WO2021035648A1 - 一种基于相变储热材料的电池控温套件的压铸方法 - Google Patents

一种基于相变储热材料的电池控温套件的压铸方法 Download PDF

Info

Publication number
WO2021035648A1
WO2021035648A1 PCT/CN2019/103454 CN2019103454W WO2021035648A1 WO 2021035648 A1 WO2021035648 A1 WO 2021035648A1 CN 2019103454 W CN2019103454 W CN 2019103454W WO 2021035648 A1 WO2021035648 A1 WO 2021035648A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
storage material
heat storage
temperature control
change heat
Prior art date
Application number
PCT/CN2019/103454
Other languages
English (en)
French (fr)
Inventor
张立强
张秋兵
杨小玉
Original Assignee
张立强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张立强 filed Critical 张立强
Priority to PCT/CN2019/103454 priority Critical patent/WO2021035648A1/zh
Publication of WO2021035648A1 publication Critical patent/WO2021035648A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa

Definitions

  • This application relates to the field of material processing technology, and in particular to a die casting method of a battery temperature control kit based on a phase change heat storage material.
  • Phase change energy storage materials absorb or release a large amount of heat through the transformation of physical form to realize the storage and utilization of heat, which can effectively solve the problem of heat supply and demand. Contradiction that does not match in space.
  • the production cost of the compaction process for compacting the powder of the phase change energy storage material is relatively high, and the compaction process is relatively complicated, and there is a lack of a phase change energy storage material powder with a lower production cost and simpler process.
  • the die casting method is relatively high, and the compaction process is relatively complicated, and there is a lack of a phase change energy storage material powder with a lower production cost and simpler process.
  • a die-casting method of a battery temperature control kit based on a phase change heat storage material including:
  • phase change heat storage material powder includes: a powder of a phase change material and a powder of a modifier material;
  • the uniformly stirred phase change heat storage material powder is added to a mold for compression to obtain a battery temperature control kit.
  • the obtaining phase change heat storage material powder includes:
  • the initial phase change heat storage material powder is filtered through a filter screen to obtain a uniform particle phase change heat storage material powder.
  • phase change heat storage material powder ratio is 90% to 99% of phase change material powder and 1% to 10% of modifier material powder.
  • the uniformly stirred phase change heat storage material powder is added to a mold for compression, and the battery temperature control kit obtained includes:
  • the uniformly stirred phase change heat storage material powder is added to the mold, and the amount of powder added to the metal mold is 2 to 5 times the volume of the battery temperature control kit after molding.
  • the phase change heat storage material The powder is compressed under normal temperature and pressure of 0.2 to 50 tons, and the pressure of the compression is 5KP to 12.5MPa to obtain a battery temperature control kit with a honeycomb structure.
  • the wall thickness between the honeycombs in the battery temperature control kit is determined according to the heat dissipation requirements of the batteries to be placed.
  • the method includes:
  • the battery temperature control kit is insulated.
  • phase change material includes: a liquid phase change material or a solid phase change material
  • the modifier is a powder for adsorbing the phase change material
  • circular holes are evenly distributed in the top surface of the battery temperature control kit, the top surface shape of the battery temperature control kit is trapezoidal, rectangular or circular, and the battery to be placed is placed vertically on the battery temperature control kit. In the round hole.
  • section of the battery temperature control kit has a wavy structure, and the battery to be placed is placed laterally between two adjacent wave crests of the battery temperature control kit.
  • the beneficial effect of the present application is: the phase change heat storage material powder die casting process provided by the present application, by stirring the phase change heat storage material powder until it is uniformly mixed, the uniformly stirred phase change heat storage material powder The body is injected into a metal mold and molded by a press at room temperature to form a final product.
  • FIG. 1 is a schematic flowchart of a die casting method of a battery temperature control kit based on a phase change heat storage material in an embodiment of the application;
  • FIG. 2 is a schematic flow chart of a method for obtaining phase change heat storage material powder according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a top surface shape of a battery temperature control kit based on a phase change heat storage material in an embodiment of the application;
  • FIG. 4 is a schematic diagram of another top surface shape of a battery temperature control kit based on a phase change heat storage material in an embodiment of the application;
  • FIG. 5 is a schematic diagram of another top surface shape of a battery temperature control kit based on a phase change heat storage material in an embodiment of the application;
