WO2021035650A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021035650A1
WO2021035650A1 PCT/CN2019/103456 CN2019103456W WO2021035650A1 WO 2021035650 A1 WO2021035650 A1 WO 2021035650A1 CN 2019103456 W CN2019103456 W CN 2019103456W WO 2021035650 A1 WO2021035650 A1 WO 2021035650A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal quality
terminal device
condition
signal
Prior art date
Application number
PCT/CN2019/103456
Other languages
English (en)
French (fr)
Inventor
许斌
王宏
李秉肇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19943445.7A priority Critical patent/EP4017113B1/en
Priority to CN201980098622.3A priority patent/CN114128352B/zh
Priority to PCT/CN2019/103456 priority patent/WO2021035650A1/zh
Publication of WO2021035650A1 publication Critical patent/WO2021035650A1/zh
Priority to US17/682,488 priority patent/US20220182863A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method and device.
  • terminal equipment determines how to perform signal measurement by judging its own movement status. Assuming that the possibility of movement of the terminal device within a period of time is low, the signal quality of the cell may not be measured for a period of time, thereby saving power consumption.
  • the embodiments of the present application provide a communication method and device, which are used to provide a more accurate way to determine whether a terminal device satisfies a loose measurement rule.
  • a first communication method comprising: determining that the terminal device satisfies a first condition according to the signal quality of at least one reference signal of a serving cell, and the at least one reference signal corresponds to at least one transmission direction; The measurement is performed according to the first measurement rule.
  • the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the first communication device is a terminal device.
  • the terminal device is a terminal device, or a chip system set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the terminal device may not perform intra-frequency measurement or inter-frequency measurement, which is equivalent to determining according to the signal quality of at least one reference signal
  • the mobile state of the terminal device for example, it can be determined that the terminal device is in a stationary state or not in a mobile state. Therefore, the terminal device may not perform intra-frequency measurement or inter-frequency measurement, and at least one reference signal corresponds to different transmission directions, which is equivalent to , Direction information can be added when determining the mobile state of the terminal device, so that the accuracy of the determination result can be improved, and the impact on the communication process of the terminal device can be reduced.
  • the first measurement rule may also be referred to as the relaxation measurement rule.
  • the first measurement rule includes, for example, not performing intra-frequency measurement or inter-frequency measurement, or, for example, the first measurement rule includes one of the following or any combination of the following: reducing the measured bandwidth, reducing the number of cells to be measured, or reducing The number of frequencies measured.
  • the first measurement rule may include reducing the measured bandwidth; or, the first measurement rule may include reducing the number of measured cells and reducing the number of measured frequencies; or, the first measurement rule may include reducing the measured bandwidth and reducing the number of measured frequencies. The number of cells, and the number of frequencies to reduce the measurement, etc.
  • determining that the terminal device satisfies the first condition according to the signal quality of at least one reference signal of the serving cell of the terminal device includes:
  • the signal quality of the first reference signal of the serving cell satisfies the first sub-condition within the first time period, and it is determined that the terminal device meets the first condition, and the signal quality of the first reference signal is higher than the The signal quality of other reference signals in at least one reference signal; or,
  • the terminal device obtains the first information according to the signal quality of the at least one reference signal, determines that the first information satisfies the second sub-condition within the first duration, and determines that the terminal device meets the first condition.
  • the first reference signal may be any one of the at least one reference signal.
  • This way of determining that the terminal device satisfies the first condition is relatively simple.
  • the terminal device only needs to randomly select a reference signal, obtain the signal quality of the reference signal, and determine whether the signal quality of the reference signal satisfies the first subordinate within the first time period. The conditions are sufficient. For the terminal device, the workload is less and the power consumption is less.
  • the first reference signal may be a reference signal with the best signal quality among at least one reference signal, that is, the signal quality of the first reference signal is higher than or equal to that of the at least one reference signal except for the first reference signal.
  • the signal quality of other reference signals. This can also be understood as the beam used to transmit the first reference signal is the best beam among the at least one beam.
  • the best reference signal ie, the reference signal with the best signal quality, or the best beam, or the reference signal sent through the best beam
  • the terminal device can be considered to meet the first condition. Only one reference signal is needed to determine that the terminal device satisfies the first condition, and there is no need to process too many reference signals, which helps reduce the workload of the terminal device.
  • the terminal device can also determine that the terminal device satisfies the first condition based on the signal quality of the M reference signals, which is equivalent to that the terminal device can consider the second signal quality of multiple reference signals by determining the second signal quality of the multiple reference signals Whether the first sub-condition is satisfied can improve the accuracy of the determination result.
  • the terminal device may also obtain the first information according to the at least one signal quality of the at least one reference signal, and determine whether the first information meets the second sub-condition, which is equivalent to comprehensively determining whether the signal quality of the at least one reference signal meets the second sub-condition.
  • the accuracy of the determination result can be improved.
  • the method further includes:
  • the terminal device is at the edge position of the serving cell of the terminal device, or it is determined that the terminal device satisfies the criterion for performing neighboring cell measurement.
  • the terminal device can continue to determine whether the terminal device meets the first condition.
  • the terminal device in the center of the cell may be relatively stable. The possibility of handover or reselection is small, and normal operation may not be affected even if measurement is not performed, or it can be said that the terminal equipment in the center of the cell may not need to perform measurement. Therefore, the terminal device in the center of the cell will need to use the loose measurement rules. Therefore, if the terminal device is in the center of the cell, it can be determined whether the terminal device satisfies the first condition, so that the technical solutions provided in the embodiments of this application can be applied to more Terminal equipment in demand.
  • the terminal device does not need to determine whether the terminal device meets the first condition.
  • the terminal device can directly perform intra-frequency measurement or inter-frequency measurement normally, thereby reducing the need to determine whether the terminal device meets the first condition.
  • the power consumption caused by a condition.
  • the satisfied criterion for performing neighbor cell measurement is, for example, the S criterion.
  • the S criterion means that the power of the current serving cell of the terminal device is lower than or equal to the power threshold for enabling the neighboring cell measurement, or the signal quality of the current serving cell of the terminal device is lower than or equal to the signal quality threshold for enabling the neighboring cell measurement Or, the power of the current serving cell of the terminal device is lower than or equal to the power threshold for enabling neighboring cell measurement, and the signal quality of the current serving cell of the terminal device is lower than or equal to the signal quality threshold for enabling neighboring cell measurement.
  • the first sub-condition includes:
  • the difference between the first signal quality of one reference signal and the second signal quality of the one reference signal is less than or equal to the first threshold, and the first signal quality of the one reference signal is the value corresponding to the one reference signal.
  • the second signal quality of the one reference signal is the current signal quality of the one reference signal.
  • the first signal quality can be used as a reference value, and the change amount of the signal quality of the reference signal can be determined by the first signal quality. If the change in signal quality of a reference signal is small, that is, less than or equal to the first threshold, the signal quality of the reference signal is considered to meet the first sub-condition (or in other words, the second signal quality of the reference signal is considered to meet the first sub-condition). (A sub-condition), otherwise, if the signal quality of a reference signal changes greatly, for example, greater than the first threshold, it is considered that the signal quality of the reference signal does not meet the first sub-condition (or, in other words, the first sub-condition of the reference signal is considered 2. The signal quality does not meet the first sub-condition).
  • the first information satisfies the following formula:
  • S represents the first information
  • i represents the sequence number of the i-th reference signal in the at least one reference signal
  • N represents the number of the at least one reference signal
  • S i represents the i-th reference signal
  • the second signal quality of S ref, i represents the first signal quality of the i-th reference signal.
  • the first information may comprehensively indicate the amount of change of at least one reference signal. If the change in signal quality of at least one reference signal is small, that is, less than or equal to the second threshold, the signal quality of the reference signal is considered to meet the second sub-condition (or in other words, the second signal quality of the reference signal is considered to meet The second sub-condition), otherwise, if the signal quality of a reference signal has a large change, for example, greater than the second threshold, it is considered that the signal quality of the reference signal does not meet the second sub-condition (or, it is considered that the signal quality of the reference signal The second signal quality does not meet the second sub-condition). Considering the change of at least one reference signal comprehensively, the accuracy of the determination result can be improved.
  • the second sub-condition includes:
  • S is less than or equal to the second threshold, or S/N is less than or equal to the second threshold.
  • the second sub-condition is S less than or equal to the second threshold or S/N less than or equal to the second threshold, it can be determined by the terminal device, configured by the network device, or specified by agreement.
  • the method further includes:
  • the terminal device After the terminal device performs cell selection or cell reselection, or when the second signal quality of a reference signal is greater than the first signal quality of the reference signal, or when the terminal device does not meet the requirements of the When the duration of the first condition reaches the second duration,
  • the terminal device sets the first signal quality of the one reference signal to the second signal quality of the one reference signal.
  • Each reference signal in the at least one reference signal can correspond to a first signal quality.
  • the corresponding first signal quality can be used to determine whether the second signal quality of the reference signal meets the corresponding condition For example, it is determined whether the second signal quality of the reference signal satisfies the first sub-condition or the second sub-condition.
  • the quality of the first signal corresponding to different reference signals may be equal or not equal.
  • At least one reference signal corresponds to at least one first signal quality, and at least one first signal quality may be preset. This is just an example to describe how to set the first signal quality.
  • the first signal quality corresponding to a reference signal is initially equal to the second signal quality of the reference signal. If the second signal quality of the reference signal may change, the first signal quality can be reset accordingly.
  • setting the first signal quality corresponding to the reference signal as the second signal quality of the reference signal can be understood as setting the value of the first signal quality corresponding to the reference signal as the second signal of the reference signal The value of quality.
  • the method before the measurement is performed according to the first measurement rule, the method further includes:
  • the method before the measurement is performed according to the first measurement rule, the method further includes:
  • the duration of the same-frequency measurement or inter-frequency measurement performed by the terminal device is greater than or equal to the first duration.
  • the terminal device adopts the first measurement rule, provided that any one of the following conditions or any combination of the following multiple conditions is satisfied: the terminal device satisfies the first condition, and the cell reselection is performed last time
  • the duration of is less than or equal to the third duration, or, since the last cell selection or cell reselection, the duration of intra-frequency measurement or inter-frequency measurement performed by the terminal device is greater than or equal to the first duration.
  • the terminal device may not perform intra-frequency measurement or inter-frequency measurement; or, the terminal device meets the first condition, and the time period since the last cell reselection is less than or equal to the third time period, Then the terminal device can use the first measurement rule.
  • the terminal device in addition to determining that the terminal device satisfies the first condition, it also needs to determine that the time period since the last cell reselection is less than or equal to the third Duration; or, the terminal device satisfies the first condition, the time period since the last cell reselection was performed is less than or equal to the third time period, and since the last cell selection or cell reselection, the terminal device performs same-frequency measurement or different If the duration of the frequency measurement is greater than or equal to the first duration, the terminal device may not perform intra-frequency measurement or inter-frequency measurement.
  • the distance must also be determined
  • the duration of the last cell reselection is less than or equal to the third duration, and it needs to be determined that since the last cell selection or cell reselection, the duration of the same-frequency measurement or inter-frequency measurement performed by the terminal device is greater than or equal to the first duration, and many more.
  • a second communication method includes: determining that the terminal device satisfies a second condition according to the signal quality of at least one reference signal of the serving cell of the terminal device, and the at least one reference signal corresponds to the at least one reference signal. Sending direction; it is determined that the terminal device does not meet the relaxation measurement rule.
  • the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the second communication device is a terminal device.
  • the terminal device is a terminal device, or a chip system set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the terminal device can be determined according to the signal quality of at least one reference signal of the serving cell of the terminal device that the terminal device does not meet the relaxation measurement rule, and the at least one reference signal corresponds to different transmission directions, which is equivalent to determining that the terminal device Direction information can be added when the device meets the loose measurement rules, which can improve the accuracy of the judgment result. If the terminal device does not meet the loose measurement rules, the terminal device can continue to perform the measurement process to pass the measurement in time when a cell handover is required choose a more suitable cell to ensure the normal progress of the communication process of the terminal equipment and reduce the impact on the communication process of the terminal equipment.
  • determining that the terminal device satisfies the second condition according to the signal quality of at least one reference signal of the serving cell of the terminal device includes:
  • the first reference signal may be any one of the at least one reference signal.
  • only one of the at least one reference signal needs to be randomly selected, and as long as the signal quality of the reference signal meets the third sub-condition, the terminal can be considered
  • the device meets the second condition. This way of determining that the terminal device meets the second condition is relatively simple.
  • the terminal device only needs to randomly select a reference signal, obtain the signal quality of the reference signal, and determine whether the signal quality of the reference signal meets the third sub-condition. For the device, the workload is less and the power consumption is less.
  • the first reference signal may be a reference signal with the best signal quality among at least one reference signal, that is, the signal quality of the first reference signal is higher than or equal to that of the at least one reference signal except for the first reference signal.
  • the signal quality of other reference signals. This can also be understood as the beam used to transmit the first reference signal is the best beam among the at least one beam.
  • the best reference signal ie, the reference signal with the best signal quality, or the best beam, or the reference signal sent through the best beam
  • the signal quality of the best reference signal meets the third sub-condition, it can be considered that the terminal device meets the second condition. Only one reference signal is needed to determine that the terminal device satisfies the second condition, and there is no need to process too many reference signals, which helps reduce the workload of the terminal device.
  • the terminal device may also determine that the terminal device satisfies the second condition based on the signal quality of the M reference signals, which is equivalent to that the terminal device may consider the second signal quality of multiple reference signals by determining the second signal quality of the multiple reference signals Whether the third sub-condition is satisfied can improve the accuracy of the determination result.
  • the terminal device may also obtain the first information according to the at least one signal quality of the at least one reference signal, and determine whether the first information meets the fourth sub-condition, which is equivalent to comprehensively determining whether the signal quality of the at least one reference signal meets the fourth sub-condition.
  • the accuracy of the determination result can be improved.
  • the method further includes:
  • the terminal device is in the center position of the serving cell of the terminal device, or it is determined that the terminal device does not meet the criterion for performing neighbor cell measurement.
  • the terminal device can continue to determine whether the terminal device meets the second condition.
  • the terminal device at the edge of the cell may be in a mobile state. For example, the possibility of cell handover or reselection is relatively high.
  • the measurement is used to select a suitable cell, or it can be said that the terminal equipment at the edge of the cell may need to perform measurement. Therefore, the terminal equipment at the edge of the cell may not be suitable for using the relaxed measurement rule. Therefore, if the terminal equipment is at the edge of the cell, it can be determined whether the terminal equipment meets the second condition. If it is satisfied, the relaxed measurement rule may not be used, so that
  • the technical solutions provided in the embodiments of the present application can be applied to more demanding terminal devices.
  • the unsatisfied criterion for performing neighboring cell measurement is, for example, the S criterion.
  • the S criterion means that the power of the current serving cell of the terminal device is lower than or equal to the power threshold for enabling neighbor cell measurement. Then, if the power of the current serving cell of the terminal device is greater than the power threshold for enabling neighbor cell measurement, it is not satisfied S criterion; or, S criterion means that the signal quality of the current serving cell of the terminal device is lower than or equal to the signal quality threshold for enabling neighboring cell measurement, then if the signal quality of the current serving cell of the terminal device is greater than that for enabling neighbor cell measurement
  • the signal quality threshold means that the S criterion is not met; or, the power of the current serving cell of the terminal device is lower than or equal to the power threshold for enabling neighboring cell measurement, and the signal quality of the current serving cell of the terminal device is lower than or equal to enabling neighboring cell measurement If the power of the current serving cell of the terminal device is
  • the third sub-condition includes:
  • the difference between the first signal quality of one reference signal and the second signal quality of the one reference signal is greater than or equal to the first threshold, and the first signal quality of the one reference signal is the value corresponding to the one reference signal.
  • the second signal quality of the one reference signal is the current signal quality of the one reference signal.
  • the first signal quality can be used as a reference value, and the change amount of the signal quality of the reference signal can be determined by the first signal quality. If the change in signal quality of a reference signal is large, that is, greater than or equal to the first threshold, the signal quality of the reference signal is considered to meet the third sub-condition (or in other words, the second signal quality of the reference signal is considered to meet the first Three sub-conditions). Otherwise, if the change in the signal quality of a reference signal is small, for example, less than the first threshold, it is considered that the signal quality of the reference signal does not meet the third sub-condition (or in other words, the reference signal is considered to be the first 2. The signal quality does not meet the third sub-condition).
  • the first information satisfies the following formula:
  • S represents the first information
  • i represents the sequence number of the i-th reference signal in the at least one reference signal
  • N represents the number of the at least one reference signal
  • S i represents the i-th reference signal
  • the second signal quality of S ref, i represents the first signal quality of the i-th reference signal.
  • the first information may comprehensively indicate the amount of change of at least one reference signal. If the signal quality of at least one reference signal has a large change, that is, greater than or equal to the second threshold, the signal quality of the reference signal is considered to meet the fourth sub-condition (or in other words, the second signal quality of the reference signal is considered to meet The fourth sub-condition). Otherwise, if the change in the signal quality of a reference signal is small, for example, less than the second threshold, it is considered that the signal quality of the reference signal does not meet the fourth sub-condition (or that the reference signal's The second signal quality does not meet the fourth sub-condition). Considering the change of at least one reference signal comprehensively, the accuracy of the determination result can be improved.
  • the fourth sub-condition includes:
  • S is greater than or equal to the second threshold, or S/N is greater than or equal to the second threshold.
  • Whether the second sub-condition is S greater than or equal to the second threshold or S/N greater than or equal to the second threshold can be determined by the terminal device, configured by the network device, or specified by agreement.
  • the method also includes:
  • the terminal device After the terminal device performs cell selection or cell reselection, or when the second signal quality of a reference signal is greater than the first signal quality of the one reference signal, or when the terminal device satisfies the first signal quality When the duration of the second condition reaches the first duration,
  • the terminal device sets the second signal quality of the one reference signal to the first signal quality of the one reference signal.
  • Each reference signal in the at least one reference signal can correspond to a first signal quality.
  • the corresponding first signal quality can be used to determine whether the second signal quality of the reference signal meets the corresponding condition For example, it is determined whether the second signal quality of the reference signal satisfies the third sub-condition or the fourth sub-condition.
  • the quality of the first signal corresponding to different reference signals may be equal or not equal.
  • the at least one reference signal corresponds to at least one first signal quality, and the at least one first signal quality may be preset. Here, only an example of how to set the first signal quality is described. For example, the first signal quality corresponding to a reference signal is initially equal to the second signal quality of the reference signal.
  • the first signal quality can be reset accordingly.
  • setting the first signal quality corresponding to the reference signal as the second signal quality of the reference signal can be understood as setting the value of the first signal quality corresponding to the reference signal as the second signal of the reference signal The value of quality.
  • the method further includes:
  • the terminal equipment performs intra-frequency measurement or inter-frequency measurement.
  • the terminal device can continue to perform the normal measurement process.
  • the terminal device can perform intra-frequency measurement or inter-frequency measurement.
  • the embodiment of this application does not limit how the specific normal measurement process is performed. .
  • a communication device is provided, for example, the communication device is the first communication device as described above.
  • the first communication device is configured to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the first communication device may include a module for executing the method in the first aspect or any possible implementation manner of the first aspect, for example, including a processing module.
  • it may also include a transceiver module.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device. In the following, it is taken as an example that the first communication device is a terminal device. among them,
  • the processing module is configured to determine that the terminal device satisfies the first condition according to the signal quality of the at least one reference signal of the serving cell, and the at least one reference signal corresponds to at least one transmission direction;
  • the processing module is also used to perform measurement according to the first measurement rule.
  • the processing module is configured to determine that the terminal device satisfies the first condition:
  • the signal quality of the first reference signal of the serving cell satisfies the first sub-condition within the first time period, and it is determined that the terminal device meets the first condition, and the signal quality of the first reference signal is higher than the The signal quality of other reference signals in at least one reference signal; or,
  • the processing module is further configured to determine that the terminal device is in the serving cell of the terminal device according to the signal quality of the at least one reference signal Or determine that the terminal device satisfies the criteria for performing neighboring cell measurement.
  • the first sub-condition includes:
  • the difference between the first signal quality of one reference signal and the second signal quality of the one reference signal is less than or equal to the first threshold, and the first signal quality of the one reference signal is the value corresponding to the one reference signal.
  • the second signal quality of the one reference signal is the current signal quality of the one reference signal.
  • the first information satisfies the following formula:
  • S represents the first information
  • i represents the sequence number of the i-th reference signal in the at least one reference signal
  • N represents the number of the at least one reference signal
  • S i represents the i-th reference signal
  • the second signal quality of S ref, i represents the first signal quality of the i-th reference signal.
  • the second sub-condition includes:
  • S is less than or equal to the second threshold, or S/N is less than or equal to the second threshold.
  • the processing module is further configured to:
  • the terminal device After the terminal device performs cell selection or cell reselection, or when the second signal quality of a reference signal is greater than the first signal quality of the reference signal, or when the terminal device does not meet the requirements of the When the duration of the first condition reaches the second duration,
  • the first signal quality of the one reference signal is set to the second signal quality of the one reference signal.
  • the processing module is further configured to determine that the time period from the last cell reselection is less than or equal to the first measurement rule before the measurement is performed according to the first measurement rule. Three hours.
  • the processing module is further configured to determine that since the last time cell selection or cell reselection is performed before performing measurement according to the first measurement rule, The duration for the terminal device to perform intra-frequency measurement or inter-frequency measurement is greater than or equal to the first duration.
  • a communication device is provided, for example, the communication device is the second communication device as described above.
  • the first communication device is configured to execute the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • the first communication device may include a module for executing the second aspect or the method in any possible implementation manner of the second aspect, for example, including a processing module.
  • it may also include a transceiver module.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device. In the following, it is taken as an example that the first communication device is a terminal device. among them,
  • the processing module is configured to determine that the terminal device satisfies a second condition according to the signal quality of the at least one reference signal of the serving cell of the terminal device, and the at least one reference signal corresponds to at least one transmission direction;
  • the processing module is also used to determine that the terminal device does not satisfy the relaxation measurement rule.
  • the processing module is configured to determine that the terminal device satisfies the second condition:
  • the processing module is further configured to determine that the terminal device is in the serving cell of the terminal device according to the signal quality of the at least one reference signal Or it is determined that the terminal device does not meet the criteria for performing neighboring cell measurement.
  • the third sub-condition includes:
  • the difference between the first signal quality of one reference signal and the second signal quality of the one reference signal is greater than or equal to the first threshold, and the first signal quality of the one reference signal is the value corresponding to the one reference signal.
  • the second signal quality of the one reference signal is the current signal quality of the one reference signal.
  • the first information satisfies the following formula:
  • S represents the first information
  • i represents the sequence number of the i-th reference signal in the at least one reference signal
  • N represents the number of the at least one reference signal
  • S i represents the i-th reference signal
  • the second signal quality of S ref, i represents the first signal quality of the i-th reference signal.
  • the fourth sub-condition includes:
  • S is greater than or equal to the second threshold, or S/N is greater than or equal to the second threshold.
  • the processing module is further configured to:
  • the terminal device After the terminal device performs cell selection or cell reselection, or when the second signal quality of a reference signal is greater than the first signal quality of the one reference signal, or when the terminal device satisfies the first signal quality When the duration of the second condition reaches the first duration,
  • the second signal quality of the one reference signal is set to the first signal quality of the one reference signal.
  • the processing module is further configured to perform intra-frequency measurement or inter-frequency measurement.
  • the processing module is further configured to perform intra-frequency measurement or inter-frequency measurement when it is determined that the terminal device does not meet the relaxation measurement rule or after it is determined that the terminal device does not meet the relaxation measurement rule.
  • a communication device is provided.
  • the communication device is, for example, the first communication device as described above.
  • the communication device includes a processor.
  • it may also include a transceiver.
  • the processor and the transceiver are coupled with each other, and are used to implement the foregoing first aspect or the methods described in various possible implementation manners of the first aspect.
  • the first communication device may further include a memory.
  • the processor, the memory, and the transceiver are coupled with each other, and are used to implement the foregoing first aspect or the methods described in various possible implementation manners of the first aspect.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the first communication device is a terminal device.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver is, for example, a communication interface in the chip, and the communication interface is connected with a radio frequency transceiver component in the communication device to implement information transmission and reception through the radio frequency transceiver component.
  • the communication interface is used to communicate with other devices
  • the processor is configured to determine, according to the signal quality of the at least one reference signal of the serving cell, that the terminal device satisfies a first condition, and perform measurement according to a first measurement rule, and the at least one reference signal corresponds to at least one transmission direction.
  • the processor is configured to determine that the terminal device satisfies the first condition according to the signal quality of at least one reference signal of the serving cell of the terminal device in the following manner :
  • the signal quality of the first reference signal of the serving cell satisfies the first sub-condition within the first time period, and it is determined that the terminal device meets the first condition, and the signal quality of the first reference signal is higher than the The signal quality of other reference signals in at least one reference signal; or,
  • the processor is further configured to determine that the terminal device is in the serving cell of the terminal device according to the signal quality of the at least one reference signal Or determine that the terminal device satisfies the criteria for performing neighboring cell measurement.
  • the first sub-condition includes:
  • the difference between the first signal quality of one reference signal and the second signal quality of the one reference signal is less than or equal to the first threshold, and the first signal quality of the one reference signal is the value corresponding to the one reference signal.
  • the second signal quality of the one reference signal is the current signal quality of the one reference signal.
  • the first information satisfies the following formula:
  • S represents the first information
  • i represents the sequence number of the i-th reference signal in the at least one reference signal
  • N represents the number of the at least one reference signal
  • S i represents the i-th reference signal
  • the second signal quality of S ref, i represents the first signal quality of the i-th reference signal.
  • the second sub-condition includes:
  • S is less than or equal to the second threshold, or S/N is less than or equal to the second threshold.
  • the processor is further configured to:
  • the terminal device After the terminal device performs cell selection or cell reselection, or when the second signal quality of a reference signal is greater than the first signal quality of the reference signal, or when the terminal device does not meet the requirements of the When the duration of the first condition reaches the second duration,
  • the first signal quality of the one reference signal is set to the second signal quality of the one reference signal.
  • the processor is further configured to, before performing measurement according to the first measurement rule, determine that the time period from the last cell reselection is less than or equal to the first measurement rule. Three hours.
  • the processor is further configured to determine that since the last time cell selection or cell reselection was performed before performing measurement according to the first measurement rule, The duration for the terminal device to perform intra-frequency measurement or inter-frequency measurement is greater than or equal to the first duration.
  • a communication device is provided.
  • the communication device is, for example, the second communication device as described above.
  • the communication device includes a processor.
  • it may also include a transceiver.
  • the processor and the transceiver are coupled with each other, and are used to implement the foregoing second aspect or the methods described in various possible implementation manners of the second aspect.
  • the first communication device may further include a memory.
  • the processor, the memory, and the transceiver are coupled with each other, and are used to implement the foregoing second aspect or the methods described in various possible implementation manners of the second aspect.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the communication device to implement information transmission and reception through the radio frequency transceiver component.
  • the communication interface is used to communicate with other devices
  • the processor is configured to determine that the terminal device satisfies a second condition according to the signal quality of the at least one reference signal of the serving cell of the terminal device, and determine that the terminal device does not meet the relaxation measurement rule, the at least one reference The signal corresponds to at least one transmission direction.
  • the processor is configured to determine that the terminal device satisfies the second condition according to the signal quality of at least one reference signal of the serving cell of the terminal device in the following manner :
  • the processor is further configured to determine that the terminal device is in the serving cell of the terminal device according to the signal quality of the at least one reference signal Or it is determined that the terminal device does not meet the criteria for performing neighboring cell measurement.
  • the third sub-condition includes:
  • the difference between the first signal quality of one reference signal and the second signal quality of the one reference signal is greater than or equal to the first threshold, and the first signal quality of the one reference signal is the value corresponding to the one reference signal.
  • the second signal quality of the one reference signal is the current signal quality of the one reference signal.
  • the first information satisfies the following formula:
  • S represents the first information
  • i represents the sequence number of the i-th reference signal in the at least one reference signal
  • N represents the number of the at least one reference signal
  • S i represents the i-th reference signal
  • the second signal quality of S ref, i represents the first signal quality of the i-th reference signal.
  • the fourth sub-condition includes:
  • S is greater than or equal to the second threshold, or S/N is greater than or equal to the second threshold.
  • the processor is further configured to:
  • the terminal device After the terminal device performs cell selection or cell reselection, or when the second signal quality of a reference signal is greater than the first signal quality of the one reference signal, or when the terminal device satisfies the first signal quality When the duration of the second condition reaches the first duration,
  • the second signal quality of the one reference signal is set to the first signal quality of the one reference signal.
  • the processor is further configured to perform intra-frequency measurement or inter-frequency measurement.
  • the processor is further configured to perform intra-frequency measurement or inter-frequency measurement when it is determined that the terminal device does not meet the relaxation measurement rule or after it is determined that the terminal device does not meet the relaxation measurement rule.
  • a communication device may be the first communication device in the above method design.
  • the first communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the communication device includes: a communication interface for sending and receiving information, or in other words, for communicating with other devices; and a processor, where the processor is coupled with the communication interface.
  • the communication device may further include a memory for storing computer executable program code.
  • the communication device may not include a memory, and the memory may be located outside the communication device.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the foregoing first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the communication interface may be a transceiver in the first communication device, for example, implemented by an antenna, a feeder, and a codec in the communication device.
  • the communication interface may be an input/output interface of the chip, such as an input/output pin.
  • a communication device may be the second communication device in the above method design.
  • the second communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the communication device includes: a communication interface for sending and receiving information, or in other words, for communicating with other devices; and a processor, where the processor is coupled with the communication interface.
  • the communication device may further include a memory for storing computer executable program code.
  • the communication device may not include a memory, and the memory may be located outside the communication device.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the foregoing second aspect or the method in any one of the possible implementation manners of the second aspect.
  • the communication interface may be a transceiver in the second communication device, for example, implemented by an antenna, a feeder, and a codec in the second communication device.
  • the communication interface may be an input/output interface of the chip, such as an input/output pin.
  • a communication system which includes the communication device described in the third aspect, the communication device described in the fifth aspect, or the communication device described in the seventh aspect; and/or, the communication system includes a first The communication device described in the fourth aspect, the communication device described in the sixth aspect, or the communication device described in the eighth aspect.
  • a computer storage medium is provided, and the computer-readable storage medium is used to store computer instructions.
  • the computer instructions run on a computer, the computer executes the first aspect or any of the first aspects. The method described in one possible implementation.
  • a computer storage medium is provided.
  • the computer-readable storage medium is used to store computer instructions.
  • the computer instructions run on a computer, the computer executes the second aspect or the second aspect described above. The method described in any one of the possible implementations.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the first aspect or the first aspect described above.
  • a computer program product containing instructions is provided.
  • the computer program product is used to store computer instructions.
  • the computer instructions run on a computer, the computer can execute the second aspect or the second aspect. The method described in any one of the possible implementations.
