WO2021035852A1 - 一种运动数据检测方法及智能穿戴设备 - Google Patents

一种运动数据检测方法及智能穿戴设备 Download PDF

Info

Publication number
WO2021035852A1
WO2021035852A1 PCT/CN2019/107894 CN2019107894W WO2021035852A1 WO 2021035852 A1 WO2021035852 A1 WO 2021035852A1 CN 2019107894 W CN2019107894 W CN 2019107894W WO 2021035852 A1 WO2021035852 A1 WO 2021035852A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
motion
user
exercise
motion data
Prior art date
Application number
PCT/CN2019/107894
Other languages
English (en)
French (fr)
Inventor
李月婷
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Publication of WO2021035852A1 publication Critical patent/WO2021035852A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers

Definitions

  • the invention relates to the field of exercise pedometers, in particular to a method for detecting exercise data and smart wearable equipment.
  • a detection sensor that meets the requirements of the detection sensitivity of exercise steps is usually set to detect the user's exercise data, so as to combine the user's exercise data with related step counting algorithms to obtain the user's exercise steps.
  • the number of exercise steps detected by the two smart wearable devices is not in most cases. The same, or even greater differences. This is because the detection sensor on the smart wearable device will generate different detection values according to the user's different wearing positions and different motion amplitudes, and the detection value is considered as the user's actual motion data only when the detection value is within the preset detection range.
  • the detection value is discarded and not as the basis for calculating the number of subsequent exercise steps.
  • the detection sensor is likely to be different from the user’s actual motion due to the user’s different wearing positions and different motion amplitudes, which may be mistakenly discarded, reducing the accuracy of the motion data, thereby reducing the smart wearable device The accuracy of the pedometer function.
  • the purpose of the present invention is to provide a motion data detection method and a smart wearable device, which improves the accuracy of the motion data under the auxiliary detection of a magnetic sensor, and further improves the accuracy of the step counting function of the smart wearable device.
  • the present invention provides a motion data detection method, which is applied to a smart wearable device including a motion sensor and a magnetic sensor, including:
  • the magnetic sensor is used to obtain the user's current second motion data.
  • the second motion data meets the walking characteristics of the human body, it is determined that the second motion data is the user's current actual motion data. Calculate the user's exercise steps based on the actual exercise data.
  • the process of using the magnetic sensor to obtain the user's current second motion data includes:
  • the actual exercise data process includes:
  • the exercise state data keeps changing periodically, it is determined that the exercise state data is the current actual exercise data of the user.
  • the exercise data detection method further includes:
  • the magnetic sensor is a linear Hall sensor.
  • the motion data detection method further includes:
  • the magnetic sensor After the smart wearable device is turned on, the magnetic sensor is kept in a dormant state, and the magnetic sensor is not awakened until the first motion data is not within the preset data detection range.
  • the motion data detection method further includes:
  • the magnetic sensor After the first motion data returns to the preset data detection range for a preset time, the magnetic sensor is hibernated.
  • the present invention also provides a smart wearable device, including:
  • the motion sensor is used to detect the user's current first motion data
  • the controller is configured to obtain the first exercise data and determine whether the first exercise data is within the preset data detection range; if so, determine that the first exercise data is the current actual exercise data of the user; if If not, use the magnetic sensor to obtain the user's current second motion data. When the second motion data meets the walking characteristics of the human body, determine that the second motion data is the user's current actual motion data based on The actual exercise data calculates the user's exercise steps.
  • the motion sensor is an acceleration sensor
  • the magnetic sensor is a linear Hall sensor
  • the smart wearable device is a watch or a bracelet.
  • the present invention provides a motion data detection method, which is applied to a smart wearable device including a motion sensor and a magnetic sensor.
  • a magnetic sensor with higher detection sensitivity is used to obtain the user’s current second motion data, and the use is determined based on the second motion data.
  • the user’s current exercise data is the actual exercise data, if it is the actual exercise data, indicating that the current detection value of the motion sensor is different from the user’s actual exercise situation, the user’s current exercise data will be included in the subsequent exercise steps In the calculation. It can be seen that the present application improves the accuracy of the motion data under the auxiliary detection of the magnetic sensor, and further improves the accuracy of the step-counting function of the smart wearable device.
  • the present invention also provides a smart wearable device, which has the same beneficial effects as the above detection method.
  • FIG. 1 is a flowchart of a method for detecting motion data according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a smart wearable device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a specific structure of a smart wearable device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the appearance of a smart wearable device provided by an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for detecting motion data according to an embodiment of the present invention.
  • the motion data detection method is applied to smart wearable devices including motion sensors and magnetic sensors.
  • the motion data detection method includes:
  • Step S1 Acquire the first motion data of the user currently detected by the motion sensor.
  • the smart wearable device of the present application is equipped with a motion sensor that meets the requirements of motion step detection sensitivity, and adds a magnetic sensor with a higher detection sensitivity than the motion sensor. This is because the motion sensor is likely to vary depending on the user. The wearing position and different motion amplitudes cause the detected motion data of the user to be different from the actual motion (motion data is mistakenly discarded). In this case, the magnetic sensor can be used to obtain the user’s current motion data more accurately. In this way, the user's current actual exercise situation can be learned more accurately.
  • the motion sensor is used as the main detection sensor, and the magnetic sensor is used as the auxiliary detection sensor.
  • the magnetic sensor is used to compensate for the effect of the motion sensor on the motion data detection result when the motion data detected by the motion sensor is mistakenly discarded.
  • this application first obtains the user's first motion data currently detected by the motion sensor when the smart wearable device is working, so as to lay a foundation for the subsequent application of the magnetic sensor and calculation of the number of motion steps.
  • Step S2 Determine whether the first motion data is within the preset data detection range; if yes, execute step S3; if not, execute step S4.
