WO2021035445A1 - 小区切换时的数据传输方法及装置 - Google Patents

小区切换时的数据传输方法及装置 Download PDF

Info

Publication number
WO2021035445A1
WO2021035445A1 PCT/CN2019/102355 CN2019102355W WO2021035445A1 WO 2021035445 A1 WO2021035445 A1 WO 2021035445A1 CN 2019102355 W CN2019102355 W CN 2019102355W WO 2021035445 A1 WO2021035445 A1 WO 2021035445A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
pdcp
pdcp pdu
source
base station
Prior art date
Application number
PCT/CN2019/102355
Other languages
English (en)
French (fr)
Inventor
尤心
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/102355 priority Critical patent/WO2021035445A1/zh
Priority to CN201980093056.7A priority patent/CN113475120B/zh
Publication of WO2021035445A1 publication Critical patent/WO2021035445A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes

Definitions

  • This application relates to the field of communications technology, and in particular to a data transmission method and device during cell handover.
  • Cell switching refers to the channel switching required to maintain uninterrupted communication of mobile users when a mobile station moves from one cell (referring to the coverage area of a base station or a base station) to another cell in a wireless communication system.
  • the existing cell handover technology is performed through random access.
  • a UE User Equipment
  • PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol
  • the cell and the target cell transmit data. After the random access ends, the UE will stop data transmission in the source cell.
  • the PDCP PDU that has not been transmitted or that has been transmitted but has not been confirmed by the source base station will not be able to continue transmission. Therefore, the existence of the PDCP PDU will cause terminal data Missing technical issues.
  • This application provides a data transmission method and device during cell handover to solve the technical problem of user terminal data loss during cell handover.
  • the PDCP PDU of the source cell is transmitted in the source cell;
  • the PDCP PDU of the target cell corresponding to the PDCP PDU that has not been confirmed by the source base station of the source cell is transmitted in the target cell.
  • a data transmission device during cell handover including:
  • the configuration module is used to generate the PDCP SDU of the source cell according to the PDCP configuration of the source cell after receiving the cell handover command;
  • the transmission module is used to transmit the PDCP PDU of the source cell in the source cell after receiving the cell handover command, and
  • the terminal device includes a processor, a memory, and an uplink control channel transmission program that can be run on the processor is stored in the memory.
  • the processor executes the uplink control channel transmission program, , To achieve any of the above-mentioned data transmission methods during cell handover.
  • specific embodiments of the present application provide a computer-readable storage medium that stores a computer program for electronic data exchange, where the computer program enables a computer to execute any of the above-mentioned data transmission methods during cell handover.
  • the specific embodiments of the present application provide a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program.
  • the computer program is operable to cause a computer to perform any of the above-mentioned cell switching operations. Data transmission method.
  • a chip which includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip performs any of the above-mentioned data transmission during cell handover method.
  • specific embodiments of the present application provide a computer program that enables a computer to execute any of the foregoing data transmission methods during cell handover.
  • the PDCP PDU of the source cell After receiving the cell switching command, the PDCP PDU of the source cell is transmitted in the source cell; after the random access is completed, the PDCP PDU of the target cell corresponding to the PDCP PDU that has not been confirmed by the source base station of the source cell is transmitted in the target cell.
  • the user terminal After the random access is completed and the uplink transmission in the source cell is stopped, the user terminal will transmit the PDCP PDU that has not been confirmed by the source base station of the source cell in the target cell, thus ensuring that data will not be lost during the cell handover process and solving the problem.
  • the uplink transmission in the source cell is stopped, the PDCP PDU that has not been transmitted or that has been transmitted but has not been confirmed by the source base station cannot continue to be transmitted, resulting in a technical problem of terminal data loss.
  • FIG. 1 is a network architecture diagram of a communication system that may be applied in the specific embodiments of this application;
  • Fig. 2 is a flowchart of a data transmission method during cell handover according to a specific embodiment of the present application
  • FIG. 3 is a flowchart of a data transmission method during cell handover according to an embodiment of the present application
  • FIG. 4 is a flowchart of a data transmission method during cell handover according to another specific embodiment of the present application.
  • FIG. 5 is a block diagram of an apparatus for implementing a data transmission method during cell handover according to various embodiments of the present disclosure
  • FIG. 6 is a schematic diagram of the hardware structure of a terminal device for implementing a data transmission method during cell handover according to various embodiments of the present disclosure.
  • Figure 1 is a system architecture of a communication system that may be applied in the following specific implementations of this application.
  • the system architecture includes: source base station A, target base station B, and user terminal C.
  • source base station A the area covered by source base station A in this application is source cell A
  • target base station B the area covered by source base station B in this application is source cell B
  • channel switching is required.
  • the current channel switching technology is carried out through random access.
  • the user terminal C After the user terminal C receives the cell handover command from the source base station A, before the random access process with the target base station B is completed, it can simultaneously send the source base station A and the target base station B through PDCP (Packet Data Convergence Protocol).
  • Base station B transmits data. After the random access is over, the user terminal C will stop the data transmission in the source base station A.
  • PDCP Packet Data Convergence Protocol
  • the PDCP layer of the user terminal C may continue to use the security key of the source cell A to perform header compression and encryption, and combine the encrypted PDCP PDU (The Protocol Data Unit is sent to the RLC (Radio Link Control, Radio Link Control Protocol) layer.
  • RLC Radio Link Control, Radio Link Control Protocol
  • user terminal C may still have PDCP PDUs that have not been transmitted or have been transmitted but have not been confirmed by source base station A, and the source cell key encrypted PDCP PDU, when the uplink transmission in source base station A is stopped At this time, the PDCP PDU that has not been transmitted or that has been transmitted but has not been confirmed by the source base station area A cannot be continuously transmitted, resulting in the loss of data transmitted by the user terminal C to the source base station A during the cell handover process.
  • the example communication system can be Global System for Mobile communications (GSM), Code Division Multiple Access (CDMA) system, Time Division Multiple Access (TDMA) ) System, Wideband Code Division Multiple Access (WCDMA), Frequency Division Multiple Access (Frequency Division Multiple Addressing, FDMA) system, Orthogonal Frequency-Division Multiple Access (OFDMA) system , Single carrier FDMA (SC-FDMA) system, General Packet Radio Service (GPRS) system, LTE (Long Term Evolution) system, 5G (5th-Generation, fifth-generation mobile communication technology) NR (NR Radio Access, new wireless access) system and other such communication systems.