  • At least one reference signal corresponds to different sending directions, which is equivalent to adding direction information when determining the movement state of the terminal device, thereby improving the accuracy of the determination result and reducing the communication to the terminal device. The impact of the process.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the application
  • FIG. 2 is a flowchart of the first communication method provided by an embodiment of this application.
  • Figure 3 is a schematic diagram of a beam
  • FIG. 4 is a schematic diagram of the second signal quality of the reference signal provided by an embodiment of the application.
  • FIG. 5 is a flowchart of a second communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of the second signal quality of the reference signal provided by an embodiment of this application.
  • FIG. 7 is a schematic block diagram of a first terminal device provided by an embodiment of this application.
  • FIG. 8 is another schematic block diagram of the first terminal device provided by an embodiment of this application.
  • FIG. 9 is a schematic block diagram of a second type of terminal device provided by an embodiment of this application.
  • FIG. 10 is another schematic block diagram of a second type of terminal device according to an embodiment of this application.
  • FIG. 11 is a schematic block diagram of a communication device provided by an embodiment of the application.
  • FIG. 12 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is still another schematic block diagram of the communication device provided by an embodiment of the application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity Sexual equipment.
  • it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber) station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber station (subscriber) station)
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user Agent
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • OBU on-board unit
  • the terminal device may also include a relay.
  • a relay it can be understood that all devices that can perform data communication with the base station can be regarded as terminal devices.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • V2X vehicle-to-everything
  • the base station can be used to convert the received air frame and IP packet to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in a long term evolution (LTE) system or an advanced long term evolution (LTE-A). Or it may also include the next generation node B (gNB) in the new radio (NR) system (also referred to as the NR system) of the fifth generation mobile communication technology (5th generation, 5G), or it may also include
  • gNB next generation node B
  • NR new radio
  • 5th generation 5th generation
  • the centralized unit (CU) and distributed unit (DU) in a cloud radio access network (cloud radio access network, Cloud RAN) system are not limited in this embodiment of the application.
  • the network equipment may also include core network equipment.
  • core network equipment because the embodiment of the present application does not involve core network equipment, it is mainly the interaction between the access network equipment and the terminal equipment. Therefore, the network device described in the embodiment of the present application may refer to an access network device.
  • Beam means that the base station transmits energy in a certain direction within a certain period of time, forming a beam-like energy area, so as to provide communication services for terminal devices in this direction.
  • At least one means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first condition and the second condition are only for distinguishing different conditions, but do not indicate the difference in content, priority, or importance of the two conditions.
  • the terminal equipment needs to periodically measure the signal quality of the serving cell. If the signal quality of the serving cell is lower than a certain threshold, the terminal equipment can measure the same frequency or different frequencies so that it can be used as the same frequency cell or When the signal quality of the inter-frequency cell meets certain conditions, the terminal device can perform cell reselection to reselect other cells.
  • the location of the terminal device may be relatively fixed.
  • the location of some terminal devices is relatively fixed. of.
  • the serving cell and neighboring cells are relatively fixed. Even if the terminal equipment performs periodic measurement, the measurement results may not be much different. In this case, the terminal equipment performs periodic measurement, which is equivalent to Invalid operation is done, which makes the power consumption of the terminal device larger.
  • a loose measurement rule has been introduced: assuming that within a period of time (for example, 5 minutes), the signal quality of the serving cell measured by the terminal equipment does not exceed the threshold, the terminal equipment can consider this The terminal equipment satisfies the relaxed measurement rule. Under the condition of satisfying the loose measurement rules, the terminal equipment can relax the same frequency measurement or different frequency measurement. For example, the terminal equipment can not measure the same frequency or different frequency for a long period of time (for example, 24 hours), so as to achieve power saving. purpose.
  • the terminal device moves in a circular motion around the base station, the signal quality of the terminal device’s serving cell changes very little. If it does not exceed the threshold, the terminal device will think that the terminal device meets the loose measurement rules, and the terminal device may be in a long period of time. The same frequency or different frequency is not measured within the time. Then, if the terminal device moves to the edge of the serving cell at a certain moment, but because the terminal device does not measure the same frequency or different frequencies, cell reselection cannot be performed, which will affect the subsequent communication services.
  • the technical solutions of the embodiments of the present application are provided.
  • it can be determined according to the signal quality of at least one reference signal of the serving cell of the terminal device that the terminal device may not perform intra-frequency measurement or inter-frequency measurement, which is equivalent to determining according to the signal quality of at least one reference signal
  • the mobile state of the terminal device for example, it can be determined that the terminal device is in a stationary state or not in a mobile state.
  • the terminal device may not perform intra-frequency measurement or inter-frequency measurement, and at least one reference signal corresponds to at least one transmission direction, which is equivalent to , Direction information can be added when determining the mobile state of the terminal device, so that the accuracy of the determination result can be improved, and the impact on the communication process of the terminal device can be reduced.
  • Figure 1 includes network equipment and terminal equipment.
  • terminal device 1 is a TV
  • terminal device 2 is a router
  • terminal device 3 is a kettle
  • terminal device 4 is a water cup
  • terminal device 5 is a mobile phone
  • terminal device 6 is printer.
  • the terminal device 5 can also be used as a relay between the terminal device 4 and the terminal device 6.
  • the uplink communication between the terminal device 4 and the terminal device 6 needs to be forwarded through the relay, that is, the terminal device 4 first sends the uplink signal to the terminal device 5.
  • the terminal device 5 forwards the uplink signal received from the terminal device 4 to the network device, so that the network device can receive the uplink signal from the terminal device 4.
  • the same is true for the terminal device 6.
  • both the terminal device 4 and the terminal device 6 can directly receive the downlink signal from the network device without forwarding through a relay.
  • the network device in FIG. 1 is, for example, a base station.
  • network equipment can correspond to different equipment in different systems.
  • 4G fourth generation mobile communication technology
  • 5G 5th generation
  • network equipment in the network such as gNB.
  • the embodiment of the present application provides a first communication method. Please refer to FIG. 2, which is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 1 is taken as an example.
  • the method can be executed by two communication devices, such as a first communication device and a second communication device, where the first communication device can be a network device or can support the network device to implement the functions required by the method.
  • the communication device or the first communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course it may also be other communication devices, such as a chip system. The same is true for the second communication device.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, or the second communication device may be a terminal device or capable of supporting the terminal device to implement the method.
  • the communication device with the required functions can of course also be other communication devices, such as a chip system.
  • the first communication device may be a network device
  • the second communication device is a terminal device, or both the first communication device and the second communication device are network devices.
  • the device, or the first communication device and the second communication device are both terminal devices, or the first communication device is a network device
  • the second communication device is a communication device capable of supporting the terminal device to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • the execution of the method by the terminal device and the network device is taken as an example, that is, the first communication device is a terminal device and the second communication device is a network device as an example.
  • the network device described below may be the network device in the network architecture shown in FIG. 1, and the terminal device described below may be Figure 1 shows the terminal equipment in the network architecture.
  • the network device sends at least one reference signal to the terminal device, and the terminal device receives the at least one reference signal from the network device in the serving cell of the terminal device.
  • the at least one reference signal corresponds to at least one transmission direction.
  • Beam means that a network device emits energy in a certain direction within a certain period of time, forming an energy area similar to a beam, so as to provide communication services for terminal devices in this direction.
  • network equipment can adopt a time division method to transmit energy to different directions at different time periods, and can cover 360° directions in one cycle.
  • beams There are four beams, namely beam 1, beam 2, beam 3, and beam 4.
  • the transmission period of the network device is 40s.
  • the network device can transmit beam 1 to the true south direction in the first 10 seconds, covering a 90° range, and in the next ten seconds, transmit beam 2 to the west, covering a 90° range, and then beam 3 in the next ten seconds. Transmit to the true north direction, covering the 90° range, and in the last ten seconds, the beam 4 is launched to the true east direction, covering the 90° range. Therefore, the beam 1, beam 2, beam 3, and beam 4 cover a range of 360° within 40 seconds.
  • At least one reference signal corresponds to at least one transmission direction
  • at least one reference signal corresponds to at least one beam
  • the network device transmits at least one reference signal through at least one beam, where the beam is considered There is a one-to-one correspondence with the reference signal.
  • Different beams point to different directions, and at least one beam sent by the network device may point to at least one sending direction.
  • the network device sends one reference signal through one beam in one direction. Therefore, it can also be described as that at least one reference signal corresponds to at least one sending direction.
  • the identification of the reference signal may correspond to the identification of the beam on a one-to-one basis, or the identification of the reference signal may also be used as the identification of the beam.
  • a reference signal in a certain direction, and a beam in a certain direction these two concepts can be regarded as the same concept.
  • the at least one reference signal may include one reference signal, or may also include multiple reference signals. If one reference signal is included, at least one reference signal can also be understood as one reference signal; or, if multiple reference signals are included, at least one reference signal can also be understood as at least two reference signals, for example, including two reference signals. Signal, three reference signals or more reference signals.
  • the terminal device determines that the terminal device satisfies the first condition according to the signal quality of the at least one reference signal, and the at least one reference signal corresponds to at least one transmission direction.
  • the terminal device may measure the signal quality of the received at least one reference signal, so as to determine whether the terminal device satisfies the first condition. Regarding whether the terminal device satisfies the first condition, multiple implementation manners may be included, which are described below with examples.
  • the first time length may be determined by the terminal device, or configured by the network device, or may also be specified through a protocol.
  • the first duration can be a specific value, such as 5 minutes, or it can be set to the period of discontinuous reception (DRX), or the period of 5 minutes and DRX can be compared, and the larger of the two can be selected. As the value of the first duration.
  • the first reference signal is any one of the at least one reference signal, for example, only one reference signal in the at least one reference signal needs to be randomly selected, as long as the signal quality of the reference signal satisfies the first sub-condition within the first time period , It can be considered that the terminal device meets the first condition.
  • This way of determining that the terminal device satisfies the first condition is relatively simple.
  • the terminal device only needs to randomly select a reference signal, obtain the signal quality of the reference signal, and determine whether the signal quality of the reference signal satisfies the first subordinate within the first time period. The conditions are sufficient. For the terminal device, the workload is less and the power consumption is less.
  • a reference signal described in the embodiment of the present application can also be understood as "a kind of" reference signal.
  • a network device sends at least one reference signal it can be understood as a network device sending at least one reference signal, and correspondingly,
  • the terminal device receives at least one reference signal it can be understood that the terminal device receives at least one reference signal.
  • the network device can send it once and the terminal device can receive it once, or the network device can send it multiple times and the terminal device can receive it multiple times.
  • the network device has sent it multiple times and the terminal device has received it multiple times.
  • the signal quality of the reference signal obtained by the terminal device may be different. of.
  • the first reference signal is a reference signal.
  • the network device has sent it multiple times and the terminal device has also received it multiple times.
  • the terminal device can obtain the signal quality of the first reference signal every time after receiving the first reference signal. If the signal quality of the first reference signal obtained by the terminal device in the first time period meets the first sub Condition, it can be considered that the terminal device satisfies the first condition.
  • the first reference signal may be a reference signal with the best signal quality among at least one reference signal, that is, the signal quality of the first reference signal is higher than or equal to that of the at least one reference signal except for the first reference signal.
  • the signal quality of other reference signals This can also be understood as the beam used to transmit the first reference signal is the best beam among the at least one beam. Equivalently, after obtaining the signal quality of at least one reference signal, the terminal device can select the reference signal with the best signal quality from it, or in other words, select the reference signal sent through the best beam among the at least one beam to determine the reference signal Whether the signal quality of the satisfies the first sub-condition within the first time period.
  • the terminal device can randomly select a reference signal from the multiple reference signals to determine the reference signal Whether the signal quality of the signal satisfies the first sub-condition within the first duration, and if the signal quality of the reference signal satisfies the first sub-condition within the first duration, it is considered that the terminal device satisfies the first condition.
  • the best reference signal ie, the reference signal with the best signal quality, or the best beam, or the reference signal sent through the best beam
  • the best reference signal is more sensitive to the movement of the terminal device, so it can better
  • the signal quality of the best reference signal satisfies the first sub-condition within the first time period, the terminal device can be considered to meet the first condition.
  • the first sub-condition includes, for example, that the difference between the first signal quality of a reference signal and the second signal quality of the reference signal is less than or equal to a first threshold, where the first signal quality is the reference signal.
  • the signal quality used for reference corresponding to the signal, or the reference value of the signal quality used for subsequent comparison with the second signal quality.
  • the change of the signal quality of the reference signal can be determined.
  • the second signal quality is the current signal quality of the one reference signal.
  • the difference between the first signal quality and the second signal quality can be obtained by subtracting the second signal quality from the first signal quality, or can be obtained by subtracting the first signal quality from the second signal quality. According to the first signal quality and the second signal quality, the change of the signal quality of the reference signal can be determined.
  • the difference between the signal quality described here may be an actual difference, and the difference may be a positive number, 0, or a negative number.
  • the first reference signal if the first reference signal is a reference signal transmitted through the best beam among at least one beam, the first signal quality of the first reference signal may be greater than or equal to that of the first reference signal.
  • the difference between the first signal quality and the second signal quality is obtained by subtracting the second signal quality from the first signal quality, the difference is positive or 0, and if the first signal quality and the The difference between the second signal quality is obtained by subtracting the first signal quality from the second signal quality, and the difference is a negative number or 0; or, if the first reference signal is not transmitted through the best beam among at least one beam Is a reference signal sent through at least one beam other than the best beam, then the first signal quality of the first reference signal may be less than or equal to the second signal quality of the first reference signal, If the difference between the first signal quality and the second signal quality is obtained by subtracting the second signal quality from the first signal quality, the difference is negative or 0, and if the difference between the first signal quality and the second signal quality is The difference of is obtained by subtracting the first signal quality from the second signal quality, and the difference is a positive number or zero.
  • the difference between the signal quality mentioned here may also refer to the absolute value of the actual difference between the signal quality, that is, the first sub-condition includes the difference between the first signal quality of a reference signal and the one The absolute value of the difference between the second signal quality of the reference signal is less than or equal to the first threshold. Then, no matter the difference between the first signal quality and the second signal quality is obtained by subtracting the second signal quality from the first signal quality, or obtained by subtracting the first signal quality from the second signal quality, it does not matter whether the first signal quality is What is the relationship between the quality of the second signal and the quality of the second signal, the difference is all positive or zero.
  • the first implementation that meets the first condition it should actually be to determine the actual value of the first reference signal. Instead of judging whether the first signal quality of the first reference signal meets the first sub-condition, whether the signal quality (or the current signal quality) meets the first sub-condition. Therefore, the first implementation that satisfies the first condition can also be expressed as: if it is determined that the second signal quality of the first reference signal of the serving cell satisfies the first sub-condition within the first time period, it can be determined that the terminal device satisfies the first sub-condition.
  • One condition That is, after receiving at least one reference signal, the terminal device can obtain the second signal quality of the first reference signal.
  • the first reference signal may be any one of the at least one reference signal, or it may also be a reference signal with the best quality of the second signal among the at least one reference signal.
  • the first sub-condition may be that the difference between the first signal quality corresponding to the first reference signal and the second signal quality of the first reference signal is less than or equal to the first signal quality.
  • One threshold. The first threshold may be determined by the terminal device, or configured by the network device, or may also be specified through a protocol.
  • the first sub-condition is represented by the following formula 1 or formula 2:
  • the difference between the first signal quality and the second signal quality is obtained by subtracting the second signal quality from the first signal quality as an example.
  • the difference between the first signal quality and the second signal quality is Take the second signal quality minus the first signal quality to obtain the difference of, as an example.
  • the difference is taken as an example as the actual difference.
  • the difference can also be the absolute value of the actual difference.
  • S beam/ref represents the first signal quality corresponding to a reference signal
  • S beam represents the second signal quality of the reference signal.
  • S beam/ref may represent the first signal quality corresponding to the first reference signal
  • S beam represents the second signal quality of the first reference signal.
  • the difference between the first signal quality corresponding to the first reference signal and the second signal quality of the first reference signal may indicate the amount of change in the signal quality of the first reference signal. If the amount of change in the signal quality of the first reference signal is Is smaller, that is, less than or equal to the first threshold, the signal quality of the first reference signal is considered to meet the first sub-condition (or the second signal quality of the first reference signal is considered to meet the first sub-condition), otherwise, if The signal quality of the first reference signal has a large variation, for example, greater than the first threshold, it is considered that the signal quality of the first reference signal does not meet the first sub-condition (or that the second signal quality of the first reference signal does not meet the The first sub-condition).
  • Each reference signal in the at least one reference signal can correspond to a first signal quality.
  • the corresponding first signal quality can be used to determine whether the second signal quality of the reference signal meets the corresponding condition For example, it is determined whether the second signal quality of the reference signal satisfies the first sub-condition or the second sub-condition.
  • the quality of the first signal corresponding to different reference signals may be equal or not equal.
  • the at least one reference signal corresponds to at least one first signal quality, and the at least one first signal quality may be preset.
  • the first signal quality corresponding to the reference signal can be set in the following manner: after the terminal device performs cell selection or cell reselection, the first signal quality corresponding to the reference signal is set to The second signal quality of the reference signal; or, when the second signal quality of the reference signal is greater than the first signal quality corresponding to the reference signal, the first signal quality corresponding to the reference signal is set as the second signal quality of the reference signal Signal quality; or, when the time period during which the terminal device does not meet the first condition reaches the second time period, the first signal quality corresponding to the reference signal is set as the second signal quality of the reference signal.
  • the first signal quality corresponding to a reference signal is initially equal to the second signal quality of the reference signal, and the second signal quality of the reference signal may change, and the first signal quality can also be updated accordingly.
  • setting the first signal quality corresponding to the reference signal as the second signal quality of the reference signal can be understood as setting the value of the first signal quality corresponding to the reference signal as the second signal of the reference signal The value of quality.
  • FIG. 4 is a schematic diagram of the second signal quality of the reference signal.
  • FIG. 4 takes as an example that the number of at least one reference signal is 3, which are reference signal 1, reference signal 2, and reference signal 3, where reference signal 2 is the best reference signal.
  • the top curve in FIG. 4 represents the second signal quality of the reference signal 2
  • the middle curve represents the second signal quality of the reference signal 1
  • the bottom curve represents the second signal quality of the reference signal 3.
  • the part between the two vertical dashed lines in FIG. 4 represents the amount of change of the second signal quality of the reference signal. If the first reference signal is reference signal 2, then it can be determined according to Formula 1 or Formula 2 that the second signal quality of the first reference signal satisfies the first sub-condition.
  • the terminal device In the first implementation manner that satisfies the first condition, the terminal device only needs to determine whether the second signal quality of a reference signal meets the first sub-condition, and it is relatively simple without processing too many reference signals.
  • M is an integer greater than or equal to 1, and M is less than or equal to the number of at least one reference signal. It can be considered that the M reference signals are part of or all of the reference signals in at least one reference signal.
  • the value of M is, for example, determined by the terminal device, or configured by the network device, or can also be specified through a protocol.
  • the second implementation that satisfies the first condition can also be expressed as if it is determined that in at least one reference signal, the second signal quality of each of the M reference signals meets the first time period.
  • Sub-condition it is determined that the terminal device satisfies the first condition. That is, after receiving at least one reference signal, the terminal device can obtain the second signal quality of each of the M reference signals.
  • the terminal device If it is determined that the second signal quality of each of the M reference signals is If the first sub-condition is satisfied within the first time period, it is considered that the terminal device satisfies the first condition.
  • the setting method of the first signal quality of the reference signal reference may be made to the foregoing introduction.
  • the M reference signals are, for example, M reference signals randomly selected from at least one reference signal. This way of determining that the terminal device satisfies the first condition is relatively simple. The terminal device only needs to randomly select M reference signals to obtain M reference signals.
  • the second signal quality of each reference signal in the reference signal determining whether the signal quality of each reference signal meets the first sub-condition (or in other words, determining whether the second signal quality of each reference signal meets the first sub-condition) That is, for the terminal device, the workload is less and the power consumption is less.
  • the M reference signals are, for example, at least one reference signal with a better second signal quality.
  • the second signal quality of each of the M reference signals is higher than or equal to that of the at least one reference signal.
  • the second signal quality of the reference signals other than the M reference signals. Equivalently, after obtaining the second signal quality of at least one reference signal, the terminal device can select M reference signals with the best second signal quality from them, and then determine whether the signal quality of each of the M reference signals meets The first sub-condition (in other words, it is determined whether the second signal quality of each of the M reference signals meets the first sub-condition).
  • the M reference signals are, for example, M reference signals selected from at least one reference signal, and the M reference signals include the second reference signal, and the second signal quality of the second reference signal is higher than Or equal to the second signal quality of the other reference signals in the at least one reference signal, or in other words, the second reference signal is sent through the best beam of the at least one beam. That is, the M reference signals include reference signals sent through the best beam among at least one beam, and reference signals sent through beams other than the best beam among the at least one beam. This method not only considers the reference signal sent through the best beam, but also considers the reference signal sent through other beams, which can make the determination result more accurate.
  • the first sub-condition can continue to be embodied by formula 1 or formula 2.
  • formula 1 or formula 2 can be used to determine whether the first sub-condition is satisfied.
  • the difference between the first signal quality and the second signal quality may be the actual difference or the absolute value of the actual difference.
  • S beam/ref in Formula 1 or Formula 2 can represent the first signal quality corresponding to one of the M reference signals, and S beam represents the first signal quality of the reference signal. 2.
  • the difference between the first signal quality corresponding to a reference signal and the second signal quality of the reference signal may represent the amount of change in the second signal quality of the reference signal.
  • the change in the second signal quality of each of the M reference signals is small, that is, is less than or equal to the first threshold, it is considered that the signal quality of each of the M reference signals meets the first A sub-condition (in other words, it is determined that the second signal quality of each of the M reference signals meets the first sub-condition), it is considered that the terminal device meets the first condition; otherwise, if in the M reference signals, There are one or more reference signals whose second signal quality varies greatly.
  • the second signal quality of these reference signals varies larger than the first threshold, it is considered that the second signal quality of these reference signals does not satisfy the first sub- Condition (or that the second signal quality of these reference signals does not meet the first sub-condition), it is also considered that the terminal device does not meet the first condition.
  • the signal quality of the reference signal satisfies the first sub-condition (In other words, it is considered that the second signal quality of the reference signal meets the first sub-condition), or it can also be considered that the signal quality of the reference signal does not meet the first sub-condition (or that the second signal quality of the reference signal is not considered Meet the first sub-condition).
  • the value of the first threshold used in the second implementation that meets the first condition and the first threshold used in the first implementation that meets the first condition may be the same or different. .
  • the terminal device can consider the second signal quality of multiple reference signals, and by determining whether the second signal quality of the multiple reference signals meets the first sub-condition, the determination result can be improved. accuracy.
  • the first information is obtained according to the signal quality of the at least one reference signal, it is determined that the first information satisfies the second sub-condition within the first time period, and it is determined that the terminal device meets the first condition.
  • obtaining the first information according to the signal quality of the at least one reference signal may be obtaining the first information according to the at least one second signal quality and the at least one first signal quality of the at least one reference signal.
  • the first information may satisfy the following formula 3 or formula 4:
  • S represents the first information
  • i represents the sequence number of the i-th reference signal in at least one reference signal
  • N represents the number of at least one reference signal
  • S i represents the second reference signal of the i-th reference signal.
  • the signal quality, S ref,i represents the first signal quality of the i-th reference signal
  • represents the absolute value of (S ref,i -S i ).
  • the second sub-condition includes, for example, that S is less than or equal to the second threshold. Where S is equal to the second threshold, it can be considered that the second sub-condition is satisfied, or it can be considered that the second sub-condition is not satisfied. Alternatively, the second sub-condition includes, for example, that S/N is less than or equal to the second threshold. Where S/N is equal to the second threshold, it can be considered that the second sub-condition is satisfied, or it can be considered that the second sub-condition is not satisfied.
  • the second threshold may be determined by the terminal device, or configured by the network device, or may also be stipulated through a protocol.
  • a reference signal described in the embodiment of the present application can also be understood as "a kind of" reference signal.
  • a network device sends at least one reference signal it can be understood as a network device sending at least one reference signal, and correspondingly,
  • the terminal device receives at least one reference signal it can be understood that the terminal device receives at least one reference signal.
  • the network device can send it once and the terminal device can receive it once, or the network device can send it multiple times and the terminal device can receive it multiple times.
  • the network device has sent it multiple times and the terminal device has received it multiple times.
  • the signal quality of the reference signal obtained by the terminal device may be different. of.
  • the network device has sent it multiple times, and the terminal device has also received it multiple times.
  • the network device may send at least one reference signal each time, and may send multiple times, and the terminal device may receive at least one reference signal each time, and may receive multiple times.
  • the terminal device can obtain the first information every time after receiving at least one reference signal. If the first information obtained by the terminal device in the first time period meets the second sub-condition, it can be considered that the terminal device meets the second sub-condition. The first condition.
  • the value of the first threshold used in the second implementation manner that satisfies the first condition and the second threshold here may be the same or different. If the first threshold used in the second implementation mode that meets the first condition has a different value from the first threshold used in the first implementation mode that meets the first condition, then the first threshold that meets the first condition The value of the first threshold used in the two implementation manners and the second threshold here may be the same or different.
  • the terminal device can obtain the first information according to the at least one signal quality of the at least one reference signal, and determine whether the first information meets the second sub-condition, which is equivalent to comprehensively determining at least one reference signal Whether the signal quality meets the second sub-condition can improve the accuracy of the determination result.
  • the reference signal sent by the network device may not distinguish the direction. For example, the network device does not send the reference signal through the beam, so the reference signal received by the terminal device does not distinguish the direction. .
  • the reference signal described in the embodiments of this application can also be understood as "a kind of" reference signal.
  • a network device sends a reference signal, which can be understood as a reference signal sent by a network device, and correspondingly, the terminal The device receiving a reference signal can be understood as the terminal device receiving a reference signal.
  • the network device can send it once and the terminal device can receive it once, or the network device can send it multiple times and the terminal device can receive it multiple times.
  • the network device has sent it multiple times and the terminal device has received it multiple times.
  • the signal quality of the reference signal obtained by the terminal device may be different. of.
  • the terminal device can obtain the signal quality of the reference signal every time it receives the reference signal of the serving cell. If the signal quality of the reference signal obtained by the terminal device in the first time period meets the first sub-condition , It can be considered that the terminal device meets the first condition.
  • the fourth implementation that satisfies the first condition After introducing the concepts of the first signal quality and the second signal quality, in the fourth implementation that satisfies the first condition, it should actually determine the actual signal quality of the reference signal of the serving cell (or the current signal quality). Quality) whether the first sub-condition is satisfied, instead of judging whether the first signal quality of the reference signal of the serving cell meets the first sub-condition. Therefore, the fourth implementation manner that satisfies the first condition can also be expressed as: if it is determined that the second signal quality of the reference signal of the serving cell satisfies the first sub-condition within the first time period, it is determined that the terminal device satisfies the first condition. That is, after receiving the reference signal of the serving cell, the terminal device can obtain the second signal quality of the reference signal.
  • the terminal device satisfies the first condition.
  • the setting method of the first signal quality of the reference signal reference may be made to the foregoing introduction.
  • the first sub-condition can be continuously represented by Formula 1 or Formula 2.
  • the difference between the first signal quality and the second signal quality may be the actual difference or the absolute value of the actual difference.
  • S beam/ref in Formula 1 or Formula 2 may represent the first signal quality corresponding to the reference signal, and S beam represents the second signal quality of the reference signal.
  • the difference between the first signal quality corresponding to the reference signal and the second signal quality of the reference signal may represent the amount of change in the second signal quality of the reference signal.
  • the terminal device If the amount of change in the second signal quality of the reference signal is small, that is, less than or equal to the first threshold, it is considered that the signal quality of the reference signal satisfies the first sub-condition (or in other words, the second signal quality of the reference signal is determined If the first sub-condition is satisfied), the terminal device is considered to meet the first condition; otherwise, if the change in the second signal quality of the reference signal is large, for example, the change in the second signal quality of the reference signal is greater than the first threshold , It is considered that the second signal quality of the reference signal does not meet the first sub-condition (or that the second signal quality of the reference signal does not meet the first sub-condition), and it is also considered that the terminal device does not meet the first condition.
  • the first threshold used in the second implementation that meets the first condition the first threshold used in the first implementation that meets the first condition, and the fourth one that meets the first condition
  • the values of the three first thresholds may be the same, or they may all be different, or any two of the first thresholds may have the same value, and the other first threshold The value of is different.
  • the terminal device may also determine the position of the terminal device in the cell according to the signal quality (for example, the second signal quality) of the at least one reference signal, where the cell is a serving cell of the terminal device. For example, the terminal device may determine that the terminal device is at the edge of the cell according to the signal quality of at least one reference signal, or determine that the terminal device satisfies the criterion for performing neighboring cell measurement. Among them, the criterion for performing neighboring cell measurement is satisfied, and the criterion may be the S criterion.
  • the signal quality for example, the second signal quality
  • the S criterion means that the power of the current serving cell of the terminal device is lower than or equal to the power threshold for enabling the neighboring cell measurement, or the signal quality of the current serving cell of the terminal device is lower than or equal to the signal quality threshold for enabling the neighboring cell measurement Or, the power of the current serving cell of the terminal device is lower than or equal to the power threshold for enabling neighboring cell measurement, and the signal quality of the current serving cell of the terminal device is lower than or equal to the signal quality threshold for enabling neighboring cell measurement.
  • the sending direction of at least one reference signal is clear, and the network device can send the sending direction information of at least one reference signal (or the correspondence between the beam and the position of the cell) to the terminal device, and further can also send The identification of at least one reference signal is sent to the terminal device, and the terminal device can learn the correspondence between each beam and the corresponding position in the cell. Further, if the second signal quality of a certain reference signal obtained by the terminal device is good, it can be determined that the terminal device is at or close to the sending direction of the reference signal. Further, the terminal device can determine whether the terminal device is located at the center of the cell or at the edge of the cell.
  • At least one reference signal includes reference signal 1 sent through beam 1, the sending direction of beam 1 points to the center of the cell, and the second signal quality of reference signal 1 measured by the terminal device is the highest, it can be determined whether the terminal device is located in or Close to the center of the plot.
  • the measurement rules can be different. For example, if the terminal device is located in the center of the cell, the first measurement rule may be used, and if the terminal device is located at the edge of the cell, the second measurement rule may be used.
  • the first measurement rule may include not performing intra-frequency measurement or inter-frequency measurement, or the first measurement rule may include one of the following or any combination of the following: reducing the measurement bandwidth, reducing the number of cells to be measured, and reducing The number of bandwidth parts (BWP) for small measurements, or the number of frequencies to be measured is reduced.
  • BWP bandwidth parts
  • the first measurement rule may include reducing the measured bandwidth; or, the first measurement rule may include reducing the number of measured cells and reducing the number of measured frequencies; or, the first measurement rule may include reducing the measured bandwidth and reducing the number of measured frequencies.
