be produced. It is possible to use the printing screen, screen printing or inkjet printing on the second sheet to print an insulating adhesive material, etc., to form an adhesive insulating spacer to obtain the second stack. It is equivalent to reserve the inner ring for subsequent buckling with the conductive boss during the printing process.
  • the inner ring for subsequent buckling with the conductive boss is reserved, and there is no need to open the holes one by one in the subsequent process, and the production efficiency is high; on the other hand, the subsequent use is reserved during the printing process.
  • the inner ring buckled with the conductive boss there is no printed insulating adhesive material directly on the inner ring, and no opening is required to remove the insulating adhesive material, which reduces the cost.
  • there is no need for laser ablation of the opening which reduces the damage to the insulating bonding material, which is beneficial to improve the insulation reliability and bonding reliability.
  • steps 201 to 202 may be performed simultaneously with step 203, or may be performed sequentially, and the execution order is not specifically limited.
  • Step 204 spraying flux on the surface of the conductive boss.
  • the conductive boss by spraying flux on the surface of the conductive boss, the conductive boss can be in good pressure contact with the second conductive site of the second piece during the subsequent lamination and curing, and there will be no poor contact, etc. Defects to improve the conductivity of back-contact solar cell modules.
  • Step 205 stacking and laminating the first stacking piece and the second stacking piece, so that the conductive boss abuts on the second conductive site, and the bonding
  • the insulating spacer bonds the first piece and the second piece together.
  • the step 205 may refer to the description of the above step 103, and in order to avoid repetition, it will not be repeated here.
  • the electrical connection and bonding between the metal circuit board and the back-contact solar cell are realized through conductive glue.
  • the above-mentioned electrical connection is mainly in the lamination process.
  • the conductive glue is fused with the conductive sites on the metal circuit board and the back contact solar cell sheet, so that the reliability of the electrical connection is low and the yield is low.
  • the first stacking member includes conductive bumps formed on the first conductive site of the first sheet member, and the electrical connection between the metal circuit board and the back contact solar cell is mainly through the first stacking member and The second stacking member is stacked, and the conductive boss abuts on the second conductive site of the second sheet member, so that stable electrical connection can be realized without fusion, and the reliability of electrical connection and the yield rate are improved.
  • the conductive boss and the second conductive site can be pressed tighter, which further improves the reliability of the electrical connection and the yield rate.
  • both the conductive boss and the adhesive insulating spacer are formed by printing, the process is simple, and the production efficiency is high. If the conductive boss and the adhesive insulating spacer are printed on the same piece, the adhesive insulating spacer is arranged around the conductive boss at the same time of printing, and the subsequent buckling operation is not required, and the operation is simple.
  • the adhesive insulating spacer is formed by printing on the periphery of the first conductive site on the first piece, it can usually be obtained by one-time printing, without laser opening one by one, and the production efficiency is high; and the conductive convexity during the printing process Adhesive insulating spacers are printed around the table, and the insulating adhesive material is removed without openings, which reduces the cost; at the same time, laser ablation of the opening is not required, which reduces the damage to the insulating adhesive material, which is beneficial to improve insulation reliability Bonding reliability, etc.
  • a back-contact solar cell module is also provided.
  • the back-contact solar cell module may include: a first stacking member and a second stacking member.
  • the first stack includes a first sheet.
  • the first piece is one of the metal circuit board 50 or the back contact solar cell piece 30.
  • the surface of the first piece has a plurality of first conductive sites, and the first stacking piece further includes conductive bosses 41 formed on the first conductive sites of the first piece.
  • the second stack includes a second sheet.
  • the second piece is the other of the metal circuit board 50 and the back contact solar cell piece 30 except the first piece.
  • the surface of the second piece has a number of second conductive sites.
  • An adhesive insulating spacer 40 is provided on the periphery of the first conductive site, or an adhesive insulating spacer 40 is provided on the outer periphery of the second conductive site.
  • the first stack and the second stack are stacked and laminated together, and the conductive boss 41 abuts on the second conductive site.
  • the first piece and the second piece are bonded together by bonding insulating spacers 40.
  • the back-contact solar cell module can refer to the related records of the aforementioned production method of the back-contact solar cell module, and can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement without creative work.
  • the various component embodiments of the present application may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present application.
  • This application can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present application may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 11 shows a computing processing device that can implement the method according to the present application.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing the program code 1031 of any method step in the above method.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 12.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 11.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable codes 1031', that is, codes that can be read by, for example, a processor such as 1010. These codes, when run by a computing processing device, cause the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the application can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims that list several devices, several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种背接触太阳能电池组件生产方法及背接触太阳能电池组件,涉及太阳能光伏技术领域。该方法包括:提供第一叠放件;所述第一叠放件包括第一片件;所述第一片件的表面具有若干第一导电位点;所述第一叠放件还包括形成在所述第一片件的所述第一导电位点上的导电凸台,以及所述第一导电位点外围的粘接绝缘隔圈;提供第二叠放件;所述第二叠放件包括第二片件;所述第二片件的表面具有若干第二导电位点;将所述第一叠放件以及所述第二叠放件叠放并层压,以使所述导电凸台抵接在所述第二导电位点上,并使所述粘接绝缘隔圈将所述第一片件与所述第二片件粘接在一起。本申请提高了电连接可靠性和良品率。

