WO2021035782A1 - 适于糖尿病性视网膜病变的专用光源及灯具 - Google Patents

适于糖尿病性视网膜病变的专用光源及灯具 Download PDF

Info

Publication number
WO2021035782A1
WO2021035782A1 PCT/CN2019/104472 CN2019104472W WO2021035782A1 WO 2021035782 A1 WO2021035782 A1 WO 2021035782A1 CN 2019104472 W CN2019104472 W CN 2019104472W WO 2021035782 A1 WO2021035782 A1 WO 2021035782A1
Authority
WO
WIPO (PCT)
Prior art keywords
far
yellow
lamp
led
silica gel
Prior art date
Application number
PCT/CN2019/104472
Other languages
English (en)
French (fr)
Inventor
陈雷
程鹏
王家龙
郑桂芳
姚刚
蒋正轩
鲍颖超
姜还发
Original Assignee
合肥工业大学智能制造技术研究院
安徽医科大学
青岛魔晶光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥工业大学智能制造技术研究院, 安徽医科大学, 青岛魔晶光电有限公司 filed Critical 合肥工业大学智能制造技术研究院
Publication of WO2021035782A1 publication Critical patent/WO2021035782A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • A61N2005/0652Arrays of diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0654Lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • A61N2005/066Radiation therapy using light characterised by the wavelength of light used infrared far infrared
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the invention relates to the field of health lighting, and more specifically to a dedicated light source and lamp suitable for diabetic retinopathy.
  • the penetration rate of white LEDs in household lighting is close to 70% and is expected to reach 100% in 2025.
  • the white LEDs currently in use are rich in blue light and lack far-red light.
  • the hazards of LED blue light have been known to everyone. Because LED blue light can easily cause damage and apoptosis of retinal cells and optic neurons, white light LED lighting is particularly not suitable for people with diabetes.
  • Diabetic retinopathy is one of the four major causes of blindness in humans.
  • Diabetic retinopathy (DR) is one of the serious complications of diabetes, accompanied by symptoms such as hard exudation, bleeding spots, cotton wool spots, and macular edema. Causes diabetic patients' vision loss and even blindness, which seriously affects the patient's visual function and quality of life.
  • Retinopathy is related to retinal hypoxia in a dark environment (DJRamsey, GBArden, Curr. Diab. Rep., 2015, 15, 118; N. Drasdo, Z Chiti, D R Owens, R V North, The Lancet, 2002, 359, 2251). Diabetics' retinal blood flow is impaired, and retinal hypoxia is further aggravated in the dark environment.
  • the rod-shaped photoreceptors in the outer layer of the retina depolarize to the greatest extent and continuously release a large amount of the neurotransmitter glutamate. This process requires the highest oxygen consumption per unit volume of any tissue in the body.
  • PBM photobiological modulation
  • cytochrome c oxidase acts as a photoreceptor. After cytochrome c oxidase absorbs photons, the cytochrome c oxidase catalytic center increases the available electrons for reducing oxygen molecules and increases the potential of the mitochondrial membrane.
  • Mitochondria are the places where cells generate energy through respiration, and adenosine triphosphate (ATP) is the fuel for cell energy and the most direct source of energy for living organisms.
  • ATP adenosine triphosphate
  • Far-red light and near-infrared light can activate the mitochondria of mammalian cells to release a series of signals and effectively improve the functional activity of mitochondria (T.I.Karu, IUBMB Life, 2010, 62, 607).
  • Patent Publication No. CN107174655A discloses a far-red light gene loop expression control system, which mainly induces gene expression by 600-900nm far-red light.
  • Patent CN105570762A discloses a light source device of an instrument for relieving diabetic fundus lesions. The shape of the illuminated area is determined by arranging light-absorbing layers of different shapes, and the light is made uniform through the light guide plate to avoid dark and bright spots in the light field.
  • Patent CN105816962A discloses a diabetes treatment instrument and its light source materials. The fluorescent light source and auxiliary light source are used to form the light source of the treatment instrument.
  • the emission spectrum peaks of the phosphors A and B under 254nm excitation are 305 ⁇ 5nm and 305 ⁇ 5nm respectively.
  • the auxiliary light source is composed of a defocused light source with a main peak wavelength of 808nm and an LED lamp with a main peak wavelength of 305-460nm. It is mainly used to illuminate the skin and pancreas of diabetic patients to achieve the effects of physical therapy, prevention and treatment, but the wavelength The penetration depth of 305 and 365nm ultraviolet light into the skin is very low. Therefore, in the prior art, there is no dedicated healthy light source that takes into account the home lighting of diabetic patients and the prevention and treatment of diabetic retinopathy.
  • the light sources used in the past were mainly low-intensity lasers or LEDs with wavelengths of 670nm and 780nm (I.I.Geneva, Int.J.Ophthalmol, 2016,9,145). Because of the strong coherence of the laser, the wavelength range of the laser is relatively narrow, and the emission of the LED chip is also a narrow band spectrum. However, the absorption spectrum of the cell is a broadband spectrum, and the absorption wavelength range of the cell after irradiation becomes wider (TIKaru, IUBMB Life, 2010, 62, 607; T. Karu, J. Photochem. Photobiol. B.: Biol.
  • the technical problem to be solved by the present invention is how to provide a special light source and lamp which can give consideration to the home life lighting of diabetic patients and the prevention and treatment of diabetic retinopathy.
  • a dedicated light source suitable for diabetic retinopathy includes: a substrate, a yellow-green light bead and a far-red light bead, wherein the yellow-green light bead and the The far-red light lamp bead array is arranged on the substrate.
  • the light source integrates yellow-green light beads and far-red light beads. Yellow-green light can reduce the adaptation and adjustment of diabetic patients in the dark environment. Far-red light can inhibit and repair retinal damage, which not only meets the lighting needs of diabetic people’s home life, but also can be used Far-red light makes photobiomodulation of diabetic retinopathy.
  • the substrate is one or a combination of a planar structure, a curved structure, and a special-shaped structure.
  • the emission wavelength of the yellow-green light bead is 457nm-720nm
  • the emission wavelength peak of the yellow-green light bead is 555nm
  • the emission wavelength of the far-red light bead is 590-900nm
  • the emission wavelength peak of the far-red light bead It is 760nm.
  • the yellow-green light with emission wavelength of 457nm-720nm does not contain blue light, which can eliminate the damage and apoptosis of retinal cells and optic neurons caused by blue light, and reduce the harm caused by LED light source to diabetic retinopathy.
  • the peak wavelength of yellow-green light is 555nm and the visual curve of human eyes.
  • the peaks are consistent, and the wavelength of the high-energy side of the yellow-green light is not less than the high-energy side of the photopic response curve, ensuring that the human eye has the maximum response sensitivity to the light source developed by the present invention;
  • the spectrum of the far-red light bead is a broadband spectrum, which can better cover cells
  • the absorption spectrum range is more conducive to photobiological adjustment of diabetic retinopathy.
  • the peak emission wavelength of the far-red light lamp beads is 760nm, which is consistent with the peak absorption wavelength of human cells at 760nm.
  • the yellow and green lights are yellow and green LED lights
  • the far red lights are far red LED lights
  • the far red LED lights and the yellow and green LED lights are alternately arrayed on the substrate.
  • Different ratios of yellow-green LED lamp beads and far-red LED lamp beads are alternately arranged on the substrate in an array to produce lamps with different irradiance, which meets the requirements of human eyes on the brightness of visible light illumination.
  • the present invention also provides a lamp using the above-mentioned special light source suitable for diabetic retinopathy, the lamp comprising: a control power supply and a lampshade, wherein the control power supply is a yellow-green light lamp bead and a far-red light lamp bead for power supply;
  • the lampshade covers the substrate, the yellow-green light lamp beads and the far-red light lamp beads inside.
  • the manufacturing process of the far red LED lamp beads includes:
  • the LED bracket and the LED chip are moved into a vacuum oven, and cured under vacuum conditions of 150°C for 1 to 6 hours to obtain a far red LED lamp bead.
  • the manufacturing process of the yellow-green LED lamp beads includes:
  • the LED bracket and the LED chip are moved into a vacuum oven, and cured under a vacuum condition of 150° C. for 1 to 6 hours to obtain yellow-green LED lamp beads.
  • the preparation process of Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 includes: using Y 2 O 3 , Sc 2 O 3 , Al 2 O 3 and Cr(NO 3 ) 3 ⁇ 9H 2 O is the raw material, weigh each raw material according to the chemical formula Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 , add 2.5% of the total mass of the raw material BaF 2 and 2% of the total mass of the raw material H 3 BO 3 Used as a fluxing agent, then stir the above-mentioned raw materials and additives uniformly, put the ground product into a corundum crucible and calcinate at a high temperature of 1500°C for 6 hours.
  • the high temperature calcination is carried out in a box furnace in an atmospheric environment. After the product is discharged, it will be ground, After washing with water several times, Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 was obtained .
  • the preparation process of Y(Al 0.96 Cr 0.04 ) 3 (BO 3 ) 4 includes: using Al 2 O 3 , H 3 BO 3 and Cr(NO 3 ) 3 ⁇ 9H 2 O as raw materials, according to the chemical formula Y (Al 0.96 Cr 0.04 ) 3 (BO 3 ) 4 Weigh all the raw materials, put them into corundum crucibles after sufficient grinding, burn them at 500°C for 2 hours in the atmosphere, take them out and grind them, and then carry out secondary calcination at 1250°C After 4 hours, after being out of the furnace, it is ground and washed several times to obtain Y(Al 0.96 Cr 0.04 ) 3 (BO 3 ) 4 .
  • the preparation process of (Mg 0.97 Cr 0.03 ) 4 Nb 2 O 8.98 includes: using MgO, Nb 2 O 5 and Cr(NO 3 ) 3 .9H 2 O as raw materials, according to the chemical formula (Mg 0.97 Cr 0.03 ) 4 Nb 2 O 8.98 Weigh all the raw materials, add 2% of the total mass of the raw materials NH 4 Cl as a flux, mix the raw materials and the flux uniformly, and put the uniformly mixed raw materials and flux into the corundum crucible. After calcination at °C for 2 hours, take it out and grind, and then carry out secondary calcination at 1250°C for 4 hours. After coming out of the furnace, grind and wash several times to obtain (Mg 0.97 Cr 0.03 ) 4 Nb 2 O 8.98 .
  • the preparation process of the Li(Sc 0.96 Cr 0.04 )Si 2 O 6 includes: using Li 2 CO 3 , Sc 2 O 3 , SiO 2 and Cr(NO 3 ) 3 ⁇ 9H 2 O as raw materials, according to the chemical formula Li(Sc 0.96 Cr 0.04 )Si 2 O 6 Weigh each raw material, grind the raw material, put it into corundum crucible, pre-fire at 500°C for 2 hours, take it out and grind it, and then carry out secondary calcination at 1100°C for 8 hours. Li(Sc 0.96 Cr 0.04 )Si 2 O 6 was obtained by grinding.
  • the preparation process of [(Y 0.9 Gd 0.1 ) 0.98 Ce 0.02 ] 3 Al 5 O 12 includes: using Y 2 O 3 , Gd 2 O 3 , Al 2 O 3 and CeO 2 as raw materials, according to the chemical formula [(Y 0.9 Gd 0.1 ) 0.98 Ce 0.02 ] 3 Al 5 O 12
  • Weigh each raw material add 2.5% of the total mass of the raw material BaF 2 and 2% of the total mass of the raw material H 3 BO 3 as a flux, and then the above raw materials and The flux is evenly mixed, the mixed raw materials and flux are put into the corundum crucible and calcined at a high temperature of 1500°C for 6 hours.
  • the high temperature calcination is carried out in a tube furnace under 25% H 2 + 75% N 2 reducing atmosphere, and the product is released from the furnace After grinding and washing several times, a yellow-green phosphor is obtained.
  • the peak of the emission spectrum of the yellow-green light bead of the present invention is consistent with the peak of the photopic response of the human eye, and the low-energy side of the yellow-green light emission spectrum of the present invention is not lower than the photopic response curve, and the wavelength of the high-energy side of the yellow-green light is not less than the photopic response.
  • the high-energy edge of the curve ensures that the human eye has the maximum response sensitivity to the light source developed by the present invention.
