WO2017193807A1 - 一种数据传输方法、用户终端、基站和系统 - Google Patents

一种数据传输方法、用户终端、基站和系统 Download PDF

Info

Publication number
WO2017193807A1
WO2017193807A1 PCT/CN2017/081808 CN2017081808W WO2017193807A1 WO 2017193807 A1 WO2017193807 A1 WO 2017193807A1 CN 2017081808 W CN2017081808 W CN 2017081808W WO 2017193807 A1 WO2017193807 A1 WO 2017193807A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
data packet
target base
original
original base
Prior art date
Application number
PCT/CN2017/081808
Other languages
English (en)
French (fr)
Inventor
张大钧
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US16/301,427 priority Critical patent/US10827403B2/en
Priority to EP17795425.2A priority patent/EP3457754B1/en
Publication of WO2017193807A1 publication Critical patent/WO2017193807A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • H04W36/026Multicasting of data during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a data transmission method, a user equipment (UE, a base station, and a system).
  • UE user equipment
  • base station base station
  • system a system
  • the purpose of the present disclosure is to provide a data transmission method, a UE, a base station, and a system, which solve the problem that a network node handover cannot adapt to the development needs of the network.
  • an embodiment of the present disclosure provides a data transmission method, including: in a handover process of a UE switching from an original base station to a target base station, the original base station maintains data transmission of the UE; and maintaining the UE When the data is transmitted, the original base station transmits the data to the target base station.
  • the data includes a downlink data packet
  • the original base station maintains data transmission of the UE, where the original base station transmits the downlink data packet to the UE.
  • the transmitting, by the original base station, the data to the target base station when the data transmission of the UE is performed includes: when sending the downlink data packet to the UE, the original base station to the target base station Transmitting the downlink data packet.
  • the method further includes: the original base station transmitting, to the target base station, a current HFN (Hyper Frame Number) value of the downlink data packet.
  • HFN Hexaper Frame Number
  • the data includes an uplink data packet
  • the original base station maintains data transmission of the UE, where the original base station transmits the uplink data packet to a gateway device.
  • the transmitting, by the original base station, the data to the target base station when the data transmission of the UE is maintained includes: when transmitting the uplink data packet to the gateway device, the original base station is to the target The base station transmits the uplink data packet.
  • the method further includes: the original base station transmitting, to the target base station, a current HFN value of the uplink data packet.
  • the uplink data packet that is sent by the original base station to the target base station is used to enable the target base station to receive uplink data according to the target base station when the UE establishes a connection with the target base station.
  • the packet constructs a status report of a Packet Data Convergence Protocol (PDCP) and is sent by the target base station to the UE.
  • PDCP Packet Data Convergence Protocol
  • the HFN value of the downlink data packet sent by the original base station to the target base station is used to enable the target base station to determine, according to the HFN value and the downlink data packet sent by the original base station, the subsequent transmission to the UE.
  • the HFN value of the downstream packet is used to enable the target base station to determine, according to the HFN value and the downlink data packet sent by the original base station, the subsequent transmission to the UE.
  • the HFN value of the uplink data packet sent by the original base station to the target base station is used to enable the target base station to determine subsequent transmissions from the UE according to the HFN value and the uplink data packet sent by the original base station.
  • the HFN value of the upstream packet is used to enable the target base station to determine subsequent transmissions from the UE according to the HFN value and the uplink data packet sent by the original base station.
  • the method further includes: when the original base station stops transmitting the downlink data packet of the UE, constructing a sequence number (SN, Serial Number) status report of the downlink data packet of the UE, and The target eNB sends the SN status report, where the SN status report includes PDCP SN information that the target base station should allocate for the downlink data packet of the UE.
  • SN Serial Number
  • the method further includes: when the original base station stops transmitting the uplink data packet of the UE, constructing an SN status report of the uplink data packet of the UE, and sending the SN to the target base station. a status report, wherein the SN status report includes a reception status of an uplink data packet of the UE, and an expected HFN value for an uplink data packet of the UE.
  • the method further includes: when the original base station stops transmitting the uplink data packet of the UE, the original base station stops sending the uplink data packet of the UE to the gateway device.
  • the embodiment of the present disclosure further provides a data transmission method, including: in a handover process of a UE switching from an original base station to a target base station, the UE and the original base station maintain data transmission of the UE, where the UE is in the UE When the original base station maintains data transmission of the UE, the original base station further transmits data of the UE to the target base station.
  • the data includes a downlink data packet
  • the UE and the original base station maintain data transmission of the UE, where the UE receives the downlink data packet transmitted by the original base station, and When the UE receives the downlink data packet transmitted by the original base station, the original base station transmits the downlink data packet to the target base station.
  • the data includes an uplink data packet
  • the UE maintains the data transmission of the UE with the original base station, and includes: the uplink data packet that is sent by the UE to the original base station, and When the UE transmits the uplink data packet to the original base station, the original base station transmits the uplink data packet to the target base station.
  • the method further includes: receiving, by the UE, a status report of a PDCP transmitted by the target base station, where the status report of the PDCP is that the target base station successfully establishes a connection between the UE and the target base station.
  • the status report of the PDCP constructed by the target base station according to the received uplink data packet.
  • the HFN value of the downlink data packet that is sent by the UE in the subsequent receiving of the target base station is determined by the target base station according to the HFN value and the downlink data packet of the downlink data packet sent by the original base station.
  • the HFN value of the uplink data packet that is sent by the UE to the target base station is determined by the target base station according to the HFN value and the uplink data packet of the uplink data packet sent by the original base station.
  • the PDCP SN information of the downlink data packet of the UE is that the target base station receives the SN status report sent by the original base station, And the PDCP SN information that the target base station should allocate to the downlink data packet of the UE.
  • the HFN value of the uplink data packet of the UE is included in the SN status report sent by the target base station by the original base station, and Is an expected HFN value for an uplink packet of the UE, and the SN state
  • the report also includes the reception status of the uplink data packet of the UE.
  • the method further includes: transmitting, by the UE, the SN and/or HFN value of the protocol data unit PDU of the current first unreceived downlink PDCP to the target base station, where the first one does not
  • the received PDU of the downlink PDCP refers to the PDU that the UE did not correctly receive at the original base station.
  • the UE transmits the SN and HFN values of the protocol data unit (PDU) of the current downlink PDCP that is not received to the target base station, including:
  • the UE transmits the SN and HFN values of the PDU of the current first unreceived downlink PDCP to the target base station by using the downlink PDCP status report.
  • the method further includes: transmitting, by the UE, the SN and/or HFN value of the current PDU of the first uplink PDCP that does not receive the acknowledgement to the target base station, where the first one does not receive the acknowledgement.
  • the PDU of the uplink PDCP refers to the PDU that the UE does not receive the acknowledgement at the original base station.
  • the UE transmits, to the target base station, the SN and HFN values of the current PDU of the uplink PDCP that does not receive the acknowledgement, including: the UE transmitting the current first to the target base station by using the downlink PDCP status report.
  • the SN and HFN values of the PDUs of the uplink PDCP that did not receive the acknowledgment including: the UE transmitting the current first to the target base station by using the downlink PDCP status report.
  • the embodiment of the present disclosure further provides a data transmission method, including: in a handover process of a UE switching from an original base station to a target base station, the target base station receives data of the UE transmitted by the original base station, where When the target base station receives the data of the UE transmitted by the original base station, the original base station maintains data transmission of the UE.
  • the data includes a downlink data packet
  • the target base station receives the data of the UE that is transmitted by the original base station, where the target base station receives the downlink data packet that is transmitted by the original base station, where When the target base station receives the downlink data packet transmitted by the original base station, the original base station transmits the downlink data packet to the UE.
  • the method further includes: the target base station receiving a current HFN value of the downlink data packet transmitted by the original base station.
  • the data includes an uplink data packet
  • the target base station receives the data of the UE that is transmitted by the original base station, where the target base station receives the uplink number that is transmitted by the original base station.
  • the target base station transmits the uplink data packet to the gateway device.
  • the method further includes: the target base station receiving a current HFN value of the uplink data packet transmitted by the original base station.
  • the method further includes: when the UE establishes a connection with the target base station, the target base station constructs a PDCP status report according to the received uplink data packet, and sends the status report to the UE. .
  • the method further includes: determining, by the target base station, an HFN value of a downlink data packet that is subsequently transmitted to the UE according to the HFN value and the downlink data packet sent by the original base station.
  • the method further includes: determining, by the target base station, an HFN value of an uplink data packet that is subsequently transmitted by the UE according to the HFN value and the uplink data packet sent by the original base station.
  • the method further includes: when the original base station stops transmitting the downlink data packet of the UE, the target base station receives the SN status report transmitted by the original base station, where the SN status report is The SN status report of the downlink data packet of the UE constructed by the original base station, and the SN status report includes PDCP SN information that the target base station should allocate for the downlink data packet of the UE.
  • the method further includes: when the original base station stops transmitting the uplink data packet of the UE, the target base station receives the SN status report transmitted by the original base station, where the SN status report is The SN status report of the uplink data packet of the UE constructed by the original base station, and the SN status report includes a receiving status of an uplink data packet of the UE, and an expected HFN value of an uplink data packet for the UE .
  • the method further includes: receiving, by the target base station, an SN and/or HFN value of a PDU of a current first unreceived downlink PDCP transmitted by the UE, where the first one is not received.
  • the downlink PDCP PDU is the first one after the UE successfully establishes a connection with the target base station.
  • the target base station receives the SN and HFN values of the PDU of the current first unreceived downlink PDCP transmitted by the UE, where the target base station receives the current that the UE transmits by using the downlink PDCP status report.
  • the method further includes: receiving, by the target base station, an SN and/or HFN value of a current PDU of the uplink PDCP that is not received by the UE, where the first one does not receive the acknowledgement.
  • the PDU of the uplink PDCP refers to the PDU that the UE does not receive the acknowledgement at the original base station.
  • the target base station receives, by the UE, the SN and HFN values of the current PDU of the uplink PDCP that does not receive the acknowledgment, where the target base station receives the current transmission of the UE by using the downlink PDCP status report.
  • the embodiment of the present disclosure further provides a base station, where the base station is an original base station, and the base station includes: a first transmission module, configured to maintain data transmission of the UE during a handover process of the UE from the original base station to the target base station And a second transmission module, configured to transmit the data to the target base station while maintaining data transmission of the UE.
  • a first transmission module configured to maintain data transmission of the UE during a handover process of the UE from the original base station to the target base station
  • a second transmission module configured to transmit the data to the target base station while maintaining data transmission of the UE.
  • the data includes a downlink data packet, where the first transmission module is configured to transmit the downlink data packet to the UE, and the second transmission module is configured to send the downlink data packet to the UE. And transmitting the downlink data packet to the target base station.
  • the base station further includes: a third transmission module, configured to transmit, to the target base station, a current superframe number HFN value of the downlink data packet.
  • a third transmission module configured to transmit, to the target base station, a current superframe number HFN value of the downlink data packet.
  • the data includes an uplink data packet, where the first transmission module is configured to transmit the uplink data packet to a gateway device, and the second transmission module is configured to transmit the uplink data packet to the gateway device. And transmitting the uplink data packet to the target base station.
  • the base station further includes: a fourth transmission module, configured to transmit, to the target base station, a current HFN value of the uplink data packet.
  • a fourth transmission module configured to transmit, to the target base station, a current HFN value of the uplink data packet.
  • the uplink data packet that is sent by the original base station to the target base station is used to enable the target base station to receive uplink data according to the target base station when the UE establishes a connection with the target base station.
  • the packet constructs a status report of the packet data convergence protocol PDCP and is sent by the target base station to the UE.
  • the HFN value of the downlink data packet sent by the original base station to the target base station is used to enable the target base station to determine, according to the HFN value and the downlink data packet sent by the original base station, the subsequent transmission to the UE.
  • the HFN value of the downstream packet is used to enable the target base station to determine, according to the HFN value and the downlink data packet sent by the original base station, the subsequent transmission to the UE.
  • the HFN value of the uplink data packet sent by the original base station to the target base station is used to enable the target base station to determine subsequent transmissions from the UE according to the HFN value and the uplink data packet sent by the original base station.
  • the HFN value of the upstream packet is used to enable the target base station to determine subsequent transmissions from the UE according to the HFN value and the uplink data packet sent by the original base station.
  • the base station further includes: a fifth transmission module, configured to construct a sequence number SN status report of the downlink data packet of the UE when the original base station stops transmitting the downlink data packet of the UE, and Sending the SN status report to the target base station, where the SN status report includes PDCP SN information that the target base station should allocate for downlink data packets of the UE.
  • a fifth transmission module configured to construct a sequence number SN status report of the downlink data packet of the UE when the original base station stops transmitting the downlink data packet of the UE, and Sending the SN status report to the target base station, where the SN status report includes PDCP SN information that the target base station should allocate for downlink data packets of the UE.
  • the base station further includes: a sixth transmission module, configured to construct an SN status report of the uplink data packet of the UE when the original base station stops transmitting the uplink data packet of the UE, and The target base station sends the SN status report, wherein the SN status report includes a reception status of an uplink data packet of the UE, and an expected HFN value of an uplink data packet for the UE.
  • a sixth transmission module configured to construct an SN status report of the uplink data packet of the UE when the original base station stops transmitting the uplink data packet of the UE, and The target base station sends the SN status report, wherein the SN status report includes a reception status of an uplink data packet of the UE, and an expected HFN value of an uplink data packet for the UE.
  • the base station further includes: a stopping module, configured to stop, when the original base station stops transmitting the uplink data packet of the UE, the original base station stops sending the uplink data packet of the UE to the gateway device.
  • a stopping module configured to stop, when the original base station stops transmitting the uplink data packet of the UE, the original base station stops sending the uplink data packet of the UE to the gateway device.
  • the embodiment of the present disclosure further provides a UE, including: a first transmission module, configured to maintain data transmission of the UE with the original base station in a handover process of the UE from the original base station to the target base station, where When the UE and the original base station maintain data transmission of the UE, the original base station further transmits data of the UE to the target base station.
  • a first transmission module configured to maintain data transmission of the UE with the original base station in a handover process of the UE from the original base station to the target base station, where When the UE and the original base station maintain data transmission of the UE, the original base station further transmits data of the UE to the target base station.
  • the data includes a downlink data packet
  • the first transmission module is configured to receive the downlink data packet that is transmitted by the original base station, and receive, in the UE, the downlink data packet that is transmitted by the original base station.
  • the original base station transmits the downlink data packet to the target base station.
  • the data includes an uplink data packet
  • the first transmission module is configured to send the uplink data packet to the original base station, and the uplink data packet that is sent by the UE to the original base station.
  • the original base station transmits the uplink data packet to the target base station.
  • the UE further includes: a receiving module, configured to receive a status report of the PDCP transmitted by the target base station, where the status report of the PDCP is that the target base station establishes with the target base station in the UE When the connection is successful, the status report of the PDCP constructed by the target base station according to the received uplink data packet.
  • a receiving module configured to receive a status report of the PDCP transmitted by the target base station, where the status report of the PDCP is that the target base station establishes with the target base station in the UE
  • the status report of the PDCP constructed by the target base station according to the received uplink data packet.
  • the HFN value of the downlink data packet that is sent by the UE in the subsequent receiving of the target base station is determined by the target base station according to the HFN value and the downlink data packet of the downlink data packet sent by the original base station.
  • the HFN value of the uplink data packet that is sent by the UE to the target base station is determined by the target base station according to the HFN value and the uplink data packet of the uplink data packet sent by the original base station.