  • FIG. 6 is a schematic diagram of the cross-sectional shape of a battery temperature control kit based on a phase change heat storage material in an embodiment of the application.
  • a die casting method of a battery temperature control kit based on a phase change heat storage material includes:
  • phase change heat storage material powder includes: phase change material powder and modifier material powder;
  • the obtained phase change heat storage material powder ratio is 90% to 99% phase change material powder and 1% to 10% modifier material powder, and the specific ratio scheme is It can be determined according to the performance requirements of the actual product, which is not specifically limited here.
  • the reference indicators of the performance requirements include: phase change enthalpy, thermal conductivity, specific heat capacity, and breakdown voltage parameters.
  • the powder of the phase change material includes a liquid phase change material or a solid phase change material, and the modifier is used to adsorb the powder of the phase change material.
  • the material of the specific physical form selected by the phase change material can actually The cost, performance, and application scenarios of the product depend on it, and there is no specific limitation here.
  • the present application provides a phase change heat storage material powder die casting process, by stirring the phase change heat storage material powder until it is uniformly mixed, the uniformly stirred phase change heat storage material powder is injected into a honeycomb metal mold , Press molding at room temperature to form the final product.
  • phase change material may have solid physical properties, such as alkane wax.
  • phase change heat storage material powder including:
  • the phase change material is heated to 80 degrees to 100 degrees to obtain the phase change material in a molten state.
  • the stirred phase change material is cooled for 1 to 2 hours to obtain the phase change heat storage material powder in the initial state (where the powder particles in the initial state have different sizes and thicknesses).
  • the amount of powder added to the metal mold is 2 to 5 times the volume of the battery temperature control kit after molding; it is carried out at room temperature and pressure of 0.2 tons to 50 tons Pressing, the pressing pressure is 5KP ⁇ 12.5MPa, and the battery temperature control kit is obtained.
  • the battery temperature control kit is uniformly distributed with honeycomb holes, and the honeycomb hole aperture size is set according to the battery size, the battery temperature control kit
  • the wall thickness of the adjacent hollow cylinders is set according to the heat dissipation requirements of different batteries.
  • the solid phase change material is melted and combined with the physical properties of the phase change material and the modifier material, so that under certain performance requirements (reference coefficients such as phase change enthalpy, thermal conductivity, specific heat capacity, etc.) ,
  • the volume of the formed battery temperature control kit is smaller, which is more conducive to the shaping of the product shape.
  • the battery temperature control kit after pressing the phase change heat storage material powder to obtain the battery temperature control kit, the battery temperature control kit may be insulated, specifically, the battery temperature control kit is immersed In the insulating liquid, or evenly spray the insulating liquid on the surface of the battery temperature control kit for insulation treatment, so that the insulating liquid can be adsorbed on the surface of the battery temperature control kit, the insulating liquid includes: epoxy resin base Insulating the battery temperature control kit can ensure the insulation level of the battery temperature control kit, avoid conductive short circuits, and make it safer. Reliably provide heat dissipation for the battery.
  • a die casting method of a battery temperature control kit based on a phase change heat storage material includes:
  • the phase change heat storage material powder includes: a phase change material powder and a modifier material powder, and the phase change heat storage material powder is stirred to obtain agitation
  • the uniform phase change heat storage material powder is added to the mold and pressed to obtain the battery temperature control kit.
  • the battery temperature control kit has evenly distributed circular holes in the top surface of the battery temperature control kit.
  • the top view of the battery temperature control kit is a trapezoid, the battery is vertically placed in the circular hole of the battery temperature control kit, and the phase change heat storage material powder is closed under a pressure of 5 tons.
  • a die-casting method of a battery temperature control kit based on a phase-change heat storage material includes:
  • the phase change heat storage material powder includes: a phase change material powder and a modifier material powder, and the phase change heat storage material powder is stirred to obtain agitation
  • the uniform phase change heat storage material powder is added to the mold and pressed to obtain the battery temperature control kit.
  • the battery temperature control kit has evenly distributed circular holes in the top surface of the battery temperature control kit.