  • the second measurement rule may be a normal measurement rule, that is, when the S criterion for neighboring cell measurement is satisfied, the terminal device normally performs periodic or event-triggered intra-frequency measurement or inter-frequency measurement.
  • the first measurement rule can also be referred to as a relaxation measurement rule, and the two can be replaced with each other.
  • the terminal device may first determine whether the conditions for performing intra-frequency or inter-frequency measurement for neighboring cells are satisfied. For the measurement condition of the neighboring cell, the terminal device can continue to determine whether the terminal device meets the first condition, that is, perform S22, and if the condition for performing the measurement for the neighboring cell is not met, the terminal device may not need to perform S22 again. With S23 or directly execute the first measurement rule, the process can end.
  • the network device may also send instruction information to the terminal device.
  • the instruction information is used to indicate whether the terminal device can make relevant judgments or operations on whether the loosening measurement rule is satisfied. It is assumed that the instruction information indicates If the terminal device does not relax the measurement rule, the terminal device does not perform S22, and thus does not perform the first measurement rule.
  • the terminal device may first determine the location of the terminal device in the cell according to the signal quality of the at least one reference signal. If it is determined that the terminal device is at the edge of the cell, the terminal device can continue to determine whether the terminal device satisfies the first condition, that is, perform S22, and if it is determined that the terminal device is in the center of the cell, the terminal device may not need to perform S22 and S23. Or directly execute the first measurement rule, and the process can end.
  • the terminal device can continue to perform the steps that will be introduced in the next embodiment, which will be introduced in the next embodiment.
  • the terminal device can also continue to perform S22, but in this case, the terminal device uses the threshold (for example, the first threshold) when determining whether the terminal device satisfies the first condition.
  • the threshold for example, the first threshold
  • the second threshold or, the first threshold and the second threshold
  • the threshold used by the terminal device to determine whether the terminal device satisfies the first condition when the terminal device is in the center of the cell can be the same or different.
  • the terminal equipment at the edge of the cell uses the first threshold when determining whether the terminal equipment meets the first condition
  • the terminal equipment at the cell center also uses the first threshold when determining whether the terminal equipment meets the first condition.
  • the value of the first threshold may be the same or different.
  • the value of the first threshold used by the terminal equipment at the center of the cell may be greater than the value of the first threshold used by the terminal equipment at the edge of the cell.
  • the terminal equipment at the edge of the cell uses the second threshold when determining whether the terminal equipment meets the first condition
  • the terminal equipment at the cell center also uses the second threshold when determining whether the terminal equipment meets the first condition.
  • the value of the second threshold may be the same or different. If the values of the two second thresholds are different, the value of the second threshold used by the terminal device at the center of the cell may be greater than the value of the second threshold used by the terminal device at the edge of the cell.
  • the terminal equipment in the center of the cell has a small probability of changing the serving cell, and the possibility of cell switching or reselection is small. Even if the neighboring cell is not measured, it may not affect the normal operation, or it can be said that the cell in the center of the cell Terminal equipment may not need to perform measurements on neighboring cells. Therefore, the value of the threshold used by terminal equipment in the center of the cell can be relatively large, making it relatively easier for these terminal equipment to meet the first condition, and thus have greater.
  • the probabilistic implementation of the relaxation measurement rule the most extreme case is that it can be configured to always perform the relaxation measurement.
  • the terminal equipment at the edge of the cell if it is in a mobile state, the probability of the serving cell change is greater, and the possibility of cell switching or reselection is greater. It needs to measure neighboring cells to assist in the selection of new cells. Therefore, The value of the threshold used by the terminal devices at the edge of the cell may be relatively small, so that it is relatively difficult for these terminal devices to meet the first condition, so that measurements on neighboring cells can be performed more frequently or for a longer period of time.
  • the thresholds used by terminal devices in different locations can be determined by the terminal device, or configured by the network device, or can be specified by agreement .
  • the determination of the position of the terminal equipment by the reference signal is not limited to the two levels of the cell center position and the cell edge position. In this embodiment, these two positions are only used for illustration, because the direction of the reference signal In many cases, more refined cell location divisions can be determined by it, so as to set more refined and different measurement criteria for terminal devices at different locations.
  • the reference signal in the embodiment of this application includes but is not limited to one of the following or any combination of the following multiple: synchronization information block (synchronization signal block, SSB), channel state information reference signal (channel state information-reference signal, CSI) -RS), physical broadcast channel block (physical broadcast channel block, PBCH Block), or cell reference signal (cell reference signal, CRS).
  • synchronization information block synchronization signal block, SSB
  • channel state information reference signal channel state information-reference signal, CSI) -RS
  • physical broadcast channel block physical broadcast channel block
  • PBCH Block physical broadcast channel block
  • cell reference signal cell reference signal
  • CRS cell reference signal
  • the reference signal in the embodiment of the present application includes SSB; or, the reference signal includes CSI-RS; or, the reference signal includes SSB and PBCH Block; or, the reference signal includes CSI-RS, CRS, and SSB; or, the reference signal includes SSB, CSI-RS, PBCH Block, and CRS, etc.
  • the terminal device performs measurement according to the first measurement rule.
  • the terminal device may adopt the first measurement rule.
  • the terminal device may not perform intra-frequency measurement or inter-frequency measurement, or , The terminal equipment can reduce the number of frequencies measured, and so on.
  • the relaxation measurement is relative to the normal measurement (measurement performed when the relaxation measurement is not performed, which can also be referred to as the second measurement rule).
  • the terminal device When performing the normal measurement, the terminal device periodically or depends on an event to trigger The signal is measured locally; and when the relaxed measurement rule is satisfied, the terminal device can perform the measurement according to the first measurement rule, for example, it can choose not to perform same-frequency or inter-frequency measurement within a period of time.
  • the terminal device satisfies the relaxed measurement rule will be described in detail below.
  • the terminal device may continuously or periodically determine whether the terminal device meets the first condition, and each time after determining whether the terminal device meets the first condition, it decides whether to perform measurement according to the first measurement rule. Therefore, the so-called terminal equipment performs measurement according to the first measurement rule, it only means that when the terminal equipment judges that the first condition is satisfied, within a period of time (between the judgment whether the first condition is satisfied this time and the next judgment whether the first condition is satisfied)
  • the first measurement rule performs measurement, for example, the terminal device performs measurement according to the first measurement rule during the fourth time period, and after the fourth time period ends, the terminal device can still perform measurement according to other measurement rules, for example, the terminal device can continue to execute normally Same frequency measurement or different frequency measurement.
  • the start time of the fourth duration is, for example, the time when the terminal device determines that the terminal device meets the first condition
  • the end time of the fourth duration is, for example, the next time the terminal device determines that the terminal device does not meet the first condition, or in other words, the fourth duration
  • the end time of is, for example, the time when the terminal device determines that the terminal device satisfies the second condition.
  • the second condition will be introduced in the next embodiment.
  • the terminal device must determine to perform measurement according to the first measurement rule, provided that any one of the following conditions or any combination of the following multiple conditions is met: the terminal device meets the first condition, and the distance from the last execution
  • the duration of cell reselection is less than or equal to the third duration, or, since the last time cell selection or cell reselection was performed, the duration of intra-frequency measurement or inter-frequency measurement performed by the terminal device is greater than or equal to the first duration. For example, as long as the terminal device satisfies the first condition, the terminal device can perform measurement according to the first measurement rule, and then S23 can be executed after the execution of S22; or, the terminal device satisfies the first condition and is not close to the previous cell reselection.
  • the terminal device can measure according to the first measurement rule. Then, before S23, in addition to performing S22, it is also necessary to determine that the duration from the last cell reselection is less than or equal to the third duration Or, the terminal equipment meets the first condition, the time period from the last time cell reselection is performed is less than or equal to the third time period, and since the last time cell selection or cell reselection is performed, the terminal equipment performs intra-frequency measurement or inter-frequency measurement If the measurement duration is greater than or equal to the first duration, the terminal device can perform the measurement according to the first measurement rule.
  • the terminal device satisfies the first condition, it can also be considered that the terminal device is in a static state. If this is the case, besides that the terminal equipment can be considered to meet the relaxation measurement rules, it can also be used for other purposes. For example, it can also determine that the timing advance (TA) has not changed, and the network equipment can continue to use the original TA dispatches the terminal equipment, and the terminal equipment can also continue to use the original TA to communicate with the network equipment to ensure the normal progress of the communication process and reduce the probability of scheduling failure.
  • TA timing advance
  • the terminal device may not perform intra-frequency measurement or inter-frequency measurement, which is equivalent to determining according to the signal quality of at least one reference signal
  • the mobile state of the terminal device for example, it can be determined that the terminal device is in a stationary state or not in a mobile state. Therefore, the terminal device may not perform intra-frequency measurement or inter-frequency measurement, and at least one reference signal corresponds to at least one transmission direction, which is equivalent to , Direction information can be added when determining the mobile state of the terminal device, so that the accuracy of the determination result can be improved, and the impact on the communication process of the terminal device can be reduced.
  • the embodiment of the present application provides a second communication method. In this method, how the terminal device determines that the loosening measurement rule is not satisfied is introduced.
  • the method can be executed by two communication devices, such as a first communication device and a second communication device, where the first communication device can be a network device or can support the network device to implement the functions required by the method.
  • the communication device or the first communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course it may also be other communication devices, such as a chip system. The same is true for the second communication device.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, or the second communication device may be a terminal device or capable of supporting the terminal device to implement the method.
  • the communication device with the required functions can of course also be other communication devices, such as a chip system.
  • the first communication device may be a network device
  • the second communication device is a terminal device, or both the first communication device and the second communication device are network devices.
  • the device, or the first communication device and the second communication device are both terminal devices, or the first communication device is a network device
  • the second communication device is a communication device capable of supporting the terminal device to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • the execution of the method by the terminal device and the network device is taken as an example, that is, the first communication device is a terminal device and the second communication device is a network device as an example.
  • the network device described below may be the network device in the network architecture shown in FIG. 1, and the terminal device described below may be Figure 1 shows the terminal equipment in the network architecture.
  • the network device sends at least one reference signal to the terminal device, and the terminal device receives the at least one reference signal from the network device in the serving cell of the terminal device.
  • the at least one reference signal corresponds to at least one transmission direction.
  • At least one reference signal corresponds to at least one transmission direction
  • at least one reference signal corresponds to at least one beam
  • the network device transmits at least one reference signal through at least one beam, where the beam is considered There is a one-to-one correspondence with the reference signal.
  • Different beams point to different directions, and at least one beam sent by the network device may point to at least one sending direction.
  • the network device sends one reference signal through one beam in one direction. Therefore, it can also be described as that at least one reference signal corresponds to at least one sending direction.
  • S21 in the embodiment shown in FIG. 2.
  • the identification of the reference signal may correspond to the identification of the beam on a one-to-one basis, or the identification of the reference signal may also be used as the identification of the beam. Or a reference signal in a certain direction, and a beam in a certain direction, these two concepts can be regarded as the same concept.
  • the at least one reference signal may include one reference signal, or may also include multiple reference signals. If one reference signal is included, at least one reference signal can also be understood as one reference signal; or, if multiple reference signals are included, at least one reference signal can also be understood as at least two reference signals, for example, including two reference signals. Signal, three reference signals or more reference signals.
  • the terminal device determines that the terminal device satisfies the second condition according to the signal quality of the at least one reference signal of the terminal device, and the at least one reference signal corresponds to at least one transmission direction.
  • the terminal device may measure the signal quality of the received at least one reference signal, so as to determine whether the terminal device satisfies the second condition. Regarding whether the terminal device satisfies the second condition, multiple implementation manners may be included, which are described below with examples.
  • the terminal device If it is determined that the signal quality of the first reference signal of the serving cell satisfies the third sub-condition, it can be determined that the terminal device satisfies the second condition.
  • the first reference signal is any one of the at least one reference signal.
  • only one of the at least one reference signal needs to be randomly selected, and as long as the signal quality of the reference signal satisfies the third sub-condition, it can be regarded as the terminal equipment Meet the second condition.
  • This way of determining that the terminal device meets the second condition is relatively simple.
  • the terminal device only needs to randomly select a reference signal, obtain the signal quality of the reference signal, and determine whether the signal quality of the reference signal meets the third sub-condition. For the device, the workload is less and the power consumption is less.
  • the first reference signal may be a reference signal with the best signal quality among at least one reference signal, that is, the signal quality of the first reference signal is higher than or equal to that of the at least one reference signal except for the first reference signal.
  • the signal quality of other reference signals This can also be understood as the beam used to transmit the first reference signal is the best beam among the at least one beam. Equivalently, after obtaining the signal quality of at least one reference signal, the terminal device can select the reference signal with the best signal quality from it, or in other words, select the reference signal sent through the best beam among the at least one beam to determine the reference signal Whether the signal quality meets the third sub-condition.
  • the terminal device can randomly select a reference signal from the multiple reference signals to determine the reference signal Whether the signal quality of the signal meets the third sub-condition, if the signal quality of the reference signal meets the third sub-condition, it is considered that the terminal device meets the second condition.
  • the best reference signal ie, the reference signal with the best signal quality, or the reference signal sent through the best beam
  • the signal quality of the best reference signal meets the third sub-condition, then It can be considered that the terminal device satisfies the second condition.
  • the third sub-condition includes, for example, that the difference between the first signal quality of a reference signal and the second signal quality of the reference signal is greater than or equal to a first threshold, wherein the first signal quality is the reference signal.
  • the signal quality used for reference corresponding to the signal, or the reference value of the signal quality used for subsequent comparison with the second signal quality.
  • the second signal quality is the current signal quality of the one reference signal.
  • the difference between the first signal quality and the second signal quality can be obtained by subtracting the second signal quality from the first signal quality, or can be obtained by subtracting the first signal quality from the second signal quality. According to the first signal quality and the second signal quality, the change of the signal quality of the reference signal can be determined.
  • the difference between the signal quality mentioned here may be the actual difference or the absolute value of the actual difference.
  • reference may be made to the related introduction of the embodiment shown in FIG. 2.
  • the first implementation that satisfies the second condition can also be expressed as: if it is determined that the second signal quality of the first reference signal of the serving cell satisfies the third sub-condition, it can be determined that the terminal device satisfies the second condition. That is to say, after receiving at least one reference signal, the terminal device can obtain the second signal quality of the first reference signal.
  • the first reference signal may be any one of the at least one reference signal, or it may also be a reference signal with the best quality of the second signal among the at least one reference signal.
  • the third sub-condition may be that the difference between the first signal quality corresponding to the first reference signal and the second signal quality of the first reference signal is greater than or equal to the first signal quality.
  • One threshold. The first threshold may be determined by the terminal device, or configured by the network device, or may also be specified through a protocol.
  • the first sub-condition is represented by the following formula 5 or formula 6:
  • the difference between the first signal quality and the second signal quality is obtained by subtracting the second signal quality from the first signal quality as an example.
  • the difference between the first signal quality and the second signal quality is Take the second signal quality minus the first signal quality to obtain the difference of, as an example.
  • the difference is taken as an example as the actual difference.
  • the difference can also be the absolute value of the actual difference.
  • S beam/ref represents the first signal quality corresponding to a reference signal
  • S beam represents the second signal quality of the reference signal.
  • S beam/ref may represent the first signal quality corresponding to the first reference signal
  • S beam represents the second signal quality of the first reference signal.
  • the difference between the first signal quality corresponding to the first reference signal and the second signal quality of the first reference signal may indicate the amount of change in the signal quality of the first reference signal. If the amount of change in the signal quality of the first reference signal is Larger, that is, greater than or equal to the first threshold, the signal quality of the first reference signal is considered to meet the third sub-condition (or the second signal quality of the first reference signal is considered to meet the third sub-condition), otherwise, if The change in the signal quality of the first reference signal is small, for example, less than the first threshold, it is considered that the signal quality of the first reference signal does not meet the third sub-condition (or in other words, it is considered that the second signal quality of the first reference signal does not meet the third sub-condition).
  • the third sub-condition ).
  • the signal quality of the first reference signal meets the third sub-condition (or in other words, the first threshold is considered
  • the second signal quality of a reference signal satisfies the third sub-condition
  • the signal quality of the first reference signal does not meet the third sub-condition (or in other words, the second signal quality of the first reference signal does not meet the third sub-condition) Sub-conditions).
  • Each reference signal in the at least one reference signal can correspond to a first signal quality.
  • the corresponding first signal quality can be used to determine whether the second signal quality of the reference signal meets the corresponding condition For example, it is determined whether the second signal quality of the reference signal satisfies the first sub-condition or the second sub-condition.
  • the quality of the first signal corresponding to different reference signals may be equal or not equal.
  • the at least one reference signal corresponds to at least one first signal quality, and the at least one first signal quality may be preset.
  • the first signal quality corresponding to the reference signal can be set in the following manner: after the terminal device performs cell selection or cell reselection, the first signal quality corresponding to the reference signal is set to The second signal quality of the reference signal; or, when the second signal quality of the reference signal is greater than the first signal quality corresponding to the reference signal, the first signal quality corresponding to the reference signal is set as the second signal quality of the reference signal Signal quality; or, when the time length for which the terminal device satisfies the second condition reaches the second time length, the first signal quality corresponding to the reference signal is set as the second signal quality of the reference signal.
  • the first signal quality corresponding to a reference signal is initially equal to the second signal quality of the reference signal, and the second signal quality of the reference signal may change, and the first signal quality can also be updated accordingly.
  • setting the first signal quality corresponding to the reference signal as the second signal quality of the reference signal can be understood as setting the value of the first signal quality corresponding to the reference signal as the second signal of the reference signal The value of quality.
  • the first threshold used in the first implementation that satisfies the second condition is the same as the first threshold used in the first implementation that meets the first condition introduced in the embodiment shown in FIG. 2 Threshold, the value may be the same or different.
  • the terminal device only needs to determine whether the second signal quality of a reference signal meets the third sub-condition, without processing too many reference signals, which is relatively simple.
  • M is an integer greater than or equal to 1, and M is less than or equal to the number of at least one reference signal. It can be considered that the M reference signals are part of or all of the reference signals in at least one reference signal.
  • the value of M is, for example, determined by the terminal device, or configured by the network device, or can also be specified through a protocol.
  • the second implementation that satisfies the second condition After introducing the concepts of the first signal quality and the second signal quality, in the second implementation that satisfies the second condition, the actual signal quality of each of the M reference signals should actually be judged ( In other words, whether the current signal quality satisfies the third sub-condition, instead of judging whether the first signal quality of each of the M reference signals satisfies the third sub-condition. Therefore, the second implementation that satisfies the second condition can also be expressed as: if it is determined that the second signal quality of each of the M reference signals in the at least one reference signal satisfies the third sub-condition, then it is determined The terminal device satisfies the first condition.
  • the terminal device can obtain the second signal quality of each of the M reference signals. If it is determined that the second signal quality of each of the M reference signals is equal When the first sub-condition is satisfied, it is considered that the terminal device meets the first condition.
  • the setting method of the first signal quality of the reference signal reference may be made to the foregoing introduction.
  • the M reference signals are, for example, M reference signals randomly selected from at least one reference signal. This way of determining that the terminal device satisfies the first condition is relatively simple. The terminal device only needs to randomly select M reference signals to obtain M reference signals.
  • the second signal quality of each reference signal in the reference signal and determine whether the signal quality of each reference signal meets the third sub-condition (or in other words, determine whether the second signal quality of each reference signal meets the third sub-condition) That is, for the terminal device, the workload is less and the power consumption is less.
  • the M reference signals are, for example, at least one reference signal with a better second signal quality.
  • the second signal quality of each of the M reference signals is higher than or equal to that of the at least one reference signal.
  • the second signal quality of the reference signals other than the M reference signals. Equivalently, after obtaining the second signal quality of at least one reference signal, the terminal device can select M reference signals with the best second signal quality from them, and then determine whether the signal quality of each of the M reference signals meets The third sub-condition (in other words, it is determined whether the second signal quality of each of the M reference signals meets the third sub-condition).
  • the M reference signals are, for example, M reference signals selected from at least one reference signal, and the M reference signals include the second reference signal, and the second signal quality of the second reference signal is higher than Or equal to the second signal quality of the other reference signals in the at least one reference signal, or in other words, the second reference signal is sent through the best beam of the at least one beam. That is, the M reference signals include reference signals sent through the best beam among at least one beam, and reference signals sent through beams other than the best beam among the at least one beam. This method not only considers the reference signal sent through the best beam, but also considers the reference signal sent through other beams, which can make the determination result more accurate.
  • FIG. 6 is a schematic diagram of the second signal quality of the reference signal.
  • Fig. 6 takes as an example that the number of at least one reference signal is 3, which are reference signal 1, reference signal 2, and reference signal 3, where reference signal 2 is the best reference signal.
  • the top curve in FIG. 6 represents the second signal quality of the reference signal 2
  • the middle curve represents the second signal quality of the reference signal 1
  • the bottom curve represents the second signal quality of the reference signal 3.
  • the part between the two vertical dashed lines in FIG. 6 represents the amount of change of the second signal quality of the reference signal.
  • the M reference signals include reference signal 1 and reference signal 3, it can be determined according to Formula 5 or Formula 6 that the second signal quality of each of the M reference signals meets the third sub-condition. And judging by reference signals on more beams is more in line with the actual situation of the terminal equipment.
  • the third sub-condition can continue to be embodied by formula 5 or formula 6.
  • formula 5 or formula 6 can be used to determine whether the third sub-condition is satisfied.
  • the difference between the first signal quality and the second signal quality may be the actual difference or the absolute value of the actual difference.
  • S beam/ref in Formula 5 or Formula 6 can represent the first signal quality corresponding to one of the M reference signals, and S beam represents the first signal quality of the reference signal. 2.
  • Signal quality The difference between the first signal quality corresponding to a reference signal and the second signal quality of the reference signal may represent the amount of change in the second signal quality of the reference signal.
  • the change in the second signal quality of each of the M reference signals is large, that is, is greater than or equal to the first threshold, it is considered that the signal quality of each of the M reference signals meets the first threshold.
  • Three sub-conditions in other words, it is determined that the second signal quality of each of the M reference signals meets the third sub-condition, which means that the terminal device meets the second condition; otherwise, if in the M reference signals, There are one or more reference signals with a small change in the second signal quality.
  • the change in the second signal quality of these reference signals is less than the first threshold, it is considered that the second signal quality of these reference signals does not satisfy the third sub- Condition (or that the second signal quality of these reference signals does not meet the third sub-condition), it is also considered that the terminal device does not meet the second condition.
  • the signal quality of the reference signal satisfies the third sub-condition (In other words, it is considered that the second signal quality of the reference signal meets the third sub-condition), or it can also be considered that the signal quality of the reference signal does not meet the third sub-condition (or it is considered that the second signal quality of the reference signal does not meet the third sub-condition). Meet the third sub-condition).
  • first threshold used in the second implementation that meets the second condition and the first threshold used in the first implementation that meets the second condition may have the same value or different values. .
  • the first threshold used in the second implementation that satisfies the second condition, and the first threshold used in the second implementation that meets the first condition introduced in the embodiment shown in FIG. The same may be different.
  • the terminal device can consider the second signal quality of the multiple reference signals, and by determining whether the second signal quality of the multiple reference signals meets the third sub-condition, the determination result can be improved. accuracy.
  • the first information is obtained according to the signal quality of the at least one reference signal, it is determined that the first information satisfies the fourth sub-condition, and it is determined that the terminal device satisfies the second condition.
  • obtaining the first information according to the signal quality of the at least one reference signal may be obtaining the first information according to the at least one second signal quality and the at least one first signal quality of the at least one reference signal.
  • the first information may be obtained by formula 3 or formula 4 shown in FIG. 2, which will not be repeated here.
  • the fourth sub-condition includes, for example, that S is greater than or equal to the second threshold. Where S is equal to the second threshold, it can be considered that the fourth sub-condition is satisfied, or it can be considered that the fourth sub-condition is not satisfied.
  • the second sub-condition includes, for example, that S/N is greater than or equal to the second threshold. Where S/N is equal to the second threshold, it can be considered that the fourth sub-condition is satisfied, or it can be considered that the fourth sub-condition is not satisfied.
  • the second threshold may be determined by the terminal device, or configured by the network device, or may also be stipulated through a protocol.
  • the second threshold used in the third implementation that satisfies the second condition is the same as the second threshold used in the third implementation that satisfies the first condition described in the embodiment shown in FIG. 2
  • the two thresholds may have the same value or different values.
  • the second threshold used in the third implementation that satisfies the second condition is the same as the second threshold used in the third implementation that meets the first condition described in the embodiment shown in FIG. Threshold, the value may be the same or different. If the first threshold used in the second implementation that meets the second condition and the first threshold used in the first implementation that meets the second condition have different values, then the first threshold that meets the first condition The first threshold used in one implementation mode may be the same as or different from the second threshold here. In addition, the first threshold used in the second implementation mode that meets the first condition may be the same as here The value of the second threshold may be the same or different.
  • the terminal device can obtain the first information according to the at least one signal quality of the at least one reference signal, and determine whether the first information meets the fourth sub-condition, which is equivalent to comprehensively determining at least one reference signal Whether the signal quality meets the fourth sub-condition can improve the accuracy of the determination result.
  • the reference signal sent by the network device may not distinguish the direction. For example, the network device does not send the reference signal through the beam, so the reference signal received by the terminal device does not distinguish the direction. .
  • the fourth implementation that satisfies the second condition After introducing the concepts of the first signal quality and the second signal quality, in the fourth implementation that satisfies the second condition, it should actually determine the actual signal quality of the reference signal of the serving cell (or the current signal quality). Quality) whether the third sub-condition is satisfied, instead of judging whether the first signal quality of the reference signal of the serving cell meets the third sub-condition. Therefore, the fourth implementation manner that satisfies the second condition can also be expressed as: if it is determined that the second signal quality of the reference signal of the serving cell satisfies the third sub-condition, it is determined that the terminal device satisfies the second condition. That is, after receiving the reference signal of the serving cell, the terminal device can obtain the second signal quality of the reference signal.
  • the terminal device If it is determined that the second signal quality of the reference signal satisfies the third sub-condition, it is considered that the terminal device satisfies the second condition .
  • the setting method of the first signal quality of the reference signal reference may be made to the foregoing introduction.
  • the third sub-condition may continue to be embodied by formula 5 or formula 6, and for the second signal quality of the reference signal of the serving cell, formula 5 or formula 6 may be used to determine whether the third sub-condition is satisfied.
  • the difference between the first signal quality and the second signal quality may be the actual difference or the absolute value of the actual difference.
  • S beam/ref in Formula 5 or Formula 6 may represent the first signal quality corresponding to the reference signal, and S beam represents the second signal quality of the reference signal.
  • the difference between the first signal quality corresponding to the reference signal and the second signal quality of the reference signal may represent the amount of change in the second signal quality of the reference signal.
  • the terminal device If the change of the second signal quality of the reference signal is large, that is, greater than or equal to the first threshold, it is considered that the signal quality of the reference signal satisfies the third sub-condition (or in other words, the second signal quality of the reference signal is determined If the third sub-condition is satisfied), the terminal device is considered to meet the second condition; otherwise, if the change in the second signal quality of the reference signal is small, for example, the change in the second signal quality of the reference signal is less than the first threshold , It is considered that the second signal quality of the reference signal does not meet the third sub-condition (or that the second signal quality of the reference signal does not meet the third sub-condition), and it is also considered that the terminal device does not meet the second condition.
  • the signal quality of the reference signal meets the third sub-condition (In other words, it is considered that the second signal quality of the reference signal meets the third sub-condition), or it can also be considered that the signal quality of the reference signal does not meet the third sub-condition (or it is considered that the second signal quality of the reference signal does not meet the third sub-condition). Meet the third sub-condition).
  • the first threshold used in the fourth implementation that satisfies the second condition is the same as the first threshold used in the fourth implementation that meets the first condition described in the embodiment shown in FIG. 2 , The value may be the same or different.
  • the first threshold used in the second implementation that meets the second condition, the first threshold used in the first implementation that meets the second condition, and the fourth implementation that meets the second condition The first threshold used, the values of the three first thresholds may be the same, or they may all be different, or any two of the first thresholds may have the same value, and the value of the other first threshold different.
  • the terminal device may also determine the location of the terminal device in the cell according to the signal quality (for example, the second signal quality) of the at least one reference signal, where the cell is the serving cell of the terminal device. For example, the terminal device may determine that the terminal device is in the center position of the cell according to the signal quality of the at least one reference signal, or determine that the terminal device does not meet the criteria for performing neighbor cell measurement. Among them, the criterion for performing neighboring cell measurement that is not satisfied may be the S criterion.
  • the S criterion means that the power of the current serving cell of the terminal device is lower than or equal to the power threshold for enabling the neighboring cell measurement, or the signal quality of the current serving cell of the terminal device is lower than or equal to the signal quality threshold for enabling the neighboring cell measurement Or, the power of the current serving cell of the terminal device is lower than or equal to the power threshold for enabling neighboring cell measurement, and the signal quality of the current serving cell of the terminal device is lower than or equal to the signal quality threshold for enabling neighboring cell measurement.
  • the sending direction of at least one reference signal is clear, and the network device can send the sending direction information of at least one reference signal (or the correspondence between the beam and the position of the cell) to the terminal device, and further can also send The identification of at least one reference signal is sent to the terminal, and the terminal device can learn the correspondence between each beam and the corresponding position in the cell. Further, if the second signal quality of one of the reference signals measured by the terminal device is better, it may indicate that the terminal device is at or close to the sending direction of the reference signal. For example, the terminal device can determine whether the terminal device is located at the center of the cell or at the edge of the cell.
  • At least one reference signal includes reference signal 1 sent through beam 1, the sending direction of beam 1 points to the center of the cell, and the second signal quality of reference signal 1 measured by the terminal equipment is the strongest, it can indicate that the terminal equipment is located in Or close to the center of the cell.
  • the terminal device may first determine whether the conditions for performing intra-frequency or inter-frequency measurement for neighboring cells are satisfied. For the measurement condition of the neighboring cell, the terminal device can continue to determine whether the terminal device meets the second condition, that is, perform S52, and if the condition for performing the measurement for the neighboring cell is not met, the terminal device may not need to perform S52 again. And S53 or the relaxation measurement rule is not executed directly, the process can end.
  • the network device may also send instruction information to the terminal device.
  • the instruction information is used to indicate whether the terminal device can make relevant judgments or operations on whether the loosening measurement rule is satisfied. It is assumed that the instruction information indicates If the terminal device does not relax the measurement rule, the terminal device may not need to execute S52, but may directly execute S53.
  • the terminal device may continue to perform S22 in the embodiment shown in FIG. 2, and for details, refer to the introduction of S22.
  • the terminal device can also continue to perform S52, but in this case, the terminal device uses the threshold (for example, the first threshold) when determining whether the terminal device satisfies the second condition.
  • the threshold for example, the first threshold
  • the second threshold or, the first threshold and the second threshold
  • the threshold used by the terminal device to determine whether the terminal device meets the second condition when the terminal device is in the center of the cell can be the same or different.
