WO2021036158A1 - 一种有机小分子空穴注入/传输材料及其制备方法与应用 - Google Patents

一种有机小分子空穴注入/传输材料及其制备方法与应用 Download PDF

Info

Publication number
WO2021036158A1
WO2021036158A1 PCT/CN2020/070668 CN2020070668W WO2021036158A1 WO 2021036158 A1 WO2021036158 A1 WO 2021036158A1 CN 2020070668 W CN2020070668 W CN 2020070668W WO 2021036158 A1 WO2021036158 A1 WO 2021036158A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole injection
small molecule
transport material
organic small
molecule hole
Prior art date
Application number
PCT/CN2020/070668
Other languages
English (en)
French (fr)
Inventor
朱旭辉
黄小兰
彭俊彪
曹镛
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021036158A1 publication Critical patent/WO2021036158A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/06Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms
    • C07C209/10Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms with formation of amino groups bound to carbon atoms of six-membered aromatic rings or from amines having nitrogen atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/94Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of organic small molecule photoelectric materials, and relates to an organic small molecule hole injection/transport material and a preparation method and application thereof.
  • OLEDs Organic electroluminescent diodes
  • Hole injection materials with high HOMO energy levels are an essential part of OLED devices.
  • Patent publication CN107954884A discloses an organic hole injection material XL1.
  • the glass transition temperature of the material is 99°C
  • the HOMO energy level is -5.05eV
  • the hole mobility under non-doped conditions is about 1.45 ⁇ 10 -4 cm 2 V -1 s -1 , but in order to satisfy the practical application of OLED devices, the glass transition temperature of XL1 still needs to be increased.
  • the primary purpose of the present invention is to provide a hole injection/transport material for small organic molecules.
  • Another object of the present invention is to provide a method for preparing the above-mentioned organic small molecule hole injection/transport material.
  • Another object of the present invention is to provide the application of the above-mentioned organic small molecule hole injection/transport material in organic electroluminescent devices and high-efficiency perovskite photovoltaic devices and other optoelectronic devices.
  • Ar 1 , Ar 2 and Ar 3 are independently an unsubstituted benzene ring, fused ring or spiro aromatic hydrocarbon, or independently an alkyl group, alkoxy group or alkylthio group having 1 to 6 carbon atoms.
  • the R group is preferably a chemical structure as shown below:
  • the said organic small molecule hole injection/transport material is preferably one of the following chemical structures:
  • a method for preparing the above-mentioned organic small molecule hole injection/transport material includes the following steps:
  • step (2) In an organic solvent and a catalytic system, the bromine-containing intermediate obtained in step (1) is combined with N,N-bis(4-methoxyphenyl)-6-(4,4,5,5-tetramethyl) -1,3,2-dioxaborolane)-2-naphthylamine is mixed and the coupling reaction is carried out. After the reaction, the crude product is obtained. After purification, the organic small molecule hole injection/transport material is obtained. .
  • the catalytic system in step (1) usually includes a basic compound and a catalyst; wherein, the basic compound is at least one of sodium tert-butoxide or potassium tert-butoxide; and the catalyst is 1,10- Phenanthroline and cuprous iodide;
  • the bromoiodine substituted aromatic compound in step (1) is 1-bromo-4-iodobenzene.
  • the amine compound in step (1) is at least one of aniline and 4-methoxyaniline;
  • the organic solvent in step (1) is at least one of toluene, N,N-dimethylformamide and anhydrous tetrahydrofuran.
  • the molar ratio of the amine compound, bromoiodine substituted aromatic compound, basic compound, 1,10-phenanthroline and cuprous iodide described in step (1) is 1:(2.1 ⁇ 3):(3 ⁇ 6) :(0.1 ⁇ 0.2):(0.2 ⁇ 0.4).
  • the amount of the organic solvent in step (1) meets the requirement that 300-1000 mL of organic solvent is added for every 1 mol of bromoiodine substituted aromatic compound.
  • step (1) The reaction described in step (1) is a reaction at 110°C to 120°C for 15 to 30 hours;
  • the reaction in step (1) is preferably carried out under an inert gas atmosphere; the inert gas is nitrogen.
  • the purification described in step (1) includes concentrating the reaction solution and then extracting it with an organic solvent and water, after separating the liquid, concentrating the organic layer and performing column chromatography separation and purification.
  • the first concentration is to distill the reaction solution under reduced pressure
  • the second concentration is to dry the organic layer with anhydrous magnesium sulfate, and then suction filtration and distillation under reduced pressure
  • the organic solvent is dichloromethane and acetic acid At least one of ethyl ester
  • the developing agent for column chromatography separation and purification is at least one of petroleum ether and n-hexane.
  • the organic solvent in step (2) is at least one of toluene and tetrahydrofuran;
  • the catalytic system described in step (2) includes a catalyst and an aqueous solution of a basic compound
  • the catalyst includes tetrakistriphenylphosphine palladium and a phase transfer catalyst; preferably, the phase transfer catalyst is ethanol.
  • the alkaline compound aqueous solution is at least one of potassium carbonate aqueous solution and sodium carbonate aqueous solution; the concentration of the alkaline compound aqueous solution is 0.5-5 mol/L; preferably 1-3 mol/L, more preferably 2 mol/L ;
  • the bromine-containing intermediate of step (2) and N,N-bis(4-methoxyphenyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxa The molar ratio of borocyclopentyl)-2-naphthylamine, palladium tetraphenylphosphine, phase transfer catalyst and basic compound is 1:(2.05 ⁇ 2.2):(0.01 ⁇ 0.03):(20 ⁇ 50): (3 ⁇ 5).
  • step (2) The coupling reaction conditions described in step (2) are reaction at 100-120°C for 9-14h.
  • the coupling reaction in step (2) is preferably carried out in an inert gas atmosphere; the inert gas is nitrogen;
  • the purification described in step (2) refers to removing the solvent from the crude product by distillation under reduced pressure and then extracting it with an organic solvent and water. After separation, the organic layer is concentrated under reduced pressure, and then separated and purified by column chromatography; preferably, The column chromatography developing agent first uses a mixed solvent of petroleum ether and dichloromethane with a volume ratio of 3:1; then gradually increases the polarity with a concentration gradient of volume ratio 2:1, 1:1, and finally uses dichloromethane Methane is used as a developing agent.
  • the organic electroluminescent device is a phosphorescent red light device
  • the high-efficiency perovskite photovoltaic device is a positive perovskite photovoltaic device.
  • the present invention adopts a plurality of non-planar structured aromatic amine units to increase molecular rigidity and molecular weight, thereby increasing the glass transition temperature of the material; at the same time, due to the strong electricity supply of the aromatic amine unit, the material has high voids.
  • Hole mobility and electrical conductivity; and the presence of multiple methoxy end groups can not only adjust the HOMO (highest occupied molecular orbital) energy level of the material, but also improve the solubility of the material, making it easy to synthesize and purify.
  • the device can be processed by evaporation or solution.
  • the present invention has the following advantages and beneficial effects:
  • the organic small molecule hole injection/transport material of the present invention has good thermal stability, wherein the decomposition temperatures of TPA1 and TPA2 at 1% weight loss are 434°C and 431°C, respectively;
  • the organic small molecule hole injection/transport material of the present invention has a high glass transition temperature, and the glass transition temperatures of TPA1 and TPA2 are as high as 136°C and 131°C, respectively;
  • the organic small molecule hole injection/transport material of the present invention has a suitable HOMO energy level and high hole mobility, wherein the mobility of TPA1 doped with 4% F4-TCNQ is 5.62 ⁇ 10 -4 cm 2 V -1 s -1 , the mobility of TPA2 doped 4% F4-TCNQ is 3.72 ⁇ 10 -4 cm 2 V -1 s -1 ;
  • the organic small molecule hole injection/transport material of the present invention has a suitable HOMO energy level, which is conducive to the injection and extraction of holes, and is suitable for OLEDs and perovskite photovoltaic devices;
  • the organic small molecule hole injection/transport material of the present invention has good solubility, is conducive to separation and purification, and can be processed by evaporation or solution processing;