  • the top-view shape of the battery temperature control kit is rectangular, the battery is vertically placed in the circular hole of the battery temperature control kit, and the phase change heat storage material powder is closed under a pressure of 10 tons.
  • a die casting method of a battery temperature control kit based on a phase change heat storage material includes:
  • the phase change heat storage material powder includes: a phase change material powder and a modifier material powder, and the phase change heat storage material powder is stirred to obtain agitation
  • the uniform phase change heat storage material powder is added to the mold and pressed to obtain the battery temperature control kit.
  • the battery temperature control kit has evenly distributed circular holes in the top surface of the battery temperature control kit.
  • the top surface shape of the battery temperature control kit is circular, the battery is vertically placed in the circular hole of the battery temperature control kit, and the phase change heat storage material powder is closed under a pressure of 15 tons.
  • a die-casting method of a battery temperature control kit based on a phase-change heat storage material includes:
  • the phase change heat storage material powder includes: a phase change material powder and a modifier material powder, and the phase change heat storage material powder is stirred to obtain agitation Uniform phase change heat storage material powder, add the uniformly stirred phase change heat storage material powder to the mold and press to obtain a battery temperature control kit.
  • the battery temperature control kit has a wavy structure in cross section, and the battery is placed horizontally Between the wave peaks of the wavy structure of the battery temperature control kit, the phase change heat storage material powder is closed under a pressure of 20 tons.
  • a die casting method of a battery temperature control kit based on a phase change heat storage material includes:
  • the phase change heat storage material powder includes: a phase change material powder and a modifier material powder, and the phase change heat storage material powder is stirred to obtain agitation
  • the uniform phase change heat storage material powder is added to the mold and pressed to obtain the battery temperature control kit.
  • the wall thickness between the honeycombs of the battery temperature control kit is based on the The heat dissipation requirement of the phase change heat storage material is determined, and the phase change heat storage material powder is closed under a pressure of 30 tons.
  • a die casting method of a battery temperature control kit based on a phase change heat storage material includes:
  • the phase change heat storage material powder includes: a phase change material powder and a modifier material powder, and the phase change heat storage material powder is stirred to obtain agitation
  • the uniform phase change heat storage material powder is added to the mold and pressed to obtain the battery temperature control kit.
  • the density of the battery temperature control kit is based on the battery The requirement for the battery temperature control kit to prevent breakdown is determined, and the phase change heat storage material powder is closed under a pressure of 40 tons.
  • a die-casting method of a battery temperature control kit based on a phase-change heat storage material includes:
  • phase change heat storage material powder includes: a phase change material powder and a modifier material powder, and the phase change heat storage material powder is stirred to obtain agitation Uniform phase change heat storage material powder, add the uniformly stirred phase change heat storage material powder into the mold and press to obtain a battery temperature control kit, the battery temperature control kit has evenly distributed circular holes in the top surface The size is determined according to the size of the battery, and the phase change heat storage material powder is closed under a pressure of 50 tons.
  • the battery temperature control kit obtained by the die-casting method of the battery temperature control kit based on the phase change heat storage material described in Examples 4 to 10 has been tested for performance.
  • the test results of various indicators are as described in Table 1.
  • the following test performance is as follows:
  • the phase change enthalpy (J/g) of the battery temperature control kit based on the phase change heat storage material of this application is 40 ⁇ 240, and the endothermic value is high; the specific heat capacity (J/(g ⁇ K) )) is 2.0 ⁇ 3.0, and the specific gravity (g/cc) reaches 0.8 ⁇ 1.5.
  • the battery temperature control kit is not easy to be formed when the pressure is too low. With the increase of pressure, the appearance is gradually formed, and the thermal conductivity is also It increases accordingly. Therefore, based on the above results and the molding pressure, the battery temperature control kits of Example 6 and Example 7 perform the best molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种基于相变储热材料的电池控温套件压铸方法,包括如下步骤:获取相变储热材料粉体,相变储热材料粉体包括:相变材料的粉体和改性剂材料的粉体(101);对相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体(102);将搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件(103),通过使用此相变储热材料粉体压铸方法,使得生产成本降低,且生产工艺简单。