  • the present application sets a data detection range in advance, and the setting principle is: when the currently detected first motion data is within the set data detection range, the currently detected first motion data is considered to be the actual motion data of the user, Then the currently detected first motion data is included in the calculation of the number of subsequent motion steps; when the currently detected first motion data is not within the set data detection range, it is considered that the currently detected first motion data is not the user's actual motion Data, the first motion data currently detected is discarded and not included in the calculation of the number of subsequent motion steps.
  • the present application compares the first motion data with the preset data detection range (upper limit of exercise data + lower limit of exercise data), specifically the first exercise data Compare with the set upper limit of exercise data and lower limit of exercise data respectively.
  • the preset data detection range upper limit of exercise data + lower limit of exercise data
  • the first exercise data Compare with the set upper limit of exercise data and lower limit of exercise data respectively.
  • Step S3 Determine that the first exercise data is the current actual exercise data of the user, so as to execute the step of calculating the number of exercise steps of the user based on the actual exercise data.
  • the motion sensor when the first motion data currently detected by the motion sensor is within the preset data detection range, it is determined that the currently detected first motion data is the current actual motion data of the user, and then the currently detected first motion data is included in the It is sufficient to calculate the number of subsequent movement steps.
  • Step S4 Use the magnetic sensor to obtain the user's current second motion data.
  • the second motion data meets the walking characteristics of the human body, determine that the second motion data is the user's current actual motion data to perform calculations based on the actual motion data The steps of the user's exercise steps.
  • the motion sensor uses a magnetic sensor to obtain the user’s current second motion data more accurately. , To determine the user's current actual exercise situation twice based on the second exercise data.
  • the magnetic sensor After using the magnetic sensor to obtain the user's current second motion data, it is determined whether the second motion data is satisfied with the walking characteristics of the human body. If it is satisfied with the walking characteristics of the human body, it means that the first motion data detected by the motion sensor is mistakenly discarded.
  • the current second exercise data is the user’s current actual exercise data, and then the current second exercise data is included in the calculation of the subsequent exercise steps, so as to correct the user’s current exercise steps to get more accurate
  • the number of exercise steps (it can be understood that the user’s current exercise steps are equal to the sum of the exercise steps calculated based on the first exercise data and the exercise steps calculated based on the second exercise data); if not satisfied with the human body
  • the walking feature indicates that the first motion data detected by the motion sensor has not been mistakenly discarded, and there is no need to modify the user's current number of exercise steps.
  • the present invention provides a motion data detection method, which is applied to a smart wearable device including a motion sensor and a magnetic sensor.
  • a magnetic sensor with higher detection sensitivity is used to obtain the user’s current second motion data, and the use is determined based on the second motion data.
  • the user’s current exercise data is the actual exercise data, if it is the actual exercise data, indicating that the current detection value of the motion sensor is different from the user’s actual exercise situation, the user’s current exercise data will be included in the subsequent exercise steps In the calculation. It can be seen that the present application improves the accuracy of the motion data under the auxiliary detection of the magnetic sensor, and further improves the accuracy of the step-counting function of the smart wearable device.
  • the process of using the magnetic sensor to obtain the user's current second motion data includes:
  • the process of determining that the second motion data is the user's current actual motion data includes :
  • the exercise state data keeps changing periodically, it is determined that the exercise state data is the current actual exercise data of the user.
  • the X-axis direction and the Y-axis direction are on the ground on which the human body is standing, and the Z-axis direction is the direction perpendicular to the ground on which the human body is standing.
  • a magnetic sensor can be used to obtain the user's movement state data in the X-axis direction,
  • the motion state data in the Y-axis direction and the motion state data in the Z-axis direction together constitute the second motion data.
  • this application mainly uses a magnetic sensor to obtain the user's movement state data in the Z-axis direction (the specific process includes: first obtaining magnetic The sensor currently detects the Z-axis potential difference that characterizes the user's motion state in the Z-axis direction, and then obtains the user's current motion state data in the Z-axis direction according to the Z-axis potential difference (this application can set the magnetic sensor detection in advance according to the exercise test The corresponding relationship between the Z-axis potential difference and the user's motion state data in the Z-axis direction, and then the user's current motion state data in the Z-axis direction corresponding to the Z-axis potential difference currently detected by the magnetic sensor is obtained based on the correspondence relationship)).
  • this application uses the magnetic sensor to obtain the user's movement state data in the Z-axis direction, and then determines whether the movement state data maintains periodic changes (a certain deviation is allowed). If so, it means that the movement state data is satisfactory for the human body.
  • the motion state data is determined to be the user's current actual motion data; if not, it means that the motion state data is not satisfied with the walking characteristics of the human body in the Z-axis direction, then the motion state is determined
  • the data is not the actual exercise data of the user.
  • the exercise data detection method further includes:
  • the motion state data is discarded.
  • this application sets the motion frequency range in advance (such as 50hz-100hz, other range values can also be set based on experience) to calculate the data change frequency of the motion state data after the motion state data maintains periodic changes, and determine the motion state Whether the data change frequency of the data is within the set motion frequency range, if it is within the set motion frequency range, it means that the user is walking normally, then perform the step of determining that the motion state data is the user’s current actual motion data; If the motion frequency range is set, it means that the user is not walking normally, then the motion state data is discarded and not included in the calculation of the subsequent motion steps, thereby further improving the accuracy of the calculation of the motion steps.
  • the motion frequency range in advance (such as 50hz-100hz, other range values can also be set based on experience) to calculate the data change frequency of the motion state data after the motion state data maintains periodic changes, and determine the motion state Whether the data change frequency of the data is within the set motion frequency range, if it is within the set motion frequency range,
  • the magnetic sensor is a linear Hall sensor.