  • the organic small molecule hole injection/transport material of the present invention has a simple synthesis method and a high yield.
  • Example 1 is a hydrogen nuclear magnetic resonance spectrum (a) and a carbon nuclear magnetic resonance spectrum (b) diagram of the organic small molecule hole injection/transport material TPA1 prepared in Example 1.
  • Example 2 is a graph showing the ultraviolet-visible absorption spectrum and fluorescence emission spectrum (a) and low-temperature phosphorescence emission spectrum (b) of the organic small molecule hole injection/transport material TPA1 prepared in Example 1.
  • FIG. 3 is a graph of TGA (a) and DSC (b) of the organic small molecule hole injection/transport material TPA1 prepared in Example 1.
  • FIG. 3 is a graph of TGA (a) and DSC (b) of the organic small molecule hole injection/transport material TPA1 prepared in Example 1.
  • Figure 5 shows the current density-voltage curve (a) and current density 1/2 -voltage curve of the single hole mobility test of the organic small molecule hole injection/transport material TPA1 doped with 4% F4-TCNQ prepared in Example 1.
  • Figure 6 shows the current density-voltage-brightness curve (a) of the organic small molecule hole injection/transport material TPA1 doped with 4% F4-TCNQ organic electroluminescence phosphorescent device prepared in Example 1; current efficiency-brightness curve ( b); power efficiency-brightness curve (c); electroluminescence intensity-wavelength curve (d) and brightness-time curve (e) diagram.
  • FIG. 7 is a current density-voltage curve diagram of a positive perovskite photovoltaic device with an organic small molecule hole injection/transport material TPA1 prepared in Example 1 doped with 4% LAD and with iodine, lead and cesium as the active layer.
  • Example 8 is a hydrogen nuclear magnetic resonance spectrum (a) and a carbon nuclear magnetic resonance spectrum (b) of the organic small molecule hole injection/transport material TPA2 prepared in Example 2.
  • FIG. 9 is a graph showing the ultraviolet-visible absorption and fluorescence emission spectrum (a) and low-temperature phosphorescence emission spectrum (b) of the organic small molecule hole injection/transport material TPA2 prepared in Example 2.
  • TGA a graph of TGA (a) and DSC (b) of the organic small molecule hole injection/transport material TPA2 prepared in Example 2.
  • Example 11 is a low kinetic energy region (a) and a valence band spectrum near the Fermi level (b) of the ultraviolet photoelectron energy spectrum of the organic small molecule hole injection/transport material TPA2 prepared in Example 2.
  • Figure 12 shows the current density-voltage curve (a) and current density 1/2 -voltage curve of the single hole mobility test of the organic small molecule hole injection/transport material TPA2 doped with 4% F4-TCNQ prepared in Example 2 (b) Figure.
  • Figure 13 shows the current density-voltage-brightness curve (a) of the organic small molecule hole injection/transport material TPA2 doped with 4% F4-TCNQ organic electroluminescent phosphorescent device prepared in Example 2 (a); current efficiency-brightness curve ( b); power efficiency-brightness curve (c); electroluminescence intensity-wavelength curve (d) and brightness-time curve (e) diagram.
  • FIG. 14 is a current density-voltage curve diagram of a positive perovskite photovoltaic device with an organic small molecule hole injection/transport material TPA2 prepared in Example 2 and doped with 4% LAD with iodine, lead and cesium as the active layer.
  • reagents used in the examples can be conventionally purchased from the market unless otherwise specified.
  • the structural formula of the organic small molecule hole injection/transport material of this embodiment is specifically as follows:
  • the preparation method of the organic small molecule hole injection/transport material TPA1 of this embodiment is as follows:
  • Step 1 Preparation of 4,4'-dibromotriphenylamine (1), the reaction equation is as follows:
  • Step 2 6-(4-((4-(6-(bis(4-methoxyphenyl)amino)naphthylamino-2-yl)phenyl)(phenyl)amino)phenyl)-N,
  • TPA1 N-bis(4-methoxyphenyl)naphthalene-2-amine
  • Example 1 is a hydrogen nuclear magnetic resonance spectrum (a) and a carbon nuclear magnetic resonance spectrum (b) diagram of the organic small molecule hole injection/transport material TPA1 prepared in Example 1.
  • the thin films of the organic small molecule hole injection/transport material TPA1 prepared in Example 1 in toluene solution (1.0 ⁇ 10 -5 mol L -1 ) and quartz glass were characterized by ultraviolet-visible absorption and photoemission spectra, respectively.
  • 2 is a graph showing the ultraviolet-visible absorption spectrum and fluorescence emission spectrum (a) and low-temperature phosphorescence emission spectrum (b) of the organic small molecule hole injection/transport material TPA1 prepared in Example 1. From the absorption edge of the film in Figure 2(a), the optical bandgap of TPA1 can be calculated to be 2.84eV; from the low-temperature phosphorescence emission peak of Figure 2(b), the triplet energy level of TPA1 can be calculated to be 2.63eV.
  • TGA Thermogravimetric analysis
  • TGA2050 thermogravimetric analyzer with nitrogen protection at a heating rate of 20°C/min
  • DSC differential scanning calorimetry
  • NETZSCH DSC 204 F1 thermal analyzer Under the protection of nitrogen, start from -30°C with a heating rate of 10°C/min to 400°C, then reduce the temperature to -30°C at 20°C/min, hold the temperature for 5 minutes, and test again with a heating rate of 10°C/min to 400°C .
  • FIG 3 shows the thermal weight loss (TGA) curve (a) and differential scanning calorimetry (DSC) curve (b) of the organic small molecule hole injection/transport material TPA1 prepared in Example 1.
  • TPA1 has high thermal stability and Good film morphology stability.
  • the HOMO energy level was calculated by UV photoelectron spectroscopy, and a 10nm TPA1 film was vapor-deposited on ITO for testing. 4 shows the low kinetic energy region (a) and the valence band spectrum near the Fermi level (b) of the ultraviolet photoelectron energy spectrum of the organic small molecule hole injection/transport material TPA1 prepared in Example 1.
  • the calculated HOMO energy level is -5.07eV, indicating that the material has a suitable HOMO value, which is conducive to the injection and extraction of holes; according to the optical band gap of TPA1, the LUMO energy level is about -2.23eV.
  • F4-TCNQ (150nm, 4%)/Al
  • F4-TCNQ (2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl P-benzoquinone) is a P-type dopant.
  • an indium tin oxide (ITO) conductive glass substrate with a resistance of 10-20 ⁇ /square was ultrasonically cleaned with deionized water, acetone, detergent, deionized water, and isopropanol for 15 minutes. After drying in an oven, the treated ITO glass substrate is sequentially vapor-deposited with various organic functional layers and a metal Al cathode under a vacuum of 3 ⁇ 10 -4 Pa. The film thickness was measured with a Veeco Dektak150 step meter, and the deposition rate and thickness of the metal electrode vapor deposition were measured with Sycon Instrument's thickness/speed meter STM-100. According to the current density-voltage curve, the hole mobility is calculated by the space charge limited current (SCLC) method.
  • SCLC space charge limited current
  • Figure 5 shows the current density-voltage curve (a) and current density 1/2 -voltage curve of the single hole mobility test of the organic small molecule hole injection/transport material TPA1 doped with 4% F4-TCNQ prepared in Example 1.
  • the conductivity of TPA1 obtained in Example 1 of the present invention is derived to be 3.2 ⁇ 10 -4 S m -1
  • the hole mobility of hole injection/transport material TPA1 doped with 4% F4-TCNQ is 5.62 ⁇ 10 -4 cm 2 V -1 s -1 .
  • TPA1 is used as a doped hole injection material, and the characterization results of an organic electroluminescent phosphorescent device using a vacuum evaporation method:
  • the specific device structure is: ITO/TPA1:F4-TCNQ(100nm, 4%)/NPB(20nm)/Bebq 2 :Ir(MDQ) 2 (acac)(40nm, 5%)/TRZ-m-Phen:Liq( 30nm, the mass ratio is 1:1)/Liq(1nm)/Al.
  • TPA1:F4-TCNQ is used as the hole injection layer
  • NPB(N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diphenyl Amine) as the hole transport layer
  • Bebq 2 bis(10-hydroxybenzo[h]quinoline) beryllium
  • Ir(MDQ) 2 acac)((acetylacetone)bis(2-methyldibenzo[ f,h]quinoxaline) iridium
  • TRZ-m-Phen:Liq as the electron transport layer (for the preparation method, refer to Chinese Patent Publication CN 108409730 A), Liq (8-hydroxyquinoline- Lithium) serves as the electron injection layer.
  • ITO indium tin oxide
  • the indium tin oxide (ITO) conductive glass substrate with a resistance of 10-20 ⁇ /square was ultrasonically cleaned with deionized water, acetone, detergent, deionized water and isopropanol for 20 minutes. After drying in an oven, the treated ITO glass substrate is sequentially vapor-deposited with various organic functional layers and a metal Al cathode under a vacuum of 3 ⁇ 10 -4 Pa. The thickness of the film was measured with a Veeco Dektak150 step meter. The deposition rate and thickness of the metal electrode vapor deposition were measured with Sycon Instrument's thickness/speed meter STM-100.