  • FIG. 1 is a schematic diagram of the special light source suitable for diabetic retinopathy and the light source of the bulb lamp in the lamp disclosed in Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a bulb lamp in a dedicated light source and lamps for diabetic retinopathy disclosed in Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a light source in a specific embodiment of the dedicated light source suitable for diabetic retinopathy and the lamp disclosed in the embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of a dedicated light source and a downlight in a lamp suitable for diabetic retinopathy disclosed in Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of the special light source suitable for diabetic retinopathy and the elongated light source in the lamp disclosed in Embodiment 1 of the present invention
  • Fig. 8 is a schematic diagram of a desk lamp made of a long-striped light source and a dedicated light source suitable for diabetic retinopathy disclosed in Embodiment 1 of the present invention
  • FIG. 9 is a schematic diagram of the special light source suitable for diabetic retinopathy and the ring-shaped light source in the lamp disclosed in Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of the special light source suitable for diabetic retinopathy disclosed in Embodiment 1 of the present invention and a desk lamp made of a ring-shaped light source in a lamp;
  • FIG. 11 is a schematic diagram of the special light source suitable for diabetic retinopathy disclosed in Embodiment 1 of the present invention and the light source made of the yellow-green light bar and the far-red light bar in the lamp;
  • FIG. 12 is a schematic diagram of a panel light made of a yellow-green light bar and a far-red light bar in the dedicated light source and lamps for diabetic retinopathy disclosed in Embodiment 1 of the present invention;
  • Fig. 13 is a schematic diagram of a floor lamp made of a bulb light source or a circular light source among the dedicated light sources and lamps suitable for diabetic retinopathy disclosed in Embodiment 1 of the present invention;
  • Example 15 is a comparison diagram of the emission spectrum of the far red LED-1 lamp bead of the special lamp suitable for diabetic retinopathy disclosed in Example 2 of the present invention and the absorption spectrum of HeLa cells after irradiated with 830nm far red light;
  • FIG. 16 is a comparison diagram of the emission spectrum of the far red LED-1 lamp bead and the action spectrum of the DNA synthesis rate in the special lamp suitable for diabetic retinopathy disclosed in Embodiment 2 of the present invention;
  • FIG. 17 is a comparison diagram of the emission spectrum of the far red LED-2 lamp bead of the special lamp suitable for diabetic retinopathy disclosed in Embodiment 3 of the present invention and the absorption spectrum of HeLa cells;
  • Example 18 is a comparison diagram of the emission spectrum of the far red LED-2 lamp bead of the special lamp suitable for diabetic retinopathy disclosed in Example 3 of the present invention and the absorption spectrum of HeLa cells irradiated with 830nm far red light;
  • Figure 21 is a comparison diagram of the emission spectrum of the far red LED-3 lamp bead of the special lamp suitable for diabetic retinopathy disclosed in Example 4 of the present invention and the absorption spectrum of HeLa cells irradiated with 830nm far red light ;
  • FIG. 23 is the emission spectrum of the far red LED-4 lamp bead of the special lamp suitable for diabetic retinopathy disclosed in Embodiment 5 of the present invention and its comparison with the absorption spectrum of HeLa cells;
  • Example 24 is the emission spectrum of the far red LED-4 lamp bead of the special lamp suitable for diabetic retinopathy disclosed in Example 5 of the present invention and its comparison with the absorption spectrum of HeLa cells irradiated with 830nm far red light ;
  • Example 25 is the emission spectrum of the far red LED-4 lamp bead of the special lamp suitable for diabetic retinopathy disclosed in Example 5 of the present invention and its comparison with the spectrum of the DNA synthesis rate effect;
  • 26 is a graph showing the emission spectrum of yellow-green LED lamp beads encapsulated by yellow-green phosphors in the special lamp suitable for diabetic retinopathy disclosed in Embodiment 6 of the present invention and its comparison with the response curves of human eye's photopic and scotopic vision.
  • a dedicated light source suitable for diabetic retinopathy includes: a substrate, a yellow-green light bead and a far-red light bead, wherein the emission wavelength of the yellow-green light bead is 457nm-720nm, and the emission wavelength peak of the yellow-green light bead is 555nm; the emission wavelength of the far-red lamp bead is 590-900nm, and the emission wavelength peak of the far-red lamp bead is 760nm.
  • the yellow-green light lamp bead and the far-red light lamp bead array are arranged on the substrate.
  • the substrate is one or a combination of a planar structure, a curved structure, and a special-shaped structure.
  • the curved structure can be hemispherical, ellipsoidal, spherical, etc.
  • the special-shaped structure can be surface wavy, surface convex, etc. .
  • the substrate is used to fix the yellow and green light beads and the far red light beads.
  • Different numbers of yellow and green light beads and far red light beads are selected to form different light sources, and then light sources of different shapes are applied to different shapes of lampshades to produce suitable Bulb lamps, spotlights, downlights, straight fluorescent lamps, mirror lamps, bedside lamps, table lamps, panel lamps and floor lamps required by the market.
  • the present invention also provides a lamp using the above-mentioned special light source suitable for diabetic retinopathy, the lamp comprising: a control power supply and a lampshade, wherein the control power supply is a yellow-green light lamp bead and a far-red light lamp bead for power supply;
  • the lampshade covers the substrate, the yellow-green light lamp beads and the far-red light lamp beads inside.
  • the lamp beads are fixed on a circular ceramic substrate to form a schematic diagram of the light source of the bulb lamp.
  • the yellow and green lamp beads and the far red lamp beads are alternately arranged in an array, and the black filled squares represent the far red lamp beads.
  • the unfilled squares represent the yellow and green light beads, and the far red light beads are less than the yellow and green light beads.
  • FIG 1 The schematic diagram of the bulb lamp composed of the light source of the bulb lamp is shown.
  • the basic structure of the bulb lamp in the picture includes the E24 standard thread structure, constant current driver, light source and lampshade.
  • the specific installation method of the lamp adopts the existing technology installation method
  • the improvement of the present invention does not lie in the assembly of the lamp, so the assembly of the lamp and the positional relationship of the various parts in the lamp will not be described herein.
  • a separate drive circuit can also be used to control the far-red light bead and the yellow-green light bead.
  • the yellow-green light bead will always work under the drive of the constant current driver.
  • the drive power and timer of the far-red light bead Connected the preset time is interrupted after every 5-50 minutes of lighting, the power is turned on again, and the cycle is repeated, and the pulse drive mode is used.
  • the power of the light source is set to 3-18 watts, and the area of the far-red light spectrum accounts for 5-50% of the total spectral area.
  • the area of the far-red light spectrum is the area enclosed by the spectrum in the wavelength range of 590-900nm, yellow-green light
  • the area of the spectrum is the area enclosed by the spectrum in the wavelength range of 457nm-720nm.
  • the irradiance of the yellow and green lamp beads is 15-500 Lux/m 2 , which meets the requirements of human eyes on the brightness of illumination.
  • the number of far red lamp beads and yellow and green lamp beads is set The ratio can be adjusted, the illuminance of the yellow-green light bead, the far-red light spectral composition and the light source power.
  • the light source is used to produce the T5/T8 fluorescent lamp, bedside lamp, and mirror headlight light source as shown in FIG. 7, or the light source is directly used to produce the table lamp as shown in FIG. 8.
  • the selection of lamp beads, the quality requirements of the light source and the drive control of the lamps are the same as those of the bulb lamp in Figure 2.
  • the brightness control of the luminaire adopts a continuously adjustable mode, so as to better meet the brightness requirements of human eyes in different time and space environments. For people with diabetes, the bedside lamp can be kept on the window sill during sleep at night, so as to reduce the depolarization of the rod-shaped cells in the outer layer of the retina.
  • the yellow-green lamp beads and the far-red lamp beads of different numbers are selected for matching, and the lamp beads are fixed on the ring-shaped ceramic or PCB substrate to make a ring-shaped light source. Furthermore, this light source was used to produce a desk lamp as shown in FIG. 10.
  • the selection of lamp beads, the quality requirements of the light source and the drive control of the lamps are the same as those of the bulb lamp in Figure 2.
  • the brightness control of the luminaire adopts a continuously adjustable mode, so as to better meet the brightness requirements of human eyes in different time and space environments.
  • the desk lamp is suitable for diabetic people to read, work, or localize lighting.
  • the selection of lamp beads, the quality requirements of the light source and the drive control of the lamps are the same as those of the bulb lamp in Figure 2.
  • the switch and brightness control of the luminaire adopt a continuously adjustable mode, so as to better meet the requirements of human eyes perceiving brightness in different time and space environments.
  • the panel light can be kept on the window sill during sleep at night, so as to reduce the depolarization of the rod-shaped cells in the outer layer of the retina.
  • the floor lamp is suitable for diabetic people's home lighting, reading and reading newspapers, and at the same time, suitable for diabetic people to light up during sleep at night, and project light to the diabetic face by means of a reflector lamp cup.
  • the selection of lamp beads, the quality requirements of the light source and the drive control of the lamps are the same as those of the bulb lamp in Figure 2.
  • the brightness control of the luminaire adopts a continuously adjustable mode, so as to better meet the brightness requirements of human eyes in different time and space environments.
  • the lamp integrates yellow-green light lamp beads and far-red light lamp beads.
  • the yellow-green light can reduce the adaptation and adjustment of diabetic patients in the dark environment, and the far-red light can inhibit and repair Retinal damage not only meets the lighting needs of diabetic people's home life, but also can use far-red light for photobiological adjustment of diabetic retinopathy.
  • the yellow-green light with a wavelength of 457nm-720nm does not contain blue light, which can eliminate the damage and apoptosis of retinal cells and optic neurons caused by blue light, and reduce the harm caused by LED light source to diabetic retinopathy.
  • the peak wavelength of yellow-green light is 555nm and human eyesight.
  • the peaks of the visual curve are consistent, and the wavelength of the high-energy side of the yellow-green light is not less than the high-energy side of the photopic response curve, ensuring that the human eye has the maximum response sensitivity to the light source developed by the present invention;
  • the spectrum of the far red light bead is a broadband spectrum, which can better Covering the cell absorption spectrum is more conducive to photobiological adjustment of diabetic retinopathy.
  • the emission wavelength peak of the far-red light lamp beads is 760nm, which is consistent with the absorption wavelength peak of human cells at 760nm.
  • the yellow and green lights are yellow and green LED lights
  • the far red lights are far red LED lights
  • the substrate is a plate that fixes and supports the LED lights and performs heat dissipation and heat conduction.
  • the LED lamp beads and the yellow-green LED lamp beads are arranged in an alternating array on the substrate. Different ratios of yellow-green LED lamp beads and far-red LED lamp beads are alternately arranged on the substrate in an array to produce lamps with different irradiance, which meets the requirements of human eyes on the brightness of visible light illumination.
  • the manufacturing process of the far red LED lamp beads includes:
  • the LED bracket together with the LED chip into a vacuum oven and cure at 150°C for 1 to 6 hours to obtain far-red LED lamp beads.
  • the vacuum oven is DZF-6020 of Shanghai Boxun.
  • the LED bracket and LED chip are semi-finished products after the solid crystal and wire bonding of Guangdong Jinke Electronics Co., Ltd., the model is 5730 high-power chips.
  • the preparation process of the Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 includes: using Y 2 O 3 , Sc 2 O 3 , Al 2 O 3 and Cr(NO 3 ) 3 ⁇ 9H 2 O as Raw materials, weigh each raw material according to the chemical formula Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 , add BaF 2 accounting for 2.5% of the total mass of the raw materials and H 3 BO 3 accounting for 2% of the total mass of the raw materials as auxiliary Flux, then stir the above-mentioned raw materials and additives uniformly, use a high-energy vibration ball mill to grind for 30 minutes, put the ground product into a corundum crucible and calcinate at a high temperature of 1500°C for 6 hours, in which the temperature is raised to 600°C at 10°C/min, and the temperature is kept warm.
  • the main purpose of water washing is to remove the unreacted flux; in addition, it can clear the floating debris on the surface of the phosphor, and the surface of the phosphor is smooth, which can improve the absorption efficiency, reduce the scattering and luminous efficiency.
  • the raw materials used in the present invention are all purchased by Sinopharm Chemical Reagent Co., Ltd.
  • the preparation method of the yellow-green LED lamp beads used in Example 2 is the same as that of the far-red LED lamp beads, except that the phosphor used [(Y 0.9 Gd 0.1 ) 0.98 Ce 0.02 ] 3 Al 5 O 12 is from Yellow-green phosphors purchased by Jiangsu Borui Optoelectronics Co., Ltd.
  • the far-red LED lamp bead encapsulated by Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 phosphor is labeled LED-1.
  • Figure 14 shows the emission spectrum of the far red LED-1 lamp bead and its comparison with the absorption spectrum of HeLa cells. The absorption of the spectrum by cells is mainly due to cytochrome C oxidase. It can be seen from Figure 14 that the emission spectrum of the far-red LED-1 lamp bead can better meet the absorption of cells.
  • "au” is an arbitrary fluorescence intensity unit, which is called arbiterary unit in English, as shown in Figure 14 and the following Figure 15, In Fig. 17, Fig. 18, Fig. 20, Fig. 21, Fig.
  • the absorption spectra of HeLa cells refer to the absorption spectra in the literature TIKaru, et a., IEEE J. Sel. Top. Quantum Electron, 2001, 7,982 .
  • Figure 15 shows the comparison between the emission spectrum of the far-red LED-1 lamp bead and the absorption spectrum of HeLa cells irradiated with 830nm far-red light. It can be seen from Figure 15 that the emission spectrum of the far-red LED-1 lamp bead can only cover a part of the cell absorption spectrum after irradiation.
  • Figure 16 shows the comparison between the emission spectrum of the far-red LED-1 lamp bead and the effect spectrum of the DNA synthesis rate.
  • the ordinate H 3 DPM*10 3 per 4*10 5 cells represents the dipropylene glycol methyl ether that acts on 10 3 isotope H 3 in every 4*10 5 cells.
  • the DNA activity spectrum quotes the DNA activity spectrum in the document TIKaru, IUBMB Life, 2010, 62, 607.
  • the far red LED-1 lamp bead emits The spectrum can cover the main active area of the DNA synthesis rate, indicating that the emission spectrum of the far-red LED-1 lamp bead can not only cover the absorption spectrum before the cell is stimulated, but the emission spectrum of the far-red LED-1 lamp bead can reach the cell being stimulated.
  • the far-red light of the broadband spectrum is more conducive to photobiological adjustment of diabetic retinopathy.
  • Y(Al 0.96 Cr 0.04 ) 3 (BO 3 ) 4 is used to encapsulate LED chips to make far-red LED lamp beads.
  • the Y(Al 0.96 Cr 0.04 ) The preparation process of 3 (BO 3 ) 4 includes: using Al 2 O 3 , H 3 BO 3 and Cr(NO 3 ) 3 ⁇ 9H 2 O as raw materials, according to the chemical formula Y(Al 0.96 Cr 0.04 ) 3 (BO 3 ) 4 Weigh each raw material and put it into a corundum crucible after being fully grinded, burn it at 500°C for 2 hours in the atmosphere, take it out and grind it, and then perform a second calcination at 1250°C for 4 hours. After leaving the furnace, it is ground and washed several times with water. Y(Al 0.96 Cr 0.04 ) 3 (BO 3 ) 4 is prepared .
  • the emission spectrum of the far-red LED-2 lamp bead can only cover a part of the cell absorption spectrum after irradiation.
  • Figure 19 shows the comparison between the emission spectrum of the far-red LED-2 lamp bead and the effect spectrum of the DNA synthesis rate. It can be seen from Figure 19 that the emission spectrum of the far-red LED-2 lamp bead can cover the main active area of the DNA synthesis rate, but some areas cannot be covered, indicating that not only the emission spectrum of the far-red LED-2 lamp bead can cover most of the cells
  • the absorption spectrum before stimulation, and the emission spectrum of the far-red LED-2 lamp bead reaches the broadband spectrum after the cell is stimulated.
  • the far-red light of the broadband spectrum is more conducive to photobiomodulation of diabetic retinopathy.
  • Example 4 of the present invention The difference between Example 4 of the present invention and Example 2 is that the Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 prepared in Example 2 is combined with (Mg 0.97 Cr 0.03 ) 4 Nb 2 O 8.98 packaged LED chips are made into far red LED lamp beads, the total mass ratio of Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 and (Mg 0.97 Cr 0.03 ) 4 Nb 2 O 8.98 is 4:6.
  • the far-red LED device packaged with Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 and (Mg 0.97 Cr 0.03 ) 4 Nb 2 O 8.98 phosphors is marked as LED-3.
  • Figure 20, Figure 21 and Figure 22 respectively show the emission spectrum of the far red LED-3 lamp beads and the absorption spectrum of HeLa cells, the absorption spectrum of HeLa cells and the effect spectrum of DNA synthesis rate after irradiated by 830nm far red light. Compared.
  • Example 5 of the present invention The difference between Example 5 of the present invention and Example 2 is that the Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 prepared in Example 2 is combined with Li(Sc 0.96 Cr 0.04 )Si 2 O 6 Packaged LED chips are made into far-red LED lamp beads, and the total mass ratio of Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 and Li(Sc 0.96 Cr 0.04 )Si 2 O 6 is 5:5.
  • the preparation process of the Li(Sc 0.96 Cr 0.04 )Si 2 O 6 includes: using Li 2 CO 3 , Sc 2 O 3 , SiO 2 and Cr(NO 3 ) 3 ⁇ 9H 2 O as raw materials, according to the chemical formula Li(Sc 0.96 Cr 0.04 )Si 2 O 6 Weigh each raw material, grind the raw material and put it into a corundum crucible, pre-fire at 500°C for 2 hours, then take it out and grind, and then perform secondary calcination at 1100°C for 8 hours. Li(Sc 0.96 Cr 0.04 )Si 2 O 6 .
  • the far-red LED device packaged with Y 3 [(Al 0.75 Sc 0.25 ) 0.92 Cr 0.08 ] 5 O 12 and Li(Sc 0.96 Cr 0.04 )Si 2 O 6 phosphor is labeled LED-4.
  • Figure 23, Figure 24 and Figure 25 show the emission spectra of far-red LED-4 lamp beads and their absorption spectra with HeLa cells, HeLa cell absorption spectra after 830nm far-red light irradiation, and DNA synthesis rate effect spectra.
  • YAB is the general formula of garnet, which in the present invention refers to YAl 3 B 4 O 12 :Cr 3+ .
  • the combination of YAl 3 B 4 O 12 :Cr 3+ and LiScSi 2 O 6 :Cr 3+ phosphor encapsulated far-red LED-4 device its emission spectrum can perfectly cover the absorption of HeLa cells All regions of the spectrum and the active area of light action indicate that not only the emission spectrum of the far-red LED-4 lamp bead can cover the absorption spectrum before the cell is stimulated, but the emission spectrum of the far-red LED-4 lamp bead reaches the broadband after the cell is stimulated.
  • the far-red light of the broadband spectrum is more conducive to photobiological adjustment of diabetic retinopathy.
  • Example 6 of the present invention The difference between Example 6 of the present invention and Example 2 is that the yellow-green light beads used are yellow-green light LED beads prepared with yellow-green phosphor [(Y 0.9 Gd 0.1 ) 0.98 Ce 0.02 ] 3 Al 5 O 12 , the yellow-green light LED
  • the manufacturing process of lamp beads includes:
  • transparent silica gel A and transparent silica gel B Weigh the yellow-green phosphor, transparent silica gel A and transparent silica gel B.
  • the mass ratio of transparent silica gel A and transparent silica gel B is 1:1, and the yellow-green phosphor accounts for 10%-90% of the total mass of transparent silica gel A and transparent silica gel B;
  • transparent Silica Gel A and Transparent Silica Gel B are products of Jiangxi Lvtai Technology Co., Ltd.
  • the models are Y550A and Y500B respectively.
  • the LED bracket and LED chip are semi-finished products after the die-bonding and wire bonding of Guangdong Jinke Electronics Co., Ltd., the model is 5730 high-power chips.
  • the preparation process of the yellow-green phosphor [(Y 0.9 Gd 0.1 ) 0.98 Ce 0.02 ] 3 Al 5 O 12 includes: using Y 2 O 3 , Gd 2 O 3 , Al 2 O 3 and CeO 2 as raw materials, according to the chemical formula [ (Y 0.9 Gd 0.1 ) 0.98 Ce 0.02 ] 3 Al 5 O 12 Weigh each raw material, add 2.5% of the total mass of the raw material BaF 2 and 2% of the total mass of the raw material H 3 BO 3 as a flux, and then The raw materials and flux are mixed uniformly. The mixed raw materials and flux are put into corundum crucible and calcined at a high temperature of 1500°C for 6 hours.
  • Figure 26 shows the emission spectrum of the yellow-green LED lamp bead packaged with the yellow-green phosphor provided in this embodiment and its comparison with the response curves of human eye's photopic and scotopic vision.
  • the light source in the figure refers to the light source in this embodiment.
  • the emission spectrum of the LED chip with a peak of 450nm is not detected, indicating that the blue light emitted by the LED chip is converted into yellow-green light in the wavelength range of 457-720nm using phosphor.
  • the peak of the yellow-green light wavelength is 555nm and the peak of the human eye's visual visual curve. Consistent, and the high-energy edge wavelength of the yellow-green light is within the range of the photopic response curve.
  • this light source for diabetics can reduce the depolarization of the rod-shaped cells in the outer layer of the retina, and reduce the hypoxia caused by dark adaptation.
  • the arrow pointing to the left indicates that the ordinate on the left is used as the ordinate
  • the arrow pointing to the right indicates that the ordinate on the right is used as the ordinate.
  • the phosphors in the present invention can use yellow-green phosphors and far-red phosphors that are available on the market, and are not limited to the phosphors provided by the present invention.
  • the present invention mainly provides lamp beads with yellow-green light and The lamps with far-red light bead can meet the needs of diabetic people's home life lighting and the prevention and treatment of diabetic retinopathy, as long as the phosphor can achieve yellow-green light and far-red light.
  • the special lamp suitable for diabetic retinopathy has the advantages of taking into account the home lighting of diabetic people and the prevention and treatment of diabetic retinopathy. It integrates the far-red light lamp beads into the lamp to make
  • the light source contains far-red light, which photobiologically regulates the retina of diabetic patients, improves mitochondrial activity, improves cell metabolism, promotes tissue blood flow, stimulates nerve and synaptic growth, inhibits diabetes-induced superoxide production, and inhibits Leukocyte stasis and the expression of intercellular adhesion molecule ICM-1, retain the expression of superoxide dismutase (MnSOD), reduce diabetes-induced inflammation and retinal vascular abnormalities, can inhibit the early damage of diabetic retinopathy, and affect the diabetic retina
  • the disease plays an active role in treatment, and the yellow and green lamp beads minimize the dark adaptation of the human eye, and reduce the damage of the retina caused by the lack of oxygen in the dark environment of diabetic patients.
  • the peak of the emission spectrum of the lamp is consistent with the peak of the photopic response of the human eye, and the low-energy side of the emission spectrum is not lower than the photopic response curve, which ensures that the human eye has the maximum response sensitivity to the light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种适于糖尿病性视网膜病变的专用光源及灯具,光源包括:基板、黄绿光灯珠以及远红光灯珠,其中,黄绿光灯珠以及远红光灯珠阵列设置在基板上;灯具包括:控制电源以及灯罩,控制电源为黄绿光灯珠以及远红光灯珠供电;灯罩将基板、黄绿光灯珠以及远红光灯珠罩在内部;为兼顾糖尿病人居家生活照明和糖尿病性视网膜病变预防与治疗的专用灯具光源。