  • the magnetic sensor of the present application can be a linear Hall sensor, and its working principle is: when a current flows through the semiconductor of the linear Hall sensor, the carriers will deflect to generate an electric field perpendicular to the direction of the current or magnetic field, and apply In the semiconductor of a linear Hall sensor, a potential difference is generated between the two ends of the semiconductor (Hall effect principle), so that the changing magnetic signal around the linear Hall sensor is detected by the Hall effect principle, and the magnetic signal is converted into an electrical signal. Facilitate subsequent data calculation.
  • the linear Hall sensor has a constant current I H when it is working.
  • I H When the user's motion data changes, the magnetic field around the linear Hall sensor also changes. According to the principle of the Hall effect, the linear Hall sensor will produce a certain potential difference. : In this way, the user's exercise data is obtained through the voltage signal.
  • G H is a constant, which is determined by the actual material of the linear Hall sensor;
  • B is the magnetic induction intensity of the magnetic field;
  • a is the offset angle in motion (that is, the angle between the magnetic field and the plane normal of the linear Hall sensor);
  • S is the area size of the sensitive element of the linear Hall sensor.
  • the linear Hall sensor specifically detects the change of the magnetic field in the X-axis direction (corresponding to the X-axis potential difference).
  • the change of the magnetic field in the Z-axis direction (corresponding to the Z-axis potential difference ) B X , B Y , B Z are the magnetic induction intensity of the magnetic field in the X, Y, and Z axis directions respectively
  • a X , a Y , and a Z are the magnetic field in the X, Y, and Z axis directions respectively and the linear Hall sensor plane The angle of the normal.
  • this application extracts the Z-axis potential difference V HZ that characterizes the user's motion state in the Z-axis direction from the detection result of the linear Hall sensor. , To obtain the user's movement state data in the Z-axis direction according to the Z-axis potential difference V HZ.
  • the motion data detection method further includes:
  • the magnetic sensor After the smart wearable device is turned on, the magnetic sensor is kept in a dormant state, and the magnetic sensor is not awakened until the first motion data is not within the preset data detection range.
  • this application first puts the motion sensor into the working mode after the smart wearable device is turned on, so as to detect the user's current first motion data in real time; and keep The magnetic sensor is in a dormant state to save power consumption.
  • the magnetic sensor Since the magnetic sensor is required to perform auxiliary detection when the first motion data currently detected by the motion sensor is not within the preset data detection range, this application will wake up again when the first motion data detected by the motion sensor is not within the preset data detection range The magnetic sensor makes it enter the working mode to detect whether the user's current exercise data is the actual exercise data in a timely manner.
  • the motion data detection method further includes:
  • the magnetic sensor After the first motion data returns to the preset data detection range for a preset time, the magnetic sensor is hibernated.
  • FIG. 2 is a schematic structural diagram of a smart wearable device according to an embodiment of the present invention.
  • the smart wearable device includes:
  • the motion sensor 1 is used to detect the current first motion data of the user
  • the controller 3 is used to obtain the first movement data and determine whether the first movement data is within the preset data detection range; if so, it is determined that the first movement data is the user's current actual movement data; if not, the magnetic
  • the sensor 2 acquires the user's current second motion data.
  • the second motion data is determined to be the user's current actual motion data, so as to calculate the user's motion steps based on the actual motion data. number.
  • the smart wearable device of the present application includes a motion sensor 1, a magnetic sensor 2, and a controller 3 connected to the motion sensor 1 and the magnetic sensor 2, respectively.
  • a motion sensor 1 a magnetic sensor 2
  • a controller 3 connected to the motion sensor 1 and the magnetic sensor 2, respectively.
  • the motion sensor 1 is an acceleration sensor
  • the magnetic sensor 2 is a linear Hall sensor
  • the motion sensor 1 of the present application can be selected as an acceleration sensor, and its working principle is: when the user is walking, the acceleration sensor can detect the motion acceleration of the position where the user wears the smart wearable device, so as to characterize the use by the acceleration value The movement data of the person.
  • the magnetic sensor 2 of the present application can be a linear Hall sensor, and its working principle can refer to the introduction of the principle of the linear Hall sensor in the foregoing embodiment, which is not repeated in this application.
  • FIG. 3 is a schematic diagram of a specific structure of a smart wearable device provided by an embodiment of the present invention.
  • Smart wearable devices include motion sensor 1 (such as acceleration sensor), magnetic sensor 2 (such as linear Hall sensor), and controller 3 (MCU (Microcontroller Unit) can be selected), as well as smart
  • the third detection sensor such as an infrared sensor for wearing detection of the wearable device
  • the fourth detection sensor such as a pulse sensor
  • a power chip for powering the controller 3
  • a display for each detection data Displays (such as OLED (Organic Light-Emitting Diode, organic light-emitting diode) screens), indicators used to characterize different functions through different light-emitting states (such as LED (Light Emitting Diode, light-emitting diodes)), used to communicate with the terminal Devices (such as mobile phones) perform real-time information interaction Bluetooth 5.0 (These devices are all controlled by the controller 3.
  • the controller 3 communicates with the acceleration sensor, infrared sensor, and pulse sensor through I 2 C
  • the controller 3 communicates with The other devices communicate through GPIO
  • the smart wearable device is a watch or a bracelet.
  • the smart wearable device of the present application may be a watch or a bracelet, as shown in FIG. 4.
  • the working principle of a watch or bracelet including an acceleration sensor and a linear Hall sensor is specifically as follows: obtain the acceleration value currently detected by the acceleration sensor; determine whether the acceleration value is within the preset acceleration detection range; if so, determine the acceleration value for the user
  • the current actual movement data is included in the calculation of the subsequent user's movement steps; if not, the Z-axis potential difference currently detected by the linear Hall sensor is obtained, and the user's movement in the Z-axis direction is obtained according to the Z-axis potential difference State data, when the movement state data in the Z-axis direction keeps changing periodically, the movement state data in the Z-axis direction is determined to be the user's current actual movement data, which is included in the subsequent calculation of the user's movement steps.
  • the steps of the method or algorithm described in combination with the embodiments disclosed in this document can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种运动数据检测方法,应用于包含运动传感器和磁传感器的智能穿戴设备。该方法包括:在运动传感器当前检测的使用者的第一运动数据不在预设数据检测范围内时,利用检测灵敏度更高的磁传感器获取使用者当前的第二运动数据,并基于第二运动数据判断使用者当前的运动数据是否为实际的运动数据,若为实际的运动数据,说明运动传感器当前的检测值与使用者的实际运动情况存在差异,则将使用者当前的运动数据计入后续运动步数的计算中。该方法和智能穿戴设备在磁传感器的辅助检测下提升了运动数据的准确度,进而提升了智能穿戴设备的计步功能的准确性。

