WO2021035608A1 - 航线生成方法、地面端设备、无人机、系统和存储介质 - Google Patents

航线生成方法、地面端设备、无人机、系统和存储介质 Download PDF

Info

Publication number
WO2021035608A1
WO2021035608A1 PCT/CN2019/103257 CN2019103257W WO2021035608A1 WO 2021035608 A1 WO2021035608 A1 WO 2021035608A1 CN 2019103257 W CN2019103257 W CN 2019103257W WO 2021035608 A1 WO2021035608 A1 WO 2021035608A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
sub
area
target
routes
Prior art date
Application number
PCT/CN2019/103257
Other languages
English (en)
French (fr)
Inventor
黄振昊
石仁利
贾焱超
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980033828.8A priority Critical patent/CN112313725B/zh
Priority to PCT/CN2019/103257 priority patent/WO2021035608A1/zh
Publication of WO2021035608A1 publication Critical patent/WO2021035608A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to the field of communication technology, in particular to a route generation method, ground terminal equipment, unmanned aerial vehicle, system and storage medium.
  • unmanned aerial vehicles have been widely used, for example, for professional aerial photography, agricultural irrigation, power line inspection, and public security monitoring.
  • the area is generally divided, and then the independent route planning is carried out on the basis of the divided sub-areas.
  • the UAV can operate according to the independent route corresponding to each sub-area.
  • this is prone to duplication of certain routes, which reduces operational efficiency.
  • the present invention provides a route generation method, ground-end equipment, drones, systems and storage media, which are used to solve the existing technology that is prone to repetition of certain routes and makes the drone fly useless routes. Reduce the problem of operating efficiency.
  • the first aspect of the present invention is to provide a route generation method, including:
  • the sub-route is adjusted according to the route overlap information, and the target sub-route corresponding to the operation sub-area is obtained.
  • the second aspect of the present invention is to provide a route generation system, including:
  • Memory used to store computer programs
  • the processor is configured to run a computer program stored in the memory to realize:
  • the sub-route is adjusted according to the route overlap information, and the target sub-route corresponding to the operation sub-area is obtained.
  • the third aspect of the present invention is to provide a ground terminal equipment, including: the route generation system described in the second aspect.
  • the fourth aspect of the present invention is to provide an unmanned aerial vehicle, including: the route generation system described in the second aspect.
  • the fifth aspect of the present invention is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, the computer-readable storage medium stores program instructions, and the program instructions are used in the first aspect.
  • the route generation method, ground terminal equipment, unmanned aerial vehicle, system and storage medium provided by the present invention obtain at least one operation route in the area to be operated, and divide the area to be operated into at least two sub-areas to obtain The sub-routes located in the operation sub-regions are then adjusted according to the determined route overlap information, and the target sub-routes corresponding to the operation sub-regions are obtained, so that the target sub-routes located between the adjacent operation sub-regions are The distance between the two meets the preset distance condition, and the overlap rate between adjacent sub-regions will not be too low due to the too large distance, which will lead to difficulties in splicing or poor image forming quality at the splicing; also It will not cause 1 or 2 unnecessary routes at the junction between adjacent sub-regions because the distance is too small, thus effectively reducing the route overlap information existing between the sub-routes in adjacent regions and avoiding
  • the problem of making unmanned aerial vehicles useless flight routes improves the operating efficiency of unmanned aerial vehicles, ensures the practicability of the method, and is conduc
  • Fig. 1 is a schematic diagram 1 of a route generation method provided by the prior art
  • Figure 2 is a schematic diagram of a route generation method provided by the prior art
  • Fig. 3 is a schematic diagram of oblique shooting route provided by the prior art
  • FIG. 4 is a schematic flowchart of a method for generating a route according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of at least one operation route located in the area to be operated according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of dividing the area to be operated into at least two operation sub-areas, and obtaining sub-routes located in the operation sub-areas according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of determining route overlap information between sub-routes located in two adjacent operation sub-regions according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the corresponding relationship between altitude and focal length provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram 1 of adjusting the sub-route according to the adjustment distance to obtain the target sub-route corresponding to the operation sub-area according to an embodiment of the present invention
  • FIG. 10 is a second schematic diagram of adjusting the sub-route according to the adjustment distance to obtain the target sub-route corresponding to the operation sub-area according to an embodiment of the present invention
  • FIG. 11 is a third schematic diagram of adjusting the sub-route according to the adjustment distance to obtain the target sub-route corresponding to the operation sub-area according to an embodiment of the present invention
  • FIG. 12 is a schematic flowchart of a method for generating a route according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram 1 of a process for determining an overlapping area formed between a first sub-airline and a second sub-airline located in the same operation sub-area according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of the second process of determining the overlapping area formed between the first sub-airline and the second sub-airline located in the same operation sub-area according to an embodiment of the present invention
  • 15 is a schematic diagram of the third process of determining the overlapping area formed between the first sub-airline and the second sub-airline located in the same operation sub-area according to an embodiment of the present invention
  • FIG. 16 is a fourth schematic flowchart of determining the overlapping area formed between the first sub-airline and the second sub-airline located in the same operation sub-area according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a route generation system provided by an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of another route generation system provided by an embodiment of the present invention.
  • the large area is first divided, the large area is divided into multiple sub-areas, and then independent route planning is performed on the basis of the sub-areas.
  • the original route S for area A can be generated, and the original route S can cover all areas of area A; area A is divided into area A1 through area dividing line B After and area A2, independent route planning will be carried out for area A1 and area A2, so that the route S1 corresponding to area A1 and the route S2 corresponding to area A2 can be obtained.
  • the above method of independent route planning based on the divided sub-regions does not guarantee the consistency of the interval between the routes at the junction of the two sub-regions.
  • the rightmost route of route S1 is the same as the route.
  • the interval between the leftmost routes of S2 is inconsistent with the intervals of the routes at other positions; it may cause uneven overlap, affect the puzzle effect, cause waste of routes, and reduce operation efficiency.
  • the drone when using a drone to take a 3D oblique image of a feature, in order to obtain the side texture of the feature, the drone needs to use the oblique image route to perform operations.
  • the oblique image route is relative to the orthophoto route.
  • the overall translation in a certain direction will be performed on the basis of the orthophoto route, as shown in Figure 3 below.
  • 3D oblique route planning is to be performed on the route of each independent sub-area, the oblique routes of different directions in adjacent sub-areas will overlap.
  • the steering gear is used to coordinate multiple drones to operate at the same time, it will be easy Lead to the danger of mutual interference or collision between different drones.
  • the route generation method can be applied to ground-end equipment and/or drones, that is, the execution subject of the route generation method can be ground-end equipment; or, the execution subject of the route generation method can also be a drone,
  • the ground-end equipment can be used to display route information; or, the execution subject of the route generation method may include the ground-end equipment and the drone, and at this time, the ground-end device can communicate with the drone.
  • the following takes the ground-end equipment or drone as the execution subject as an example for description.
  • the method may include:
  • S1 Obtain at least one operation route located in the area to be operated.
  • the operation route is related to system parameters.
  • the user can obtain the area to be operated through the Keyhole Markup Language (KML) technology.
  • KML Keyhole Markup Language
  • the user can upload multiple area point information corresponding to the area to be operated through the markup KML file.
  • the area to be operated can be generated from the area point information; or, the user can manually perform an operation on the range of the area to be operated, and determine the area to be operated based on the obtained execution operation.
  • the ground-end equipment or drone can set the system parameters globally, so that at least one operation route in the area to be operated can be generated, where the system parameters can include at least one of the following: flight altitude , Flight speed, overlap rate, external expansion margin; under normal circumstances, the operating route has a bow-shaped structure, as shown in Figure 5.
  • the operating route S can be obtained, and the operating route S is equal to Corresponding to the entire area A to be operated.
  • S2 Divide the area to be operated into at least two operation sub-areas, and obtain sub-routes located in the operation sub-areas, where the sub-routes are part of the operation route.
  • the area to be operated After acquiring at least one operation route in the area to be operated, the area to be operated can be divided into at least two operation sub-areas according to a preset division strategy, so that the sub-airlines located in the operation sub-area can be obtained.
  • two implementation manners may be included: automatic division of equipment and division by manual input of parameters by the user.
  • the user uses manual input parameters (for example: grid area, grid side length, etc.) to divide the work area, pass the user input parameters (for example: grid area is 0.5 square kilometers, grid side length is 0.5 km )
  • the default planning segmentation shape is square.
  • the grid area input by the user is the grid area and the grid area is 0.5 square kilometers
  • the grid area input by the user is directly rooted, so that the side length of the divided square can be determined to be 0.707km.
  • the area to be operated can be divided into multiple sub-areas. It is understood that the areas of the multiple sub-areas may be the same or different.
  • the area to be operated A is divided into four operation sub-areas by two dividing lines (the dividing line L1 and the dividing line L2), which are respectively the operation sub-area A1, the operation sub-area A2, and the operation sub-area.
  • operation route S is also divided into four sub-routes by two dividing lines, namely sub-route S1, sub-route S2, sub-route S3, and sub-route S4.
  • the four sub-routes are respectively It is part of the operation route S, and the sub-route S1 corresponds to the operation sub-area A1, the sub-route S2 corresponds to the operation sub-area A2, the sub-route S3 corresponds to the operation sub-area A3, and the sub-route S4 corresponds to the operation sub-area A4 Corresponding.
  • the area to be operated can be divided into 8 sub-areas and 10 sub-areas.
  • the operation sub-area and so on, the specific principle of division and the principle of obtaining sub-routes are similar to the above process, and will not be repeated here.
  • S3 Determine the route overlap information between the sub-routes located in two adjacent operation sub-areas.
  • route overlap refers to the overlap of two adjacent images between adjacent routes.
  • the adjacent images have the same ground image part.
  • the part of the same ground image is the overlapping part of the route.
  • the first image area P1 can be obtained, and when the drone is operating along another adjacent sub-route, the second image area can be obtained P2.
  • there is an intersection area P0 between the first image area P1 and the second image area P2 that is, there is an overlap between the two sub-airways.
  • the route overlap information may include: a route overlap area based on two adjacent images between two sub-routes or a route overlap ratio formed by two adjacent images between two sub-routes.
  • the route overlap information includes the route overlap area
  • the first image range and the second image range corresponding to the two sub-routes can be obtained first, and the intersection image area formed by the first image range and the second image range is determined as the route overlap area.
  • the route overlap information includes the route overlap rate
  • the image range set formed by the first image range and the second image range can be determined, and the ratio of the route overlap area to the image range set can be determined as the route overlap rate.
  • the determination of the route overlap information between the sub-routes located in two adjacent operation sub-regions in this embodiment may include:
  • S32 Determine the route overlap rate between the sub-routes in two adjacent operation sub-regions according to the flight altitude and the route interval.
  • the flight altitude of the UAV operating in the area to be operated and the route interval of the operating route may be preset or input by the user.
  • the route overlap rate can be determined according to the flight altitude and the route interval.