  • the terminal equipment at the edge of the cell uses the first threshold when determining whether the terminal equipment meets the second condition
  • the terminal equipment at the cell center also uses the first threshold when determining whether the terminal equipment meets the second condition.
  • the value of the first threshold may be the same or different.
  • the value of the first threshold used by the terminal equipment at the center of the cell may be smaller than the value of the first threshold used by the terminal equipment at the edge of the cell.
  • the terminal equipment at the edge of the cell uses the second threshold when determining whether the terminal equipment meets the second condition
  • the terminal equipment at the cell center also uses the second threshold when determining whether the terminal equipment meets the second condition.
  • the value of the second threshold may be the same or different. If the values of the two second thresholds are different, the value of the second threshold used by the terminal device at the center of the cell may be smaller than the value of the second threshold used by the terminal device at the edge of the cell.
  • the terminal equipment in the center of the cell has a small probability of changing the serving cell, and the possibility of cell switching or reselection is small. Even if the neighboring cell is not measured, it may not affect the normal operation, or it can be said that the cell in the center of the cell Terminal equipment may not need to perform measurements on neighboring cells. Therefore, the value of the threshold used by terminal equipment in the center of the cell can be relatively small, making it relatively difficult for these terminal equipment to meet the second condition.
  • the relaxation measurement rule is executed with high probability. The most extreme case is that it can be configured to always perform the relaxation measurement. And the terminal equipment at the edge of the cell, if it is in a mobile state, the probability of the serving cell change is greater, and the possibility of cell switching or reselection is greater.
  • the value of the threshold used by terminal devices at the edge of the cell may be relatively large, so that these terminal devices can relatively easily meet the second condition, so that measurements on neighboring cells can be performed more frequently or for a longer period of time.
  • the thresholds used by terminal devices in different locations can be determined by the terminal device, or configured by the network device, or can be specified by agreement .
  • the determination of the position of the terminal equipment by the reference signal is not limited to the two levels of the cell center position and the cell edge position. In this embodiment, these two positions are only used for illustration, because the direction of the reference signal In many cases, more refined cell location divisions can be determined by it, so as to set more refined and different measurement criteria for terminal devices at different locations.
  • the reference signal in the embodiment of the present application includes, but is not limited to, one or any combination of the following: SSB, CSI-RS, PBCH Block, or CRS.
  • the reference signal in the embodiment of the present application includes SSB; or, the reference signal includes CSI-RS; or, the reference signal includes SSB and PBCH Block; or, the reference signal includes CSI-RS, CRS, and SSB; or, the reference signal includes SSB, CSI-RS, PBCH Block, and CRS, etc.
  • the terminal device determines that the terminal device does not satisfy the first measurement rule.
  • the first measurement rule is also referred to as a relaxation measurement rule, for example.
  • the relaxation measurement is relative to the normal measurement (measurement performed when the relaxation measurement is not performed, which can also be referred to as the second measurement rule).
  • the terminal device When performing the normal measurement, the terminal device periodically or depends on an event to trigger The signal is measured locally; and when the relaxed measurement rule is satisfied, the terminal device may adopt the first measurement rule, for example, it may choose not to perform same-frequency or inter-frequency measurement within a period of time.
  • the terminal device can perform intra-frequency measurement or inter-frequency measurement.
  • the terminal device only determines that it can perform intra-frequency measurement or inter-frequency measurement. As for whether the terminal device needs to perform measurement, it depends on the specific implementation of the terminal device, and the embodiment of the present application does not limit it.
  • the terminal device satisfies the second condition, it can also be considered that the terminal device is in a mobile state, or in other words, the terminal device is not in a stationary state. If this is the case, in addition to the terminal equipment that does not meet the relaxation measurement rules, it can also be used for other purposes. For example, it can be determined that TA has changed. Both terminal equipment and network equipment can re-determine TA, and network equipment can use it. The new TA dispatch terminal equipment, the terminal equipment can also use the new TA to communicate with the network equipment to ensure the normal progress of the communication process and reduce the probability of scheduling failure.
  • the terminal device can be determined according to the signal quality of at least one reference signal of the serving cell of the terminal device that the terminal device does not meet the relaxation measurement rule, and the at least one reference signal corresponds to different transmission directions, which is equivalent to determining that the terminal device Direction information can be added when the device meets the loose measurement rules, which can improve the accuracy of the judgment result. If the terminal device does not meet the loose measurement rules, the terminal device can continue to perform the measurement process to pass the measurement in time when a cell handover is required choose a more suitable cell to ensure the normal progress of the communication process of the terminal equipment and reduce the impact on the communication process of the terminal equipment.
  • FIG. 7 is a schematic block diagram of a communication device 700 according to an embodiment of the application.
  • the communication apparatus 700 is a terminal device 700, for example.
  • the terminal device 700 includes a processing module 710 and a transceiver module 720.
  • the terminal device 700 may be a terminal device, or may be a chip applied in the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 720 may be a transceiver, which may include an antenna and a radio frequency circuit
  • the processing module 710 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more central processing units. (central processing unit, CPU).
  • the transceiver module 720 may be a radio frequency unit, and the processing module 710 may be a processor, such as a baseband processor.
  • the transceiver module 720 may be an input/output interface of the chip system (for example, a baseband chip), and the processing module may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 710 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 2 except for receiving and sending operations, such as S22 and S23, and/or other operations used to support the technology described herein. process.
  • the transceiving module 720 may be used to perform all the transceiving operations performed by the terminal device in the embodiment shown in FIG. 2, such as S21, and/or other processes used to support the technology described herein.
  • the transceiver module 720 may be a functional module that can perform both sending and receiving operations.
  • the transceiver module 720 may be used to perform all the sending operations performed by the terminal device in the embodiment shown in FIG. 2 And receiving operations.
  • the transceiver module 720 when performing a sending operation, can be considered as a sending module, and when performing a receiving operation, the transceiver module 720 can be considered as a receiving module; or, the transceiver module 720 can also be a combination of two functional modules. Collectively, these two functional modules are the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending operations performed by the terminal device in the embodiment shown in Figure 2.
  • the receiving module For completing the receiving operation, for example, the receiving module may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 2.
  • the processing module 710 is configured to determine, according to the signal quality of at least one reference signal of the serving cell, that the terminal device 700 satisfies the first condition, and the at least one reference signal corresponds to at least one transmission direction;
  • the processing module 710 is further configured to perform measurement according to the first measurement rule.
  • the first measurement rule may include not performing intra-frequency measurement or inter-frequency measurement, or the first measurement rule may include one of the following or any combination of the following: reducing the measurement bandwidth, reducing the number of cells to be measured, and reducing The number of bandwidth parts (BWP) for small measurements, or the number of frequencies to be measured is reduced.
  • the first measurement rule may include reducing the measured bandwidth; or, the first measurement rule may include reducing the number of measured cells and reducing the number of measured frequencies; or, the first measurement rule may include reducing the measured bandwidth and reducing the number of measured frequencies.
  • the second measurement rule may be a normal measurement rule, that is, when the S criterion for neighboring cell measurement is satisfied, the terminal device normally performs periodic or event-triggered intra-frequency measurement or inter-frequency measurement.
  • the first measurement rule may also be referred to as the relaxation measurement rule.
  • the relaxation measurement is relative to the normal measurement (measurement performed when the relaxation measurement is not performed, which can also be referred to as the second measurement rule).
  • the terminal device When performing the normal measurement, the terminal device periodically or depends on an event to trigger The signal is measured locally; and when the relaxed measurement rule is satisfied, the terminal device can perform the measurement according to the first measurement rule, for example, it can choose not to perform same-frequency or inter-frequency measurement within a period of time.
  • the processing module 710 is configured to determine that the terminal device 700 meets the first condition according to the signal quality of at least one reference signal of the serving cell of the terminal device 700 in the following manner:
  • the signal quality of the first reference signal of the serving cell satisfies the first sub-condition within the first time period, and it is determined that the terminal device 700 meets the first condition, and the signal quality of the first reference signal is higher than the at least The signal quality of other reference signals in one reference signal; or,
  • the first information is obtained according to the signal quality of the at least one reference signal, it is determined that the first information satisfies the second sub-condition within the first time period, and it is determined that the terminal device 700 meets the first condition.
  • the processing module 710 is further configured to determine that the terminal device 700 is at the edge of the serving cell of the terminal device 700 according to the signal quality of the at least one reference signal, or determine that the terminal device 700 satisfies the need to perform neighboring Guidelines for area measurement.
  • the first sub-condition includes:
  • the difference between the first signal quality of one reference signal and the second signal quality of the one reference signal is less than or equal to the first threshold, and the first signal quality of the one reference signal is the value corresponding to the one reference signal.
  • the second signal quality of the one reference signal is the current signal quality of the one reference signal.
  • the first information satisfies the following formula:
  • S represents the first information
  • i represents the sequence number of the i-th reference signal in the at least one reference signal
  • N represents the number of the at least one reference signal
  • S i represents the i-th reference signal
  • the second signal quality of S ref, i represents the first signal quality of the i-th reference signal.
  • the second sub-condition includes:
  • S is less than or equal to the second threshold, or S/N is less than or equal to the second threshold.
  • processing module 710 is further configured to:
  • the terminal device 700 After the terminal device 700 performs cell selection or cell reselection, or when the second signal quality of a reference signal is greater than the first signal quality of the one reference signal, or when the terminal device 700 does not meet the requirements of the first signal quality When the duration of the condition reaches the second duration,
  • the first signal quality of the one reference signal is set to the second signal quality of the one reference signal.
  • the processing module 710 is further configured to determine that the time period from the previous cell reselection is less than or equal to the third time period before performing intra-frequency measurement or inter-frequency measurement.
  • the processing module 710 is further configured to determine that the terminal device 700 performs intra-frequency measurement or inter-frequency measurement since the last time cell selection or cell reselection was performed before performing intra-frequency measurement or inter-frequency measurement.
  • the duration of the frequency measurement is greater than or equal to the first duration.
  • processing module 710 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 720 may be implemented by a transceiver or a transceiver-related circuit component.
  • an embodiment of the present application also provides a communication device 800.
  • the communication device 800 is a terminal device 800, for example.
  • the terminal device 800 may be a communication device, for example, a terminal device, or may also be a chip system or the like.
  • the terminal device 800 includes a processor 810.
  • a memory 820 may also be included.
  • a transceiver 830 may also be included.
  • the memory 820 stores computer instructions or programs, and the processor 810 can execute the computer instructions or programs stored in the memory 820.
  • the processor 810 When the computer instructions or programs stored in the memory 820 are executed, the processor 810 is configured to execute the operations performed by the processing module 710 in the foregoing embodiment, and the transceiver 830 is configured to execute the operations performed by the transceiver module 720 in the foregoing embodiment.
  • the terminal device 800 may not include the memory 820.
  • the memory is located outside the terminal device 800.
  • the processor 810 When the computer instructions or programs stored in the external memory are executed, the processor 810 is used to execute the processing performed by the processing module 710 in the foregoing embodiment. Operation, the transceiver 830 is configured to perform the operations performed by the transceiver module 720 in the foregoing embodiment.
  • the transceiver 830 may be a functional unit that can perform both sending and receiving operations.
  • the transceiver 830 can be used to perform all the sending operations performed by the terminal device in the embodiment shown in FIG. 2 And receiving operations.
  • the transceiver 830 when performing a sending operation, can be considered as a transmitter, and when performing a receiving operation, the transceiver 830 can be considered as a receiver; or, the transceiver 830 can also be a combination of two functional units. Collectively, these two functional units are a transmitter and a receiver respectively.
  • the transmitter is used to complete the transmission operation.
  • the transmitter can be used to perform all the transmission operations performed by the terminal device in the embodiment shown in FIG. 2
  • the receiver is used for To complete the receiving operation, for example, the receiver may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 2.
  • the transceiver 830 can also be implemented through a communication interface of the chip system, and the communication interface is connected to a radio frequency transceiving component in a communication device to implement information transceiving through the radio frequency transceiving component.
  • the communication interface can be a functional unit that can complete both sending and receiving operations.
  • the communication interface can be used to perform all the sending and receiving operations performed by the terminal device in the embodiment shown in FIG. 2, For example, when performing a sending operation, the communication interface can be considered as a sending interface, and when performing a receiving operation, the communication interface can be considered as a receiving interface; or, the communication interface can also be a collective term for two functional units.
  • the sending interface is used to complete the sending operation.
  • the sending interface can be used to perform all the sending operations performed by the terminal device in the embodiment shown in FIG. 2
  • the receiving interface is used to complete the receiving operation, for example,
  • the receiving interface can be used to perform all receiving operations performed by the terminal device in the embodiment shown in FIG. 2.
  • terminal device 700 or the terminal device 800 can realize the function of the terminal device in the embodiment shown in FIG. 3, and the operation and/or function of each module in the terminal device 700 or the terminal device 800 To implement the corresponding processes in the embodiment shown in FIG. 2 respectively, for the sake of brevity, details are not described herein again.
  • FIG. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the application.
  • the communication device 900 is a terminal device 900, for example.
  • the terminal device 900 includes a processing module 910 and a transceiver module 920.
  • the terminal device 900 may be a terminal device, or may be a chip applied to the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 920 may be a transceiver, which may include an antenna and a radio frequency circuit
  • the processing module 910 may be a processor, such as a baseband processor, and the baseband processor may include one or more CPUs.
  • the transceiver module 920 may be a radio frequency unit, and the processing module 910 may be a processor, such as a baseband processor.
  • the transceiver module 920 may be an input/output interface of a chip system (such as a baseband chip), and the processing module may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 910 may be used to perform all the operations performed by the terminal device in the embodiment shown in FIG. 5 except for the transceiving operations, such as S52 and S53, and/or other operations used to support the technology described herein. process.
  • the transceiver module 920 may be used to perform all the transceiver operations performed by the terminal device in the embodiment shown in FIG. 5, such as S51, and/or other processes used to support the technology described herein.
  • the transceiver module 920 may be a functional module that can perform both sending and receiving operations.
  • the transceiver module 920 may be used to perform all the sending operations performed by the terminal device in the embodiment shown in FIG. 5 And receiving operations.
  • the transceiver module 920 when performing a sending operation, can be considered as a sending module, and when performing a receiving operation, the transceiver module 920 can be considered as a receiving module; or, the transceiver module 920 can also be a combination of two functional modules. Collectively, these two functional modules are the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending operations performed by the terminal device in the embodiment shown in FIG. 5, and the receiving module For completing the receiving operation, for example, the receiving module may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 5.
  • the processing module 910 is configured to determine that the terminal device 900 satisfies the second condition according to the signal quality of at least one reference signal of the serving cell of the terminal device 900, and the at least one reference signal corresponds to at least one transmission direction;
  • the processing module 910 is also used to determine that the terminal device 900 does not satisfy the relaxation measurement rule.
  • the processing module 910 is configured to determine that the terminal device 900 meets the second condition according to the signal quality of at least one reference signal of the serving cell of the terminal device 900 in the following manner:
  • the terminal device 900 satisfies the second condition, and the signal quality of the first reference signal is higher than or equal to that of the at least one reference signal.
  • the signal quality of other reference signals or,
  • the first information is obtained according to the signal quality of the at least one reference signal, it is determined that the first information satisfies the fourth sub-condition, and it is determined that the terminal device 900 satisfies the second condition.
  • the processing module 910 is further configured to determine, according to the signal quality of the at least one reference signal, that the terminal device 900 is in the center position of the serving cell of the terminal device 900, or determine that the terminal device 900 is not satisfied with the execution Guidelines for neighborhood measurement.
  • the third sub-condition includes:
  • the difference between the first signal quality of one reference signal and the second signal quality of the one reference signal is greater than or equal to the first threshold, and the first signal quality of the one reference signal is the value corresponding to the one reference signal.
  • the second signal quality of the one reference signal is the current signal quality of the one reference signal.
  • the first information satisfies the following formula:
  • S represents the first information
  • i represents the sequence number of the i-th reference signal in the at least one reference signal
  • N represents the number of the at least one reference signal
  • S i represents the i-th reference signal
  • the second signal quality of S ref, i represents the first signal quality of the i-th reference signal.
  • the fourth sub-condition includes:
  • S is greater than or equal to the second threshold, or S/N is greater than or equal to the second threshold.
  • processing module 910 is further configured to:
  • the terminal device 900 After the terminal device 900 performs cell selection or cell reselection, or when the second signal quality of a reference signal is greater than the first signal quality of the one reference signal, or when the terminal device 900 satisfies the second condition When the duration of reaches the first duration,
  • the second signal quality of the one reference signal is set to the first signal quality of the one reference signal.
  • the processing module 910 is further configured to perform intra-frequency measurement or inter-frequency measurement.
  • processing module 910 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 920 may be implemented by a transceiver or a transceiver-related circuit component.
  • an embodiment of the present application also provides a communication device 1000.
  • the communication device 1000 is, for example, a terminal device 1000.
  • the terminal device 1000 may be a communication device, for example, a terminal device, or may also be a chip system or the like.
  • the terminal device 1000 includes a processor 1010.
  • a memory 1020 may also be included.
  • a transceiver 1030 may also be included.
  • the memory 1020 stores computer instructions or programs, and the processor 1010 can execute the computer instructions or programs stored in the memory 1020.
  • the processor 1010 When the computer instructions or programs stored in the memory 1020 are executed, the processor 1010 is used to perform the operations performed by the processing module 910 in the foregoing embodiment, and the transceiver 1030 is used to perform the operations performed by the transceiver module 920 in the foregoing embodiment.
  • the terminal device 900 may not include the memory 920.
  • the memory is located outside the terminal device 900.
  • the processor 910 When the computer instructions or programs stored in the external memory are executed, the processor 910 is used to execute the processing performed by the processing module 810 in the foregoing embodiment. Operation, the transceiver 930 is configured to perform the operations performed by the transceiver module 820 in the foregoing embodiment.
  • the transceiver 1030 may be a functional unit that can perform both sending and receiving operations.
  • the transceiver 1030 may be used to perform all the sending operations performed by the terminal device in the embodiment shown in FIG. 5 And receiving operations.
  • the transceiver 1030 when performing a sending operation, can be considered as a transmitter, and when performing a receiving operation, the transceiver 1030 can be considered as a receiver; or, the transceiver 1030 can also be a two-function unit.
  • these two functional units are a transmitter and a receiver respectively.
  • the transmitter is used to complete the transmission operation.
  • the transmitter can be used to perform all the transmission operations performed by the terminal device in the embodiment shown in FIG. 5, and the receiver is used for To complete the receiving operation, for example, the receiver may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 5.
  • the transceiver 1030 can also be implemented through a communication interface of the chip system, and the communication interface is connected to a radio frequency transceiving component in a communication device to implement information transceiving through the radio frequency transceiving component.
  • the communication interface can be a functional unit that can complete both sending and receiving operations.
  • the communication interface can be used to perform all the sending and receiving operations performed by the terminal device in the embodiment shown in FIG. 5,
  • the communication interface can be considered as a sending interface, and when performing a receiving operation, the communication interface can be considered as a receiving interface; or, the communication interface can also be a collective term for two functional units.
  • the sending interface is used to complete the sending operation.
  • the sending interface can be used to perform all the sending operations performed by the terminal device in the embodiment shown in FIG. 5
  • the receiving interface is used to complete the receiving operation, for example,
  • the receiving interface can be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 5.
  • terminal device 900 or the terminal device 1000 can implement the function of the terminal device in the embodiment shown in FIG. 5, and the operation and/or function of each module in the terminal device 900 or the terminal device 1000 In order to realize the corresponding processes in the embodiment shown in FIG. 5 respectively, for the sake of brevity, details are not described herein again.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 11 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1110 and a processing unit 1120.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1110 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1110 can be regarded as the sending unit, that is, the transceiving unit 1110 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1110 is used to perform the sending and receiving operations on the terminal device side in the foregoing method embodiment, and the processing unit 1120 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiver unit 1110 is used to perform all the sending and receiving operations of the terminal device in the embodiment shown in FIG. 2, such as S21, and/or the transceiver unit 1110 is also used to perform the support described herein.
  • the processing unit 1120 is configured to perform all operations performed by the terminal device in the embodiment shown in FIG. 2 except for receiving and sending operations, such as S22 and S23, and/or the processing unit 1120 is also configured to perform and support the operations described herein Other processes of technology.
  • the transceiver unit 1110 is used to perform all the sending operations and receiving operations of the terminal device in the embodiment shown in FIG. 5, such as S51, and/or the transceiver unit 1110 is also used to perform Other processes of the described technology.
  • the processing unit 1120 is configured to perform all operations performed by the terminal device in the embodiment shown in FIG. 5 except for the transceiving operations, such as S52 and S53, and/or the processing unit 1120 is also configured to perform the support described herein Other processes of technology.
  • the device may include a transceiver unit and a processing unit.
  • the transceiving unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or a microprocessor or an integrated circuit.
  • the device shown in FIG. 12 can be referred to.
  • the device can perform functions similar to the processor 810 in FIG. 8.
  • the device can perform functions similar to the processor 1010 in FIG. 10.
  • the device includes a processor 1210, a data sending processor 1220, and a data receiving processor 1230.
  • the processing module 710 in the foregoing embodiment may be the processor 1210 in FIG. 12 and complete corresponding functions; the transceiver module 720 in the foregoing embodiment may be the sending data processor 1220 in FIG. 12, and/or receiving data The processor 1230.
  • the processing module 910 in the foregoing embodiment may be the processor 1210 in FIG.
  • the transceiving module 920 in the foregoing embodiment may be the data sending processor 1220 in FIG. 12, and/or Receive data processor 1230.
  • the channel encoder and the channel decoder are shown in FIG. 12, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are merely illustrative.
  • the processing device 1300 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1303 and an interface 1304.
  • the processor 1303 completes the function of the aforementioned processing module 710
  • the interface 1304 completes the function of the aforementioned transceiver module 720.
  • the processor 1303 completes the function of the aforementioned processing module 910
  • the interface 1304 completes the function of the aforementioned transceiver module 920.
  • the modulation subsystem includes a memory 1306, a processor 1003, and a program stored in the memory 1306 and running on the processor.
  • the processor 1303 implements the terminal device side in the foregoing method embodiment when the program is executed. Methods. It should be noted that the memory 1306 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1300, as long as the memory 1306 can be connected to the The processor 1303 is fine.
  • the embodiment of the present application also provides a communication system.
  • the communication system may include at least one terminal device involved in the embodiment shown in FIG. 2, or at least one terminal device involved in the embodiment shown in FIG. 5, or at least one terminal device involved in the embodiment shown in FIG.
  • the terminal device involved in the embodiment shown in 2 and at least one terminal device involved in the embodiment shown in FIG. 5 is included.
  • the terminal device involved in the embodiment shown in FIG. 2 is, for example, the communication device 700 in FIG. 7 or the communication device 800 in FIG. 8, and the terminal device involved in the embodiment shown in FIG. 5 is, for example, the communication device in FIG. 9 900 or the communication device 1000 in FIG. 10.
  • the terminal device involved in the embodiment shown in FIG. 5 can be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 5, such as S51 to S53 in the embodiment shown in FIG. 5, and/or use To support other processes of the technology described in this article.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 2 provided by the foregoing method embodiment.
  • the process related to the terminal device in the embodiment is not limited to a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 2 provided by the foregoing method embodiment. The process related to the terminal device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 5 provided by the foregoing method embodiment.
  • the process related to the terminal device in the embodiment is not limited to a computer-readable storage medium.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 2 provided by the above method embodiment Processes related to terminal equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 5 provided by the above method embodiment Processes related to terminal equipment.