  • the PDCP SN information of the downlink data packet of the UE is that the target base station receives the SN status report sent by the original base station, And the PDCP SN information that the target base station should allocate to the downlink data packet of the UE.
  • the HFN value of the uplink data packet of the UE is included in the SN status report sent by the target base station by the original base station, and Is an expected HFN value for an uplink data packet of the UE, and the SN status report further includes a reception status of an uplink data packet of the UE.
  • the UE further includes: a second transmission module, configured to transmit, to the target base station, an SN and/or HFN value of a PDU of the first downlink PDCP that is not received, where the first A PDU that does not receive a downlink PDCP refers to a PDU that the UE did not correctly receive at the original base station.
  • a second transmission module configured to transmit, to the target base station, an SN and/or HFN value of a PDU of the first downlink PDCP that is not received, where the first A PDU that does not receive a downlink PDCP refers to a PDU that the UE did not correctly receive at the original base station.
  • the second transmission module is configured to transmit, by using the downlink PDCP status report, the SN and HFN values of the PDU of the current first unreceived downlink PDCP to the target base station.
  • the UE further includes: a third transmission module, configured to transmit, to the target base station, an SN and/or HFN value of a current PDU of the uplink PDCP that does not receive the acknowledgement, where the first A PDU that does not receive an acknowledgment of an uplink PDCP refers to a PDU that the UE does not receive an acknowledgment at the original base station.
  • a third transmission module configured to transmit, to the target base station, an SN and/or HFN value of a current PDU of the uplink PDCP that does not receive the acknowledgement, where the first A PDU that does not receive an acknowledgment of an uplink PDCP refers to a PDU that the UE does not receive an acknowledgment at the original base station.
  • the third transmission module is configured to transmit, by using the downlink PDCP status report, the SN and HFN values of the PDU of the current uplink PDCP that does not receive the acknowledgement to the target base station.
  • the embodiment of the present disclosure further provides a base station, where the base station is a target base station, and includes: a first receiving module, configured to receive, by the original base station, the UE transmitted by the original base station during a handover process of the UE from the original base station to the target base station Data, wherein the target base station receives the transmission of the original base station When the data of the UE is used, the original base station maintains data transmission of the UE.
  • the data includes a downlink data packet
  • the first receiving module is configured to receive the downlink data packet that is transmitted by the original base station, and receive, by the target base station, the downlink data packet that is transmitted by the original base station.
  • the original base station transmits the downlink data packet to the UE.
  • the base station further includes: a second receiving module, configured to receive a current HFN value of the downlink data packet that is transmitted by the original base station.
  • the data includes an uplink data packet
  • the first receiving module is configured to receive the uplink data packet that is transmitted by the original base station, and receive, by the target base station, the uplink data packet that is sent by the original base station.
  • the original base station transmits the uplink data packet to the gateway device.
  • the base station further includes: a third receiving module, configured to receive a current HFN value of the uplink data packet transmitted by the original base station.
  • the base station further includes: a transmission module, configured to: when the UE establishes a connection with the target base station, the target base station constructs a PDCP status report according to the received uplink data packet, and sends the status report to the UE.
  • a transmission module configured to: when the UE establishes a connection with the target base station, the target base station constructs a PDCP status report according to the received uplink data packet, and sends the status report to the UE.
  • the base station further includes: a first determining module, configured to determine, according to the HFN value and the downlink data packet sent by the original base station, an HFN value of a downlink data packet that is subsequently transmitted to the UE.
  • a first determining module configured to determine, according to the HFN value and the downlink data packet sent by the original base station, an HFN value of a downlink data packet that is subsequently transmitted to the UE.
  • the base station further includes: a second determining module, configured to determine, according to the HFN value and the uplink data packet sent by the original base station, an HFN value of an uplink data packet that is subsequently transmitted from the UE.
  • a second determining module configured to determine, according to the HFN value and the uplink data packet sent by the original base station, an HFN value of an uplink data packet that is subsequently transmitted from the UE.
  • the base station further includes: a fourth receiving module, configured to receive an SN status report that is transmitted by the original base station when the original base station stops transmitting the downlink data packet of the UE, where the SN is The status reports the SN status report of the downlink data packet of the UE constructed by the original base station, and the SN status report includes PDCP SN information that the target base station should allocate for the downlink data packet of the UE.
  • a fourth receiving module configured to receive an SN status report that is transmitted by the original base station when the original base station stops transmitting the downlink data packet of the UE, where the SN is The status reports the SN status report of the downlink data packet of the UE constructed by the original base station, and the SN status report includes PDCP SN information that the target base station should allocate for the downlink data packet of the UE.
  • the base station further includes: a fifth receiving module, configured to receive an SN status report that is transmitted by the original base station when the original base station stops transmitting the uplink data packet of the UE, where the SN is Status reporting an SN status report of an uplink data packet of the UE constructed by the original base station, and the SN status report includes a reception status of an uplink data packet of the UE, and an expectation of an uplink data packet for the UE HFN value.
  • a fifth receiving module configured to receive an SN status report that is transmitted by the original base station when the original base station stops transmitting the uplink data packet of the UE, where the SN is Status reporting an SN status report of an uplink data packet of the UE constructed by the original base station, and the SN status report includes a reception status of an uplink data packet of the UE, and an expectation of an uplink data packet for the UE HFN value.
  • the base station further includes: a sixth receiving module, configured to receive, when the UE transmits The SN and/or HFN value of the PDU of the downlink PDCP that is not received by the first one, wherein the first PDU of the downlink PDCP that is not received is after the UE successfully establishes a connection with the target base station.
  • a sixth receiving module configured to receive, when the UE transmits The SN and/or HFN value of the PDU of the downlink PDCP that is not received by the first one, wherein the first PDU of the downlink PDCP that is not received is after the UE successfully establishes a connection with the target base station.
  • the sixth receiving module is configured to receive SN and HFN values of the PDU of the current first unreceived downlink PDCP that is sent by the UE by using the downlink PDCP status report.
  • the base station further includes: a seventh receiving module, configured to receive, by the UE, an SN and/or HFN value of a current PDU of the uplink PDCP that does not receive the acknowledgement, where the first one A PDU that does not receive an acknowledgment of an uplink PDCP refers to a PDU that the UE does not receive an acknowledgment at the original base station.
  • a seventh receiving module configured to receive, by the UE, an SN and/or HFN value of a current PDU of the uplink PDCP that does not receive the acknowledgement, where the first one A PDU that does not receive an acknowledgment of an uplink PDCP refers to a PDU that the UE does not receive an acknowledgment at the original base station.
  • the seventh receiving module is configured to receive, by using the downlink PDCP status report, the SN and HFN values of the current first PDU of the uplink PDCP that does not receive the acknowledgement.
  • the embodiment of the present disclosure further provides a data transmission system, including: an original base station, configured to maintain data transmission of the UE during handover of a UE from the original base station to a target base station; During the handover process of the UE from the original base station to the target base station, the data transmission of the UE is maintained with the original base station; the original base station is further configured to: when maintaining data transmission of the UE, to the The target base station transmits the data; the target base station is configured to receive data of the UE transmitted by the original base station during a handover process of the UE from the original base station to the target base station.
  • the foregoing technical solution of the present disclosure has at least the following beneficial effects: in a handover process in which a UE switches from an original base station to a target base station, the original base station maintains data transmission of the UE; when maintaining data transmission of the UE, the The original base station transmits the data to the target base station.
  • the original base station maintains the data transmission of the UE and transmits the data to the target base station, thereby reducing the data transmission interruption time of the UE and improving the handover performance to adapt.
  • FIG. 1 is a schematic diagram of an example of a network structure to which a data transmission method according to an embodiment of the present disclosure is applicable;
  • FIG. 2 is another example of a network structure to which a data transmission method according to an embodiment of the present disclosure is applicable.
  • FIG. 3 is a schematic flowchart diagram of an example of a data transmission method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of another example of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart diagram of another example of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an example of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another example of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another example of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an example of a base station according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of an example of a UE according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another example of a UE according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another example of a UE according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of another example of a UE according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 26 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 27 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 28 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 29 is a schematic structural diagram of another example of a UE according to an embodiment of the present disclosure.
  • FIG. 30 is a schematic structural diagram of another example of a base station according to an embodiment of the present disclosure.
  • FIG. 31 is a schematic structural diagram of an example of a data transmission system according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of an example of a network structure to which a data transmission method according to an embodiment of the present disclosure is applicable.
  • 1 shows a UE 11, an original base station 12, a target base station 13, a Mobility Management Entity 14 and a gateway device 15, wherein the UE 11 can be a mobile phone, a tablet personal computer, or a laptop.
  • Terminal devices such as Laptop Computer, Personal Digital Assistant (PDA), Mobile Internet Device (MID), or Wearable Device.
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • the UE 11 can communicate with the original base station 12 and can also communicate with the target base station 13, wherein the original base station 12 can be an evolved base station (eNB) or other base station.
  • eNB evolved base station
  • the specific type of the original base station 12 is not limited in the embodiment of the present disclosure.
  • the target base station 13 may be an evolved base station (eNB) or other base station. It should be noted that the specific type of the target base station 13 is not limited in the embodiment of the present disclosure.
  • the original base station 12 and the target base station 13 can also establish communication with the MME 14 and the gateway device 15, wherein the gateway device 15 can be a Serving Gate Way (S-GW). It should be noted that the specific type of the gateway device 15 is not limited in the embodiment of the present disclosure.
  • S-GW Serving Gate Way
  • FIG. 2 is a schematic diagram of another example of a network structure to which a data transmission method according to an embodiment of the present disclosure is applicable.
  • 2 shows a UE 21, a primary base station 22, an original base station 23, a target base station 24, an MME 25, and a gateway device 26.
  • the UE 21 may be a mobile phone, a tablet personal computer, or a laptop computer. Terminal devices such as personal digital assistant (PDA), mobile Internet device (MID) or wearable device. It should be noted that the specific type of the UE 21 is not limited in the embodiment of the present disclosure.
  • the UE 21 can communicate with the primary base station 22, the original base station 23, and the target base station 24.
  • the primary base station 22 can be a MeNB (Master eNB), and the original base station 23 and the target base station 24 can be a secondary base station (SeNB, Secondary eNB).
  • the UE 21 may have two user plane architectures, one is a 1A architecture, that is, the bearer on the SeNB is directly connected to the core network; and the other is the 3C architecture, that is, the bearer of the SeNB retains only the RLC, MAC, and PHY layer functions. And connected to the core network through the PDCP layer of the MeNB.
  • gateway device 26 may be a Serving Gate Way (S-GW). It should be noted that the specific type of the gateway device 26 is not limited in the embodiment of the present disclosure.
  • the data transmission method provided in the embodiment of the present disclosure is not limited to the network structure shown in FIG. 1 and FIG. 2, and may be applied to other network structures, which is not limited in this embodiment.
  • FIG. 3 is a schematic flowchart diagram of an example of a data transmission method according to an embodiment of the present disclosure. As shown in FIG. 3, an example of the data transmission method includes the following steps 301 and 302.
  • the original base station in the handover process of the UE switching from the original base station to the target base station, the original base station maintains data transmission of the UE;
  • the original base station transmits the data to the target base station.
  • the original base station maintains the data transmission of the UE, and it can be understood that the original base station continues to perform uplink and downlink data transmission of the air interface on the air interface of the original base station. For example, the downlink data transmission is continued on the air interface of the original base station, and the uplink data transmission is continued on the air interface of the original base station.
  • the original base station transmits the data to the target base station. It can be understood that the original base station transmits the data to the target base station while maintaining the data transmission of the UE.
  • the original base station maintains the data transmission of the UE and transmits the data to the target base station, thereby reducing the data transmission interruption time of the UE and improving the handover performance to adapt to the network.
  • the process of the handover of the UE from the original base station to the target base station may include a process in which the UE establishes a connection with the target base station, and may also include a process in which the original base station sends a handover command to the UE, which is not limited in this embodiment.
  • the foregoing data may include a downlink data packet
  • the original base station maintaining the data transmission of the UE may include: the original base station transmitting the downlink data packet to the UE.
  • the original base station transmits the data to the target base station, including: when transmitting the downlink data packet to the UE, the original base station transmits the downlink data packet to the target base station.
  • the original base station transmits the downlink data packet to the UE, and at the same time, transmits the downlink data packet to the target base station.
  • the original base station continues on the one hand
  • the downlink data transmission of the air interface is performed on the base station, and on the other hand, the forwarding operation of the downlink data is triggered, that is, the same data packet is sent to the UE through the air interface of the original base station, and the interface between the original base station and the target base station is used. Transfer to the target base station. This ensures that during the handover process, the original base station will not stop the transmission of downlink data, thereby preventing the downlink data transmission interruption in the handover process, thereby improving the handover performance.
  • the original base station may transmit the downlink data packet to the target base station after acquiring the forward forwarding address, that is, the downlink data packet transmitted to the target base station may be understood as a forward forwarding operation of the downlink data packet, that is, When the UE transmits the downlink data packet, the forwarding operation of the downlink data packet is triggered.
  • the forwarding address may include the IP address of the target base station and the address information of the target base station, such as the port address of the target base station, and the address information to be used for the data transmission, which is not limited in this embodiment.
  • the foregoing method may further include the following steps: the original base station transmits a current HFN (Hyper Frame Number) value of the downlink data packet to the target base station.
  • HFN Hexaper Frame Number
  • the target base station when transmitting the downlink data packet to the target base station, the current HFN value of the downlink data packet is transmitted to the target base station, so that the target base station knows the HFN value of the currently transmitted downlink data packet, so that the target base station is better.
  • Manage downlink data of the UE the HFN value of the first downlink data packet may be transmitted only to the target base station, where the first downlink data is the first downlink data packet transmitted by the original base station to the target base station, to reduce the transmission overhead.
  • the target base station may also transmit HFN values of multiple downlink data packets.
  • the HFN value of the downlink data packet sent by the original base station to the target base station may be used to enable the target base station to determine downlink data to be subsequently transmitted to the UE according to the HFN value and the downlink data packet sent by the original base station.
  • the HFN value of the packet may be used to enable the target base station to determine downlink data to be subsequently transmitted to the UE according to the HFN value and the downlink data packet sent by the original base station.
  • the target base station determines, according to the HFN value and the downlink data packet sent by the original base station, the HFN value of the downlink data packet that is subsequently transmitted to the UE. Therefore, the target base station can be prevented from transmitting the downlink data packet that the original base station has transmitted to the UE to the UE, so as to avoid waste of network transmission resources.
  • the foregoing data may include an uplink data packet, where the original base station maintains data transmission of the UE, including: the original base station transmits the uplink data packet to the gateway device.
  • the original base station transmits the data to the target base station, including: when transmitting the uplink data packet to the gateway device, the original base station transmits the uplink data packet to the target base station.
  • the original base station transmits the uplink number to the gateway device during the handover process.
  • the uplink data packet is also transmitted to the target base station.
  • transmitting uplink data packets to the gateway device may allow random charging to be transmitted.
  • the original base station continues to perform the uplink data transmission of the air interface on the original base station, and on the other hand, triggers the forward data forwarding operation, that is, the same data packet is sent to the gateway device through the air interface of the original base station, and on the other hand, The interface between the original base station and the target base station is transmitted to the target base station.
  • the original base station may transmit the uplink data packet to the target base station after acquiring the forward forwarding address, that is, the uplink data packet transmitted to the target base station may be understood as a forward forwarding operation of the uplink data packet, that is, When the UE transmits the uplink data packet, the forwarding operation of the uplink data packet is triggered.