Description

背接触太阳能电池组件生产方法及背接触太阳能电池组件
本申请要求在2019年8月26日提交中国专利局、申请号为201910791309.X、发明名称为“背接触太阳能电池组件生产方法及背接触太阳能电池组件”,以及,在2019年8月26日提交中国专利局、申请号为201910792400.3、发明名称为“背接触太阳能电池组件生产方法及背接触太阳能电池组件”的中国专利申请的优先权,其全部内容通过引用均结合在本申请中。
技术领域
本申请涉及太阳能光伏技术领域,特别是涉及一种背接触太阳能电池组件生产方法及一种背接触太阳能电池组件、一种计算机程序、一种计算机可读介质。
背景技术
背接触太阳能电池组件由于其正面没有主栅线,正极和负极均设置在电池的背面,减少了遮光,有效增加了电池的短路电路,使得组件的能量转换效率提升,进而应用前景广泛。
目前,背接触太阳能电池组件的生产方法主要为:背接触太阳能电池片与金属电路板之间设置导电胶,在层压过程中,通过导电胶实现背接触太阳能电池片与金属电路板电连接和粘接。
上述背接触太阳能电池组件生产方法中:在层压过程中,通过导电胶实现背接触太阳能电池片与金属电路板电连接和粘接,上述电连接不可靠,良率低。
发明内容
本申请提供一种背接触太阳能电池组件、一种背接触太阳能电池组件生产方法、一种计算机程序、一种计算机可读介质,旨在解决背接触太阳能电池组件电连接不可靠、良率低的问题。
根据本申请的第一方面,提供了一种背接触太阳能电池组件生产方法,包括:
提供第一叠放件;所述第一叠放件包括第一片件;所述第一片件为金属电路板或背接触太阳能电池片中的一个;所述第一片件的表面具有若干第一导电位点;所述第一叠放件还包括形成在所述第一片件的所述第一导电位点上的导电凸台;
提供第二叠放件;所述第二叠放件包括第二片件;所述第二片件为所述金属电路板和所述背接触太阳能电池片中的另一个;所述第二片件的表面具有若干第二导电位点;所述第一导电位点的外围或所述第二导电位点的外围设置有粘接绝缘隔圈;
将所述第一叠放件以及所述第二叠放件叠放并层压,以使所述导电凸台抵接在所述第二导电位点上,并使所述粘接绝缘隔圈将所述第一片件与所述第二片件粘接在一起。
可选的,所述粘接绝缘隔圈的材质为绝缘粘接材料;所述绝缘粘接材料包括液体粘结剂和惰性填料;所述惰性填料包括二氧化硅颗粒。
可选的,所述二氧化硅颗粒为气相二氧化硅颗粒。
可选的,所述液体粘结剂,包括:硅氧烷;所述惰性填料与所述液体粘结剂的质量比例为:7:3至3:7。
可选的,第一叠放件通过如下步骤获得:
提供所述第一片件;
在所述第一片件的所述第一导电位点上印刷导电材料,形成所述导电凸台。
可选的,所述将所述第一叠放件以及所述第二叠放件叠放并层压之前,所述方法还包括:
在所述第一片件的所述第一导电位点外围,印刷形成所述粘接绝缘隔圈;或,在所述第二片件的所述第二导电位点外围,印刷形成所述粘接绝缘隔圈。
可选的,所述粘接绝缘隔圈的厚度为:1至100微米。
可选的,所述将所述第一叠放件以及所述第二叠放件叠放并层压之前,所述方法还包括:
在所述导电凸台的表面喷涂助焊剂。
可选的,相邻的所述粘接绝缘隔圈之间具有间隙。
可选的,所述在所述第一片件的所述第一导电位点上印刷导电材料,形成所述导电凸台之前,所述方法还包括:
在所述第一片件的第一侧依次叠放封装材料和盖板材料;所述第一侧与所述第一片件具有第一导电位点的一侧相反;
所述在所述第一片件的所述第一导电位点上印刷导电材料,形成所述导电凸台,包括:
以所述封装材料和盖板材料为印刷支持基板,在所述第一片件的所述第一导电位点上印刷导电材料,形成导电凸台。
根据本申请的第二方面,提供了一种背接触太阳能电池组件,包括:第一叠放件以及第二叠放件;
所述第一叠放件包括第一片件;所述第一片件为金属电路板或背接触太阳能电池片中的一个;所述第一片件的表面具有若干第一导电位点;所述第一叠放件还包括形成在所述第一片件的所述第一导电位点上的导电凸台;
所述第二叠放件包括第二片件;所述第二片件为所述金属电路板和所述背接触太阳能电池片中的另一个;所述第二片件的表面具有若干第二导电位点;所述第一导电位点的外围或所述第二导电位点的外围设置有粘接绝缘隔圈;
所述第一叠放件和所述第二叠放件层叠并层压在一起,所述导电凸台抵接在所述第二导电位点上;所述第一片件与所述第二片件通过所述粘接绝缘隔圈粘接在一起。
根据本申请的第三方面,提供了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的任一个所述的背接触太阳能电池组件生产方法。
根据本申请的第四方面,提供了一种计算机可读介质,其中存储了如前所述的计算机程序。
本申请实施例中,提供第一叠放件;所述第一叠放件包括第一片件;所述第一片件为金属电路板或背接触太阳能电池片中的一个;所述第一片件的表面具有若干第一导电位点;所述第一叠放件还包括形成在所述第一片件的所述第一导电位点上的导电凸台;提供第二叠放件;所述第二叠放件包括第二片件;所述第二片件为所述金属电路板和所述背接触太阳能电池片中的另一个;所述第二片件的表面具有若干第二导电位点;所述第一导电位点的外围或所述第二导电位点的外围设置有粘接绝缘隔圈;将所述第一叠放件以及所述第二叠放件叠放并层压,以使所述导电凸台抵接在所述第二导电位点上,并使所述粘接绝缘隔圈将所述第一片件与所述第二片件粘接在一起。相对于现有技术中, 在层压过程中,通过导电胶实现金属电路板和背接触太阳能电池片的电连接和粘接,上述电连接主要是在层压过程中,导电胶与金属电路板和背接触太阳能电池片上的导电位点熔合实现,使得电连接可靠性低、良率低。本申请中,第一叠放件包括形成在第一片件的第一导电位点上的导电凸台,第一导电位点或第二导电位点外围设置有粘接绝缘隔圈,金属电路板和背接触太阳能电池片的电连接,主要是通过第一叠放件和第二叠放件叠放,导电凸台抵接在第二片件的第二导电位点上实现的,基本无需熔合即可实现稳定的电连接,提高了电连接可靠性和良品率。在层压过程中通过对第一叠放件和第二叠放件的抵压,可以将导电凸台和第二导电位点抵压的更紧,进一步提高了电连接可靠性和良品率。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例中的一种背接触太阳能电池组件的生产方法步骤流程图;
图2示出了本申请实施例中的一种背接触太阳能电池片的结构示意图;
图3示出了本申请实施例中的一种电极的结构示意图;
图4示出了本申请实施例中的一种掺杂扩散区的结构示意图;