  • different flight altitudes and route intervals can correspond to different sub-routes.
  • the number of sub-routes is in inverse proportion to the flight altitude and the route interval, that is, the flight altitude is higher. Higher, the fewer the number of sub-routes; the larger the route interval, the smaller the number of sub-routes. Therefore, after obtaining the flight altitude and the route interval, two adjacent sub-routes included in the two adjacent operation sub-regions can be determined, and the route overlap rate can be determined through the analysis and processing of the two sub-routes.
  • the sub-route can be adjusted according to the route overlap information.
  • the sub-route is at least one of the two sub-routes corresponding to the route overlap information, so that the target sub-route corresponding to the operation sub-area can be obtained.
  • the route overlap information is determined by the first sub-route and the second sub-route.
  • the first sub-route and/or the second sub-route can be adjusted based on the route overlap information.
  • the first target sub-route and/or the second target sub-route can be obtained.
  • the route overlap information between the adjusted first target sub-route and the second target sub-route is less than or equal to the preset overlap threshold. More preferably, the route overlap information between the first target sub-route and the second target sub-route is 0, which can effectively solve the prone to repetition of certain routes in the prior art, making the drone flight useless Route, thereby reducing the problem of operating efficiency.
  • the route generation method provided in this embodiment obtains at least one operation route located in the area to be operated, divides the area to be operated into at least two operation sub-areas, and obtains the sub-routes located in the operation sub-area, and then according to the determined Adjust the sub-routes based on the overlap information of the route to obtain the target sub-routes corresponding to the operation sub-regions, so that the distance between the target sub-routes located between adjacent operation sub-regions meets the preset distance condition. Because the distance is too large, the overlap rate between the adjacent sub-regions is too low, which leads to difficulty in splicing or poor image forming quality at the splicing; and it will not cause the adjacent sub-regions to be between adjacent sub-regions because the distance is too small.
  • the sub-routes in this embodiment are adjusted according to the route overlap information to obtain the sub-routes corresponding to the operation sub-regions.
  • the target sub-routes can include:
  • determining the adjustment distance corresponding to the sub-route according to the flight altitude and the route overlap ratio in this embodiment may include:
  • S411 Obtain image acquisition parameters when the drone is operating in the area to be operated.
  • the image acquisition parameters include at least one of the following: the effective width and focal length of the image acquisition sensor; the effective width of the above-mentioned image acquisition sensor is related to the model and structure of the image acquisition sensor; the focal length can be preset or set by the user, Moreover, users can also adjust the focal length according to different application scenarios.
  • S412 Determine the adjustment distance corresponding to the sub-airline according to the flight altitude, image acquisition parameters and the overlap rate of the air route.
  • the adjustment distance corresponding to the sub-route can be determined in combination with the above-mentioned flight altitude and the route overlap rate, so as to adjust the sub-route according to the adjustment distance.
  • the determination of the adjustment distance corresponding to the sub-route according to the altitude, the image collection parameters, and the route overlap rate includes:
  • S4121 Determine the heading dispersion rate corresponding to the route overlap rate.
  • the heading dispersion rate is the difference between 1 and the route overlap rate.
  • the sub-route can be adjusted based on the adjusted distance, so that the target sub-route corresponding to the operation sub-area can be obtained.
  • the adjustment of the sub-route according to the adjustment distance in this embodiment to obtain the target sub-route corresponding to the operation sub-area may include:
  • the adjustment distance is determined by two adjacent sub-routes, two adjacent sub-routes can be adjusted based on the adjustment distance. At this time, after the adjustment distance is obtained, 0.5 times the adjustment distance can be determined as the target adjustment distance corresponding to the sub-course.
  • the route endpoints at both ends of the route are P1 (lat1, lon1, h1) and P2 (lat2, lon2, h2), where lat1 is the latitude information of point P1, and lon1 is the longitude information of point P1 , H1 is the height information of point P1; lat2 is the latitude information of point P2, lon2 is the longitude information of point P2, and h2 is the height information of point P2; by projecting the sub-course (universal horizontal axis Mercator UTM projection/Gaussian -Krüger projection) processing, can obtain the projection positions P1'(x1, y1) and P2'(x2, y2) of the two endpoints in the local plane coordinate
  • 0.5 times the adjustment distance can be determined as the first target adjustment distance corresponding to the first sub-course, and 0.5 times the adjustment distance can be determined as corresponding to the second sub-course
  • the second target adjustment distance; that is, Pc1 is the midpoint of the adjustment distance.
  • the distance between the midpoint Pc1 and an end point Pc1 ⁇ can be determined as the first target adjustment distance, and the midpoint Pc1 and the other The distance between one end point Pc1 is determined as the second target adjustment distance; that is, Pc1 is along the sub-course and advances s/2 distances to the upper and lower ends of the dividing line respectively, so as to obtain the distance between the first sub-course and the The new endpoint Pc1 ⁇ and the new endpoint Pc1'' corresponding to the two sub-routes.
  • S422 Adjust the distance between the end point of the route on the sub-route and the dividing line between the adjacent operation sub-areas to the target adjustment distance, and obtain the new end point of the route corresponding to the sub-route.
  • the operation route is also divided into sub-routes by the dividing line.
  • the route endpoint of the sub-route is on the dividing line.
  • the operation route can be divided into sub-routes. The distance between the end point of the route on the sub-route and the dividing line is adjusted to the target adjustment distance, so that the new end point of the route corresponding to the sub-route can be obtained.
  • the route endpoint of the sub-route S1 is Pc. At this time, the route endpoint Pc is on the dividing line.
  • the new end point Pc ⁇ of the route After obtaining the target adjustment distance, you can follow the sub-route to the route endpoint Pc Perform reverse shift to obtain the new end point Pc ⁇ of the route. At this time, the distance between the new end point Pc ⁇ of the route and the dividing line is the target adjustment distance. In the same way, the new end points of the route corresponding to the sub-routes in other sub-regions can also be obtained.
  • S423 Close the new end point of the route on the sub-route to obtain the target sub-route.
  • the new end point of the sub-route After the new end point of the sub-route is obtained, the new end point of the sub-route can be closed and connected, as shown in Figure 11, so that the target sub-route corresponding to the sub-route can be obtained. At this time, two adjacent sub-routes can be obtained.
  • the route overlap rate between the target sub-routes in the operation sub-regions is less than or equal to the preset threshold.
  • the adjusted distance corresponding to the sub-route is determined based on the acquired altitude and the overlap ratio of the route, and the sub-route is adjusted according to the adjusted distance to obtain the target sub-route corresponding to the operation sub-area, which not only guarantees
  • the accuracy and reliability of the target sub-route determination also effectively reduces the route overlap rate between the sub-routes in the adjacent operation sub-regions, thereby improving the flight quality and efficiency of the UAV.
  • the method in this embodiment may further include:
  • S5 Control at least one UAV to execute the target sub-route.
  • the drone After obtaining the target sub-route, the drone can be controlled to execute the target sub-route obtained above.
  • the number of operation sub-areas can be multiple, there are also multiple target sub-routes corresponding to the operation sub-areas; at this time, when all operation sub-areas need to be operated, the same one can be controlled.
  • the drone executes multiple target sub-routes in sequence; alternatively, multiple drones can also be controlled to execute different target sub-routes at the same time.
  • the method steps in this embodiment may have different execution subjects in different application scenarios.
  • the execution subject is a ground-end device.
  • the ground-end device can communicate with the drone.
  • the ground-side equipment can directly control at least one UAV to execute the target sub-route.
  • the execution subject is a drone.
  • the number of drones can be one or more.
  • the target sub-route can be executed directly.
  • the ground terminal equipment can be used to display the target sub-routes executed by the drone.
  • the execution subject includes ground-end equipment and drones. At this time, the method steps in this embodiment are adaptively adjusted to the following steps:
  • S5a The ground-side equipment sends the target sub-route to the UAV.
  • S5b The drone receives the target sub-route sent by the ground-end equipment, and the target sub-route corresponds to the operation sub-area.
  • S5c The drone executes the target sub-route in the sub-area of the operation.
  • the ground-end equipment can obtain the target sub-route.
  • the target sub-route can be sent to the drone. After the drone receives the target sub-route, it can be in the operation sub-area. Execute target sub-routes, thereby effectively ensuring the quality and efficiency of UAV operations.
  • Fig. 12 is a schematic flow chart of a route generation method provided by an embodiment of the present invention; on the basis of the above-mentioned embodiment, referring to Fig. 12, in a specific application, at least one operation route may also include the first unmanned The first oblique shooting route corresponding to the drone and the second oblique shooting route corresponding to the second drone; at this time, the method in this embodiment may further include:
  • S101 Determine the overlapping area formed between the first sub-route and the second sub-route located in the same operation sub-area, where the first sub-route is a part of the first oblique shooting route, and the second sub-route is the second oblique Take part of the route.
  • S102 Adjust the first sub-route and the second sub-route according to the overlapping area, and obtain the first target sub-route and the second target sub-route corresponding to the operation sub-area.
  • the first oblique shooting route and/or the second oblique shooting route can include any of the following types of routes: the oblique shooting route for shooting on the left side of a preset object, and the The oblique shooting route for shooting on the right side, the oblique shooting route for shooting the front side of the preset object, and the oblique shooting route for shooting the back side of the preset object.
  • the first sub-route and the second sub-route can be adjusted based on the overlapping area, so that the first target sub-route and the second target sub-route corresponding to the operation sub-area can be obtained.
  • adjusting the first sub-route and the second sub-route according to the overlapping area, and obtaining the first target sub-route and the second target sub-route corresponding to the operation sub-region may include
  • S1021 For the first sub-route, determine the overlapping route located in the overlapping area.
  • S1022 Delete the overlapping route in the first sub-route, and obtain the first target sub-route corresponding to the operation sub-area.
  • the first sub-route can be targeted.
  • a sub-route determines the overlapping route in the overlapping area, and then deletes the overlapping route in the first sub-route, so that the first target sub-route corresponding to the operation sub-area can be obtained.
  • the first target sub-route and the first target sub-route There is no route overlap area between the two sub-routes. Therefore, the second sub-route can be directly determined as the second target sub-route; that is, part of the route that the first drone needs to operate is passed through the second drone. carry out.
  • multi-machines can coordinate operation for the time limit of 3D oblique photography, so that multiple machines can first complete data collection in one direction in their respective sub-regions.
  • the sub-routes in each sub-region are also generated by the above-mentioned route generation method. Therefore, there will be no route crossing between adjacent sub-routes between adjacent sub-regions, which effectively realizes that multi-aircraft can cooperate in the case of avoiding drone collisions.
  • the operation of the job further improves the quality and efficiency of the job.
  • the route generation method provided in this embodiment can also realize multi-aircraft cooperative operation on the basis of ensuring the safety and reliability of the work of drones, which not only avoids the risk of mutual interference between different drones or collisions; Specifically, steering engine coordination can be used.
  • the route in one direction is divided into sections, so that mutual interference and collisions will not be caused during cooperative operation, thereby effectively improving the working efficiency of the UAV and making the routes between different plots Better connectivity and relevance.
  • the method in this embodiment may further include:
  • S104 Control the second drone to execute the second target sub-route in the operation sub-area.
  • the first drone can be controlled to execute the first target sub-route acquired above.
  • the second drone can be controlled to execute the second target sub-route obtained above, wherein the first drone and the second drone can perform operations at the same time.