  • processors mentioned in the embodiments of this application may be a CPU, or other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置,可应用于车联网,例如V2X、LTE-V、V2V等。根据服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第一条件,所述至少一个参考信号对应于至少一个发送方向。不执行同频测量或异频测量。在本申请实施例中,至少一个参考信号对应于不同的发送方向,相当于,在确定终端设备的移动状态时可以加入方向信息,从而可以提高确定结果的准确性。

Description

一种通信方法及装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前,终端设备为了节能,引入了一种节省测量功耗的机制:终端设备通过判断自身的移动状态,来决定如何进行信号测量。假设终端设备在一段时间内的移动可能性较低,则可以在一段时间内不对小区的信号质量进行测量,进而节省功耗。
目前终端设备在横向移动或者以基站为圆心做圆周运动的时候,很难基于服务小区的信号质量对自身运动状态进行准确的判断,从而可能导致误判,进而做出错误的测量决策,即使当终端设备处于服务小区的边缘位置时,也无法通过测量来进行小区重选,进而影响后续的通信业务。
如何能够使终端设备对自身移动状态做出更精确的判断的问题亟待解决。
发明内容
本申请实施例提供一种通信方法及装置,用于提供一种较为准确地判断终端设备是否满足放松测量规则的方式。
第一方面,提供第一种通信方法,该方法包括:根据服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第一条件,所述至少一个参考信号对应于至少一个发送方向;根据第一测量规则进行测量。
该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第一通信装置为终端装置。示例性地,所述终端装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现终端设备的功能的其他部件。
在本申请实施例中,可以根据终端设备的服务小区的至少一个参考信号的信号质量来确定终端设备可以不执行同频测量或异频测量,相当于,根据至少一个参考信号的信号质量可以确定终端设备的移动状态,例如可以确定终端设备处于静止状态,或者说未处于移动状态,因此终端设备可以不执行同频测量或异频测量,而至少一个参考信号对应于不同的发送方向,相当于,在确定终端设备的移动状态时可以加入方向信息,从而可以提高确定结果的准确性,减小对于终端设备的通信过程的影响。例如,第一测量规则,也可以称为放松测量规则。第一测量规则例如包括不执行同频测量或异频测量,或者,第一测量规则例如包括如下的一种或如下多种的任意组合:减少测量的带宽,减少测量的小区数量,或者,减少测量的频率数量。例如,第一测量规则可以包括减少测量的带宽;或者,第一测量规则可以包括减少测量的小区数量,以及减少测量的频率数量;或者,第一测量规则可以包括减少测量的带宽,减少测量的小区数量,以及减少测量的频率数量,等等。
结合第一方面,在第一方面的一种可能的实施方式中,根据终端设备的服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第一条件,包括:
确定所述服务小区的第一参考信号的信号质量在第一时长内均满足第一子条件,确定所述终端设备满足所述第一条件,所述第一参考信号的信号质量高于所述至少一个参考信号中的其他参考信号的信号质量;或,
确定所述至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量在第一时长内均满足第一子条件,确定所述终端设备满足所述第一条件,M为大于或等于1的整数,且M小于或等于所述至少一个参考信号的个数;或,
所述终端设备根据所述至少一个参考信号的信号质量得到第一信息,确定所述第一信息在第一时长内均满足第二子条件,确定所述终端设备满足所述第一条件。
例如,第一参考信号可以是至少一个参考信号中的任意一个,例如,只需随机选择至少一个参考信号中的一个参考信号,只要该参考信号的信号质量在第一时长内均满足第一子条件,就可以认为终端设备满足第一条件。这种确定终端设备满足第一条件的方式较为简单,终端设备只需随机选择一个参考信号,获得该参考信号的信号质量,确定该参考信号的信号质量是否在第一时长内均满足第一子条件即可,对于终端设备来说工作量较少,功耗较小。或者,第一参考信号可以是至少一个参考信号中的信号质量最好的参考信号,也就是说,第一参考信号的信号质量高于或等于至少一个参考信号中除了第一参考信号之外的其他参考信号的信号质量。对此也可以理解为,用于发送第一参考信号的波束是至少一个波束中的最佳波束。最佳参考信号(即,信号质量最好的参考信号,或者说,最佳波束,或者说,通过最佳波束发送的参考信号)的变化对于终端设备的移动更为敏感,所以能够更好地表征终端设备的移动状态,如果最佳参考信号的信号质量在第一时长内均满足第一子条件,就可以认为终端设备满足第一条件。只需根据一个参考信号来确定终端设备满足第一条件,无需对过多的参考信号进行处理,有助于减少终端设备的工作量。
或者,终端设备也可以根据M个参考信号的信号质量来确定终端设备满足第一条件,相当于终端设备可以考虑多个参考信号的第二信号质量,通过确定多个参考信号的第二信号质量是否满足第一子条件,可以提高确定结果的准确性。
或者,终端设备也可以根据至少一个参考信号的至少一个信号质量得到第一信息,确定第一信息是否满足第二子条件,相当于综合确定至少一个参考信号的信号质量是否满足第二子条件,可以提高确定结果的准确性。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:
根据所述至少一个参考信号的信号质量,确定所述终端设备处于所述终端设备的服务小区的边缘位置,或者确定所述终端设备满足执行邻区测量的准则。
如果确定终端设备处于小区的中心位置,则终端设备可以继续确定终端设备是否满足第一条件,处于小区中心的终端设备,可能较为稳定,例如可能处于静止状态的可能性较大,或者说进行小区切换或重选的可能性较小,即使不进行测量可能也不会影响正常工作,或者可以说,处于小区中心的终端设备可能并不需要进行测量。因此,处于小区中心的终端设备会比较需要使用放松测量规则,因此如果终端设备处于小区的中心位置,就可以确定终端设备是否满足第一条件,使得本申请实施例提供的技术方案能够应用于更有需求的终端设备。而如果终端设备处于小区的边缘位置,则终端设备可以不必再确定终端设备是否满足第一条件,例如终端设备可以直接正常进行同频测量或异频测量,从而减少了因为确定终端设备是否满足第一条件而带来的功耗。
所满足的执行邻区测量的准则,例如为S准则。所述S准则是指,终端设备当前的服 务小区的功率低于或者等于开启邻区测量的功率门限,或者,终端设备当前的服务小区的信号质量低于或者等于开启邻区测量的信号质量门限,或者,终端设备当前的服务小区的功率低于或者等于开启邻区测量的功率门限,以及终端设备当前的服务小区的信号质量低于或者等于开启邻区测量的信号质量门限。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一子条件包括:
一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值小于或等于第一门限,所述一个参考信号的第一信号质量是所述一个参考信号对应的用于参考的信号质量,所述一个参考信号的第二信号质量是所述一个参考信号当前的信号质量。
第一信号质量可以作为一个参考值,通过第一信号质量就可以确定参考信号的信号质量的变化量。如果一个参考信号的信号质量的变化量较小,即,小于或等于第一门限,就认为该参考信号的信号质量满足第一子条件(或者说,认为该参考信号的第二信号质量满足第一子条件),否则,如果一个参考信号的信号质量的变化量较大,例如大于第一门限,就认为该参考信号的信号质量不满足第一子条件(或者说,认为该参考信号的第二信号质量不满足第一子条件)。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一信息满足如下公式:
Figure PCTCN2019103456-appb-000001
Figure PCTCN2019103456-appb-000002
其中,S表示所述第一信息,i表示所述至少一个参考信号中的第i个参考信号的序号,N表示所述至少一个参考信号的个数,S i表示所述第i个参考信号的第二信号质量,S ref,i表示所述第i个参考信号的第一信号质量。
第一信息可以综合表示至少一个参考信号的变化量。如果至少一个参考信号的信号质量的变化量较小,即,小于或等于第二门限,就认为该参考信号的信号质量满足第二子条件(或者说,认为该参考信号的第二信号质量满足第二子条件),否则,如果一个参考信号的信号质量的变化量较大,例如大于第二门限,就认为该参考信号的信号质量不满足第二子条件(或者说,认为该参考信号的第二信号质量不满足第二子条件)。综合考虑了至少一个参考信号的变化量的情况,可以提高确定结果的准确性。
结合第一方面,在第一方面的一种可能的实施方式中,所述第二子条件包括:
S小于或等于第二门限,或,S/N小于或等于第二门限。
至于第二子条件究竟是S小于或等于第二门限,还是S/N小于或等于第二门限,可以由终端设备确定,或者由网络设备配置,或也可以通过协议规定。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:
在所述终端设备执行完小区选择或者小区重选后,或者,在一个参考信号的第二信号质量大于所述一个参考信号的第一信号质量时,或者,在所述终端设备不满足所述第一条件的时长达到第二时长时,
所述终端设备将所述一个参考信号的第一信号质量设置为所述一个参考信号的第二信号质量。
至少一个参考信号中的每个参考信号,都可以对应一个第一信号质量,对于一个参考信号来说,对应的第一信号质量可以用于确定该参考信号的第二信号质量是否满足相应的条件,例如确定该参考信号的第二信号质量是否满足第一子条件或第二子条件。不同的参考信号对应的第一信号质量可以相等,或者也可以不相等。至少一个参考信号对应至少一 个第一信号质量,至少一个第一信号质量可以是预先设置的,这里只是举例介绍第一信号质量如何设置。例如,一个参考信号对应的第一信号质量,初始时等于该参考信号的第二信号质量,该参考信号的第二信号质量可能会发生变化,那么该第一信号质量也可以随之重新设置。其中,将该参考信号对应的第一信号质量设置为该参考信号的第二信号质量,可以理解为,是将该参考信号对应的第一信号质量的取值设置为该参考信号的第二信号质量的取值。
结合第一方面,在第一方面的一种可能的实施方式中,在根据第一测量规则进行测量之前,还包括:
确定距离上一次执行小区重选的时长小于或等于第三时长。
结合第一方面,在第一方面的一种可能的实施方式中,在根据第一测量规则进行测量之前,还包括:
确定自上一次执行小区选择或者小区重选起,所述终端设备进行同频测量或者异频测量的时长大于或等于第一时长。
在本申请实施例中,终端设备要采用第一测量规则,前提是要满足如下的任意一种条件或如下的多种条件的任意组合:终端设备满足第一条件,距离上一次执行小区重选的时长小于或等于第三时长,或,自上一次执行小区选择或者小区重选起,该终端设备进行同频测量或者异频测量的时长大于或等于第一时长。例如,只要终端设备满足第一条件,终端设备就可以不执行同频测量或异频测量;或者,终端设备满足第一条件,且距离上一次执行小区重选的时长小于或等于第三时长,则终端设备可以采用第一测量规则,那么终端设备在采用第一测量规则之前,除了要确定终端设备满足第一条件之外,还需要确定距离上一次执行小区重选的时长小于或等于第三时长;或者,终端设备满足第一条件,距离上一次执行小区重选的时长小于或等于第三时长,以及,自上一次执行小区选择或者小区重选起,该终端设备进行同频测量或者异频测量的时长大于或等于第一时长,则终端设备可以不执行同频测量或异频测量,那么在采用第一测量规则之前,除了要确定终端设备满足第一条件之外,还需要确定距离上一次执行小区重选的时长小于或等于第三时长,以及需要确定自上一次执行小区选择或者小区重选起,该终端设备进行同频测量或者异频测量的时长大于或等于第一时长,等等。
第二方面,提供第二种通信方法,该方法包括:根据终端设备的服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第二条件,所述至少一个参考信号对应于至少一个发送方向;确定所述终端设备不满足放松测量规则。
该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第二通信装置为终端装置。示例性地,所述终端装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现终端设备的功能的其他部件。
在本申请实施例中,可以根据终端设备的服务小区的至少一个参考信号的信号质量来确定终端设备不满足放松测量规则,而至少一个参考信号对应于不同的发送方向,相当于,在判断终端设备是否满足放松测量规则时可以加入方向信息,从而可以提高判断结果的准确性,如果终端设备不满足放松测量规则,则终端设备可以继续执行测量过程,以在需要进行小区切换时能够及时通过测量选择到较为合适的小区,保证终端设备通信过程的正常进行,减小对终端设备的通信过程的影响。
结合第二方面,在第二方面的一种可能的实施方式中,根据终端设备的服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第二条件,包括:
确定所述服务小区的第一参考信号的信号质量满足第三子条件,确定所述终端设备满足所述第二条件,所述第一参考信号的信号质量高于或等于所述至少一个参考信号中的其他参考信号的信号质量;或,
确定所述至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量满足第三子条件,确定所述终端设备满足所述第二条件,M为大于或等于1的整数,且M小于或等于所述至少一个参考信号的个数;或,
根据所述至少一个参考信号的信号质量得到第一信息,确定所述第一信息满足第四子条件,确定所述终端设备满足所述第二条件。
例如,第一参考信号可以是至少一个参考信号中的任意一个,例如,只需随机选择至少一个参考信号中的一个参考信号,只要该参考信号的信号质量满足第三子条件,就可以认为终端设备满足第二条件。这种确定终端设备满足第二条件的方式较为简单,终端设备只需随机选择一个参考信号,获得该参考信号的信号质量,确定该参考信号的信号质量是否满足第三子条件即可,对于终端设备来说工作量较少,功耗较小。或者,第一参考信号可以是至少一个参考信号中的信号质量最好的参考信号,也就是说,第一参考信号的信号质量高于或等于至少一个参考信号中除了第一参考信号之外的其他参考信号的信号质量。对此也可以理解为,用于发送第一参考信号的波束是至少一个波束中的最佳波束。最佳参考信号(即,信号质量最好的参考信号,或者说,最佳波束,或者说,通过最佳波束发送的参考信号)的变化对于终端设备的移动更为敏感,所以能够更好地表征终端设备的移动状态,如果最佳参考信号的信号质量满足第三子条件,就可以认为终端设备满足第二条件。只需根据一个参考信号来确定终端设备满足第二条件,无需对过多的参考信号进行处理,有助于减少终端设备的工作量。
或者,终端设备也可以根据M个参考信号的信号质量来确定终端设备满足第二条件,相当于终端设备可以考虑多个参考信号的第二信号质量,通过确定多个参考信号的第二信号质量是否满足第三子条件,可以提高确定结果的准确性。
或者,终端设备也可以根据至少一个参考信号的至少一个信号质量得到第一信息,确定第一信息是否满足第四子条件,相当于综合确定至少一个参考信号的信号质量是否满足第四子条件,可以提高确定结果的准确性。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:
根据所述至少一个参考信号的信号质量,确定所述终端设备处于所述终端设备的服务小区的中心位置,或者确定所述终端设备不满足执行邻区测量的准则。
如果确定终端设备处于小区的边缘位置,则终端设备可以继续确定终端设备是否满足第二条件,处于小区边缘的终端设备,可能处于移动状态,例如进行小区切换或重选的可能性较大,需要通过测量来选择合适的小区,或者可以说,处于小区边缘的终端设备可能需要进行测量。因此,处于小区边缘的终端设备会不太适宜使用放松测量规则,因此如果终端设备处于小区的边缘位置,就可以确定终端设备是否满足第二条件,如果满足,就可以不使用放松测量规则,使得本申请实施例提供的技术方案能够应用于更有需求的终端设备。
所不满足的执行邻区测量的准则,例如为S准则。所述S准则是指,终端设备当前的 服务小区的功率低于或者等于开启邻区测量的功率门限,那么,如果终端设备当前的服务小区的功率大于开启邻区测量的功率门限,就是不满足S准则;或者,S准则是指,终端设备当前的服务小区的信号质量低于或者等于开启邻区测量的信号质量门限,那么,如果终端设备当前的服务小区的信号质量大于开启邻区测量的信号质量门限,就是不满足S准则;或者,终端设备当前的服务小区的功率低于或者等于开启邻区测量的功率门限,以及终端设备当前的服务小区的信号质量低于或者等于开启邻区测量的信号质量门限,那么,如果终端设备当前的服务小区的功率大于开启邻区测量的功率门限,或者,终端设备当前的服务小区的信号质量大于开启邻区测量的信号质量门限,或者,终端设备当前的服务小区的功率大于开启邻区测量的功率门限,以及终端设备当前的服务小区的信号质量大于开启邻区测量的信号质量门限,这几种情况都是不满足S准则。
结合第二方面,在第二方面的一种可能的实施方式中,所述第三子条件包括:
一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值大于或等于第一门限,所述一个参考信号的第一信号质量是所述一个参考信号对应的用于参考的信号质量,所述一个参考信号的第二信号质量是所述一个参考信号当前的信号质量。
第一信号质量可以作为一个参考值,通过第一信号质量就可以确定参考信号的信号质量的变化量。如果一个参考信号的信号质量的变化量较大,即,大于或等于第一门限,就认为该参考信号的信号质量满足第三子条件(或者说,认为该参考信号的第二信号质量满足第三子条件),否则,如果一个参考信号的信号质量的变化量较小,例如小于第一门限,就认为该参考信号的信号质量不满足第三子条件(或者说,认为该参考信号的第二信号质量不满足第三子条件)。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一信息满足如下公式:
Figure PCTCN2019103456-appb-000003
Figure PCTCN2019103456-appb-000004
其中,S表示所述第一信息,i表示所述至少一个参考信号中的第i个参考信号的序号,N表示所述至少一个参考信号的个数,S i表示所述第i个参考信号的第二信号质量,S ref,i表示所述第i个参考信号的第一信号质量。
第一信息可以综合表示至少一个参考信号的变化量。如果至少一个参考信号的信号质量的变化量较大,即,大于或等于第二门限,就认为该参考信号的信号质量满足第四子条件(或者说,认为该参考信号的第二信号质量满足第四子条件),否则,如果一个参考信号的信号质量的变化量较小,例如小于第二门限,就认为该参考信号的信号质量不满足第四子条件(或者说,认为该参考信号的第二信号质量不满足第四子条件)。综合考虑了至少一个参考信号的变化量的情况,可以提高确定结果的准确性。
结合第二方面,在第二方面的一种可能的实施方式中,所述第四子条件包括:
S大于或等于第二门限,或,S/N大于或等于第二门限。
至于第二子条件究竟是S大于或等于第二门限,还是S/N大于或等于第二门限,可以由终端设备确定,或者由网络设备配置,或也可以通过协议规定。
所述方法还包括:
在所述终端设备执行完小区选择或者小区重选后,或者,在一个参考信号的第二信号质量大于所述一个参考信号的第一信号质量时,或者,在所述终端设备满足所述第二条件的时长达到第一时长时,
所述终端设备将所述一个参考信号的第二信号质量设置为所述一个参考信号的第一信号质量。
至少一个参考信号中的每个参考信号,都可以对应一个第一信号质量,对于一个参考信号来说,对应的第一信号质量可以用于确定该参考信号的第二信号质量是否满足相应的条件,例如确定该参考信号的第二信号质量是否满足第三子条件或第四子条件。不同的参考信号对应的第一信号质量可以相等,或者也可以不相等。至少一个参考信号对应至少一个第一信号质量,至少一个第一信号质量可以是预先设置的,这里只是举例介绍第一信号质量如何设置。例如,一个参考信号对应的第一信号质量,初始时等于该参考信号的第二信号质量,该参考信号的第二信号质量可能会发生变化,那么该第一信号质量也可以随之重新设置。其中,将该参考信号对应的第一信号质量设置为该参考信号的第二信号质量,可以理解为,是将该参考信号对应的第一信号质量的取值设置为该参考信号的第二信号质量的取值。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:
所述终端设备执行同频测量或异频测量。
如果确定终端设备不满足放松测量规则,则终端设备可以继续执行正常的测量过程,例如终端设备可以执行同频测量或异频测量,对于具体的正常测量过程如何进行,本申请实施例不做限制。
第三方面,提供一种通信装置,例如该通信装置为如前所述的第一通信装置。所述第一通信装置用于执行上述第一方面或第一方面的任一可能的实施方式中的方法。具体地,所述第一通信装置可以包括用于执行第一方面或第一方面的任一可能的实施方式中的方法的模块,例如包括处理模块。可选的,还可以包括收发模块。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。下面以第一通信装置是终端设备为例。其中,
所述处理模块,用于根据服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第一条件,所述至少一个参考信号对应于至少一个发送方向;
所述处理模块,还用于根据第一测量规则进行测量。
结合第三方面,在第三方面的一种可能的实施方式中,所述处理模块用于通过如下方式根据终端设备的服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第一条件:
确定所述服务小区的第一参考信号的信号质量在第一时长内均满足第一子条件,确定所述终端设备满足所述第一条件,所述第一参考信号的信号质量高于所述至少一个参考信号中的其他参考信号的信号质量;或,
确定所述至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量在第一时长内均满足第一子条件,确定所述终端设备满足所述第一条件,M为大于或等于1的整数,且M小于或等于所述至少一个参考信号的个数;或,
根据所述至少一个参考信号的信号质量得到第一信息,确定所述第一信息在第一时长内均满足第二子条件,确定所述终端设备满足所述第一条件。
结合第三方面,在第三方面的一种可能的实施方式中,所述处理模块,还用于根据所述至少一个参考信号的信号质量,确定所述终端设备处于所述终端设备的服务小区的边缘位置,或者确定所述终端设备满足执行邻区测量的准则。
结合第三方面,在第三方面的一种可能的实施方式中,所述第一子条件包括:
一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值小于或等于第一门限,所述一个参考信号的第一信号质量是所述一个参考信号对应的用于参考的信号质量,所述一个参考信号的第二信号质量是所述一个参考信号当前的信号质量。
结合第三方面,在第三方面的一种可能的实施方式中,所述第一信息满足如下公式:
Figure PCTCN2019103456-appb-000005
Figure PCTCN2019103456-appb-000006
其中,S表示所述第一信息,i表示所述至少一个参考信号中的第i个参考信号的序号,N表示所述至少一个参考信号的个数,S i表示所述第i个参考信号的第二信号质量,S ref,i表示所述第i个参考信号的第一信号质量。
结合第三方面,在第三方面的一种可能的实施方式中,所述第二子条件包括:
S小于或等于第二门限,或,S/N小于或等于第二门限。
结合第三方面,在第三方面的一种可能的实施方式中,所述处理模块还用于:
在所述终端设备执行完小区选择或者小区重选后,或者,在一个参考信号的第二信号质量大于所述一个参考信号的第一信号质量时,或者,在所述终端设备不满足所述第一条件的时长达到第二时长时,
将所述一个参考信号的第一信号质量设置为所述一个参考信号的第二信号质量。
结合第三方面,在第三方面的一种可能的实施方式中,所述处理模块,还用于在根据第一测量规则进行测量之前,确定距离上一次执行小区重选的时长小于或等于第三时长。
结合第三方面,在第三方面的一种可能的实施方式中,所述处理模块,还用于在根据第一测量规则进行测量之前,确定自上一次执行小区选择或者小区重选起,所述终端设备进行同频测量或者异频测量的时长大于或等于第一时长。
关于第三方面或第三方面的各种可能的实施方式的技术效果,可以参考对于第一方面或第一方面的相应的实施方式的技术效果的介绍。
第四方面,提供一种通信装置,例如该通信装置为如前所述的第二通信装置。所述第一通信装置用于执行上述第二方面或第二方面的任一可能的实施方式中的方法。具体地,所述第一通信装置可以包括用于执行第二方面或第二方面的任一可能的实施方式中的方法的模块,例如包括处理模块。可选的,还可以包括收发模块。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。下面以第一通信装置是终端设备为例。其中,
所述处理模块,用于根据终端设备的服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第二条件,所述至少一个参考信号对应于至少一个发送方向;
所述处理模块,还用于确定所述终端设备不满足放松测量规则。
结合第四方面,在第四方面的一种可能的实施方式中,所述处理模块用于通过如下方式根据终端设备的服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第二条件:
确定所述服务小区的第一参考信号的信号质量满足第三子条件,确定所述终端设备满足所述第二条件,所述第一参考信号的信号质量高于或等于所述至少一个参考信号中的其他参考信号的信号质量;或,
确定所述至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量满足第 三子条件,确定所述终端设备满足所述第二条件,M为大于或等于1的整数,且M小于或等于所述至少一个参考信号的个数;或,
根据所述至少一个参考信号的信号质量得到第一信息,确定所述第一信息满足第四子条件,确定所述终端设备满足所述第二条件。
结合第四方面,在第四方面的一种可能的实施方式中,所述处理模块,还用于根据所述至少一个参考信号的信号质量,确定所述终端设备处于所述终端设备的服务小区的中心位置,或者确定所述终端设备不满足执行邻区测量的准则。
结合第四方面,在第四方面的一种可能的实施方式中,所述第三子条件包括:
一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值大于或等于第一门限,所述一个参考信号的第一信号质量是所述一个参考信号对应的用于参考的信号质量,所述一个参考信号的第二信号质量是所述一个参考信号当前的信号质量。
结合第四方面,在第四方面的一种可能的实施方式中,所述第一信息满足如下公式:
Figure PCTCN2019103456-appb-000007
Figure PCTCN2019103456-appb-000008
其中,S表示所述第一信息,i表示所述至少一个参考信号中的第i个参考信号的序号,N表示所述至少一个参考信号的个数,S i表示所述第i个参考信号的第二信号质量,S ref,i表示所述第i个参考信号的第一信号质量。
结合第四方面,在第四方面的一种可能的实施方式中,所述第四子条件包括:
S大于或等于第二门限,或,S/N大于或等于第二门限。
结合第四方面,在第四方面的一种可能的实施方式中,所述处理模块还用于:
在所述终端设备执行完小区选择或者小区重选后,或者,在一个参考信号的第二信号质量大于所述一个参考信号的第一信号质量时,或者,在所述终端设备满足所述第二条件的时长达到第一时长时,
将所述一个参考信号的第二信号质量设置为所述一个参考信号的第一信号质量。
结合第四方面,在第四方面的一种可能的实施方式中,所述处理模块,还用于执行同频测量或异频测量。例如,所述处理模块,还用于在确定所述终端设备不满足放松测量规则时或者在确定所述终端设备不满足放松测量规则后,执行同频测量或异频测量。
关于第四方面或第四方面的各种可能的实施方式的技术效果,可以参考对于第二方面或第二方面的相应的实施方式的技术效果的介绍。
第五方面,提供一种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器。可选的,还可以包括收发器。处理器和收发器相互耦合,用于实现上述第一方面或第一方面的各种可能的实施方式所描述的方法。可选的,第一通信装置还可以包括存储器。处理器、存储器和收发器相互耦合,用于实现上述第一方面或第一方面的各种可能的实施方式所描述的方法。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。下面以第一通信装置是终端设备为例。其中,如果第一通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述通信接口,用于与其他装置进行通信;
所述处理器,用于根据服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第一条件,以及,根据第一测量规则进行测量,所述至少一个参考信号对应于至少一个发送方向。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理器用于通过如下方式根据终端设备的服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第一条件:
确定所述服务小区的第一参考信号的信号质量在第一时长内均满足第一子条件,确定所述终端设备满足所述第一条件,所述第一参考信号的信号质量高于所述至少一个参考信号中的其他参考信号的信号质量;或,
确定所述至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量在第一时长内均满足第一子条件,确定所述终端设备满足所述第一条件,M为大于或等于1的整数,且M小于或等于所述至少一个参考信号的个数;或,
根据所述至少一个参考信号的信号质量得到第一信息,确定所述第一信息在第一时长内均满足第二子条件,确定所述终端设备满足所述第一条件。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理器,还用于根据所述至少一个参考信号的信号质量,确定所述终端设备处于所述终端设备的服务小区的边缘位置,或者确定所述终端设备满足执行邻区测量的准则。
结合第五方面,在第五方面的一种可能的实施方式中,所述第一子条件包括:
一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值小于或等于第一门限,所述一个参考信号的第一信号质量是所述一个参考信号对应的用于参考的信号质量,所述一个参考信号的第二信号质量是所述一个参考信号当前的信号质量。
结合第五方面,在第五方面的一种可能的实施方式中,所述第一信息满足如下公式:
Figure PCTCN2019103456-appb-000009
Figure PCTCN2019103456-appb-000010
其中,S表示所述第一信息,i表示所述至少一个参考信号中的第i个参考信号的序号,N表示所述至少一个参考信号的个数,S i表示所述第i个参考信号的第二信号质量,S ref,i表示所述第i个参考信号的第一信号质量。
结合第五方面,在第五方面的一种可能的实施方式中,所述第二子条件包括:
S小于或等于第二门限,或,S/N小于或等于第二门限。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理器还用于:
在所述终端设备执行完小区选择或者小区重选后,或者,在一个参考信号的第二信号质量大于所述一个参考信号的第一信号质量时,或者,在所述终端设备不满足所述第一条件的时长达到第二时长时,
将所述一个参考信号的第一信号质量设置为所述一个参考信号的第二信号质量。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理器,还用于在根据第一测量规则进行测量之前,确定距离上一次执行小区重选的时长小于或等于第三时长。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理器,还用于在根据第一测量规则进行测量之前,确定自上一次执行小区选择或者小区重选起,所述终端设备进行同频测量或者异频测量的时长大于或等于第一时长。
关于第五方面或第五方面的各种可能的实施方式的技术效果,可以参考对于第一方面 或第一方面的相应的实施方式的技术效果的介绍。
第六方面,提供一种通信装置,该通信装置例如为如前所述的第二通信装置。该通信装置包括处理器。可选的,还可以包括收发器。处理器和收发器相互耦合,用于实现上述第二方面或第二方面的各种可能的实施方式所描述的方法。可选的,第一通信装置还可以包括存储器。处理器、存储器和收发器相互耦合,用于实现上述第二方面或第二方面的各种可能的实施方式所描述的方法。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。下面以第二通信装置是终端设备为例。其中,如果第一通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述通信接口,用于与其他装置进行通信;
所述处理器,用于根据终端设备的服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第二条件,以及,确定所述终端设备不满足放松测量规则,所述至少一个参考信号对应于至少一个发送方向。
结合第六方面,在第六方面的一种可能的实施方式中,所述处理器用于通过如下方式根据终端设备的服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第二条件:
确定所述服务小区的第一参考信号的信号质量满足第三子条件,确定所述终端设备满足所述第二条件,所述第一参考信号的信号质量高于或等于所述至少一个参考信号中的其他参考信号的信号质量;或,
确定所述至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量满足第三子条件,确定所述终端设备满足所述第二条件,M为大于或等于1的整数,且M小于或等于所述至少一个参考信号的个数;或,
根据所述至少一个参考信号的信号质量得到第一信息,确定所述第一信息满足第四子条件,确定所述终端设备满足所述第二条件。
结合第六方面,在第六方面的一种可能的实施方式中,所述处理器,还用于根据所述至少一个参考信号的信号质量,确定所述终端设备处于所述终端设备的服务小区的中心位置,或者确定所述终端设备不满足执行邻区测量的准则。
结合第六方面,在第六方面的一种可能的实施方式中,所述第三子条件包括:
一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值大于或等于第一门限,所述一个参考信号的第一信号质量是所述一个参考信号对应的用于参考的信号质量,所述一个参考信号的第二信号质量是所述一个参考信号当前的信号质量。
结合第六方面,在第六方面的一种可能的实施方式中,所述第一信息满足如下公式:
Figure PCTCN2019103456-appb-000011
Figure PCTCN2019103456-appb-000012
其中,S表示所述第一信息,i表示所述至少一个参考信号中的第i个参考信号的序号,N表示所述至少一个参考信号的个数,S i表示所述第i个参考信号的第二信号质量,S ref,i表示所述第i个参考信号的第一信号质量。
结合第六方面,在第六方面的一种可能的实施方式中,所述第四子条件包括:
S大于或等于第二门限,或,S/N大于或等于第二门限。
结合第六方面,在第六方面的一种可能的实施方式中,所述处理器还用于:
在所述终端设备执行完小区选择或者小区重选后,或者,在一个参考信号的第二信号质量大于所述一个参考信号的第一信号质量时,或者,在所述终端设备满足所述第二条件的时长达到第一时长时,
将所述一个参考信号的第二信号质量设置为所述一个参考信号的第一信号质量。
结合第六方面,在第六方面的一种可能的实施方式中,所述处理器,还用于执行同频测量或异频测量。例如,所述处理器,还用于在确定所述终端设备不满足放松测量规则时或者在确定所述终端设备不满足放松测量规则后,执行同频测量或异频测量。
关于第六方面或第六方面的各种可能的实施方式的技术效果,可以参考对于第二方面或第二方面的相应的实施方式的技术效果的介绍。
第七方面,提供一种通信装置。该通信装置可以为上述方法设计中的第一通信装置。示例性地,所述第一通信装置为设置在通信设备中的芯片。示例性地,所述通信设备为终端设备。该通信装置包括:通信接口,用于进行信息的收发,或者说,用于与其他装置进行通信;以及处理器,处理器与通信接口耦合。可选的,该通信装置还可以包括存储器,用于存储计算机可执行程序代码。或者,该通信装置也可以不包括存储器,存储器可以位于该通信装置外部。其中,存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,如果第一通信装置为通信设备,所述通信接口,该通信接口可以是第一通信装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,则所述通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第八方面,提供一种通信装置。该通信装置可以为上述方法设计中的第二通信装置。示例性地,所述第二通信装置为设置在通信设备中的芯片。示例性地,所述通信设备为终端设备。该通信装置包括:通信接口,用于进行信息的收发,或者说,用于与其他装置进行通信;以及处理器,处理器与通信接口耦合。可选的,该通信装置还可以包括存储器,用于存储计算机可执行程序代码。或者,该通信装置也可以不包括存储器,存储器可以位于该通信装置外部。其中,存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,如果第二通信装置为通信设备,所述通信接口可以是第二通信装置中的收发器,例如通过第二通信装置中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,则所述通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第九方面,提供一种通信系统,该通信系统包括第三方面所述的通信装置、第五方面所述的通信装置或第七方面所述的通信装置;和/或,该通信系统包括第四方面所述的通信装置、第六方面所述的通信装置或第八方面所述的通信装置。