图5示出了本申请实施例中一种粘接绝缘隔圈的结构示意图;
图6示出了本申请实施例中另一种粘接绝缘隔圈的结构示意图;
图7示出了本申请实施例中一种背接触太阳能电池组件的结构示意图;
图8示出了本申请实施例中的另一种背接触太阳能电池组件的生产方法步骤流程图;
图9示出了本申请实施例中一种在第一片件的第一侧叠放封装材料的结构示意图;
图10示出了本申请实施例中一种在背接触太阳能电池片的第一导电位点上印刷形成导电凸台的结构示意图;
图11示意性地示出了用于执行根据本申请的方法的计算处理设备的框图;
图12示意性地示出了用于保持或者携带实现根据本申请的方法的程序代码的存储单元。
附图编号说明:
1-硅基底,2-掺杂扩散区,3-电极,11-硅基底接收光的表面,8-各个粘接绝缘隔圈之间的间隙,12-硅基底1的背面,21-P型掺杂扩散区,22-N型掺杂扩散区,31-负极细栅线、32-正极细栅线,33-负极连接电极,34-正极连接电极,10-前盖板材料,20-前封装材料,30-背接触太阳能电池片,40-粘接绝缘隔圈,41-导电凸台,42-粘接绝缘隔圈的内圈,50-金属电路板,60-后封装材料,70-后盖板材料。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中 的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参照图1,图1示出了本申请实施例中的一种背接触太阳能电池组件的生产方法步骤流程图。
步骤101,提供第一叠放件;所述第一叠放件包括第一片件;所述第一片件为金属电路板或背接触太阳能电池片中的一个;所述第一片件的表面具有若干第一导电位点;所述第一叠放件还包括形成在所述第一片件的所述第一导电位点上的导电凸台。
在本申请实施例中,第一叠放件包括第一片件。第一片件为金属电路板或背接触太阳能电池片中的一个。例如,第一片件可以为金属电路板。或者,第一片件可以为背接触太阳能电池片。背接触太阳能电池片的数量不作具体限定,各个背接触太阳能电池片可以具有大致相同的电流特性或电压特性。具体根据背接触太阳能电池组件的需要设置。
在本申请实施例中,背接触太阳能电池片可以为正面没有主栅线,正极和负极均设置在背面的太阳能电池片。在本申请实施例中,背接触太阳能电池片可以IBC电池、MWT电池、EWT电池等。
参照图2所示,图2示出了本申请实施例中的一种背接触太阳能电池片的结构示意图。图2中,1可以为硅基底,2可以为掺杂扩散区,3可以为电极。11可以为接收光的表面,即,11为硅基底1的正面。12可以为硅基底1的背面。掺杂扩散区2和电极3依次设置在硅基底1的背面。
参照图3所示,图3示出了本申请实施例中的一种电极的结构示意图。电极3可以包括负极细栅线31、正极细栅线32,负极连接电极33和正极连接电极34。正极连接电极34与正极细栅线32电连接,负极连接电极33与负极细栅线31电连接。正极细栅线32和负极细栅线31可以是分段细栅线或连续细栅线。正极连接电极34可以与同一行或同一列的所有或部分正极细栅线32连接,负极连接电极33可以与同一行或同一列的所有或部分负极细栅线31连接。正极细栅线32可以与P型掺杂扩散区电接触,负极细栅线31可以与N型掺杂扩散区电接触。
参照图4所示,图4示出了本申请实施例中的一种掺杂扩散区的结构示意图。掺杂扩散区2可以包括P型掺杂扩散区21和N型掺杂扩散区22。P型掺杂扩散区21和N型掺杂扩散区22可以交替设置。
在本申请实施例中,金属电路板的作用在于收集背接触太阳能电池片的电流等。金属电路板可以为经过图案化处理形成的具有隔离的金属电路板。该图案化处理可以为通过激光、化学蚀刻或机械切割等方式去除金属电路板中的一部分形成空隙,该空隙的宽度可以大于50微米,如可以为200微米或更大。该金属电路板隔离的一部分用于后续与背接触太阳能电池片的P型掺杂扩散区连接。该金属电路板隔离的另一部分用于后续与背接触太阳能电池片的N型掺杂扩散区连接。通过设置隔离,可以有效避免后续正极和负极接触,有效避免短路。
在本申请实施例中,金属电路板的材料可以为铜、银、铝、镍、镁、铁、钛、钼、钨及其合金中至少一种。例如,金属电路板的材料可以为铜、银、铝、镍、镁、铁、钛、钼、钨中的至少一种单质。或者,金属电路板的材料可以为铜、银、铝、镍、镁、 铁、钛、钼、钨中的至少两种组合的合金。或者,金属电路板的材料可以为至少一种单质与至少一种合金的组合。
在本申请实施例中,第一片件的表面具有若干第一导电位点。上述第一导电位点主要用于收集或导出电流。若第一片件为背接触太阳能电池片,则,第一导电位点可以为:背接触太阳能电池片背光面的电极或电极的待连接点等。例如,第一导电位点可以为:背接触太阳能电池片背光面的负极细栅线、正极细栅线。或者,第一导电位点可以为:背接触太阳能电池片背光面的负极连接电极、正极连接电极等。若第一片件为金属电路板,则,第一导电位点可以为:金属电路板的表面上,与背接触太阳能电池片的电极电性连接的位置。例如,第一导电位点可以为:金属电路板的表面上,与背接触太阳能电池片背光面的负极细栅线、正极细栅线电性连接的点。或者,第一导电位点可以为:金属电路板的表面上,与背接触太阳能电池片背光面的负极连接电极、正极连接电极等电性连接的点。
在本申请实施例中,第一叠放件还包括形成在第一片件的第一导电位点上的导电凸台。该导电凸台的作用主要在于:电性连接第一片件上的第一导电位点和第二片件上的第二导电位点,收集或导出电流。导电凸台的高度以能够良好电性连接上述第一导电位点和第二导电位点设置。在本申请实施例中,对导电凸台的高度不作具体限定。
在本申请实施例中,导电凸台的材料可以为:焊膏、锡膏、各向同性导电胶、各向异性导电胶、导电墨水、导电浆料中的至少一种。
可选的,导电凸台的形状可以为圆形或矩形。本申请实施例,对此不作具体限定。导电凸台可以包括:与背接触太阳能电池片的正极接触的导电凸台以及与背接触太阳能电池片的负极接触的导电凸台。或者,导电凸台可以包括:与背接触太阳能电池片的正极细栅线接触的导电凸台以及与背接触太阳能电池片的负极细栅线接触的导电凸台。或者,导电凸台可以包括:与背接触太阳能电池片的P型掺杂扩散区接触的导电凸台以及与背接触太阳能电池片的N型掺杂扩散区接触的导电凸台。
可选的,导电凸台的数量可以和第一导电位点的数量相同或不同。单个背接触太阳能电池片对应的导电凸台的数量可以为20-5000个。整个背接触太阳能电池组件对应的导电凸台的数量可以为1000-50000个。上述数量的导电凸台有利于电流的收集和传导。在本申请实施例中,对此不作具体限定。