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • OFDMA Frequency Division Multiple Access
  • OFDMA Frequency Division Multiple Addressing
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single carrier FDMA
  • GPRS General
  • the communication connection mode can be a single connection mode or Dual connection mode or multiple connection mode, but when the communication connection mode is single connection mode, the network side device can be an LTE base station or an NR base station (also known as a gNB base station).
  • the communication mode is dual connection mode (specifically, it can be through carrier aggregation CA technology is implemented, or multiple network-side devices are implemented), and when the terminal is connected to multiple network-side devices, the multiple network-side devices may be the primary base station MCG and the secondary base station SCG, and the base stations perform data return through the backhaul link.
  • the primary base station may be an LTE base station
  • the secondary base station may be an LTE base station
  • the primary base station may be an NR base station
  • the secondary base station may be an LTE base station
  • the primary base station may be an NR base station and the secondary base station may be an NR base station.
  • the receiving-side RLC entity described in the specific embodiments of this application may be a terminal or software (such as a protocol stack) and/or hardware (such as a modem) in the terminal.
  • the transmitting-side RLC entity may be a network-side device or a network-side device Software (e.g. protocol stack) and/or hardware (e.g. modem) in the
  • the user terminals involved in the specific embodiments of this application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment ( User Equipment (UE), mobile station (Mobile Station, MS), terminal device (terminal device), etc.
  • UE User Equipment
  • MS Mobile Station
  • terminal device terminal device
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • Fig. 2 is a flowchart of a data transmission method during cell handover according to a specific embodiment of the present application. As shown in Figure 2, the data transmission method during cell handover is applied to a user terminal, which may include the following steps:
  • step 110 after receiving the cell handover command, the PDCP PDU of the source cell is transmitted in the source cell.
  • the second method is: based on the existing handover procedure, when the UE receives the HO command (Hand Over command), it continues to maintain the connection with the source base station, and at the same time initiates random access to the target base station until the UE connects to the target base station.
  • the connection of the source base station is released after the entry is completed.
  • the NR system supports the handover process of the connected UE.
  • the system When a user who is using network services moves from one cell to another, or due to wireless transmission traffic load adjustment, activation operation and maintenance, equipment failure, etc., in order to ensure the continuity of communication and the quality of service, the system must transfer the user to The communication link with the source cell is transferred to the new cell, that is, the handover process is performed.
  • Handover preparation including measurement control and reporting, handover request and confirmation.
  • the handover confirmation message contains the cell handover command generated by the target cell.
  • the source cell does not allow any modification to the cell handover command generated by the target cell, and directly forwards the cell handover command to the UE.
  • the UE immediately executes the handover process after receiving the cell handover command, that is, the UE disconnects the source cell and connects to the target cell, for example, performs random access and sends an RRC (Radio Resource Control, radio resource control) handover complete message To the target base station, etc., SN state transfer and data forwarding.
  • RRC Radio Resource Control, radio resource control
  • the target cell executes Path Switch (Path Switch) with AMF (Access and Mobility Management Function) and UPF (User Port Function) to release the UE context of the source base station.
  • Path Switch Path Switch
  • AMF Access and Mobility Management Function
  • UPF User Port Function
  • random access is used, and the random access process includes:
  • Msg1 (first message): The UE sends a random access preamble.
  • Msg2 (second message): the target base station sends a random access response message.
  • Msg3 (third message): The UE sends an RRC connection request.
  • Msg4 (fourth message): the UE receives the RRC connection establishment (this process is also the conflict resolution process).
  • the UE can transmit data to the target cell in Msg3, and at the same time, the UE continues to send uplink data in the source cell.
  • the UE establishes the corresponding PDCP entity function of the target cell before the Msg3 transmission (this entity can be shared with the PDCP entity of the source cell).
  • the UE stops uplink data transmission in the source cell.
  • the PDCP layer of the UE may continue to use the security key of the source cell to perform header compression and encryption, and send the encrypted PDCP PDU to the RLC layer.
  • the source cell key may still be a PDCP PDU encrypted by the source cell key that has not been transmitted or has been transmitted but has not been confirmed by the source base station at the UE side.
  • the PDCP PDU that has not been transmitted or that has been transmitted but has not been confirmed by the source base station cannot be transmitted continuously, resulting in the loss of terminal data.
  • the source base station sends an eMBB cell handover command to the UE through the RRC reconfiguration message.
  • the UE After the UE receives the cell handover command, the UE sends Msg1 to the target base station, and at the same time sets the PDCP SDU (Service Data Unit) according to the source cell PDCP configuration. Generate the PDCP PDU of the source cell, and transmit the PDCP PDU of the source cell in the source cell.
  • PDCP SDU Service Data Unit
  • the UE After the UE receives Msg2 and before receiving the Msg4 sent by the target base station, it can generate the PDCP PDU of the target cell according to the PDCP configuration of the target cell to simultaneously send uplink data to the source base station in the source cell and to the target base station in the target cell. , Send the PDCP PDU generated according to the PDCP configuration of the source cell to the source base station, and send the PDCP PDU generated according to the PDCP configuration of the target cell to the target base station. It is also possible not to generate the PDCP PDU of the target cell according to the PDCP configuration of the target cell, and only send the PDCP PDU generated according to the PDCP configuration of the source cell to the source base station.
  • step 150 after the random access is completed, the PDCP PDU of the target cell corresponding to the PDCP PDU that has not been confirmed by the source base station of the source cell is transmitted in the target cell.
  • the PDCP PDU that has not been confirmed by the source base station of the source cell includes: the PDCP PDU that is not transmitted in the source cell and/or the PDCP PDU that is transmitted in the source cell but has not been confirmed by the source base station of the source cell.
  • the UE when the UE receives the Msg4, it means that the conflict is resolved, which means that the random access is complete.
  • the PDCP PDU that has not been confirmed by the source base station of the source cell is the PDCP PDU that has not been transmitted or failed.
  • the cell is transmitted to the target base station. Therefore, according to the PDCP of the target cell, the PDCP PDU of the target cell corresponding to the PDCP PDU that has not been confirmed by the source base station of the source cell is transmitted in the target cell to ensure that data will not be lost during the cell handover.
  • This specific implementation mode ensures that data will not be lost during the cell handover process, and solves the problem that when the uplink transmission in the source cell is stopped, the PDCP PDU that has not been transmitted or that has been transmitted but has not been confirmed by the source base station cannot continue to be transmitted.
  • FIG. 3 is a flowchart of a data transmission method during cell handover according to an embodiment of the present application. As shown in Figure 3, the method includes:
  • step 100 the source base station sends an eMBB cell handover command to the user terminal.