  • Figure 6 (a) is the current density-voltage-luminance curve of the organic small molecule hole injection/transport material TPA1 doped with 4% F4-TCNQ organic electroluminescence phosphorescent device prepared in Example 1;
  • 6(b) is the current efficiency-brightness curve of the organic small molecule hole injection/transport material TPA1 doped with 4% F4-TCNQ organic electroluminescence phosphorescent device prepared in Example 1;
  • Figure 6(c) is the power efficiency-brightness curve of the organic small molecule hole injection/transport material TPA1 doped with 4% F4-TCNQ organic electroluminescent phosphorescent device prepared in Example 1;
  • Figure 6(d) is the electroluminescence intensity-wavelength curve of the organic small molecule hole injection/transport material TPA1 doped with 4% F4-TCNQ organic electroluminescent phosphorescent device prepared in Example 1;
  • 6(e) is the brightness-time curve of the organic small molecule hole injection/transport material TPA1 doped with 4% F4-TCNQ organic electroluminescence phosphorescent device prepared in Example 1;
  • the initial luminance was 1000cd m -2
  • the lifetime of the device t 95 (t 95 for the luminance decay of the device from 1000cd m -2 to 950cd m -2 elapsed time) up to 480h , which shows that TPA1 has good device stability in the thermally evaporated red phosphorescent device.
  • TPA1 is used as a doped hole transport material and is processed by solution spin coating. Characterization results in perovskite photovoltaic devices:
  • the specific device structure is: ITO/SnO 2 /CsPbI 3 /TPA1:LAD/MoO 3 /Al
  • ITO indium tin oxide
  • the metal layer is vapor-deposited with a thickness of 80 to 120 nm of Al.
  • the effective area of the device is 0.058 cm 2 . Except for the cleaning of ITO and the preparation of the SnO 2 film, all the steps are completed in an atmospheric environment, and all other steps are completed in a glove box under a nitrogen atmosphere.
  • Fig. 7 is a current density-voltage curve of a positive perovskite photovoltaic device with the organic small molecule hole injection/transport material TPA1 prepared in Example 1 of the present invention doped with 4% LAD with iodine, lead and cesium as the active layer.
  • the device performance obtained by the solar simulation lamp with a light intensity of 100mW cm -2 is as follows, open circuit voltage (V oc ): 0.96V, short circuit current (J sc ): 18.87mA cm -2 , Fill factor (FF): 63.08%, energy conversion efficiency (PCE): 11.47%.
  • the structural formula of the organic small molecule hole injection/transport material of this embodiment is specifically as follows:
  • the preparation method of the organic small molecule hole injection/transport material TPA2 of this embodiment is as follows:
  • Step 1 Preparation of 4-bromo-N-(4-bromophenyl)-N-(4-methoxyphenyl)aniline, the reaction equation is as follows:
  • step (1) The difference between step (1) and step (1) in Example 1 is that the aniline in step (1) in Example 1 is replaced with 4-methoxyaniline, and the yield is about 80% (14.0g);
  • Step 2 6-(4-((4-(6-(bis(4-methoxyphenyl)amino)naphthylamino-2-yl)phenyl)(4-methoxyphenyl)amino)benzene Yl)-N,N-bis(4-methoxyphenyl)naphthalene-2-amine (TPA2), the reaction equation is as follows:
  • Fig. 8(a) and Fig. 8(b) are the hydrogen nuclear magnetic resonance spectrum and the carbon nuclear magnetic resonance spectrum of the organic small molecule hole injection/transport material TPA2 prepared in Example 2 of the present invention, respectively.
  • Ultraviolet-visible absorption, photoemission spectroscopy and low-temperature phosphorescence emission were performed on the thin organic small molecule hole injection/transport material TPA2 prepared in Example 2 in toluene solution (1.0 ⁇ 10 -5 mol L -1) and quartz glass Spectral characterization.
  • 9 is a graph showing the ultraviolet-visible absorption and fluorescence emission spectrum (a) and low-temperature phosphorescence emission spectrum (b) of the organic small molecule hole injection/transport material TPA2 prepared in Example 2.
  • the optical band gap of TPA2 can be calculated to be 2.77 eV; from the low-temperature phosphorescence emission peak of Figure 9(b), the triplet energy level of TPA2 can be calculated to be 2.65 eV.
  • TGA Thermogravimetric analysis
  • TGA2050 thermogravimetric analyzer with nitrogen protection at a heating rate of 20°C/min
  • DSC differential scanning calorimetry
  • NETZSCH DSC 204 F1 thermal analyzer Under the protection of nitrogen, start from -30°C with a heating rate of 10°C/min to 390°C, then reduce the temperature to -30°C at 20°C/min, hold the temperature for 5 minutes, and test again with a heating rate of 10°C/min to 390°C .
  • TPA 10 is a graph of TGA (a) and DSC (b) of the organic small molecule hole injection/transport material TPA2 prepared in Example 2. It can be obtained from the TGA curve that the thermal decomposition temperature of TPA2 (the temperature at 1% weight loss) is 431°C, and it can be obtained from the DSC curve that the glass transition temperature of TPA2 is as high as 131°C, indicating that TPA has good thermal stability and is conducive to device stability. Sex.
  • the HOMO energy level was calculated based on the results of UV photoelectron spectroscopy, and a 10nm TPA2 film was deposited on ITO for testing.
  • 11 is a low kinetic energy region (a) and a valence band spectrum near the Fermi level (b) of the ultraviolet photoelectron energy spectrum of the organic small molecule hole injection/transport material TPA2 prepared in Example 2.
  • the calculated HOMO energy level is -5.02eV, indicating that the material has a suitable HOMO value, which is beneficial to the injection and extraction of holes.
  • the LUMO energy level is about -2.25 eV.
  • F4-TCNQ (150nm, 4%)/Al
  • F4-TCNQ is a P-type dopant.
  • the hole mobility is calculated by the space charge limited current SCLC method.
  • Figure 12 shows the current density-voltage curve (a) and current density 1/2 -voltage curve of the single hole mobility test of the organic small molecule hole injection/transport material TPA2 doped with 4% F4-TCNQ prepared in Example 2 (b) Figure.
  • the conductivity of TPA2 obtained in Example 2 is calculated to be 3.2 ⁇ 10 -4 S m -1
  • the conductivity of Example 2 The hole mobility of the hole injection/transport material TPA2 doped with 4% F4-TCNQ is 3.72 ⁇ 10 -4 cm 2 V -1 s -1 .
  • TPA2 is used as a doped hole injection material, and the characterization results of an organic electroluminescent red phosphorescent device using a vacuum evaporation method:
  • the specific device structure is: ITO/TPA2:F4-TCNQ(100nm, 4%)/NPB(20nm)/Bebq 2 : Ir(MDQ) 2 (acac)(40nm, 5%)/TRZ-m-Phen:Liq( 30nm, 1:1)/Liq(1nm)/Al.
  • TPA2:F4-TCNQ is used as a hole injection layer
  • NPB is used as a hole transport layer
  • Bebq 2 :Ir(MDQ) 2 (acac) is used as a phosphorescent red light emitting layer
  • TRZ-m-Phen:Liq is used as an electron transport layer. Liq serves as the electron injection layer.
  • Figure 13 (a) is the current density-voltage-luminance curve of the organic small molecule hole injection/transport material TPA2 doped 4% F4-TCNQ organic electroluminescence phosphorescent device prepared in Example 2;
  • 13(b) is the current efficiency-brightness curve of the organic small molecule hole injection/transport material TPA2 doped with 4% F4-TCNQ organic electroluminescence phosphorescent device prepared in Example 2;
  • 13(c) is the power efficiency-brightness curve of the organic small molecule hole injection/transport material TPA2 doped with 4% F4-TCNQ organic electroluminescence phosphorescent device prepared in Example 2;
  • 13(d) is the electroluminescence intensity-wavelength curve of the organic small molecule hole injection/transport material TPA2 doped 4% F4-TCNQ organic electroluminescence red phosphorescent device prepared in Example 2;
  • Figure 13(e) is the brightness-time curve of the organic small molecule hole injection/transport material TPA2 doped with 4% F4-TCNQ organic electroluminescence phosphorescent device prepared in Example 2;
  • the electroluminescence peak of the device is about 618nm.
  • TPA2 as a doped hole transport material, using solution spin coating method, the characterization results of perovskite photovoltaic devices:
  • the specific device structure is: ITO/SnO 2 /CsPbI 3 /TPA2:LAD/MoO 3 /Al
  • TPA1 is replaced with TPA2.
  • FIG. 14 is a current density-voltage curve of a positive perovskite photovoltaic device with 4% LAD doped with the organic small molecule hole injection/transport material TPA2 prepared in Example 2 of the present invention with iodine lead and cesium cesium as the active layer.
  • the device performance obtained by the solar simulation lamp with a light intensity of 100mW cm -2 is as follows: open circuit voltage (V oc ): 0.97V, short circuit current (J sc ): 18.93mA cm -2 , fill factor (FF): 62.57%, energy conversion efficiency (PCE): 11.53%.