例如,若第一片件为单个背接触太阳能电池片,则,可以单个背接触太阳能电池片上可以包括有20-5000个导电凸台。
步骤102,提供第二叠放件;所述第二叠放件包括第二片件;所述第二片件为所述金属电路板和所述背接触太阳能电池片中的另一个;所述第二片件的表面具有若干第二导电位点;所述第一导电位点的外围或所述第二导电位点的外围设置有粘接绝缘隔圈。
在本申请实施例中,第二片件可以为金属电路板或背接触太阳能电池片中的除第一片件外的另外一个。例如,若第一片件金属电路板。则,第二片件可以为背接触太阳能电池片。或者,若第一片件为背接触太阳能电池片。则,第二片件可以为金属电路板。
在本申请实施例中,第二片件的表面具有若干第二导电位点。上述第二导电位点主要用于收集或导出电流。若第二片件为背接触太阳能电池片,则,第二导电位点可以为:背接触太阳能电池片背光面的电极或电极的待连接点等。例如,第二导电位点可以为:背接触太阳能电池片背光面的负极细栅线、正极细栅线。或者,第二导电位点可以为:背接触太阳能电池片背光面的负极连接电极、正极连接电极等。若第二片件为金属 电路板,则,第二导电位点可以为:金属电路板的表面上,与背接触太阳能电池片的电极电性连接的位置。例如,第二导电位点可以为:金属电路板的表面上,与背接触太阳能电池片背光面的负极细栅线、正极细栅线电性连接的点。或者,第二导电位点可以为:金属电路板的表面上,与背接触太阳能电池片背光面的负极连接电极、正极连接电极等电性连接的点。
在本申请实施例中,第一片件上第一导电位点外围设置有粘接绝缘隔圈,或者,第二片件上第二导电位点外围设置有粘接绝缘隔圈,具体在哪个导电位点的外围设置粘接绝缘隔圈,不作具体限定。
该粘接绝缘隔圈所起的作用主要可以为:隔离各个导电凸台,避免各个导电凸台短路;同时在层压过程中粘接第一片件和第二片件。还有在某些情况下,提供一定的热传导性能、疏水性能等。在本申请实施例中,对此不作具体限定。
该粘接绝缘隔圈的数量可以与后续与之扣合的导电凸台的数量相等。该粘接绝缘隔圈的内圈形状可以与后续与之扣合的导电凸台的形状匹配。在本申请实施例中,对此不作具体限定。
在本申请实施例中,可选的,粘接绝缘隔圈的厚度可以为1至100微米。相对于现有技术中,使用聚烯烃等形成150微米以上的厚度而言,不仅降低了背接触太阳能电池组件的厚度,同时,该厚度的粘接绝缘隔圈在后续层压过程中,粘接可靠性好,而且具有良好的热传导性能、疏水性能等。
在本申请实施例中,可选的,粘接绝缘隔圈的材质为绝缘粘接材料。绝缘粘接材料可以包括液体粘结剂和惰性填料。上述惰性填料包括二氧化硅颗粒。上述材质的粘接绝缘隔圈不仅成本低,而且粘接性能好,且具有良好的热传导性能等。
具体的,上述绝缘粘接材料可以包括液体粘结剂和惰性填料。该惰性填料又可以包括二氧化硅颗粒。采用二氧化硅颗粒,不仅成本低,而且绝缘粘接材料的粘接性能好,且具有良好的热传导性能等,进而有助于降低背接触太阳能电池组件的生产成本,提升粘接可靠性和热传导性等。通过在绝缘粘接材料中设置液体粘结剂能够进一步提升粘接可靠性等。
在本申请实施例中,可选的,所述二氧化硅颗粒为气相二氧化硅颗粒。具体的,气相二氧化硅颗粒更小,分散性能好,不容易出现沉淀,能够提供更好的粘接性能,且成本较低,还具有较好的热传导性能。同时,气相二氧化硅颗粒具有良好的疏水性,能够从很大程度上减少或防止水分在背接触太阳能电池组件的制作过程中残留,提高背接触太阳能电池组件的可靠性。
在本申请实施例中,可选的,上述惰性填料,还可以包括:氧化铝颗粒、滑石粉、氮化硼颗粒中的至少一种。上述材料能够进一步降低背接触太阳能电池组件的生产成本,提升粘接可靠性和热传导性等。
液体粘结剂主要起粘接作用。在本申请实施例中,可选的,所述液体粘结剂,包括:硅氧烷。具体的,硅氧烷能够使得印刷得到的粘接绝缘隔圈更为致密,能够增大粘接绝缘隔圈的疏水性,能够从更大程度上减少或防止水分在背接触太阳能电池组件的制作过程中残留,提高背接触太阳能电池组件的可靠性。
可选地,所述惰性填料与所述液体粘结剂的质量比例为:7:3至3:7。这样形成的粘接绝缘隔圈的成本更低,粘接可靠性、热传导性、疏水性等更好。例如,绝缘粘接材料中惰性填料与液体粘结剂的质量比例为:6:4。
在本申请实施例中,可选的,所述液体粘结剂,还包括:有机溶剂、树脂、固化剂、着色剂、润湿剂、分散剂中的至少一种。具体的,有机溶剂可以为:1,4-丁二醇二缩水甘油醚、邻苯二甲酸二丁酯等。树脂可以为热固性树脂或热塑性树脂等。热固性树脂可以为:不饱和聚酯、乙烯基酯、环氧、酚醛、双马来酰亚胺(BMI)、聚酰亚胺树脂等。热塑性树脂可以为:聚丙烯(PP)、聚碳酸酯(PC)、尼龙(NYLON)、聚醚醚酮(PEEK)、聚醚砜(PES)等。分散剂可以用于改善绝缘粘接材料的分散性能,使性能均匀,改善流动性等。固化剂可以提高防流挂性能,改善印刷后的粘接绝缘隔圈的塑形等。着色剂可以使绝缘粘接材料具有特定的颜色,便于后续的识别和检查等。在本申请实施例中,对此不作具体限定。
例如,按照质量比例,上述粘接绝缘隔圈的材质配方可以为:50%的二氧化硅颗粒、10%的硅氧烷、30%的1,4-丁二醇二缩水甘油醚、10%的乙烯基酯。
再例如,按照质量比例,上述粘接绝缘隔圈的材质配方可以为:50%的二氧化硅颗粒、9%的硅氧烷、20%的1,4-丁二醇二缩水甘油醚、11%的邻苯二甲酸二丁酯、10%的聚醚醚酮。
在本申请实施例中,相邻的粘接绝缘隔圈之间可以没有间隙。即,各个粘接绝缘隔圈之间也由绝缘粘接材料等组成,进而对第一片件和第二片件的粘接性能更好。
例如,参照图5,图5示出了本申请实施例中一种粘接绝缘隔圈的结构示意图。图5中42可以为粘接绝缘隔圈的内圈,内圈42之外的其它位置均可以由绝缘粘接材料等组成。
在本申请实施例中,可选的,相邻的所述粘接绝缘隔圈之间具有间隙。具体的,各个粘接绝缘隔圈之间是空的,未设置绝缘粘接材料等。进而所用的绝缘粘接材料更少,生产成本更低。
例如,参照图6,图6示出了本申请实施例中另一种粘接绝缘隔圈的结构示意图。虚线矩形框框选的40可以为一个粘接绝缘隔圈。42可以为粘接绝缘隔圈的内圈。相邻的粘接绝缘隔圈40之间具有间隙8,即,相邻的粘接绝缘隔圈40之间未设置绝缘粘接材料等。
在实际生产过程中,上述相邻的粘接绝缘隔圈之间是否存在间隙,可以均衡粘接可靠性等以及生产成本等,将上述两种方式择一或组合。在本申请实施例中,对此不作具体限定。例如,可以是某些相邻的粘接绝缘隔圈之间存在间隙,某些相邻的粘接绝缘隔圈之间不存在间隙。