  • the forwarding address may include the IP address of the target base station and the address information of the target base station, such as the port address of the target base station, and the address information to be used for the data transmission, which is not limited in this embodiment.
  • the method may further include: the original base station transmitting, to the target base station, a current HFN value of the uplink data packet.
  • the uplink data packet when the uplink data packet is transmitted to the target base station, the current HFN value of the downlink data packet is transmitted to the target base station, so that the target base station knows the HFN value of the currently transmitted uplink data packet, so that the target base station is better.
  • Manage the uplink data of the UE in this implementation manner, the HFN value of the first uplink data packet may be transmitted only to the target base station, where the first uplink data is the first uplink data packet transmitted by the original base station to the target base station, to reduce transmission overhead.
  • the HFN value of the plurality of uplink data packets transmitted by the target base station may also be used.
  • the HFN value of the uplink data packet sent by the original base station to the target base station may be used to enable the target base station to determine, according to the HFN value and the uplink data packet sent by the original base station, subsequent uplink data packets transmitted from the UE. HFN value.
  • the target base station determines the HFN value of the subsequent uplink data packet transmitted from the UE according to the HFN value and the uplink data packet sent by the original base station.
  • the uplink data packet transmitted by the original base station to the target base station may be used to enable the target base station to construct a PDCP (Packet Data Convergence Protocol) according to the received uplink data packet when the UE establishes a connection with the target base station.
  • PDCP Packet Data Convergence Protocol
  • the status report is sent by the target base station to the UE.
  • the uplink data sent by the original base station to the target base station may be used to enable the target base station to establish a PDCP status report according to the received uplink data packet when the UE establishes a connection with the target base station, and the target base station is configured by the target base station.
  • Send to the UE which can reduce the repeated transmission of air interfaces.
  • the method may further include: when the original base station stops transmitting the downlink data packet of the UE, constructing a SN (serial number) status report of the downlink data packet of the UE, and sending the SN to the target base station.
  • the transmission of the downlink data packet by the original base station to the UE may be understood as the original base station determining to stop the transmission of the downlink data packet of the UE.
  • the original base station may be configured to stop the transmission of the downlink data packet of the UE after the UE establishes a connection with the target base station successfully, or after the connection is successfully established.
  • the foregoing SN status report may be used to notify the target base station of the PDCP SN information that the target base station should allocate to the downlink data packet of the UE, so that the target base station may determine that the SN status report is received when the SN status report is received.
  • the PDCP SN information that the UE's downstream data packet should be assigned.
  • the method may further include: when the original base station stops transmitting the uplink data packet of the UE, construct an SN status report of the uplink data packet of the UE, and send the SN status report to the target base station, where the SN status The report includes the reception status of the uplink data packet of the UE, and the expected HFN value for the uplink data packet of the UE.
  • the transmission of the uplink data packet by the original base station to the UE may be understood as the original base station determining to stop the transmission of the uplink data packet of the UE.
  • the original base station may be configured to stop the uplink data packet transmission of the UE when the UE establishes a connection with the target base station successfully, or after the connection is successfully established.
  • the SN status report may be used to notify the receiving status of the uplink data packet of the UE, and the expected HFN value of the uplink data packet of the UE to the target base station, so that the target base station receives the SN status.
  • the received state of the uplink data packet of the UE and the expected HFN value of the uplink data packet of the UE can be obtained, so that the uplink data packet of the UE can be effectively transmitted.
  • the method further includes: when the original base station stops transmitting the uplink data packet of the UE, the original base station stops sending the uplink data packet of the UE to the gateway device.
  • the original base station may stop sending the uplink data packet of the UE to the gateway device to save network transmission resources.
  • the original base station maintains the data transmission of the UE; when the data transmission of the UE is maintained, the original base station transmits the data to the target base station.
  • the original base station maintains the data transmission of the UE and transmits the data to the target base station, thereby reducing the data transmission interruption time of the UE and improving the handover performance to adapt to the network.
  • FIG. 4 is a schematic flowchart diagram of another example of a data transmission method according to an embodiment of the present disclosure. As shown in FIG. 4, another example of the data transmission method includes the following step 401.
  • the UE and the original base station maintain data transmission of the UE.
  • the original base station further transmits data of the UE to the target base station when the UE and the original base station maintain data transmission of the UE.
  • the data includes a downlink data packet
  • the UE maintains the data transmission of the UE with the original base station, where the UE receives the downlink data packet transmitted by the original base station, and receives, in the UE, the downlink data packet transmitted by the original base station.
  • the original base station transmits the downlink data packet to the target base station.
  • the data includes an uplink data packet
  • the UE maintains the data transmission of the UE with the original base station, where the uplink data packet that is sent by the UE to the original base station, and when the UE transmits the uplink data packet to the original base station, The original base station transmits the uplink data packet to the target base station.
  • the method further includes: receiving, by the UE, a status report of the PDCP transmitted by the target base station, where the status report of the PDCP is the uplink data received by the target base station by the target base station when the UE establishes a connection with the target base station.
  • the status report of the PDCP built by the package.
  • the HFN value of the downlink data packet transmitted by the UE in the subsequent receiving target base station is determined by the target base station according to the HFN value and the downlink data packet of the downlink data packet sent by the original base station.
  • the HFN value of the uplink data packet that is sent by the UE to the target base station is determined by the target base station according to the HFN value and the uplink data packet of the uplink data packet sent by the original base station.
  • the PDCP SN information of the downlink data packet of the UE is included in the SN status report sent by the target base station, and is the target base station, and is the target base station.
  • the uplink data of the UE is included in the SN status report sent by the target base station to the original base station, and is an expected HFN value for the uplink data packet of the UE, and the SN status report further includes the receiving status of the uplink data packet of the UE.
  • the method further includes: transmitting, by the UE, the SN and/or HFN value of the PDU of the first downlink PDCP that is not received to the target base station, where the first PDU indicator of the downlink PDCP that is not received is received.
  • the UE is the first PDU that was not correctly received at the original base station.
  • the UE may send the SN and/or HFN value of the PDU that the UE does not correctly receive at the original base station to the target base station, so that the target base station may send the PDU when receiving the SN and/or HFN value.
  • the target base station may send the PDU when receiving the SN and/or HFN value.
  • the UE transmits the SN and HFN values of the PDU of the current first unreceived downlink PDCP to the target base station, including:
  • the UE transmits the SN and HFN values of the PDU of the current first unreceived downlink PDCP to the target base station through the downlink PDCP status report.
  • the SN and HFN values of the PDU of the current first unreceived downlink PDCP may be sent to the target base station by using the downlink PDCP status report, so that the target base station can know in more detail that the current first one is not received.
  • Downstream PDCP PDU may be sent to the target base station by using the downlink PDCP status report, so that the target base station can know in more detail that the current first one is not received.
  • the method may further include: the UE transmitting, to the target base station, the SN and/or HFN value of the PDU of the current uplink PDCP that does not receive the acknowledgement.
  • the first PDU that does not receive the acknowledged uplink PDCP refers to the PDU that the UE does not receive the first acknowledgement at the original base station.
  • the UE may send, to the target base station, the SN and/or HFN value of the PDU that the UE does not receive the acknowledgement at the original base station, so that the target base station determines whether the PDU is received when the SN and/or HFN value is received. Already received, if not received, the UE may be notified to resend the PDU to avoid missing the uplink PDU.
  • the transmitting, by the UE, the SN and the HFN value of the PDU of the current uplink PDCP that does not receive the acknowledgment to the target base station may include: the UE transmitting the current first to the target base station by using the downlink PDCP status report.
  • the SN and HFN values of the PDUs of the uplink PDCP that did not receive the acknowledgment may include: the UE transmitting the current first to the target base station by using the downlink PDCP status report.
  • the SN and HFN values of the PDU of the current uplink PDCP that does not receive the acknowledgement may be sent to the target base station by using the downlink PDCP status report, so that the target base can be obtained.
  • the station knows in more detail the current PDU of the first uplink PDCP that did not receive the acknowledgment.
  • the present embodiment is the embodiment on the UE side corresponding to the embodiment shown in FIG. 3, and the specific implementation manners of the embodiment may refer to the related description of the embodiment shown in FIG. The embodiment will not be described again.
  • the data transmission interruption time of the UE can be reduced, and the handover performance can be improved to meet the development needs of the network.
  • FIG. 5 is a schematic flowchart diagram of another example of a data transmission method according to an embodiment of the present disclosure. As shown in FIG. 5, another example of the data transmission method includes the following step 501.
  • the target base station in the handover process of the UE from the original base station to the target base station, receives the data of the UE transmitted by the original base station, where the original base station maintains the UE when the target base station receives the data of the UE transmitted by the original base station. data transmission.
  • the data includes a downlink data packet
  • the target base station receives the data of the UE transmitted by the original base station, where the target base station receives the downlink data packet transmitted by the original base station, and when the target base station receives the downlink data packet transmitted by the original base station, The original base station transmits the downlink data packet to the UE.
  • the method further includes: receiving, by the target base station, a current HFN value of the downlink data packet transmitted by the original base station.
  • the data includes an uplink data packet
  • the target base station receives the data of the UE transmitted by the original base station, where the target base station receives the uplink data packet transmitted by the original base station, and when the target base station receives the uplink data packet transmitted by the original base station, The original base station transmits the uplink data packet to the gateway device.
  • the method further includes: receiving, by the target base station, a current HFN value of the uplink data packet transmitted by the original base station.
  • the method further includes: when the UE establishes a connection with the target base station, the target base station constructs a PDCP status report according to the received uplink data packet, and sends the status report to the UE.
  • the method further includes: determining, by the target base station, the HFN value of the downlink data packet subsequently transmitted to the UE according to the HFN value and the downlink data packet sent by the original base station.
  • the method further includes: determining, by the target base station, the HFN value of the uplink data packet transmitted from the UE according to the HFN value and the uplink data packet sent by the original base station.
  • the method further includes: when the original base station stops transmitting the downlink data packet of the UE, the target base station receives the SN status report transmitted by the original base station, where the SN status reports the downlink data packet of the UE constructed by the original base station.
  • SN status report, and the SN status report contains the target base station pair The PDCP SN information that the downlink packet of the UE should be allocated.
  • the method further includes: when the original base station stops transmitting the uplink data packet of the UE, the target base station receives the SN status report transmitted by the original base station, where the SN status reports the uplink data packet of the UE constructed by the original base station.
  • the SN status report, and the SN status report includes the reception status of the uplink data packet of the UE, and the expected HFN value of the uplink data packet for the UE.
  • the method further includes: receiving, by the target base station, a SN and/or HFN value of a PDU (Protocol Data Unit) of the current first unreceived downlink PDCP transmitted by the UE, where the first one is not received.
  • the downlink PDCP PDU is the first one after the UE successfully establishes a connection with the target base station.
  • the target base station receives the SN and HFN values of the PDU of the current first unreceived downlink PDCP transmitted by the UE, including: the target base station receives the current first one of the UE that is not transmitted by using the downlink PDCP status report.
  • the SN and HFN values of the downstream PDCP PDU are not transmitted by using the downlink PDCP status report.
  • the method further includes: receiving, by the target base station, the SN and/or HFN value of the current PDU of the uplink PDCP that does not receive the acknowledgement transmitted by the UE, where the first PDU of the uplink PDCP that does not receive the acknowledgement It means that the UE does not receive the acknowledgment PDU at the original base station.
  • the target base station receives the SN and HFN values of the PDU of the current first PDCP that does not receive the acknowledgment transmitted by the UE, and includes: the target base station receives the current first unacknowledgment acknowledgement that the UE transmits by using the downlink PDCP status report.
  • the SN and HFN values of the uplink PDCP PDU are optionally configured to receive the SN and HFN values of the uplink PDCP PDU.
  • the present embodiment is an embodiment of the target base station side corresponding to the embodiment shown in FIG. 3 and FIG. 4 .
  • the data transmission interruption time of the UE can be reduced, and the handover performance can be improved to meet the development needs of the network.
  • the data transmission method provided by the embodiment of the present disclosure is exemplified by introducing a plurality of examples.
  • Example 1 is as follows.
  • the original base station initiates a measurement process to the UE.
  • the uplink and downlink data transmission may be performed between the UE, the original base station, and the core network, where the core network may include an MME or a gateway device.
  • the original base station performs a handover decision.
  • the original base station sends a handover request to the target base station.
  • the original base station receives a handover response sent by the target base station.
  • the original base station sends a handover command to the UE.
  • the original base station sends a data pre-transmission to the target base station.
  • the original base station may transmit the data of the UE to the target base station.
  • this step can also be understood that the original base station starts to trigger data forwarding, the uplink forwarding data includes the data packet of the received UE, and the downlink forwarding data includes the data packet that has been sent to the UE.
  • the original base station sends an HFN information notification to the target base station.
  • the HFN information notification may be the current HFN value of the data transmitted in step 606.
  • the HFN information notification may include an HFN value + SN value of the first forwarded uplink data packet, and an HFN value + SN value of the first forwarded downlink data packet.
  • the uplink and downlink data are transmitted through the original base station.
  • the uplink data (that is, the data packet of the received UE) is directly transmitted to the core network. Additionally, steps 606, 607, and 608 can be performed simultaneously.
  • the UE starts to establish a connection with the target base station, or can be understood as the UE initiates a synchronization process with the target base station.
  • the UE leaves the old cell, that is, the UE stops communicating with the original base station.
  • steps 609 and 6010 can be performed simultaneously.
  • the UE reports a handover complete message to the target base station.
  • the UE initiates a PDCP status report of the downlink data
  • the target base station constructs and initiates a PDCP status report of the uplink data according to the received uplink forwarding data.
  • the UE and the target base station start to transmit uplink and downlink data, where
  • the downlink data may be a data packet forwarded from the original base station, and the uplink data may be selectively sent by the target base station to the core network according to the data packet forwarded by the original base station, that is, the forwarded data packets are excluded to avoid the original base station.
  • the data transmitted to the core network is duplicated.
  • the core network when performing the process, may perform handover downlink, and transmit an end marker to the original base station, and the core network may also perform uplink and downlink data transmission with the target base station, and the original base station may To transmit an end marker to the target base station.
  • the end marker transmitted by the original base station is used to notify the target base station that data pre-transmission stops, and the uplink and downlink data transmission of the original base station stops.
  • the target base station sends a context release to the original base station.
  • the original base station performs resource release.
  • Example 2 is as follows.
  • the UE initiates a measurement process to the primary base station.
  • the primary base station sends a secondary base station increase request to the target SeNB.
  • the target SeNB returns a secondary base station to the primary base station to increase the response.
  • the primary base station sends a secondary base station release command to the original SeNB.
  • the foregoing secondary base station adds a response and a forwarding address that the secondary base station release command can carry.
  • the primary base station sends a handover command to the UE.
  • the original SeNB initiates data forwarding to the target SeNB.
  • Step 706 can be understood as: the original SeNB starts to trigger data forwarding, the uplink forwarding data includes the data packet of the received UE, and the downlink forwarding data includes the data packet that has been sent to the UE;
  • the original SeNB transmits HFN information to the target base station by using the primary base station.
  • the step HFN information may include an HFN value + SN value of the first forwarded uplink data packet and an HFN value + SN value of the first forwarded downlink data packet.
  • the uplink and downlink data are transmitted by using the original SeNB.
  • the uplink and downlink data are transmitted by the original SeNB, and the uplink data (that is, the data packet of the received UE) is directly transmitted to the core network.
  • steps 706, 707, and 708 can be performed simultaneously.