  • the source base station When the user terminal UE needs to handover from the source cell to the target cell, the source base station sends an eMBB cell handover command to the user terminal to start the process of the user terminal handover from the source cell to the target cell.
  • step 110 after receiving the cell handover command, the PDCP PDU of the source cell is transmitted in the source cell.
  • step 120 after receiving the cell handover command, the PDCP SDU of the PDCP PDU of the source cell is generated, and the PDCP PDU with the same sequence number is generated according to the PDCP configuration of the target cell.
  • the UE after receiving the cell handover command, the UE performs header compression and encryption according to the source cell PDCP configuration for the same PDCP SDU, and then generates the PDCP PDU for source cell transmission; and, performs header compression according to the target cell PDCP configuration After operations such as encryption and encryption, a PDCP PDU for transmission in the target cell is generated.
  • the PDCP PDU used for source cell transmission and the PDCP PDU used for target cell transmission use the same sequence number.
  • the PDCP PDU generated by the above method can be used immediately.
  • step 130 the user terminal performs random access with the target base station.
  • the UE receives Msg4 it means that the conflict is resolved, which means that the random access is completed.
  • step 150 in the specific implementation manner corresponding to FIG. 2 includes step 151 and step 153 in the specific process of an embodiment:
  • step 151 a second sequence number is acquired, where the second sequence number is the sequence number of the PDCP PDU that has not received confirmation from the source base station.
  • the UE when the UE receives the Msg4, the random access is completed. At this time, the UE stops sending uplink data to the source cell. For those PDCP PDUs generated using the source cell PDCP configuration, the UE exchanges information with the source base station to obtain information from the source base station. Obtain PDCP PDUs that have not been acknowledged by the source base station, and obtain the sequence numbers of these PDCP PDUs, which is the second sequence number.
  • step 153 among the PDCP PDUs generated according to the PDCP configuration of the target cell, the PDCP PDU with the same sequence number as the second sequence number is transmitted in the target cell.
  • the second sequence number of the PDCP PDU that has not been confirmed by the source base station is found to find the PDCP PDU with the same sequence number generated by the PDCP configuration of the target cell, and these sequence numbers are the same, and the PDCP configured in the target cell is performed in the target cell. Transmission and/or retransmission.
  • the PDCP PDUs with the same sequence numbers generated according to the target cell configuration will be released to save buffer space.
  • two PDCP PDUs are generated, one for source cell transmission, and one for source cell transmission. Used for target cell transmission; these two PDUs use the same SN number.
  • the random access process between the user terminal and the target cell ends, it learns which PDCP PDUs are not transmitted in the source cell or have been transmitted but have not been confirmed by the source base station, and then find the corresponding PDCP PDUs according to the sequence numbers of these PDCP PDUs.
  • the PDCP PDU transmitted in the target cell is retransmitted in the target cell. Since the retransmitted PUCP PDU has been compressed and encrypted during the previous handover process, and buffered in the system, it can be used immediately during retransmission. Thereby, the efficiency of data retransmission during the handover process can be improved.
  • FIG. 4 is a flowchart of a data transmission method during cell handover according to another specific implementation manner of the present application. As shown in Figure 4, the method further includes:
  • step 100 the source base station sends an eMBB cell handover command to the user terminal.
  • step 110 after receiving the cell handover command, the PDCP PDU of the source cell is transmitted in the source cell.
  • step 130 the user terminal performs a random access process with the target base station. After the UE receives the Msg4, it indicates that the conflict is resolved, which represents the completion of the random access.
  • step 150 in the specific implementation manner corresponding to FIG. 2 includes step 155, step 157, and step 159 in the specific process of another embodiment:
  • step 155 the PDCP SDU and the sequence number corresponding to the PDCP PDU that has not been confirmed by the source base station of the source cell are obtained.
  • the UE exchanges information with the source base station to obtain the PDCP PDU and the sequence number corresponding to the PDCP PDU that have not received the source base station's confirmation from the source base station of the source cell, so as to eliminate the source
  • the PDCP PDU confirmed by the base station is retransmitted.
  • step 157 according to the PDCP configuration of the target cell, the PDCP SDU is generated to generate the PDCP PDU of the target cell with the same sequence number.
  • the point in time when the PDCP protocol layer of the target cell is started to be established may be: when a cell handover command is received or when an Msg2 message is received; before sending Msg3.
  • the PDCP protocol layer of the source cell of the UE transmits the PDCP SDU and sequence number corresponding to the PDCP PDU that has not received the confirmation from the source base station to the PDCP protocol layer of the target cell.
  • the PDCP protocol layer of the target cell performs header compression and encryption operations on these PDCP SDUs again, and generates PDCP PDUs of the target cell with the same sequence number from the PDCP SDUs according to the PDCP configuration of the target cell.
  • step 159 the PDCP PDU of the target cell is transmitted in the target cell.
  • the PDCP PDU of the target cell has the advantage of saving buffer space.
  • the UE stops sending uplink data to the source cell.
  • PDCP PDUs generated using the source cell For those PDCP PDUs generated using the source cell’s PDCP configuration, if they have not been transmitted in the source cell or have been transmitted in the source cell but have not yet been received
  • the source base station confirms that the PDCP protocol layer of the source cell of the UE transmits the PDCP SDU and SN numbers corresponding to these PDCP PDUs to the PDCP protocol layer of the target cell.
  • the PDCP protocol layer of the target cell re-compresses and encrypts the PDCP SDUs corresponding to these SNs, and uses the PDCP PDU generated by the PDCP configuration of the target cell to be transmitted in the target cell.
  • the PDCP PDU that has not been confirmed by the source base station of the source cell includes: PDCP PDU that has not been transmitted in the source cell and/or the PDCP PDU transmitted in the source cell but has not been confirmed by the source cell PDCP PDU.
  • the cell handover command is an eMBB-based cell handover command.
  • Fig. 5 is a block diagram of an apparatus for implementing a data transmission method during cell handover according to various embodiments of the present disclosure.
  • the device executes all or part of the steps of the data transmission method during cell handover shown in FIG. 2.
  • the device includes but is not limited to: a configuration module 210 and a transmission module 250.
  • the configuration module 210 is configured to generate the PDCP SDU of the source cell according to the PDCP configuration of the source cell after receiving the cell handover command.
  • the transmission module 250 is configured to transmit the PDCP PDU of the source cell in the source cell after receiving the cell handover command, and
  • the configuration module 210 is further used for:
  • the PDCP SDU of the source cell PDCP PDU will be generated, and the PDCP PDU with the same sequence number will be generated according to the PDCP configuration of the target cell.