在本申请实施例中,步骤101和步骤102可以同时进行。或者,先执行步骤101后执行步骤102,或者,先执行步骤102后执行步骤101。在本申请实施例中,对此不作具体限定。在本申请实施例中,上述第一叠放件和第二叠放件均还可以包括:封装材料和盖板材料。该封装材料和盖板材料可以依次设置在第一片件或第二片件远离导电位点的一侧。封装材料可以包括EVA或聚烯烃等密封材料,盖板材料可以为钢化玻璃盖板或者如TPT、TPE、KPE、KPK、KPC或KPF的聚合物盖板等。该封装材料和盖板材料之间可以进行热压或粘结等。需要说明的是,位于第一片件或第二片件接收光的一侧的封装材料和盖板材料均可以具有较好的透光性。
步骤103,将所述第一叠放件以及所述第二叠放件叠放并层压,以使所述导电凸台抵接在所述第二导电位点上,并使所述粘接绝缘隔圈将所述第一片件与所述第二片件粘接在一起。
在本申请实施例中,将第二叠放件与第一叠放件叠放并层压,导电凸台抵接在第二导电位点上,实现导电凸台与第二片件的电接触。粘接绝缘隔圈将第一片件与第二片件粘接在一起。
具体的,将第一片件设置导电凸台的一侧与第二片件具有第二导电位点的一侧贴合,使得导电凸台抵接在第二导电位点上,进而实现第一片件与第二片件电性接触。第一导电位点与导电凸台电性接触,导电凸台抵接在第二导电位点上,实现第一导电位点与第二导电位点之间的电性接触,进而实现电流收集和导通的作用。
对第一叠放件以及第二叠放件叠放并层压,粘接绝缘隔圈在层压过程中交联粘接第一片件和第二片件,将第一片件和第二片件粘接在一起,得到背接触太阳能电池组件。上述粘接绝缘隔圈用于在层压过程中,粘接第一片件和第二片件。
在本申请实施例中,需要说明的是,上述导电凸台在叠放和层压过程中,基本不发生物理或化学变化。主要是通过导电凸台抵接在第二导电位点上,实现金属电路板和背接触太阳能电池片的电连接。相对于现有技术中,在层压过程中,导电胶与金属电路板和背接触太阳能电池片上的导电位点熔合实现金属电路板和背接触太阳能电池片的电连接,电连接可靠性低、良率低而言。本申请,主要是导电凸台抵接在第二片件的第二导电位点上实现金属电路板和背接触太阳能电池片的电连接,无需熔合即可实现稳定的电连接,提高了电连接可靠性和良品率。在层压过程中通过对第一叠放件和第二叠放件的抵压,可以将导电凸台和第二导电位点抵压的更紧,进一步提高了电连接可靠性和良品率。
参照图7所示,图7示出了本申请实施例中一种背接触太阳能电池组件的结构示意图。图7中,10可以为前盖板材料,20可以为前封装材料,例如可以为透光的EVA或POE,30可以为背接触太阳能电池片,40可以为粘接绝缘隔圈,41可以为导电凸台,42可以为粘接绝缘隔圈的内圈,50可以为金属电路板,60可以为后封装材料,70可以为后盖板材料。前盖板材料10可以为背接触太阳能电池组件接收光的一侧,后盖板材料70可以为背接触太阳能电池组件背光的一侧。前盖板材料10、前封装材料20可以具有良好的透光性。
本申请实施例中,相对于现有技术中,在层压过程中,通过导电胶实现金属电路板和背接触太阳能电池片的电连接和粘接,上述电连接主要是在层压过程中,导电胶与金属电路板和背接触太阳能电池片上的导电位点熔合实现,使得电连接可靠性低、良率低。本申请中,第一叠放件包括形成在第一片件的第一导电位点上的导电凸台,金属电路板和背接触太阳能电池片的电连接,主要是通过第一叠放件和第二叠放件叠放,导电凸台抵接在第二片件的第二导电位点上实现的,基本无需熔合即可实现稳定的电连接,提高了电连接可靠性和良品率。在层压过程中通过对第一叠放件和第二叠放件的抵压,可以将导电凸台和第二导电位点抵压的更紧,进一步提高了电连接可靠性和良品率。
在本申请实施例中,参照图8,图8示出了本申请实施例中的另一种背接触太阳能电池组件的生产方法步骤流程图。
步骤201,提供所述第一片件;所述第一片件为金属电路板或背接触太阳能电池片中的一个;所述第一片件的表面具有若干第一导电位点;所述第一叠放件还包括形成在所述第一片件的所述第一导电位点上的导电凸台。
在上述步骤201中,第一片件、第一导电位点、导电凸台、粘接绝缘隔圈等可以参照前述步骤101的具体描述,为了避免重复此处不再赘述。
在本申请实施例中,可选的,在下述步骤202之前,该方法还可以包括:在所述第一片件的第一侧依次叠放封装材料和盖板材料;所述第一侧与所述第一片件具有第一导电位点的一侧相反。
具体的,第一片件的第一侧为第一片件具有第一导电位点的一侧相反一侧。如,第一片件若为背接触太阳能电池片,第一导电位点位于背接触太阳能电池片背光的一侧,则,该第一侧可以为第一片件相对接收光的一侧。如,第一片件若为金属电路板,则,第一导电位点位于金属电路板相对接收光的一侧,该第一侧可以为金属电路板相对背光的一侧。可以在第一片件的第一侧先叠放封装材料,然后叠放盖板材料。
参照图9所示,图9示出了本申请实施例中一种在第一片件的第一侧叠放封装材料的结构示意图。该第一片件可以为背接触太阳能电池片30。由于封装材料位于背接触太阳能电池片相对接收光的一侧,封装材料可以为前封装材料20。
步骤202,在所述第一片件的所述第一导电位点上印刷导电材料,形成所述导电凸台。
在本申请实施例中,在上述步骤202之前可以制作与第一导电位点对应的印刷网版。可以通过丝网印刷或喷墨印刷等方式,在第一片件的第一导电位点上印刷导电材料形成导电凸台,得到第一叠放件。上述印刷可以整版印刷,以提升生产效率。
例如,若第一片件为金属电路板,则,在金属电路板的第一导电位点上印刷导电材料形成导电凸台。若第一片件为背接触太阳能电池片,则,在背接触太阳能电池片的第一导电位点上,印刷导电形成导电凸台。如,可以整版印刷,一次性在100个背接触太阳能电池片的第一导电位点上,印刷导电形成导电凸台,而无需在各个背接触太阳能电池片的第一导电位点上,单独印刷导电形成导电凸台,以提升生产效率。
在本申请实施例中,若第一导电的外围设置有粘接绝缘隔圈,则,在上述步骤202之前可以制作具有与第一导电位点对应的隔圈印刷网版。可以通过该印刷网版,在第一片件上第一导电位点的外围丝网印刷或喷墨印刷等方式,印刷绝缘粘接材料等,形成粘接绝缘隔圈。
在本申请实施例中,若第一导电的外围设置有粘接绝缘隔圈,则,可以先在第一片件的第一导电位点上印刷导电材料,形成导电凸台。然后在第一片件的第一导电位点外围,印刷形成粘接绝缘隔圈。或者,可以先在第一片件的第一导电位点外围,印刷形成粘接绝缘隔圈。然后在第一片件的第一导电位点上印刷导电材料,形成导电凸台。在本申请实施例中,对此不作具体限定。