  • the method steps in this embodiment may have different execution subjects in different application scenarios.
  • the execution subject is a ground-end device. At this time, the ground-end device can communicate with the drone. Connected, the ground terminal equipment can directly control the first UAV or the second UAV to execute the first target sub-route or the second target sub-route.
  • the execution subject is the first drone or the second drone. At this time, the first target sub-route or the second target sub-route is obtained from the first drone or the second drone After that, the first target sub-route or the second target sub-route can be directly executed.
  • the execution subject includes ground-end equipment, a first drone, and a second drone. At this time, the method steps in this embodiment are adaptively adjusted to the following steps:
  • S103 ⁇ Send the first target sub-route to the first drone, and send the second target sub-route to the second drone.
  • the first drone receives the first target sub-route sent by the ground-end device, and the second drone receives the second target sub-route sent by the ground-end device.
  • the first drone executes the first target sub-route in the operation sub-area.
  • the first target sub-route can be sent to the first target sub-route.
  • a drone and sends the second target sub-route to the second drone.
  • the first drone receives the first target sub-route sent by the ground-end equipment, it can execute the first target sub-route in the operation sub-area
  • the second drone receives the second target sub-route sent by the ground-end equipment, it can execute the second target sub-route in the operating sub-area, thereby effectively ensuring the flight of the first drone and the second drone It is safe and reliable, and realizes multi-machine cooperative operation, which effectively improves the quality and efficiency of operation.
  • FIG. 17 is a schematic structural diagram of a route generation system provided by an embodiment of the present invention. As shown in FIG. 17, this embodiment provides a route generation system, which can perform the route generation shown in FIG. 4 above Method, specifically, the route generation system may include:
  • the memory 12 is used to store computer programs
  • the processor 11 is configured to run a computer program stored in the memory 12 to realize:
  • the structure of the route generation system may also include a communication interface 13 for the electronic device to communicate with other devices or a communication network.
  • the system parameters include at least one of the following: flight height, flight speed, overlap rate, and outer margin.
  • the route overlap information includes a route overlap rate; when the processor 11 determines the route overlap information between sub-routes located in two adjacent operation sub-regions, the processor 11 is also used to: obtain unmanned routes. The altitude of the aircraft operating in the area to be operated and the route interval of the operating route; the route overlap rate between the sub-routes located in two adjacent sub-regions is determined according to the altitude and the route interval.
  • the processor 11 when the processor 11 adjusts the sub-routes according to the route overlap information to obtain the target sub-routes corresponding to the operation sub-area, the processor 11 is also used to determine the sub-routes according to the altitude and the route overlap ratio. The adjusted distance corresponding to the sub-route; adjust the sub-route according to the adjusted distance to obtain the target sub-route corresponding to the sub-area of the operation.
  • the processor 11 determines the adjustment distance corresponding to the sub-course according to the altitude and the overlap ratio of the course, the processor 11 is also used to: obtain an image of the drone during operation in the area to be operated Acquisition parameters: Determine the adjustment distance corresponding to the sub-route according to the altitude, image acquisition parameters and route overlap rate.
  • the image acquisition parameters include at least one of the following: effective width and focal length of the image acquisition sensor.
  • the processor 11 when the processor 11 determines the adjustment distance corresponding to the sub-route according to the altitude, image acquisition parameters and the route overlap rate, the processor 11 is also used to: determine the course dispersion corresponding to the route overlap rate Obtain the product value of the heading dispersion rate and the effective width, and the ratio of the flight height to the focal length; determine the product of the product value and the ratio as the adjustment distance.
  • the processor 11 when the processor 11 adjusts the sub-route according to the adjusted distance to obtain the target sub-route corresponding to the operation sub-area, the processor 11 is further configured to: determine 0.5 times the adjusted distance as the sub-route. The target adjustment distance corresponding to the route; adjust the distance between the end point of the route on the sub-route and the dividing line between the adjacent operation sub-area to the target adjustment distance, and obtain the new end point of the route corresponding to the sub-route; change the sub-route The new end point of the route on the route is closed and connected to obtain the target sub route.
  • the processor 11 is further configured to: control at least one drone to execute the target sub-route.
  • the at least one operation route includes a first oblique shooting route corresponding to the first drone and a second oblique shooting route corresponding to the second drone; the processor 11 is further configured to: The overlapping area formed between the first sub-route and the second sub-route in the same operation sub-area, where the first sub-route is a part of the first oblique shooting route, and the second sub-route is a part of the second oblique shooting route ; Adjust the first sub-route and the second sub-route according to the overlapping area to obtain the first target sub-route and the second target sub-route corresponding to the operation sub-area.
  • the processor 11 when the processor 11 adjusts the first sub-route and the second sub-route according to the overlapping area to obtain the first target sub-route and the second target sub-route corresponding to the operation sub-region, the processor 11 It is also used to: for the first sub-route, determine the overlapping route in the overlapping area; delete the overlapping route in the first sub-route to obtain the first target sub-route corresponding to the operation sub-area; determine the second sub-route It is the second target sub-route.
  • the processor 11 is further configured to: control the first drone to execute the first target sub-route in the work sub-area; control the second drone to execute the second target sub-route in the work sub-area.
  • the first oblique shooting route and/or the second oblique shooting route include any one of the following types of routes: an oblique shooting route for shooting on the left side of a preset object; The oblique shooting route for shooting; the oblique shooting route for shooting the front side of the preset object; the oblique shooting route for shooting the back side of the preset object.
  • the route generation system shown in FIG. 17 can execute the methods of the embodiments shown in FIGS. 4-16.
  • parts that are not described in detail in this embodiment please refer to the related descriptions of the embodiments shown in FIGS. 4-16.
  • an embodiment of the present invention provides a computer-readable storage medium.
  • the storage medium is a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions. Generation method.
  • another aspect of this embodiment provides a ground terminal device, including any one of the above-mentioned route generation systems.
  • an unmanned aerial vehicle including any one of the above-mentioned route generation systems.
  • FIG. 18 is a schematic structural diagram of another route generation system provided by an embodiment of the present invention. As shown in FIG. 18, this embodiment provides another route generation system, which may include ground-end equipment 21 and a drone 22. Among them, the ground terminal equipment 21 is in communication connection with the UAV 22.
  • the ground terminal equipment 21 is used to obtain at least one operation route in the area to be operated, and the operation route is related to system parameters; divide the area to be operated into at least two operation sub-areas, and obtain the sub-routes in the operation sub-area, Among them, the sub-route is a part of the operation route; determine the route overlap information between the sub-routes in two adjacent operation sub-regions; adjust the sub-routes according to the route overlap information to obtain the target sub-route corresponding to the operation sub-region route.
  • the system parameters include at least one of the following: flight height, flight speed, overlap rate, and outer margin.
  • the route overlap information includes the route overlap rate; the ground terminal equipment 21 is also used to: obtain the flight altitude of the UAV operating in the area to be operated and the flight route interval of the operation route; determine according to the flight altitude and the flight interval The route overlap rate between the sub-routes located in two adjacent sub-regions.
  • the ground terminal equipment 21 is also used to: determine the adjustment distance corresponding to the sub-route according to the altitude and the overlap ratio of the route; adjust the sub-route according to the adjustment distance to obtain the target sub-area corresponding to the operation sub-area. route.
  • the ground-end equipment 21 is also used to: obtain the image acquisition parameters of the drone when the drone is operating in the area to be operated; determine the adjustment corresponding to the sub-route according to the altitude, the image acquisition parameters and the route overlap rate distance.
  • the image acquisition parameters include at least one of the following: effective width and focal length of the image acquisition sensor.
  • the ground-end equipment 21 is also used to determine the heading dispersion rate corresponding to the route overlap rate, the heading dispersion rate being the difference between 1 and the route overlap rate; to obtain the product value of the heading dispersion rate and the effective width, And the ratio of the altitude to the focal length; the product of the product value and the ratio is determined as the adjustment distance.
  • the ground terminal device 21 is further used to: determine 0.5 times the adjustment distance as the target adjustment distance corresponding to the sub-route; and divide the line between the end point of the sub-route and the adjacent operation sub-region The distance between is adjusted to the target adjustment distance, and the new end point of the route corresponding to the sub-route is obtained; the new end point of the route on the sub-route is closed and connected to obtain the target sub-route.
  • the ground terminal equipment 21 is also used to: send the target sub-route to the drone, so that the drone executes the target sub-route;
  • the UAV 22 is used to: receive the target sub-route sent by the ground-end equipment, the target sub-route corresponding to the operation sub-area; and execute the target sub-route in the operation sub-area.
  • the at least one operation route includes a first oblique shooting route corresponding to the first drone and a second oblique shooting route corresponding to the second drone; the ground-end equipment 21 is also used to: determine The overlapping area formed between the first sub-route and the second sub-route located in the same operation sub-area, where the first sub-route is a part of the first oblique shooting route, and the second sub-route is the second oblique shooting route Part: Adjust the first sub-route and the second sub-route according to the overlapping area, and obtain the first target sub-route and the second target sub-route corresponding to the operation sub-area.
  • the ground terminal equipment 21 is also used to: for the first sub-route, determine the overlapping route in the overlapping area; delete the overlapping route in the first sub-route, and obtain the first sub-route corresponding to the operation sub-area.
  • Target sub-route; the second sub-route is determined as the second target sub-route.
  • the ground-end equipment 21 is also used to: send the first target sub-route to the first drone; send the second target sub-route to the second drone;
  • the first drone is used to: receive the first target sub-route sent by the ground-end equipment, and the first drone is used to: receive the second target sub-route sent by the ground-end equipment; the first drone is operating The first target sub-route is executed in the sub-area; the second UAV executes the second target sub-route in the operation sub-area.
  • the first oblique shooting route and/or the second oblique shooting route include any one of the following types of routes: an oblique shooting route for shooting on the left side of a preset object; The oblique shooting route for shooting; the oblique shooting route for shooting the front side of the preset object; the oblique shooting route for shooting the back side of the preset object.
  • the route generation system shown in Fig. 18 can execute the methods of the embodiments shown in Figs. 4-16.
  • parts that are not described in detail in this embodiment please refer to the relevant descriptions of the embodiments shown in Figs. 4-16. Refer to the description in the embodiment shown in FIG. 4 to FIG. 16 for the execution process and technical effect of this technical solution, and will not be repeated here.
  • the disclosed related remote control device and method can be implemented in other ways.
  • the embodiments of the remote control device described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or components. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, remote control devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • the aforementioned storage media include: U disk, mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种航线生成方法、地面端设备、无人机、系统和存储介质,其中的方法包括:获取位于待作业区域(A)中的至少一条作业航线(S),作业航线(S)与系统参数有关(S1);将待作业区域(A)划分为至少包括两个作业子区域(A1,A2,A3,A4),获得位于作业子区域(A1,A2,A3,A4)中的子航线,其中,子航线为作业航线(S)的一部分(S2);确定位于相邻两个作业子区域(A1,A2,A3,A4)中的子航线之间的航线重叠信息(S3);根据航线重叠信息对子航线(S1,S2,S3,S4)进行调整,获得与作业子区域(A1,A2,A3,A4)相对应的目标子航线(S4)。通过航线重叠信息对子航线进行调整,可以避免因重叠率过低而导致出现拼接困难或拼接处图像成型质量较差的情况;同时也降低了相邻区域中的子航线之间所存在的航线重叠信息,提高了无人机的作业效率。