  • the transmission module 250 is further used for:
  • the second sequence number is the sequence number of the PDCP PDU that has not been confirmed by the source base station
  • the PDCP PDU with the same sequence number as the second sequence number is transmitted in the target cell.
  • the configuration module 210 and the transmission module 250 are further used for:
  • the transmission module 250 is configured to obtain the PDCP SDU and the sequence number corresponding to the PDCP PDU that has not been confirmed by the source base station of the source cell.
  • the configuration module 210 is configured to generate the PDCP SDU according to the PDCP configuration of the target cell to the PDCP PDU of the target cell with the same sequence number.
  • the transmission module 250 is also used to transmit the PDCP PDU of the target cell in the target cell.
  • FIG. 6 is a schematic diagram of the hardware structure of a terminal device for implementing a data transmission method during cell handover according to various embodiments of the present disclosure.
  • the terminal device includes a processor 310 and a memory 320, and the above-mentioned components of the terminal device implement communication connections with each other through a bus system.
  • the processor 310 may also be an independent component, or may be a collective name for multiple processing elements. For example, it may be a CPU, an ASIC, or one or more integrated circuits configured to implement the above method, such as at least one microprocessor DSP, or at least one programmable gate FPGA.
  • the memory 320 stores an uplink control channel transmission program that can be run on the processor 310.
  • the processor 310 executes the uplink control channel transmission program, it implements part or all of the steps of the data transmission method during cell handover in the specific implementation of the method.
  • the specific embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute the method as described above. Part or all of the steps of the data transmission method during cell handover.
  • the specific embodiments of the present application also provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute the method as described above. Part or all of the steps of the data transmission method during cell handover in the embodiment.
  • the computer program product may be a software installation package.
  • the specific embodiment of the present application also provides a chip, including: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the data transmission during cell handover in the specific embodiment of the method. Part or all of the steps of the method.
  • the specific implementation manner of the present application also provides a computer program that enables a computer to execute part or all of the steps of the data transmission method during cell handover in the above-mentioned specific implementation manner of the method.
  • the steps of the method or algorithm described in the specific embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), and erasable programmable read-only memory ( Erasable Programmable ROM (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in an access network device, a target network device, or a core network device.
  • the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
  • the functions described in the specific embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (Digital Video Disc, DVD)
  • a semiconductor medium for example, a solid state disk (Solid State Disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请揭示了一种小区切换时的数据传输方法及装置。该方法包括:接收到小区切换命令后,在源小区内传输所述源小区的PDCP PDU;随机接入完成后,在目标小区内传输与未收到所述源小区的源基站确认的PDCP PDU对应的所述目标小区的PDCP PDU。。本申请在随机接入完成,停止源小区内的上行传输后,通过将未收到源小区的源基站确认的PDCP PDU在目标小区内进行传输,从而确保小区切换过程中数据不会丢失,解决了当停止源小区内的上行传输时,会使未传输的或者已传输但未收到源基站确认的PDCP PDU无法继续传输,导致终端数据丢失的技术问题。