Abstract

本发明属于有机小分子空穴注入/传输材料的技术领域,公开了一种有机小分子空穴注入/传输材料及其制备方法与应用。所述的有机小分子空穴注入/传输材料的结构式如(I)所示,其中,(II);其中,Ar 1、Ar 2与Ar 3独立地为未取代的苯环、稠环或螺环芳烃,或独立地为经碳原子数分别为1~6的烷基、烷氧基或烷硫基取代的苯环、稠环或螺环芳烃;其中苯环、稠环或螺环芳烃的碳原子个数为6-40。本发明采用了多个非平面结构的芳胺单元,还引入了甲氧端基,使得该材料具有高热稳定性、高玻璃化转变温度、高HOMO能级、高空穴迁移率以及良好的溶解性,在光电器件中具有重要应用前景。

Description

一种有机小分子空穴注入/传输材料及其制备方法与应用 技术领域
本发明属于有机小分子光电材料的技术领域,涉及一种有机小分子空穴注入/传输材料及其制备方法与应用。
背景技术
有机电致发光二极管(OLEDs)在显示以及照明领域具有重要的应用前景。高HOMO能级空穴注入材料是OLED器件的必要组成部分。专利公开文本CN107954884A公开了一种有机空穴注入材料XL1,该材料的玻璃化转变温度为99℃、HOMO能级-5.05eV、非掺杂条件下的空穴迁移率约1.45×10 -4cm 2V -1s -1,但为了满足于OLED器件的实际应用,XL1的玻璃化转变温度仍需要提升。然而,设计合成兼具高玻璃化转变温度(≥120℃)与高空穴迁移率的有机小分子空穴注入/传输材料,具有挑战性。
发明内容
为了克服现有技术的不足,本发明的首要目的在于提供一种有机小分子空穴注入/传输材料。
本发明的另一目的在于提供上述有机小分子空穴注入/传输材料的制备方法。
本发明的再一目的在于提供上述有机小分子空穴注入/传输材料在有机电致发光器件和高效钙钛光伏器件等光电器件中的应用。
本发明的目的通过以下技术方案实现:
一种有机小分子空穴注入/传输材料,其结构式如式Ⅰ所示:
Figure PCTCN2020070668-appb-000001
所述
Figure PCTCN2020070668-appb-000002
其中,Ar 1、Ar 2与Ar 3独立地为未取代的苯环、稠环或螺环芳烃,或独立地为经碳原子数分别为1~6的烷基、烷氧基或烷硫基取代的苯环、稠环或螺环芳烃;其中苯环、稠环或螺环芳烃的碳原子个数为6-40。
所述R基团优选为如下所示的化学结构:
Figure PCTCN2020070668-appb-000003
其中*表示所述R基团的连接点。
所述的有机小分子空穴注入/传输材料优选以下化学结构中的一种:
Figure PCTCN2020070668-appb-000004
一种上述有机小分子空穴注入/传输材料的制备方法,包括以下步骤:
(1)在有机溶剂和催化体系中,将溴碘取代芳香化合物与胺类化合物混合后进行反应,反应结束后将反应液纯化,得到含溴中间体;
(2)在有机溶剂和催化体系中,将步骤(1)所得含溴中间体与N,N-二(4-甲氧基苯基)-6-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊基)-2-萘胺混合后进行偶联反应,反应结束后得到粗产物,经过纯化后,得到有机小分子空穴注入/传输材料。
步骤(1)中所述催化体系通常包括碱性化合物和催化剂;其中,所述的碱性化合物为叔丁醇钠或叔丁醇钾中的至少一种;所述的催化剂为1,10-菲啰啉和碘化亚铜;
步骤(1)所述溴碘取代芳香化合物为1-溴-4-碘苯。
步骤(1)所述胺类化合物为苯胺和4-甲氧基苯胺中的至少一种;
步骤(1)所述有机溶剂为甲苯、N,N-二甲基甲酰胺和无水四氢呋喃中的至少一种。
步骤(1)所述的胺类化合物、溴碘取代芳香化合物、碱性化合物、1,10-菲啰啉以及碘化亚铜的摩尔比为1:(2.1~3):(3~6):(0.1~0.2):(0.2~0.4)。
步骤(1)所述有机溶剂的用量满足每1mol的溴碘取代芳香化合物对应加入300~1000mL的有机溶剂。
步骤(1)所述的反应为在110℃~120℃反应15~30h;
步骤(1)所述反应优选为在惰性气体氛围下进行;所述惰性气体为氮气。
步骤(1)中所述的纯化为将反应液浓缩后用有机溶剂和水进行萃取,分液后将有机层进行浓缩并进行柱层析分离提纯。优选地,所述第一次浓缩为将反应液减压蒸馏,第二次浓缩为用无水硫酸镁对有机层干燥,然后抽滤、减压蒸馏;所述有机溶剂为二氯甲烷和乙酸乙酯中的至少一种;所述的柱层析分离提纯的展开剂为石油醚和正己烷中的至少一种。
步骤(1)所述的含溴中间体的化学结构如下所示:
Figure PCTCN2020070668-appb-000005
步骤(2)所述有机溶剂为甲苯和四氢呋喃中的至少一种;
步骤(2)所述的催化体系包括催化剂和碱性化合物水溶液;
其中,所述催化剂包括四三苯基膦钯和相转移催化剂;优选地,所述的相转移催化剂为乙醇。所述碱性化合物水溶液为碳酸钾水溶液和碳酸钠水溶液中的至少一种;所述的碱性化合物水溶液的浓度为0.5~5mol/L;优选为1~3mol/L,更优选为2mol/L;
步骤(2)所述含溴中间体与N,N-二(4-甲氧基苯基)-6-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊基)-2-萘胺、四三苯基膦钯、相转移催化剂以及碱性化合物的摩尔比为1:(2.05~2.2):(0.01~0.03):(20~50):(3~5)。
步骤(2)所述的偶联反应条件为在100~120℃下反应9~14h。
步骤(2)所述的偶联反应优选为在惰性气体氛围中进行;所述惰性气体为氮气;
步骤(2)中所述的纯化是指将粗产物通过减压蒸馏除去溶剂后用有机溶剂和水进行萃取,分液后将有机层减压浓缩,再用柱层析分离提纯;优选地,所述柱层析展开剂首先采用石油醚和二氯甲烷的混合溶剂,体积比为3:1;然后以体积比2:1、1:1的浓度梯度逐步增大极性,最后以二氯甲烷作为展开剂。
上述的有机小分子空穴注入/传输材料在有机电致发光器件和高效钙钛光伏器件等光电器件中的应用。
优选地,所述有机电致发光器件为磷光红光器件,所述高效钙钛矿光伏器件为正向型钙钛矿光伏器件。
本发明的原理如下:
本发明采用了多个非平面结构的芳胺单元,使得分子刚性增强、分子量增大,从而提高了材料的玻璃化转变温度;同时由于芳胺单元的强给电性,使得材料具有高的空穴迁移率和电导率;而多个甲氧端基的存在,不仅可调节材料的HOMO(最高占据分子轨道)能级,同时还能提高材料的溶解性,使其容易合成和提纯,而且在器件应用中可通过蒸镀或溶液加工。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明的有机小分子空穴注入/传输材料具有良好的热稳定性,其中TPA1和TPA2 的失重1%时的分解温度分别为434℃和431℃;
(2)本发明的有机小分子空穴注入/传输材料具有高玻璃化转变温度,TPA1和TPA2的玻璃化转变温度分别高达136℃和131℃;
(3)本发明的有机小分子空穴注入/传输材料具适宜的HOMO能级和高空穴迁移率,其中TPA1掺杂4%F4-TCNQ的迁移率为5.62×10 -4cm 2V -1s -1,TPA2掺杂4%F4-TCNQ的迁移率为3.72×10 -4cm 2V -1s -1
(4)本发明的有机小分子空穴注入/传输材料具有合适的HOMO能级,有利于空穴的注入和取出,适用于OLEDs和钙钛矿光伏器件;
(5)本发明的有机小分子空穴注入/传输材料具有良好的溶解性,有利于分离提纯,可采用蒸镀或溶液加工;
(6)本发明的有机小分子空穴注入/传输材料具有简易的合成方法,产率高。
附图说明
图1为实施例1制备的有机小分子空穴注入/传输材料TPA1的核磁共振氢谱(a)和核磁共振碳谱(b)图。
图2为实施例1制备的有机小分子空穴注入/传输材料TPA1的紫外可见吸收光谱和荧光发射光谱(a)和低温磷光发射光谱(b)图。
图3为实施例1制备的有机小分子空穴注入/传输材料TPA1的TGA(a)和DSC(b)曲线图。
图4为实施例1制备的有机小分子空穴注入/传输材料TPA1的紫外光电子能谱的低动能区(a)和靠近费米能级区(b)的价带谱图。
图5为实施例1制备的有机小分子空穴注入/传输材料TPA1掺杂4%F4-TCNQ的单空穴迁移率测试的电流密度-电压曲线(a)和电流密度 1/2-电压曲线(b)图。