Description

一种运动数据检测方法及智能穿戴设备
本申请要求于2019年8月28日提交中国专利局、申请号为201910802832.8、发明名称为“一种运动数据检测方法及智能穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及运动计步领域,特别是涉及一种运动数据检测方法及智能穿戴设备。
背景技术
目前,在智能穿戴设备中,通常设置一个符合运动步数检测灵敏度要求的检测传感器来检测使用者的运动数据,从而将使用者的运动数据结合相关计步算法得到使用者的运动步数。但是,当使用者同时佩戴两个相同的智能穿戴设备行走,或是不同使用者佩戴相同的智能穿戴设备进行同步数行走时,两个智能穿戴设备所检测的运动步数在多数情况下并不相同,甚至差异较大。这是因为智能穿戴设备上的检测传感器会根据使用者不同的佩戴位置及不同的运动幅度产生不同的检测值,而检测值在预设检测范围内时才认为是使用者实际的运动数据,可作为后续运动步数的计算依据;否则,将检测值丢弃,不作为后续运动步数的计算依据。但是,检测传感器很可能因使用者不同的佩戴位置及不同的运动幅度导致检测值与使用者的实际运动情况存在差异,从而被误丢弃,降低了运动数据的准确度,进而降低了智能穿戴设备的计步功能的准确性。
因此,如何提供一种解决上述技术问题的方案是本领域的技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种运动数据检测方法及智能穿戴设备,在磁传感器的辅助检测下提升了运动数据的准确度,进而提升了智能穿戴设备的计步 功能的准确性。
为解决上述技术问题,本发明提供了一种运动数据检测方法,应用于包含运动传感器和磁传感器的智能穿戴设备,包括:
获取所述运动传感器当前检测的使用者的第一运动数据;
判断所述第一运动数据是否在预设数据检测范围内;
若是,则确定所述第一运动数据为使用者当前实际的运动数据;
若否,则利用所述磁传感器获取使用者当前的第二运动数据,当所述第二运动数据满足于人体行走特征时,确定所述第二运动数据为使用者当前实际的运动数据,以基于实际的运动数据计算使用者的运动步数。
优选地,所述利用所述磁传感器获取使用者当前的第二运动数据的过程,包括:
获取所述磁传感器当前检测的表征使用者在Z轴方向上的运动状态的Z轴电势差;
根据所述Z轴电势差得到使用者当前在Z轴方向上的运动状态数据;相应的,所述当所述第二运动数据满足于人体行走特征时,确定所述第二运动数据为使用者当前实际的运动数据的过程,包括:
当所述运动状态数据保持周期性变化时,确定所述运动状态数据为使用者当前实际的运动数据。
优选地,在所述运动状态数据保持周期性变化之后,在确定所述运动状态数据为使用者当前实际的运动数据之前,所述运动数据检测方法还包括:
判断所述运动状态数据的数据变化频率是否在预设运动频率范围内;
若是,则执行所述确定所述运动状态数据为使用者当前实际的运动数据的步骤;
若否,则丢弃所述运动状态数据。
优选地,所述磁传感器为线性霍尔传感器。
优选地,所述运动数据检测方法还包括:
在所述智能穿戴设备开机后,保持所述磁传感器处于休眠状态,直至所述第一运动数据不在预设数据检测范围内时才唤醒所述磁传感器。
优选地,在唤醒所述磁传感器之后,所述运动数据检测方法还包括:
在所述第一运动数据重新回到预设数据检测范围内并持续预设时间后,休眠所述磁传感器。
为解决上述技术问题,本发明还提供了一种智能穿戴设备,包括:
磁传感器;
运动传感器,用于检测使用者当前的第一运动数据;
控制器,用于获取所述第一运动数据,并判断所述第一运动数据是否在预设数据检测范围内;若是,则确定所述第一运动数据为使用者当前实际的运动数据;若否,则利用所述磁传感器获取使用者当前的第二运动数据,当所述第二运动数据满足于人体行走特征时,确定所述第二运动数据为使用者当前实际的运动数据,以基于实际的运动数据计算使用者的运动步数。
优选地,所述运动传感器为加速度传感器,所述磁传感器为线性霍尔传感器。
优选地,所述智能穿戴设备为手表或手环。
本发明提供了一种运动数据检测方法,应用于包含运动传感器和磁传感器的智能穿戴设备。本申请在运动传感器当前检测的使用者的第一运动数据不在预设数据检测范围内时,利用检测灵敏度更高的磁传感器获取使用者当前的第二运动数据,并基于第二运动数据判断使用者当前的运动数据是否为实际的运动数据,若为实际的运动数据,说明运动传感器当前的检测值与使用者的实际运动情况存在差异,则将使用者当前的运动数据计入后续运动步数的计算中。可见,本申请在磁传感器的辅助检测下提升了运动数据的准确度,进而提升了智能穿戴设备的计步功能的准确性。
本发明还提供了一种智能穿戴设备,与上述检测方法具有相同的有益效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种运动数据检测方法的流程图;
图2为本发明实施例提供的一种智能穿戴设备的结构示意图;
图3为本发明实施例提供的一种智能穿戴设备的具体结构示意图;
图4为本发明实施例提供的一种智能穿戴设备的外形示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参照图1,图1为本发明实施例提供的一种运动数据检测方法的流程图。
该运动数据检测方法应用于包含运动传感器和磁传感器的智能穿戴设备。该运动数据检测方法包括:
步骤S1:获取运动传感器当前检测的使用者的第一运动数据。
具体地,本申请的智能穿戴设备在设置一个符合运动步数检测灵敏度要求的运动传感器的基础上,增设一个检测灵敏度高于运动传感器的磁传感器,这是考虑到运动传感器很可能因使用者不同的佩戴位置及不同的运动幅度,导致所检测的使用者的运动数据与其实际运动情况存在差异(运动数据被误丢弃),此情况下可利用磁传感器更准确地获取使用者当前的运动数据,从而实现更准确地获知使用者当前的实际运动情况。
可见,运动传感器作为主检测传感器,磁传感器作为辅助检测传感器,磁传感器用于弥补运动传感器在自身所检测的运动数据被误丢弃的情况下对运动数据检测结果造成的影响。
基于此,本申请在智能穿戴设备工作时,首先获取运动传感器当前检测的使用者的第一运动数据,以为后续磁传感器的应用和运动步数计算打下基础。
步骤S2:判断第一运动数据是否在预设数据检测范围内;若是,则执行步骤S3;若否,则执行步骤S4。
需要说明的是,本申请的预设是提前设置好的,只需要设置一次,除非根据实际情况需要修改,否则不需要重新设置。