Description

小区切换时的数据传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种小区切换时的数据传输方法及装置。
背景技术
小区切换是指在无线通信系统中,当移动台从一个小区(指基站或者基站的覆盖范围)移动到另一个小区时,为了保持移动用户的不中断通信需要进行的信道切换。现有的小区切换技术是通过随机接入进行的,当UE(User Equipment,用户设备)需要从源小区切换到目标小区时,可以通过PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)同时向源小区和目标小区传输数据,随机接入结束后,UE即会停止在源小区内的数据传输。
但是,在现有的小区切换方式中,当停止源小区内的上行传输时,其未传输的或者已传输但未收到源基站确认的PDCP PDU将无法继续传输,故,存在会导致终端数据丢失的技术问题。
发明内容
本申请提供了一种小区切换时的数据传输方法及装置,以解决小区切换时用户终端数据丢失的技术问题。
第一方面,本申请具体实施方式提供一种小区切换时的数据传输方法,包括:
接收到小区切换命令后,在源小区内传输源小区的PDCP PDU;
随机接入完成后,在目标小区内传输与未收到源小区的源基站确认的PDCP PDU对应的目标小区的PDCP PDU。
第二方面,本申请具体实施方式提供一种小区切换时的数据传输装置,包括:
配置模块,用于接收到小区切换命令后,按照源小区PDCP配置将PDCP SDU生成源小区的PDCP PDU;
传输模块,用于接收到小区切换命令后,在源小区内传输源小区的PDCP PDU,以及
用于在随机接入完成后,在目标小区内传输与未收到源小区的源基站确认的PDCP PDU对应的目标小区的PDCP PDU。
第三方面,本申请具体实施方式提供一种终端设备,该终端设备包括:处理器,存储器,存储器上存储可在处理器上运行的上行控制信道传输程序,处理器执行上行控制信道传输程序时,实现上述任意一种小区切换时的数据传输方法。
第四方面,本申请具体实施方式提供一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,计算机程序使得计算机执行上述任意一种小区切换时的数据传输方法。
第五方面,本申请具体实施方式提供一种计算机程序产品,计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,计算机程序可操作来使计算机执行上述任意一种小区切换时的数据传输方法。
第六方面,本申请具体实施方式提供一种芯片,其包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述任意一种小区切换时的数据传输方法。
第七方面,本申请具体实施方式提供一种计算机程序,所述计算机程序使得计算机执行上述任意一种小区切换时的数据传输方法。
本申请的具体实施方式提供的技术方案可以包括以下有益效果:
接收到小区切换命令后,在源小区内传输源小区的PDCP PDU;随机接入完成后,在目标小区内传输与未收到源小区的源基站确认的PDCP PDU对应的目标小区的PDCP PDU。随机接入完成,停止源小区内的上行传输后,用户终端将未收到源小区的源基站确认的PDCP PDU在目标小区内进行传输,从而确保小区切换过程中数据不会丢失,解决了当停止源小区内的上行传输时,会使未传输的或者已传输但未收到源基站确认的PDCP PDU无法继续传输,导致终端数据丢失的技术问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的具体实施方式,并于说明书一起用于解释本申请的原理。
图1是本申请具体实施方式可能应用的一种通信系统的网络架构图;
图2是根据本申请具体实施方式的一种小区切换时的数据传输方法的流程图;
图3是本申请一种实施方式的一种小区切换时的数据传输方法的流程图;
图4是本申请另一具体实施方式的一种小区切换时的数据传输方法的流程图;
图5是用于实现根据本公开的各个实施方式的一种小区切换时的数据传输方法的装置框图;
图6是用于实现根据本公开的各个实施方式的一种小区切换时的数据传输方法的终端设备的硬件结构示意图。
具体实施方式
这里将详细地对示例性具体实施方式执行说明,其示例表示在附图中。 下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性具体实施方式中所描述的实施方式并不代表与本申请的具体实施方式相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的方法和装置的例子。基于本申请中的具体实施方式,本领域技术人员在没有做出创造性劳动前提下获得的所有其他具体实施方式,都属于本申请的保护范围。
图1为本申请以下具体实施方式可能应用的通信系统的系统架构。该系统架构包括:源基站A,目标基站B,用户终端C。
当用户终端C在从源基站A(本申请中源基站A所覆盖的范围为源小区A)向目标基站B(本申请中源基站B所覆盖的范围为源小区B)移动的过程中,为保持用户终端C不中断通信,需要进行信道切换。目前的信道切换技术是通过随机接入方式进行的。用户终端C接到源基站A发出的小区切换命令之后,在与目标基站B的随机接入过程完成之前,其可以通过PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)同时向源基站A和目标基站B传输数据。随机接入结束后,用户终端C即会停止在源基站A内的数据传输。
然而,发明人发现,由于用户终端C的PDCP层不知道何时随机接入过程才能结束,PDCP层可能持续用源小区A的安全密钥进行头压缩和加密,并将加密后的PDCP PDU(Protocol Data Unit,协议数据单元)发送给RLC(Radio Link Control,无线链路层控制协议)层。因此,随机接入过程结束时,用户终端C仍有可能存在未传输的或者已传输但未收到源基站A确认的经过源小区密钥加密的PDCP PDU,当停止源基站A内的上行传输时,会使未传输的或者已传输但未收到源基站区A确认的PDCP PDU无法继续传输,从而导致在小区切换过程中,用户终端C向源基站A传输的数据出现丢失现象。
本申请以下具体实施方式将详细描述如何在小区切换过程中,保证用户终端C向源基站A传输的数据不丢失。
在本系统架构中,该示例通信系统可以是全球移动通信系统(Global System for Mobile communications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA) 系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,LTE(Long Term Evolution,长期演进)系统,5G(5th-Generation,第五代移动通信技术)NR(NR Radio Access,新无线接入)系统以及其他此类通信系统。该示例通信系统具体包括网络侧设备和终端,终端接入网络侧设备提供的移动通信网络时,终端与网络侧设备之间可以通过无线链路通信连接,该通信连接方式可以是单连接方式或者双连接方式或者多连接方式,但通信连接方式为单连接方式时,网络侧设备可以是LTE基站或者NR基站(又称为gNB基站),当通信方式为双连接方式时(具体可以通过载波聚合CA技术实现,或者多个网络侧设备实现),且终端连接多个网络侧设备时,该多个网络侧设备可以是主基站MCG和辅基站SCG,基站之间通过回程链路backhaul进行数据回传,主基站可以是LTE基站,辅基站可以是LTE基站,或者,主基站可以是NR基站,辅基站可以是LTE基站,或者,主基站可以是NR基站,辅基站可以是NR基站。本申请具体实施方式所描述的接收侧RLC实体可以是终端或终端中的软件(如协议栈)和/或硬件(如调制解调器),同样的,发送侧RLC实体可以是网络侧设备或网络侧设备中的软件(如协议栈)和/或硬件(如调制解调器)。
本申请具体实施方式中,名词“网络”和“系统”经常交替使用,本领域技术人员可以理解其含义。
本申请具体实施方式所涉及到的用户终端可以包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文
中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在 三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请具体实施方式中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
图2是根据本申请具体实施方式的一种小区切换时的数据传输方法的流程图。如图2所示,该小区切换时的数据传输方法应用于用户终端,其可以包括以下步骤:
在步骤110中,接收到小区切换命令后,在源小区内传输源小区的PDCP PDU。