  • the UE reports a handover complete message to the primary base station.
  • the primary base station sends a configuration complete message to the original SeNB.
  • the UE initiates a synchronization process with the target SeNB, or starts a connection establishment. At the same time, the UE stops communicating with the original SeNB.
  • the core network may also transmit downlink data to the original SeNB during the synchronization process, and the original SeNB may also perform downlink data forwarding to the target SeNB.
  • step 709 and step 7011 may have no chronological order.
  • the UE initiates a PDCP status report of the downlink data
  • the original SeNB may construct and initiate a PDCP status report of the uplink data according to the received uplink forwarding data.
  • the UE and the target SeNB may start transmitting uplink and downlink data, where the downlink data is used.
  • the data packet may be forwarded from the original SeNB, and the uplink data may be selectively sent by the target SeNB to the core network according to the data packet forwarded by the original SeNB, that is, the forwarded data packets are excluded to avoid the original base station.
  • the data transmitted by the core network is duplicated.
  • the primary base station performs a path switching process with the core network.
  • the primary base station may transmit an end marker to the core network and also transmit an end marker to the target SeNB.
  • the end tag transmitted by the primary base station is used to notify the target transmission end tag data to be forwarded, and the uplink and downlink data transmission of the original transmission end tag is stopped.
  • the UE performs uplink and downlink data transmission by using the target SeNB.
  • the core network sends a path switch completion message to the primary base station.
  • the primary base station sends an uplink and downlink release message to the original SeNB.
  • Example 3 is as follows.
  • the UE initiates a measurement process to the primary base station.
  • the primary base station sends a secondary base station increase request to the target SeNB.
  • the target SeNB returns a secondary base station to the primary base station to increase the response.
  • the primary base station sends a secondary base station release command to the original SeNB.
  • the foregoing secondary base station adds a response and a forwarding address that the secondary base station release command can carry.
  • the primary base station sends a handover command to the UE.
  • the primary base station downlink data bidirectional (Bi-cast).
  • the primary base station transmits to the original SeNB and the target SeNB in this step.
  • the original SeNB and the UE transmit uplink and downlink data.
  • the step HFN information may include an HFN value + SN value of the first forwarded uplink data packet and an HFN value + SN value of the first forwarded downlink data packet.
  • the original SeNB transmits uplink data to the primary base station.
  • the primary base station and the core network perform uplink and downlink data transmission.
  • steps 806, 807, 808, and 809 can be performed simultaneously.
  • the UE reports a handover complete message to the primary base station.
  • the primary base station sends a secondary base station to complete a configuration message to the target SeNB.
  • the UE initiates a synchronization process with the target SeNB, or starts a connection establishment.
  • steps 8010 and 8012 may have no chronological order.
  • the UE first sends a PDCP status report of the downlink data to the target SeNB, and the target SeNB has the capability to parse each PDCP PDU in the handover process.
  • the selective downlink data transmission data may be performed according to the content. That is, the data packets confirmed in the PDCP status report are excluded, and then the UE performs normal uplink and downlink data transmission with the target SeNB.
  • the primary base station performs uplink and downlink data transmission with the target SeNB.
  • the primary base station and the core network perform uplink and downlink data transmission.
  • the primary base station sends an uplink and downlink release message to the original SeNB.
  • FIG. 9 is a schematic structural diagram of an example of a base station provided by an embodiment of the present disclosure, where the base station 90 is an original base station. As shown in FIG. 9, the base station 90 includes a first transmission module 91 and a second transmission module 92.
  • the first transmission module 91 is configured to maintain data transmission of the UE during handover of the UE from the original base station to the target base station.
  • the second transmission module 92 is configured to transmit the data to the target base station while maintaining data transmission of the UE.
  • the data may include a downlink data packet, where the first transmission module 91 may be configured to transmit the downlink data packet to the UE, where the second transmission module 92 may be configured to send the downlink data packet to the UE, The downlink data packet is transmitted to the target base station.
  • the base station 90 may further include a third transmission module 93, where the third transmission module 93 is configured to transmit the current superframe number HFN value of the downlink data packet to the target base station.
  • the data may include an uplink data packet, where the first transmission module 91 may be configured to transmit the uplink data packet to the gateway device, where the second transmission module 92 may be configured to transmit the uplink data packet to the gateway device. And transmitting the uplink data packet to the target base station.
  • the base station 90 further includes a fourth transmission module 94, and the fourth transmission module 94 is configured to transmit a current HFN value of the uplink data packet to the target base station.
  • the uplink data packet transmitted by the original base station to the target base station is used to enable the target base station to establish a status report of the packet data convergence protocol PDCP according to the received uplink data packet when the UE establishes a connection with the target base station. And sent by the target base station to the UE.
  • the HFN value of the downlink data packet sent by the original base station to the target base station is used to enable the target base station to determine the HFN value of the downlink data packet that is subsequently transmitted to the UE according to the HFN value and the downlink data packet sent by the original base station.
  • the HFN value of the uplink data packet sent by the original base station to the target base station is used to enable the target base station to determine the HFN value of the subsequent uplink data packet transmitted by the UE according to the HFN value and the uplink data packet sent by the original base station.
  • the base station 90 further includes a fifth transmission module 95, where the fifth transmission module 95 is configured to construct a sequence of downlink data packets of the UE when the original base station stops transmitting the downlink data packet of the UE.
  • No. SN status report and the SN status report is sent to the target base station, where the SN status report includes PDCP SN information that the target base station should allocate for the downlink data packet of the UE.
  • the base station 90 further includes a sixth transmission module 96, where the sixth transmission module 96 is configured to construct an SN of the uplink data packet of the UE when the original base station stops transmitting the uplink data packet of the UE.
  • the status report reports the SN status report to the target base station, wherein the SN status report includes a reception status of the uplink data packet of the UE, and an expected HFN value for the uplink data packet of the UE.
  • the base station 90 further includes a stopping module 97, where the stopping module 97 is configured to stop sending the uplink data packet of the UE to the gateway device when the original base station stops transmitting the uplink data packet of the UE.
  • the foregoing base station 90 may be the original base station in the embodiment shown in FIG. 1 to FIG. 8. Any embodiment of the original base station in the embodiment shown in FIG. 1 to FIG. 8 may be used in this embodiment.
  • the foregoing base station 90 is implemented, and achieves the same beneficial effects, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of an example of a UE according to an embodiment of the present disclosure.
  • the UE 140 includes a first transmission module 141, where the first transmission module 141 is configured to switch from the original base station.
  • the data transmission of the UE is maintained with the original base station, and when the UE and the original base station maintain the data transmission of the UE, the original base station also transmits the data of the UE to the target base station.
  • the data includes a downlink data packet
  • the first transmission module is configured to receive the downlink data packet transmitted by the original base station, and when the UE receives the downlink data packet transmitted by the original base station, the original base station transmits the downlink data packet to the target base station.
  • the downstream packet is configured to receive the downlink data packet transmitted by the original base station, and when the UE receives the downlink data packet transmitted by the original base station, the original base station transmits the downlink data packet to the target base station.
  • the downstream packet is configured to receive the downlink data packet transmitted by the original base station, and when the UE receives the downlink data packet transmitted by the original base station, the original base station transmits the downlink data packet to the target base station.
  • the downstream packet is configured to receive the downlink data packet transmitted by the original base station, and when the UE receives the downlink data packet transmitted by the original base station, the original base station transmits the downlink data packet to the target base station.
  • the data includes an uplink data packet
  • the first transmission module is configured to send the uplink data packet to the original base station, and when the UE transmits the uplink data packet to the original base station, the original base station transmits the uplink to the target base station. data pack.
  • the UE 140 further includes a receiving module 142, where the receiving module 142 is configured to receive a status report of the PDCP transmitted by the target base station, where the status report of the PDCP is the target base station at the UE and the target base station.
  • the target base station reports the status of the PDCP based on the received uplink data packet.
  • the HFN value of the downlink data packet transmitted by the UE in the subsequent receiving target base station is determined by the target base station according to the HFN value and the downlink data packet of the downlink data packet sent by the original base station.
  • the HFN value of the uplink data packet that is sent by the UE to the target base station is determined by the target base station according to the HFN value and the uplink data packet of the uplink data packet sent by the original base station.
  • the PDCP SN information of the downlink data packet of the UE is included in the SN status report sent by the target base station, and is the target base station, and is the target base station.
  • the HFN value of the uplink data packet of the UE is included in the SN status report sent by the target base station and sent by the original base station, and is an uplink data packet for the UE.
  • the expected HFN value, and the SN status report further includes the reception status of the uplink data packet of the UE.
  • the UE 140 further includes a second transmission module 143, and the second transmission module 143 is configured to transmit, to the target base station, the SN and/or HFN of the PDU of the current first unreceived downlink PDCP.
  • the second transmission module 143 is configured to transmit, by using the downlink PDCP status report, the SN and HFN values of the PDU of the current first unreceived downlink PDCP to the target base station.
  • the UE 140 further includes a third transmission module 144, where the third transmission module 144 is configured to transmit, to the target base station, the first PDU of the uplink PDCP that does not receive the acknowledgement.
  • the third transmission module 144 is configured to transmit, by using the downlink PDCP status report, the SN and HFN values of the PDU of the current uplink PDCP that does not receive the acknowledgement to the target base station.
  • the foregoing UE 140 may be the UE in the embodiment shown in FIG. 1 to FIG. 8 , and any implementation manner of the UE in the embodiment shown in FIG. 1 to FIG. 8 may be used in this embodiment.
  • the foregoing UE 140 is implemented, and achieves the same beneficial effects, and details are not described herein again.
  • FIG. 18 is a schematic structural diagram of another example of a base station provided by an embodiment of the present disclosure, where the base station 180 is a target base station.
  • the base station 180 includes a first receiving module 181, and the first receiving module 181 is configured to receive data of the UE transmitted by the original base station during a handover process of the UE from the original base station to the target base station, where When the target base station receives the data of the UE transmitted by the original base station, the original base station maintains the data transmission of the UE.
  • the data includes a downlink data packet
  • the first receiving module 181 is configured to receive the downlink data packet that is transmitted by the original base station, and when the target base station receives the downlink data packet that is transmitted by the original base station, the original base station sends the downlink data packet to the UE.
  • the downlink packet is transmitted.
  • the base station 180 further includes a second receiving module 182, and the second receiving module 182 is configured to receive a current HFN value of the downlink data packet transmitted by the original base station.
  • the data includes an uplink data packet
  • the first receiving module 181 is configured to receive the uplink data packet transmitted by the original base station, and when the target base station receives the uplink data packet transmitted by the original base station, the original base station transmits the uplink data packet to the gateway device.
  • the upstream packet is configured to receive the uplink data packet transmitted by the original base station, and when the target base station receives the uplink data packet transmitted by the original base station, the original base station transmits the uplink data packet to the gateway device.
  • the upstream packet is configured to receive the uplink data packet transmitted by the original base station, and when the target base station receives the uplink data packet transmitted by the original base station, the original base station transmits the uplink data packet to the gateway device.
  • the upstream packet is configured to receive the uplink data packet transmitted by the original base station, and when the target base station receives the uplink data packet transmitted by the original base station, the original base station transmits the uplink data packet to the gateway device.
  • the upstream packet is configured to receive the up
  • the base station 180 further includes a third receiving module 183, and the third receiving module 183 is configured to receive a current HFN value of the uplink data packet transmitted by the original base station.
  • the base station 180 further includes a transmission module 184, where the transmission module 184 is configured to: when the UE establishes a connection with the target base station, the target base station constructs a PDCP status report according to the received uplink data packet, and Sent to the UE.
  • the base station 180 further includes a first determining module 185, where the first determining module 185 is configured to determine, according to the HFN value and the downlink data packet sent by the original base station, the downlink data packet that is subsequently transmitted to the UE. HFN value.
  • the base station 180 further includes a second determining module 186, where the second determining The module 186 is configured to determine an HFN value of an uplink data packet transmitted from the UE according to the HFN value and the uplink data packet sent by the original base station.
  • the base station 180 further includes a fourth receiving module 187, where the fourth receiving module 187 is configured to receive an SN status report transmitted by the original base station when the original base station stops transmitting the downlink data packet of the UE.
  • the SN status report reports the SN status of the downlink data packet of the UE constructed by the original base station, and the SN status report includes the PDCP SN information that the target base station should allocate for the downlink data packet of the UE.
  • the base station 180 further includes a fifth receiving module 188, where the fifth receiving module 188 is configured to receive an SN status report transmitted by the original base station when the original base station stops transmitting the uplink data packet of the UE.
  • the SN status report reports the SN status of the uplink data packet of the UE constructed by the original base station, and the SN status report includes the receiving status of the uplink data packet of the UE, and the expected HFN of the uplink data packet for the UE. value.
  • the base station 180 further includes a sixth receiving module 189, where the sixth receiving module 189 is configured to receive the SN and/or the PDU of the current first unreceived downlink PDCP transmitted by the UE.
  • the HFN value, wherein the first PDU of the downlink PDCP that is not received is the first one after the UE successfully establishes a connection with the target base station.
  • the sixth receiving module 189 is configured to receive SN and HFN values of the PDU of the current first unreceived downlink PDCP that is transmitted by the UE by using the downlink PDCP status report.
  • the base station 180 further includes a seventh receiving module 1810, where the seventh receiving module 1810 is configured to receive, by the UE, the SN and/or the current first PDU of the uplink PDCP that does not receive the acknowledgement.
  • the HFN value wherein the first PDU of the uplink PDCP that does not receive the acknowledgment refers to the PDU that the UE did not receive the acknowledgment at the original base station.
  • the seventh receiving module 1810 is configured to receive, by using the downlink PDCP status report, the SN and HFN values of the current first PDU of the uplink PDCP that does not receive the acknowledgement.
  • the foregoing base station 180 may be the target base station in the embodiment shown in FIG. 1 to FIG. 8. Any embodiment of the target base station in the embodiment shown in FIG. 1 to FIG. 8 may be used in this embodiment.
  • the foregoing base station 180 is implemented, and achieves the same beneficial effects, and details are not described herein again. Referring to FIG. 28, a structure of a base station is shown.
  • the base station is an original base station, and the base station includes a processor 2800, a transceiver 2810, a memory 2820, a user interface 2830, and a bus interface.
  • the device 2800 is configured to read the program in the memory 2820, and perform the following process: during the handover process of the UE from the original base station to the target base station, the data transmission of the UE is maintained by the transceiver 2810; while maintaining the data transmission of the UE The data is transmitted to the target base station by the transceiver 2810.
  • the transceiver 2810 is configured to receive and transmit data under the control of the processor 2800.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2800 and various circuits of memory represented by memory 2820.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 2810 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 2830 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 2800 is responsible for managing the bus architecture and general processing, and the memory 2820 can store data used by the processor 2800 in performing operations.
  • the data includes a downlink data packet
  • maintaining the data transmission of the UE includes: transmitting the downlink data packet to the UE.
  • Transmitting the data to the target base station while maintaining the data transmission of the UE includes: transmitting the downlink data packet to the target base station when the downlink data packet is sent to the UE.
  • the processor 2800 is further configured to: transmit, by the transceiver 2810, the current HFN value of the downlink data packet to the target base station.
  • the data includes an uplink data packet
  • maintaining the data transmission of the UE includes: transmitting the uplink data packet to the gateway device.
  • the transmitting the data to the target base station includes: transmitting the uplink data packet to the target base station when transmitting the uplink data packet to the gateway device.
  • the processor 2800 is further configured to: transmit, by the transceiver 2810, the current HFN value of the uplink data packet to the target base station.