具体地,本申请提前设置一个数据检测范围,其设置原理为:当当前检测的第一运动数据在所设数据检测范围内时,认为当前检测的第一运动数据为使用者实际的运动数据,则将当前检测的第一运动数据计入后续运动步数的计算中;当当前检测的第一运动数据不在所设数据检测范围内时,认为当前检测的第一运动数据并非使用者实际的运动数据,则将当前检测的第一运动数据丢弃,不计入后续运动步数的计算中。
基于此,本申请在步骤S1获取到运动传感器当前检测的第一运动数据之后,将第一运动数据与预设数据检测范围(运动数据上限+运动数据下限)作比较,具体是第一运动数据分别与所设运动数据上限和运动数据下限作比较,当第一运动数据不小于运动数据下限且第一运动数据不大于运动数据上限,确定第一运动数据在预设数据检测范围内;否则,确定第一运动数据不在预设数据检测范围内。
步骤S3:确定第一运动数据为使用者当前实际的运动数据,以执行基于实际的运动数据计算使用者的运动步数的步骤。
具体地,当运动传感器当前检测的第一运动数据在预设数据检测范围内时,确定当前检测的第一运动数据为使用者当前实际的运动数据,则将当前检测的第一运动数据计入后续运动步数的计算中即可。
步骤S4:利用磁传感器获取使用者当前的第二运动数据,当第二运动数据满足于人体行走特征时,确定第二运动数据为使用者当前实际的运动数据,以执行基于实际的运动数据计算使用者的运动步数的步骤。
具体地,当运动传感器当前检测的第一运动数据不在预设数据检测范围内时,确定当前检测的第一运动数据并非使用者实际的运动数据,则将当前检测的第一运动数据丢弃。但是,考虑到运动传感器存在运动数据被误丢弃的情况,所以本申请为了避免运动数据被误丢弃对运动数据检测结果造成影响,本申请采用磁传感器更准确地获取使用者当前的第二运动数据,以基于第二运动数据二次判断使用者当前的实际运动情况。
更具体地,在利用磁传感器获取使用者当前的第二运动数据之后,判断第二运动数据是否满足于人体行走特征,若满足于人体行走特征,说明运动传感器检测的第一运动数据被误丢弃,则确定当前的第二运动数据为使用者当前实际的运动数据,然后将当前的第二运动数据计入后续运动步数的计算 中,从而修正使用者当前的运动步数,以得到更精确的运动步数(可以理解的是,使用者当前的运动步数等于基于第一运动数据计算得到的运动步数与基于第二运动数据计算得到的运动步数之和);若不满足于人体行走特征,说明运动传感器检测的第一运动数据未被误丢弃,则无需修正使用者当前的运动步数。
本发明提供了一种运动数据检测方法,应用于包含运动传感器和磁传感器的智能穿戴设备。本申请在运动传感器当前检测的使用者的第一运动数据不在预设数据检测范围内时,利用检测灵敏度更高的磁传感器获取使用者当前的第二运动数据,并基于第二运动数据判断使用者当前的运动数据是否为实际的运动数据,若为实际的运动数据,说明运动传感器当前的检测值与使用者的实际运动情况存在差异,则将使用者当前的运动数据计入后续运动步数的计算中。可见,本申请在磁传感器的辅助检测下提升了运动数据的准确度,进而提升了智能穿戴设备的计步功能的准确性。
在上述实施例的基础上:
作为一种可选地实施例,利用磁传感器获取使用者当前的第二运动数据的过程,包括:
获取磁传感器当前检测的表征使用者在Z轴方向上的运动状态的Z轴电势差;
根据Z轴电势差得到使用者当前在Z轴方向上的运动状态数据;相应的,当第二运动数据满足于人体行走特征时,确定第二运动数据为使用者当前实际的运动数据的过程,包括:
当运动状态数据保持周期性变化时,确定运动状态数据为使用者当前实际的运动数据。
进一步地,已知X轴方向和Y轴方向在人体站立的地面上,Z轴方向是垂直于人体站立地面的方向,本申请可利用磁传感器获取使用者在X轴方向上的运动状态数据、在Y轴方向上的运动状态数据及在Z轴方向上的运动状态数据共同组成第二运动数据。考虑到使用者在Z轴方向上的运动状态数据最能表征使用者当前的运动情况,所以本申请主要利用磁传感器获取使用者在Z轴方向上的运动状态数据(具体过程包括:首先获取磁传感器当前检测 的表征使用者在Z轴方向上的运动状态的Z轴电势差,然后根据Z轴电势差得到使用者当前在Z轴方向上的运动状态数据(本申请可根据运动试验提前设置磁传感器检测的Z轴电势差与使用者在Z轴方向上的运动状态数据的对应关系,然后基于对应关系得到磁传感器当前检测的Z轴电势差对应的使用者当前在Z轴方向上的运动状态数据))。
此外,考虑到人体行走是重复性动作,且同一个人在单位时间内的运动频率基本保持不变(人体行走特征),所以在使用者行走过程中,利用磁传感器获取的使用者在Z轴方向上的运动状态数据应保持周期性变化。基于此,本申请在利用磁传感器获取使用者在Z轴方向上的运动状态数据之后,判断此运动状态数据是否保持周期性变化(允许一定偏差存在),若是,说明此运动状态数据满足于人体在Z轴方向上的行走特征,则确定此运动状态数据为使用者当前实际的运动数据;若否,说明此运动状态数据不满足于人体在Z轴方向上的行走特征,则确定此运动状态数据并非使用者当前实际的运动数据。
作为一种可选地实施例,在运动状态数据保持周期性变化之后,在确定运动状态数据为使用者当前实际的运动数据之前,运动数据检测方法还包括:
判断运动状态数据的数据变化频率是否在预设运动频率范围内;
若是,则执行确定运动状态数据为使用者当前实际的运动数据的步骤;
若否,则丢弃运动状态数据。
进一步地,一般来说,人体在正常行走的过程中,最快1s不超过5步,最慢2s不低于一步,即人体运动频率范围为50hz-100hz。由于人体运动频率=运动状态数据的数据变化频率,所以在人体正常行走时,运动状态数据的数据变化频率应在人体运动频率范围内。
基于此,本申请提前设置运动频率范围(如50hz-100hz,也可根据经验设置其他范围值),以在运动状态数据保持周期性变化之后,计算运动状态数据的数据变化频率,并判断运动状态数据的数据变化频率是否在所设运动频率范围内,若在所设运动频率范围内,说明使用者在正常行走,则执行确定运动状态数据为使用者当前实际的运动数据的步骤;若不在所设运动频率范围内,说明使用者并未在正常行走,则丢弃运动状态数据,不计入后续运动步数的计算中,从而进一步提高了运动步数计算的准确性。
作为一种可选地实施例,磁传感器为线性霍尔传感器。
具体地,本申请的磁传感器可选用线性霍尔传感器,其工作原理为:当线性霍尔传感器的半导体有电流通过时,载流子会偏转,产生出垂直于电流或磁场方向的电场,施加于线性霍尔传感器的半导体,其半导体两端会产生电势差(霍尔效应原理),从而通过该霍尔效应原理检测到线性霍尔传感器周围变化的磁信号,并将磁信号转换成电信号,便于后续数据计算。
线性霍尔传感器在工作时通有恒定电流I H,当使用者的运动数据发生变化时,线性霍尔传感器周围的磁场也发生变化,根据霍尔效应原理,线性霍尔传感器会产生一定的电势差:
Figure PCTCN2019107894-appb-000001
从而通过电压信号获取使用者的运动数据。其中,G H为常数,其由线性霍尔传感器的实际材料决定;B为磁场的磁感应强度;a为运动状态下的偏移角度(即磁场与线性霍尔传感器平面法线的夹角);S为线性霍尔传感器的敏感元件的面积大小。
需要说明的是,线性霍尔传感器具体检测的是X轴方向的磁场变化(对应X轴电势差
Figure PCTCN2019107894-appb-000002
Y轴方向的磁场变化(对应Y轴电势差
Figure PCTCN2019107894-appb-000003
及Z轴方向的磁场变化(对应Z轴电势差
Figure PCTCN2019107894-appb-000004
其中,B X、B Y、B Z分别为X、Y、Z轴方向的磁场的磁感应强度,a X、a Y、a Z分别为X、Y、Z轴方向的磁场与线性霍尔传感器平面法线的夹角。
考虑到Z轴方向上的运动状态数据最能表征使用者当前的运动情况,所以本申请从线性霍尔传感器的检测结果中提取表征使用者在Z轴方向上的运动状态的Z轴电势差V HZ,以根据Z轴电势差V HZ获取使用者在Z轴方向上的运动状态数据。然后判断Z轴方向上的运动状态数据的数据变化频率是否在预设运动频率范围内,若是,则当Z轴方向上的运动状态数据保持周期性变化时,确定Z轴方向上的运动状态数据为使用者实际的运动数据,计入后续运动步数的计算中;若否,则丢弃Z轴方向上的运动状态数据,不计入后续运动步数的计算中。
作为一种可选地实施例,运动数据检测方法还包括:
在智能穿戴设备开机后,保持磁传感器处于休眠状态,直至第一运动数据不在预设数据检测范围内时才唤醒磁传感器。
进一步地,考虑到大多数使用者的佩戴习惯和运动幅度在绝大多数时间都相对标准化,标准化的体现在于:仅仅依靠运动传感器便可准确检测出使用者的实际运动情况,无需借助磁传感器的辅助;同时考虑到磁传感器在工作模式下会产生一定功耗,所以本申请在智能穿戴设备开机后,先使运动传感器进入到工作模式,以实时检测使用者当前的第一运动数据;而保持磁传感器处于休眠状态,以节省功耗。由于当运动传感器当前检测的第一运动数据不在预设数据检测范围内时,需要磁传感器进行辅助检测,所以本申请在运动传感器检测的第一运动数据不在预设数据检测范围内时,再唤醒磁传感器,使其进入到工作模式,以及时检测使用者当前的运动数据是否为实际的运动数据。
作为一种可选地实施例,在唤醒磁传感器之后,运动数据检测方法还包括:
在第一运动数据重新回到预设数据检测范围内并持续预设时间后,休眠磁传感器。
进一步地,考虑到佩戴习惯和运动幅度都相对标准化的使用者,平时基本都会按照自己原本的行走习惯行走(处于行走稳定阶段),但也可能存在一种情况:因为一些特殊因素导致使用者在较短时间内改变自己的行走习惯(处于行走不稳定阶段),所以本申请从运动传感器检测的第一运动数据重新回到预设数据检测范围内开始计时,当计时时间到达预设时间时,若运动传感器检测的第一运动数据仍在预设数据检测范围内,认为使用者处于行走稳定阶段,则休眠磁传感器,直至下次运动传感器检测的第一运动数据不在预设数据检测范围内,以避免使用者长时间处于行走稳定阶段时磁传感器一直消耗功率。
请参照图2,图2为本发明实施例提供的一种智能穿戴设备的结构示意图。
该智能穿戴设备包括:
磁传感器2;
运动传感器1,用于检测使用者当前的第一运动数据;
控制器3,用于获取第一运动数据,并判断第一运动数据是否在预设数据检测范围内;若是,则确定第一运动数据为使用者当前实际的运动数据;若否,则利用磁传感器2获取使用者当前的第二运动数据,当第二运动数据满足于人体行走特征时,确定第二运动数据为使用者当前实际的运动数据,以基于实际的运动数据计算使用者的运动步数。
具体地,本申请的智能穿戴设备包括运动传感器1、磁传感器2及分别与运动传感器1和磁传感器2连接的控制器3,其工作原理的介绍请参考上述运动数据检测方法的实施例,本申请在此不再赘述。
作为一种可选地实施例,运动传感器1为加速度传感器,磁传感器2为线性霍尔传感器。
具体地,本申请的运动传感器1可选用加速度传感器,其工作原理为:在使用者行走的过程中,加速度传感器可检测出使用者佩戴智能穿戴设备的位置的运动加速度,从而通过加速度值表征使用者的运动数据。
本申请的磁传感器2可选用线性霍尔传感器,其工作原理可参考上述实施例关于线性霍尔传感器的原理介绍,本申请在此不再赘述。
此外,请参照图3,图3为本发明实施例提供的一种智能穿戴设备的具体结构示意图。
智能穿戴设备除了包括运动传感器1(如加速度传感器)、磁传感器2(如线性霍尔传感器)及控制器3(可选用MCU(Microcontroller Unit,微控制单元))之外,还包括用于进行智能穿戴设备的佩戴检测的第三检测传感器(如红外传感器)、用于使用者心率检测的第四检测传感器(如脉冲传感器)、用于为控制器3供电的电源芯片、用于显示各检测数据的显示屏(如OLED(Organic Light-Emitting Diode,有机发光二极管)屏)、用于通过不同的发光状态表征不同功能的指示灯(如LED(Light Emitting Diode,发光二极管))、用于与终端设备(如手机)进行实时信息交互的蓝牙5.0(这些器件均由控制器3控制,具体地,控制器3与加速度传感器、红外传感器、脉冲传感器之间均通过I 2C通信,控制器3与其余器件之间均通过GPIO(General-purpose input/output,通用输入/输出口)通信)。
作为一种可选地实施例,智能穿戴设备为手表或手环。
具体地,本申请的智能穿戴设备可为手表或手环,如图4所示。关于包括加速度传感器和线性霍尔传感器的手表或手环的工作原理具体为:获取加速度传感器当前检测的加速度值;判断加速度值是否在预设加速度检测范围内;若是,则确定加速度值为使用者当前实际的运动数据,计入后续使用者的运动步数的计算中;若否,则获取线性霍尔传感器当前检测的Z轴电势差,并根据Z轴电势差得到使用者在Z轴方向上的运动状态数据,当Z轴方向上的运动状态数据保持周期性变化时,确定Z轴方向上的运动状态数据为使用者当前实际的运动数据,计入后续使用者的运动步数的计算中。
本说明书中各个实施例采用并列或者递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处可参见方法部分说明。
本领域普通技术人员还可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包 括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (9)