Description

适于糖尿病性视网膜病变的专用光源及灯具 技术领域
本发明涉及健康照明领域,更具体涉及适于糖尿病性视网膜病变的专用光源及灯具。
背景技术
白光LED在家用照明的普及率已经接近70%,预计2025年将达到100%,但是目前使用的白光LED富含蓝光且缺乏远红光。LED蓝光危害已被大家悉知。由于LED蓝光易造成视网膜细胞和视神经元的损伤与凋亡,白光LED照明尤其不适于糖尿病人。
糖尿病性视网膜病变是人类四大致盲的原因之一,糖尿病性视网膜病变(diabetic retinopathy,DR)是糖尿病的严重并发症之一,伴随硬性渗出、出血斑点、棉绒斑、黄斑水肿等症状,导致糖尿病患者视力下降甚至致盲,严重影响患者的视功能和生存质量。
视网膜病变与黑暗环境中视网膜缺氧有关(D.J.Ramsey,G.B.Arden,Curr.Diab.Rep.,2015,15,118;N.Drasdo,Z Chiti,D R Owens,R V North,The Lancet,2002,359,2251)。糖尿病人的视网膜血流量受到损害,在黑暗环境下视网膜缺氧进一步加剧。人眼在黑暗适应过程中,视网膜外层的杆状光感受器最大程度地去极化,并不断释放大量的神经递质谷氨酸。这个过程要求身体任何组织单位体积的耗氧量达到最高。在完全黑暗的环境中,更多的氧气被外层视网膜消耗,导致视网膜氧张力曲线急剧下降,在线粒体丰富的杆状细胞内层段达到最低点。与正常视网膜相比,糖尿病人的视网膜不能满足适应黑暗的杆状细胞光感受器所增加的代谢负荷,加剧了视网膜缺氧,并刺激血管内皮生长因子(VEGF)过度生产。因此,利用夜间照明防止眼睛的黑暗适应,特别是减少杆状光感受器暗电流,将有助于改善糖尿病性视网膜病变。
利用远红光PBM治疗糖尿病性视网膜病变的有效性在动物实验与临床医疗不断得到证实。随着研究的深入,对其作用机理的认识也不断加深。研究表明,利用低强度远红光/近红外光进行光生物调节(phototiomodulation,简称PBM),有助于减少、抑制糖尿病性视网膜病变的早期损伤,对糖尿病性视网膜病变起到积极治疗作用(Johnny Tang,YunpengDu,Chieh Allen Lee,RamaprasadTalahalli,Janis T.Eells,and Timothy S.Kern,IOVS,2013,54,3681;I.I.Geneva,Int.J.Ophthalmol,2016,9,145)。关于PBM作用机理,一种观点认为细胞色素c氧化酶作为光受体,细胞色素c氧化酶吸 收了光子之后,细胞色素c氧化酶催化中心把氧气分子还原的可用电子增加,增加线粒体膜的电势,提高三磷酸腺苷(ATP)、环磷酸腺苷(cAMP)和活性氧簇(reactive oxygen species,ROS)的浓度水平,进而提高细胞新陈代谢、促进组织的血液流动、激发神经与突触生长(I.I.Geneva,Int.J.Ophthalmol,2016,9,145;T.I.Karu,Photochem.Photobiology,2008,84,1091);另一种观点认为,PBM对视网膜细胞色素氧化酶活性无明显影响,PBM抑制了糖尿病诱导的超氧化物生成,抑制了白细胞淤阻和细胞间黏附分子(intercellular cell adhesion molecule-1,ICM-1)的表达,保留了锰超氧化物歧化酶(MnSOD)的表达,减少糖尿病诱发的炎症与视网膜血管异常(J.Tang,et al.IOVS,2013,3683)。线粒体是细胞呼吸产生能量的场所,而三磷酸腺苷(ATP)是细胞能量的燃料,是生物体最直接的能量来源。远红光与近红外光能够激活哺乳动物细胞线粒体释放一系列信号,有效提高线粒体的功能活性(T.I.Karu,IUBMB Life,2010,62,607)。
专利公开号CN107174655A公布了一种远红光基因环路表达控制系统,主要是600-900nm远红光诱导基因表达。专利CN105570762A公布了一种缓解糖尿病眼底病变仪器的光源装置,通过设置不同形状的吸光层确定光照区域的形状,并通过导光板使光线均匀,避免光野区的暗斑与亮斑。专利CN105816962A公布了一种糖尿病治疗仪及其使用的光源材料,利用荧光光源以及辅助光源构成治疗仪的光源,其所述荧光粉A、B在254nm激发下的发射光谱峰值分别为305±5nm和365±5nm,辅助光源有主峰波长为808nm的散焦光源和主峰波长为305-460nm的LED灯构成,主要通过对糖尿病患者的皮肤与胰腺部分进行光照达到理疗、预防及治疗的效果,但是波长为305和365nm紫外光对皮肤的穿透深度很低。因此,现有技术中尚且没有兼顾糖尿病人居家生活照明和糖尿病性视网膜病变预防与治疗的专用健康光源。
在糖尿病性视网膜病变PBM方面,过去使用的光源主要是低强度激光或LED,波长主要有670nm和780nm(I.I.Geneva,Int.J.Ophthalmol,2016,9,145)。激光因具有强相干性,激光的波长范围较窄,LED芯片发射也为窄带谱。然而,细胞的吸收光谱为宽带谱,并且细胞受辐照后的吸收波长范围变得更宽(T.I.Karu,IUBMB Life,2010,62,607;T.Karu,J.Photochem.Photobiol.B.:Biol.1999,49,1;T.Vo-Oinh,Biomedical Photonics hand book,CRC Press,2003,Figure 48.5 and 48.6)。在细胞水平对DNA和RNA的合成速率研究表明,其作用光谱也为宽带谱。因此,利用远红光对糖尿病性视网膜病变进行光生物调节最好采用宽带谱光源,现有技术并没有采用宽带 谱的远红光光源。
发明内容
本发明所要解决的技术问题在于如何提供兼顾糖尿病人居家生活照明和糖尿病性视网膜病变预防与治疗的专用光源及灯具。
本发明通过以下技术手段实现解决上述技术问题的:适于糖尿病性视网膜病变的专用光源,所述光源包括:基板、黄绿光灯珠以及远红光灯珠,其中,所述黄绿光灯珠以及所述远红光灯珠阵列设置在所述基板上。光源集成了黄绿光灯珠与远红光灯珠,黄绿光可以降低糖尿病人在黑暗环境下的适应调节,远红光能够抑制、修复视网膜损伤,不仅满足了糖尿病人的居家生活照明需求,而且能够利用远红光对糖尿病性视网膜病变进行光生物调节。
优选的,所述基板为平面结构、弧面结构以及异型结构中的一种或组合。
优选的,所述黄绿光灯珠的发射波长为457nm-720nm,黄绿光灯珠的发射波长峰值为555nm;所述远红光灯珠的发射波长为590-900nm,远红光灯珠的发射波长峰值为760nm。发射波长为457nm-720nm的黄绿光不含蓝光,能够消除蓝光造成的视网膜细胞与视神经元的损伤与凋亡,降低LED光源对糖尿病性视网膜病变产生的危害,黄绿光波长峰值555nm与人眼明视觉曲线峰值一致,且该黄绿光的高能边波长不小于明视觉响应曲线的高能边,确保人眼对本发明开发的光源有最大响应灵敏度;远红光灯珠的光谱为宽带谱,能够更好地覆盖细胞吸收光谱范围,更加有利于对糖尿病性视网膜病变进行光生物调节,远红光灯珠的发射波长峰值为760nm与人体细胞吸收波长峰值760nm相一致。
优选的,黄绿光灯珠为黄绿光LED灯珠,远红光灯珠为远红光LED灯珠,远红光LED灯珠和黄绿光LED灯珠交替阵列设置在所述基板上。不同比例的黄绿光LED灯珠、远红光LED灯珠交替阵列设置在所述基板上能够产生不同辐照度的灯具,满足人眼对可见光照明亮度的要求。
本发明还提供一种使用上述适于糖尿病性视网膜病变的专用光源的灯具,所述灯具包括:控制电源以及灯罩,其中,所述控制电源为黄绿光灯珠以及远红光灯珠供电;所述灯罩将所述基板、黄绿光灯珠以及远红光灯珠罩在内部。
优选的,所述远远红光LED灯珠的制作过程包括:
称取远红光荧光粉、透明硅胶A以及透明硅胶B,其中透明硅胶A和透明B的质量比为1:1,远红光荧光粉占透明硅胶A和透明硅胶B总质量的10%-90%;
使用真空脱泡机对远红光荧光粉、透明硅胶A以及透明硅胶B硅胶进行真空搅拌、脱泡,得到混合均匀的粉胶;
将LED芯片固定在LED支架并在LED支架上焊上正负极,然后使用点胶机把混合均匀的粉胶滴定至LED芯片上;
把LED支架连同LED芯片移入真空烘箱,在150℃真空条件下固化1~6小时,得到远远红光LED灯珠。
优选的,所述黄绿光LED灯珠的制作过程包括:
称取黄绿光荧光粉、透明硅胶A以及透明硅胶B,其中透明硅胶A和透明B的质量比为1:1,黄绿光荧光粉占透明硅胶A和透明硅胶B总质量的10%-90%;
使用真空脱泡机对黄绿光荧光粉、透明硅胶A以及透明硅胶B硅胶进行真空搅拌、脱泡得到混合均匀的粉胶;
将LED芯片固定在LED支架并在LED支架上焊上正负极,然后使用点胶机把混合均匀的粉胶滴定至LED芯片上;
将LED支架连同LED芯片移入真空烘箱,在150℃真空条件下固化1~6小时,得到黄绿光LED灯珠。
优选的,所述远红光荧光粉包括Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12、Y(Al 0.96Cr 0.04) 3(BO 3) 4、(Mg 0.97Cr 0.03) 4Nb 2O 8.98、Li(Sc 0.96Cr 0.04)Si 2O 6中的一种或组合。
优选的,所述Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12的制备过程包括:采用Y 2O 3、Sc 2O 3、Al 2O 3以及Cr(NO 3) 3·9H 2O为原料,按照化学式Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12称取各原料,添加占原料总质量2.5%的BaF 2和占原料总质量2%的H 3BO 3用作助熔剂,然后对上述原料和助剂搅拌均匀,把研磨后的产物装入刚玉坩埚在1500℃高温煅烧6小时,高温煅烧使用箱式炉在大气环境下进行,产物出炉后经研磨、水洗若干次,制得Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12
优选的,所述Y(Al 0.96Cr 0.04) 3(BO 3) 4的制备过程包括:采用Al 2O 3、H 3BO 3以及Cr(NO 3) 3·9H 2O为原料,按照化学式Y(Al 0.96Cr 0.04) 3(BO 3) 4称取各原料,经充分研磨后装入刚玉坩埚,在大气环境下于500℃灼烧2小时,取出再研磨,然后于1250℃进行二次煅烧4小时,出炉后经研磨、水洗若干次,制得Y(Al 0.96Cr 0.04) 3(BO 3) 4
优选的,所述(Mg 0.97Cr 0.03) 4Nb 2O 8.98的制备过程包括:采用MgO、Nb 2O 5以及Cr(NO 3) 3·9H 2O为原料,按照化学式(Mg 0.97Cr 0.03) 4Nb 2O 8.98称取各原料,添加占原料总质量2%的NH 4Cl用作助熔剂,将原料和助熔剂混合均匀,把混合均匀后的原料和助熔剂装入刚玉坩埚,在500℃预烧2小时后取出研磨,然后于1250℃进行二次煅烧4小时,出炉后经研磨、水洗若干次,制得(Mg 0.97Cr 0.03) 4Nb 2O 8.98
优选的,所述Li(Sc 0.96Cr 0.04)Si 2O 6的制备过程包括:采用Li 2CO 3、Sc 2O 3、SiO 2以及Cr(NO 3) 3·9H 2O为原料,按照化学式Li(Sc 0.96Cr 0.04)Si 2O 6称取各原料,将原料研磨后装入刚玉坩埚,在500℃预烧2小时后取出研磨,然后于1100℃进行二次煅烧8小时,出炉后经研磨制得Li(Sc 0.96Cr 0.04)Si 2O 6