图6为实施例1制备的有机小分子空穴注入/传输材料TPA1掺杂4%F4-TCNQ有机电致红光磷光器件的电流密度-电压-亮度曲线(a);电流效率-亮度曲线(b);功率效率-亮度曲线(c);电致发光强度-波长曲线(d)和亮度-时间曲线(e)图。
图7为实施例1制备的有机小分子空穴注入/传输材料TPA1掺杂4%LAD后以碘铅铯为活性层的正向型钙钛矿光伏器件的电流密度-电压曲线图。
图8为实施例2制备的有机小分子空穴注入/传输材料TPA2的核磁共振氢谱(a)和核磁共振碳谱(b)图。
图9为实施例2制备的有机小分子空穴注入/传输材料TPA2的紫外可见吸收与荧光发射光谱(a)和低温磷光发射光谱(b)图。
图10为实施例2制备的有机小分子空穴注入/传输材料TPA2的TGA(a)和DSC(b)曲线图。
图11为实施例2制备的有机小分子空穴注入/传输材料TPA2的紫外光电子能谱的低动能区(a)和靠近费米能级区(b)的价带谱图。
图12为实施例2制备的有机小分子空穴注入/传输材料TPA2掺杂4%F4-TCNQ的单空穴迁移率测试的电流密度-电压曲线(a)和电流密度 1/2-电压曲线(b)图。
图13为实施例2制备的有机小分子空穴注入/传输材料TPA2掺杂4%F4-TCNQ有机电致红光磷光器件的电流密度-电压-亮度曲线(a);电流效率-亮度曲线(b);功率效率-亮度曲线(c);电致发光强度-波长曲线(d)和亮度-时间曲线(e)图。
图14为实施例2制备的有机小分子空穴注入/传输材料TPA2掺杂4%LAD后以碘铅铯为活性层的正向型钙钛矿光伏器件的电流密度-电压曲线图。
具体实施方式
下面结合实施例和附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例中所用试剂如无特殊说明均可从市场常规购得。
实施例中N,N-二(4-甲氧基苯基)-6-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊基)-2-萘胺的制备方法参考中国专利公开文本CN 107954884 A。
实施例1
本实施例的有机小分子空穴注入/传输材料的结构式具体如下:
Figure PCTCN2020070668-appb-000006
本实施例的有机小分子空穴注入/传输材料TPA1的制备方式如下:
步骤1:4,4’-二溴三苯胺(1)的制备,反应方程式如下:
Figure PCTCN2020070668-appb-000007
将1-溴-4-碘苯(41.7g,0.148mol)和苯胺(5.5g,0.059mol)溶于100mL无水甲苯中,然后加入叔丁醇钠(22.7g,0.236mol),CuI(2.3g,0.012mol)以及1,10-菲啰啉(4.3g,0.023mol),氮气氛围下加热到115℃反应18h,冷却后浓缩除去甲苯,加入去离子水和二氯甲烷进行萃取,经分液得到的有机层用无水硫酸镁干燥、抽滤、减压蒸馏后,以石油醚作为展开剂进行柱层析分离提纯,得到粘稠状产物,产率约85%(20.2g);
步骤2:6-(4-((4-(6-(二(4-甲氧基苯基)氨基)萘胺-2-基)苯基)(苯基)氨基)苯基)-N,N-二(4-甲氧基苯基)萘-2-胺(TPA1)的制备,反应方程式如下:
Figure PCTCN2020070668-appb-000008
在N 2气氛下,将4,4’-二溴三苯胺(2.0g,4.96mmol)、N,N-二(4-甲氧基苯基)-6-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊基)-2-萘胺(5.0g,10.42mmol)、四三苯基膦钯(62mg,0.053mmol)、碳酸钾水溶液(2mol/L,10ml)和乙醇(10mL)加入到甲苯(70mL)中,反应加热到110℃搅拌10h,待反应完后将粗产品浓缩除去甲苯,然后用去离子水和二氯甲烷萃取,将有机层进行浓缩后使用硅胶柱层析进行分离提纯,柱层析分离的展开剂首先采用浓度梯度为体积比为3:1、2:1、1:1的石油醚和二氯甲烷的混合溶液,最后直接用二氯甲烷作为展开剂,得到浅黄色固体产物(TPA1),收率约87%(4.1g);
下面对本发明实施例1有机小分子空穴注入/传输材料TPA1进行测试:
图1为实施例1制备的有机小分子空穴注入/传输材料TPA1的核磁共振氢谱(a)和核磁共振碳谱(b)图。
(1)核磁共振氢谱:
1H NMR(400MHz,DMSO)δ8.01(s,2H),7.80–7.59(m,10H),7.38–7.30(t,J=8.2Hz,2H),7.17–7.01(m,19H),6.920(dt,J 1=9.0,J 2=3.4Hz,8H),3.74(s,12H).
核磁共振碳谱:
13C NMR(126MHz,DMSO)δ156.21,147.40,146.71,146.69,140.69,134.89,134.80,133.65,130.10,129.48,129.22,127.99,127.49,127.00,125.53,124.75,124.61,124.40,123.82,122.42,115.44,114.88,55.69.
(2)光物理性能
对实施例1制备的有机小分子空穴注入/传输材料TPA1在甲苯溶液(1.0×10 -5mol L -1)和石英玻璃上的薄膜进行分别紫外可见吸收和光致发射光谱表征。图2为实施例1制备的有机小分子空穴注入/传输材料TPA1的紫外可见吸收光谱和荧光发射光谱(a)和低温磷光发射光谱(b)图。从图2(a)的薄膜的吸收边可以计算得到TPA1的光学带隙为2.84eV;从图2(b)的低温磷光发射峰值可以计算得到TPA1的三线态能级为2.63eV。
(3)热力学性质:
热失重分析(TGA)是在TGA2050(TA instruments)热重分析仪上通氮气保护以20℃/min的升温速率测定的;差示扫描量热分析(DSC)使用NETZSCH DSC 204 F1热分析仪,在氮气保护下,从-30℃开始以10℃/min的升温速率到400℃,然后以20℃/min降温到–30℃,恒温5min,再次以10℃/min的升温速率到400℃测试。
图3为实施例1制备的有机小分子空穴注入/传输材料TPA1的热失重(TGA)曲线(a)和差式扫描量热(DSC)曲线(b)。
由TGA曲线可以得到,TPA1的分解温度(失重1%时的温度)为434℃,由DSC曲线可以得到,TPA1的玻璃化转变温度高达136℃,由此可见,TPA1具有高的热稳定性以及良好的薄膜形貌稳定性。
(4)能级测试:
通过紫外光电子能谱来计算HOMO能级,在ITO上蒸镀10nm的TPA1薄膜进行测试。图4为实施例1制备的有机小分子空穴注入/传输材料TPA1的紫外光电子能谱的低动能区(a)和靠近费米能级区(b)的价带谱。计算得出HOMO能级为-5.07eV,表明材料具有适宜的HOMO值,有利于空穴的注入和取出;根据TPA1的光学带隙计算得到其LUMO能级约为-2.23eV。
(5)空穴迁移率测试:
制备单空穴器件ITO/TPA1:F4-TCNQ(150nm,4%)/Al,F4-TCNQ(2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌)为P-型掺杂剂。
具体为将电阻为10–20Ω/平方的氧化铟锡(ITO)导电玻璃基片依次经去离子水、丙酮、洗涤剂、去离子水和异丙醇分别超声清洗15min。在烘箱干燥后,将上述处理过的ITO玻璃基片在3×10 -4Pa的真空下,依次蒸镀各个有机功能层及金属Al阴极。薄膜厚度用Veeco Dektak150台阶仪测定,金属电极蒸镀的沉积速率及其厚度用Sycon Instrument的厚度/速度仪STM–100测定。根据电流密度-电压曲线,通过空间电荷限制电流(SCLC)法计算空穴迁移率。
图5为实施例1制备的有机小分子空穴注入/传输材料TPA1掺杂4%F4-TCNQ的单空穴迁移率测试的电流密度-电压曲线(a)和电流密度 1/2-电压曲线(b)图。
如图5(a)所示,推导得到本发明实施例1所得TPA1的电导率为3.2×10 -4S m -1,又由图5(b)所示,根据SCLC计算得出,实施例1的空穴注入/传输材料TPA1掺杂4%F4-TCNQ的空穴迁移率为5.62×10 -4cm 2V -1s -1
(6)TPA1作为掺杂空穴注入材料,采用真空蒸镀法的有机电致红光磷光器件的表征结果:
具体器件结构为:ITO/TPA1:F4-TCNQ(100nm,4%)/NPB(20nm)/Bebq 2:Ir(MDQ) 2(acac)(40nm,5%)/TRZ-m-Phen:Liq(30nm,质量比为1:1)/Liq(1nm)/Al。其中,TPA1:F4-TCNQ作为空穴注入层,NPB(N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺)作为空穴传输层,Bebq 2(双(10-羟基苯并[h]喹啉)铍):Ir(MDQ) 2(acac)((乙酰丙酮)双(2-甲基二苯并[f,h]喹喔啉)合铱)作为磷光红光发光层,TRZ-m-Phen:Liq作为电子传输层(制备方法参考中国专利公开文本CN 108409730 A),Liq(8-羟基喹啉-锂)作为电子注入层。
器件详细制备过程如下:
将电阻为10–20Ω/平方的氧化铟锡(ITO)导电玻璃基片依次经去离子水、丙酮、洗涤剂、去离子水和异丙醇分别超声清洗20min。在烘箱干燥后,将上述处理过的ITO玻璃基片在3×10 -4Pa的真空下,依次蒸镀各个有机功能层及金属Al阴极。薄膜厚度用Veeco Dektak150台阶仪测定。金属电极蒸镀的沉积速率及其厚度用Sycon Instrument的厚度/速度仪STM–100测定。
图6(a)为实施例1制备的有机小分子空穴注入/传输材料TPA1掺杂4%F4-TCNQ有机电致红光磷光器件的电流密度-电压-亮度曲线;
图6(b)为实施例1制备的有机小分子空穴注入/传输材料TPA1掺杂4%F4-TCNQ有机电致红光磷光器件的电流效率-亮度曲线;
图6(c)为实施例1制备的有机小分子空穴注入/传输材料TPA1掺杂4%F4-TCNQ有机电致红光磷光器件的功率效率-亮度曲线;
图6(d)为实施例1制备的有机小分子空穴注入/传输材料TPA1掺杂4%F4-TCNQ有机电致红光磷光器件的电致发光强度-波长曲线;
图6(e)为实施例1制备的有机小分子空穴注入/传输材料TPA1掺杂4%F4-TCNQ有机电致红光磷光器件的亮度-时间曲线;
由图6(a)~(c)可以得到,在以TPA1掺杂F4-TCNQ作为空穴注入层的有机电致红光磷光器件中,在1000cd/m 2的亮度下,器件的电流效率为12.8cd A -1,功率效率为10.0lm W -1;图6(d)表明该器件的电致发光峰值约618nm,是典型的红光发射。
由图6(e)可以看到,在起始亮度为1000cd m -2时,器件的寿命t 95(t 95为器件的亮度从1000cd m -2衰减到950cd m -2所用的时间)高达480h,表明TPA1在该热蒸镀红光磷光器件中具有很好的器件稳定性。
(7)TPA1作为掺杂空穴传输材料,采用溶液旋涂加工的方式,在钙钛矿光伏器件的表征结果:
具体的器件结构为:ITO/SnO 2/CsPbI 3/TPA1:LAD/MoO 3/Al
器件制备过程:将电阻为10–20Ω/口的氧化铟锡(ITO)导电玻璃基片依次经去离子水、丙酮、洗涤剂、去离子水和异丙醇分别超声清洗20min,然后在烘箱干燥,经氧等离子体处理1min,再旋涂SnO 2纳米粒子水胶体溶液(购自Alfa Aesar),厚度20~30nm,转速3500rpm,150℃退火30min。然后,在SnO 2表面旋涂CsPbI 3(将PbI 2和CsI以摩尔比1:1加入体积比为4:1的DMF/DMSO混合溶液中,混合均匀制备得到。其中每0.80mmol的PbI 2对应加入1mL的DMF/DMSO),转速和时间为1500rpm/9s和4000rpm/30s,然后在330℃退火2min。再在CsPbI 3表面旋涂质量比TPA1:LAD(LAD=三(五氟苯基)硼,CAS:1109-15-5)=1:0.04的氯苯溶液(总浓度为40mg mL –1),转速为3000rpm。然后在<5×10 -4Pa的真空下,蒸镀MoO 3(蒸镀速率为
Figure PCTCN2020070668-appb-000009
),厚度为10nm。最后,在<5×10 -4Pa的真空下,蒸镀金属层厚度为80到120nm的Al。该器件的有效面积为0.058cm 2。除ITO的清洗和SnO 2薄膜的制备过程是在大气环境中完成的,其余所有环节均在氮气气氛的手套箱内完成。
图7为本发明实施例1制备的有机小分子空穴注入/传输材料TPA1掺杂4%LAD后以碘铅铯为活性层的正向型钙钛矿光伏器件的电流密度-电压曲线。由器件测试结果可得,经光强为100mW cm -2的太阳模拟灯照射,所取得的器件性能如下,开路电压(V oc):0.96V,短路 电流(J sc):18.87mA cm -2,填充因子(FF):63.08%,能量转换效率(PCE):11.47%。
实施例2
本实施例的有机小分子空穴注入/传输材料的结构式具体如下:
Figure PCTCN2020070668-appb-000010
本实施例的有机小分子空穴注入/传输材料TPA2的制备方式如下:
步骤1:4-溴-N-(4-溴苯基)-N-(4-甲氧基苯基)苯胺的制备,反应方程式如下:
Figure PCTCN2020070668-appb-000011
步骤(1)与实施例1中步骤(1)的不同之处在于,实施例1中步骤(1)的苯胺用4-甲氧基苯胺代替,产率约80%(14.0g);
步骤2:6-(4-((4-(6-(二(4-甲氧基苯基)氨基)萘胺-2-基)苯基)(4-甲氧基苯基)氨基)苯基)-N,N-二(4-甲氧基苯基)萘-2-胺(TPA2)的制备,反应方程式如下:
Figure PCTCN2020070668-appb-000012
步骤(2)操作过程与实施例1步骤(2)的不同之处在于,实施例1中步骤(2)的反应物4,4’-二溴三苯胺用4-溴-N-(4-溴苯基)-N-(4-甲氧基苯基)苯胺代替,柱层析分离展开剂一开始使用体积比石油醚:二氯甲烷=2:1,然后到1:1,最后直接用二氯甲烷。产率约81%(4.6g);
下面对本发明实施例2有机小分子空穴注入/传输材料TPA2进行测试:
图8(a)和图8(b)分别为本发明实施例2制备的有机小分子空穴注入/传输材料TPA2的核磁共振氢谱和核磁共振碳谱。
(1)核磁共振氢谱:
1H NMR(400MHz,DMSO)δ8.00(s,2H),7.76(d,J=8.8Hz,2H),7.71–7.60(m,8H),7.13–7.02(m,18H),6.99–6.90(m,10H),3.76(s,3H),3.74(s,12H).
核磁共振碳谱:
13C NMR(126MHz,DMSO)δ156.69,156.20,147.06,146.62,140.71,140.04,135.00, 133.92,133.58,129.44,129.26,127.94,127.83,127.47,126.97,125.52,124.43,123.13,122.43,115.60,115.44,114.94,55.72,55.69
(2)光物理性能
对实施例2制备的有机小分子空穴注入/传输材料TPA2在甲苯溶液(1.0×10 -5mol L -1)和石英玻璃上的薄膜进行紫外-可见吸收、光致发射光谱和低温磷光发射光谱表征。图9为实施例2制备的有机小分子空穴注入/传输材料TPA2的紫外可见吸收与荧光发射光谱(a)和低温磷光发射光谱(b)图。从图9(a)的薄膜的吸收边可以计算得到TPA2的光学带隙为2.77eV;从图9(b)的低温磷光发射峰值可以计算得到TPA2的三线态能级为2.65eV。
(3)热力学性质:
热失重分析(TGA)是在TGA2050(TA instruments)热重分析仪上通氮气保护以20℃/min的升温速率测定的;差示扫描量热分析(DSC)使用NETZSCH DSC 204 F1热分析仪,在氮气保护下,从-30℃开始以10℃/min的升温速率到390℃,然后以20℃/min降温到–30℃,恒温5min,再次以10℃/min的升温速率到390℃测试。
图10为实施例2制备的有机小分子空穴注入/传输材料TPA2的TGA(a)和DSC(b)曲线图。由TGA曲线可以得到,TPA2的热分解温度(失重1%时的温度)为431℃,由DSC曲线可以得到,TPA2的玻璃化转变温度高达131℃,表明TPA热稳定性好,有利于器件稳定性。
(4)能级测试:
通过紫外光电子能谱测试结果计算HOMO能级,在ITO上蒸镀10nm的TPA2薄膜进行测试。图11为实施例2制备的有机小分子空穴注入/传输材料TPA2的紫外光电子能谱的低动能区(a)和靠近费米能级区(b)的价带谱图。计算出HOMO能级为-5.02eV,表明材料具有适宜的HOMO值,有利于空穴的注入和取出。根据TPA2的光学带隙计算得到其LUMO能级约为-2.25eV。