  • the uplink data packet transmitted by the original base station to the target base station is used to enable the target base station to establish a PDCP status report according to the received uplink data packet when the UE establishes a connection with the target base station, and the target base station is configured by the target base station. Sent to the UE.
  • the HFN value of the downlink data packet sent by the original base station to the target base station is used to make the target base
  • the station determines the HFN value of the downlink data packet subsequently transmitted to the UE according to the HFN value and the downlink data packet sent by the original base station.
  • the HFN value of the uplink data packet sent by the original base station to the target base station is used to enable the target base station to determine the HFN value of the subsequent uplink data packet transmitted by the UE according to the HFN value and the uplink data packet sent by the original base station.
  • the processor 2800 is further configured to: when the original base station stops the transmission of the downlink data packet of the UE, construct an SN status report of the downlink data packet of the UE, and send the SN status report to the target base station by using the transceiver 2810, where
  • the SN status report includes PDCP SN information that the target base station should allocate for the downlink data packet of the UE.
  • the processor 2800 is further configured to: when the original base station stops transmitting the uplink data packet of the UE, construct an SN status report of the uplink data packet of the UE, and send the SN status report to the target base station by using the transceiver 2810, where
  • the SN status report includes a reception status of the uplink data packet of the UE, and an expected HFN value for the uplink data packet of the UE.
  • the processor 2800 is further configured to stop sending the uplink data packet of the UE to the gateway device when the original base station stops transmitting the uplink data packet of the UE.
  • the foregoing base station may be the original base station in the embodiment shown in FIG. 1-8, and any implementation manner of the original base station in the embodiment shown in FIG. 1 to FIG. 8 may be used in this embodiment.
  • the above base station implements and achieves the same beneficial effects, and details are not described herein again.
  • a structure of a UE including: a processor 2900, a transceiver 2910, a memory 2920, a user interface 2930, and a bus interface, wherein the processor 2900 is configured to read a program in the memory 2920.
  • the following process is performed: during the handover of the UE from the original base station to the target base station, the data transmission of the UE is maintained by the transceiver 2910 and the original base station, wherein when the UE and the original base station maintain the data transmission of the UE, the original The base station also transmits the data of the UE to the target base station.
  • the transceiver 2910 is configured to receive and transmit data under the control of the processor 2900.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2900 and various circuits of memory represented by memory 2920.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, as is well known in the art, and therefore, this article is no longer It is further described.
  • the bus interface provides an interface.
  • Transceiver 2910 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 2930 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 2900 is responsible for managing the bus architecture and general processing, and the memory 2920 can store data used by the processor 2900 in performing operations.
  • the data includes a downlink data packet
  • maintaining, by the original base station, the data transmission of the UE includes receiving the downlink data packet that is transmitted by the original base station, and when the UE receives the downlink data packet from the original base station, the original base station sends the downlink data packet to the target.
  • the base station transmits the downlink data packet.
  • the data includes an uplink data packet
  • the data transmission that is performed by the original base station to the UE includes the uplink data packet that is transmitted to the original base station, and when the UE transmits the uplink data packet to the original base station, the original base station sends the uplink data packet to the target.
  • the base station transmits the uplink data packet.
  • the processor 2900 is further configured to receive, by the transceiver 2910, a status report of the PDCP transmitted by the target base station, where the status report of the PDCP is that the target base station receives the connection by the target base station when the UE establishes a connection with the target base station.
  • the status report of the PDCP constructed by the upstream packet.
  • the HFN value of the downlink data packet transmitted by the UE in the subsequent receiving target base station is determined by the target base station according to the HFN value and the downlink data packet of the downlink data packet sent by the original base station.
  • the HFN value of the uplink data packet that is sent by the UE to the target base station is determined by the target base station according to the HFN value and the uplink data packet of the uplink data packet sent by the original base station.
  • the PDCP SN information of the downlink data packet of the UE is included in the SN status report sent by the target base station, and is the target base station, and is the target base station.
  • the HFN value of the uplink data packet of the UE is included in the SN status report sent by the target base station and sent by the original base station, and is an uplink data packet for the UE.
  • the expected HFN value, and the SN status report further includes the reception status of the uplink data packet of the UE.
  • the processor 2900 is further configured to transmit, by the transceiver 2910, the SN and/or HFN value of the protocol data unit PDU of the current first unreceived downlink PDCP to the target base station, where the first one is not received.
  • the downlink PDCP PDU indicates that the UE is not correct in the first base station. Received PDU.
  • the SN and HFN values of the PDU of the current first unreceived downlink PDCP are transmitted to the target base station, including: transmitting, by using the downlink PDCP status report, the PDU of the current first unreceived downlink PDCP to the target base station. SN and HFN values.
  • the processor 2900 is further configured to transmit, by the transceiver 2910, the SN and/or HFN value of the PDU of the current uplink PDCP that does not receive the acknowledgement to the target base station, where the first uplink PDCP that does not receive the acknowledgement
  • the PDU refers to the PDU that the UE did not receive an acknowledgment at the original base station.
  • the SN and HFN values of the PDU of the current uplink PDCP that does not receive the acknowledgment are transmitted to the target base station, including: transmitting, by using the downlink PDCP status report, the PDU of the current uplink PDCP that does not receive the acknowledgement to the target base station. SN and HFN values.
  • the foregoing UE may be the UE in the embodiment shown in FIG. 1 to FIG. 8 , and any implementation manner of the UE in the embodiment shown in FIG. 1 to FIG. 8 may be the foregoing in the embodiment.
  • the UE implements and achieves the same beneficial effects, and details are not described herein again.
  • a structure of a base station which is a target base station, and includes a processor 3000, a transceiver 3010, a memory 3020, a user interface 3030, and a bus interface, wherein the processor 3000 is configured to read
  • the program in the memory 3020 performs the following process: in the handover process of the UE switching from the original base station to the target base station, receiving, by the transceiver 3010, the data of the UE transmitted by the original base station, where the target base station receives the UE transmitted by the original base station.
  • the original base station maintains the data transmission of the UE.
  • the transceiver 3010 is configured to receive and transmit data under the control of the processor 3000.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 3000 and various circuits of memory represented by memory 3020.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 3010 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 3030 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 3000 is responsible for managing the bus architecture and general processing, and the memory 3020 can store data used by the processor 3000 when performing operations.
  • the data includes a downlink data packet
  • receiving the data of the UE transmitted by the original base station includes: receiving the downlink data packet transmitted by the original base station, and when the target base station receives the downlink data packet transmitted by the original base station, the original base station may The UE transmits the downlink data packet.
  • the processor 3000 is further configured to receive, by the transceiver 3010, a current HFN value of the downlink data packet transmitted by the original base station.
  • the data includes an uplink data packet
  • receiving the data of the UE transmitted by the original base station includes receiving the uplink data packet transmitted by the original base station, and when the target base station receives the uplink data packet transmitted by the original base station, the original base station sends the uplink data packet to the gateway.