优选的,所述黄绿光荧光粉采用[(Y 0.9Gd 0.1) 0.98Ce 0.02] 3Al 5O 12
优选的,[(Y 0.9Gd 0.1) 0.98Ce 0.02] 3Al 5O 12的制备过程包括:采用Y 2O 3、Gd 2O 3、Al 2O 3以及CeO 2为原料,按照化学式[(Y 0.9Gd 0.1) 0.98Ce 0.02] 3Al 5O 12称取各原料,添加占原料总质量2.5%的BaF 2和占原料总质量2%的H 3BO 3用作助熔剂,然后对上述原料和助熔剂混合均匀,把混合均匀后的原料和助熔剂装入刚玉坩埚在1500℃高温煅烧6小时,高温煅烧使用管式炉在25%H 2+75%N 2还原气氛条件下进行,产物出炉后经研磨、水洗若干次,制得黄绿光荧光粉。
本发明的优点在于:
(1)本发明针对糖尿病性视网膜病变设计一种适用于糖尿病性视网膜病变的专用光源,光源集成了黄绿光与远红光,黄绿光可以降低糖尿病人在黑暗环境下的适应调节,远红光能够抑制、修复视网膜损伤,不仅满足了糖尿病人的居家生活照明需求,而且能够利用远红光对糖尿病性视网膜病变进行光生物调节。
(2)本发明设计的专用灯具发光过程不含蓝光,能够消除蓝光造成的视网膜细胞与视神经元的损伤与凋亡,降低LED光源对糖尿病性视网膜病变产生的危害。
(3)本发明的黄绿光灯珠的发射光谱峰值与人眼的明视觉响应峰值一致,且本发明黄绿光发射光谱的低能边不低于明视觉响应曲线,黄绿光的高能边波长不小于明视觉响应曲线的高能边,确保人眼对本发明开发的光源有最大响应灵敏度。
(4)本发明的远红光灯珠的光谱为宽带谱,能够更好地覆盖细胞吸收光谱范围,不仅可以覆盖细胞受激之前的吸收谱,而且通过设计远红光荧光粉配比,远红光灯珠的发射光谱达到细胞受激之后的宽带谱,宽带谱的远红光更加有利于对糖尿病性视网膜病变进行光生物调节。
附图说明
图1为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中球泡灯的光源的示意图;
图2为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中球泡灯的示意图;
图3为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具于一具体实施方式中的光源的示意图;
图4为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中射灯示意图;
图5为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中筒灯示意图;
图6为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中长条形的光源的示意图;
图7为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中利用长条形的光源结构制成的光源的示意图;
图8为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中长条形的光源制成的台灯的示意图;
图9为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中环形的光源的示意图;
图10为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中利用环形的光源制成的台灯的示意图;
图11为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中黄绿光灯条和远红光灯条制成的光源示意图;
图12为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中利用黄绿光灯条和远红光灯条制成的面板灯的示意图;
图13为本发明实施例1所公开的适于糖尿病性视网膜病变的专用光源及灯具中利 用球泡灯的光源或者圆形的光源制成的落地灯的示意图;
图14为本发明实施例2所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-1灯珠的发射光谱及其与HeLa细胞吸收光谱的对比图;
图15为本发明实施例2所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-1灯珠发射光谱与经830nm远红光辐照后的HeLa细胞吸收光谱的对比图;
图16为本发明实施例2所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-1灯珠发射光谱与DNA合成速率作用光谱的对比图;
图17为本发明实施例3所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-2灯珠的发射光谱及其与HeLa细胞吸收光谱的对比图;
图18为本发明实施例3所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-2灯珠发射光谱与经830nm远红光辐照后的HeLa细胞吸收光谱的对比图;
图19为本发明实施例3所公开的适于糖尿病性视网膜病变的专用灯中具远红光LED-2灯珠发射光谱与DNA合成速率作用光谱的对比图;
图20为本发明实施例4所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-3灯珠的发射光谱及其与HeLa细胞吸收光谱的对比图;
图21为本发明实施例4所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-3灯珠的发射光谱及其与经830nm远红光辐照后的HeLa细胞吸收光谱的对比图;
图22为本发明实施例4所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-3灯珠的发射光谱及其与DNA合成速率作用光谱的对比图;
图23为本发明实施例5所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-4灯珠的发射光谱及其与HeLa细胞吸收光谱的对比图;
图24为本发明实施例5所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-4灯珠的发射光谱及其与经830nm远红光辐照后的HeLa细胞吸收光谱的对比图;
图25为本发明实施例5所公开的适于糖尿病性视网膜病变的专用灯具中远红光LED-4灯珠的发射光谱及其与DNA合成速率作用光谱的对比图;
图26为本发明实施例6所公开的适于糖尿病性视网膜病变的专用灯具中黄绿光荧光粉封装的黄绿光LED灯珠发射光谱及其与人眼明视觉和暗视觉响应曲线的对比曲线图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例, 对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
适于糖尿病性视网膜病变的专用光源,所述光源包括:基板、黄绿光灯珠以及远红光灯珠,其中,所述黄绿光灯珠的发射波长为457nm-720nm,黄绿光灯珠的发射波长峰值为555nm;所述远红光灯珠的发射波长为590-900nm,远红光灯珠的发射波长峰值为760nm。
所述黄绿光灯珠以及所述远红光灯珠阵列设置在所述基板上。所述基板为平面结构、弧面结构以及异型结构中的一种或组合,弧面结构可以为半球型、椭球型、圆球型等,异型结构可以为表面波浪形、表面凸棱型等。其中基板用于固定黄绿光灯珠和远红光灯珠,选取不同粒数的黄绿光灯珠和远红光灯珠阵列设置形成不同的光源,然后不同形状的光源应用于不同形状的灯罩,产生适用于市场要求的球泡灯、射灯、筒灯、直管荧光灯、镜前灯、床头灯、台灯、面板灯以及落地灯。
本发明还提供一种使用上述适于糖尿病性视网膜病变的专用光源的灯具,所述灯具包括:控制电源以及灯罩,其中,所述控制电源为黄绿光灯珠以及远红光灯珠供电;所述灯罩将所述基板、黄绿光灯珠以及远红光灯珠罩在内部。
如图1所示,灯珠固定在圆形陶瓷基板上组成球泡灯的光源的示意图,图中黄绿光灯珠和远红光灯珠交替阵列设置,且黑色填充的方块表示远红光灯珠,未填充的方块表示黄绿光灯珠,且远红光灯珠相对黄绿光灯珠较少,图中远红光灯珠为8粒,黄绿光灯珠为14粒,如图2所示,为利用图1展示的球泡灯的光源组成的球泡灯的示意图,图中球泡灯的基本结构包括E24标准螺纹结构、恒流驱动器、光源和灯罩,对于灯具的具体安装方式采用现有技术的安装方式,本发明的改进点不在于灯具的组装,所以在此对于灯具的组装以及灯具中各部分的位置关系不做过多描述。
在实际应用中,还可以采用分立驱动电路控制远红光灯珠和黄绿光灯珠,接通电源后,黄绿光灯珠在恒流驱动器驱动下一直工作,远红光灯珠的驱动电源与定时器相连,每点亮5-50分钟后中断预设的时间,再次通电工作,周而复始,采用脉冲驱动方式工作。光源功率设定为3-18瓦,其远红光光谱的面积占总的光谱面积的5-50%,其中,远红光光谱的面积是波长590-900nm范围内光谱围成的面积,黄绿光光谱的面积是波长457nm-720nm范围内光谱围成的面积,黄绿光灯珠辐射照度为15-500Lux/m 2,满足人 眼对照明亮度要求,其中设置远红光灯珠和黄绿光灯珠的数量的比例可以调整,黄绿光灯珠辐射照度、远红光光谱成分以及光源功率。
如图3所示,选取不同粒数的黄绿光灯珠和远红光灯珠进行搭配,图中黄绿光灯珠为6粒,远红光灯珠为4粒,将灯珠固定在圆形陶瓷或者PCB基板上,制作光源。进而,利用该光源制作成如图4所示射灯与和图5所示的筒灯。灯珠的选用、光源的品质要求和灯具的驱动控制与图2的球泡灯相同。灯具的亮度控制采用连续可调模式,以便于在不同时空环境下更好地满足人眼感知亮度要求。筒灯与射灯可以发光投射至糖尿病人所需要的局部区域,例如,糖尿病人夜晚睡觉枕头覆盖的区域。
如图6所示,选取不同粒数的黄绿光灯珠和远红光灯珠进行搭配,将灯珠固定在长条形PCB基版上,制作成长条形的光源。进而,利用该光源制作成如图7所示的T5/T8荧光灯、床头灯、镜前灯光光源,或者利用该光源直接制作成如图8所示的台灯。灯珠的选用、光源的品质要求和灯具的驱动控制与图2的球泡灯相同。灯具的亮度控制采用连续可调模式,以便于在不同时空环境下更好地满足人眼感知亮度要求。对于糖尿病人,夜晚睡觉期间可以保持床头灯一直处于点亮窗台,以便于减少视网膜外层杆状细胞的退极化。
如图9所示,选取不同粒数的黄绿光灯珠和远红光灯珠进行搭配,将灯珠固定在环形陶瓷或PCB基板上,制作成环形的光源。进而,利用该光源制作成如图10所示的台灯。灯珠的选用、光源的品质要求和灯具的驱动控制与图2的球泡灯相同。灯具的亮度控制采用连续可调模式,以便于在不同时空环境下更好地满足人眼感知亮度要求。台灯适于糖尿病人阅读、工作、或局部照明。
如图11所示,选取黄绿光灯珠和远红光灯珠,把黄绿光灯珠固定在PCB基板上做成黄绿光灯条,远红光灯珠固定在PCB基板上做成远红光灯条。然后把黄绿光灯条和远红光灯条分别固定在面板灯的四周,对于相互平行的两个边,可以一侧固定灯条,也可以两侧固定灯条,因需要设置的灯珠光效、功率和数目而定。图12给出的示意图是在两平行边固定相同种类的灯珠,也可以在相对边固定不同种类的灯珠。利用图11的光源结构做成的面板灯如图12所示。灯珠的选用、光源的品质要求和灯具的驱动控制与图2的球泡灯相同。灯具的开关与亮度控制采用连续可调模式,以便于在不同时空环境下更好地满足人眼感知亮度要求。对于用于糖尿病人卧室的面板灯,夜晚睡觉期间可以保持面板灯一直处于点亮窗台,以便于减少视网膜外层杆状细胞的退极化。