Description

一种基于相变储热材料的电池控温套件的压铸方法 技术领域
本申请涉及材料处理技术领域,特别是涉及一种基于相变储热材料的电池控温套件的压铸方法。
背景技术
新能源汽车的开发研究已经成为汽车行业及社会关注的热点,用户对于新能源汽车性能和安全性的要求也越来越高,电池包作为新能源汽车的主要能源,要求电池包能够大倍率充放电,以提高汽车功率,但电芯在大倍率充放电过程中会产生大量热量,在有限的空间中,热量易积聚,造成电池包局部过热,进而导致电池包性能下降,甚至会引发热失控,危及车主的人身财产安全,为保证新能源电池包工作的安全、性能和使用寿命,需要一种高效率的电池包冷却散热材料,控制电池包的温升,保证温度一致性,相变储能材料被广泛应用于具有间断性或不稳定性的热管理领域,相变储能材料是通过物理形态的转变吸收或释放大量热量,实现热量的存储和利用,可有效解决热量供求在时间和空间上不匹配的矛盾。
然而现有技术压制相变储能材料的粉体的压制工艺生产成本较高,且压制工艺过程较为复杂,缺少一种生产成本较低,且工艺过程较简单的相变储能材料的粉体的压铸方法。
发明内容
基于此,亟需提供一种基于相变储热材料的电池控温套件的压铸方法,以解决现有技术的不足。
一种基于相变储热材料的电池控温套件的压铸方法,包括:
获取相变储热材料粉体,所述相变储热材料粉体包括:相变材料的粉体和改性剂材料的粉体;
对所述相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体;
将所述搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控 温套件。
进一步地,所述获取相变储热材料粉体,包括:
对相变材料进行加热,得到熔融状态的相变材料;
对熔融状态的相变材料进行搅拌,在搅拌的过程中加入所述改性剂材料;
对搅拌完成的相变材料进行冷却,得到初始状的相变储热材料粉体;
通过滤网对初始状的相变储热材料粉体进行过滤,得到均匀颗粒的相变储热材料粉体。
进一步地,所述获取的相变储热材料粉体配比为90%~99%的相变材料的粉体和1%~10%的改性剂材料的粉体。
进一步地,所述搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件包括:
将所述搅拌均匀的相变储热材料粉体加入到模具中,加入到所述金属模具的粉体量为成型后电池控温套件的体积的2~5倍,所述相变储热材料粉体在常温和压力0.2吨~50吨下进行压制,所述压制的压强为5KP~12.5MPa,得到蜂窝状结构的电池控温套件。
进一步地,所述电池控温套件中蜂窝间的壁厚,根据所需要放置的电池的散热需求确定。
进一步地,将所述搅拌均匀的相变储热材料粉体加入到模具中进行压制之后,包括:
对所述电池控温套件进行绝缘处理。
进一步地,所述相变材料包括:液态相变材料或固态相变材料,所述改性剂为用于吸附所述相变材料的粉体。
进一步地,所述电池控温套件俯视面内均匀分布着圆孔,所述电池控温套件的俯视面形状为梯形、长方形或圆形,待放置的电池垂直放置在所述电池控温套件的圆孔中。
进一步地,所述电池控温套件剖面呈波状结构,待放置的电池横向放置在所述电池控温套件相邻两个波峰之间。
本申请的有益效果是:本申请提供的一种相变储热材料粉体压铸工艺,通 过搅拌所述相变储热材料粉体至混合均匀,将搅拌均匀的所述相变储热材料粉体注入金属模具中,在常温下压机模压成型,形成最终产品,通过使用此相变储热材料粉体压铸方法,使得生产成本降低,且生产工艺简单。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例中的基于相变储热材料的电池控温套件的压铸方法的流程示意图;
图2为本申请实施例的相变储热材料粉体获取方法的流程示意图;
图3为本申请实施例中的基于相变储热材料的电池控温套件的一种俯视面形状的示意图;
图4为本申请实施例中的基于相变储热材料的电池控温套件的另一种俯视面形状的示意图;
图5为本申请实施例中的基于相变储热材料的电池控温套件的另一种俯视面形状的示意图;
图6为本申请实施例中的基于相变储热材料的电池控温套件剖面形状的示意图。
具体实施方式
以下将结合本申请实施例的附图,对本申请的技术方案做进一步描述,本申请不仅限于以下具体实施方式。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。以下将结合本申请实施例的附图,对本申请的技术方案做进一步描述,本申请不仅限于以下具体实施方式。