第十方面,提供一种计算机存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或第一方面的任意一种可能的实施方式中所述的方法。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质用于存储计算机指 令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或第二方面的任意一种可能的实施方式中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或第一方面的任意一种可能的实施方式中所述的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或第二方面的任意一种可能的实施方式中所述的方法。
在本申请实施例中,至少一个参考信号对应于不同的发送方向,相当于,在确定终端设备的移动状态时可以加入方向信息,从而可以提高确定结果的准确性,减小对于终端设备的通信过程的影响。
附图说明
图1为本申请实施例的一种应用场景示意图;
图2为本申请实施例提供的第一种通信方法的流程图;
图3为波束的示意图;
图4为本申请实施例提供的参考信号的第二信号质量的一种示意图;
图5为本申请实施例提供的第二种通信方法的流程图;
图6为本申请实施例提供的参考信号的第二信号质量的一种示意图;
图7为本申请实施例提供的第一种终端设备的示意性框图;
图8为本申请实施例提供的第一种终端设备的另一示意性框图;
图9为本申请实施例提供的第二种终端设备的示意性框图;
图10为本申请实施例提供的第二种终端设备的另一示意性框图;
图11为本申请实施例提供的通信装置的示意性框图;
图12为本申请实施例提供的通信装置的另一示意性框图;
图13为本申请实施例提供的通信装置的再一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信 (machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备也可以包括中继,例如可以理解为,能够与基站进行数据通信的都可以看作终端设备。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(5th generation,5G)新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
另外,网络设备还可以包括核心网设备。但因本申请实施例不涉及核心网设备,主要是接入网设备与终端设备之间的交互。因此本申请实施例所述的网络设备可以是指接入网设备。
3)波束(beam),是指在特定时间内,基站将能量发射到某一方向范围,形成一个类似波束的能量区域,从而为该方向上的终端设备提供通信服务。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一条件和第二条件,只是为了区分不同的条件,而并不是表示这两个条件的内容、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
在无线通信系统中,终端设备需要对服务小区的信号质量进行周期性测量,如果服务小区的信号质量低于一定的门限,终端设备可以对同频或异频进行测量,以便当同频小区或异频小区的信号质量满足一定条件时,终端设备可以进行小区重选,以重选到其他小区。
但是在一些场景下,终端设备的位置可能是相对固定的,例如物联网(internet of things,IoT)或机器类通信(machine-type communication,MTC)等场景中,有些终端设备的位置就是相对固定的。对于位置固定的终端设备来说,服务小区和邻区也就相对固定,终端设备即使进行周期性测量,测量的结果可能也相差不大,在这种情况下终端设备进行周期性测量,相当于是做了无效的操作,使得终端设备的功耗较大。
目前,为了给终端设备节能,引入了一种放松测量规则:假设在一段时间内(例如5分钟),终端设备所测量的服务小区的信号质量的变化都不超过门限,则终端设备可以认为该终端设备满足放松测量规则。在满足放松测量规则的情况下,终端设备可以放松同频测量或异频测量,例如终端设备可以在很长一段时间内(例如24小时)不对同频或异频进行测量,从而达到节电的目的。
但是判断终端设备是否满足放松测量规则,目前使用的这种判断方式不够准确。例如,终端设备在围绕基站做圆形运动时,终端设备的服务小区的信号质量变化很小,如果不超过门限,则终端设备会认为终端设备满足放松测量规则,则终端设备可能在很长一段时间内不对同频或异频进行测量。那么,如果终端设备在某一时刻移动到服务小区的边缘,但因为终端设备不对同频或异频进行测量,则无法进行小区重选,会影响后续通信业务的进行。
可见,由于对是否满足放松测量规则的判断不够准确,可能会影响终端设备的通信。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,可以根据终端设备的服务小区的至少一个参考信号的信号质量来确定终端设备可以不执行同频测量或异频测量,相当于,根据至少一个参考信号的信号质量可以确定终端设备的移动状态,例如可以确定终端设备处于静止状态,或者说未处于移动状态,因此终端设备可以不执行同频测量或异频测量,而至少一个参考信号对应于至少一个发送方向,相当于,在确定终端设备的移动 状态时可以加入方向信息,从而可以提高确定结果的准确性,减小对于终端设备的通信过程的影响。
可参考图1,为本申请实施例的一种应用场景。图1包括网络设备和终端设备。终端设备的类型可以有多种,例如图1中的终端设备1为电视机,终端设备2为路由器,终端设备3为热水壶,终端设备4为水杯,终端设备5为手机,终端设备6为打印机。其中,终端设备5还可以作为终端设备4和终端设备6的中继,终端设备4和终端设备6的上行通信需要通过中继的转发,即,终端设备4先将上行信号发送给终端设备5,终端设备5将接收到终端设备4的上行信号转发给网络设备,从而网络设备能够接收到来自终端设备4的上行信号。对于终端设备6来说也是同样的。但是对于下行通信,终端设备4和终端设备6都可以直接从网络设备接收下行信号,无需通过中继的转发。
图1中的网络设备例如为基站。其中,网络设备在不同的系统可以对应不同的设备,例如在第四代移动通信技术(4th generation,4G)系统中可以对应4G系统中的网络设备,例如eNB,在5G系统中可以对应5G系统中的网络设备,例如gNB。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供第一种通信方法,请参见图2,为该方法的流程图。在下文的介绍过程中,以该方法应用于图1所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是网络设备,第二通信装置是终端设备,或者第一通信装置和第二通信装置都是网络设备,或者第一通信装置和第二通信装置都是终端设备,或者第一通信装置是网络设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由终端设备和网络设备执行为例,也就是说,以第一通信装置是终端设备、第二通信装置是网络设备为例。因为本实施例是以应用在图1所示的网络架构为例,因此,下文中所述的网络设备可以是图1所示的网络架构中的网络设备,下文中所述的终端设备可以是图1所示的网络架构中的终端设备。
S21、网络设备向终端设备发送至少一个参考信号,终端设备在终端设备的服务小区接收来自网络设备的所述至少一个参考信号。所述至少一个参考信号对应于至少一个发送方向。
在NR系统中,引入了波束(beam)的概念。波束是指特定时间内,网络设备将能量发射到某一方向范围,形成一个类似于波束的能量区域,从而为该方向上的终端设备提供通信服务。为了覆盖全方向的终端设备,网络设备可以采用时分的方式,在不同的时间段,将能量发射到不同的方向,在一个周期内可以覆盖360°的方向。例如请参考图3,有四个波束,分别为波束1、波束2、波束3和波束4,网络设备的发送周期为40s。则网络设备可以在前10秒将波束1发射到正南方向,覆盖90°范围,在接下来的十秒将波束2发 射到正西,覆盖90°范围,在接下来的十秒将波束3发射到正北方向,覆盖90°范围,以及在最后的十秒将波束4发射到正东方向,覆盖90°范围。从而在40秒内利用波束1、波束2、波束3和波束4覆盖了360°的范围。
在本申请实施例中,至少一个参考信号对应于至少一个发送方向,例如为,至少一个参考信号对应于至少一个波束,或者说,网络设备通过至少一个波束发送至少一个参考信号,其中,认为波束和参考信号是一一对应的关系。不同的波束指向不同的方向,网络设备所发送的至少一个波束可以指向至少一个发送方向。其中,网络设备在一个方向上通过一个波束发送一个参考信号,因此也可以描述为,至少一个参考信号对应于至少一个发送方向。参考信号的标识可以和波束标识一一对应,或者参考信号的标识可以也作为波束的标识。或者某个方向的参考信号,以及某个方向的波束,这两个概念可以认为是相同的概念。
其中,至少一个参考信号,可以包括一个参考信号,或者也可以包括多个参考信号。如果包括一个参考信号,则至少一个参考信号也可以理解为是一个参考信号;或者,如果包括多个参考信号,则至少一个参考信号也可以理解为是至少两个参考信号,例如包括两个参考信号、三个参考信号或更多个参考信号。
S22、终端设备根据所述至少一个参考信号的信号质量,确定所述终端设备满足第一条件,所述至少一个参考信号对应于至少一个发送方向。
终端设备可以测量所接收的至少一个参考信号的信号质量,从而确定终端设备是否满足第一条件。关于终端设备是否满足第一条件,可以包括多种实现方式,下面举例介绍。
1、终端设备满足第一条件的第一种实现方式。
如果确定服务小区的第一参考信号的信号质量在第一时长内均满足第一子条件,就可以确定终端设备满足第一条件。第一时长可以由终端设备确定,或者由网络设备配置,或者也可以通过协议规定等。第一时长可以是一个具体的数值,例如5分钟,或者可以设置为非连续接收(discontinuous reception,DRX)的周期时长,或者可以比较5分钟和DRX的周期时长,选择二者中的较大值作为第一时长的取值。
例如,第一参考信号是至少一个参考信号中的任意一个,例如,只需随机选择至少一个参考信号中的一个参考信号,只要该参考信号的信号质量在第一时长内均满足第一子条件,就可以认为终端设备满足第一条件。这种确定终端设备满足第一条件的方式较为简单,终端设备只需随机选择一个参考信号,获得该参考信号的信号质量,确定该参考信号的信号质量是否在第一时长内均满足第一子条件即可,对于终端设备来说工作量较少,功耗较小。
在本申请实施例中所述的一个参考信号,也可以理解为“一种”参考信号,例如,网络设备发送至少一个参考信号,可以理解为,网络设备发送至少一种参考信号,相应的,终端设备接收至少一个参考信号,可以理解为,终端设备接收至少一种参考信号。而对于其中的每种参考信号,网络设备可以发送一次,终端设备可以接收一次,或者,网络设备可以发送多次,终端设备可以接收多次。例如对于一种参考信号,网络设备发送了多次,终端设备接收了多次,那么对于这种参考信号来说,对应于不同次的接收,终端设备得到的该参考信号的信号质量可能是不同的。例如第一参考信号是一种参考信号,对于第一参考信号,网络设备发送了多次,终端设备也接收了多次。在第一时长内,终端设备可以在每次接收第一参考信号后都获得第一参考信号的信号质量,如果在第一时长内终端设备获 得的第一参考信号的信号质量均满足第一子条件,就可以认为终端设备满足第一条件。
或者,第一参考信号可以是至少一个参考信号中的信号质量最好的参考信号,也就是说,第一参考信号的信号质量高于(higher)或等于至少一个参考信号中除了第一参考信号之外的其他参考信号的信号质量。对此也可以理解为,用于发送第一参考信号的波束是至少一个波束中的最佳波束。相当于,终端设备在得到至少一个参考信号的信号质量后,可以从中选择信号质量最好的参考信号,或者说,选择通过至少一个波束中的最佳波束所发送的参考信号,确定该参考信号的信号质量是否在第一时长内均满足第一子条件。其中,如果至少一个参考信号的个数大于1,且有多个参考信号的信号质量相等,且均为最优,那么终端设备可以从这多个参考信号中随机选择一个参考信号,确定该参考信号的信号质量是否在第一时长内均满足第一子条件,如果该参考信号的信号质量在第一时长内均满足第一子条件,就认为终端设备满足第一条件。最佳参考信号(即,信号质量最好的参考信号,或者说,最佳波束,或者说,通过最佳波束发送的参考信号)的变化对于终端设备的移动更为敏感,所以能够更好地表征终端设备的移动状态,如果最佳参考信号的信号质量在第一时长内均满足第一子条件,就可以认为终端设备满足第一条件。
其中,一个参考信号的信号质量在第一时长内均满足第一子条件究竟应如何理解,可以参考前文的介绍。
第一子条件例如包括,一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值小于或等于第一门限,其中,第一信号质量是所述的一个参考信号对应的用于参考的信号质量,或者说是用于后续与第二信号质量做对比的信号质量的参考值。根据第一信号质量,就可以确定该参考信号的信号质量的变化。第二信号质量是所述的一个参考信号当前的信号质量。第一信号质量与第二信号质量之间的差值,可以用第一信号质量减去第二信号质量得到,也可以用第二信号质量减去第一信号质量得到。根据第一信号质量和第二信号质量,可以确定该参考信号的信号质量的变化。
这里所述的信号质量之间的差值,可以是实际差值,则该差值可能是正数、0或负数。例如,对于第一参考信号来说,如果第一参考信号是通过至少一个波束中的最佳波束所发送的参考信号,那么第一参考信号的第一信号质量可能大于或等于第一参考信号的第二信号质量,如果第一信号质量和第二信号质量之间的差值用第一信号质量减去第二信号质量得到,则该差值为正数或0,而如果第一信号质量和第二信号质量之间的差值用第二信号质量减去第一信号质量得到,则该差值为负数或0;或者,如果第一参考信号不是通过至少一个波束中的最佳波束所发送的参考信号,而是通过至少一个波束中除了最佳波束之外的其他波束所发送的参考信号,那么第一参考信号的第一信号质量可能小于或等于第一参考信号的第二信号质量,如果第一信号质量和第二信号质量之间的差值用第一信号质量减去第二信号质量得到,则该差值为负数或0,而如果第一信号质量和第二信号质量之间的差值用第二信号质量减去第一信号质量得到,则该差值为正数或0。
或者,这里所述的信号质量之间的差值,也可以是指信号质量之间的实际差值的绝对值,即,第一子条件包括,一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值的绝对值小于或等于第一门限。那么,无论第一信号质量和第二信号质量之间的差值用第一信号质量减去第二信号质量得到,还是用第二信号质量减去第一信号质量得到,也无论第一信号质量和第二信号质量之间的大小关系如何,该差值都为正数或0。
另外,对于一个参考信号来说,既然引入了第一信号质量和第二信号质量的概念,那 么,在满足第一条件的第一种实现方式下,实际上应该是判断第一参考信号的实际的信号质量(或者说当前的信号质量)是否满足第一子条件,而不是判断第一参考信号的第一信号质量是否满足第一子条件。因此,满足第一条件的第一种实现方式也可以表述为,如果确定服务小区的第一参考信号的第二信号质量在第一时长内均满足第一子条件,就可以确定终端设备满足第一条件。也就是说,终端设备在接收至少一个参考信号后,可以获得第一参考信号的第二信号质量,如果确定第一参考信号的第二信号质量在第一时长内均满足第一子条件,就认为终端设备满足第一条件。而第一参考信号可以是至少一个参考信号中的任意一个参考信号,或者也可以是至少一个参考信号中的第二信号质量最好的参考信号。
对于满足第一条件的第一种实现方式来说,第一子条件可以是,第一参考信号对应的第一信号质量与第一参考信号的第二信号质量之间的差值小于或等于第一门限。第一门限可以由终端设备确定,或者由网络设备配置,或者也可以通过协议规定。
例如,第一子条件通过如下公式1或公式2体现:
S beam/ref-S beam≤第一门限          (公式1)
S beam-S beam/ref≤第一门限          (公式2)
公式1中,以第一信号质量和第二信号质量之间的差值用第一信号质量减去第二信号质量得到为例,公式2中,以第一信号质量和第二信号质量之间的差值用第二信号质量减去第一信号质量得到为例。另外,公式1和公式2中,都以该差值是实际差值为例,除此之外,该差值还可以取实际差值的绝对值。S beam/ref表示一个参考信号对应的第一信号质量,S beam表示该参考信号的第二信号质量。对于满足第一条件的第一种实现方式来说,S beam/ref可以表示第一参考信号对应的第一信号质量,S beam表示第一参考信号的第二信号质量。第一参考信号对应的第一信号质量与第一参考信号的第二信号质量之间的差值,可以表示第一参考信号的信号质量的变化量,如果第一参考信号的信号质量的变化量较小,即,小于或等于第一门限,就认为第一参考信号的信号质量满足第一子条件(或者说,认为第一参考信号的第二信号质量满足第一子条件),否则,如果第一参考信号的信号质量的变化量较大,例如大于第一门限,就认为第一参考信号的信号质量不满足第一子条件(或者说,认为第一参考信号的第二信号质量不满足第一子条件)。其中,如果S beam/ref-S beam=第一门限(或者,S beam-S beam/ref=第一门限),可以认为第一参考信号的信号质量满足第一子条件(或者说,认为第一参考信号的第二信号质量满足第一子条件),或者也可以认为第一参考信号的信号质量不满足第一子条件(或者说,认为第一参考信号的第二信号质量不满足第一子条件)。
至少一个参考信号中的每个参考信号,都可以对应一个第一信号质量,对于一个参考信号来说,对应的第一信号质量可以用于确定该参考信号的第二信号质量是否满足相应的条件,例如确定该参考信号的第二信号质量是否满足第一子条件或第二子条件。不同的参考信号对应的第一信号质量可以相等,或者也可以不相等。至少一个参考信号对应至少一个第一信号质量,至少一个第一信号质量可以是预先设置的。其中,对于一个参考信号来说,该参考信号对应的第一信号质量可以通过如下方式来设置:在终端设备执行完小区选择或者小区重选后,将该参考信号对应的第一信号质量设置为该参考信号的第二信号质量;或者,在该参考信号的第二信号质量大于该参考信号对应的第一信号质量时,将该参考信号对应的第一信号质量设置为该参考信号的第二信号质量;或者,在终端设备不满足第一条件的时长达到第二时长时,将该参考信号对应的第一信号质量设置为该参考信号的第二 信号质量。也就是说,一个参考信号对应的第一信号质量,初始时等于该参考信号的第二信号质量,该参考信号的第二信号质量可能会发生变化,那么该第一信号质量也可以随之重新设置。其中,将该参考信号对应的第一信号质量设置为该参考信号的第二信号质量,可以理解为,是将该参考信号对应的第一信号质量的取值设置为该参考信号的第二信号质量的取值。
例如可参考图4,为参考信号的第二信号质量的一种示意图。图4以至少一个参考信号的个数是3为例,分别为参考信号1、参考信号2和参考信号3,其中参考信号2是最佳参考信号。图4中最上面的曲线表示参考信号2的第二信号质量,中间的曲线表示参考信号1的第二信号质量,最下面的曲线表示参考信号3的第二信号质量。例如图4中的两条竖直虚线之间的部分就表示参考信号的第二信号质量的变化量。如果第一参考信号是参考信号2,那么根据公式1或公式2可以确定,第一参考信号的第二信号质量满足第一子条件。
在满足第一条件的第一种实现方式下,终端设备只需确定一个参考信号的第二信号质量是否满足第一子条件即可,无需处理过多的参考信号,较为简单。
2、终端设备满足第一条件的第二种实现方式。
如果确定至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量在第一时长内均满足第一子条件,则确定终端设备满足第一条件。其中,M为大于或等于1的整数,且M小于或等于至少一个参考信号的个数。可以认为,M个参考信号是至少一个参考信号中的部分参考信号或全部参考信号。M的取值例如由终端设备确定,或者由网络设备配置,或者也可以通过协议规定。
在引入了第一信号质量和第二信号质量的概念后,在满足第一条件的第二种实现方式下,实际上应该是判断M个参考信号中的每个参考信号的实际的信号质量(或者说当前的信号质量)是否满足第一子条件,而不是判断M个参考信号中的每个参考信号的第一信号质量是否满足第一子条件。因此,满足第一条件的第二种实现方式也可以表述为,如果确定至少一个参考信号中,有M个参考信号中的每个参考信号的第二信号质量在第一时长内均满足第一子条件,则确定终端设备满足第一条件。也就是说,终端设备在接收至少一个参考信号后,可以获得M个参考信号中的每个参考信号的第二信号质量,如果确定M个参考信号中的每个参考信号的第二信号质量在第一时长内均满足第一子条件,就认为终端设备满足第一条件。其中,关于参考信号的第一信号质量的设置方式,可参考前文介绍。
其中,M个参考信号例如为从至少一个参考信号中随机选择的M个参考信号,这种确定终端设备满足第一条件的方式较为简单,终端设备只需随机选择M个参考信号,获得M个参考信号中每个参考信号的第二信号质量,确定这每个参考信号的信号质量是否满足第一子条件(或者说,确定这每个参考信号的第二信号质量是否满足第一子条件)即可,对于终端设备来说工作量较少,功耗较小。
或者,M个参考信号例如为至少一个参考信号中第二信号质量较好的参考信号,例如,M个参考信号中的每个参考信号的第二信号质量,高于或等于至少一个参考信号中除了M个参考信号之外的其他的参考信号的第二信号质量。相当于,终端设备在得到至少一个参考信号的第二信号质量后,可以从中选择第二信号质量最好的M个参考信号,再确定M个参考信号中的每个参考信号的信号质量是否满足第一子条件(或者说,确定M个参考信号中的每个参考信号的第二信号质量是否满足第一子条件)。
或者,M大于或等于2,M个参考信号例如为从至少一个参考信号中选择的M个参考信号,且M个参考信号中包括第二参考信号,第二参考信号的第二信号质量高于或等于至少一个参考信号中的其他的参考信号的第二信号质量,或者说,第二参考信号是通过至少一个波束中的最佳波束发送的。也就是说,M个参考信号中包括通过至少一个波束中的最佳波束发送的参考信号,还包括通过至少一个波束中的除了最佳波束之外的其他波束发送的参考信号。这种方式既考虑了通过最佳波束发送的参考信号,也考虑了通过其他波束发送的参考信号,可以使得确定结果更为准确。
第一子条件可以继续通过公式1或公式2来体现,对于M个参考信号中的每个参考信号的第二信号质量,都可以通过公式1或公式2来确定是否满足第一子条件。同样的,在满足第一条件的第二种实现方式下,第一信号质量和第二信号质量的差值,可以是实际差值,或者也可以是实际差值的绝对值。对于第一条件的第二种实现方式来说,公式1或公式2中的S beam/ref可以表示M个参考信号中的一个参考信号对应的第一信号质量,S beam表示该参考信号的第二信号质量。一个参考信号对应的第一信号质量与该参考信号的第二信号质量之间的差值,可以表示该参考信号的第二信号质量的变化量。如果M个参考信号中的每个参考信号的第二信号质量的变化量较小,即,都小于或等于第一门限,就认为M个参考信号中的每个参考信号的信号质量都满足第一子条件(或者说,确定M个参考信号中的每个参考信号的第二信号质量都满足第一子条件),也就认为终端设备满足第一条件;否则,如果M个参考信号中,有一个或多个参考信号的第二信号质量的变化量较大,例如这些参考信号的第二信号质量的变化量大于第一门限,就认为这些参考信号的第二信号质量不满足第一子条件(或者说,认为这些参考信号的第二信号质量不满足第一子条件),也就认为终端设备不满足第一条件。其中,对于一个参考信号来说,如果S beam/ref-S beam=第一门限(或者,S beam-S beam/ref=第一门限),可以认为该参考信号的信号质量满足第一子条件(或者说,认为该参考信号的第二信号质量满足第一子条件),或者也可以认为该参考信号的信号质量不满足第一子条件(或者说,认为该参考信号的第二信号质量不满足第一子条件)。
其中,M个参考信号中的一个参考信号的信号质量(或者说,第二信号质量)在第一时长内均满足第一子条件究竟应如何理解,可以参考前文的介绍。
需要注意的是,满足第一条件的第二种实现方式下所使用的第一门限,和满足第一条件的第一种实现方式下所使用的第一门限,取值可能相同,也可能不同。
在满足第一条件的第二种实现方式下,终端设备可以考虑多个参考信号的第二信号质量,通过确定多个参考信号的第二信号质量是否满足第一子条件,可以提高确定结果的准确性。
3、终端设备满足第一条件的第三种实现方式。
根据至少一个参考信号的信号质量得到第一信息,确定第一信息在第一时长内均满足第二子条件,确定终端设备满足第一条件。
其中,根据至少一个参考信号的信号质量得到第一信息,可以是根据至少一个参考信号的至少一个第二信号质量和至少一个第一信号质量得到第一信息。其中,关于参考信号的第一信号质量的设置方式,可参考前文介绍。例如,作为获得第一信息的一种方式,第一信息可以满足如下的公式3或公式4:
Figure PCTCN2019103456-appb-000013
Figure PCTCN2019103456-appb-000014
公式3和公式4中,S表示第一信息,i表示至少一个参考信号中的第i个参考信号的序号,N表示至少一个参考信号的个数,S i表示第i个参考信号的第二信号质量,S ref,i表示第i个参考信号的第一信号质量,|(S ref,i-S i)|表示对(S ref,i-S i)取绝对值。
第二子条件例如包括,S小于或等于第二门限。其中,S等于第二门限,可以认为是满足第二子条件,也可以认为是不满足第二子条件。或者,第二子条件例如包括,S/N小于或等于第二门限。其中,S/N等于第二门限,可以认为是满足第二子条件,也可以认为是不满足第二子条件。第二门限可以由终端设备确定,或者由网络设备配置,或者也可以通过协议规定。
在本申请实施例中所述的一个参考信号,也可以理解为“一种”参考信号,例如,网络设备发送至少一个参考信号,可以理解为,网络设备发送至少一种参考信号,相应的,终端设备接收至少一个参考信号,可以理解为,终端设备接收至少一种参考信号。而对于其中的每种参考信号,网络设备可以发送一次,终端设备可以接收一次,或者,网络设备可以发送多次,终端设备可以接收多次。例如对于一种参考信号,网络设备发送了多次,终端设备接收了多次,那么对于这种参考信号来说,对应于不同次的接收,终端设备得到的该参考信号的信号质量可能是不同的。例如对于至少一个参考信号,网络设备分别发送了多次,终端设备也接收了多次。例如,网络设备每次都可以发送至少一个参考信号,可以发送多次,终端设备每次都可以接收至少一个参考信号,可以接收多次。在第一时长内,终端设备可以在每次接收至少一个参考信号后都获得第一信息,如果在第一时长内终端设备获得的第一信息均满足第二子条件,就可以认为终端设备满足第一条件。
需要注意的是,满足第一条件的第二种实现方式下所使用的第一门限,和这里的第二门限,取值可能相同,也可能不同。如果满足第一条件的第二种实现方式下所使用的第一门限,和满足第一条件的第一种实现方式下所使用的第一门限,取值不同,那么,满足第一条件的第二种实现方式下所使用的第一门限,和这里的第二门限,取值可能相同,也可能不同。
在满足第一条件的第三种实现方式下,终端设备可以根据至少一个参考信号的至少一个信号质量得到第一信息,确定第一信息是否满足第二子条件,相当于综合确定至少一个参考信号的信号质量是否满足第二子条件,可以提高确定结果的准确性。
4、终端设备满足第一条件的第四种实现方式。
如果确定服务小区的参考信号的信号质量在第一时长内均满足第一子条件,就可以确定终端设备满足第一条件。在满足第一条件的第四种实现方式下,网络设备所发送的参考信号可以不区分方向,例如网络设备并不通过波束来发送参考信号,那么终端设备所接收的参考信号也就不区分方向。
同样的,在本申请实施例中所述的参考信号,也可以理解为“一种”参考信号,例如,网络设备发送参考信号,可以理解为,网络设备发送一种参考信号,相应的,终端设备接收参考信号,可以理解为,终端设备接收一种参考信号。而对于这种参考信号,网络设备可以发送一次,终端设备可以接收一次,或者,网络设备可以发送多次,终端设备可以接收多次。例如对于一种参考信号,网络设备发送了多次,终端设备接收了多次,那么对于 这种参考信号来说,对应于不同次的接收,终端设备得到的该参考信号的信号质量可能是不同的。在第一时长内,终端设备可以在每次接收服务小区的参考信号后都获得该参考信号的信号质量,如果在第一时长内终端设备获得的该参考信号的信号质量均满足第一子条件,就可以认为终端设备满足第一条件。
在引入了第一信号质量和第二信号质量的概念后,在满足第一条件的第四种实现方式下,实际上应该是判断服务小区的参考信号的实际的信号质量(或者说当前的信号质量)是否满足第一子条件,而不是判断服务小区的参考信号的第一信号质量是否满足第一子条件。因此,满足第一条件的第四种实现方式也可以表述为,如果确定服务小区的参考信号的第二信号质量在第一时长内均满足第一子条件,则确定终端设备满足第一条件。也就是说,终端设备在接收服务小区的参考信号后,可以获得该参考信号的第二信号质量,如果确定该参考信号的第二信号质量在第一时长内均满足第一子条件,就认为终端设备满足第一条件。其中,关于参考信号的第一信号质量的设置方式,可参考前文介绍。
第一子条件可以继续通过公式1或公式2来体现,对于服务小区的参考信号的第二信号质量,可以通过公式1或公式2来确定是否满足第一子条件。同样的,在满足第一条件的第四种实现方式下,第一信号质量和第二信号质量的差值,可以是实际差值,或者也可以是实际差值的绝对值。对于满足第一条件的第四种实现方式来说,公式1或公式2中的S beam/ref可以表示该参考信号对应的第一信号质量,S beam表示该参考信号的第二信号质量。该参考信号对应的第一信号质量与该参考信号的第二信号质量之间的差值,可以表示该参考信号的第二信号质量的变化量。如果该参考信号的第二信号质量的变化量较小,即,小于或等于第一门限,就认为该参考信号的信号质量满足第一子条件(或者说,确定该参考信号的第二信号质量满足第一子条件),也就认为终端设备满足第一条件;否则,如果该参考信号的第二信号质量的变化量较大,例如该参考信号的第二信号质量的变化量大于第一门限,就认为该参考信号的第二信号质量不满足第一子条件(或者说,认为该参考信号的第二信号质量不满足第一子条件),也就认为终端设备不满足第一条件。其中,对于该参考信号来说,如果S beam/ref-S beam=第一门限(或者,S beam-S beam/ref=第一门限),可以认为该参考信号的信号质量满足第一子条件(或者说,认为该参考信号的第二信号质量满足第一子条件),或者也可以认为该参考信号的信号质量不满足第一子条件(或者说,认为该参考信号的第二信号质量不满足第一子条件)。
需要注意的是,满足第一条件的第二种实现方式下所使用的第一门限,满足第一条件的第一种实现方式下所使用的第一门限,以及满足第一条件的第四种实现方式下所使用的第一门限,这三个第一门限的取值可能相同,或者也可能均不同,或者也可能有其中任意两个第一门限的取值相同,而另一个第一门限的取值不同。
当然,要确定终端设备满足第一条件,不限于如上的四种实现方式,具体的不做限制。
另外,终端设备还可以根据至少一个参考信号的信号质量(例如第二信号质量)确定终端设备在小区内的位置,这里的小区是终端设备的服务小区。例如,终端设备可以根据至少一个参考信号的信号质量,确定终端设备处于小区的边缘位置,或者确定所述终端设备满足执行邻区测量的准则。其中,所满足的执行邻区测量的准则,该准则可以是S准则。所述S准则是指,终端设备当前的服务小区的功率低于或者等于开启邻区测量的功率门限,或者,终端设备当前的服务小区的信号质量低于或者等于开启邻区测量的信号质量门限,或者,终端设备当前的服务小区的功率低于或者等于开启邻区测量的功率门限,以及终端 设备当前的服务小区的信号质量低于或者等于开启邻区测量的信号质量门限。其中,至少一个参考信号的发送方向是明确的,网络设备可以将至少一个参考信号的发送方向信息(或者说,将波束和小区的位置之间的对应关系)发送给终端设备,进一步也可以将至少一个参考信号的标识发送给终端设备,终端设备就可以获知每个波束和小区内相应的位置之间的对应关系。进一步的,终端设备测量得到某个参考信号的第二信号质量较好,则可以确定终端设备是处于或者接近该参考信号的发送方向上。进一步,终端设备可以确定该终端设备是位于小区的中心位置还是小区的边缘位置。例如,至少一个参考信号包括通过波束1发送的参考信号1,波束1的发送方向指向小区的中心,而终端设备测量得到的参考信号1的第二信号质量最高,则可以确定终端设备是位于或者接近小区的中心位置。
根据终端设备在小区内的位置的不同,测量规则可以有所不同。例如,终端设备如果位于小区的中心位置,则可以采用第一测量规则,而如果终端设备位于小区的边缘位置,则可以采用第二测量规则。例如,第一测量规则可以包括不执行同频测量或异频测量,或者,第一测量规则可以包括如下的一种或如下多种的任意组合:减少测量的带宽,减少测量的小区数量,减小测量的带宽部分(bandwidth part,BWP)的数量,或者,减少测量的频率数量。例如,第一测量规则可以包括减少测量的带宽;或者,第一测量规则可以包括减少测量的小区数量,以及减少测量的频率数量;或者,第一测量规则可以包括减少测量的带宽,减少测量的小区数量,以及减少测量的频率数量,等等。而第二测量规则可以是正常的测量规则,即,当满足针对相邻小区测量的S准则时,终端设备正常进行周期性或者事件触发性的同频测量或异频测量。
所述第一测量规则也可以称为放松测量规则,二者可以互相替换。
作为一种可选的实施方式,终端设备在确定终端设备满足第一条件之前,也就是在S22之前,可以先判断是否满足执行针对相邻小区的同频或者异频测量的条件,如果满足执行针对相邻小区的测量的条件,则终端设备可以继续确定终端设备是否满足第一条件,也就是执行S22,而如果不满足执行针对相邻小区的测量的条件,则终端设备可以不必再执行S22和S23或者直接执行第一测量规则,该流程可以结束。
作为另外一种可选的实施方式,网络设备也可以发送指示信息给终端设备,所述指示信息用于指示终端设备是否可以进行关于是否满足放松测量规则的相关判断或者操作,假设该指示信息指示终端设备不进行放松测量规则,则所述终端设备一直不执行S22,进而不执行第一测量规则。
作为另外一种可选的实施方式,终端设备在确定终端设备满足第一条件之前,也就是在S22之前,可以先根据至少一个参考信号的信号质量确定终端设备在小区内所处的位置。如果确定终端设备处于小区的边缘位置,则终端设备可以继续确定终端设备是否满足第一条件,也就是执行S22,而如果确定终端设备处于小区的中心位置,则终端设备可以不必再执行S22和S23或者直接执行第一测量规则,该流程可以结束。
或者,如果确定终端设备处于小区的中心位置,则终端设备可以继续执行下一个实施例即将介绍的步骤,这些将在下个实施例中介绍。
或者,如果确定终端设备处于小区的中心位置,终端设备也可以继续执行S22,但是在这种情况下,终端设备在确定终端设备是否满足第一条件时,所使用的门限(例如,第一门限,或,第二门限,或,第一门限和第二门限),与终端设备处于小区的中心位置时终端设备在确定终端设备是否满足第一条件所使用的门限,可以相同,也可以不同。例如, 处于小区边缘的终端设备在确定终端设备是否满足第一条件时使用了第一门限,处于小区中心的终端设备在确定终端设备是否满足第一条件时也使用了第一门限,这两个第一门限的取值可能相同,也可能不同。如果这两个第一门限的取值不同,则处于小区中心的终端设备所使用的第一门限,其取值可以大于处于小区边缘的终端设备所使用的第一门限的取值。再例如,处于小区边缘的终端设备在确定终端设备是否满足第一条件时使用了第二门限,处于小区中心的终端设备在确定终端设备是否满足第一条件时也使用了第二门限,这两个第二门限的取值可能相同,也可能不同。如果这两个第二门限的取值不同,则处于小区中心的终端设备所使用的第二门限,其取值可以大于处于小区边缘的终端设备所使用的第二门限的取值。
处于小区中心的终端设备,服务小区变化的概率较小,进行小区切换或重选的可能性较小,即使不对相邻小区进行测量可能也不会影响正常工作,或者可以说,处于小区中心的终端设备可能并不需要进行对相邻小区的测量,因此,处于小区中心的终端设备所使用的门限的取值可以相对较大,使得这些终端设备相对更容易满足第一条件,从而有更大概率执行放松测量规则,最极限的情况是可以配置为一直执行放松测量。而处于小区边缘的终端设备,如果处在移动状态,服务小区变化的概率较大,进行小区切换或重选的可能性较大,需要通过对相邻小区的测量来辅助选择新的小区,因此处于小区边缘的终端设备所使用的门限的取值可以相对较小,使得这些终端设备相对不容易满足第一条件,从而能够更频繁或者更长时间地进行对相邻小区的测量。
不同位置的终端设备所使用的门限(例如,第一门限,或,第二门限,或,第一门限和第二门限),可以由终端设备确定,或者由网络设备配置,或者可以通过协议规定。
这里需要注意的是,通过参考信号确定终端设备的位置并不只限定于小区中心位置和小区边缘位置这两个级别,本实施例中采用这两个位置仅用于举例说明,由于参考信号的方向很多,可以通过其确定更为精细的小区位置划分,从而为不同位置的终端设备设置更为精细的不同的测量准则。