利用图1中的球泡灯的光源,或者利用图3中圆形的光源,制作落地灯,如图13 所示。该落地灯适于糖尿病人家居照明、读书看报,同时适于糖尿病人夜晚睡觉期间点亮,借助反射灯杯把光投射到糖尿病人的面部。灯珠的选用、光源的品质要求和灯具的驱动控制与图2的球泡灯相同。灯具的亮度控制采用连续可调模式,以便于在不同时空环境下更好地满足人眼感知亮度要求。
通过以上技术方案,本发明实施例1的工作过程和原理为:灯具集成了黄绿光灯珠与远红光灯珠,黄绿光可以降低糖尿病人在黑暗环境下的适应调节,远红光能够抑制、修复视网膜损伤,不仅满足了糖尿病人的居家生活照明需求,而且能够利用远红光对糖尿病性视网膜病变进行光生物调节。同时,发射波长为457nm-720nm的黄绿光不含蓝光,能够消除蓝光造成的视网膜细胞与视神经元的损伤与凋亡,降低LED光源对糖尿病性视网膜病变产生的危害,黄绿光波长峰值555nm与人眼明视觉曲线峰值一致,且该黄绿光的高能边波长不小于明视觉响应曲线的高能边,确保人眼对本发明开发的光源有最大响应灵敏度;远红光灯珠的光谱为宽带谱,能够更好地覆盖细胞吸收光谱范围,更加有利于对糖尿病性视网膜病变进行光生物调节,远红光灯珠的发射波长峰值为760nm与人体细胞吸收波长峰值760nm相一致。
实施例2
本发明实施例2中,黄绿光灯珠为黄绿光LED灯珠,远红光灯珠为远红光LED灯珠,所述基板为固定、支撑LED灯珠且进行散热、导热的板材,远红光LED灯珠和黄绿光LED灯珠交替阵列设置在所述基板上。不同比例的黄绿光LED灯珠、远红光LED灯珠交替阵列设置在所述基板上能够产生不同辐照度的灯具,满足人眼对可见光照明亮度的要求。
其中,所述远红光LED灯珠的制作过程包括:
称取远红光荧光粉、透明硅胶A以及透明硅胶B,其中透明硅胶A和透明B的质量比为1:1,远红光荧光粉占透明硅胶A和透明硅胶B总质量的10%-90%;透明硅胶A以及透明硅胶B为江西绿泰科技公司的产品,型号分别为Y550A和Y500B。
使用麦力西MT-1000真空脱泡机对远红光荧光粉、透明硅胶A以及透明硅胶B硅胶进行真空搅拌、脱泡,得到混合均匀的粉胶;
将LED芯片固定在LED支架并在LED支架上焊上正负极,然后使用深圳轴心自控D-260点胶机把混合均匀的粉胶滴定至LED芯片上;
把LED支架连同LED芯片移入真空烘箱,在150℃真空条件下固化1~6小时,得到远红光LED灯珠,点亮后,利用海洋光学USB4000光纤光谱仪测试灯珠的发射光谱。其中,真空烘箱为上海博讯的DZF-6020。LED支架和LED芯片是广东晶科电子有限公司固 晶与焊线之后的半成品,型号为5730的大功率芯片。
所述Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12的制备过程包括:采用Y 2O 3、Sc 2O 3、Al 2O 3以及Cr(NO 3) 3·9H 2O为原料,按照化学式Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12称取各原料,添加占原料总质量2.5%的BaF 2和占原料总质量2%的H 3BO 3用作助熔剂,然后对上述原料和助剂搅拌均匀,使用高能振动球磨机研磨30分钟,把研磨后的产物装入刚玉坩埚在1500℃高温煅烧6小时,其中,以10℃/min升温至600℃,保温30分钟,以5℃/min升温至900℃,保温60分钟,再以5℃/min升温至1200℃,保温60分钟,以4℃/min升温至1500℃,保温480分钟,然后以5℃/min降温至900℃,保温60分钟,再以5℃/min降温至600℃,断电。高温煅烧使用箱式炉在大气环境下进行,产物出炉后经研磨、水洗若干次,制得Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12。其中,水洗的主要目的是去除未反应掉的助熔剂;此外,能够把把荧光粉表面的浮屑清楚干净,荧光粉表面光洁,能够提高吸收效率、降低散射、发光效率。本发明中使用的原料均为国药集团化学试剂有限公司购买。
实施例2中使用的黄绿光LED灯珠的制备方法与远红光LED灯珠的制备方法相同,区别仅在于使用的荧光粉[(Y 0.9Gd 0.1) 0.98Ce 0.02] 3Al 5O 12为从江苏博睿光电有限公司所购买的黄绿光荧光粉。
利用Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12荧光粉封装而成的远红光LED灯珠标记为LED-1。图14给出远红光LED-1灯珠的发射光谱及其与HeLa细胞吸收光谱的对比。细胞对光谱的吸收主要是由于细胞色素C氧化酶所致。从图14可见,远红光LED-1灯珠的发射光谱能够较好地满足细胞的吸收,图中“a.u.”为任意荧光强度单位,英文全称为arbitrary unit,图14以及以下的图15、图17、图18、图20、图21、图23、图24中,HeLa细胞吸收光谱引用的是文献T.I.Karu,et a.,IEEE J.Sel.Top.Quantum Electron,2001,7,982中的吸收光谱。但研究表明,细胞经远红光辐照之后,其对光谱的吸收与非激活状态下是不一样的。图15给出远红光LED-1灯珠发射光谱与经830nm远红光辐照后的HeLa细胞吸收光谱的对比。从图15可见,远红光LED-1灯珠发射光谱仅能覆盖辐照后细胞吸收光谱的一部分。图16给出远红光LED-1灯珠发射光谱与DNA合成速率作用光谱的对比。图中纵坐标H 3DPM*10 3per 4*10 5cells表示每4*10 5个细胞中作用于10 3个同位素H 3的二丙二醇甲醚。图16以及以下的图19、图22、图25中,DNA活动光谱引用的是文献T.I.Karu,IUBMB Life,2010,62,607中的DNA活动光谱,从图16 可见,远红光LED-1灯珠发射光谱能够覆盖DNA合成速率的主要活性区,说明远红光LED-1灯珠的发射光谱不仅可以覆盖细胞受激之前的吸收谱,而且远红光LED-1灯珠的发射光谱达到细胞受激之后的宽带谱,宽带谱的远红光更加有利于对糖尿病性视网膜病变进行光生物调节。
实施例3
本发明实施例3与实施例2的不同之处在于,采用Y(Al 0.96Cr 0.04) 3(BO 3) 4封装LED芯片制成远红光LED灯珠,所述Y(Al 0.96Cr 0.04) 3(BO 3) 4的制备过程包括:采用Al 2O 3、H 3BO 3以及Cr(NO 3) 3·9H 2O为原料,按照化学式Y(Al 0.96Cr 0.04) 3(BO 3) 4称取各原料,经充分研磨后装入刚玉坩埚,在大气环境下于500℃灼烧2小时,取出再研磨,然后于1250℃进行二次煅烧4小时,出炉后经研磨、水洗若干次,制得Y(Al 0.96Cr 0.04) 3(BO 3) 4
利用Y(Al 0.96Cr 0.04) 3(BO 3) 4荧光粉封装而成的远红光LED灯珠标记为LED-2。图17给出远红光LED-2灯珠的发射光谱及其与HeLa细胞吸收光谱的对比。从图17可见,远红光LED-2灯珠的发射光谱能够覆盖HeLa细胞吸收光谱的大部分区域,但LED-2灯珠发射光谱的高能边有一部光谱在HeLa细胞吸收光谱范围之外。图18给出远红光LED-2灯珠发射光谱与经830nm远红光辐照后的HeLa细胞吸收光谱的对比。从图18可见,远红光LED-2灯珠发射光谱也只能覆盖辐照后细胞吸收光谱的一部分。图19给出远红光LED-2灯珠发射光谱与DNA合成速率作用光谱的对比。从图19可见,远红光LED-2灯珠发射光谱能够覆盖DNA合成速率的主要活性区,但有部分区域无法覆盖,说明不仅远红光LED-2灯珠的发射光谱可以大部分覆盖细胞受激之前的吸收谱,而且远红光LED-2灯珠的发射光谱达到细胞受激之后的宽带谱,宽带谱的远红光更加有利于对糖尿病性视网膜病变进行光生物调节。
实施例4
本发明实施例4与实施例2的不同之处在于,采用实施例2中制备的Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12再搭配(Mg 0.97Cr 0.03) 4Nb 2O 8.98封装LED芯片制成远红光LED灯珠,Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12和(Mg 0.97Cr 0.03) 4Nb 2O 8.98的总质量比为4:6。所述(Mg 0.97Cr 0.03) 4Nb 2O 8.98的制备过程包括:采用MgO、Nb 2O 5以及Cr(NO 3) 3·9H 2O为原料,按照化学式称取各原料,添加占原料总质量2%的NH 4Cl用作助熔剂,将原料和助熔剂 混合均匀,把混合均匀后的原料和助熔剂装入刚玉坩埚,在500℃预烧2小时后取出研磨,然后于1250℃进行二次煅烧4小时,出炉后经研磨、水洗若干次,制得(Mg 0.97Cr 0.03) 4Nb 2O 8.98
利用Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12和(Mg 0.97Cr 0.03) 4Nb 2O 8.98荧光粉封装而成的远红光LED器件标记为LED-3。图20、图21和图22分别给出远红光LED-3灯珠的发射光谱及其与HeLa细胞吸收光谱、经830nm远红光辐照后的HeLa细胞吸收光谱和DNA合成速率作用光谱的对比。从中可以发现,联合采用Y 3(Al,Sc) 5O 12:Cr 3+和Mg 4Nb 2O 9:Cr 3+两种荧光粉封装的远红光LED-3器件,其发射光谱能够非常完美地覆盖HeLa细胞吸收光谱所有区域和光作用活性区,说明不仅远红光LED-3灯珠的发射光谱可以覆盖细胞受激之前的吸收谱,而且远红光LED-3灯珠的发射光谱达到细胞受激之后的宽带谱,宽带谱的远红光更加有利于对糖尿病性视网膜病变进行光生物调节。
实施例5
本发明实施例5与实施例2的不同之处在于,采用实施例2中制备的Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12再搭配Li(Sc 0.96Cr 0.04)Si 2O 6封装LED芯片制成远红光LED灯珠,Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12和Li(Sc 0.96Cr 0.04)Si 2O 6的总质量比为5:5。所述Li(Sc 0.96Cr 0.04)Si 2O 6的制备过程包括:采用Li 2CO 3、Sc 2O 3、SiO 2以及Cr(NO 3) 3·9H 2O为原料,按照化学式Li(Sc 0.96Cr 0.04)Si 2O 6称取各原料,将原料研磨后装入刚玉坩埚,在500℃预烧2小时后取出研磨,然后于1100℃进行二次煅烧8小时,出炉后经研磨制得Li(Sc 0.96Cr 0.04)Si 2O 6
利用Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12和Li(Sc 0.96Cr 0.04)Si 2O 6荧光粉封装而成的远红光LED器件标记为LED-4。图23、图24和图25分别给出远红光LED-4灯珠的发射光谱及其与HeLa细胞吸收光谱、经830nm远红光辐照后的HeLa细胞吸收光谱和DNA合成速率作用光谱的对比。图中,YAB为石榴石的通式,本发明中指的是YAl 3B 4O 12:Cr 3+。从中可以发现,联合采用YAl 3B 4O 12:Cr 3+和LiScSi 2O 6:Cr 3+两种荧光粉封装的远红光LED-4器件,其发射光谱能够非常完美地覆盖HeLa细胞吸收光谱所有区域和光作用活性区,说明不仅远红光LED-4灯珠的发射光谱可以覆盖细胞受激之前的吸收谱,而且远红光 LED-4灯珠的发射光谱达到细胞受激之后的宽带谱,宽带谱的远红光更加有利于对糖尿病性视网膜病变进行光生物调节。