实施例1
如图1所示,在一个实施例中,一种基于相变储热材料的电池控温套件的压铸方法,包括:
101、获取相变储热材料粉体,所述相变储热材料粉体包括:相变材料的粉体和改性剂材料的粉体;
102、对所述相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体;
103、将搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件。
示例性的,所述获取的相变储热材料粉体配比为90%~99%的相变材料的粉体和1%~10%的改性剂材料的粉体,具体的配比方案可以根据实际产品的性能需求而定,此处具体不做限定,所述性能需求的参考指标包括:相变焓、导热系数、比热容以及击穿电压参数。
所述相变材料的粉体包括液态相变材料或固态相变材料,所述改性剂用于吸附所述相变材料的粉体,相变材料所选取的具体物理形态的物质,可以实际产品的成本、性能及应用场景而定,此处具体不做限定。
本申请提供的一种相变储热材料粉体压铸工艺,通过搅拌所述相变储热材料粉体至混合均匀,将搅拌均匀的所述相变储热材料粉体注入蜂窝状金属模具中,在常温下压机模压成型,形成最终产品,通过使用此相变储热材料粉体压铸工艺,使得生产成本降低,且生产工艺简单。
实施例2
如图2所示,在实际应用中,相变材料可能是固体的物理特性,如烷烃蜡。在这种场景下,对相变储热材料的处理就有了更高的要求,本申请实施例提供了相应的解决方案,具体为相变储热材料粉体的获取过程,包括:
201、对相变材料进行加热,得到熔融状态的相变材料;
对相变材料进行加热至80度~100度,得到熔融状态的相变材料。
202、对熔融状态的相变材料进行搅拌,在搅拌的过程中加入所述改性剂材 料;
203、对搅拌完成的相变材料进行冷却,得到初始状的相变储热材料粉体;
对搅拌完成的相变材料进行冷却1~2小时,得到初始状态的相变储热材料粉体(其中,初始状态的粉体颗粒的大小、粗细不一)。
204、通过滤网对初始状的相变储热材料粉体进行过滤,得到均匀颗粒的相变储热材料粉体。
在得到均匀颗粒的相变储热材料粉体,加入到所述金属模具的粉体量为成型后电池控温套件的体积的2~5倍;在常温和压力为0.2吨~50吨下进行压制,所述压制的压强为5KP~12.5MPa,得到电池控温套件,所述电池控温套件上均匀分布着蜂窝孔,所述蜂窝孔孔径大小根据电池大小进行设置,所述电池控温套件的相邻中空圆柱的壁厚根据不同电池的散热需求进行设置。
本申请实施例通过对固态的相变材料进行熔融处理,再结合相变材料与改性剂材料的物理特性,使得在一定的性能需求(参考系数如相变焓、导热系数、比热容等)下,成型的电池控温套件的体积更小,更有利于产品外形的塑造。
实施例3
在一个实施例中,在完成相变储热材料粉体的压制,得到所述电池控温套件之后,可以对所述电池控温套件进行绝缘处理,具体的,将所述电池控温套件浸泡在绝缘液体中,或者在所述电池控温套件表面上均匀喷涂绝缘液体进行绝缘处理,使得所述绝缘液能够吸附在所述电池控温套件表面上,所述绝缘液包括:环氧树脂基材、丙烯酸基材、聚氨酯基材、纤维素或凡立水,对所述电池控温套件进行绝缘处理,可以保证所述电池控温套件的绝缘等级,避免出现导电短路的情况,使其安全可靠地为电池提供散热的作用。
实施例4
如图3所示,在一个实施例中,一种基于相变储热材料的电池控温套件的压铸方法,包括:
获取相变储热材料粉体,所述相变储热材料粉体包括:相变材料的粉体和 改性剂材料的粉体,对所述相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体,将搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件,所述电池控温套件俯视面内均匀分布着圆孔,所述电池控温套件的俯视面形状为梯形,所述电池竖直放置在所述电池控温套件的圆孔中,所述相变储热材料粉体在压力5吨下闭膜。
实施例5
如图4所示,在一个实施例中,一种基于相变储热材料的电池控温套件的压铸方法,包括:
获取相变储热材料粉体,所述相变储热材料粉体包括:相变材料的粉体和改性剂材料的粉体,对所述相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体,将搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件,所述电池控温套件俯视面内均匀分布着圆孔,所述电池控温套件的俯视面形状为长方形,所述电池竖直放置在所述电池控温套件的圆孔中,所述相变储热材料粉体在压力10吨下闭膜。
实施例6
如图5所示,在一个实施例中,一种基于相变储热材料的电池控温套件的压铸方法,包括:
获取相变储热材料粉体,所述相变储热材料粉体包括:相变材料的粉体和改性剂材料的粉体,对所述相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体,将搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件,所述电池控温套件俯视面内均匀分布着圆孔,所述电池控温套件的俯视面形状为圆形,所述电池竖直放置在所述电池控温套件的圆孔中,所述相变储热材料粉体在压力15吨下闭膜。
实施例7
如图6所示,在一个实施例中,一种基于相变储热材料的电池控温套件的 压铸方法,包括:
获取相变储热材料粉体,所述相变储热材料粉体包括:相变材料的粉体和改性剂材料的粉体,对所述相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体,将搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件,所述电池控温套件剖面呈波状结构,所述电池横向放置在所述电池控温套件该波状结构的波峰之间,所述相变储热材料粉体在压力20吨下闭膜。
实施例8
在一个实施例中,一种基于相变储热材料的电池控温套件的压铸方法,包括:
获取相变储热材料粉体,所述相变储热材料粉体包括:相变材料的粉体和改性剂材料的粉体,对所述相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体,将搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件,所述电池控温套件蜂窝间的壁厚,根据用于电池的散热需求确定,所述相变储热材料粉体在压力30吨下闭膜。
实施例9
在一个实施例中,一种基于相变储热材料的电池控温套件的压铸方法,包括:
获取相变储热材料粉体,所述相变储热材料粉体包括:相变材料的粉体和改性剂材料的粉体,对所述相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体,将搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件,所述电池控温套件的密度,根据用于电池的所述电池控温套件防击穿的需求确定,所述相变储热材料粉体在压力40吨下闭膜。
实施例10
在一个实施例中,一种基于相变储热材料的电池控温套件的压铸方法,包 括:
获取相变储热材料粉体,所述相变储热材料粉体包括:相变材料的粉体和改性剂材料的粉体,对所述相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体,将搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件,所述电池控温套件俯视面内均匀分布着圆孔的孔径大小,根据用于电池的大小确定,所述相变储热材料粉体在压力50吨下闭膜。
实施例11
实施例4~10所述的一种基于相变储热材料的电池控温套件的压铸方法得到的电池控温套件进行了性能测试,各项指标测试结果如表1所述,在相同环境温度下测试性能如下:
Figure PCTCN2019103454-appb-000001
表1
由表1的数据可知,本申请的一种基于相变储热材料的电池控温套件的相变焓(J/g)为40~240,吸热值高;比热容(J/(g·K))为2.0~3.0,比重(g/cc) 达到了0.8~1.5,经测试发现,压力过低,电池控温套件不易成型,而随着压力的增大,外观上逐渐成型,导热系数也随之增大,因此,通过上述结果并结合成型压力情况,实施例6和实施例7的电池控温套件的所表现的成型最佳。
综上所述,上述实施方式并非是本申请的限制性实施方式,凡本领域的技术人员在本申请的实质内容的基础上所进行的修饰或者等效变形,均在本申请的技术范畴。