  • the device transmits the upstream packet.
  • the processor 3000 is further configured to receive, by the transceiver 3010, a current HFN value of the uplink data packet transmitted by the original base station.
  • the processor 3000 is further configured to: when the UE establishes a connection with the target base station, the target base station constructs a PDCP status report according to the received uplink data packet, and sends the status report to the UE by using the transceiver 3010.
  • the processor 3000 is further configured to determine, according to the HFN value and the downlink data packet sent by the original base station, an HFN value of the downlink data packet that is subsequently transmitted to the UE.
  • the processor 3000 is further configured to determine, according to the HFN value and the uplink data packet sent by the original base station, an HFN value of the uplink data packet that is subsequently transmitted from the UE.
  • the processor 3000 is further configured to: when the original base station stops the transmission of the downlink data packet of the UE, receive, by the transceiver 3010, an SN status report transmitted by the original base station, where the SN status report is configured by the original base station of the UE.
  • the SN status report of the downlink data packet, and the SN status report includes PDCP SN information that the target base station should allocate for the downlink data packet of the UE.
  • the processor 3000 is further configured to: when the original base station stops transmitting the uplink data packet of the UE, receive, by the transceiver 3010, an SN status report transmitted by the original base station, where the SN status report is configured by the original base station of the UE.
  • the SN status report of the uplink data packet, and the SN status report includes the reception status of the uplink data packet of the UE, and the expected HFN value of the uplink data packet for the UE.
  • the processor 3000 is further configured to receive, by the transceiver 3010, the current number of the UE transmission.
  • the SN and/or HFN value of a PDU of the downlink PDCP that is not received, wherein the first PDU of the downlink PDCP that is not received is the first one after the UE successfully establishes a connection with the target base station.
  • receiving the SN and HFN values of the PDU of the current first unreceived downlink PDCP transmitted by the UE including receiving, by the UE, the current first unreceived downlink PDCP PDU transmitted by the downlink PDCP status report.
  • SN and HFN values including receiving, by the UE, the current first unreceived downlink PDCP PDU transmitted by the downlink PDCP status report.
  • the processor 3000 is further configured to receive, by the transceiver 3010, an SN and/or HFN value of the currently transmitted PDU of the uplink PDCP that is not received by the UE, where the first uplink does not receive the acknowledgement.
  • the PDCP PDU refers to the PDU that the UE did not receive an acknowledgment at the original base station.
  • receiving, by the UE, the SN and HFN values of the current first PDU of the uplink PDCP that does not receive the acknowledgment including receiving, by the UE, the current first PDU of the uplink PDCP that does not receive the acknowledgment transmitted by the downlink PDCP status report.
  • SN and HFN values including receiving, by the UE, the current first PDU of the uplink PDCP that does not receive the acknowledgment transmitted by the downlink PDCP status report.
  • the foregoing base station may be the target base station in the embodiment shown in FIG. 1-8, and any implementation manner of the target base station in the embodiment shown in FIG. 1 to FIG. 8 may be used in this embodiment.
  • the above base station is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • FIG. 31 is a schematic structural diagram of an example of a data transmission system according to an embodiment of the present disclosure.
  • an example of the data transmission system includes: an original base station 3101, configured to maintain data transmission of the UE during handover of the UE 3102 from the original base station 3101 to the target base station 3103; and the UE 3102 is configured to During the handover of the UE3102 from the original base station 3101 to the target base station 3103, the original base station 3101 maintains the data transmission of the UE3102; the original base station 3101 is further configured to transmit the data to the target base station 3103 while maintaining the data transmission of the UE3102.
  • the target base station 3103 is configured to receive data of the UE3102 transmitted by the original base station 3101 during the handover process of the UE3102 from the original base station 3101 to the target base station 3103.
  • the original base station 3101, the UE 3102, and the target base station 3103 may be the original base station, the UE, and the target base station, which are described in the embodiments shown in FIG. The same technical effect can be achieved by the embodiment, and details are not described herein again.
  • the disclosed methods and apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative,
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method of various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种数据传输方法、用户终端、基站和系统,该方法可包括:在UE从原基站切换到目标基站的切换过程中,原基站保持该用户终端的数据传输;在保持该用户终端的数据传输时,原基站向目标基站传输该数据。

Description

一种数据传输方法、用户终端、基站和系统
相关申请的交叉引用
本申请主张在2016年5月13日在中国提交的中国专利申请号No.201610320054.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种数据传输方法、用户终端(UE,User Equipment)、基站和系统。
背景技术
随着移动应用爆炸式的增长,对网络传输速度的要求变得越来越高。因此,更高频谱以及更高带宽被引入到移动网络中。然而,在当前网络节点的切换机制中,在UE从原基站切换到目标基站的过程中,UE与原基站的数据传输会中断,这样会存在数据中断时延,从而导致切换性能下降,以无法适应网络的发展需求。
发明内容
本公开的目的在于提供一种数据传输方法、UE、基站和系统,解决了网络节点切换无法适应网络的发展需求的问题。
为了达到上述目的,本公开实施例提供一种数据传输方法,包括:在UE从原基站切换到目标基站的切换过程中,所述原基站保持所述UE的数据传输;以及在保持所述UE的数据传输时,所述原基站向所述目标基站传输所述数据。
可选的,所述数据包括下行数据包,所述原基站保持所述UE的数据传输,包括:所述原基站向所述UE传输所述下行数据包。
所述在保持所述UE的数据传输时,所述原基站向所述目标基站传输所述数据,包括:在向所述UE发送所述下行数据包时,所述原基站向所述目标基站传输所述下行数据包。
可选的,所述方法还包括:所述原基站向所述目标基站传输所述下行数据包的当前超帧号(HFN,Hyper Frame Number)值。
可选的,所述数据包括上行数据包,所述原基站保持所述UE的数据传输,包括:所述原基站向网关设备传输所述上行数据包。
所述在保持所述UE的数据传输时,所述原基站向所述目标基站传输所述数据,包括:在向所述网关设备传输所述上行数据包时,所述原基站向所述目标基站传输所述上行数据包。
可选的,所述方法还包括:所述原基站向所述目标基站传输所述上行数据包的当前HFN值。
可选的,所述原基站向所述目标基站传输的上行数据包用于,使所述目标基站在所述UE与所述目标基站建立连接成功时,由所述目标基站根据接收的上行数据包构建分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)的状态报告,并由所述目标基站发送给所述UE。
可选的,所述原基站向所述目标基站发送的下行数据包的HFN值用于,使所述目标基站根据所述原基站发送的HFN值和下行数据包确定后续向所述UE传输的下行数据包的HFN值。
可选的,所述原基站向所述目标基站发送的上行数据包的HFN值用于,使所述目标基站根据所述原基站发送的HFN值和上行数据包确定后续来自所述UE传输的上行数据包的HFN值。
可选的,所述方法还包括:在所述原基站停止所述UE的下行数据包的传输时,构建所述UE的下行数据包的序列号(SN,Serial Number)状态报告,并向所述目标基站发送所述SN状态报告,其中,所述SN状态报告包含所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
可选的,所述方法还包括:在所述原基站停止所述UE的上行数据包的传输时,构建所述UE的上行数据包的SN状态报告,并向所述目标基站发送所述SN状态报告,其中,所述SN状态报告包含所述UE的上行数据包的接收状态,以及针对所述UE的上行数据包的期待的HFN值。
可选的,所述方法还包括:在所述原基站停止所述UE的上行数据包的传输时,所述原基站停止向网关设备发送所述UE的上行数据包。
本公开实施例还提供一种数据传输方法,包括:在UE从原基站切换到目标基站的切换过程中,所述UE与所述原基站保持所述UE的数据传输,其中,在所述UE与所述原基站保持所述UE的数据传输时,所述原基站还向所述目标基站传输所述UE的数据。
可选的,所述数据包括下行数据包,所述UE与所述原基站保持所述UE的数据传输,包括:所述UE接收所述原基站传输的所述下行数据包,且在所述UE接收所述原基站传输的所述下行数据包时,所述原基站会向所述目标基站传输所述下行数据包。
可选的,所述数据包括上行数据包,所述UE与所述原基站保持所述UE的数据传输,包括:所述UE向所述原基站传输的所述上行数据包,且在所述UE向所述原基站传输所述上行数据包时,所述原基站会向所述目标基站传输所述上行数据包。
可选的,所述方法还包括:所述UE接收所述目标基站传输的PDCP的状态报告,其中,所述PDCP的状态报告是所述目标基站在所述UE与所述目标基站建立连接成功时,由所述目标基站根据接收的上行数据包构建的PDCP的状态报告。
可选的,所述UE在后续接收所述目标基站传输的下行数据包的HFN值是,所述目标基站根据所述原基站发送的下行数据包的HFN值和下行数据包确定的。
可选的,所述UE在后续向所述目标基站传输的上行数据包的HFN值是,使所述目标基站根据所述原基站发送的上行数据包的HFN值和上行数据包确定的。
可选的,在所述原基站停止所述UE的下行数据包的传输后,所述UE的下行数据包的PDCP SN信息是,所述目标基站接收所述原基站发送的SN状态报告包含的,且是所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
可选的,在所述原基站停止所述UE的上行数据包的传输后,所述UE的上行数据包的HFN值是所述目标基站接收所述原基站发送的SN状态报告包含的,且是针对所述UE的上行数据包的期待的HFN值,且所述SN状态 报告还包含所述UE的上行数据包的接收状态。
可选的,所述方法还包括:所述UE向所述目标基站传输当前第一个没有接收到的下行PDCP的协议数据单元PDU的SN和/或HFN值,其中,所述第一个没有接收到的下行PDCP的PDU指所述UE在所述原基站第一个没有正确接收的PDU。
可选的,所述UE向所述目标基站传输当前第一个没有接收到的下行PDCP的协议数据单元(PDU,Protocol Data Unit)的SN和HFN值,包括:
所述UE通过下行PDCP状态报告向所述目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
可选的,所述方法还包括:所述UE向所述目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收确认的上行PDCP的PDU是指所述UE在所述原基站第一个没有接收确认的PDU。
可选的,所述UE向所述目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值,包括:所述UE通过下行PDCP状态报告向所述目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
本公开实施例还提供一种数据传输方法,包括:在UE从原基站切换到目标基站的切换过程中,所述目标基站接收所述原基站传输的所述UE的数据,其中,在所述目标基站接收所述原基站传输的所述UE的数据时,所述原基站保持所述UE的数据传输。
可选的,所述数据包括下行数据包,所述目标基站接收所述原基站传输的所述UE的数据,包括:所述目标基站接收所述原基站传输的所述下行数据包,在所述目标基站接收所述原基站传输的所述下行数据包时,所述原基站会向所述UE传输所述下行数据包。
可选的,所述方法还包括:所述目标基站接收所述原基站传输的所述下行数据包的当前HFN值。
可选的,所述数据包括上行数据包,所述目标基站接收所述原基站传输的所述UE的数据,包括:所述目标基站接收所述原基站传输的所述上行数 据包,在所述目标基站接收所述原基站传输的所述上行数据包时,所述原基站会向网关设备传输所述上行数据包。
可选的,所述方法还包括:所述目标基站接收所述原基站传输的所述上行数据包的当前HFN值。
可选的,所述方法还包括:所述目标基站在所述UE与所述目标基站建立连接成功时,所述目标基站根据接收的上行数据包构建PDCP的状态报告,并发送给所述UE。
可选的,所述方法还包括:所述目标基站根据所述原基站发送的HFN值和下行数据包确定后续向所述UE传输的下行数据包的HFN值。
可选的,所述方法还包括:所述目标基站根据所述原基站发送的HFN值和上行数据包确定后续来自所述UE传输的上行数据包的HFN值。
可选的,所述方法还包括:在所述原基站停止所述UE的下行数据包的传输时,所述目标基站接收所述原基站传输的SN状态报告,其中,所述SN状态报告由所述原基站构建的所述UE的下行数据包的SN状态报告,且所述SN状态报告包含所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
可选的,所述方法还包括:在所述原基站停止所述UE的上行数据包的传输时,所述目标基站接收所述原基站传输的SN状态报告,其中,所述SN状态报告由所述原基站构建的所述UE的上行数据包的SN状态报告,且所述SN状态报告包含所述UE的上行数据包的接收状态,以及针对所述UE的上行数据包的期待的HFN值。
可选的,所述方法还包括:所述目标基站接收所述UE传输的当前第一个没有接收到的下行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收到的下行PDCP的PDU是在所述UE与所述目标基站建立连接成功后的第一个。
可选的,所述目标基站接收所述UE传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值,包括:所述目标基站接收所述UE通过下行PDCP状态报告传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
可选的,所述方法还包括:所述目标基站接收所述UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收确认的上行PDCP的PDU是指所述UE在所述原基站第一个没有接收确认的PDU。