实施例6
本发明实施例6与实施例2的区别在于,使用的黄绿光灯珠为采用黄绿光荧光粉[(Y 0.9Gd 0.1) 0.98Ce 0.02] 3Al 5O 12制备的黄绿光LED灯珠,所述黄绿光LED灯珠的制作过程包括:
称取黄绿光荧光粉、透明硅胶A以及透明硅胶B,其中透明硅胶A和透明B的质量比为1:1,黄绿光荧光粉占透明硅胶A和透明硅胶B总质量的10%-90%;透明硅胶A以及透明硅胶B为江西绿泰科技公司的产品,型号分别为Y550A和Y500B。
使用麦力西MT-1000真空脱泡机对黄绿光荧光粉、透明硅胶A以及透明硅胶B硅胶进行真空搅拌、脱泡得到混合均匀的粉胶;
将LED芯片固定在LED支架并在LED支架上焊上正负极,然后使用深圳轴心自控D-260点胶机把混合均匀的粉胶滴定至LED芯片上;
将LED支架连同LED芯片移入真空烘箱,在150℃真空条件下固化1~6小时,得到黄绿光LED灯珠,点亮后,利用海洋光学USB4000光纤光谱仪测试灯珠的发射光谱。LED支架和LED芯片是广东晶科电子有限公司固晶与焊线之后的半成品,型号为5730的大功率芯片。
所述黄绿光荧光粉[(Y 0.9Gd 0.1) 0.98Ce 0.02] 3Al 5O 12的制备过程包括:采用Y 2O 3、Gd 2O 3、Al 2O 3以及CeO 2为原料,按照化学式[(Y 0.9Gd 0.1) 0.98Ce 0.02] 3Al 5O 12称取各原料,添加占原料总质量2.5%的BaF 2和占原料总质量2%的H 3BO 3用作助熔剂,然后对上述原料和助熔剂混合均匀,把混合均匀后的原料和助熔剂装入刚玉坩埚在1500℃高温煅烧6小时,其中,以10℃/min升温至600℃,保温30分钟,以5℃/min升温至900℃,保温60分钟,再以5℃/min升温至1200℃,保温60分钟,以4℃/min升温至1500℃,保温480分钟,然后以5℃/min降温至900℃,保温60分钟,再以5℃/min降温至600℃,断电。高温煅烧使用管式炉在25%H 2+75%N 2还原气氛条件下进行,产物出炉后经研磨、水洗若干次,制得黄绿光荧光粉。其中,水洗的主要目的是去除未反应掉的助熔剂;此外,能够把把荧光粉表面的浮屑清楚干净,荧光粉表面光洁,能够提高吸收效率、降低散射、发光效率。
图26给出的是利用本实施例提供的黄绿光荧光粉封装的黄绿光LED灯珠发射光谱及其与人眼明视觉和暗视觉响应曲线的对比曲线图,图中光源指的就是本实施例中的黄绿光LED灯珠。在图26中没有检测到峰值为450nm的LED芯片发射光谱,说明利用荧光粉把LED芯片发射的蓝光全部转化为波长范围内457-720nm的黄绿光,该黄绿光波长峰值555nm与人眼明视觉曲线峰值一致,并且该黄绿光的高能边波长在明视觉响应曲线涵盖范围之内,因此,糖尿病人使用该光源照明能够降低视网膜外层杆状细胞的退极化,减轻黑暗适应造成的缺氧对糖尿病性视网膜病变的加重。图14-图26中,指向左侧的箭头表示以左侧纵坐标为纵坐标,指向右侧的箭头表示以右侧的纵坐标为纵坐标。
需要说明的是,本发明中的荧光粉可以采用市场上能够买到的黄绿光荧光粉以及远红光荧光粉,并不限定于本发明提供的荧光粉,本发明主要是提供具有黄绿光灯珠和远红光灯珠的灯具以满足糖尿病人居家生活照明和糖尿病性视网膜病变预防与治疗,只要能够实现黄绿光和远红光的荧光粉均可以。
通过以上技术方案,本发明提供的适用于糖尿病性视网膜病变的专用灯具具有兼顾糖尿病人居家生活照明和糖尿病性视网膜病变预防与治疗的优点,它通过将远红光灯珠集成到灯具内,使得光源含有远红光,远红光对糖尿病人的视网膜进行光生物调节,提高线粒体活性,提高细胞新陈代谢、促进组织的血液流动、激发神经与突触生长,抑制糖尿病诱导的超氧化物生成,抑制白细胞淤阻和细胞间黏附分子ICM-1的表达,保留超氧化物歧化酶(MnSOD)的表达,减少糖尿病诱发的炎症与视网膜血管异常,可以抑制糖尿病性视网膜病变的早期损伤,对糖尿病性视网膜病变起到积极治疗作用,同时黄绿光灯珠最大程度地减少人眼的黑暗适应,降低糖尿病人黑暗环境缺氧对视网膜产生的危害。另外,灯具的发射光谱峰值与人眼的明视觉响应峰值一致,且发射光谱的低能边不低于明视觉响应曲线,保证了人眼对光源有最大响应灵敏度。
在实际应用中,可以将Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12、Y(Al 0.96Cr 0.04) 3(BO 3) 4、(Mg 0.97Cr 0.03) 4Nb 2O 8.98、Li(Sc 0.96Cr 0.04)Si 2O 6中的一种或组合进行混合得到远红光荧光粉。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 适于糖尿病性视网膜病变的专用光源,其特征在于,所述光源包括:基板、黄绿光灯珠以及远红光灯珠,其中,
    所述黄绿光灯珠以及所述远红光灯珠阵列设置在所述基板上。
  2. 根据权利要求1所述的适于糖尿病性视网膜病变的专用光源,其特征在于,所述基板为平面结构、弧面结构以及异型结构中的一种或组合。
  3. 根据权利要求1所述的适于糖尿病性视网膜病变的专用光源,其特征在于,所述黄绿光灯珠的发射波长为457nm-720nm,黄绿光灯珠的发射波长峰值为555nm;所述远红光灯珠的发射波长为590-900nm,远红光灯珠的发射波长峰值为760nm。
  4. 根据权利要求1所述的适于糖尿病性视网膜病变的专用光源,其特征在于,所述黄绿光灯珠为黄绿光LED灯珠,远红光灯珠为远红光LED灯珠,远红光LED灯珠和黄绿光LED灯珠交替阵列设置在所述基板上。
  5. 一种使用权利要求1-4任一项所述的糖尿病性视网膜病变的专用光源的灯具,其特征在于,所述灯具包括:控制电源以及灯罩,其中,
    所述控制电源为黄绿光灯珠以及远红光灯珠供电;
    所述灯罩将所述基板、黄绿光灯珠以及远红光灯珠罩在内部。
  6. 根据权利要求5所述的适于糖尿病性视网膜病变的专用灯具,其特征在于,所述远远红光LED灯珠的制作过程包括:
    称取远红光荧光粉、透明硅胶A以及透明硅胶B,其中透明硅胶A和透明B的质量比为1:1,远红光荧光粉占透明硅胶A和透明硅胶B总质量的10%-90%;
    使用真空脱泡机对远红光荧光粉、透明硅胶A以及透明硅胶B硅胶进 行真空搅拌、脱泡,得到混合均匀的粉胶;
    将LED芯片固定在LED支架并在LED支架上焊上正负极,然后使用点胶机把混合均匀的粉胶滴定至LED芯片上;
    把LED支架连同LED芯片移入真空烘箱,在150℃真空条件下固化1~6小时,得到远远红光LED灯珠。
  7. 根据权利要求5所述的适于糖尿病性视网膜病变的专用灯具,其特征在于,所述黄绿光LED灯珠的制作过程包括:
    称取黄绿光荧光粉、透明硅胶A以及透明硅胶B,其中透明硅胶A和透明B的质量比为1:1,黄绿光荧光粉占透明硅胶A和透明硅胶B总质量的10%-90%;
    使用真空脱泡机对黄绿光荧光粉、透明硅胶A以及透明硅胶B硅胶进行真空搅拌、脱泡得到混合均匀的粉胶;
    将LED芯片固定在LED支架并在LED支架上焊上正负极,然后使用点胶机把混合均匀的粉胶滴定至LED芯片上;
    将LED支架连同LED芯片移入真空烘箱,在150℃真空条件下固化1~6小时,得到黄绿光LED灯珠。
  8. 根据权利要求6所述的适于糖尿病性视网膜病变的专用灯具,其特征在于,所述远红光荧光粉包括Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12、Y(Al 0.96Cr 0.04) 3(BO 3) 4、(Mg 0.97Cr 0.03) 4Nb 2O 8.98、Li(Sc 0.96Cr 0.04)Si 2O 6中的一种或组合;
    所述Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12的制备过程包括:采用Y 2O 3、Sc 2O 3、Al 2O 3以及Cr(NO 3) 3·9H 2O为原料,按照化学式Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12称取各原料,添加占原料总质量2.5%的BaF 2和占原料总质量2%的H 3BO 3用作助熔剂,然后 对上述原料和助剂搅拌均匀,把研磨后的产物装入刚玉坩埚在1500℃高温煅烧6小时,高温煅烧使用箱式炉在大气环境下进行,产物出炉后经研磨、水洗若干次,制得Y 3[(Al 0.75Sc 0.25) 0.92Cr 0.08] 5O 12
    所述Y(Al 0.96Cr 0.04) 3(BO 3) 4的制备过程包括:采用Al 2O 3、H 3BO 3以及Cr(NO 3) 3·9H 2O为原料,按照化学式Y(Al 0.96Cr 0.04) 3(BO 3) 4称取各原料,经充分研磨后装入刚玉坩埚,在大气环境下于500℃灼烧2小时,取出再研磨,然后于1250℃进行二次煅烧4小时,出炉后经研磨、水洗若干次,制得Y(Al 0.96Cr 0.04) 3(BO 3) 4
    所述(Mg 0.97Cr 0.03) 4Nb 2O 8.98的制备过程包括:采用MgO、Nb 2O 5以及Cr(NO 3) 3·9H 2O为原料,按照化学式(Mg 0.97Cr 0.03) 4Nb 2O 8.98称取各原料,添加占原料总质量2%的NH 4Cl用作助熔剂,将原料和助熔剂混合均匀,把混合均匀后的原料和助熔剂装入刚玉坩埚,在500℃预烧2小时后取出研磨,然后于1250℃进行二次煅烧4小时,出炉后经研磨、水洗若干次,制得(Mg 0.97Cr 0.03) 4Nb 2O 8.98
    所述Li(Sc 0.96Cr 0.04)Si 2O 6的制备过程包括:采用Li 2CO 3、Sc 2O 3、SiO 2以及Cr(NO 3) 3·9H 2O为原料,按照化学式Li(Sc 0.96Cr 0.04)Si 2O 6称取各原料,将原料研磨后装入刚玉坩埚,在500℃预烧2小时后取出研磨,然后于1100℃进行二次煅烧8小时,出炉后经研磨制得Li(Sc 0.96Cr 0.04)Si 2O 6。
  9. 根据权利要求7所述的适于糖尿病性视网膜病变的专用灯具,其特征在于,所述黄绿光荧光粉采用[(Y 0.9Gd 0.1) 0.98Ce 0.02] 3Al 5O 12
  10. 根据权利要求9所述的适于糖尿病性视网膜病变的专用灯具,其特征在于,[(Y 0.9Gd 0.1) 0.98Ce 0.02] 3Al 5O 12的制备过程包括:采用Y 2O 3、Gd 2O 3、Al 2O 3以 及CeO 2为原料,按照化学式[(Y 0.9Gd 0.1) 0.98Ce 0.02] 3Al 5O 12称取各原料,添加占原料总质量2.5%的BaF 2和占原料总质量2%的H 3BO 3用作助熔剂,然后对上述原料和助熔剂混合均匀,把混合均匀后的原料和助熔剂装入刚玉坩埚在1500℃高温煅烧6小时,高温煅烧使用管式炉在25%H 2+75%N 2还原气氛条件下进行,产物出炉后经研磨、水洗若干次,制得黄绿光荧光粉。
PCT/CN2019/104472 2019-08-29 2019-09-05 适于糖尿病性视网膜病变的专用光源及灯具 WO2021035782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910808430.9 2019-08-29
CN201910808430.9A CN110518004B (zh) 2019-08-29 2019-08-29 适于糖尿病性视网膜病变的专用光源及灯具