在本申请实施例中,需要说明的是,可以第二次印刷之前,对先印刷的部件进行烘干处理,使之具有一定的表面干燥度和硬度,不粘污网版和被压塌,可以避免二次印刷时将第一次印刷的部件压塌而扩散至周围区域形成短路、污染等缺陷。
例如,若第一导电的外围设置有粘接绝缘隔圈,若先印刷导电凸台,可以在印刷粘接绝缘隔圈之前对导电凸台进行烘干处理。若先印刷粘接绝缘隔圈,可以在印刷导电凸台之前对导电凸台进行烘干处理。
在本申请实施例中,可以对印刷支持基板加热或对导电凸台、或对粘接绝缘隔圈局部加热或辐照进行烘干或预固化处理。加热的温度可以在在50~100℃,加热时间可以为10~300秒。在本申请实施例中,对此不作具体限定。
在本申请实施例中,若第一导电的外围设置有粘接绝缘隔圈,在第一片件的第一导电位点上印刷导电材料,形成导电凸台,以及在第一片件的第一导电位点外围,印刷形 成粘接绝缘隔圈。将导电凸台和粘接绝缘隔圈印刷在同一片件上,印刷的同时就实现了导电凸台的周围环绕设置粘接绝缘隔圈,进而后续无需扣合操作,操作简便。同时,在第一片件上第一导电位点外围的印刷形成粘接绝缘隔圈,通常一次性印刷即可得到,无需一一激光开孔,生产效率高;且印刷过程中导电凸台的周围就印刷形成粘接绝缘隔圈,不用开孔去除绝缘粘接材料,降低了成本;同时,无需激光烧蚀开口,减少了对绝缘粘接材料的破坏,有利于提升绝缘可靠性、粘接可靠性等。
在本申请实施例中,可选的,上述步骤202可以包括:以所述封装材料和盖板材料为印刷支持基板,在所述第一片件的所述第一导电位点上印刷导电材料,形成所述导电凸台。
具体的,可以以层叠的封装材料和盖板材料为印刷支持基板,在第一片件的第一导电位点上印刷导电材料,形成导电凸台。进而,在导电凸台印刷完毕后,上述层叠的封装材料和盖板材料可以不用去除,进而减少了步骤,能够提升背接触太阳能电池组件的生产效率。若第一导电的外围设置有粘接绝缘隔圈,可以以层叠的封装材料和盖板材料为印刷支持基板,在第一片件的第一导电位点上印刷导电材料,形成导电凸台,并在第一片件的第一导电位点的外围印刷形成粘接绝缘隔圈。
参照图10所示,图10示出了本申请实施例中一种在背接触太阳能电池片的第一导电位点上印刷形成导电凸台的结构示意图。图10中,导电凸台41包括与P型掺杂扩散区21电性接触的导电凸台,和与N型掺杂扩散区22电性接触的导电凸台。
步骤203,提供第二叠放件;所述第二叠放件包括第二片件;所述第二片件为所述金属电路板和所述背接触太阳能电池片中的另一个;所述第二片件的表面具有若干第二导电位点;所述第一导电位点的外围或所述第二导电位点的外围设置有粘接绝缘隔圈。
上述步骤203可以参照前述步骤102的有关描述,需要说明的是,第二导电位点的形成可以参照前述第一导电位点的形成过程。同时,若第二导电位点的外围设置有粘接绝缘隔圈,可以制作具有与第二导电位点对应的隔圈印刷网版。可以通过该印刷网版,在第二片件上丝网印刷或喷墨印刷等方式,印刷绝缘粘接材料等,形成粘接绝缘隔圈,得到第二叠放件。相当于印刷过程中就预留了后续用于与导电凸台扣合的内圈。相对于先整张印刷,再一一开口,得到内圈而言。本申请印刷过程中就预留了后续用于与导电凸台扣合的内圈,后续无需一一激光开孔,形成开口,生产效率高;另一方面印刷过程中就预留了后续用于与导电凸台扣合的内圈,内圈处直接没有印刷绝缘粘接材料,不用开孔去除绝缘粘接材料,降低了成本。同时,无需激光烧蚀开口,减少了对绝缘粘接材料的破坏,有利于提升绝缘可靠性、粘接可靠性等。
在本申请实施例中,上述步骤201至步骤202,可以和步骤203同时进行,或,先后执行,执行顺序不作具体限定。
步骤204,在所述导电凸台的表面喷涂助焊剂。
在本申请实施例中,通过在导电凸台的表面喷涂助焊剂,能够使得后续层压固化时导电凸台与第二片件的第二导电位点抵压接触良好,不会出现接触不良等缺陷,提升背接触太阳能电池组件的导电性能。
步骤205,将所述第一叠放件以及所述第二叠放件叠放并层压,以使所述导电凸台抵接在所述第二导电位点上,并使所述粘接绝缘隔圈将所述第一片件与所述第二片件粘接在一起。
在本申请实施例中,该步骤205可以参照上述步骤103的记载,为了避免重复,此 处不再赘述。
本申请实施例中,相对于现有技术中,在层压过程中,通过导电胶实现金属电路板和背接触太阳能电池片的电连接和粘接,上述电连接主要是在层压过程中,导电胶与金属电路板和背接触太阳能电池片上的导电位点熔合实现,使得电连接可靠性低、良率低。本申请中,第一叠放件包括形成在第一片件的第一导电位点上的导电凸台,金属电路板和背接触太阳能电池片的电连接,主要是通过第一叠放件和第二叠放件叠放,导电凸台抵接在第二片件的第二导电位点上实现的,基本无需熔合即可实现稳定的电连接,提高了电连接可靠性和良品率。在层压过程中通过对第一叠放件和第二叠放件的抵压,可以将导电凸台和第二导电位点抵压的更紧,进一步提高了电连接可靠性和良品率。同时,导电凸台和粘接绝缘隔圈均印刷形成,工艺简单,生产效率高。若,将导电凸台和粘接绝缘隔圈印刷在同一片件上,印刷的同时就实现了导电凸台的周围环绕设置粘接绝缘隔圈,进而后续无需扣合操作,操作简便。同时,若,在第一片件上第一导电位点外围的印刷形成粘接绝缘隔圈,通常一次性印刷即可得到,无需一一激光开孔,生产效率高;且印刷过程中导电凸台的周围就印刷形成粘接绝缘隔圈,不用开孔去除绝缘粘接材料,降低了成本;同时,无需激光烧蚀开口,减少了对绝缘粘接材料的破坏,有利于提升绝缘可靠性、粘接可靠性等。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定都是本申请实施例所必须的。
本申请实施例中,还提供一种背接触太阳能电池组件,参照图7所示,背接触太阳能电池组件可以包括:第一叠放件和第二叠放件。
第一叠放件包括第一片件。第一片件为:金属电路板50或背接触太阳能电池片30中的一个。第一片件的表面具有若干第一导电位点,第一叠放件还包括形成在第一片件的第一导电位点上的导电凸台41。
第二叠放件包括第二片件。第二片件为金属电路板50和背接触太阳能电池片30中除第一片件的另一个。第二片件的表面具有若干第二导电位点。第一导电位点外围设置有粘接绝缘隔圈40,或者,第二导电位点外围设置有粘接绝缘隔圈40。
第一叠放件和第二叠放件层叠并层压在一起,导电凸台41抵接在第二导电位点上。第一片件与第二片件通过粘接绝缘隔圈40粘接在一起。