本申请实施例中的参考信号包括但不限定于如下的一种或如下多种的任意组合:同步信息块(synchronization signal block,SSB)、信道状态信息参考信号(channel state information–reference signal,CSI-RS)、物理广播信道块(physical broadcast channel block,PBCH Block),或,小区参考信号(cell reference signal,CRS)。例如,本申请实施例中的参考信号包括SSB;或者,参考信号包括CSI-RS;或者,参考信号包括SSB和PBCH Block;或者,参考信号包括CSI-RS、CRS和SSB;或者,参考信号包括SSB、CSI-RS、PBCH Block、以及CRS,等等。
S23、终端设备根据第一测量规则进行测量。
关于第一测量规则,可参考S22中的相关介绍。
如果确定终端设备满足第一条件,就可以认为终端设备满足第一测量规则,在这种情况下,终端设备可以采用第一测量规则,例如终端设备可以不执行同频测量或异频测量,或者,终端设备可以减少测量的频率数量,等等。其中,所述的放松测量是相对于普通测量(不执行放松测量时执行的测量,也可以称为第二测量规则)而言的,在执行普通测量时,终端设备周期性地或者依靠事件触发地对信号进行测量;而在满足放松测量规则时,终端设备可以根据第一测量规则进行测量,例如可以选择在一段时间内不执行同频或者异频测量。终端设备满足放松测量规则的情况将在下面详细描述。
但需要注意的是,终端设备可能持续地或者周期性地判断终端设备是否满足第一条件,每次在判断终端设备是否满足第一条件后,决定是否根据第一测量规则进行测量。因此所谓的终端设备根据第一测量规则进行测量,只是说明终端设备在判断满足第一条件时,一段时间内(本次判断是否满足第一条件到下次判断是否满足第一条件之间)根据第一测量规则进行测量,例如终端设备在第四时长内根据第一测量规则进行测量,而在第四时长结束后,终端设备还是可以根据其他的测量规则进行测量,例如终端设备可以继续正常执行同频测量或异频测量。第四时长的起始时刻例如为终端设备确定终端设备满足第一条件的时刻,第四时长的结束时刻例如为终端设备下一次确定终端设备不满足第一条件的时刻,或者说,第四时长的结束时刻例如为终端设备确定终端设备满足第二条件的时刻,关于第二条件,将在下一个实施例中介绍。
在本申请实施例中,终端设备要确定根据第一测量规则进行测量,前提是要满足如下的任意一种条件或如下的多种条件的任意组合:终端设备满足第一条件,距离上一次执行小区重选的时长小于或等于第三时长,或,自上一次执行小区选择或者小区重选起,该终端设备进行同频测量或者异频测量的时长大于或等于第一时长。例如,只要终端设备满足第一条件,终端设备就可以根据第一测量规则进行测量,那么S22执行完毕之后就可以执行S23;或者,终端设备满足第一条件,且距离上一次执行小区重选的时长小于或等于第三时长,则终端设备可以根据第一测量规则进行测量,那么在S23之前,除了要执行S22之外,还需要确定距离上一次执行小区重选的时长小于或等于第三时长;或者,终端设备满足第一条件,距离上一次执行小区重选的时长小于或等于第三时长,以及,自上一次执行小区选择或者小区重选起,该终端设备进行同频测量或者异频测量的时长大于或等于第一时长,则终端设备可以根据第一测量规则进行测量,那么在S23之前,除了要执行S22之外,还需要确定距离上一次执行小区重选的时长小于或等于第三时长,以及需要确定自上一次执行小区选择或者小区重选起,该终端设备进行同频测量或者异频测量的时长大于或等于第一时长,等等。
另外,如果确定终端设备满足第一条件,那么也可以认为,终端设备处于静止状态。如果是这种情况,除了可以认为终端设备满足放松测量规则之外,还可以有其它的用途,例如还可以确定定时提前量(timing advance,TA)未发生变化,网络设备可以继续使用原有的TA调度终端设备,终端设备也可以继续使用原有的TA与网络设备进行通信,保证通信过程的正常进行,减少调度失败的概率。
在本申请实施例中,可以根据终端设备的服务小区的至少一个参考信号的信号质量来确定终端设备可以不执行同频测量或异频测量,相当于,根据至少一个参考信号的信号质量可以确定终端设备的移动状态,例如可以确定终端设备处于静止状态,或者说未处于移动状态,因此终端设备可以不执行同频测量或异频测量,而至少一个参考信号对应于至少一个发送方向,相当于,在确定终端设备的移动状态时可以加入方向信息,从而可以提高确定结果的准确性,减小对于终端设备的通信过程的影响。
在图2所示的实施例中,介绍了终端设备如何确定采用第一测量规则,或者说,介绍了终端设备如何确定满足放松测量规则。而终端设备既然可以确定在什么情况下满足放松测量规则,也就可以确定在什么情况下不满足放松测量规则。因此,本申请实施例提供第二种通信方法,在该方法中,介绍终端设备如何确定不满足放松测量规则。
可参考图5,为第二种通信方法的流程图。在下文的介绍过程中,继续以该方法应用 于图1所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是网络设备,第二通信装置是终端设备,或者第一通信装置和第二通信装置都是网络设备,或者第一通信装置和第二通信装置都是终端设备,或者第一通信装置是网络设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由终端设备和网络设备执行为例,也就是说,以第一通信装置是终端设备、第二通信装置是网络设备为例。因为本实施例是以应用在图1所示的网络架构为例,因此,下文中所述的网络设备可以是图1所示的网络架构中的网络设备,下文中所述的终端设备可以是图1所示的网络架构中的终端设备。
S51、网络设备向终端设备发送至少一个参考信号,终端设备在终端设备的服务小区接收来自网络设备的所述至少一个参考信号。所述至少一个参考信号对应于至少一个发送方向。
在本申请实施例中,至少一个参考信号对应于至少一个发送方向,例如为,至少一个参考信号对应于至少一个波束,或者说,网络设备通过至少一个波束发送至少一个参考信号,其中,认为波束和参考信号是一一对应的关系。不同的波束指向不同的方向,网络设备所发送的至少一个波束可以指向至少一个发送方向。其中,网络设备在一个方向上通过一个波束发送一个参考信号,因此也可以描述为,至少一个参考信号对应于至少一个发送方向。对于波束更多的介绍,可参考图2所示的实施例中的S21。
参考信号的标识可以和波束标识一一对应,或者参考信号的标识可以也作为波束的标识。或者某个方向的参考信号,以及某个方向的波束,这两个概念可以认为是相同的概念。
其中,至少一个参考信号,可以包括一个参考信号,或者也可以包括多个参考信号。如果包括一个参考信号,则至少一个参考信号也可以理解为是一个参考信号;或者,如果包括多个参考信号,则至少一个参考信号也可以理解为是至少两个参考信号,例如包括两个参考信号、三个参考信号或更多个参考信号。
S52、终端设备根据终端设备所述至少一个参考信号的信号质量,确定所述终端设备满足第二条件,所述至少一个参考信号对应于至少一个发送方向。
终端设备可以测量所接收的至少一个参考信号的信号质量,从而确定终端设备是否满足第二条件。关于终端设备是否满足第二条件,可以包括多种实现方式,下面举例介绍。
1、终端设备满足第二条件的第一种实现方式。
如果确定服务小区的第一参考信号的信号质量满足第三子条件,就可以确定终端设备满足第二条件。
例如,第一参考信号是至少一个参考信号中的任意一个,例如,只需随机选择至少一个参考信号中的一个参考信号,只要该参考信号的信号质量满足第三子条件,就可以认为终端设备满足第二条件。这种确定终端设备满足第二条件的方式较为简单,终端设备只需 随机选择一个参考信号,获得该参考信号的信号质量,确定该参考信号的信号质量是否满足第三子条件即可,对于终端设备来说工作量较少,功耗较小。
或者,第一参考信号可以是至少一个参考信号中的信号质量最好的参考信号,也就是说,第一参考信号的信号质量高于或等于至少一个参考信号中除了第一参考信号之外的其他参考信号的信号质量。对此也可以理解为,用于发送第一参考信号的波束是至少一个波束中的最佳波束。相当于,终端设备在得到至少一个参考信号的信号质量后,可以从中选择信号质量最好的参考信号,或者说,选择通过至少一个波束中的最佳波束所发送的参考信号,确定该参考信号的信号质量是否满足第三子条件。其中,如果至少一个参考信号的个数大于1,且有多个参考信号的信号质量相等,且均为最优,那么终端设备可以从这多个参考信号中随机选择一个参考信号,确定该参考信号的信号质量是否满足第三子条件,如果该参考信号的信号质量满足第三子条件,就认为终端设备满足第二条件。最佳参考信号(即,信号质量最好的参考信号,或者说,通过最佳波束发送的参考信号)比较能够表征终端设备的状态,如果最佳参考信号的信号质量满足第三子条件,就可以认为终端设备满足第二条件。
第三子条件例如包括,一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值大于或等于第一门限,其中,第一信号质量是所述的一个参考信号对应的用于参考的信号质量,或者说是用于后续与第二信号质量做对比的信号质量的参考值。第二信号质量是所述的一个参考信号当前的信号质量。第一信号质量与第二信号质量之间的差值,可以用第一信号质量减去第二信号质量得到,也可以用第二信号质量减去第一信号质量得到。根据第一信号质量和第二信号质量,可以确定该参考信号的信号质量的变化。
这里所述的信号质量之间的差值,可以是实际差值,也可以是实际差值的绝对值。关于此内容,可参考图2所示的实施例的相关介绍。
另外,对于一个参考信号来说,既然引入了第一信号质量和第二信号质量的概念,那么,在满足第二条件的第一种实现方式下,实际上应该是判断第一参考信号的实际的信号质量(或者说当前的信号质量)是否满足第三子条件,而不是判断第一参考信号的第一信号质量是否满足第三子条件。因此,满足第二条件的第一种实现方式也可以表述为,如果确定服务小区的第一参考信号的第二信号质量满足第三子条件,就可以确定终端设备满足第二条件。也就是说,终端设备在接收至少一个参考信号后,可以获得第一参考信号的第二信号质量,如果确定第一参考信号的第二信号质量满足第三子条件,就认为终端设备满足第二条件。而第一参考信号可以是至少一个参考信号中的任意一个参考信号,或者也可以是至少一个参考信号中的第二信号质量最好的参考信号。
对于满足第二条件的第一种实现方式来说,第三子条件可以是,第一参考信号对应的第一信号质量与第一参考信号的第二信号质量之间的差值大于或等于第一门限。第一门限可以由终端设备确定,或者由网络设备配置,或者也可以通过协议规定。
例如,第一子条件通过如下公式5或公式6体现:
S beam/ref-S beam≥第一门限          (公式5)
S beam-S beam/ref≥第一门限          (公式6)
公式5中,以第一信号质量和第二信号质量之间的差值用第一信号质量减去第二信号质量得到为例,公式6中,以第一信号质量和第二信号质量之间的差值用第二信号质量减去第一信号质量得到为例。另外,公式5和公式6中,都以该差值是实际差值为例,除此 之外,该差值还可以取实际差值的绝对值。S beam/ref表示一个参考信号对应的第一信号质量,S beam表示该参考信号的第二信号质量。对于满足第二条件的第一种实现方式来说,S beam/ref可以表示第一参考信号对应的第一信号质量,S beam表示第一参考信号的第二信号质量。第一参考信号对应的第一信号质量与第一参考信号的第二信号质量之间的差值,可以表示第一参考信号的信号质量的变化量,如果第一参考信号的信号质量的变化量较大,即,大于或等于第一门限,就认为第一参考信号的信号质量满足第三子条件(或者说,认为第一参考信号的第二信号质量满足第三子条件),否则,如果第一参考信号的信号质量的变化量较小,例如小于第一门限,就认为第一参考信号的信号质量不满足第三子条件(或者说,认为第一参考信号的第二信号质量不满足第三子条件)。其中,如果S beam/ref-S beam=第一门限(或者,S beam-S beam/ref=第一门限),可以认为第一参考信号的信号质量满足第三子条件(或者说,认为第一参考信号的第二信号质量满足第三子条件),或者也可以认为第一参考信号的信号质量不满足第三子条件(或者说,认为第一参考信号的第二信号质量不满足第三子条件)。
至少一个参考信号中的每个参考信号,都可以对应一个第一信号质量,对于一个参考信号来说,对应的第一信号质量可以用于确定该参考信号的第二信号质量是否满足相应的条件,例如确定该参考信号的第二信号质量是否满足第一子条件或第二子条件。不同的参考信号对应的第一信号质量可以相等,或者也可以不相等。至少一个参考信号对应至少一个第一信号质量,至少一个第一信号质量可以是预先设置的。其中,对于一个参考信号来说,该参考信号对应的第一信号质量可以通过如下方式来设置:在终端设备执行完小区选择或者小区重选后,将该参考信号对应的第一信号质量设置为该参考信号的第二信号质量;或者,在该参考信号的第二信号质量大于该参考信号对应的第一信号质量时,将该参考信号对应的第一信号质量设置为该参考信号的第二信号质量;或者,在终端设备满足第二条件的时长达到第二时长时,将该参考信号对应的第一信号质量设置为该参考信号的第二信号质量。也就是说,一个参考信号对应的第一信号质量,初始时等于该参考信号的第二信号质量,该参考信号的第二信号质量可能会发生变化,那么该第一信号质量也可以随之重新设置。其中,将该参考信号对应的第一信号质量设置为该参考信号的第二信号质量,可以理解为,是将该参考信号对应的第一信号质量的取值设置为该参考信号的第二信号质量的取值。
需要注意的是,满足第二条件的第一种实现方式下所使用的第一门限,和图2所示的实施例中介绍的满足第一条件的第一种实现方式下所使用的第一门限,取值可能相同,也可能不同。
在第二条件的第一种实现方式下,终端设备只需确定一个参考信号的第二信号质量是否满足第三子条件即可,无需处理过多的参考信号,较为简单。
2、终端设备满足第二条件的第二种实现方式。
如果确定至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量满足第三子条件,则确定终端设备满足第一条件。其中,M为大于或等于1的整数,且M小于或等于至少一个参考信号的个数。可以认为,M个参考信号是至少一个参考信号中的部分参考信号或全部参考信号。M的取值例如由终端设备确定,或者由网络设备配置,或者也可以通过协议规定。
在引入了第一信号质量和第二信号质量的概念后,在满足第二条件的第二种实现方式 下,实际上应该是判断M个参考信号中的每个参考信号的实际的信号质量(或者说当前的信号质量)是否满足第三子条件,而不是判断M个参考信号中的每个参考信号的第一信号质量是否满足第三子条件。因此,满足第二条件的第二种实现方式也可以表述为,如果确定至少一个参考信号中,有M个参考信号中的每个参考信号的第二信号质量均满足第三子条件,则确定终端设备满足第一条件。也就是说,终端设备在接收至少一个参考信号后,可以获得M个参考信号中的每个参考信号的第二信号质量,如果确定M个参考信号中的每个参考信号的第二信号质量均满足第一子条件,就认为终端设备满足第一条件。其中,关于参考信号的第一信号质量的设置方式,可参考前文介绍。
其中,M个参考信号例如为从至少一个参考信号中随机选择的M个参考信号,这种确定终端设备满足第而条件的方式较为简单,终端设备只需随机选择M个参考信号,获得M个参考信号中每个参考信号的第二信号质量,确定这每个参考信号的信号质量是否满足第三子条件(或者说,确定这每个参考信号的第二信号质量是否满足第三子条件)即可,对于终端设备来说工作量较少,功耗较小。
或者,M个参考信号例如为至少一个参考信号中第二信号质量较好的参考信号,例如,M个参考信号中的每个参考信号的第二信号质量,高于或等于至少一个参考信号中除了M个参考信号之外的其他的参考信号的第二信号质量。相当于,终端设备在得到至少一个参考信号的第二信号质量后,可以从中选择第二信号质量最好的M个参考信号,再确定M个参考信号中的每个参考信号的信号质量是否满足第三子条件(或者说,确定M个参考信号中的每个参考信号的第二信号质量是否满足第三子条件)。
或者,M大于或等于2,M个参考信号例如为从至少一个参考信号中选择的M个参考信号,且M个参考信号中包括第二参考信号,第二参考信号的第二信号质量高于或等于至少一个参考信号中的其他的参考信号的第二信号质量,或者说,第二参考信号是通过至少一个波束中的最佳波束发送的。也就是说,M个参考信号中包括通过至少一个波束中的最佳波束发送的参考信号,还包括通过至少一个波束中的除了最佳波束之外的其他波束发送的参考信号。这种方式既考虑了通过最佳波束发送的参考信号,也考虑了通过其他波束发送的参考信号,可以使得确定结果更为准确。
例如请参考图6,为参考信号的第二信号质量的一种示意图。图6以至少一个参考信号的个数是3为例,分别为参考信号1、参考信号2和参考信号3,其中参考信号2是最佳参考信号。图6中最上面的曲线表示参考信号2的第二信号质量,中间的曲线表示参考信号1的第二信号质量,最下面的曲线表示参考信号3的第二信号质量。例如图6中的两条竖直虚线之间的部分就表示参考信号的第二信号质量的变化量。如果M个参考信号包括参考信号1和参考信号3,那么根据公式5或公式6可以确定,M个参考信号中的每个参考信号的第二信号质量都满足第三子条件。而通过较多的波束上的参考信号来判断,也更为符合终端设备的实际情况。
第三子条件可以继续通过公式5或公式6来体现,对于M个参考信号中的每个参考信号的第二信号质量,都可以通过公式5或公式6来确定是否满足第三子条件。同样的,在满足第二条件的第二种实现方式下,第一信号质量和第二信号质量的差值,可以是实际差值,或者也可以是实际差值的绝对值。对于第二条件的第二种实现方式来说,公式5或公式6中的S beam/ref可以表示M个参考信号中的一个参考信号对应的第一信号质量,S beam表示该参考信号的第二信号质量。一个参考信号对应的第一信号质量与该参考信号的第二信 号质量之间的差值,可以表示该参考信号的第二信号质量的变化量。如果M个参考信号中的每个参考信号的第二信号质量的变化量较大,即,都大于或等于第一门限,就认为M个参考信号中的每个参考信号的信号质量都满足第三子条件(或者说,确定M个参考信号中的每个参考信号的第二信号质量都满足第三子条件),也就认为终端设备满足第二条件;否则,如果M个参考信号中,有一个或多个参考信号的第二信号质量的变化量较小,例如这些参考信号的第二信号质量的变化量小于第一门限,就认为这些参考信号的第二信号质量不满足第三子条件(或者说,认为这些参考信号的第二信号质量不满足第三子条件),也就认为终端设备不满足第二条件。其中,对于一个参考信号来说,如果S beam/ref-S beam=第一门限(或者,S beam-S beam/ref=第一门限),可以认为该参考信号的信号质量满足第三子条件(或者说,认为该参考信号的第二信号质量满足第三子条件),或者也可以认为该参考信号的信号质量不满足第三子条件(或者说,认为该参考信号的第二信号质量不满足第三子条件)。
需要注意的是,满足第二条件的第二种实现方式下所使用的第一门限,和满足第二条件的第一种实现方式下所使用的第一门限,取值可能相同,也可能不同。满足第二条件的第二种实现方式下所使用的第一门限,和图2所示的实施例中介绍的满足第一条件的第二种实现方式下所使用的第一门限,取值可能相同,也可能不同。
在满足第二条件的第二种实现方式下,终端设备可以考虑多个参考信号的第二信号质量,通过确定多个参考信号的第二信号质量是否满足第三子条件,可以提高确定结果的准确性。
3、终端设备满足第二条件的第三种实现方式。
根据至少一个参考信号的信号质量得到第一信息,确定第一信息满足第四子条件,确定终端设备满足第二条件。
其中,根据至少一个参考信号的信号质量得到第一信息,可以是根据至少一个参考信号的至少一个第二信号质量和至少一个第一信号质量得到第一信息。其中,关于参考信号的第一信号质量的设置方式,可参考前文介绍。例如,作为获得第一信息的一种方式,第一信息可以通过图2所示的公式3或公式4获得,不多赘述。
第四子条件例如包括,S大于或等于第二门限。其中,S等于第二门限,可以认为是满足第四子条件,也可以认为是不满足第四子条件。或者,第二子条件例如包括,S/N大于或等于第二门限。其中,S/N等于第二门限,可以认为是满足第四子条件,也可以认为是不满足第四子条件。第二门限可以由终端设备确定,或者由网络设备配置,或者也可以通过协议规定。需要注意的是,满足第二条件的第三种实现方式下所使用的第二门限,和图2所示的实施例中所述的满足第一条件的第三种实现方式下所使用的第二门限,取值可能相同,也可能不同。
另外需要注意的是,满足第二条件的第三种实现方式下所使用的第二门限,和图2所示的实施例介绍的满足第一条件的第三种实现方式下所使用的第二门限,取值可能相同,也可能不同。如果满足第二条件的第二种实现方式下所使用的第一门限,和满足第二条件的第一种实现方式下所使用的第一门限,取值不同,那么,满足第一条件的第一种实现方式下所使用的第一门限,和这里的第二门限,取值可能相同,也可能不同,另外,满足第一条件的第二种实现方式下所使用的第一门限,和这里的第二门限,取值可能相同,也可能不同。
在满足第二条件的第三种实现方式下,终端设备可以根据至少一个参考信号的至少一个信号质量得到第一信息,确定第一信息是否满足第四子条件,相当于综合确定至少一个参考信号的信号质量是否满足第四子条件,可以提高确定结果的准确性。
4、终端设备满足第二条件的第四种实现方式。
如果确定服务小区的参考信号的信号质量满足第三子条件,就可以确定终端设备满足第二条件。在满足第二条件的第四种实现方式下,网络设备所发送的参考信号可以不区分方向,例如网络设备并不通过波束来发送参考信号,那么终端设备所接收的参考信号也就不区分方向。
在引入了第一信号质量和第二信号质量的概念后,在满足第二条件的第四种实现方式下,实际上应该是判断服务小区的参考信号的实际的信号质量(或者说当前的信号质量)是否满足第三子条件,而不是判断服务小区的参考信号的第一信号质量是否满足第三子条件。因此,满足第二条件的第四种实现方式也可以表述为,如果确定服务小区的参考信号的第二信号质量满足第三子条件,则确定终端设备满足第二条件。也就是说,终端设备在接收服务小区的参考信号后,可以获得该参考信号的第二信号质量,如果确定该参考信号的第二信号质量满足第三子条件,就认为终端设备满足第二条件。其中,关于参考信号的第一信号质量的设置方式,可参考前文介绍。
第三子条件可以继续通过公式5或公式6来体现,对于服务小区的参考信号的第二信号质量,可以通过公式5或公式6来确定是否满足第三子条件。同样的,在满足第二条件的第四种实现方式下,第一信号质量和第二信号质量的差值,可以是实际差值,或者也可以是实际差值的绝对值。对于满足第二条件的第四种实现方式来说,公式5或公式6中的S beam/ref可以表示该参考信号对应的第一信号质量,S beam表示该参考信号的第二信号质量。该参考信号对应的第一信号质量与该参考信号的第二信号质量之间的差值,可以表示该参考信号的第二信号质量的变化量。如果该参考信号的第二信号质量的变化量较大,即,大于或等于第一门限,就认为该参考信号的信号质量满足第三子条件(或者说,确定该参考信号的第二信号质量满足第三子条件),也就认为终端设备满足第二条件;否则,如果该参考信号的第二信号质量的变化量较小,例如该参考信号的第二信号质量的变化量小于第一门限,就认为该参考信号的第二信号质量不满足第三子条件(或者说,认为该参考信号的第二信号质量不满足第三子条件),也就认为终端设备不满足第二条件。其中,对于该参考信号来说,如果S beam/ref-S beam=第一门限(或者,S beam-S beam/ref=第一门限),可以认为该参考信号的信号质量满足第三子条件(或者说,认为该参考信号的第二信号质量满足第三子条件),或者也可以认为该参考信号的信号质量不满足第三子条件(或者说,认为该参考信号的第二信号质量不满足第三子条件)。
需要注意的是,满足第二条件的第四种实现方式下所使用的第一门限,和图2所示的实施例介绍的满足第一条件的第四种实现方式下所使用的第一门限,取值可能相同,也可能不同。另外,满足第二条件的第二种实现方式下所使用的第一门限,满足第二条件的第一种实现方式下所使用的第一门限,以及满足第二条件的第四种实现方式下所使用的第一门限,这三个第一门限的取值可能相同,或者也可能均不同,或者也可能有其中任意两个第一门限的取值相同,而另一个第一门限的取值不同。
当然,要确定终端设备满足第二条件,不限于如上的四种实现方式,具体的不做限制。
另外,终端设备还可以根据至少一个参考信号的信号质量(例如第二信号质量)确定 终端设备在小区内的位置,这里的小区是终端设备的服务小区。例如,终端设备可以根据至少一个参考信号的信号质量,确定终端设备处于小区的中心位置,或者确定所述终端设备不满足执行邻区测量的准则。其中,所不满足的执行邻区测量的准则,该准则可以是S准则。所述S准则是指,终端设备当前的服务小区的功率低于或者等于开启邻区测量的功率门限,或者,终端设备当前的服务小区的信号质量低于或者等于开启邻区测量的信号质量门限,或者,终端设备当前的服务小区的功率低于或者等于开启邻区测量的功率门限,以及终端设备当前的服务小区的信号质量低于或者等于开启邻区测量的信号质量门限。其中,至少一个参考信号的发送方向是明确的,网络设备可以将至少一个参考信号的发送方向信息(或者说,将波束和小区的位置之间的对应关系)发送给终端设备,进一步也可以将至少一个参考信号的标识发送给终端,终端设备就可以获知每个波束和小区内相应的位置之间的对应关系。进一步的,终端设备测量得到的其中的某个参考信号的第二信号质量较好,则可以表明终端设备是处于或者接近该参考信号的发送方向上。例如,终端设备可以确定该终端设备是位于小区的中心位置还是小区的边缘位置。例如,至少一个参考信号包括通过波束1发送的参考信号1,波束1的发送方向指向小区的中心,而终端设备测量得到的参考信号1的第二信号质量最强,则可以表明终端设备是位于或者接近小区的中心位置。
作为一种可选的实施方式,终端设备在确定终端设备满足第一条件之前,也就是在S52之前,可以先判断是否满足执行针对相邻小区的同频或者异频测量的条件,如果满足执行针对相邻小区的测量的条件,则终端设备可以继续确定终端设备是否满足第二条件,也就是执行S52,而如果不满足执行针对相邻小区的测量的条件,则终端设备可以不必再执行S52和S53或者直接不执行放松测量规则,该流程可以结束。
作为另外一种可选的实施方式,网络设备也可以发送指示信息给终端设备,所述指示信息用于指示终端设备是否可以进行关于是否满足放松测量规则的相关判断或者操作,假设该指示信息指示终端设备不进行放松测量规则,则所述终端设备可以无需执行S52,而可以直接执行S53。
或者,如果确定终端设备处于小区的边缘位置,则终端设备可以继续执行图2所示的实施例的S22,具体可参考S22的介绍。
或者,如果确定终端设备处于小区的边缘位置,终端设备也可以继续执行S52,但是在这种情况下,终端设备在确定终端设备是否满足第二条件时,所使用的门限(例如,第一门限,或,第二门限,或,第一门限和第二门限),与终端设备处于小区的中心位置时终端设备在确定终端设备是否满足第二条件所使用的门限,可以相同,也可以不同。例如,处于小区边缘的终端设备在确定终端设备是否满足第二条件时使用了第一门限,处于小区中心的终端设备在确定终端设备是否满足第二条件时也使用了第一门限,这两个第一门限的取值可能相同,也可能不同。如果这两个第一门限的取值不同,则处于小区中心的终端设备所使用的第一门限,其取值可以小于处于小区边缘的终端设备所使用的第一门限的取值。再例如,处于小区边缘的终端设备在确定终端设备是否满足第二条件时使用了第二门限,处于小区中心的终端设备在确定终端设备是否满足第二条件时也使用了第二门限,这两个第二门限的取值可能相同,也可能不同。如果这两个第二门限的取值不同,则处于小区中心的终端设备所使用的第二门限,其取值可以小于处于小区边缘的终端设备所使用的第二门限的取值。
处于小区中心的终端设备,服务小区变化的概率较小,进行小区切换或重选的可能性较小,即使不对相邻小区进行测量可能也不会影响正常工作,或者可以说,处于小区中心的终端设备可能并不需要进行对相邻小区的测量,因此,处于小区中心的终端设备所使用的门限的取值可以相对较小,使得这些终端设备相对更不容易满足第二条件,从而有更大概率执行放松测量规则,最极限的情况是可以配置为一直执行放松测量。而处于小区边缘的终端设备,如果处在移动状态,服务小区变化的概率较大,进行小区切换或重选的可能性较大,需要通过对相邻小区的测量来辅助选择新的小区,因此处于小区边缘的终端设备所使用的门限的取值可以相对较大,使得这些终端设备相对容易满足第二条件,从而能够更频繁或者更长时间地进行对相邻小区的测量。
不同位置的终端设备所使用的门限(例如,第一门限,或,第二门限,或,第一门限和第二门限),可以由终端设备确定,或者由网络设备配置,或者可以通过协议规定。
这里需要注意的是,通过参考信号确定终端设备的位置并不只限定于小区中心位置和小区边缘位置这两个级别,本实施例中采用这两个位置仅用于举例说明,由于参考信号的方向很多,可以通过其确定更为精细的小区位置划分,从而为不同位置的终端设备设置更为精细的不同的测量准则。
本申请实施例中的参考信号包括但不限定于如下的一种或如下多种的任意组合:SSB、CSI-RS、PBCH Block,或,CRS。例如,本申请实施例中的参考信号包括SSB;或者,参考信号包括CSI-RS;或者,参考信号包括SSB和PBCH Block;或者,参考信号包括CSI-RS、CRS和SSB;或者,参考信号包括SSB、CSI-RS、PBCH Block、以及CRS,等等。
S53、终端设备确定该终端设备不满足第一测量规则。
第一测量规则例如也称为放松测量规则。其中,所述的放松测量是相对于普通测量(不执行放松测量时执行的测量,也可以称为第二测量规则)而言的,在执行普通测量时,终端设备周期性地或者依靠事件触发地对信号进行测量;而在满足放松测量规则时,终端设备可以采用第一测量规则,例如可以选择在一段时间内不执行同频或者异频测量。
如果确定终端设备满足第二条件,就可以认为终端设备不满足放松测量规则,在这种情况下,终端设备可以执行同频测量或异频测量。但终端设备只是确定能够执行同频测量或异频测量,至于终端设备是否要执行测量,取决于终端设备的具体实现,本申请实施例不做限制。
另外,如果确定终端设备满足第二条件,那么也可以认为,终端设备处于移动状态,或者说,终端设备未处于静止状态。如果是这种情况,除了可以认为终端设备不满足放松测量规则之外,还可以有其它的用途,例如还可以确定TA发生了变化,终端设备和网络设备都可以重新确定TA,网络设备可以使用新的TA调度终端设备,终端设备也可以使用新的TA与网络设备进行通信,保证通信过程的正常进行,减少调度失败的概率。
在本申请实施例中,可以根据终端设备的服务小区的至少一个参考信号的信号质量来确定终端设备不满足放松测量规则,而至少一个参考信号对应于不同的发送方向,相当于,在判断终端设备是否满足放松测量规则时可以加入方向信息,从而可以提高判断结果的准确性,如果终端设备不满足放松测量规则,则终端设备可以继续执行测量过程,以在需要进行小区切换时能够及时通过测量选择到较为合适的小区,保证终端设备通信过程的正常进行,减小对终端设备的通信过程的影响。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均 可以用于后续实施例中,重复的内容不再赘述。
图7为本申请实施例提供的通信装置700的示意性框图。示例性地,通信装置700例如为终端设备700。
终端设备700包括处理模块710和收发模块720。示例性地,终端设备700可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当终端设备700是终端设备时收发模块720可以是收发器,可以包括天线和射频电路等,处理模块710可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当终端设备700是具有上述终端功能的部件时,收发模块720可以是射频单元,处理模块710可以是处理器,例如基带处理器。当终端设备700是芯片系统时,收发模块720可以是芯片系统(例如基带芯片)的输入输出接口、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块710可以用于执行图2所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S22和S23,和/或用于支持本文所描述的技术的其它过程。收发模块720可以用于执行图2所示的实施例中由终端设备所执行的全部收发操作,例如S21,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块720可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块720可以用于执行图2所示的实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块720是发送模块,而在执行接收操作时,可以认为收发模块720是接收模块;或者,收发模块720也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图2所示的实施例中由终端设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图2所示的实施例中由终端设备所执行的全部接收操作。
例如,处理模块710,用于根据服务小区的至少一个参考信号的信号质量,确定终端设备700满足第一条件,所述至少一个参考信号对应于至少一个发送方向;
处理模块710,还用于根据第一测量规则进行测量。
例如,第一测量规则可以包括不执行同频测量或异频测量,或者,第一测量规则可以包括如下的一种或如下多种的任意组合:减少测量的带宽,减少测量的小区数量,减小测量的带宽部分(bandwidth part,BWP)的数量,或者,减少测量的频率数量。例如,第一测量规则可以包括减少测量的带宽;或者,第一测量规则可以包括减少测量的小区数量,以及减少测量的频率数量;或者,第一测量规则可以包括减少测量的带宽,减少测量的小区数量,以及减少测量的频率数量,等等。而第二测量规则可以是正常的测量规则,即,当满足针对相邻小区测量的S准则时,终端设备正常进行周期性或者事件触发性的同频测量或异频测量。
第一测量规则也可以称为放松测量规则。其中,所述的放松测量是相对于普通测量(不执行放松测量时执行的测量,也可以称为第二测量规则)而言的,在执行普通测量时,终端设备周期性地或者依靠事件触发地对信号进行测量;而在满足放松测量规则时,终端设备可以根据第一测量规则进行测量,例如可以选择在一段时间内不执行同频或者异频测量。
作为一种可选的实施方式,处理模块710用于通过如下方式根据终端设备700的服务小区的至少一个参考信号的信号质量,确定终端设备700满足第一条件:
确定所述服务小区的第一参考信号的信号质量在第一时长内均满足第一子条件,确定终端设备700满足所述第一条件,所述第一参考信号的信号质量高于所述至少一个参考信号中的其他参考信号的信号质量;或,
确定所述至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量在第一时长内均满足第一子条件,确定终端设备700满足所述第一条件,M为大于或等于1的整数,且M小于或等于所述至少一个参考信号的个数;或,
根据所述至少一个参考信号的信号质量得到第一信息,确定所述第一信息在第一时长内均满足第二子条件,确定终端设备700满足所述第一条件。
作为一种可选的实施方式,处理模块710,还用于根据所述至少一个参考信号的信号质量,确定终端设备700处于终端设备700的服务小区的边缘位置,或者确定终端设备700满足执行邻区测量的准则。
作为一种可选的实施方式,所述第一子条件包括:
一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值小于或等于第一门限,所述一个参考信号的第一信号质量是所述一个参考信号对应的用于参考的信号质量,所述一个参考信号的第二信号质量是所述一个参考信号当前的信号质量。
作为一种可选的实施方式,所述第一信息满足如下公式:
Figure PCTCN2019103456-appb-000015
Figure PCTCN2019103456-appb-000016
其中,S表示所述第一信息,i表示所述至少一个参考信号中的第i个参考信号的序号,N表示所述至少一个参考信号的个数,S i表示所述第i个参考信号的第二信号质量,S ref,i表示所述第i个参考信号的第一信号质量。
作为一种可选的实施方式,所述第二子条件包括:
S小于或等于第二门限,或,S/N小于或等于第二门限。
作为一种可选的实施方式,处理模块710还用于:
在终端设备700执行完小区选择或者小区重选后,或者,在一个参考信号的第二信号质量大于所述一个参考信号的第一信号质量时,或者,在终端设备700不满足所述第一条件的时长达到第二时长时,
将所述一个参考信号的第一信号质量设置为所述一个参考信号的第二信号质量。
作为一种可选的实施方式,处理模块710,还用于在不执行同频测量或异频测量之前,确定距离上一次执行小区重选的时长小于或等于第三时长。
作为一种可选的实施方式,处理模块710,还用于在不执行同频测量或异频测量之前,确定自上一次执行小区选择或者小区重选起,终端设备700进行同频测量或者异频测量的时长大于或等于第一时长。
应理解,本申请实施例中的处理模块710可以由处理器或处理器相关电路组件实现,收发模块720可以由收发器或收发器相关电路组件实现。
如图8所示,本申请实施例还提供一种通信装置800。示例性地,通信装置800例如为终端设备800。示例性地,终端设备800可以是通信设备,例如为终端设备,或者也可以是芯片系统等。终端设备800包括处理器810。可选的,还可以包括存储器820。可选的,还可以包括收发器830。其中,存储器820中存储计算机指令或程序,处理器810可以执行存储器820中存储的计算机指令或程序。存储器820中存储的计算机指令或程序被 执行时,该处理器810用于执行上述实施例中处理模块710执行的操作,收发器830用于执行上述实施例中收发模块720执行的操作。或者,终端设备800也可以不包括存储器820,例如存储器位于终端设备800外部,在外部存储器所存储的计算机指令或程序被执行时,该处理器810用于执行上述实施例中处理模块710执行的操作,收发器830用于执行上述实施例中收发模块720执行的操作。