Publications (1)

Publication Number Publication Date
WO2021035782A1 true WO2021035782A1 (zh) 2021-03-04

Family

ID=68628935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104472 WO2021035782A1 (zh) 2019-08-29 2019-09-05 适于糖尿病性视网膜病变的专用光源及灯具

Country Status (2)

Country Link
CN (1) CN110518004B (zh)
WO (1) WO2021035782A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109582A (zh) * 2022-06-09 2022-09-27 合肥工业大学智能制造技术研究院 一种红光-近红外光led器件及其应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444524B (zh) * 2020-03-25 2024-03-15 亮锐有限责任公司 发射ir的辉石磷光体,和使用同一发射ir的辉石磷光体的发光器件
WO2021256369A1 (ja) * 2020-06-19 2021-12-23 パナソニックIpマネジメント株式会社 光照射型美容装置及び電子機器
CN115216295B (zh) * 2022-07-01 2024-02-27 旭宇光电(深圳)股份有限公司 近红外发光材料及其制备方法、发光装置
CN117594581A (zh) * 2024-01-08 2024-02-23 东莞市立德达光电科技有限公司 光生物调节用led及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308977A (zh) * 2000-02-15 2001-08-22 兴运实业(成都)有限公司 多源红外治疗仪
CN202546395U (zh) * 2012-03-30 2012-11-21 浙江农林大学 多功能大功率led组合灯
US20160338795A1 (en) * 2015-05-19 2016-11-24 Invuity, Inc. Multispectral light source
CN206600632U (zh) * 2017-03-08 2017-10-31 广东凯西欧照明有限公司 一种健康可靠的led器件
CN108553764A (zh) * 2018-03-21 2018-09-21 厦门通秴科技有限公司 人体康复保健治疗照明灯及系统
CN109192844A (zh) * 2018-08-30 2019-01-11 合肥工业大学智能制造技术研究院 一种用于视网膜细胞修复与再生的led发光器件及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9192780B2 (en) * 1998-11-30 2015-11-24 L'oreal Low intensity light therapy for treatment of retinal, macular, and visual pathway disorders
US20060235493A1 (en) * 2005-04-14 2006-10-19 Dotson Robert S Ophthalmic phototherapy device and associated treatment method
CN1297629C (zh) * 2005-09-01 2007-01-31 太原理工大学 一种铈、钆激活的钇铝石榴石荧光粉的制取方法
CN201643438U (zh) * 2010-03-25 2010-11-24 钱英 一种糖尿病眼病治疗仪
CN106310539A (zh) * 2016-11-21 2017-01-11 上海市第五人民医院 一种应用于代谢性疾病的光治疗装置
CN107573937A (zh) * 2017-08-01 2018-01-12 东南大学 一种用于近红外led的荧光粉材料及其制备方法
CN110085728A (zh) * 2019-04-10 2019-08-02 厦门立达信照明有限公司 实现低蓝光危害、高昼夜节律因子光线的方法及led光源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308977A (zh) * 2000-02-15 2001-08-22 兴运实业(成都)有限公司 多源红外治疗仪
CN202546395U (zh) * 2012-03-30 2012-11-21 浙江农林大学 多功能大功率led组合灯
US20160338795A1 (en) * 2015-05-19 2016-11-24 Invuity, Inc. Multispectral light source
CN206600632U (zh) * 2017-03-08 2017-10-31 广东凯西欧照明有限公司 一种健康可靠的led器件
CN108553764A (zh) * 2018-03-21 2018-09-21 厦门通秴科技有限公司 人体康复保健治疗照明灯及系统
CN109192844A (zh) * 2018-08-30 2019-01-11 合肥工业大学智能制造技术研究院 一种用于视网膜细胞修复与再生的led发光器件及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109582A (zh) * 2022-06-09 2022-09-27 合肥工业大学智能制造技术研究院 一种红光-近红外光led器件及其应用

Also Published As

Publication number Publication date
CN110518004A (zh) 2019-11-29
CN110518004B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2021035782A1 (zh) 适于糖尿病性视网膜病变的专用光源及灯具
CN102352970B (zh) 一种led光源及其照明装置
CN101238326B (zh) 手术灯
EP2968972B1 (en) Quantum dot light-emitting diodes for phototherapy
Chang et al. In vitro and in vivo efficacy of new blue light emitting diode phototherapy compared to conventional halogen quartz phototherapy for neonatal jaundice
Ebbesen et al. Update on phototherapy in jaundiced neonates
CN105870304A (zh) 一种波长可调led光源
JP2015035373A (ja) 照明ユニット及び医療用照明装置
CN103656868A (zh) 一种基于led光源的新生儿黄疸治疗仪光学装置
EP3785765A1 (en) Ocular treatment light source and ocular treatment device including same
ES2836785T3 (es) Aparatos para tratar y/o diagnosticar trastornos neurológicos psicomotores
CN203663255U (zh) 一种基于led光源的新生儿黄疸治疗仪光学装置
CN202263306U (zh) 新生儿黄疸治疗仪的蓝光led灯灯罩以及使用其的蓝光led灯
CN105749428B (zh) 一种自由曲面式新生儿黄疸光疗照明系统
Plavskiĭ et al. Phototherapeutic systems for the treatment of hyperbilirubinemia of newborns
RU2693632C1 (ru) Светодиодный источник белого света с биологически адекватным спектром излучения
AU2021101739A4 (en) Dedicated Light Source and Lamp for Diabetic Retinopathy
CN113041505A (zh) 一种用于治疗近视的灯组的使用方法
CN209630451U (zh) 一种便携式紫外光疗仪
CN206577255U (zh) 一种光治疗装置
WO2005035059A1 (en) Portable illuminator for photodynamic diagnostics
JP2003325684A (ja) 光線治療器
JPH0999106A (ja) 擬似太陽光照射装置
WO2005035058A1 (en) Mobile device for photodynamic diagnostics and therapy and methods
CN210073904U (zh) 一种垂直结构的金黄光led芯片及其护眼灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942738

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19942738

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.09.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19942738

Country of ref document: EP

Kind code of ref document: A1