Description

航线生成方法、地面端设备、无人机、系统和存储介质 技术领域
本发明涉及通信技术领域,尤其涉及一种航线生成方法、地面端设备、无人机、系统和存储介质。
背景技术
随着科学技术的飞速发展,以无人机为代表的飞行器有比较广泛的应用,例如,进行专业航拍、农业灌溉、电力巡线、治安监控等。通常无人机在实际飞行过程中,在针对某一大区域对无人机的飞行作业进行航线规划时,一般都会对区域进行分割,之后在分割后子区域的基础上进行独立的航线规划,使得无人机可以依据每个子区域所对应的独立航线进行作业。然而,这样容易出现某些航线重复,从而降低了作业效率。
发明内容
本发明提供了一种航线的生成方法、地面端设备、无人机、系统和存储介质,用于解决现有技术中存在的容易出现某些航线重复,使得无人机飞行无用的航线,从而降低了作业效率的问题。
本发明的第一方面是为了提供一种航线生成方法,包括:
获取位于待作业区域中的至少一条作业航线,所述作业航线与系统参数有关;
将所述待作业区域划分为至少包括两个作业子区域,获得位于所述作业子区域中的子航线,其中,所述子航线为所述作业航线的一部分;
确定位于相邻两个所述作业子区域中的子航线之间的航线重叠信息;
根据所述航线重叠信息对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线。
本发明的第二方面是为了提供一种航线生成系统,包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
获取位于待作业区域中的至少一条作业航线,所述作业航线与系统参数有关;
将所述待作业区域划分为至少包括两个作业子区域,获得位于所述作业子区域中的子航线,其中,所述子航线为所述作业航线的一部分;
确定位于相邻两个所述作业子区域中的子航线之间的航线重叠信息;
根据所述航线重叠信息对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线。
本发明的第三方面是为了提供一种地面端设备,包括:上述第二方面所述的航线生成系统。
本发明的第四方面是为了提供一种无人机,包括:上述第二方面所述的航线生成系统。
本发明的第五方面是为了提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于第一方面所述的航线生成方法。
本发明提供的航线的生成方法、地面端设备、无人机、系统和存储介质,通过获取位于待作业区域中的至少一条作业航线,将待作业区域划分为至少包括两个作业子区域,获得位于作业子区域中的子航线,而后根据所确定的航线重叠信息对子航线进行调整,获得与作业子区域相对应的目标子航线,使得位于相邻的作业子区域之间的目标子航线之间的距离满足预设的距离条件,既不会因为距离太大而导致相邻子区域之间衔接处的重叠率过低,从而导致出现拼接困难或者拼接处图像成型质量较差的情况;也不会因为距离太小而导致相邻子区域之间衔接处多出1或2条不必要的航线,从而有效地降低了相邻区域中的子航线之间所存在的航线重叠信息,避免了使得无人机飞行无用的航线的问题,提高了无人机的作业效率,保证了该方法的实用性,有利于市场的推广与应用。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的 不当限定。在附图中:
图1为现有技术提供的一种航线生成方法的示意图一;
图2为现有技术提供的一种航线生成方法的示意图二;
图3为现有技术提供的倾斜拍摄航线的示意图;
图4为本发明实施例提供的一种航线生成方法的流程示意图;
图5为本发明实施例提供的位于待作业区域中的至少一条作业航线的示意图;
图6为本发明实施例提供的将所述待作业区域划分为至少包括两个作业子区域,获得位于所述作业子区域中的子航线的示意图;
图7为本发明实施例提供的确定位于相邻两个所述作业子区域中的子航线之间的航线重叠信息的示意图;
图8为本发明实施例提供的航高与焦距之间对应关系的示意图;
图9为本发明实施例提供的根据所述调整距离对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线的示意图一;
图10为本发明实施例提供的根据所述调整距离对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线的示意图二;
图11为本发明实施例提供的根据所述调整距离对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线的示意图三;
图12为本发明实施例提供的一种航线生成方法的流程示意图;
图13为本发明实施例提供的确定位于同一个作业子区域中的第一子航线与第二子航线之间构成的重叠区域的流程示意图一;
图14为本发明实施例提供的确定位于同一个作业子区域中的第一子航线与第二子航线之间构成的重叠区域的流程示意图二;
图15为本发明实施例提供的确定位于同一个作业子区域中的第一子航线与第二子航线之间构成的重叠区域的流程示意图三;
图16为本发明实施例提供的确定位于同一个作业子区域中的第一子航线与第二子航线之间构成的重叠区域的流程示意图四;
图17为本发明实施例提供的一种航线生成系统的结构示意图;
图18为本发明实施例提供的另一种航线生成系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
为了便于理解本申请的技术方案,下面对现有技术进行简要说明:
现有技术中,针对目前的大区/大范围进行航线分割的过程中,都是先对大区域进行分割,将大区域分割为多个子区域,之后在子区域的基础上进行独立的航线规划,如图1-2所示,对于区域A而言,可以生成针对区域A的原始航线S,原始航线S可以覆盖区域A的所有区域范围;在通过区域分割线B将区域A划分为区域A1和区域A2之后,会分别针对区域A1和区域A2进行独立的航线规划,从而可以获得与区域A1相对应的航线S1和与区域A2相对应的航线S2。
然而,这样会导致如下问题:
(1)对于分割后子区域中的独立航线而言,各个相邻子块之间的位置和拓扑关系并没有成为航线规划和协同作业之间的助力,反而因为各个子块间独立进行规划的特性,从而容易因某些航线重复而导致无人机多飞了无用航线;如图2所示,航线S1的最右侧航线与航线S2的最左侧航线存在一定程度的重叠,即为附图中所标识的虚线部分,从而降低了作业效率。
此外,上述在分割后子区域的基础上进行独立的航线规划的方式,并不能保证两个子区域衔接处航线之间的间隔的一致,如图2所示,航线S1的最右侧航线与航线S2的最左侧航线之间的间隔与其他位置处的航线间隔不一致;可能会导致重叠率的不均匀,影响拼图效果,并造成航线的浪费,降低作业效率。
(2)在3D倾斜摄影数据采集的过程中,由于倾斜航线存在朝向某方向偏移的特性,如图3所示,这样导致很难协同多台飞机对于相邻的区域同时进行倾斜摄影作业,进而使得3D倾斜摄影的多机协同的方案无法实现。
举例来说,在利用无人机对一片地物进行3D倾斜摄影时,为了能够获得地物的侧面纹理,无人机需要利用倾斜影像航线进行作业,此时倾斜影像航 线相对于正射影像航线而言,会在正射影像航线的基础上整体进行某方向的平移,如下图3所示。而如果要对每个独立子区域的航线进行3D倾斜航线规划,则相邻子区域的不同方向的倾斜航线会发生重合,若此时采用舵机协同多个无人机同时进行作业,会容易导致不同的无人机之间出现相互干扰或者发生撞机的危险。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图4为本发明实施例提供的一种航线生成方法的流程示意图;参考附图4所示,为了解决现有技术中存在的上述问题,本实施例提供了一种航线生成方法,需要注意的是,该航线生成方法可以应用于地面端设备和/或无人机,也即,该航线生成方法的执行主体可以为地面端设备;或者,航线生成方法的执行主体也可以为无人机,此时,地面端设备可以用于显示航线信息;或者,航线生成方法的执行主体可以包括地面端设备和无人机,此时,地面端设备可以与无人机通信连接。下面以地面端设备或者无人机作为执行主体为例进行说明,此时的方法可以包括:
S1:获取位于待作业区域中的至少一条作业航线,作业航线与系统参数有关。
其中,对于待作业区域而言,用户可以通过标记语言(Keyhole Markup Language,简称KML)技术获取待作业区域,其中,用户可以通过标KML文件上传与待作业区域相对应的多个区域点信息,通过区域点信息可以生成待作业区域;或者,用户可以手动对待作业区域的范围执行操作,通过所获取的执行操作确定待作业区域。在确定待作业区域之后,地面端设备或者无人机可以对系统参数进行全局设定,从而可以生成位于待作业区域中的至少一条作业航线,其中,系统参数可以包括以下至少之一:飞行高度、飞行速度、重叠率、外扩边距;一般情况下,作业航线呈弓字型结构,如图5所示,对于待作业区域而言,可以获得至少一条作业航线S,该作业航线S与整个待作业区域A相对应。
S2:将待作业区域划分为至少包括两个作业子区域,获得位于作业子区域中的子航线,其中,子航线为作业航线的一部分。
在获取到位于待作业区域中的至少一条作业航线之后,可以按照预设的划分策略将待作业区域划分为至少包括两个作业子区域,从而可以获得位于 作业子区域中的子航线。具体的,在将待作业区域划分为至少包括两个作业子区域时,可以包括两种实现方式:设备自动划分和用户手动输入参数进行划分。当用户采用手动输入参数(例如:网格面积、网格边长等等)对待作业区域进行划分时,通过用户输入的参数(例如:网格面积为0.5平方公里、网格边长为0.5km)来生成相对应的网格,默认规划分割形状为正方形。例如,在用户输入的参数为网格面积,并且网格面积为0.5平方公里时,则直接对用户输入的网格面积进行开根号处理,从而可以确定分割后的正方形边长为0.707km,进而可以将待作业区域划分为多个作业子区域,可以理解的是,多个作业子区域的面积可以相同或者不同。
举例来说:如图6所示,待作业区域A被两条分割线(分割线L1和分割线L2)划分为四个作业子区域,分别为作业子区域A1、作业子区域A2、作业子区域A3和作业子区域A4,此时,作业航线S也同样被两条分割线划分为四个子航线,分别为子航线S1、子航线S2、子航线S3和子航线S4,其中,四个子航线分别为作业航线S的一部分,并且,子航线S1与作业子区域A1相对应,子航线S2与作业子区域A2相对应,子航线S3与作业子区域A3相对应,子航线S4与作业子区域A4相对应。
当然的,本领域技术人员还可以根据具体的应用需求和设计需求将待作业区域划分为包括其他数量的作业子区域,例如:可以将待作业区域划分为包括:8个作业子区域、10个作业子区域等等,其具体的划分原理和子航线的获得原理与上述过程相类似,在此不再赘述。
S3:确定位于相邻两个作业子区域中的子航线之间的航线重叠信息。
其中,航线重叠是指相邻航线之间两相邻影像的重叠,简单理解,在无人机沿着沿相邻的两个不同子航线进行作业时,相邻影像上有同一地面影像部分,同一地面影像部分即为航线重叠部分。如图7所示,在无人机沿着一条子航线进行作业时,可以获得第一影像区域P1,在无人机沿着相邻的另一条子航线进行作业时,可以获得第二影像区域P2,此时,第一影像区域P1与第二影像区域P2之间存在交集区域P0,也即,上述两条子航线之间存在航线重叠情况。
具体应用时,航线重叠信息可以包括:基于两条子航线之间两相邻影像的航线重叠区域或者基于两条子航线之间两相邻影像所构成的航线重叠率。在航线重叠信息包括航线重叠区域时,可以先获取与两条子航线所对应的第 一影像范围和第二影像范围,将第一影像范围和第二影像范围所构成的交集影像区域确定为航线重叠区域。在航线重叠信息包括航线重叠率时,则在获得航线重叠区域之后,可以确定第一影像范围和第二影像范围所构成的影像范围集合,将航线重叠区域与影像范围集合的比值确定为航线重叠率。进一步的,在航线重叠信息包括航线重叠率时,本实施例中的确定位于相邻两个作业子区域中的子航线之间的航线重叠信息可以包括:
S31:获取无人机在待作业区域中进行作业的航高和作业航线的航线间隔。
S32:根据航高和航线间隔确定位于相邻两个作业子区域中的子航线之间的航线重叠率。
其中,无人机在待作业区域中进行作业的航高和作业航线的航线间隔可以是预先设置或者用户输入的。在获得航高和航线间隔之后,可以根据航高和航线间隔确定航线重叠率。具体的,对于同一个作业子区域而言,不同的航高和航线间隔可以对应有不同的子航线,一般情况下,子航线的数量与航高和航线间隔均呈反比例关系,即航高越高,子航线的数量越少;航线间隔越大,子航线的数量越小。因此,在获取到航高和航线间隔之后,可以确定相邻的两个作业子区域中包括的两条相邻的子航线,通过对两条子航线的分析处理可以确定航线重叠率。
当然的,本领域技术人员也可以采用其他的方式来确定位于相邻两个作业子区域中的子航线之间的航线重叠信息,只要能够保证航线重叠信息确定的准确可靠性即可在此不再赘述。
S4:根据航线重叠信息对子航线进行调整,获得与作业子区域相对应的目标子航线。
在获得航线重叠信息之后,可以根据航线重叠信息对子航线进行调整,该子航线是与航线重叠信息相对应的两条子航线中的至少一条,从而可以获得与作业子区域相对应的目标子航线。举例来说:航线重叠信息是通过第一子航线和第二子航线所确定的,在获得上述航线重叠信息之后,可以基于航线重叠信息对第一子航线和/或第二子航线进行调整,从而可以获得第一目标子航线和/或第二目标子航线,可以理解的是,调整后的第一目标子航线与第二目标子航线之间的航线重叠信息小于或等于预设的重叠阈值,更为优选的,第一目标子航线与第二目标子航线之间的航线重叠信息为0,这样可以有效地解决现有技术中存在的容易出现某些航线重复,使得无人机飞行无用的航线, 从而降低了作业效率的问题。
本实施例提供的航线生成方法,通过获取位于待作业区域中的至少一条作业航线,将待作业区域划分为至少包括两个作业子区域,获得位于作业子区域中的子航线,而后根据所确定的航线重叠信息对子航线进行调整,获得与作业子区域相对应的目标子航线,使得位于相邻的作业子区域之间的目标子航线之间的距离满足预设的距离条件,既不会因为距离太大而导致相邻子区域之间衔接处的重叠率过低,从而导致出现拼接困难或者拼接处图像成型质量较差的情况;也不会因为距离太小而导致相邻子区域之间衔接处多出1或2条不必要的航线,从而有效地降低了相邻区域中的子航线之间所存在的航线重叠信息,避免了使得无人机飞行无用的航线的问题,提高了无人机的作业效率,保证了该方法的实用性,有利于市场的推广与应用。
在上述实施例的基础上,继续参考附图4-7所示,在航线重叠信息包括航线重叠率时,本实施例中的根据航线重叠信息对子航线进行调整,获得与作业子区域相对应的目标子航线可以包括:
S41:根据航高和航线重叠率确定与子航线相对应的调整距离。
在获取到航线重叠率之后,可以对航高和航线重叠率进行分析处理,从而可以确定与子航线相对应的调整距离。具体的,本实施例中的根据航高和航线重叠率确定与子航线相对应的调整距离可以包括:
S411:获取无人机在待作业区域中进行作业时的图像采集参数。
其中,图像采集参数包括以下至少之一:图像采集传感器的有效宽度、焦距;上述的图像采集传感器的有效宽度与图像采集传感器的型号和结构相关;焦距可以是预先设置的或者用户设定的,并且,用户还可以根据不同的应用场景对焦距进行调整。
S412:根据航高、图像采集参数和航线重叠率确定与子航线相对应的调整距离。
在获取到图像采集参数之后,可以结合上述的航高和航线重叠率来确定与子航线相对应的调整距离,以根据调整距离对子航线进行调整。具体的,本实施例中的根据航高、图像采集参数和航线重叠率确定与子航线相对应的调整距离,包括:
S4121:确定与航线重叠率相对应的航向分散率,航向分散率为1与航线重叠率的差值。
S4122:获取航向分散率与有效宽度的乘积值、以及航高与焦距的比值。
S4123:将乘积值与比值的乘积确定为调整距离。
具体的,参考附图8所示,假设航线重叠率为Py,有效宽度为l,焦距为h,航高为H,那么,在获得航线重叠率之后,则可以确定航向分散率为1-Py;而后获取到航向分散率与有效宽度的乘积值为(1-Py)*l、航高与焦距的比值为H/h;最后将上述获得的乘积值与上述比值的乘积确定为调整距离s,也即调整距离s=(1-Py)*l*H/h。
S42:根据调整距离对子航线进行调整,获得与作业子区域相对应的目标子航线。
在获取到调整距离之后,可以基于调整距离对子航线进行调整,从而可以获得与作业子区域相对应的目标子航线。具体的,参考附图9-11所示,本实施例中的根据调整距离对子航线进行调整,获得与作业子区域相对应的目标子航线可以包括:
S421:将调整距离的0.5倍确定为与子航线相对应的目标调整距离。
由于调整距离是通过两个相邻子航线所确定的,因此,可以基于该调整距离对两条相邻的子航线进行调整。此时,在获取到调整距离之后,可以将调整距离的0.5倍确定为与子航线相对应的目标调整距离。对于每条子航线而言,可以获取其两端的航线端点为P1(lat1,lon1,h1)与P2(lat2,lon2,h2),其中,lat1为P1点的纬度信息,lon1为P1点的经度信息,h1为P1点的高度信息;lat2为P2点的纬度信息,lon2为P2点的经度信息,h2为P2点的高度信息;通过对子航线进行投影(通用横轴墨卡托UTM投影/高斯-克吕格投影)处理,可以获取两个端点在局部平面坐标系下的投影位置P1’(x1,y1)与P2’(x2,y2);而后,可以确定过P1’与P2’的航线表达式y=ax+b;之后假定分割线为y=cx+d,从而通过y=ax+b和y=cx+d可以确定交点Pc1(X1,Y1)。
如图9所示,在确定交点Pc1之后,可以将调整距离的0.5倍确定为与第一子航线相对应的第一目标调整距离,将调整距离的0.5倍确定为与第二子航线相对应的第二目标调整距离;也即Pc1为调整距离的中点,在确定Pc1之后,可以将中点Pc1与一端点Pc1`之间的距离确定为第一目标调整距离,将中点Pc1与另一端点Pc1``之间的距离确定为第二目标调整距离;也即将Pc1分别沿着子航线,向分割线上下两端各推进s/2距离,从而获取到分别与第一子航线和第二子航线相对应的新端点Pc1`和新端点Pc1``。
S422:将子航线上的航线端点与相邻作业子区域之间的分割线之间的距离调整为目标调整距离,获得与子航线相对应的航线新端点。
具体的,在利用分割线将待作业区域进行划分时,作业航线也同样被分割线划分为子航线,此时,子航线的航线端点位于分割线上,在获取到目标调整距离之后,可以将子航线上的航线端点与分割线之间的距离调整为目标调整距离,从而可以获得与子航线相对应的航线新端点。如图10所示,对于子航线S1而言,子航线S1的航线端点为Pc,此时航线端点Pc位于分割线上,在获取到目标调整距离之后,则可以对航线端点Pc沿着子航线进行反向推移,获得航线新端点Pc`,此时,航线新端点Pc`与分割线之间的距离为目标调整距离。同理的,也可以获取到与其他作业子区域中的子航线相对应的航线新端点。
S423:将子航线上的航线新端点进行闭合连接,获得目标子航线。
在获取到子航线的航线新端点之后,则可以将子航线上的航线新端点进行闭合连接,如图11所示,从而可以获得与子航线相对应的目标子航线,此时,相邻两个作业子区域中的目标子航线之间的航线重叠率小于或等于预设阈值。
本实施例中,通过所获取的航高和航线重叠率确定与子航线相对应的调整距离,并根据调整距离对子航线进行调整,获得与作业子区域相对应的目标子航线,不仅保证了目标子航线确定的准确可靠性,并且还有效地降低了相邻作业子区域中的子航线之间的航线重叠率,进而提高了无人机的飞行质量和效率。
在一个实施例中,在获得与作业子区域相对应的目标子航线之后,本实施例中的方法还可以包括:
S5:控制至少一个无人机执行目标子航线。
在获取到目标子航线之后,可以控制无人机执行上述所获取的目标子航线。其中,由于作业子区域的个数可以为多个,那么与作业子区域相对应的目标子航线的也为多个;此时,在需要对所有的作业子区域进行作业时,可以控制同一个无人机依次执行多个目标子航线;或者,也可以控制多个无人机同时执行不同的目标子航线。
另外,本实施例中的方法步骤在不同的应用场景下可以具有不同的执行主体,具体的,一种应用场景为:执行主体为地面端设备,此时,地面端设 备可以与无人机通信连接,地面端设备可以直接控制至少一个无人机执行目标子航线。又一种应用场景为:执行主体为无人机,此时,无人机的个数可以为一个或多个,在无人机获取到目标子航线之后,可以直接执行目标子航线,此时的地面端设备可以用于显示无人机所执行的目标子航线。还一种应用场景为:执行主体包括地面端设备和无人机,此时,本实施例中的方法步骤适应性调整为如下步骤:
S5a:地面端设备将目标子航线发送至无人机。
S5b:无人机接收地面端设备发送的目标子航线,目标子航线与作业子区域相对应。
S5c:无人机在作业子区域内执行目标子航线。
此时,地面端设备可以获取到目标子航线,为了能够实现对无人机的控制,可以将目标子航线发送至无人机,无人机接收到目标子航线之后,可以在作业子区域内执行目标子航线,从而有效地保证了无人机作业的质量和效率。
图12为本发明实施例提供的一种航线生成方法的流程示意图;在上述实施例的基础上,继续参考附图12所示,具体应用时,至少一条作业航线还可以包括与第一无人机相对应的第一倾斜拍摄航线和与第二无人机相对应的第二倾斜拍摄航线;此时,本实施例中的方法还可以包括:
S101:确定位于同一个作业子区域中的第一子航线与第二子航线之间构成的重叠区域,其中,第一子航线为第一倾斜拍摄航线的一部分,第二子航线为第二倾斜拍摄航线的一部分。
S102:根据重叠区域对第一子航线和第二子航线进行调整,获得与作业子区域相对应的第一目标子航线和第二目标子航线。
如图13-16所示,由于第一倾斜拍摄航线和/或第二倾斜拍摄航线可以包括以下任意一种类型的航线:针对预设对象左侧面进行拍摄的倾斜拍摄航线、针对预设对象右侧面进行拍摄的倾斜拍摄航线、针对预设对象前侧面进行拍摄的倾斜拍摄航线、针对预设对象后侧面进行拍摄的倾斜拍摄航线。此时,为了避免第一无人机和第二无人机在同一个作业子区域中进行作业时,出现碰撞的情况,则可以先根据第一子航线和第二子航线,确定确定位于同一个作业子区域中的第一子航线与第二子航线之间构成的重叠区域。在获取到重叠区域之后,则可以基于重叠区域对第一子航线和第二子航线进行调整,从 而可以获得与作业子区域相对应的第一目标子航线和第二目标子航线,此时,第一目标子航线与第二目标子航线之间没有重叠区域。具体的,本实施例中的根据重叠区域对第一子航线和第二子航线进行调整,获得与作业子区域相对应的第一目标子航线和第二目标子航线可以包括
S1021:针对第一子航线,确定位于重叠区域中的重叠航线。
S1022:将第一子航线中的重叠航线删除,获得与作业子区域相对应的第一目标子航线。
S1023:将第二子航线确定为第二目标子航线。
举例来说,如图13所示,位于同一个作业子区域中的第一子航线和第二子航线之间存在重叠区域,如图中的阴影部分;在获取到重叠区域之后,可以针对第一子航线确定位于重叠区域中的重叠航线,而后将第一子航线中的重叠航线删除,从而可以获得与作业子区域相对应的第一目标子航线,此时,第一目标子航线与第二子航线之间并不存在航线重叠区域,因此,可以直接将第二子航线确定为第二目标子航线;即:将第一无人机需要进行作业的部分航线通过第二无人机来完成。具体应用时,可以针对3D倾斜摄影作业时限多机协同操作,使得多机可以在各自的作业子区域内首先完成一个方向的数据采集,同时各作业子区域内的子航线也是通过上述航线生成方法获取的,因此,相邻的作业子区域之间的相邻子航线之间不会产生航线交叉的情况,从而有效地实现了在避免无人机发生碰撞的情况下,实现了多机可以协同作业的操作,进一步提高了作业的质量和效率。