其中,在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)移动性增强课题中,包括LTE和NR(NR Radio Access,新无线接入)中,提出了对于切换时减小中断时间的优化方法。方式一为:在切换时,先把目标基站添加为SN(辅节点),然后通过role change(角色转换)信令来把SN(即目标基站)变为MN(主节点),最后再把源基站释放掉从而达到切换时候中断时间减小的效果。方式二为:基于现有的切换流程,UE在接收到HO command(Hand Over command,切换命令)时,继续保持和源基站的连接,同时向目标基站发起随机接入,直到UE与目标基站接入完成才释放源基站的连接。
与LTE系统相似,NR系统支持连接态UE的切换过程。当正在使用网络服务的用户从一个小区移动到另一个小区,或由于无线传输业务负荷量调整、激活操作维护、设备故障等原因,为了保证通信的连续性和服务的质量,系统要将该用户与源小区的通信链路转移到新小区上,即执行切换过程。
以Xn接口切换过程为例,整个切换过程分为以下三个阶段:
(1)切换准备:包括测量控制和汇报,切换请求以及确认。在切换确认消息中包含目标小区生成的小区切换命令,源小区不允许对目标小区生 成的小区切换命令进行任何修改,直接将小区切换命令转发给UE。
(2)切换执行:UE在收到小区切换命令后立即执行切换过程,即UE断开源小区并与目标小区连接,例如执行随机接入,发送RRC(Radio Resource Control,无线资源控制)切换完成消息给目标基站等,SN状态转移,数据转发。
(3)切换完成:目标小区与AMF(Access and Mobility Management Function,接入和移动性管理实体)和UPF(User Port Function,用户端口)执行Path Switch(路径切换),释放源基站的UE上下文。
现有eMBB(Enhanced Mobile Broadband,增强移动宽带)切换过程中,应用随机接入,随机接入过程包括:
Msg1(第一消息):UE发送随机接入前导码。
Msg2(第二消息):目标基站发送随机接入响应消息。
Msg3(第三消息):UE发送RRC连接请求。
Msg4(第四消息):UE接收RRC连接建立(此过程也即为冲突解决过程)。
UE可以在Msg3中向目标小区传输数据,与此同时,UE继续在源小区内发送上行数据。为了在Msg3中传输数据,UE在Msg3传输前建立起目标小区相应的PDCP实体功能(该实体可与源小区的PDCP实体公用)。当随机接入过程结束时,UE停止在源小区内的上行数据传输。然而,由于UE的PDCP层不知道何时随机接入过程才能结束,PDCP层可能持续用源小区的安全密钥进行头压缩和加密,并将加密后的PDCP PDU发送给RLC层。随机接入过程结束时,UE侧仍有可能存在未传输的或者已传输但未收到源基站确认的经过源小区密钥加密的PDCP PDU。存在着当停止源小区内的上行传输时,会使未传输的或者已传输但未收到源基站确认的PDCP PDU无法继续传输,导致终端数据丢失。
因此,源基站通过RRC重配置消息向UE发送eMBB小区切换命令,UE接收到小区切换命令后,UE向目标基站发送Msg1,同时按照源小区PDCP配置将PDCP SDU(Service Data Unit,服务数据单元)生成源小区的PDCP PDU,并在源小区内传输该源小区的PDCP PDU。
在UE收到Msg2之后,接收到目标基站发送的Msg4之前,可以按照目标小区PDCP配置生成目标小区的PDCP PDU,以同时在源小区内向源基站,以及在目标小区内向目标基站发送上行数据,具体的,向源基站发送按照源小区PDCP配置生成的PDCP PDU,向目标基站发送按照目标小区PDCP配置生成的PDCP PDU。也可以不按照目标小区PDCP配置生成目标小区的PDCP PDU,只向源基站发送按照源小区PDCP配置生成的PDCP PDU。
在步骤150中,随机接入完成后,在目标小区内传输与未收到源小区的源基站确认的PDCP PDU对应的目标小区的PDCP PDU。其中,未收到源小区的源基站确认的PDCP PDU包括:未在源小区内传输的PDCP PDU和/或在源小区内传输但未收到源小区的源基站确认的PDCP PDU。
其中,当UE收到Msg4之后,表示冲突解决,此时代表随机接入完成,此时未收到源小区的源基站确认的PDCP PDU即为未传输或者传输失败的PDCP PDU,需要重新在目标小区内传输至目标基站,因此按照目标小区PDCP,在目标小区内传输未收到源小区的源基站确认的PDCP PDU对应的目标小区的PDCP PDU,从而确保小区切换过程中数据不会丢失。
此具体实施方式实现了确保小区切换过程中数据不会丢失,解决了当停止源小区内的上行传输时,会使未传输的或者已传输但未收到源基站确认的PDCP PDU无法继续传输,导致终端数据丢失的技术问题。
图3是本申请一种实施方式的一种小区切换时的数据传输方法的流程图。如图3所示,该方法包括:
在步骤100中,源基站向用户终端发送eMBB小区切换命令。
当用户终端UE需要从源小区切换到目标小区时,通过源基站向用户终端发送eMBB小区切换命令,开始执行用户终端从源小区切换到目标小区的过程。
在步骤110中,接收到小区切换命令后,在源小区内传输源小区的PDCP PDU。
在步骤120中,在接收到小区切换命令后,将生成源小区PDCP PDU的PDCP SDU,按照目标小区PDCP配置生成序列号相同的PDCP PDU。
其中,UE接收到小区切换命令后,针对同一个PDCP SDU,按照源小区PDCP配置进行头压缩和加密等操作后,生成用于源小区传输的PDCP PDU;以及,按照目标小区PDCP配置进行头压缩和加密等操作后,生成用于目标小区传输的PDCP PDU。用于源小区传输的PDCP PDU与用于目标小区传输的PDCP PDU使用相同的序列号。上述方法生成的PDCP PDU可立即使用。
在步骤130中,用户终端与目标基站进行随机接入。其中,当UE收到Msg4之后,表示冲突解决,代表随机接入完成。
则上述图2对应的具体实施方式中的步骤150在一个实施例的具体流程包括步骤151和步骤153:
在步骤151中,获取第二序列号,所述第二序列号为未收到源基站确认的PDCP PDU的序列号。
其中,当UE收到Msg4之后,随机接入完成,此时UE停止向源小区发送上行数据,针对那些使用源小区PDCP配置生成的PDCP PDU,UE通过和源基站进行信息交互,从而从源基站得到未收到源基站确认的PDCP PDU,并得到这些PDCP PDU的序列号,即为第二序列号。
在步骤153中,将按照目标小区PDCP配置生成的PDCP PDU中,序列号与第二序列号相同的PDCP PDU在目标小区内进行传输。
其中,通过未收到源基站确认的PDCP PDU的第二序列号,找到之前用目标小区PDCP配置生成的序列号相同PDCP PDU,将这些序列号相同,按照目标小区配置的PDCP在目标小区内进行传输和/或重传。
在一个示例性具体实施方式的具体实现中,对于已收到源基站确认的PDCP PDU的序列号,按照目标小区配置生成的与这些序列号相同的PDCP PDU会被释放,以节省缓存空间。
此具体实施方式在小区切换过程中,针对同一个PDCP SDU按照源小区PDCP配置和目标小区PDCP配置,分别进行头压缩和加密等操作后,生成两个PDCP PDU,一个用于源小区传输,一个用于目标小区传输;但这两个PDU使用相同的SN号。当用户终端与目标小区的随机接入过程结束后,获知哪些PDCP PDU是在源小区未传输的或者已传输但未收到源基站确认的, 则根据这些PDCP PDU的序列号,找到对应的用于目标小区传输的PDCP PDU,在目标小区进行重传。由于,重传的PUCP PDU是在之前切换过程中就已经压缩、加密处理好,并缓存于系统中,重传时则可立即使用。从而可以提升切换过程中,重传数据的效率。
图4是本申请另一具体实施方式的一种小区切换时的数据传输方法的流程图。如图4所示,该方法还包括:
在步骤100中,源基站向用户终端发送eMBB小区切换命令。
在步骤110中,接收到小区切换命令后,在源小区内传输源小区的PDCP PDU。
在步骤130中,用户终端与目标基站进行随机接入过程,当UE收到Msg4之后,表示冲突解决,代表随机接入完成。
则上述图2对应的具体实施方式中的步骤150在另一个实施例的具体流程中包括步骤155、步骤157和步骤159:
在步骤155中,获取未收到源小区的源基站确认的PDCP PDU对应的PDCP SDU和序列号。
其中,随机接入完成后,UE通过和源基站进行信息交互,从而从源小区的源基站,获取到未收到源基站确认的PDCP PDU和PDCP PDU对应的序列号,以将未收到源基站确认的PDCP PDU进行重新传输。
在步骤157中,按照目标小区PDCP配置将PDCP SDU生成具有相同序列号的目标小区的PDCP PDU。
其中,开始建立目标小区PDCP协议层的时间点可以为:收到小区切换命令时或者收到Msg2消息时;发送Msg3前时。UE的源小区PDCP协议层将未收到源基站确认的PDCP PDU对应的PDCP SDU和序列号号传递给目标小区PDCP协议层。目标小区PDCP协议层重新对这些PDCP SDU进行头压缩和加密操作,按照目标小区PDCP配置,将PDCP SDU生成具有相同序列号的目标小区的PDCP PDU。