  1. 一种运动数据检测方法,其特征在于,应用于包含运动传感器和磁传感器的智能穿戴设备,包括:
    获取所述运动传感器当前检测的使用者的第一运动数据;
    判断所述第一运动数据是否在预设数据检测范围内;
    若是,则确定所述第一运动数据为使用者当前实际的运动数据;
    若否,则利用所述磁传感器获取使用者当前的第二运动数据,当所述第二运动数据满足于人体行走特征时,确定所述第二运动数据为使用者当前实际的运动数据,以基于实际的运动数据计算使用者的运动步数。
  2. 如权利要求1所述的运动数据检测方法,其特征在于,所述利用所述磁传感器获取使用者当前的第二运动数据的过程,包括:
    获取所述磁传感器当前检测的表征使用者在Z轴方向上的运动状态的Z轴电势差;
    根据所述Z轴电势差得到使用者当前在Z轴方向上的运动状态数据;
    相应的,所述当所述第二运动数据满足于人体行走特征时,确定所述第二运动数据为使用者当前实际的运动数据的过程,包括:
    当所述运动状态数据保持周期性变化时,确定所述运动状态数据为使用者当前实际的运动数据。
  3. 如权利要求2所述的运动数据检测方法,其特征在于,在所述运动状态数据保持周期性变化之后,在确定所述运动状态数据为使用者当前实际的运动数据之前,所述运动数据检测方法还包括:
    判断所述运动状态数据的数据变化频率是否在预设运动频率范围内;
    若是,则执行所述确定所述运动状态数据为使用者当前实际的运动数据的步骤;
    若否,则丢弃所述运动状态数据。
  4. 如权利要求1所述的运动数据检测方法,其特征在于,所述磁传感器为线性霍尔传感器。
  5. 如权利要求1-4任一项所述的运动数据检测方法,其特征在于,所述运动数据检测方法还包括:
    在所述智能穿戴设备开机后,保持所述磁传感器处于休眠状态,直至所述第一运动数据不在预设数据检测范围内时才唤醒所述磁传感器。
  6. 如权利要求5所述的运动数据检测方法,其特征在于,在唤醒所述磁传感器之后,所述运动数据检测方法还包括:
    在所述第一运动数据重新回到预设数据检测范围内并持续预设时间后,休眠所述磁传感器。
  7. 一种智能穿戴设备,其特征在于,包括:
    磁传感器;
    运动传感器,用于检测使用者当前的第一运动数据;
    控制器,用于获取所述第一运动数据,并判断所述第一运动数据是否在预设数据检测范围内;若是,则确定所述第一运动数据为使用者当前实际的运动数据;若否,则利用所述磁传感器获取使用者当前的第二运动数据,当所述第二运动数据满足于人体行走特征时,确定所述第二运动数据为使用者当前实际的运动数据,以基于实际的运动数据计算使用者的运动步数。
  8. 如权利要求7所述的智能穿戴设备,其特征在于,所述运动传感器为加速度传感器,所述磁传感器为线性霍尔传感器。
  9. 如权利要求7所述的智能穿戴设备,其特征在于,所述智能穿戴设备为手表或手环。
PCT/CN2019/107894 2019-08-28 2019-09-25 一种运动数据检测方法及智能穿戴设备 WO2021035852A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910802832.8A CN110495892B (zh) 2019-08-28 2019-08-28 一种运动数据检测方法及智能穿戴设备
CN201910802832.8 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021035852A1 true WO2021035852A1 (zh) 2021-03-04