本实施例提供的航线生成方法,在保证无人机工作安全可靠性的基础上,还可以实现多机协同作业,不仅避免了导致不同无人机之间的相互干扰或者发生撞机的危险;具体的,可以使用舵机协同,首先将一个方向的航线分区完成,这样在协同作业时不会造成相互干扰和碰撞,从而有效地提高了无人机的工作效率,使得不同地块航线间具有更好的连接性与相关性。
在上述实施例的基础上,继续参考附图12-16所示,在获得与作业子区域相对应的第一目标子航线和第二目标子航线之后,本实施例中的方法还可以包括:
S103:控制第一无人机在作业子区域内执行第一目标子航线。
S104:控制第二无人机在作业子区域内执行第二目标子航线。
在获取到第一目标子航线之后,可以控制第一无人机执行上述所获取的 第一目标子航线。同理的,在获得第二目标子航线之后,可以控制第二无人机执行上述所获取的第二目标子航线,其中,第一无人机与第二无人机可以同时进行作业。
另外,本实施例中的方法步骤在不同的应用场景下可以具有不同的执行主体,具体的,一种应用场景为:执行主体为地面端设备,此时,地面端设备可以与无人机通信连接,地面端设备可以直接控制第一无人机或第二无人机执行第一目标子航线或第二目标子航线。又一种应用场景为:执行主体为第一无人机或第二无人机,此时,在第一无人机或第二无人机获取到第一目标子航线或第二目标子航线之后,可以直接执行第一目标子航线或第二目标子航线。还一种应用场景为:执行主体包括地面端设备、第一无人机和第二无人机,此时,本实施例中的方法步骤适应性调整为如下步骤:
S103`:将第一目标子航线发送至第一无人机,并将第二目标子航线发送至第二无人机。
S104`:第一无人机接收地面端设备发送的第一目标子航线,第二无人机接收地面端设备发送的第二目标子航线。
S105`:第一无人机在作业子区域内执行第一目标子航线。
S106`:第二无人机在作业子区域内执行第二目标子航线。
具体的,在地面端设备获取到第一目标子航线和第二目标子航线之后,为了能够实现对第一无人机和第二无人机的控制,可以将第一目标子航线发送至第一无人机,并将第二目标子航线发送至第二无人机,第一无人机接收地面端设备发送的第一目标子航线之后,可以在作业子区域内执行第一目标子航线,第二无人机接收地面端设备发送的第二目标子航线之后,可以在作业子区域内执行第二目标子航线,从而有效地保证了第一无人机和第二无人机的飞行安全可靠性,并且实现了多机协同作业,有效地提高了作业的质量和效率。
图17为本发明实施例提供的一种航线生成系统的结构示意图;参考附图17所示,本实施例提供了一种航线生成系统,该航线生成系统可以执行上述图4所示的航线生成方法,具体的,该航线生成系统可以包括:
存储器12,用于存储计算机程序;
处理器11,用于运行存储器12中存储的计算机程序以实现:
获取位于待作业区域中的至少一条作业航线,作业航线与系统参数有关;
将待作业区域划分为至少包括两个作业子区域,获得位于作业子区域中的子航线,其中,子航线为作业航线的一部分;
确定位于相邻两个作业子区域中的子航线之间的航线重叠信息;
根据航线重叠信息对子航线进行调整,获得与作业子区域相对应的目标子航线。
其中,该航线生成系统的结构中还可以包括通信接口13,用于电子设备与其他设备或通信网络通信。并且,系统参数包括以下至少之一:飞行高度、飞行速度、重叠率、外扩边距。
在一个实施例中,航线重叠信息包括航线重叠率;在处理器11确定位于相邻两个作业子区域中的子航线之间的航线重叠信息时,该处理器11还用于:获取无人机在待作业区域中进行作业的航高和作业航线的航线间隔;根据航高和航线间隔确定位于相邻两个作业子区域中的子航线之间的航线重叠率。
在一个实施例中,在处理器11根据航线重叠信息对子航线进行调整,获得与作业子区域相对应的目标子航线时,该处理器11还用于:根据航高和航线重叠率确定与子航线相对应的调整距离;根据调整距离对子航线进行调整,获得与作业子区域相对应的目标子航线。
在一个实施例中,在处理器11根据航高和航线重叠率确定与子航线相对应的调整距离时,该处理器11还用于:获取无人机在待作业区域中进行作业时的图像采集参数;根据航高、图像采集参数和航线重叠率确定与子航线相对应的调整距离。
其中,图像采集参数包括以下至少之一:图像采集传感器的有效宽度、焦距。
在一个实施例中,在处理器11根据航高、图像采集参数和航线重叠率确定与子航线相对应的调整距离时,该处理器11还用于:确定与航线重叠率相对应的航向分散率,航向分散率为1与航线重叠率的差值;获取航向分散率与有效宽度的乘积值、以及航高与焦距的比值;将乘积值与比值的乘积确定为调整距离。
在一个实施例中,在处理器11根据调整距离对子航线进行调整,获得与作业子区域相对应的目标子航线时,该处理器11还用于:将调整距离的0.5倍确定为与子航线相对应的目标调整距离;将子航线上的航线端点与相邻作业子区域之间的分割线之间的距离调整为目标调整距离,获得与子航线相对应 的航线新端点;将子航线上的航线新端点进行闭合连接,获得目标子航线。
在一个实施例中,处理器11还用于:控制至少一个无人机执行目标子航线。
在一个实施例中,至少一条作业航线包括与第一无人机相对应的第一倾斜拍摄航线和与第二无人机相对应的第二倾斜拍摄航线;处理器11还用于:确定位于同一个作业子区域中的第一子航线与第二子航线之间构成的重叠区域,其中,第一子航线为第一倾斜拍摄航线的一部分,第二子航线为第二倾斜拍摄航线的一部分;根据重叠区域对第一子航线和第二子航线进行调整,获得与作业子区域相对应的第一目标子航线和第二目标子航线。
在一个实施例中,在处理器11根据重叠区域对第一子航线和第二子航线进行调整,获得与作业子区域相对应的第一目标子航线和第二目标子航线时,处理器11还用于:针对第一子航线,确定位于重叠区域中的重叠航线;将第一子航线中的重叠航线删除,获得与作业子区域相对应的第一目标子航线;将第二子航线确定为第二目标子航线。
在一个实施例中,处理器11还用于:控制第一无人机在作业子区域内执行第一目标子航线;控制第二无人机在作业子区域内执行第二目标子航线。
在一个实施例中,第一倾斜拍摄航线和/或第二倾斜拍摄航线包括以下任意一种类型的航线:针对预设对象左侧面进行拍摄的倾斜拍摄航线;针对预设对象右侧面进行拍摄的倾斜拍摄航线;针对预设对象前侧面进行拍摄的倾斜拍摄航线;针对预设对象后侧面进行拍摄的倾斜拍摄航线。
图17所示航线生成系统可以执行图4-图16所示实施例的方法,本实施例未详细描述的部分,可参考对图4-图16所示实施例的相关说明。该技术方案的执行过程和技术效果参见图4-图16所示实施例中的描述,在此不再赘述。
另外,本发明实施例提供了一种计算机可读存储介质,存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,程序指令用于实现上述图4-图16的航线生成方法。
另外,本实施例的另一方面提供了一种地面端设备,包括:上述任意一种的航线生成系统。
此外,本实施例的又一方面提供了一种无人机,包括:上述任意一种的 航线生成系统。
图18为本发明实施例提供的另一种航线生成系统的结构示意图;参考附图18所示,本实施例提供了另一种航线生成系统,该系统可以包括地面端设备21和无人机22,其中,地面端设备21与无人机22通信连接。
地面端设备21,用于获取位于待作业区域中的至少一条作业航线,作业航线与系统参数有关;将待作业区域划分为至少包括两个作业子区域,获得位于作业子区域中的子航线,其中,子航线为作业航线的一部分;确定位于相邻两个作业子区域中的子航线之间的航线重叠信息;根据航线重叠信息对子航线进行调整,获得与作业子区域相对应的目标子航线。
其中,系统参数包括以下至少之一:飞行高度、飞行速度、重叠率、外扩边距。
在一个实施例中,航线重叠信息包括航线重叠率;地面端设备21还用于:获取无人机在待作业区域中进行作业的航高和作业航线的航线间隔;根据航高和航线间隔确定位于相邻两个作业子区域中的子航线之间的航线重叠率。
在一个实施例中,地面端设备21还用于:根据航高和航线重叠率确定与子航线相对应的调整距离;根据调整距离对子航线进行调整,获得与作业子区域相对应的目标子航线。
在一个实施例中,地面端设备21还用于:获取无人机在待作业区域中进行作业时的图像采集参数;根据航高、图像采集参数和航线重叠率确定与子航线相对应的调整距离。
其中,图像采集参数包括以下至少之一:图像采集传感器的有效宽度、焦距。
在一个实施例中,地面端设备21还用于:确定与航线重叠率相对应的航向分散率,航向分散率为1与航线重叠率的差值;获取航向分散率与有效宽度的乘积值、以及航高与焦距的比值;将乘积值与比值的乘积确定为调整距离。
在一个实施例中,地面端设备21还用于:将调整距离的0.5倍确定为与子航线相对应的目标调整距离;将子航线上的航线端点与相邻作业子区域之间的分割线之间的距离调整为目标调整距离,获得与子航线相对应的航线新端点;将子航线上的航线新端点进行闭合连接,获得目标子航线。
在一个实施例中,地面端设备21还用于:将目标子航线发送至无人机, 以使无人机执行目标子航线;
此时,无人机22用于:接收地面端设备发送的目标子航线,目标子航线与作业子区域相对应;在作业子区域内执行目标子航线。
在一个实施例中,至少一条作业航线包括与第一无人机相对应的第一倾斜拍摄航线和与第二无人机相对应的第二倾斜拍摄航线;地面端设备21还用于:确定位于同一个作业子区域中的第一子航线与第二子航线之间构成的重叠区域,其中,第一子航线为第一倾斜拍摄航线的一部分,第二子航线为第二倾斜拍摄航线的一部分;根据重叠区域对第一子航线和第二子航线进行调整,获得与作业子区域相对应的第一目标子航线和第二目标子航线。
在一个实施例中,地面端设备21还用于:针对第一子航线,确定位于重叠区域中的重叠航线;将第一子航线中的重叠航线删除,获得与作业子区域相对应的第一目标子航线;将第二子航线确定为第二目标子航线。
在一个实施例中,地面端设备21还用于:将第一目标子航线发送至第一无人机;将第二目标子航线发送至第二无人机;
此时,第一无人机用于:接收地面端设备发送的第一目标子航线,第一无人机用于:接收地面端设备发送的第二目标子航线;第一无人机在作业子区域内执行第一目标子航线;第二无人机在作业子区域内执行第二目标子航线。
在一个实施例中,第一倾斜拍摄航线和/或第二倾斜拍摄航线包括以下任意一种类型的航线:针对预设对象左侧面进行拍摄的倾斜拍摄航线;针对预设对象右侧面进行拍摄的倾斜拍摄航线;针对预设对象前侧面进行拍摄的倾斜拍摄航线;针对预设对象后侧面进行拍摄的倾斜拍摄航线。
图18所示航线生成系统可以执行图4-图16所示实施例的方法,本实施例未详细描述的部分,可参考对图4-图16所示实施例的相关说明。该技术方案的执行过程和技术效果参见图4-图16所示实施例中的描述,在此不再赘述。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关遥控装置和方法,可以通过其它的方式实现。例如,以上所描述的遥控装置实施例仅 仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,遥控装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (30)