该背接触太阳能电池组件可以参照前述背接触太阳能电池组件生产方法的相关记载,且能达到相同的技术效果,为了避免重复,此处不再赘述。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的计算处理设备中的 一些或者全部部件的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图11示出了可以实现根据本申请的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图12所述的便携式或者固定存储单元。该存储单元可以具有与图11的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种背接触太阳能电池组件生产方法,其特征在于,包括:
    提供第一叠放件;所述第一叠放件包括第一片件;所述第一片件为金属电路板或背接触太阳能电池片中的一个;所述第一片件的表面具有若干第一导电位点;所述第一叠放件还包括形成在所述第一片件的所述第一导电位点上的导电凸台;
    提供第二叠放件;所述第二叠放件包括第二片件;所述第二片件为所述金属电路板和所述背接触太阳能电池片中的另一个;所述第二片件的表面具有若干第二导电位点;所述第一导电位点的外围或所述第二导电位点的外围设置有粘接绝缘隔圈;
    将所述第一叠放件以及所述第二叠放件叠放并层压,以使所述导电凸台抵接在所述第二导电位点上,并使所述粘接绝缘隔圈将所述第一片件与所述第二片件粘接在一起。
  2. 根据权利要求1所述的方法,其特征在于,所述粘接绝缘隔圈的材质为绝缘粘接材料;所述绝缘粘接材料包括液体粘结剂和惰性填料;所述惰性填料包括二氧化硅颗粒。
  3. 根据权利要求2所述的方法,其特征在于,所述二氧化硅颗粒为气相二氧化硅颗粒。
  4. 根据权利要求2或3所述的方法,其特征在于,所述液体粘结剂,包括:硅氧烷;所述惰性填料与所述液体粘结剂的质量比例为:7:3至3:7。
  5. 根据权利要求1至4中任一所述的方法,其特征在于,所述第一叠放件通过如下步骤获得:
    提供所述第一片件;
    在所述第一片件的所述第一导电位点上印刷导电材料,形成所述导电凸台。
  6. 根据权利要求1至5中任一所述的方法,其特征在于,所述将所述第一叠放件以及所述第二叠放件叠放并层压之前,所述方法还包括:
    在所述第一片件的所述第一导电位点外围,印刷形成所述粘接绝缘隔圈;或,在所述第二片件的所述第二导电位点外围,印刷形成所述粘接绝缘隔圈。
  7. 根据权利要求1至6中任一所述的方法,其特征在于,所述粘接绝缘隔圈的厚度为:1至100微米。
  8. 根据权利要求1至7中任一所述的方法,其特征在于,所述将所述第一叠放件以及所述第二叠放件叠放并层压之前,所述方法还包括:
    在所述导电凸台的表面喷涂助焊剂。
  9. 根据权利要求1至8中任一所述的方法,其特征在于,相邻的所述粘接绝缘隔圈之间具有间隙。
  10. 根据权利要求5所述的方法,其特征在于,所述在所述第一片件的所述第一导电位点上印刷导电材料,形成所述导电凸台之前,所述方法还包括:在所述第一片件的第一侧依次叠放封装材料和盖板材料;所述第一侧与所述第一片件具有第一导电位点的一侧相反;
    所述在所述第一片件的所述第一导电位点上印刷导电材料,形成所述导电凸台的步骤,包括:以所述封装材料和盖板材料为印刷支持基板,在所述第一片件的所述第一导电位点上印刷导电材料,形成所述导电凸台。
  11. 一种背接触太阳能电池组件,其特征在于,包括:第一叠放件、以及第二叠放件;
    所述第一叠放件包括第一片件;所述第一片件为金属电路板或背接触太阳能电池片中的一个;所述第一片件的表面具有若干第一导电位点;所述第一叠放件还包括形成在所述第一片件的所述第一导电位点上的导电凸台;
    所述第二叠放件包括第二片件;所述第二片件为所述金属电路板和所述背接触太阳能电池片中的另一个;所述第二片件的表面具有若干第二导电位点;所述第一导电位点的外围或所述第二导电位点的外围设置有粘接绝缘隔圈;
    所述第一叠放件和所述第二叠放件层叠并层压在一起,所述导电凸台抵接在所述第二导电位点上;所述第一片件与所述第二片件通过所述粘接绝缘隔圈粘接在一起。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-10中的任一个所述的背接触太阳能电池组件生产方法。
  13. 一种计算机可读介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2020/074297 2019-08-26 2020-02-04 背接触太阳能电池组件生产方法及背接触太阳能电池组件 WO2021036201A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/638,946 US20220302328A1 (en) 2019-08-26 2020-02-04 Method for producing back-contact solar cell assembly and back-contact solar cell assembly
EP20858738.6A EP4024478A4 (en) 2019-08-26 2020-02-04 METHOD FOR PRODUCING BACK CONTACT SOLAR CELL ASSEMBLY, AND BACK CONTACT SOLAR CELL ASSEMBLY
AU2020340008A AU2020340008B2 (en) 2019-08-26 2020-02-04 Method for producing back-contact solar cell assembly and back-contact solar cell assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910791309.XA CN110571305B (zh) 2019-08-26 2019-08-26 背接触太阳能电池组件生产方法及背接触太阳能电池组件
CN201910792400.3 2019-08-26
CN201910791309.X 2019-08-26
CN201910792400.3A CN110707170B (zh) 2019-08-26 2019-08-26 背接触太阳能电池组件生产方法及背接触太阳能电池组件