Claims (9)

  1. 一种基于相变储热材料的电池控温套件的压铸方法,其特征在于,包括:
    获取相变储热材料粉体,所述相变储热材料粉体包括:相变材料的粉体和改性剂材料的粉体;
    对所述相变储热材料粉体进行搅拌,获得搅拌均匀的相变储热材料粉体;
    将所述搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件。
  2. 根据权利要求1所述的一种基于相变储热材料的电池控温套件的压铸方法,其特征在于,所述获取相变储热材料粉体,包括:
    对相变材料进行加热,得到熔融状态的相变材料;
    对熔融状态的相变材料进行搅拌,在搅拌的过程中加入所述改性剂材料;
    对搅拌完成的相变材料进行冷却,得到初始状的相变储热材料粉体;
    通过滤网对初始状的相变储热材料粉体进行过滤,得到均匀颗粒的相变储热材料粉体。
  3. 根据权利要求1所述的一种基于相变储热材料的电池控温套件的压铸方法,其特征在于,所述获取的相变储热材料粉体的配比为90%~99%的相变材料的粉体和1%~10%的改性剂材料的粉体。
  4. 根据权利要求1所述的一种基于相变储热材料的电池控温套件的压铸方法,其特征在于,所述搅拌均匀的相变储热材料粉体加入到模具中进行压制,得到电池控温套件包括:
    将所述搅拌均匀的相变储热材料粉体加入到模具中,加入到所述模具的粉体量为成型后电池控温套件的体积的2~5倍,所述相变储热材料粉体在常温和压力0.2吨~50吨下进行压制,所述压制的压强为5KP~12.5MPa,得到蜂窝状结构的电池控温套件。
  5. 根据权利要求1所述的一种基于相变储热材料的电池控温套件的压铸方法,其特征在于,所述电池控温套件中蜂窝间的壁厚,根据所需要放置的电池的散热需求确定。
  6. 根据权利要求1所述的一种基于相变储热材料的电池控温套件的压铸方法,其特征在于,将所述搅拌均匀的相变储热材料粉体加入到模具中进行压制 之后,包括:
    对所述电池控温套件进行绝缘处理。
  7. 根据权利要求3所述的一种基于相变储热材料的电池控温套件的压铸方法,其特征在于,所述相变材料包括:液态相变材料或固态相变材料,所述改性剂是用于吸附所述相变材料的粉体。
  8. 根据权利要求1所述的一种基于相变储热材料的电池控温套件的压铸方法,其特征在于,所述电池控温套件俯视面内均匀分布着圆孔,所述电池控温套件的俯视面形状为梯形、长方形或圆形,待放置的电池垂直放置在所述电池控温套件的圆孔中。
  9. 根据权利要求1所述的一种基于相变储热材料的电池控温套件的压铸方法,其特征在于,所述电池控温套件的剖面呈波状结构,待放置的电池横向放置在所述电池控温套件相邻两个波峰之间。
PCT/CN2019/103454 2019-08-29 2019-08-29 一种基于相变储热材料的电池控温套件的压铸方法 WO2021035648A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103454 WO2021035648A1 (zh) 2019-08-29 2019-08-29 一种基于相变储热材料的电池控温套件的压铸方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103454 WO2021035648A1 (zh) 2019-08-29 2019-08-29 一种基于相变储热材料的电池控温套件的压铸方法

Publications (1)

Publication Number Publication Date
WO2021035648A1 true WO2021035648A1 (zh) 2021-03-04

Family

ID=74684431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103454 WO2021035648A1 (zh) 2019-08-29 2019-08-29 一种基于相变储热材料的电池控温套件的压铸方法

Country Status (1)