  1. 一种航线生成方法,其特征在于,包括:
    获取位于待作业区域中的至少一条作业航线,所述作业航线与系统参数有关;
    将所述待作业区域划分为至少包括两个作业子区域,获得位于所述作业子区域中的子航线,其中,所述子航线为所述作业航线的一部分;
    确定位于相邻两个所述作业子区域中的子航线之间的航线重叠信息;
    根据所述航线重叠信息对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线。
  2. 根据权利要求1所述的方法,其特征在于,所述航线生成方法应用于地面端设备和/或无人机。
  3. 根据权利要求2所述的方法,其特征在于,所述航线重叠信息包括航线重叠率;确定位于相邻两个所述作业子区域中的子航线之间的航线重叠信息,包括:
    获取无人机在所述待作业区域中进行作业的航高和所述作业航线的航线间隔;
    根据所述航高和航线间隔确定位于相邻两个所述作业子区域中的子航线之间的航线重叠率。
  4. 根据权利要求3所述的方法,其特征在于,根据所述航线重叠信息对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线,包括:
    根据所述航高和航线重叠率确定与所述子航线相对应的调整距离;
    根据所述调整距离对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线。
  5. 根据权利要求4所述的方法,其特征在于,根据所述航高和航线重叠率确定与所述子航线相对应的调整距离,包括:
    获取无人机在所述待作业区域中进行作业时的图像采集参数;
    根据所述航高、图像采集参数和航线重叠率确定与所述子航线相对应的调整距离。
  6. 根据权利要求5所述的方法,其特征在于,
    所述图像采集参数包括以下至少之一:图像采集传感器的有效宽度、焦距。
  7. 根据权利要求6所述的方法,其特征在于,根据所述航高、图像采集参数和航线重叠率确定与所述子航线相对应的调整距离,包括:
    确定与所述航线重叠率相对应的航向分散率,所述航向分散率为1与航线重叠率的差值;
    获取所述航向分散率与所述有效宽度的乘积值、以及所述航高与焦距的比值;
    将所述乘积值与所述比值的乘积确定为所述调整距离。
  8. 根据权利要求4所述的方法,其特征在于,根据所述调整距离对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线,包括:
    将所述调整距离的0.5倍确定为与所述子航线相对应的目标调整距离;
    将所述子航线上的航线端点与相邻所述作业子区域之间的分割线之间的距离调整为所述目标调整距离,获得与所述子航线相对应的航线新端点;
    将所述子航线上的航线新端点进行闭合连接,获得所述目标子航线。
  9. 根据权利要求2-8中任意一项所述的方法,其特征在于,所述方法还包括:
    控制至少一个无人机执行所述目标子航线。
  10. 根据权利要求2-8中任意一项所述的方法,其特征在于,
    所述系统参数包括以下至少之一:飞行高度、飞行速度、重叠率、外扩边距。
  11. 根据权利要求2-8中任意一项所述的方法,其特征在于,至少一条作业航线包括与第一无人机相对应的第一倾斜拍摄航线和与第二无人机相对应的第二倾斜拍摄航线;所述方法还包括:
    确定位于同一个作业子区域中的第一子航线与第二子航线之间构成的重叠区域,其中,所述第一子航线为所述第一倾斜拍摄航线的一部分,所述第二子航线为所述第二倾斜拍摄航线的一部分;
    根据所述重叠区域对所述第一子航线和所述第二子航线进行调整,获得与所述作业子区域相对应的第一目标子航线和第二目标子航线。
  12. 根据权利要求11所述的方法,其特征在于,根据所述重叠区域对所述第一子航线和所述第二子航线进行调整,获得与所述作业子区域相对应的第一目标子航线和第二目标子航线,包括
    针对所述第一子航线,确定位于重叠区域中的重叠航线;
    将所述第一子航线中的重叠航线删除,获得与所述作业子区域相对应的第一目标子航线;
    将所述第二子航线确定为所述第二目标子航线。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    控制所述第一无人机在所述作业子区域内执行所述第一目标子航线;
    控制所述第二无人机在所述作业子区域内执行所述第二目标子航线。
  14. 根据权利要求11所述的方法,其特征在于,所述第一倾斜拍摄航线和/或所述第二倾斜拍摄航线包括以下任意一种类型的航线:
    针对预设对象左侧面进行拍摄的倾斜拍摄航线;
    针对预设对象右侧面进行拍摄的倾斜拍摄航线;
    针对预设对象前侧面进行拍摄的倾斜拍摄航线;
    针对预设对象后侧面进行拍摄的倾斜拍摄航线。
  15. 一种航线生成系统,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现:
    获取位于待作业区域中的至少一条作业航线,所述作业航线与系统参数有关;
    将所述待作业区域划分为至少包括两个作业子区域,获得位于所述作业子区域中的子航线,其中,所述子航线为所述作业航线的一部分;
    确定位于相邻两个所述作业子区域中的子航线之间的航线重叠信息;
    根据所述航线重叠信息对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线。
  16. 根据权利要求15所述的系统,其特征在于,所述航线重叠信息包括航线重叠率;在所述处理器确定位于相邻两个所述作业子区域中的子航线之间的航线重叠信息时,该处理器还用于:
    获取无人机在所述待作业区域中进行作业的航高和所述作业航线的航线间隔;
    根据所述航高和航线间隔确定位于相邻两个所述作业子区域中的子航线之间的航线重叠率。
  17. 根据权利要求16所述的系统,其特征在于,在所述处理器根据所述 航线重叠信息对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线时,该处理器还用于:
    根据所述航高和航线重叠率确定与所述子航线相对应的调整距离;
    根据所述调整距离对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线。
  18. 根据权利要求17所述的系统,其特征在于,在所述处理器根据所述航高和航线重叠率确定与所述子航线相对应的调整距离时,该处理器还用于:
    获取无人机在所述待作业区域中进行作业时的图像采集参数;
    根据所述航高、图像采集参数和航线重叠率确定与所述子航线相对应的调整距离。
  19. 根据权利要求18所述的系统,其特征在于,
    所述图像采集参数包括以下至少之一:图像采集传感器的有效宽度、焦距。
  20. 根据权利要求19所述的系统,其特征在于,在所述处理器根据所述航高、图像采集参数和航线重叠率确定与所述子航线相对应的调整距离时,该处理器还用于:
    确定与所述航线重叠率相对应的航向分散率,所述航向分散率为1与航线重叠率的差值;
    获取所述航向分散率与所述有效宽度的乘积值、以及所述航高与焦距的比值;
    将所述乘积值与所述比值的乘积确定为所述调整距离。
  21. 根据权利要求19所述的系统,其特征在于,在所述处理器根据所述调整距离对所述子航线进行调整,获得与所述作业子区域相对应的目标子航线时,该处理器还用于:
    将所述调整距离的0.5倍确定为与所述子航线相对应的目标调整距离;
    将所述子航线上的航线端点与相邻所述作业子区域之间的分割线之间的距离调整为所述目标调整距离,获得与所述子航线相对应的航线新端点;
    将所述子航线上的航线新端点进行闭合连接,获得所述目标子航线。
  22. 根据权利要求15-21中任意一项所述的系统,其特征在于,所述处理器还用于:
    控制至少一个无人机执行所述目标子航线。
  23. 根据权利要求15-21中任意一项所述的系统,其特征在于,
    所述系统参数包括以下至少之一:飞行高度、飞行速度、重叠率、外扩边距。
  24. 根据权利要求15-21中任意一项所述的系统,其特征在于,至少一条作业航线包括与第一无人机相对应的第一倾斜拍摄航线和与第二无人机相对应的第二倾斜拍摄航线;所述处理器还用于:
    确定位于同一个作业子区域中的第一子航线与第二子航线之间构成的重叠区域,其中,所述第一子航线为所述第一倾斜拍摄航线的一部分,所述第二子航线为所述第二倾斜拍摄航线的一部分;
    根据所述重叠区域对所述第一子航线和所述第二子航线进行调整,获得与所述作业子区域相对应的第一目标子航线和第二目标子航线。
  25. 根据权利要求24所述的系统,其特征在于,在所述处理器根据所述重叠区域对所述第一子航线和所述第二子航线进行调整,获得与所述作业子区域相对应的第一目标子航线和第二目标子航线时,所述处理器还用于:
    针对所述第一子航线,确定位于重叠区域中的重叠航线;
    将所述第一子航线中的重叠航线删除,获得与所述作业子区域相对应的第一目标子航线;
    将所述第二子航线确定为所述第二目标子航线。
  26. 根据权利要求25所述的系统,其特征在于,所述处理器还用于:
    控制所述第一无人机在所述作业子区域内执行所述第一目标子航线;
    控制所述第二无人机在所述作业子区域内执行所述第二目标子航线。
  27. 根据权利要求24所述的系统,其特征在于,所述第一倾斜拍摄航线和/或所述第二倾斜拍摄航线包括以下任意一种类型的航线:
    针对预设对象左侧面进行拍摄的倾斜拍摄航线;
    针对预设对象右侧面进行拍摄的倾斜拍摄航线;
    针对预设对象前侧面进行拍摄的倾斜拍摄航线;
    针对预设对象后侧面进行拍摄的倾斜拍摄航线。
  28. 一种地面端设备,其特征在于,包括:权利要求15至27任一项所述的航线生成系统。
  29. 一种无人机,其特征在于,包括:权利要求15至27任一项所述的航线生成系统。
  30. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-14中任意一项所述的航线生成方法。
PCT/CN2019/103257 2019-08-29 2019-08-29 航线生成方法、地面端设备、无人机、系统和存储介质 WO2021035608A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980033828.8A CN112313725B (zh) 2019-08-29 2019-08-29 航线生成方法、地面端设备、无人机、系统和存储介质
PCT/CN2019/103257 WO2021035608A1 (zh) 2019-08-29 2019-08-29 航线生成方法、地面端设备、无人机、系统和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103257 WO2021035608A1 (zh) 2019-08-29 2019-08-29 航线生成方法、地面端设备、无人机、系统和存储介质