(5)空穴迁移率测试:
制备单空穴器件ITO/TPA2:F4-TCNQ(150nm,4%)/Al,F4-TCNQ为P-型掺杂剂。
根据电流密度-电压曲线,通过空间电荷限制电流SCLC法计算空穴迁移率。
器件制备过程,参考实施例1的空穴迁移率测试。
图12为实施例2制备的有机小分子空穴注入/传输材料TPA2掺杂4%F4-TCNQ的单空穴迁移率测试的电流密度-电压曲线(a)和电流密度 1/2-电压曲线(b)图。
如图12(a)所示,计算得到实施例2所得TPA2的电导率为3.2×10 -4S m -1,又由图12(b)所示,根据SCLC计算得出,实施例2的空穴注入/传输材料TPA2掺杂4%F4-TCNQ的空穴迁移率为3.72×10 -4cm 2V -1s -1
(6)TPA2作为掺杂空穴注入材料,采用真空蒸镀法的有机电致红光磷光器件的表征结果:
具体器件结构为:ITO/TPA2:F4-TCNQ(100nm,4%)/NPB(20nm)/Bebq 2:Ir(MDQ) 2(acac)(40nm,5%)/TRZ-m-Phen:Liq(30nm,1:1)/Liq(1nm)/Al。其中,TPA2:F4-TCNQ作为空穴注入层,NPB作为空穴传输层,Bebq 2:Ir(MDQ) 2(acac)作为磷光红光发光层,TRZ-m-Phen:Liq作为电子传输层,Liq作为电子注入层。
器件详细制备过程,参照实施例1。
图13(a)为实施例2制备的有机小分子空穴注入/传输材料TPA2掺杂4%F4-TCNQ有机电致红光磷光器件的电流密度-电压-亮度曲线;
图13(b)为实施例2制备的有机小分子空穴注入/传输材料TPA2掺杂4%F4-TCNQ有机电致红光磷光器件的电流效率-亮度曲线;
图13(c)为实施例2制备的有机小分子空穴注入/传输材料TPA2掺杂4%F4-TCNQ有机电致红光磷光器件的功率效率-亮度曲线;
图13(d)为实施例2制备的有机小分子空穴注入/传输材料TPA2掺杂4%F4-TCNQ有机电致红光磷光器件的电致发光强度-波长曲线;
图13(e)为实施例2制备的有机小分子空穴注入/传输材料TPA2掺杂4%F4-TCNQ有机电致红光磷光器件的亮度-时间曲线;
由图13(a)~(c)可以得到,在以TPA2掺杂F4-TCNQ作为空穴注入层的有机电致红光磷光器件中,在1000cd/m 2的亮度下,器件的电流效率为12.6cd A -1,功率效率为9.4lm W -1
由图13(d)可以得到该器件的电致发光峰值约618nm。
由图13(e)可以看到,在起始亮度为1000cd m -2时,器件的寿命t 95高达569h。
(7)TPA2作为掺杂空穴传输材料,采用溶液旋涂加工的方式,在钙钛矿光伏器件的表征结果:
具体的器件结构为:ITO/SnO 2/CsPbI 3/TPA2:LAD/MoO 3/Al
器件制备过程与实施例1的不同之处在于,TPA1用TPA2替换。
图14为本发明实施例2制备的有机小分子空穴注入/传输材料TPA2掺杂4%LAD后以碘铅铯为活性层的正向型钙钛矿光伏器件的电流密度-电压曲线。由图可知,经光强为100mW cm -2的太阳模拟灯照射,所取得的器件性能如下:开路电压(V oc):0.97V,短路电流(J sc):18.93mA cm -2,填充因子(FF):62.57%,能量转换效率(PCE):11.53%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 有机小分子空穴注入/传输材料,其特征在于,其结构式如式Ⅰ所示:
    Figure PCTCN2020070668-appb-100001
    其中
    Figure PCTCN2020070668-appb-100002
    其中,Ar 1、Ar 2与Ar 3独立地为未取代的苯环、稠环或螺环芳烃,或独立地为经碳原子数分别为1~6的烷基、烷氧基或烷硫基取代的苯环、稠环或螺环芳烃;其中苯环、稠环或螺环芳烃的碳原子个数为6-40。
  2. 根据权利要求1所述的有机小分子空穴注入/传输材料,其特征在于,所述R基团代表的化学结构如下所示:
    Figure PCTCN2020070668-appb-100003
    其中*表示所述R基团的连接点。
  3. 根据权利要求1所述的有机小分子空穴注入/传输材料,其特征在于,其结构式为TPA1或TPA2中的一种:
    Figure PCTCN2020070668-appb-100004
    Figure PCTCN2020070668-appb-100005
  4. 一种权利要求1或2或3所述有机小分子空穴注入/传输材料的制备方法,其特征在于,包括以下步骤:
    (1)在有机溶剂和催化体系中,将溴碘取代芳香化合物与胺类化合物混合后进行反应,反应结束后将反应液纯化,得到含溴中间体;
    (2)在有机溶剂和催化体系中,将步骤(1)所得含溴中间体与N,N-二(4-甲氧基苯基)-6-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊基)-2-萘胺混合后进行偶联反应,反应结束后得到粗产物,经过纯化后,得到有机小分子空穴注入/传输材料。
  5. 根据权利要求4所述的有机小分子空穴注入/传输材料的制备方法,其特征在于:
    步骤(1)中所述催化体系包括碱性化合物和催化剂;其中,所述的碱性化合物为叔丁醇钠或叔丁醇钾中的至少一种;所述的催化剂为1,10-菲啰啉和碘化亚铜;
    步骤(1)所述溴碘取代芳香化合物为1-溴-4-碘苯;
    步骤(1)所述胺类化合物为苯胺和4-甲氧基苯胺中的至少一种;
    步骤(1)所述有机溶剂为甲苯、N,N-二甲基甲酰胺和无水四氢呋喃中的至少一种。
  6. 根据权利要求5所述的有机小分子空穴注入/传输材料的制备方法,其特征在于:
    步骤(1)所述的胺类化合物、溴碘取代芳香化合物、碱性化合物、1,10-菲啰啉以及碘化亚铜的摩尔比为1:(2.1~3):(3~6):(0.1~0.2):(0.2~0.4);
    步骤(1)所述有机溶剂的用量满足每1mol的溴碘取代芳香化合物对应加入300~1000mL的有机溶剂。
  7. 根据权利要求4所述的有机小分子空穴注入/传输材料的制备方法,其特征在于:
    步骤(2)所述有机溶剂为甲苯和四氢呋喃中的至少一种;
    步骤(2)所述的催化体系包括催化剂和碱性化合物水溶液;其中,所述的催化剂包括四三苯基膦钯和相转移催化剂;所述碱性化合物水溶液为碳酸钾水溶液和碳酸钠水溶液中的至少一种。
  8. 根据权利要求4所述的有机小分子空穴注入/传输材料的制备方法,其特征在于:
    步骤(2)所述含溴中间体与N,N-二(4-甲氧基苯基)-6-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊基)-2-萘胺、四三苯基膦钯、相转移催化剂以及碱性化合物的摩尔比为1:(2.05~2.2):(0.01~0.03):(20~50):(3~5)。
  9. 根据权利要求4所述的有机小分子空穴注入/传输材料的制备方法,其特征在于:
    步骤(1)所述的反应为在110℃~120℃反应15~30h;
    步骤(2)所述的偶联反应条件为在100~120℃下反应9~14h。
  10. 根据权利要求1~3任一项所述有机小分子空穴注入/传输材料在有机电致发光器件和高效钙钛光伏器件中的应用。
PCT/CN2020/070668 2019-08-28 2020-01-07 一种有机小分子空穴注入/传输材料及其制备方法与应用 WO2021036158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910567796.1 2019-08-28
CN201910567796.1A CN110396051B (zh) 2019-08-28 2019-08-28 一种有机小分子空穴注入/传输材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021036158A1 true WO2021036158A1 (zh) 2021-03-04