可选的,所述目标基站接收所述UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值,包括:所述目标基站接收所述UE通过下行PDCP状态报告传输的当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
本公开实施例还提供一种基站,所述基站为原基站,所述基站包括:第一传输模块,用于在UE从原基站切换到目标基站的切换过程中,保持所述UE的数据传输;第二传输模块,用于在保持所述UE的数据传输时,向所述目标基站传输所述数据。
可选的,所述数据包括下行数据包,所述第一传输模块用于向所述UE传输所述下行数据包;所述第二传输模块用于在向所述UE发送所述下行数据包时,向所述目标基站传输所述下行数据包。
可选的,所述基站还包括:第三传输模块,用于向所述目标基站传输所述下行数据包的当前超帧号HFN值。
可选的,所述数据包括上行数据包,所述第一传输模块用于向网关设备传输所述上行数据包;所述第二传输模块用于在向所述网关设备传输所述上行数据包时,向所述目标基站传输所述上行数据包。
可选的,所述基站还包括:第四传输模块,用于向所述目标基站传输所述上行数据包的当前HFN值。
可选的,所述原基站向所述目标基站传输的上行数据包用于,使所述目标基站在所述UE与所述目标基站建立连接成功时,由所述目标基站根据接收的上行数据包构建分组数据汇聚协议PDCP的状态报告,并由所述目标基站发送给所述UE。
可选的,所述原基站向所述目标基站发送的下行数据包的HFN值用于,使所述目标基站根据所述原基站发送的HFN值和下行数据包确定后续向所述UE传输的下行数据包的HFN值。
可选的,所述原基站向所述目标基站发送的上行数据包的HFN值用于,使所述目标基站根据所述原基站发送的HFN值和上行数据包确定后续来自所述UE传输的上行数据包的HFN值。
可选的,所述基站还包括:第五传输模块,用于在所述原基站停止所述UE的下行数据包的传输时,构建所述UE的下行数据包的序列号SN状态报告,并向所述目标基站发送所述SN状态报告,其中,所述SN状态报告包含所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
可选的,所述基站还包括:第六传输模块,用于在所述原基站停止所述UE的上行数据包的传输时,构建所述UE的上行数据包的SN状态报告,并向所述目标基站发送所述SN状态报告,其中,所述SN状态报告包含所述UE的上行数据包的接收状态,以及针对所述UE的上行数据包的期待的HFN值。
可选的,所述基站还包括:停止模块,用于在所述原基站停止所述UE的上行数据包的传输时,所述原基站停止向网关设备发送所述UE的上行数据包。
本公开实施例还提供一种UE,包括:第一传输模块,用于在UE从原基站切换到目标基站的切换过程中,与所述原基站保持所述UE的数据传输,其中,在所述UE与所述原基站保持所述UE的数据传输时,所述原基站还向所述目标基站传输所述UE的数据。
可选的,所述数据包括下行数据包,所述第一传输模块用于接收所述原基站传输的所述下行数据包,且在所述UE接收所述原基站传输的所述下行数据包时,所述原基站会向所述目标基站传输所述下行数据包。
可选的,所述数据包括上行数据包,所述第一传输模块用于向所述原基站传输的所述上行数据包,且在所述UE向所述原基站传输的所述上行数据包时,所述原基站会向所述目标基站传输所述上行数据包。
可选的,所述UE还包括:接收模块,用于接收所述目标基站传输的PDCP的状态报告,其中,所述PDCP的状态报告是所述目标基站在所述UE与所述目标基站建立连接成功时,由所述目标基站根据接收的上行数据包构建的PDCP的状态报告。
可选的,所述UE在后续接收所述目标基站传输的下行数据包的HFN值是,所述目标基站根据所述原基站发送的下行数据包的HFN值和下行数据包确定的。
可选的,所述UE在后续向所述目标基站传输的上行数据包的HFN值是,使所述目标基站根据所述原基站发送的上行数据包的HFN值和上行数据包确定的。
可选的,在所述原基站停止所述UE的下行数据包的传输后,所述UE的下行数据包的PDCP SN信息是,所述目标基站接收所述原基站发送的SN状态报告包含的,且是所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
可选的,在所述原基站停止所述UE的上行数据包的传输后,所述UE的上行数据包的HFN值是所述目标基站接收所述原基站发送的SN状态报告包含的,且是针对所述UE的上行数据包的期待的HFN值,且所述SN状态报告还包含所述UE的上行数据包的接收状态。
可选的,所述UE还包括:第二传输模块,用于向所述目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收到的下行PDCP的PDU指所述UE在所述原基站第一个没有正确接收的PDU。
可选的,所述第二传输模块用于通过下行PDCP状态报告向所述目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
可选的,所述UE还包括:第三传输模块,用于向所述目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收确认的上行PDCP的PDU是指所述UE在所述原基站第一个没有接收确认的PDU。
可选的,所述第三传输模块用于通过下行PDCP状态报告向所述目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
本公开实施例还提供一种基站,所述基站为目标基站,包括:第一接收模块,用于在UE从原基站切换到目标基站的切换过程中,接收所述原基站传输的所述UE的数据,其中,在所述目标基站接收所述原基站传输的所述 UE的数据时,所述原基站保持所述UE的数据传输。
可选的,所述数据包括下行数据包,所述第一接收模块用于接收所述原基站传输的所述下行数据包,在所述目标基站接收所述原基站传输的所述下行数据包时,所述原基站会向所述UE传输所述下行数据包。
可选的,所述基站还包括:第二接收模块,用于接收所述原基站传输的所述下行数据包的当前HFN值。
可选的,所述数据包括上行数据包,所述第一接收模块用于接收所述原基站传输的所述上行数据包,在所述目标基站接收所述原基站传输的所述上行数据包时,所述原基站会向网关设备传输所述上行数据包。
可选的,所述基站还包括:第三接收模块,用于接收所述原基站传输的所述上行数据包的当前HFN值。
可选的,所述基站还包括:传输模块,用于在所述UE与所述目标基站建立连接成功时,所述目标基站根据接收的上行数据包构建PDCP的状态报告,并发送给所述UE。
可选的,所述基站还包括:第一确定模块,用于根据所述原基站发送的HFN值和下行数据包确定后续向所述UE传输的下行数据包的HFN值。
可选的,所述基站还包括:第二确定模块,用于根据所述原基站发送的HFN值和上行数据包确定后续来自所述UE传输的上行数据包的HFN值。
可选的,所述基站还包括:第四接收模块,用于在所述原基站停止所述UE的下行数据包的传输时,接收所述原基站传输的SN状态报告,其中,所述SN状态报告由所述原基站构建的所述UE的下行数据包的SN状态报告,且所述SN状态报告包含所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
可选的,所述基站还包括:第五接收模块,用于在所述原基站停止所述UE的上行数据包的传输时,接收所述原基站传输的SN状态报告,其中,所述SN状态报告由所述原基站构建的所述UE的上行数据包的SN状态报告,且所述SN状态报告包含所述UE的上行数据包的接收状态,以及针对所述UE的上行数据包的期待的HFN值。
可选的,所述基站还包括:第六接收模块,用于接收所述UE传输的当 前第一个没有接收到的下行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收到的下行PDCP的PDU是在所述UE与所述目标基站建立连接成功后的第一个。
可选的,所述第六接收模块用于接收所述UE通过下行PDCP状态报告传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
可选的,所述基站还包括:第七接收模块,用于接收所述UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收确认的上行PDCP的PDU是指所述UE在所述原基站第一个没有接收确认的PDU。
可选的,所述第七接收模块用于接收所述UE通过下行PDCP状态报告传输的当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
本公开实施例还提供一种数据传输系统,包括:原基站,用于在UE从所述原基站切换到目标基站的切换过程中,保持所述UE的数据传输;所述UE,用于在所述UE从所述原基站切换到目标基站的切换过程中,与所述原基站保持所述UE的数据传输;所述原基站还用于在保持所述UE的数据传输时,向所述目标基站传输所述数据;所述目标基站,用于在所述UE从所述原基站切换到所述目标基站的切换过程中,接收所述原基站传输的所述UE的数据。
本公开的上述技术方案至少具有如下有益效果:在UE从原基站切换到目标基站的切换过程中,所述原基站保持所述UE的数据传输;在保持所述UE的数据传输时,所述原基站向所述目标基站传输所述数据。这样可以实现在UE从原基站切换到目标基站的过程中,原基站保持所述UE的数据传输,以及向目标基站传输该数据,从而可以减少UE的数据传输中断时间,提升切换性能,以适应网络的发展需求。
附图说明
图1是本公开实施例提供的数据传输方法可应用的网络结构的一个示例的示意图;
图2是本公开实施例提供的数据传输方法可应用的网络结构的另一示例 的示意图;
图3是本公开实施例提供的数据传输方法的一个示例的流程示意图;
图4是本公开实施例提供的数据传输方法的另一示例的流程示意图;
图5是本公开实施例提供的数据传输方法的另一示例的流程示意图;
图6是本公开实施例提供的数据传输方法的示例的示意图;
图7是本公开实施例提供的数据传输方法的另一示例的示意图;
图8是本公开实施例提供的数据传输方法的另一示例的示意图;
图9是本公开实施例提供的基站的一个示例的结构示意图;
图10是本公开实施例提供的基站的另一示例的结构示意图;
图11是本公开实施例提供的基站的另一示例的结构示意图;
图12是本公开实施例提供的基站的另一示例的结构示意图;
图13是本公开实施例提供的基站的另一示例的结构示意图;
图14是本公开实施例提供的UE的一个示例的结构示意图;
图15是本公开实施例提供的UE的另一示例的结构示意图;
图16是本公开实施例提供的UE的另一示例的结构示意图;
图17是本公开实施例提供的UE的另一示例的结构示意图;
图18是本公开实施例提供的基站的另一示例的结构示意图;
图19是本公开实施例提供的基站的另一示例的结构示意图;
图20是本公开实施例提供的基站的另一示例的结构示意图;
图21是本公开实施例提供的基站的另一示例的结构示意图;
图22是本公开实施例提供的基站的另一示例的结构示意图;
图23是本公开实施例提供的基站的另一示例的结构示意图;
图24是本公开实施例提供的基站的另一示例的结构示意图;
图25是本公开实施例提供的基站的另一示例的结构示意图;
图26是本公开实施例提供的基站的另一示例的结构示意图;
图27是本公开实施例提供的基站的另一示例的结构示意图;
图28是本公开实施例提供的基站的另一示例的结构示意图;
图29是本公开实施例提供的UE的另一示例的结构示意图;
图30是本公开实施例提供的基站的另一示例的结构示意图;以及
图31是本公开实施例提供的数据传输系统的一个示例的结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1是本公开实施例提供的数据传输方法可应用的网络结构的一个示例的示意图。图1示出UE 11、原基站12、目标基站13、移动管理实体(MME,Mobility Management Entity)14和网关设备15,其中,UE 11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端设备。需要说明的是,在本公开实施例中并不限定UE 11的具体类型。UE 11可以与原基站12进行通信,还可以与目标基站13进行通信,其中,原基站12可以是演进型基站(eNB,evolved Node B)或者其他基站。需要说明的是,在本公开实施例中并不限定原基站12的具体类型,同理,目标基站13可以是演进型基站(eNB,evolved Node B)或者其他基站。需要说明的是,在本公开实施例中并不限定目标基站13的具体类型。另外,原基站12和目标基站13还可以与MME 14以及网关设备15建立通信,其中,网关设备15可以是服务网关(S-GW,Serving Gate Way)。需要说明的是,在本公开实施例中并不限定网关设备15的具体类型。
参见图2,图2是本公开实施例提供的数据传输方法可应用的网络结构的另一示例的示意图。图2示出UE 21、主基站22、原基站23、目标基站24、MME 25和网关设备26,其中,UE 21可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端设备。需要说明的是,在本公开实施例中并不限定UE 21的具体类型。UE 21可以与主基站22、原基站23、目标基站24进行通信,其中,主基站22可以是MeNB(Master eNB),原基站23和目标基站24可以是从基站(SeNB,Secondary eNB)。另外,在该系统结构 中,UE 21可以存在两种用户面架构,一种是1A架构,即SeNB上的承载直接连接到核心网;而另一种是3C架构,即SeNB的承载仅保留RLC、MAC和PHY层功能,并通过MeNB的PDCP层连接到核心网。同样的,网关设备26可以是服务网关(S-GW,Serving Gate Way)。需要说明的是,在本公开实施例中并不限定网关设备26的具体类型。
需要说明的是,本公开实施例中提供的数据传输方法并不限定于图1和2所示的网络结构,还可以应用于其他网络结构,对此本实施例不作限定。
请参阅图3,图3是本公开实施例提供的数据传输方法的一个示例的流程示意图。如图3所示,该数据传输方法的一个示例包括以下步骤301和步骤302。
301、在UE从原基站切换到目标基站的切换过程中,原基站保持UE的数据传输;
302、在保持UE的数据传输时,原基站向目标基站传输该数据。
本实施例中,原基站保持UE的数据传输,可以理解为原基站继续在原基站的空口上进行空口的上下行数据传输。例如:继续在原基站的空口上进行下行数据传输,以及在继续在原基站的空口上进行上行数据传输。而在保持UE的数据传输时,原基站向目标基站传输该数据可以理解为,原基站在保持UE的数据传输时,将该数据传输给目标基站。这样可以实现在UE从原基站切换到目标基站的过程中,原基站保持UE的数据传输,以及向目标基站传输该数据,从而可以减少UE的数据传输中断时间,提升切换性能,以适应网络的发展需求。另外,上述UE从原基站切换到目标基站的切换过程可以包括UE与目标基站建立连接的过程,以及还可以包括原基站向UE发送切换命令的过程,本实施例对此不作限定。
可选的,上述数据可以包括下行数据包,原基站保持UE的数据传输可以包括:原基站向UE传输该下行数据包。
在保持UE的数据传输时,原基站向目标基站传输该数据,包括:在向UE发送该下行数据包时,原基站向目标基站传输该下行数据包。
在该实施方式中,可以实现在切换过程中,原基站向UE传输下行数据包,同时,还向目标基站传输该下行数据包。例如:原基站一方面继续在原 基站上进行空口的下行数据传输,另一方面开始触发下行数据的前转操作,即同样的数据包一方面通过原基站的空口向UE发送,另一方面通过原基站和目标基站之间的接口传送给目标基站。这样可以保证在切换过程中,原基站不会停止下行数据的传输,从而可以防止切换过程的下行数据传输中断,以提高切换性能。另外,该实施方式中,原基站可以是在获取前转地址后,向目标基站传输上述下行数据包,即向目标基站传输上述下行数据包可以理解为下行数据包的前转操作,即在向UE传输下行数据包时,触发下行数据包的前转操作。其中,该前转地址可以包括目标基站的IP地址,以及目标基站的端口地址等传输数据时需要使用的地址信息,对此本实施例不作限定。
可选的,上述实施方式中,上述方法还可以包括如下步骤:原基站向目标基站传输该下行数据包的当前HFN(Hyper Frame Number)值。
该实施方式中,在向目标基站传输下行数据包时会将下行数据包的当前HFN值传输给目标基站,以让目标基站知道当前传输的下行数据包的HFN值,以使目标基站更好地管理UE的下行数据。另外,该实施方式中,可以是只向目标基站传输第一个下行数据包的HFN值,该第一个下行数据为原基站向目标基站传输的第一个下行数据包,以减少传输开销。当然,在一些场景中,也可以是目标基站传输多个下行数据包的HFN值。
可选的,该实施方式中,上述原基站向目标基站发送的下行数据包的HFN值可以用于,使目标基站根据原基站发送的HFN值和下行数据包确定后续向该UE传输的下行数据包的HFN值。
该实施方式中,可以实现通过向目标基站传输下行数据包的HFN值,使目标基站根据原基站发送的HFN值和下行数据包确定后续向该UE传输的下行数据包的HFN值。从而可以避免目标基站向UE传输原基站已经向UE传输的下行数据包,以避免网络传输资源的浪费。
可选的,上述数据可以包括上行数据包,原基站保持该UE的数据传输,包括:原基站向网关设备传输该上行数据包。该在保持该UE的数据传输时,原基站向目标基站传输该数据,包括:在向该网关设备传输该上行数据包时,原基站向目标基站传输该上行数据包。
该实施方式中,可以实现在切换过程中,原基站向网关设备传输上行数 据包,同时,还向目标基站传输该上行数据包。其中,向网关设备传输上行数据包可以允许乱充传输。例如:一方面原基站继续在原基站上进行空口的中行数据传输,另一方面开始触发上行数据的前转操作,即同样的数据包一方面通过原基站的空口向网关设备发送,另一方面通过原基站和目标基站之间接口传送给目标基站。这样可以保证在切换过程中,原基站不会停止上行数据的传输,从而可以防止切换过程的上行数据传输中断,以提高切换性能。另外,该实施方式中,原基站可以是在获取前转地址后,向目标基站传输上述上行数据包,即向目标基站传输上述上行数据包可以理解为上行数据包的前转操作,即在向UE传输上行数据包时,触发上行数据包的前转操作。其中,该前转地址可以包括目标基站的IP地址,以及目标基站的端口地址等传输数据时需要使用的地址信息,对此本实施例不作限定。
可选的,上述实施方式中,该方法还可以包括:原基站向目标基站传输该上行数据包的当前HFN值。
该实施方式中,在向目标基站传输上行数据包时会将下行数据包的当前HFN值传输给目标基站,以让目标基站知道当前传输的上行数据包的HFN值,以使目标基站更好地管理UE的上行数据。另外,该实施方式中,可以是只向目标基站传输第一个上行数据包的HFN值,该第一个上行数据为原基站向目标基站传输的第一个上行数据包,以减少传输开销。当然,在一些场景中,也可以是目标基站传输多个上行数据包的HFN值。
可选的,该实施方式中,原基站向目标基站发送的上行数据包的HFN值可以用于,使目标基站根据原基站发送的HFN值和上行数据包确定后续来自该UE传输的上行数据包的HFN值。
该实施方式中,可以实现通过向目标基站传输上行数据包的HFN值,使目标基站根据原基站发送的HFN值和上行数据包确定后续来自该UE传输的上行数据包的HFN值。
可选的,原基站向目标基站传输的上行数据包可以用于,使目标基站在该UE与目标基站建立连接成功时,由目标基站根据接收的上行数据包构建PDCP(Packet Data Convergence Protocol)的状态报告,并由目标基站发送给该UE。
该实施方式中,可以实现通过原基站向目标基站发送的上行数据使目标基站在该UE与目标基站建立连接成功时,由目标基站根据接收的上行数据包构建PDCP的状态报告,并由目标基站发送给该UE,这样可以减少空口的重复发送。
可选的,该方法还可以包括:在原基站停止该UE的下行数据包的传输时,构建该UE的下行数据包的SN(serial number)状态报告(status report),并向目标基站发送该SN状态报告,其中,该SN状态报告包含目标基站对该UE的下行数据包应分配的PDCP SN信息。
该实施方式中,上述原基站停止该UE的下行数据包的传输可以理解为,原基站决定停止该UE的下行数据包的传输。例如:原基站可以是在UE与目标基站建立连接成功时,或者建立连接成功后,原基站决定停止该UE的下行数据包的传输。该实施方式中,通过上述SN状态报告可以实现将目标基站对该UE的下行数据包应分配的PDCP SN信息通知给目标基站,这样目标基站在接收到上述SN状态报告时,就可以确定对该UE的下行数据包应分配的PDCP SN信息。
可选的,上述方法还可以包括:在原基站停止该UE的上行数据包的传输时,构建该UE的上行数据包的SN状态报告,并向目标基站发送该SN状态报告,其中,该SN状态报告包含该UE的上行数据包的接收状态,以及针对该UE的上行数据包的期待的HFN值。
该实施方式中,上述原基站停止该UE的上行数据包的传输可以理解为,原基站决定停止该UE的上行数据包的传输。例如:原基站可以是在UE与目标基站建立连接成功时,或者建立连接成功后,原基站决定停止该UE的上行数据包的传输。该实施方式中,通过上述SN状态报告可以实现将该UE的上行数据包的接收状态,以及针对该UE的上行数据包的期待的HFN值通知给目标基站,这样目标基站在接收到上述SN状态报告时,就可以获知上述UE的上行数据包的接收状态,以及对该UE的上行数据包的期待的HFN值,从而可以实现有效地传输UE的上行数据包。
可选的,该实施方式中,上述方法还包括:在原基站停止该UE的上行数据包的传输时,原基站停止向网关设备发送该UE的上行数据包。
该实施方式中,可以实现原基站停止向网关设备发送上述UE的上行数据包,以节约网络传输资源。
本实施例中,在UE从原基站切换到目标基站的切换过程中,原基站保持该UE的数据传输;在保持该UE的数据传输时,原基站向目标基站传输该数据。这样可以实现在UE从原基站切换到目标基站的过程中,原基站保持该UE的数据传输,以及向目标基站传输该数据,从而可以减少UE的数据传输中断时间,提升切换性能,以适应网络的发展需求。
请参阅图4,图4是本公开实施例提供的数据传输方法的另一示例的流程示意图。如图4所示,该数据传输方法的另一示例包括以下步骤401。
401、在UE从原基站切换到目标基站的切换过程中,该UE与原基站保持该UE的数据传输。其中,在该UE与原基站保持该UE的数据传输时,原基站还向目标基站传输该UE的数据。
可选的,该数据包括下行数据包,该UE与原基站保持该UE的数据传输,包括:该UE接收原基站传输的该下行数据包,且在该UE接收原基站传输的该下行数据包时,原基站会向目标基站传输该下行数据包。