Country Link
WO (1) WO2021035648A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012170691A2 (en) * 2011-06-07 2012-12-13 All Cell Technologies, Llc Energy storage thermal management system using multi-temperature phase change materials
CN103178314A (zh) * 2013-02-28 2013-06-26 广东工业大学 具有高效均衡散热功能和电加热功能的电池热管理设备
CN206878134U (zh) * 2016-12-09 2018-01-12 航天特种材料及工艺技术研究所 一种用于圆柱形电池的热管理模块及电池组
CN108199112A (zh) * 2016-12-09 2018-06-22 航天特种材料及工艺技术研究所 一种用于方形电池的热管理模块及其制备方法和电池组
CN108288739A (zh) * 2016-12-09 2018-07-17 航天特种材料及工艺技术研究所 一种用于圆柱形电池的热管理模块及其制备方法和电池组
CN109066002A (zh) * 2018-07-09 2018-12-21 华中科技大学 基于相变储能和热电效应的动力电池自动控制热管理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012170691A2 (en) * 2011-06-07 2012-12-13 All Cell Technologies, Llc Energy storage thermal management system using multi-temperature phase change materials
CN103178314A (zh) * 2013-02-28 2013-06-26 广东工业大学 具有高效均衡散热功能和电加热功能的电池热管理设备
CN206878134U (zh) * 2016-12-09 2018-01-12 航天特种材料及工艺技术研究所 一种用于圆柱形电池的热管理模块及电池组
CN108199112A (zh) * 2016-12-09 2018-06-22 航天特种材料及工艺技术研究所 一种用于方形电池的热管理模块及其制备方法和电池组
CN108288739A (zh) * 2016-12-09 2018-07-17 航天特种材料及工艺技术研究所 一种用于圆柱形电池的热管理模块及其制备方法和电池组
CN109066002A (zh) * 2018-07-09 2018-12-21 华中科技大学 基于相变储能和热电效应的动力电池自动控制热管理系统

Similar Documents

Publication Publication Date Title
Zhang et al. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management
Lv et al. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins
US3634569A (en) Method of manufacture of dense graphite structures
WO2020155993A1 (zh) 负极极片、锂离子二次电池及装置
JP5311706B2 (ja) 電気化学素子電極用複合粒子の製造方法
CN110079277A (zh) 相变复合材料粒料及其制备方法和应用以及电池散热器件
Madani et al. A review of thermal management and safety for lithium ion batteries
CN102585360A (zh) 复合塑料及制法及用其制造的封装壳体、锂电池和电池组
JP7472301B2 (ja) 断熱パッド及びその製造方法、組電池及び装置
WO2021000439A1 (zh) 相变储热硅胶、制备方法及其应用
Li et al. Experimental evaluation of heat conduction enhancement and lithium-ion battery cooling performance based on h-BN-based composite phase change materials
WO2017024897A1 (zh) 一种改性锂电池负极材料的制备方法
Mahmud et al. Lithium-ion battery thermal management for electric vehicles using phase change material: A review
WO2021000519A1 (zh) 相变储热塑料、制备方法及其应用
TWI502060B (zh) Composite nano - graphite thermal phase change material
Zhou et al. A novel MOF/RGO-based composite phase change material for battery thermal management
CN114050234B (zh) 一种负极片及包括该负极片的锂离子电池
WO2021000432A1 (zh) 相变储热橡胶、制备方法及其应用
WO2021035648A1 (zh) 一种基于相变储热材料的电池控温套件的压铸方法
JPWO2013118758A1 (ja) 電気化学素子電極用複合粒子の製造装置及び電気化学素子電極用複合粒子の製造方法
JP4899354B2 (ja) 複合粒子の製造方法、電気化学素子用電極材料、電気化学素子用電極の製造方法及び電気化学素子用電極
JPWO2014157420A1 (ja) 非水電解質二次電池
CN110527496A (zh) 一种基于相变储热材料的电池控温套件的压铸方法
CN113122186A (zh) 一种纳米金属复合相变材料及其制备方法
CN209515926U (zh) 基于相变材料板的对置双电池组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943036

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19943036

Country of ref document: EP

Kind code of ref document: A1