Family

ID=68323493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070668 WO2021036158A1 (zh) 2019-08-28 2020-01-07 一种有机小分子空穴注入/传输材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN110396051B (zh)
WO (1) WO2021036158A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396051B (zh) * 2019-08-28 2020-07-28 华南理工大学 一种有机小分子空穴注入/传输材料及其制备方法与应用
CN111233676B (zh) * 2020-01-17 2022-03-29 华南理工大学 一种高性能空穴传输材料及其制备与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080076942A1 (en) * 2006-09-22 2008-03-27 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
CN107954884A (zh) * 2017-11-16 2018-04-24 华南理工大学 高玻璃化转变温度空穴注入材料及其制备与应用
CN110396051A (zh) * 2019-08-28 2019-11-01 华南理工大学 一种有机小分子空穴注入/传输材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080076942A1 (en) * 2006-09-22 2008-03-27 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
CN107954884A (zh) * 2017-11-16 2018-04-24 华南理工大学 高玻璃化转变温度空穴注入材料及其制备与应用
CN110396051A (zh) * 2019-08-28 2019-11-01 华南理工大学 一种有机小分子空穴注入/传输材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master Thesis", 1 June 2008, TIANJIN UNIVERSITY, CN, article HUO WENMIN: "Synthesis of Styryl Substituted Triphenylamines and Their Key Intermediate", pages: 1 - 73, XP009526455 *

Also Published As

Publication number Publication date
CN110396051A (zh) 2019-11-01
CN110396051B (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
TWI611003B (zh) 用於電子裝置之化合物類
CN110862381B (zh) 一种有机电致发光化合物及其制备方法和应用
WO2021143222A1 (zh) 一种高性能空穴传输材料及其制备与应用
WO2020103294A1 (zh) 有机小分子发光材料及有机电致发光器件
CN107954884B (zh) 高玻璃化转变温度空穴注入材料及其制备与应用
CN109748909A (zh) 一种含螺氧杂蒽芴和含氮六元杂环的化合物、其制备方法及其在有机电致发光器件中的应用
WO2023160187A1 (zh) 一种咔唑衍生物及其应用
KR20140025456A (ko) 전자 소자용 재료
WO2021036158A1 (zh) 一种有机小分子空穴注入/传输材料及其制备方法与应用
CN113943279A (zh) 咔唑衍生物、有机电致发光元件、显示装置和照明装置
Liu et al. A novel nicotinonitrile derivative as an excellent multifunctional blue fluorophore for highly efficient hybrid white organic light-emitting devices
CN114516861B (zh) 咔唑衍生物、有机电致发光元件、显示装置和照明装置
CN106892903B (zh) 基于酚嗪和咔唑的有机电致发光化合物及其发光器件
CN110551154B (zh) 一种含磷双环化合物及其制备方法和应用
CN110835351A (zh) 一种以吡咯亚甲基硼络合物为核心的有机化合物及其制备和应用
CN106749320B (zh) 一种苯并咪唑并酮类化合物及其在oled器件上的应用
CN112239452A (zh) 一种电子传输型杂蒽衍生物及其有机电致发光器件
CN106543071B (zh) 一种以二苯并庚烯酮为核心的化合物及其在oled上的应用
CN107759559A (zh) 化合物及其有机电子装置
CN110526905B (zh) 一种含酮的化合物及其在有机电致发光器件上的应用
CN111153858B (zh) 一类基于菲并咪唑单元的星型电致发光材料及其制备方法与应用
CN111320615B (zh) 一类基于s,s-二氧-二苯并噻吩和菲并咪唑的小分子及其在电致发光器件中的应用
CN111233888A (zh) 一种稠合多环化合物及其制备方法和用途
WO2019185060A1 (zh) 一种以芳胺接双二甲基芴为核心的化合物及其应用
CN108863871B (zh) 一类芘衍生物的电致发光材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED19.08.2022

122 Ep: pct application non-entry in european phase

Ref document number: 20856186

Country of ref document: EP

Kind code of ref document: A1