其中,收发器830可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器830可以用于执行图2所示的实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器830是发送器,而在执行接收操作时,可以认为收发器830是接收器;或者,收发器830也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图2所示的实施例中由终端设备所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图2所示的实施例中由终端设备所执行的全部接收操作。
另外,如果通信装置800是芯片系统,则收发器830也可以通过该芯片系统的通信接口实现,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。通信接口可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如通信接口可以用于执行图2所示的实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为通信接口是发送接口,而在执行接收操作时,可以认为通信接口是接收接口;或者,通信接口也可以是两个功能单元的统称,这两个功能单元分别为发送接口和接收接口,发送接口用于完成发送操作,例如发送接口可以用于执行图2所示的实施例中由终端设备所执行的全部发送操作,接收接口用于完成接收操作,例如接收接口可以用于执行图2所示的实施例中由终端设备所执行的全部接收操作。
应理解,根据本申请实施例的终端设备700或终端设备800可实现图3所示的实施例中的终端设备的功能,并且终端设备700或终端设备800中的各个模块的操作和/或功能分别为了实现图2所示的实施例中的相应流程,为了简洁,在此不再赘述。
图9为本申请实施例提供的通信装置900的示意性框图。示例性地,通信装置900例如为终端设备900。
终端设备900包括处理模块910和收发模块920。示例性地,终端设备900可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当终端设备900是终端设备时收发模块920可以是收发器,可以包括天线和射频电路等,处理模块910可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当终端设备900是具有上述终端功能的部件时,收发模块920可以是射频单元,处理模块910可以是处理器,例如基带处理器。当终端设备900是芯片系统时,收发模块920可以是芯片系统(例如基带芯片)的输入输出接口、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块910可以用于执行图5所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S52和S53,和/或用于支持本文所描述的技术的其它过程。收发模块920可以用于执行图5所示的实施例中由终端设备所执行的全部收发操作,例如S51,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块920可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块920可以用于执行图5所示的实施例中由终端设备所执行的全部发 送操作和接收操作,例如,在执行发送操作时,可以认为收发模块920是发送模块,而在执行接收操作时,可以认为收发模块920是接收模块;或者,收发模块920也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图5所示的实施例中由终端设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图5所示的实施例中由终端设备所执行的全部接收操作。
例如,处理模块910,用于根据终端设备900的服务小区的至少一个参考信号的信号质量,确定终端设备900满足第二条件,所述至少一个参考信号对应于至少一个发送方向;
处理模块910,还用于确定终端设备900不满足放松测量规则。
作为一种可选的实施方式,处理模块910用于通过如下方式根据终端设备900的服务小区的至少一个参考信号的信号质量,确定终端设备900满足第二条件:
确定所述服务小区的第一参考信号的信号质量满足第三子条件,确定终端设备900满足所述第二条件,所述第一参考信号的信号质量高于或等于所述至少一个参考信号中的其他参考信号的信号质量;或,
确定所述至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量满足第三子条件,确定终端设备900满足所述第二条件,M为大于或等于1的整数,且M小于或等于所述至少一个参考信号的个数;或,
根据所述至少一个参考信号的信号质量得到第一信息,确定所述第一信息满足第四子条件,确定终端设备900满足所述第二条件。
作为一种可选的实施方式,处理模块910,还用于根据所述至少一个参考信号的信号质量,确定终端设备900处于终端设备900的服务小区的中心位置,或者确定终端设备900不满足执行邻区测量的准则。
作为一种可选的实施方式,所述第三子条件包括:
一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值大于或等于第一门限,所述一个参考信号的第一信号质量是所述一个参考信号对应的用于参考的信号质量,所述一个参考信号的第二信号质量是所述一个参考信号当前的信号质量。
作为一种可选的实施方式,所述第一信息满足如下公式:
Figure PCTCN2019103456-appb-000017
Figure PCTCN2019103456-appb-000018
其中,S表示所述第一信息,i表示所述至少一个参考信号中的第i个参考信号的序号,N表示所述至少一个参考信号的个数,S i表示所述第i个参考信号的第二信号质量,S ref,i表示所述第i个参考信号的第一信号质量。
作为一种可选的实施方式,所述第四子条件包括:
S大于或等于第二门限,或,S/N大于或等于第二门限。
作为一种可选的实施方式,处理模块910还用于:
在终端设备900执行完小区选择或者小区重选后,或者,在一个参考信号的第二信号质量大于所述一个参考信号的第一信号质量时,或者,在终端设备900满足所述第二条件的时长达到第一时长时,
将所述一个参考信号的第二信号质量设置为所述一个参考信号的第一信号质量。
作为一种可选的实施方式,处理模块910还用于:执行同频测量或异频测量。
应理解,本申请实施例中的处理模块910可以由处理器或处理器相关电路组件实现,收发模块920可以由收发器或收发器相关电路组件实现。
如图10所示,本申请实施例还提供一种通信装置1000。示例性地,通信装置1000例如为终端设备1000。示例性地,终端设备1000可以是通信设备,例如为终端设备,或者也可以是芯片系统等。终端设备1000包括处理器1010。可选的,还可以包括存储器1020。可选的,还可以包括收发器1030。其中,存储器1020中存储计算机指令或程序,处理器1010可以执行存储器1020中存储的计算机指令或程序。存储器1020中存储的计算机指令或程序被执行时,该处理器1010用于执行上述实施例中处理模块910执行的操作,收发器1030用于执行上述实施例中收发模块920执行的操作。或者,终端设备900也可以不包括存储器920,例如存储器位于终端设备900外部,在外部存储器所存储的计算机指令或程序被执行时,该处理器910用于执行上述实施例中处理模块810执行的操作,收发器930用于执行上述实施例中收发模块820执行的操作。
其中,收发器1030可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器1030可以用于执行图5所示的实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器1030是发送器,而在执行接收操作时,可以认为收发器1030是接收器;或者,收发器1030也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图5所示的实施例中由终端设备所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图5所示的实施例中由终端设备所执行的全部接收操作。
另外,如果通信装置1000是芯片系统,则收发器1030也可以通过该芯片系统的通信接口实现,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。通信接口可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如通信接口可以用于执行图5所示的实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为通信接口是发送接口,而在执行接收操作时,可以认为通信接口是接收接口;或者,通信接口也可以是两个功能单元的统称,这两个功能单元分别为发送接口和接收接口,发送接口用于完成发送操作,例如发送接口可以用于执行图5所示的实施例中由终端设备所执行的全部发送操作,接收接口用于完成接收操作,例如接收接口可以用于执行图5所示的实施例中由终端设备所执行的全部接收操作。
应理解,根据本申请实施例的终端设备900或终端设备1000可实现图5所示的实施例中的终端设备的功能,并且终端设备900或终端设备1000中的各个模块的操作和/或功能分别为了实现图5所示的实施例中的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图11示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图11中,终端设备以手机作为例子。如图11所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏, 键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图11所示,终端设备包括收发单元1110和处理单元1120。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元1110包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1110用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1120用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1110用于执行图2所示的实施例中终端设备的全部发送操作和接收操作,例如S21,和/或收发单元1110还用于执行支持本文所描述的技术的其它过程。处理单元1120,用于执行图2所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S22和S23,和/或处理单元1120还用于执行支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,收发单元1110用于执行图5所示的实施例中终端设备的全部发送操作和接收操作,例如S51,和/或收发单元1110还用于执行支持本文所描述的技术的其它过程。处理单元1120,用于执行图5所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S52和S53,和/或处理单元1120还用于执行支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图12所示的设备。作为一个例子,该设备可以完成类似于图8中处理器810的功能。或者,作为一个例子,该设备可以完成类似于图10中处理器1010的功能。在图12中,该设备包括处理器1210,发送数据处理器1220,接收数据处理器1230。上述实施例中的处理模块710可以是图12中的该处理器1210,并完成相应的功能;上述实施例中的收发模块720可以是图12中的发送数据处理器1220,和/或接收数据处理器1230。或者,上述实施例中的处理模块910可以是图12中的该处理器1210,并完成相应的功能;上述实施例中的收发模块920可以是图12中的发 送数据处理器1220,和/或接收数据处理器1230。虽然图12中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图13示出本实施例的另一种形式。处理装置1300中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1303,接口1304。其中,处理器1303完成上述处理模块710的功能,接口1304完成上述收发模块720的功能。或者,处理器1303完成上述处理模块910的功能,接口1304完成上述收发模块920的功能。作为另一种变形,该调制子系统包括存储器1306、处理器1003及存储在存储器1306上并可在处理器上运行的程序,该处理器1303执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1306可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1300中,只要该存储器1306可以连接到所述处理器1303即可。
本申请实施例还提供一种通信系统。该通信系统可以包括至少一个上述的图2所示的实施例所涉及的终端设备,或者,包括至少一个上述的图5所示的实施例所涉及的终端设备,或者,包括至少一个上述的图2所示的实施例所涉及的终端设备,以及包括至少一个上述的图5所示的实施例所涉及的终端设备。图2所示的实施例所涉及的终端设备例如为图7中的通信装置700或图8中的通信装置800,图5所示的实施例所涉及的终端设备例如为图9中的通信装置900或图10中的通信装置1000。例如,图2所示的实施例所涉及的终端设备可用于执行图2所示的实施例中由终端设备所执行的全部操作,例如图2所示的实施例中的S21~S23,和/或用于支持本文所描述的技术的其它过程。图5所示的实施例所涉及的终端设备可用于执行图5所示的实施例中由终端设备所执行的全部操作,例如图5所示的实施例中的S51~S53,和/或用于支持本文所描述的技术的其它过程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图2所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图2所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与终端设备相关的流程。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only  memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (21)

  1. 一种通信方法,其特征在于,包括:
    根据服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第一条件,所述至少一个参考信号对应于至少一个发送方向;
    不执行同频测量或异频测量。
  2. 根据权利要求1所述的方法,其特征在于,根据终端设备的服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第一条件,包括:
    确定所述服务小区的第一参考信号的信号质量在第一时长内均满足第一子条件,确定所述终端设备满足所述第一条件,所述第一参考信号的信号质量高于所述至少一个参考信号中的其他参考信号的信号质量;或,
    确定所述至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量在第一时长内均满足第一子条件,确定所述终端设备满足所述第一条件,M为大于或等于1的整数,且M小于或等于所述至少一个参考信号的个数;或,
    根据所述至少一个参考信号的信号质量得到第一信息,确定所述第一信息在第一时长内均满足第二子条件,确定所述终端设备满足所述第一条件。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    根据所述至少一个参考信号的信号质量,确定所述终端设备处于所述终端设备的服务小区的边缘位置,或者确定所述终端设备满足执行邻区测量的准则。
  4. 根据权利要求2所述的方法,其特征在于,所述第一子条件包括:
    一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值小于或等于第一门限,所述一个参考信号的第一信号质量是所述一个参考信号对应的用于参考的信号质量,所述一个参考信号的第二信号质量是所述一个参考信号当前的信号质量。
  5. 根据权利要求2或3所述的方法,其特征在于,所述第一信息满足如下公式:
    Figure PCTCN2019103456-appb-100001
    Figure PCTCN2019103456-appb-100002
    其中,S表示所述第一信息,i表示所述至少一个参考信号中的第i个参考信号的序号,N表示所述至少一个参考信号的个数,S i表示所述第i个参考信号的第二信号质量,S ref,i表示所述第i个参考信号的第一信号质量。
  6. 根据权利要求5所述的方法,其特征在于,所述第二子条件包括:
    S小于或等于第二门限,或,S/N小于或等于第二门限。
  7. 根据权利要求2~6任一项所述的方法,其特征在于,所述方法还包括:
    在所述终端设备执行完小区选择或者小区重选后,或者,在一个参考信号的第二信号质量大于所述一个参考信号的第一信号质量时,或者,在所述终端设备不满足所述第一条件的时长达到第二时长时,
    将所述一个参考信号的第一信号质量设置为所述一个参考信号的第二信号质量。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,在不执行同频测量或异频测量之前,还包括:
    确定距离上一次执行小区重选的时长小于或等于第三时长。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,在不执行同频测量或异频测量之前,还包括:
    确定自上一次执行小区选择或者小区重选起,所述终端设备进行同频测量或者异频测量的时长大于或等于第一时长。
  10. 一种通信装置,其特征在于,包括:
    通信接口,用于与其他装置进行通信;
    处理器,用于根据服务小区的至少一个参考信号的信号质量,确定所述通信装置满足第一条件,以及,不执行同频测量或异频测量,所述至少一个参考信号对应于至少一个发送方向。
  11. 根据权利要求10所述的通信装置,其特征在于,所述处理器用于通过如下方式根据通信装置的服务小区的至少一个参考信号的信号质量,确定所述通信装置满足第一条件:
    确定所述服务小区的第一参考信号的信号质量在第一时长内均满足第一子条件,确定所述通信装置满足所述第一条件,所述第一参考信号的信号质量高于所述至少一个参考信号中的其他参考信号的信号质量;或,
    确定所述至少一个参考信号中,有M个参考信号中的每个参考信号的信号质量在第一时长内均满足第一子条件,确定所述通信装置满足所述第一条件,M为大于或等于1的整数,且M小于或等于所述至少一个参考信号的个数;或,
    根据所述至少一个参考信号的信号质量得到第一信息,确定所述第一信息在第一时长内均满足第二子条件,确定所述通信装置满足所述第一条件。
  12. 根据权利要求10或11所述的通信装置,其特征在于,所述处理器,还用于根据所述至少一个参考信号的信号质量,确定所述通信装置处于所述通信装置的服务小区的边缘位置,或者确定所述通信装置满足执行邻区测量的准则。
  13. 根据权利要求11所述的通信装置,其特征在于,所述第一子条件包括:
    一个参考信号的第一信号质量与所述一个参考信号的第二信号质量之间的差值小于或等于第一门限,所述一个参考信号的第一信号质量是所述一个参考信号对应的用于参考的信号质量,所述一个参考信号的第二信号质量是所述一个参考信号当前的信号质量。
  14. 根据权利要求11或12所述的通信装置,其特征在于,所述第一信息满足如下公式:
    Figure PCTCN2019103456-appb-100003
    Figure PCTCN2019103456-appb-100004
    其中,S表示所述第一信息,i表示所述至少一个参考信号中的第i个参考信号的序号,N表示所述至少一个参考信号的个数,S i表示所述第i个参考信号的第二信号质量,S ref,i表示所述第i个参考信号的第一信号质量。
  15. 根据权利要求14所述的通信装置,其特征在于,所述第二子条件包括:
    S小于或等于第二门限,或,S/N小于或等于第二门限。
  16. 根据权利要求11~15任一项所述的通信装置,其特征在于,所述处理器还用于:
    在所述通信装置执行完小区选择或者小区重选后,或者,在一个参考信号的第二信号质量大于所述一个参考信号的第一信号质量时,或者,在所述通信装置不满足所述第一条件的时长达到第二时长时,
    将所述一个参考信号的第一信号质量设置为所述一个参考信号的第二信号质量。
  17. 根据权利要求10~16任一项所述的通信装置,其特征在于,所述处理器,还用于在不执行同频测量或异频测量之前,确定距离上一次执行小区重选的时长小于或等于第三 时长。
  18. 根据权利要求10~17任一项所述的通信装置,其特征在于,所述处理器,还用于在不执行同频测量或异频测量之前,确定自上一次执行小区选择或者小区重选起,所述通信装置进行同频测量或者异频测量的时长大于或等于第一时长。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~9中任意一项所述的方法。
  20. 一种通信装置,其特征在于,所述通信装置包括:
    处理模块,用于根据服务小区的至少一个参考信号的信号质量,确定所述终端设备满足第一条件,所述至少一个参考信号对应于至少一个发送方向;
    所述处理模块,还用于不执行同频测量或异频测量。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1~9中任意一项所述的方法。
PCT/CN2019/103456 2019-08-29 2019-08-29 一种通信方法及装置 WO2021035650A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19943445.7A EP4017113B1 (en) 2019-08-29 2019-08-29 Communication method and device
CN201980098622.3A CN114128352B (zh) 2019-08-29 2019-08-29 一种通信方法及装置
PCT/CN2019/103456 WO2021035650A1 (zh) 2019-08-29 2019-08-29 一种通信方法及装置
US17/682,488 US20220182863A1 (en) 2019-08-29 2022-02-28 Communications method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103456 WO2021035650A1 (zh) 2019-08-29 2019-08-29 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/682,488 Continuation US20220182863A1 (en) 2019-08-29 2022-02-28 Communications method and apparatus

Publications (1)

Publication Number Publication Date
WO2021035650A1 true WO2021035650A1 (zh) 2021-03-04

Family

ID=74683297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103456 WO2021035650A1 (zh) 2019-08-29 2019-08-29 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220182863A1 (zh)
EP (1) EP4017113B1 (zh)
CN (1) CN114128352B (zh)
WO (1) WO2021035650A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023126108A1 (en) * 2021-12-30 2023-07-06 Sony Group Corporation Wireless telecommunications apparatuses and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107277845A (zh) * 2016-04-06 2017-10-20 中兴通讯股份有限公司 开启小区测量的确定方法、装置及系统
CN108464039A (zh) * 2016-01-11 2018-08-28 三星电子株式会社 用于改善无线通信系统中小区覆盖的方法和设备
WO2019004784A1 (ko) * 2017-06-29 2019-01-03 엘지전자 주식회사 측정 수행 방법 및 사용자기기, 그리고 측정 설정 방법 및 기지국
CN110034853A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 信号传输方法、相关设备及系统

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117667A1 (en) * 2008-03-21 2009-09-24 Interdigital Patent Holdings, Inc. Method of supporting cell reselection in an evolved hspa network
US8891394B2 (en) * 2010-01-21 2014-11-18 Lg Electronics Inc. Method for reporting the results of specific reference-cell-based quality measurement in a mobile communication system using carrier aggregation, and apparatus for the method
CN102656916B (zh) * 2010-04-11 2015-01-21 Lg电子株式会社 在无线通信系统中执行测量记录的方法和装置
BR112013007507A2 (pt) * 2010-10-01 2020-10-27 Nec Corporation sistema de comunicação de rádio, terminal de rádio, estação de rádio, servidor de administração e manutenção de operação e método de comunicação de rádio
KR20140125405A (ko) * 2012-01-27 2014-10-28 인터디지탈 패튼 홀딩스, 인크 셀 간 간섭의 관리 또는 개선
CN103298045B (zh) * 2012-02-24 2016-08-10 华为终端有限公司 一种控制小区重选的方法和装置
EP2882207B1 (en) * 2012-08-06 2017-10-04 LG Electronics Inc. Method for reporting mobility information in wireless communication system and apparatus for supporting same
CN104427536A (zh) * 2013-09-10 2015-03-18 中兴通讯股份有限公司 一种集群接听用户的异频测量和评估方法及装置
CN105101313A (zh) * 2014-05-22 2015-11-25 中兴通讯股份有限公司 一种终端小区重选方法及装置
TWI672052B (zh) * 2014-11-13 2019-09-11 日商新力股份有限公司 電信裝置及方法
CN106488472B (zh) * 2015-08-27 2020-05-29 中国移动通信集团公司 一种信道信息上报方法及终端
US10305644B2 (en) * 2015-10-30 2019-05-28 Lg Electronics Inc. Method and apparatus for transmitting and receiving data based on a measurement gap in a wireless communication system
US20180324620A1 (en) * 2015-11-05 2018-11-08 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
WO2017126622A1 (ja) * 2016-01-21 2017-07-27 京セラ株式会社 ユーザ端末及び移動通信方法
CN107370525B (zh) * 2016-05-12 2021-03-30 华为技术有限公司 用于信道状态信息反馈的方法、基站、终端设备及系统
CN107770831B (zh) * 2016-08-22 2022-08-12 上海诺基亚贝尔软件有限公司 用于传输小区系统信息的方法和设备
WO2018059487A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 无线资源测量方法、选择方法及装置
US10009080B2 (en) * 2016-10-14 2018-06-26 Qualcomm Incorporated Reference signal measurements
WO2018084776A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Measurement report triggering for groups of reference signals
CN108260136B (zh) * 2016-12-29 2021-02-26 中国移动通信集团广西有限公司 一种异频测量控制方法及装置
CN108271236A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种接入小区的方法、装置及系统
CN111343643B (zh) * 2016-12-30 2021-09-28 维沃移动通信有限公司 一种接入切换方法、网络侧设备及移动终端
EP4280670A3 (en) * 2017-01-05 2024-02-28 Sony Group Corporation Terminal device and method
CN113891449B (zh) * 2017-01-06 2023-03-10 华为技术有限公司 一种测量方法、装置及系统
KR20200016253A (ko) * 2017-06-16 2020-02-14 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법 및 장치
CN109391983B (zh) * 2017-08-10 2021-10-19 华为技术有限公司 一种测量间隔参数配置、测量参考信号的方法及设备
US11197184B2 (en) * 2017-08-11 2021-12-07 Lg Electronics Inc. Method and device for transmitting or receiving signal in wireless communication system
US10447370B2 (en) * 2017-11-07 2019-10-15 Intel IP Corporation Systems, methods and devices for using s-Measure with new radio
CN110035441B (zh) * 2018-01-12 2021-02-09 华为技术有限公司 确定波束的方法及通信装置
US10291310B1 (en) * 2018-04-09 2019-05-14 Qualcomm Incorporated Gap-based antenna measurement for antenna switch diversity
US11044647B2 (en) * 2019-04-03 2021-06-22 Qualcomm Incorporated Increase in-service time and robustness for sustained mobility in idle mode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108464039A (zh) * 2016-01-11 2018-08-28 三星电子株式会社 用于改善无线通信系统中小区覆盖的方法和设备
CN107277845A (zh) * 2016-04-06 2017-10-20 中兴通讯股份有限公司 开启小区测量的确定方法、装置及系统
WO2019004784A1 (ko) * 2017-06-29 2019-01-03 엘지전자 주식회사 측정 수행 방법 및 사용자기기, 그리고 측정 설정 방법 및 기지국
CN110034853A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 信号传输方法、相关设备及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023126108A1 (en) * 2021-12-30 2023-07-06 Sony Group Corporation Wireless telecommunications apparatuses and methods

Also Published As

Publication number Publication date
EP4017113A1 (en) 2022-06-22
EP4017113B1 (en) 2023-11-22
US20220182863A1 (en) 2022-06-09
EP4017113A4 (en) 2022-07-27
CN114128352B (zh) 2023-11-10
CN114128352A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2019042223A1 (zh) 用于无线通信的电子设备和方法
WO2020207300A1 (zh) 一种测量、发送测量配置信息的方法及设备
US12069599B2 (en) Measurement method using synchronization signal block, terminal device, and base station
WO2020107411A1 (en) Method and network device for terminal device positioning with integrated access backhaul
US20220053500A1 (en) Communication method and device
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2021000688A1 (zh) 一种发送、接收能力信息的方法及设备
CN113810964A (zh) 一种通信方法及设备
WO2021208888A1 (zh) 一种通信方法和装置
WO2022022591A1 (zh) 一种测量方法及装置
EP4114102A1 (en) Communication method and apparatus
WO2021036569A1 (zh) 一种通信方法及装置
US20220182863A1 (en) Communications method and apparatus
WO2021102707A1 (zh) 一种终端设备接入网络的方法、通信装置
CN116057998A (zh) 一种通信方法、设备和装置
CN115004749A (zh) 一种测量方法及装置
WO2021213136A1 (zh) 一种通信方法和终端设备
WO2021134763A1 (zh) 一种恢复传输的方法、装置及设备
US20220103269A1 (en) Methods and Devices for Inter-Cell Interference Estimation
CN116686340A (zh) 一种通信方法和装置
CN113498085A (zh) 一种通信方法及装置
CN113826418A (zh) 一种通信方法及装置
CN113382425B (zh) 一种通信方法及装置
US12132557B2 (en) Method and network device for signal resource configuration
WO2022160302A1 (zh) 一种天线面板状态的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019943445

Country of ref document: EP

Effective date: 20220316