Publications (1)

Publication Number Publication Date
WO2021035608A1 true WO2021035608A1 (zh) 2021-03-04

Family

ID=74336549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103257 WO2021035608A1 (zh) 2019-08-29 2019-08-29 航线生成方法、地面端设备、无人机、系统和存储介质

Country Status (2)

Country Link
CN (1) CN112313725B (zh)
WO (1) WO2021035608A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113074740A (zh) * 2021-04-29 2021-07-06 广州极飞科技股份有限公司 一种作业区域内的航线规划方法、装置、设备及介质
CN113504788A (zh) * 2021-06-24 2021-10-15 北京农业智能装备技术研究中心 一种航空施药作业航线规划方法及系统
CN114022771A (zh) * 2021-11-15 2022-02-08 安徽农业大学 一种基于深度学习的玉米苗期田间分布信息统计方法
CN114115331A (zh) * 2021-10-29 2022-03-01 西安电子科技大学 一种多无人机多载荷协同侦察方法
CN114650367A (zh) * 2021-12-15 2022-06-21 广州极飞科技股份有限公司 拍摄控制方法、装置、无人设备及存储介质
CN114935942A (zh) * 2022-05-20 2022-08-23 无锡海纳智能科技有限公司 一种分布式光伏电站巡检航线的确定方法及电子设备
CN115185299A (zh) * 2022-08-08 2022-10-14 阳光新能源开发股份有限公司 无人机航拍方法、无人机航拍控制器以及无人机航拍系统
CN116758216A (zh) * 2023-05-31 2023-09-15 广州市城市规划勘测设计研究院 一种基于航拍数据的单树木建模方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295146A (zh) * 2021-05-20 2021-08-24 厦门致睿智控地信科技有限公司 自适应拍照航线任务规划方法、系统及储存介质
CN113821051A (zh) * 2021-09-15 2021-12-21 深圳市道通智能航空技术股份有限公司 一种无人机任务管理方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053609A1 (en) * 2008-08-27 2010-03-04 Chrisp Michael P Wide Swath Imaging Spectrometer Utilizing A Multi-Modular Design
KR20170104762A (ko) * 2016-03-08 2017-09-18 한국해양과학기술원 드론을 이용한 풍력터빈의 표면 손상 탐지 시스템 및 방법
CN109032165A (zh) * 2017-07-21 2018-12-18 广州极飞科技有限公司 无人机航线的生成方法和装置
CN109496287A (zh) * 2017-10-31 2019-03-19 深圳市大疆创新科技有限公司 可移动设备作业控制方法及装置、路径规划方法及装置
CN109556578A (zh) * 2018-12-06 2019-04-02 成都天睿特科技有限公司 一种无人机旋扫式测量拍摄方法
CN109612445A (zh) * 2018-12-17 2019-04-12 中国水利水电第十四工程局有限公司 一种基于无人机的WebGIS平台下高精度地形建立方法
CN109765933A (zh) * 2019-01-04 2019-05-17 哈瓦国际航空技术(深圳)有限公司 一种无人机带状区域航线规划方法、装置和设备
CN109765927A (zh) * 2018-12-29 2019-05-17 湖北无垠智探科技发展有限公司 一种基于app的无人机航摄飞行遥控系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497905B2 (en) * 2008-04-11 2013-07-30 nearmap australia pty ltd. Systems and methods of capturing large area images in detail including cascaded cameras and/or calibration features
US20110118908A1 (en) * 2009-11-18 2011-05-19 The Boeing Company Methods and systems for management of airplane speed profile
CN103017753B (zh) * 2012-11-01 2015-07-15 中国兵器科学研究院 一种无人机航路规划方法及装置
CN105023468B (zh) * 2015-08-06 2018-01-30 北京航空航天大学 一种基于碰撞风险模型的终端区航线安全容限监测方法和系统
CN106477038B (zh) * 2016-12-20 2018-12-25 北京小米移动软件有限公司 图像拍摄方法及装置、无人机
CN107818697B (zh) * 2017-10-30 2020-11-10 中国科学院遥感与数字地球研究所 基于地形高程的非水平航线设计方法、终端及存储介质
CN108267134B (zh) * 2018-01-24 2021-06-18 成都纵横自动化技术股份有限公司 一种自适应航线调整方法
TWI655409B (zh) * 2018-03-12 2019-04-01 國立高雄科技大學 Route planning method for aerial photography using multi-axis unmanned aerial vehicles
CN110057367A (zh) * 2019-05-08 2019-07-26 广州知行机器人科技有限公司 一种无人机的航线规划的方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053609A1 (en) * 2008-08-27 2010-03-04 Chrisp Michael P Wide Swath Imaging Spectrometer Utilizing A Multi-Modular Design
KR20170104762A (ko) * 2016-03-08 2017-09-18 한국해양과학기술원 드론을 이용한 풍력터빈의 표면 손상 탐지 시스템 및 방법
CN109032165A (zh) * 2017-07-21 2018-12-18 广州极飞科技有限公司 无人机航线的生成方法和装置
CN109496287A (zh) * 2017-10-31 2019-03-19 深圳市大疆创新科技有限公司 可移动设备作业控制方法及装置、路径规划方法及装置
CN109556578A (zh) * 2018-12-06 2019-04-02 成都天睿特科技有限公司 一种无人机旋扫式测量拍摄方法
CN109612445A (zh) * 2018-12-17 2019-04-12 中国水利水电第十四工程局有限公司 一种基于无人机的WebGIS平台下高精度地形建立方法
CN109765927A (zh) * 2018-12-29 2019-05-17 湖北无垠智探科技发展有限公司 一种基于app的无人机航摄飞行遥控系统
CN109765933A (zh) * 2019-01-04 2019-05-17 哈瓦国际航空技术(深圳)有限公司 一种无人机带状区域航线规划方法、装置和设备

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113074740B (zh) * 2021-04-29 2023-11-17 广州极飞科技股份有限公司 一种作业区域内的航线规划方法、装置、设备及介质
CN113074740A (zh) * 2021-04-29 2021-07-06 广州极飞科技股份有限公司 一种作业区域内的航线规划方法、装置、设备及介质
CN113504788A (zh) * 2021-06-24 2021-10-15 北京农业智能装备技术研究中心 一种航空施药作业航线规划方法及系统
CN113504788B (zh) * 2021-06-24 2024-02-20 北京农业智能装备技术研究中心 一种航空施药作业航线规划方法及系统
CN114115331A (zh) * 2021-10-29 2022-03-01 西安电子科技大学 一种多无人机多载荷协同侦察方法
CN114115331B (zh) * 2021-10-29 2024-04-05 西安电子科技大学 一种多无人机多载荷协同侦察方法
CN114022771A (zh) * 2021-11-15 2022-02-08 安徽农业大学 一种基于深度学习的玉米苗期田间分布信息统计方法
CN114650367B (zh) * 2021-12-15 2023-11-21 广州极飞科技股份有限公司 拍摄控制方法、装置、无人设备及存储介质
CN114650367A (zh) * 2021-12-15 2022-06-21 广州极飞科技股份有限公司 拍摄控制方法、装置、无人设备及存储介质
CN114935942A (zh) * 2022-05-20 2022-08-23 无锡海纳智能科技有限公司 一种分布式光伏电站巡检航线的确定方法及电子设备
CN115185299A (zh) * 2022-08-08 2022-10-14 阳光新能源开发股份有限公司 无人机航拍方法、无人机航拍控制器以及无人机航拍系统
CN116758216A (zh) * 2023-05-31 2023-09-15 广州市城市规划勘测设计研究院 一种基于航拍数据的单树木建模方法
CN116758216B (zh) * 2023-05-31 2024-05-17 广州市城市规划勘测设计研究院有限公司 一种基于航拍数据的单树木建模方法

Also Published As

Publication number Publication date
CN112313725B (zh) 2022-07-05
CN112313725A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021035608A1 (zh) 航线生成方法、地面端设备、无人机、系统和存储介质
KR102468897B1 (ko) 깊이 값을 추정하는 방법 및 장치
US11698449B2 (en) User interface for displaying point clouds generated by a LiDAR device on a UAV
DE102020113779A1 (de) Umgebungs-kamerasystem mit nahtlosem zusammenfügen für die auswahl beliebiger blickwinkel
US10812780B2 (en) Image processing method and device
US20200027266A1 (en) Building contour generation from point clouds
US10477178B2 (en) High-speed and tunable scene reconstruction systems and methods using stereo imagery
US20140368498A1 (en) Shape Preserving Mesh Simplification
WO2019119187A1 (zh) 一种无人机的航线规划方法、控制设备及存储介质
JP2019536162A (ja) シーンのポイントクラウドを表現するシステム及び方法
WO2015080993A1 (en) Aligning ground based images and aerial imagery
US10733777B2 (en) Annotation generation for an image network
DE112015005191T5 (de) Ausrichten von Panoramaaufnahmen und Luftaufnahmen
KR102567800B1 (ko) 드론을 이용한 3차원 지도 제작 방법
KR102195051B1 (ko) 드론의 영상 정보를 이용한 공간 정보 생성 시스템 및 방법과, 이를 위한 컴퓨터 프로그램
WO2021016891A1 (zh) 处理点云的方法和装置
WO2020113447A1 (zh) 无人机的喷洒作业方法和装置
CN111141264A (zh) 一种基于无人机的城市三维测绘方法和系统
US20210225082A1 (en) Boundary detection using vision-based feature mapping
WO2023103722A1 (zh) 无人机中继服务位置的确定方法与装置
CN108564787A (zh) 基于浮动车法的交通观测方法、系统及设备
JP2021523488A (ja) 関心領域の空間座標を算出する方法、システムおよび非一過性のコンピュータ読み取り可能記録媒体
CN109064533A (zh) 一种3d漫游方法及系统
KR101021013B1 (ko) 경계강화필터링과 표고정보를 이용하여 3차원 지리정보를 생성하는 시스템
CN117707194A (zh) 无人设备的飞行作业方法、装置、无人设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943032

Country of ref document: EP

Kind code of ref document: A1