Publications (1)

Publication Number Publication Date
WO2021036201A1 true WO2021036201A1 (zh) 2021-03-04

Family

ID=74685400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074297 WO2021036201A1 (zh) 2019-08-26 2020-02-04 背接触太阳能电池组件生产方法及背接触太阳能电池组件

Country Status (4)

Country Link
US (1) US20220302328A1 (zh)
EP (1) EP4024478A4 (zh)
AU (1) AU2020340008B2 (zh)
WO (1) WO2021036201A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110162701A1 (en) * 2010-01-03 2011-07-07 Claudio Truzzi Photovoltaic Cells
CN103346181A (zh) * 2013-05-30 2013-10-09 南京日托光伏科技有限公司 一种无焊带太阳能电池组件及其制备方法
CN103346202A (zh) * 2013-05-30 2013-10-09 南京日托光伏科技有限公司 一种基于玻璃导电背板的太阳能电池组件及其制造方法
CN203967100U (zh) * 2014-06-18 2014-11-26 南京日托光伏科技有限公司 一种背接触式太阳能电池组件
CN105283966A (zh) * 2013-09-27 2016-01-27 太阳能公司 由金属糊剂形成的太阳能电池接触结构
CN107958943A (zh) * 2017-12-26 2018-04-24 南京日托光伏科技股份有限公司 一种基于ibc电池封装的光伏组件及制作方法
CN110571305A (zh) * 2019-08-26 2019-12-13 泰州隆基乐叶光伏科技有限公司 背接触太阳能电池组件生产方法及背接触太阳能电池组件
CN110690295A (zh) * 2019-08-29 2020-01-14 泰州隆基乐叶光伏科技有限公司 背接触太阳能电池组件生产方法及背接触太阳能电池组件
CN110707170A (zh) * 2019-08-26 2020-01-17 泰州隆基乐叶光伏科技有限公司 背接触太阳能电池组件生产方法及背接触太阳能电池组件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090032087A1 (en) * 2007-02-06 2009-02-05 Kalejs Juris P Manufacturing processes for light concentrating solar module
WO2008121293A2 (en) * 2007-03-29 2008-10-09 Baldwin Daniel F Solar module manufacturing processes
NL2001958C (en) * 2008-09-05 2010-03-15 Stichting Energie Method of monolithic photo-voltaic module assembly.
NL2009836C2 (en) * 2012-11-19 2014-05-21 Stichting Energie Back-contacted solar panel and method for manufacturing such a solar panel.
CN103646981B (zh) * 2013-12-24 2016-09-14 苏州阿特斯阳光电力科技有限公司 用于背接触太阳能电池组件的压花焊带及组件的制备方法
CN106571412B (zh) * 2015-10-12 2018-05-01 Lg电子株式会社 用于附接太阳能电池板的互连器的设备和方法
CN109904268A (zh) * 2019-02-27 2019-06-18 泰州隆基乐叶光伏科技有限公司 背接触太阳电池组件及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110162701A1 (en) * 2010-01-03 2011-07-07 Claudio Truzzi Photovoltaic Cells
CN103346181A (zh) * 2013-05-30 2013-10-09 南京日托光伏科技有限公司 一种无焊带太阳能电池组件及其制备方法
CN103346202A (zh) * 2013-05-30 2013-10-09 南京日托光伏科技有限公司 一种基于玻璃导电背板的太阳能电池组件及其制造方法
CN105283966A (zh) * 2013-09-27 2016-01-27 太阳能公司 由金属糊剂形成的太阳能电池接触结构
CN203967100U (zh) * 2014-06-18 2014-11-26 南京日托光伏科技有限公司 一种背接触式太阳能电池组件
CN107958943A (zh) * 2017-12-26 2018-04-24 南京日托光伏科技股份有限公司 一种基于ibc电池封装的光伏组件及制作方法
CN110571305A (zh) * 2019-08-26 2019-12-13 泰州隆基乐叶光伏科技有限公司 背接触太阳能电池组件生产方法及背接触太阳能电池组件
CN110707170A (zh) * 2019-08-26 2020-01-17 泰州隆基乐叶光伏科技有限公司 背接触太阳能电池组件生产方法及背接触太阳能电池组件
CN110690295A (zh) * 2019-08-29 2020-01-14 泰州隆基乐叶光伏科技有限公司 背接触太阳能电池组件生产方法及背接触太阳能电池组件

Also Published As

Publication number Publication date
EP4024478A4 (en) 2023-09-06
US20220302328A1 (en) 2022-09-22
AU2020340008A1 (en) 2022-03-17
AU2020340008B2 (en) 2023-06-08
EP4024478A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
CN103646981B (zh) 用于背接触太阳能电池组件的压花焊带及组件的制备方法
CN102646728A (zh) 一种背接触硅太阳能电池片的背面电极结构及其制备方法
JP2007103473A (ja) 太陽電池装置および太陽電池モジュール
CN103022201A (zh) 晶硅太阳能电池模块及其制造方法
CN207818590U (zh) 一种双面发电太阳能电池和光伏组件
JP5676944B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
WO2024108996A1 (zh) 分段低温焊带、无主栅ibc电池串、电池组件及其封装方法
CN112864257A (zh) 一种金属合金串联联接的叠瓦光伏组件电池串及制备方法
WO2024012161A1 (zh) 无主栅ibc电池组件单元及制作方法、电池组件、电池组串
CN110707170B (zh) 背接触太阳能电池组件生产方法及背接触太阳能电池组件
CN104269454B (zh) 无主栅、高效率背接触太阳能电池背板、组件及制备工艺
JPH08330615A (ja) 直列型太陽電池およびその製造方法
CN110828600A (zh) 一种ibc电池组件及其制造方法
CN202373593U (zh) 晶硅太阳能电池模块
WO2021036201A1 (zh) 背接触太阳能电池组件生产方法及背接触太阳能电池组件
CN109904268A (zh) 背接触太阳电池组件及其制造方法
CN112635604A (zh) 光伏玻璃及其制备方法、光伏组件及其制备方法
CN117153951A (zh) 一种背接触光伏组件的生产方法及背接触光伏组件
CN110571305B (zh) 背接触太阳能电池组件生产方法及背接触太阳能电池组件
CN207993882U (zh) 一种光伏电池片组件的互联结构
CN104428904A (zh) 太阳能电池模块及其制造方法
CN214123893U (zh) 一种金属合金串联联接的叠瓦光伏组件电池串
CN108365043A (zh) 一种光伏电池片组件的互联结构
CN210866217U (zh) 一种光伏组件
CN110690295B (zh) 背接触太阳能电池组件生产方法及背接触太阳能电池组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020340008

Country of ref document: AU

Date of ref document: 20200204

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020858738

Country of ref document: EP

Effective date: 20220328