Family

ID=68590101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107894 WO2021035852A1 (zh) 2019-08-28 2019-09-25 一种运动数据检测方法及智能穿戴设备

Country Status (2)

Country Link
CN (1) CN110495892B (zh)
WO (1) WO2021035852A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000016267A1 (it) 2020-07-16 2022-01-16 Anna Donzella Aaswe – anti-assault smart wearable equipment un sistema online basato su indumenti intelligenti per allertare le autorità in caso di aggressione
CN112833908A (zh) * 2021-01-27 2021-05-25 捷开通讯(深圳)有限公司 一种计步方法、计步装置及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294979A (zh) * 2007-04-27 2008-10-29 陈侑郁 量测运动量的腕表型加速度感测模块
EP2343012A1 (en) * 2009-12-15 2011-07-13 Champtek Incorporated Security monitor method utilizing a RFID tag and the monitor apparatus for the same
CN105852826A (zh) * 2016-03-22 2016-08-17 北京奇虎科技有限公司 终端和终端确定生理信息的方法
CN106200952A (zh) * 2016-07-04 2016-12-07 歌尔股份有限公司 一种监测用户行为数据的方法和可穿戴设备
CN106895849A (zh) * 2017-02-23 2017-06-27 上海与德信息技术有限公司 一种计步器的精准计数方法及装置
US10018481B1 (en) * 2014-09-30 2018-07-10 Worldwise, Inc. Multi-band pedometer with mobility mode indicator
CN108567432A (zh) * 2017-03-14 2018-09-25 意法半导体公司 表征运动的设备和方法
EP3506052A1 (en) * 2016-09-20 2019-07-03 Huawei Technologies Co., Ltd. Method of detecting whether smart device is being worn, and smart device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605747B1 (ko) * 2004-11-19 2006-08-01 삼성전기주식회사 걸음수 측정장치 및 측정방법
KR102001063B1 (ko) * 2012-11-14 2019-07-17 삼성전자주식회사 자기공명영상 시스템 및 자기공명영상 방법
US9620000B2 (en) * 2014-12-30 2017-04-11 TCL Research America Inc. Wearable system and method for balancing recognition accuracy and power consumption
CN105043410B (zh) * 2015-06-30 2018-07-13 深圳还是威健康科技有限公司 一种计步器
CN108469268A (zh) * 2018-03-15 2018-08-31 中国兵器工业集团第二四研究所苏州研发中心 一种基于微机械陀螺仪的计步方法
CN108896068B (zh) * 2018-05-31 2021-06-01 康键信息技术(深圳)有限公司 计步的方法、服务器、移动终端及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294979A (zh) * 2007-04-27 2008-10-29 陈侑郁 量测运动量的腕表型加速度感测模块
EP2343012A1 (en) * 2009-12-15 2011-07-13 Champtek Incorporated Security monitor method utilizing a RFID tag and the monitor apparatus for the same
US10018481B1 (en) * 2014-09-30 2018-07-10 Worldwise, Inc. Multi-band pedometer with mobility mode indicator
CN105852826A (zh) * 2016-03-22 2016-08-17 北京奇虎科技有限公司 终端和终端确定生理信息的方法
CN106200952A (zh) * 2016-07-04 2016-12-07 歌尔股份有限公司 一种监测用户行为数据的方法和可穿戴设备
EP3506052A1 (en) * 2016-09-20 2019-07-03 Huawei Technologies Co., Ltd. Method of detecting whether smart device is being worn, and smart device
CN106895849A (zh) * 2017-02-23 2017-06-27 上海与德信息技术有限公司 一种计步器的精准计数方法及装置
CN108567432A (zh) * 2017-03-14 2018-09-25 意法半导体公司 表征运动的设备和方法

Also Published As

Publication number Publication date
CN110495892B (zh) 2022-03-01
CN110495892A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
JP6064431B2 (ja) 運動判定プログラム、携帯電子機器、運動判定方法及び情報処理装置
US11412981B2 (en) Intelligent device wearing detection method and intelligent device
US9329694B2 (en) Preemptive machine learning-based gesture recognition
US10343046B2 (en) Methods and systems for displaying representations of facial expressions and activity indicators on devices
WO2021035852A1 (zh) 一种运动数据检测方法及智能穿戴设备
US20120143095A1 (en) Body movement detection device and body movement detection method
JP6134872B1 (ja) 対象の周期的な運動のサイクル数を計数するデバイス、方法及びシステム
US10898112B2 (en) Gait posture meter and program
US10551211B2 (en) Methods and devices with sensor time calibration
JPH08317912A (ja) 脈拍計
JPWO2008081553A1 (ja) 携帯機器、運動強度算出方法、歩幅補正方法、情報機器、及びプログラム
US10276036B2 (en) Electronic system and control method for the same
WO2005092180A1 (ja) 生体情報計測装置
CN107016996B (zh) 一种音频数据的处理方法及装置
CN106333643A (zh) 用户健康的监测方法、监测装置以及监测终端
CN108279019A (zh) 一种计步方法、装置和智能穿戴设备
JP2017192563A (ja) 活動量計および運動量算出装置
CN116369883A (zh) 一种心率监测的方法和装置
JP2017221550A (ja) 生体情報処理装置、プログラム及び生体情報処理方法
JP2005095653A (ja) 脈拍計
US20160283044A1 (en) Display apparatus, display control method, and computer readable recording medium having program stored therein
WO2016165333A1 (zh) 一种实现计步的方法及装置
US10775854B2 (en) Method for lighting screen of smart wristband by raising hand and smart wristband
CN106017503B (zh) 计步器的计步方法、装置及移动终端
US20230359281A1 (en) Wearable device and screen wake-up method thereof, and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943131

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19943131

Country of ref document: EP

Kind code of ref document: A1