在步骤159中,将目标小区的PDCP PDU在目标小区内进行传输。
该目标小区的PDCP PDU具有节约缓存空间的优点。
此具体实施方式是在随机接入完之后,UE停止向源小区发送上行数据,针对那些使用源小区PDCP配置生成的PDCP PDU,如果尚未在源小区内传输或者已经在源小区内传输但尚未收到源基站确认,UE的源小区PDCP协议层将这些PDCP PDU对应的PDCP SDU和SN号传递给目标小区PDCP协议层。目标小区PDCP协议层重新对这些SN对应的PDCP SDU进行头压缩和加密操作,使用目标小区PDCP配置生成的PDCP PDU在目标小区内传输。由此,可以在小区切换过程中不用缓存副本数据,节省缓存空间。
在一个示例性具体实施方式中,未收到源小区的源基站确认的PDCP PDU包括:未在源小区内传输的PDCP PDU和/或在源小区内传输但未收到源小区的源基站确认的PDCP PDU。
在一个示例性具体实施方式中,小区切换命令为基于eMBB的小区切换命令。
图5是用于实现根据本公开的各个实施方式的一种小区切换时的数据传输方法的装置框图。该装置执行图2任一所示的小区切换时的数据传输方法的全部或者部分步骤,如图5所示,该装置包括但不限于:配置模块210和传输模块250。
配置模块210,用于接收到小区切换命令后,按照源小区PDCP配置将PDCP SDU生成源小区的PDCP PDU。
传输模块250,用于接收到小区切换命令后,在源小区内传输源小区的PDCP PDU,以及
用于在随机接入完成后,在目标小区内传输与未收到源小区的源基站确认的PDCP PDU对应的目标小区的PDCP PDU。
在一个示例性具体实施方式中,该配置模块210还用于:
在接收到小区切换命令后,将生成源小区PDCP PDU的PDCP SDU,按照目标小区PDCP配置生成序列号相同的PDCP PDU。
在一个示例性具体实施方式中,该传输模块250还用于:
获取第二序列号,所述第二序列号为未收到源基站确认的PDCP PDU的序列号,以及
将按照目标小区PDCP配置生成的PDCP PDU中,序列号与第二序列号相同的PDCP PDU在目标小区内进行传输。
在一个示例性具体实施方式中,该配置模块210和传输模块250还用于:
传输模块250用于获取未收到源小区的源基站确认的PDCP PDU对应的PDCP SDU和序列号。
配置模块210用于按照目标小区PDCP配置将PDCP SDU生成具有相同序列号的目标小区的PDCP PDU。
传输模块250还用于将目标小区的PDCP PDU在目标小区内进行传输。
上述装置中各个模块的功能和作用的实现过程详见上述具体实施方式提供的任意一种小区切换时的数据传输方法中对应步骤的实现过程,在此不再赘述。
图6是用于实现根据本公开的各个实施方式的一种小区切换时的数据传输方法的终端设备的硬件结构示意图。如图6所示,终端设备包括:处理器310,存储器320,终端设备的上述各组件通过总线系统实现相互之间的通信连接。
该处理器310也可以是一个独立的元器件,也可以是多个处理元件的统称。例如,可以是CPU,也可以是ASIC,或者被配置成实施以上方法的一个或多个集成电路,如至少一个微处理器DSP,或至少一个可编程门这列FPGA等。
存储器320上存储可在处理器310上运行的上行控制信道传输程序,处理器310执行上行控制信道传输程序时,实现上述方法具体实施方式中小区切换时的数据传输方法部分或全部步骤。
本申请具体实施方式还提供了一种计算机可读存储介质,其中,所述 计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法具体实施方式中小区切换时的数据传输方法部分或全部步骤。
本申请具体实施方式还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法具体实施方式中小区切换时的数据传输方法的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请具体实施方式还提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述方法具体实施方式中小区切换时的数据传输方法的部分或全部步骤。
本申请具体实施方式还提供了一种计算机程序,所述计算机程序使得计算机执行如上述方法具体实施方式中小区切换时的数据传输方法的部分或全部步骤。
本申请具体实施方式所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请具体实施方式所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序 产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请具体实施方式所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请具体实施方式的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请具体实施方式的具体实施方式而已,并不用于限定本申请具体实施方式的保护范围,凡在本申请具体实施方式的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请具体实施方式的保护范围之内。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围执行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种小区切换时的数据传输方法,应用于终端设备,其特征在于,所述方法包括:
    接收到小区切换命令后,在源小区内传输所述源小区的PDCP PDU;
    随机接入完成后,在目标小区内传输与未收到所述源小区的源基站确认的PDCP PDU对应的所述目标小区的PDCP PDU。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在接收到小区切换命令后,将生成源小区PDCP PDU的PDCP SDU,按照目标小区PDCP配置生成序列号相同的PDCP PDU。
  3. 根据权利要求2所述的方法,其特征在于,所述随机接入完成后,在目标小区内传输与未收到所述源小区的源基站确认的PDCP PDU对应的所述目标小区的PDCP PDU的步骤,包括:
    获取第二序列号,所述第二序列号为未收到所述源基站确认的PDCP PDU的序列号;
    将按照目标小区PDCP配置生成的PDCP PDU中,序列号与所述第二序列号相同的PDCP PDU在所述目标小区内进行传输。
  4. 根据权利要求1所述的方法,其特征在于,所述随机接入完成后,在目标小区内传输与未收到所述源小区的源基站确认的PDCP PDU对应的所述目标小区的PDCP PDU的步骤,包括:
    获取未收到所述源小区的源基站确认的PDCP PDU对应的PDCP SDU和序列号;
    按照目标小区PDCP配置将所述PDCP SDU生成具有相同序列号的目标小区的PDCP PDU;
    将所述目标小区的PDCP PDU在所述目标小区内进行传输。
  5. 根据权利要求1至4中任意一项所述的方法,其特征在于,所述未收到所述源小区的源基站确认的PDCP PDU包括:未在源小区内传输的PDCP PDU和/或在所述源小区内传输但未收到所述源小区的源基站确认的PDCP PDU。
  6. 根据权利要求1至5中任意一项所述的方法,其特征在于,所述小区切换命令为基于eMBB的小区切换命令。
  7. 一种小区切换时的数据传输装置,其特征在于,所述装置包括:
    配置模块,用于接收到小区切换命令后,按照源小区PDCP配置将PDCP SDU生成源小区的PDCP PDU;
    传输模块,用于接收到小区切换命令后,在所述源小区内传输所述源小区的PDCP PDU,以及
    用于在随机接入完成后,在目标小区内传输与未收到所述源小区的源基站确认的PDCP PDU对应的所述目标小区的PDCP PDU。
  8. 根据权利要求7所述的装置,其特征在于,所述配置模块还用于:
    在接收到小区切换命令后,将生成源小区PDCP PDU的PDCP SDU,按照目标小区PDCP配置生成序列号相同的PDCP PDU。
  9. 根据权利要求8所述的装置,其特征在于,所述传输模块还用于:
    获取第二序列号,所述第二序列号为未收到所述源基站确认的PDCP PDU的序列号,以及
    将按照目标小区PDCP配置生成的PDCP PDU中,序列号与所述第二序列号相同的PDCP PDU在所述目标小区内进行传输。
  10. 根据权利要求7所述的装置,其特征在于,所述配置模块和传输模块还用于:
    所述传输模块用于获取未收到所述源小区的源基站确认的PDCP PDU 对应的PDCP SDU和序列号;
    所述配置模块用于按照目标小区PDCP配置将所述PDCP SDU生成具有相同序列号的目标小区的PDCP PDU;
    所述传输模块还用于将所述目标小区的PDCP PDU在所述目标小区内进行传输。
  11. 一种终端设备,所述终端设备包括:处理器,存储器,其特征在于,所述存储器上存储可在所述处理器上运行的上行控制信道传输程序,所述处理器执行所述上行控制信道传输程序时,实现上述权利要求1至6中任意一项所述的小区切换时的数据传输方法。
  12. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-6任一项所述的小区切换时的数据传输方法。
  13. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如权利要求1-6任一项所述的小区切换时的数据传输方法。
  14. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-6任一项所述的小区切换时的数据传输方法。
  15. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-6任一项所述的小区切换时的数据传输方法。
PCT/CN2019/102355 2019-08-23 2019-08-23 小区切换时的数据传输方法及装置 WO2021035445A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/102355 WO2021035445A1 (zh) 2019-08-23 2019-08-23 小区切换时的数据传输方法及装置
CN201980093056.7A CN113475120B (zh) 2019-08-23 2019-08-23 小区切换时的数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102355 WO2021035445A1 (zh) 2019-08-23 2019-08-23 小区切换时的数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2021035445A1 true WO2021035445A1 (zh) 2021-03-04

Family

ID=74684803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102355 WO2021035445A1 (zh) 2019-08-23 2019-08-23 小区切换时的数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN113475120B (zh)
WO (1) WO2021035445A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116567740A (zh) * 2022-01-29 2023-08-08 大唐移动通信设备有限公司 数据传输方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841852A (zh) * 2009-03-20 2010-09-22 中兴通讯股份有限公司 一种跨基站切换时的上行数据传输方法、装置及系统
WO2014019240A1 (zh) * 2012-08-03 2014-02-06 华为技术有限公司 一种数据处理方法、基站和用户设备
EP2996391A1 (en) * 2013-05-09 2016-03-16 Ntt Docomo, Inc. Handover method and wireless base station
WO2018200848A1 (en) * 2017-04-26 2018-11-01 Motorola Mobility Llc Indicating status of forwarded data

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100581298C (zh) * 2007-02-15 2010-01-13 华为技术有限公司 切换过程中数据传输的方法、系统及装置
CN105992288A (zh) * 2015-03-05 2016-10-05 中兴通讯股份有限公司 一种在切换程序中传输数据的方法、装置和系统
CN109219094B (zh) * 2017-07-04 2021-08-06 中兴通讯股份有限公司 基站切换及实例分配方法、rlc协议实现设备、基站及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841852A (zh) * 2009-03-20 2010-09-22 中兴通讯股份有限公司 一种跨基站切换时的上行数据传输方法、装置及系统
WO2014019240A1 (zh) * 2012-08-03 2014-02-06 华为技术有限公司 一种数据处理方法、基站和用户设备
EP2996391A1 (en) * 2013-05-09 2016-03-16 Ntt Docomo, Inc. Handover method and wireless base station
WO2018200848A1 (en) * 2017-04-26 2018-11-01 Motorola Mobility Llc Indicating status of forwarded data

Also Published As

Publication number Publication date
CN113475120A (zh) 2021-10-01
CN113475120B (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
US11246074B2 (en) Communication method and communications apparatus
US11057797B2 (en) Method and device for processing information
CN110622538B (zh) 新无线电接入技术中的重复和rlc操作
US10694400B2 (en) Use of packet status report from secondary base station to master base station in wireless network
US20220070748A1 (en) Data transmission method and related device
TWI762684B (zh) 切換方法、存取網設備和終端設備
WO2019153139A1 (zh) 无线链路失败处理方法及相关产品
WO2015165051A1 (zh) 数据传输方法及设备
US11722574B2 (en) Packet transmission method, communication apparatus, and communication system
WO2016127666A1 (zh) 一种rlc数据包分流方法及基站
WO2018127220A1 (zh) 一种数据转发方法及装置
WO2014166053A1 (zh) 一种通讯方法和终端
EP3506540A1 (en) Data transmission method, network device and terminal device
WO2022222783A1 (zh) 数据传输方法及装置
WO2020164556A1 (zh) 一种实体建立的处理方法及装置
WO2021035445A1 (zh) 小区切换时的数据传输方法及装置
WO2020258018A1 (zh) 一种数据包处理方法、设备及存储介质
WO2021062669A1 (zh) 一种通信方法及通信装置
WO2020227946A1 (zh) 切换接入网设备的方法、终端设备和网络设备
WO2022063187A1 (zh) 一种通信方法和装置
WO2017193807A1 (zh) 一种数据传输方法、用户终端、基站和系统
JP2022543161A (ja) 通信方法、第1ネットワーク装置、第2ネットワーク装置及び端末装置
WO2023061339A1 (zh) 一种数据传输方法及通信装置
WO2024000110A1 (zh) 一种小区切换方法及装置、终端设备、网络设备
US20240129788A1 (en) Data transmission method, apparatus, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942703

Country of ref document: EP

Kind code of ref document: A1