可选的,该数据包括上行数据包,该UE与原基站保持该UE的数据传输,包括:该UE向原基站传输的该上行数据包,且在该UE向原基站传输的该上行数据包时,原基站会向目标基站传输该上行数据包。
可选的,该方法还包括:该UE接收目标基站传输的PDCP的状态报告,其中,该PDCP的状态报告是目标基站在该UE与目标基站建立连接成功时,由目标基站根据接收的上行数据包构建的PDCP的状态报告。
可选的,该UE在后续接收目标基站传输的下行数据包的HFN值是,目标基站根据原基站发送的下行数据包的HFN值和下行数据包确定的。
可选的,该UE在后续向目标基站传输的上行数据包的HFN值是,使目标基站根据原基站发送的上行数据包的HFN值和上行数据包确定的。
可选的,在原基站停止该UE的下行数据包的传输后,该UE的下行数据包的PDCP SN信息是,目标基站接收原基站发送的SN状态报告包含的,且是目标基站对该UE的下行数据包应分配的PDCP SN信息。
可选的,在原基站停止该UE的上行数据包的传输后,该UE的上行数据 包的HFN值是目标基站接收原基站发送的SN状态报告包含的,且是针对该UE的上行数据包的期待的HFN值,且该SN状态报告还包含该UE的上行数据包的接收状态。
可选的,该方法还包括:该UE向目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和/或HFN值,其中,该第一个没有接收到的下行PDCP的PDU指该UE在原基站第一个没有正确接收的PDU。
该实施方式中,可以实现UE向目标基站发送该UE在原基站第一个没有正确接收的PDU的SN和/或HFN值,这样目标基站接收到该SN和/或HFN值时就可以将PDU发送给UE,以避免遗漏下行PDU。
可选的,该实施方式中,该UE向目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和HFN值,包括:
该UE通过下行PDCP状态报告向目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
该实施方式中,可以通过下行PDCP状态报告向目标基站发送当前第一个没有接收到的下行PDCP的PDU的SN和HFN值,从而可以让目标基站更为详细地知道当前第一个没有接收到的下行PDCP的PDU。
可选的,该方法还可以包括:该UE向目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值。其中,该第一个没有接收确认的上行PDCP的PDU是指该UE在原基站第一个没有接收确认的PDU。
该实施方式中,可以实现UE向目标基站发送该UE在原基站第一个没有接收确认的PDU的SN和/或HFN值,这样目标基站接收到该SN和/或HFN值时就确定该PDU是否已经接收,若未接收可以通知UE重新发送该PDU,以避免遗漏上行PDU。
可选的,该实施方式中,该UE向目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值,可以包括:该UE通过下行PDCP状态报告向目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
该实施方式中,可以通过下行PDCP状态报告向目标基站发送当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值,从而可以让目标基 站更为详细地知道当前第一个没有接收确认的上行PDCP的PDU。
需要说明的是,本实施例作为与图3所示的实施例中对应的UE侧的实施方式,其具体的实施方式可以参见图3所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。本实施例中,同样可以实现减少UE的数据传输中断时间,提升切换性能,以适应网络的发展需求。
请参阅图5,图5是本公开实施例提供的数据传输方法的另一示例的流程示意图。如图5所示,该数据传输方法的另一示例包括以下步骤501。
501、在UE从原基站切换到目标基站的切换过程中,目标基站接收原基站传输的该UE的数据,其中,在目标基站接收原基站传输的该UE的数据时,原基站保持该UE的数据传输。
可选的,该数据包括下行数据包,目标基站接收原基站传输的该UE的数据,包括:目标基站接收原基站传输的该下行数据包,在目标基站接收原基站传输的该下行数据包时,原基站会向该UE传输该下行数据包。
可选的,该方法还包括:目标基站接收原基站传输的该下行数据包的当前HFN值。
可选的,该数据包括上行数据包,目标基站接收原基站传输的该UE的数据,包括:目标基站接收原基站传输的该上行数据包,在目标基站接收原基站传输的该上行数据包时,原基站会向网关设备传输该上行数据包。
可选的,该方法还包括:目标基站接收原基站传输的该上行数据包的当前HFN值。
可选的,该方法还包括:目标基站在该UE与目标基站建立连接成功时,目标基站根据接收的上行数据包构建PDCP的状态报告,并发送给该UE。
可选的,该方法还包括:目标基站根据原基站发送的HFN值和下行数据包确定后续向该UE传输的下行数据包的HFN值。
可选的,该方法还包括:目标基站根据原基站发送的HFN值和上行数据包确定后续来自该UE传输的上行数据包的HFN值。
可选的,该方法还包括:在原基站停止该UE的下行数据包的传输时,目标基站接收原基站传输的SN状态报告,其中,该SN状态报告由原基站构建的该UE的下行数据包的SN状态报告,且该SN状态报告包含目标基站对 该UE的下行数据包应分配的PDCP SN信息。
可选的,该方法还包括:在原基站停止该UE的上行数据包的传输时,目标基站接收原基站传输的SN状态报告,其中,该SN状态报告由原基站构建的该UE的上行数据包的SN状态报告,且该SN状态报告包含该UE的上行数据包的接收状态,以及针对该UE的上行数据包的期待的HFN值。
可选的,该方法还包括:目标基站接收该UE传输的当前第一个没有接收到的下行PDCP的PDU(Protocol Data Unit)的SN和/或HFN值,其中,该第一个没有接收到的下行PDCP的PDU是在该UE与目标基站建立连接成功后的第一个。
可选的,目标基站接收该UE传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值,包括:目标基站接收该UE通过下行PDCP状态报告传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
可选的,该方法还包括:目标基站接收该UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,该第一个没有接收确认的上行PDCP的PDU是指该UE在原基站第一个没有接收确认的PDU。
可选的,目标基站接收该UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值,包括:目标基站接收该UE通过下行PDCP状态报告传输的当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
需要说明的是,本实施例作为与图3和图4所示的实施例中对应的目标基站侧的实施方式,其具体的实施方式可以参见图3和图4所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。本实施例中,同样可以实现减少UE的数据传输中断时间,提升切换性能,以适应网络的发展需求。
下在介绍多个实例对本公开实施例提供的数据传输方法进行示例说明。
例1如下。
601、原基站向UE发起测量过程。
其中,在发起测量过程中,UE、原基站和核心网之间可以进行上下行数据传输,其中,这里的核心网可以包括MME或者网关设备。
602、原基站进行切换判决。
603、原基站向目标基站发送切换请求。
604、原基站接收目标基站发送的切换响应。
其中,在上述切换响应可以携带的前转地址。
605、原基站向UE发送切换命令。
606、原基站向目标基站发送数据前传。
该步骤中,原基站可以是将UE的数据传输给目标基站。另外,该步骤还可以理解为原基站开始触发数据前转,上行的前传数据包含已收到UE的数据包,而下行的前转数据中包含已发送给UE的数据包。
607、原基站向目标基站发送HFN信息通知。
该HFN信息通知可以是步骤606发送的数据的当前HFN值。另外,该HFN信息通知中可以包含第一个前转的上行数据包的HFN数值+SN值,以及第一个前转的下行数据包的HFN数值+SN值。
608、上下行数据通过原基站进行数据传输。
其中,上行数据(即为已收到UE的数据包)直接传送给核心网。另外,步骤606、607和608可以同时进行。
609、UE与目标基站开始连接建立,或者可以理解为UE与目标基站发起同步过程。
6010、UE离开旧小区,即UE停止与原基站的通讯。
其中,步骤609和6010可以同时进行。
6011、UE上报切换完成消息给目标基站。
6012、UE发起下行数据的PDCP状态报告(status report),而目标基站根据接收到的上行前转数据构建并发起上行数据的PDCP status report;然后UE与目标基站之间开始传输上下行数据,其中下行数据可以为来自原基站前转的数据包,而上行数据可以由目标基站根据原基站前转的数据包向核心网选择性地发送,即排除那些前转的数据包,以避免与原基站向核心网传输的数据产生重复。
6013、目标基站与核心网进行路径切换过程。
其中,在执行该过程时,核心网可以进行切换下行,以及向原基站传输结束标记,以及核心网还可以与目标基站进行上下行数据传输,且原基站可 以向目标基站传输结束标记。其中,原基站传输的结束标记用于通知目标基站数据前传停止,以及原基站的上下行数据传输停止。
6014、目标基站向原基站发送上下文释放。
6015、原基站进行资源释放。
例2如下。
701、UE向主基站发起测量过程。
702、主基站向目标SeNB发送辅助基站增加请求。
703、目标SeNB向主基站返回辅助基站增加响应。
704、主基站向原SeNB发送辅助基站释放命令。
其中,在上述辅助基站增加响应和辅助基站释放命令可以携带的前转地址。
705、主基站向UE发送切换命令。
706、原SeNB向目标SeNB发起数据前转。
其中,步骤706可以理解为原SeNB开始触发数据前转,上行的前传数据包含已收到UE的数据包,而下行的前转数据中包含已发送给UE的数据包;
707、原SeNB通过主基站向目标基站传输HFN信息。
其中,该步骤HFN信息可以包含第一个前转的上行数据包的HFN数值+SN值以及第一个前转的下行数据包的HFN数值+SN值。
708、上下行数据通过原SeNB进行数据传输。
该步骤中,上下行数据通过原SeNB进行数据传输,上行数据(即为已收到UE的数据包)直接传送给核心网。
另外,步骤706、707和708可以同时进行。
709、UE上报切换完成消息给主基站。
7010、主基站发送配置完成消息给原SeNB。
7011、UE与目标SeNB发起同步过程,或开始连接建立。同时UE停止与原SeNB的通讯。
其中,在同步过程中,核心网还可以向原SeNB传输下行数据,原SeNB还可以向目标SeNB进行下行数据前转。
其中,步骤709和步骤7011可以没有时间先后顺序。
7012、UE发起下行数据的PDCP status report,而原SeNB可以根据接收到的上行前转数据构建并发起上行数据的PDCP status report;然后UE与目标SeNB之间可以开始传输上下行数据,其中下行数据可以为来自原SeNB前转的数据包,而上行数据可以由目标SeNB根据原SeNB前转的数据包向核心网选择性地发送,即排除那些前转的数据包,以避免与原从基站向核心网传输的数据产生重复。
7013、主基站与核心网进行路径切换过程。
7014、主基站可以向核心网传输结束标记,以及还向目标SeNB传输结束标记。其中,主基站传输的结束标记用于通知目标传输结束标记数据前传停止,以及原传输结束标记的上下行数据传输停止。
7015、UE通过目标SeNB进行上下行数据传输。
7016、核心网向主基站发送路径切换完成消息。
7017、主基站向原SeNB发送上下释放消息。
例3如下。
801、UE向主基站发起测量过程。
802、主基站向目标SeNB发送辅助基站增加请求。
803、目标SeNB向主基站返回辅助基站增加响应。
804、主基站向原SeNB发送辅助基站释放命令。
其中,在上述辅助基站增加响应和辅助基站释放命令可以携带的前转地址。
805、主基站向UE发送切换命令。
806、主基站下行数据双向投(Bi-cast)。
即该步骤中主基站分别向原SeNB和目标SeNB传输。
807、原SeNB与UE传输上下行数据。
其中,该步骤HFN信息可以包含第一个前转的上行数据包的HFN数值+SN值以及第一个前转的下行数据包的HFN数值+SN值。
808、原SeNB向主基站传输上行数据。
809、主基站与核心网进行上下行数据传输。
另外,步骤806、807、808和809可以同时进行。
8010、UE上报切换完成消息给主基站。
8011、主基站发送辅助基站完成配置消息给目标SeNB。
8012、UE与目标SeNB发起同步过程,或开始连接建立。
同时UE停止与原SeNB的通讯,另外,步骤8010和8012可以没有时间先后顺序。
8013、UE先向目标SeNB发起下行数据的PDCP status report,而目标SeNB在切换过程有能力解析每个PDCP PDU,当发现PDCP status report,将根据其内容,可以进行选择性的下行数据发送数据,即排除那些在PDCP status report中被确认的数据包,随后UE与目标SeNB进行正常的上下行数据传输。
8014、主基站与目标SeNB进行上下行数据传输。
8015、主基站与核心网进行上下行数据传输。
8016、主基站向原SeNB发送上下释放消息。
请参阅图9,图9是本公开实施例提供的基站的一个示例的结构示意图,该基站90为原基站。如图9所示,该基站90包括第一传输模块91和第二传输模块92。
第一传输模块91,用于在UE从原基站切换到目标基站的切换过程中,保持该UE的数据传输。
第二传输模块92,用于在保持该UE的数据传输时,向目标基站传输该数据。
可选的,该数据可以包括下行数据包,该第一传输模块91可以用于向该UE传输该下行数据包;该第二传输模块92可以用于在向该UE发送该下行数据包时,向目标基站传输该下行数据包。
可选的,如图10所示,该基站90还可以包括第三传输模块93,第三传输模块93用于向目标基站传输该下行数据包的当前超帧号HFN值。
可选的,该数据可以包括上行数据包,该第一传输模块91可以用于向网关设备传输该上行数据包;该第二传输模块92可以用于在向该网关设备传输该上行数据包时,向目标基站传输该上行数据包。
可选的,如图11所示,该基站90还包括第四传输模块94,第四传输模块94用于向目标基站传输该上行数据包的当前HFN值。
可选的,原基站向目标基站传输的上行数据包用于,使目标基站在该UE与目标基站建立连接成功时,由目标基站根据接收的上行数据包构建分组数据汇聚协议PDCP的状态报告,并由目标基站发送给该UE。
可选的,原基站向目标基站发送的下行数据包的HFN值用于,使目标基站根据原基站发送的HFN值和下行数据包确定后续向该UE传输的下行数据包的HFN值。
可选的,原基站向目标基站发送的上行数据包的HFN值用于,使目标基站根据原基站发送的HFN值和上行数据包确定后续来自该UE传输的上行数据包的HFN值。
可选的,如图12所示,该基站90还包括第五传输模块95,第五传输模块95用于在原基站停止该UE的下行数据包的传输时,构建该UE的下行数据包的序列号SN状态报告,并向目标基站发送该SN状态报告,其中,该SN状态报告包含目标基站对该UE的下行数据包应分配的PDCP SN信息。
可选的,如图13所示,该基站90还包括第六传输模块96,第六传输模块96用于在原基站停止该UE的上行数据包的传输时,构建该UE的上行数据包的SN状态报告,并向目标基站发送该SN状态报告,其中,该SN状态报告包含该UE的上行数据包的接收状态,以及针对该UE的上行数据包的期待的HFN值。
可选的,该实施方式中,该基站90还包括停止模块97,停止模块97用于在原基站停止该UE的上行数据包的传输时,原基站停止向网关设备发送该UE的上行数据包。
需要说明的是,本实施例中上述基站90可以为图1-图8所示的实施例中的原基站,图1-图8所示实施例中原基站的任意实施方式都可以被本实施例中的上述基站90所实现,以及达到相同的有益效果,此处不再赘述。
请参阅图14,图14是本公开实施例提供的UE的一个示例的结构示意图,如图14所示,UE 140包括第一传输模块141,第一传输模块141用于在UE从原基站切换到目标基站的切换过程中,与原基站保持该UE的数据传输,其中,在该UE与原基站保持该UE的数据传输时,原基站还向目标基站传输该UE的数据。
可选的,该数据包括下行数据包,该第一传输模块用于接收原基站传输的该下行数据包,且在该UE接收原基站传输的该下行数据包时,原基站会向目标基站传输该下行数据包。
可选的,该数据包括上行数据包,该第一传输模块用于向原基站传输的该上行数据包,且在该UE向原基站传输的该上行数据包时,原基站会向目标基站传输该上行数据包。
可选的,如图15所示,该UE 140还包括接收模块142,接收模块142用于接收目标基站传输的PDCP的状态报告,其中,该PDCP的状态报告是目标基站在该UE与目标基站建立连接成功时,由目标基站根据接收的上行数据包构建的PDCP的状态报告。
可选的,该UE在后续接收目标基站传输的下行数据包的HFN值是,目标基站根据原基站发送的下行数据包的HFN值和下行数据包确定的。
可选的,该UE在后续向目标基站传输的上行数据包的HFN值是,使目标基站根据原基站发送的上行数据包的HFN值和上行数据包确定的。
可选的,在原基站停止该UE的下行数据包的传输后,该UE的下行数据包的PDCP SN信息是,目标基站接收原基站发送的SN状态报告包含的,且是目标基站对该UE的下行数据包应分配的PDCP SN信息。
可选的,在原基站停止该UE的上行数据包的传输后,该UE的上行数据包的HFN值是目标基站接收原基站发送的SN状态报告包含的,且是针对该UE的上行数据包的期待的HFN值,且该SN状态报告还包含该UE的上行数据包的接收状态。
可选的,如图16所示,该UE 140还包括第二传输模块143,第二传输模块143用于向目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和/或HFN值,其中,该第一个没有接收到的下行PDCP的PDU指该UE在原基站第一个没有正确接收的PDU。
可选的,该第二传输模块143可以用于通过下行PDCP状态报告向目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
可选的,如图17所示,该UE 140还包括第三传输模块144,第三传输模块144用于向目标基站传输当前第一个没有接收确认的上行PDCP的PDU 的SN和/或HFN值,其中,该第一个没有接收确认的上行PDCP的PDU是指该UE在原基站第一个没有接收确认的PDU。
可选的,该第三传输模块144用于通过下行PDCP状态报告向目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
需要说明的是,本实施例中上述UE 140可以是图1-图8所示的实施例中的UE,图1-图8所示实施例中UE的任意实施方式都可以被本实施例中的上述UE 140所实现,以及达到相同的有益效果,此处不再赘述。
请参阅图18,图18是本公开实施例提供的基站的另一示例的结构示意图,该基站180为目标基站。如图18所示,该基站180包括第一接收模块181,第一接收模块181用于在UE从原基站切换到目标基站的切换过程中,接收原基站传输的该UE的数据,其中,在目标基站接收原基站传输的该UE的数据时,原基站保持该UE的数据传输。
可选的,该数据包括下行数据包,该第一接收模块181可以用于接收原基站传输的该下行数据包,在目标基站接收原基站传输的该下行数据包时,原基站会向该UE传输该下行数据包。
可选的,如图19所示,该基站180还包括第二接收模块182,第二接收模块182用于接收原基站传输的该下行数据包的当前HFN值。
可选的,该数据包括上行数据包,该第一接收模块181用于接收原基站传输的该上行数据包,在目标基站接收原基站传输的该上行数据包时,原基站会向网关设备传输该上行数据包。
可选的,如图20所示,该基站180还包括第三接收模块183,第三接收模块183用于接收原基站传输的该上行数据包的当前HFN值。
可选的,如图21所示,该基站180还包括传输模块184,传输模块184用于在该UE与目标基站建立连接成功时,目标基站根据接收的上行数据包构建PDCP的状态报告,并发送给该UE。
可选的,如图22所示,该基站180还包括第一确定模块185,第一确定模块185用于根据原基站发送的HFN值和下行数据包确定后续向该UE传输的下行数据包的HFN值。
可选的,如图23所示,该基站180还包括第二确定模块186,第二确定 模块186用于根据原基站发送的HFN值和上行数据包确定后续来自该UE传输的上行数据包的HFN值。
可选的,如图24所示,该基站180还包括第四接收模块187,第四接收模块187用于在原基站停止该UE的下行数据包的传输时,接收原基站传输的SN状态报告,其中,该SN状态报告由原基站构建的该UE的下行数据包的SN状态报告,且该SN状态报告包含目标基站对该UE的下行数据包应分配的PDCP SN信息。
可选的,如图25所示,该基站180还包括第五接收模块188,第五接收模块188用于在原基站停止该UE的上行数据包的传输时,接收原基站传输的SN状态报告,其中,该SN状态报告由原基站构建的该UE的上行数据包的SN状态报告,且该SN状态报告包含该UE的上行数据包的接收状态,以及针对该UE的上行数据包的期待的HFN值。
可选的,如图26所示,该基站180还包括第六接收模块189,第六接收模块189用于接收该UE传输的当前第一个没有接收到的下行PDCP的PDU的SN和/或HFN值,其中,该第一个没有接收到的下行PDCP的PDU是在该UE与目标基站建立连接成功后的第一个。
可选的,该第六接收模块189用于接收该UE通过下行PDCP状态报告传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
可选的,如图27所示,该基站180还包括第七接收模块1810,第七接收模块1810用于接收该UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,该第一个没有接收确认的上行PDCP的PDU是指该UE在原基站第一个没有接收确认的PDU。
可选的,该第七接收模块1810用于接收该UE通过下行PDCP状态报告传输的当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
需要说明的是,本实施例中上述基站180可以图1-图8所示的实施例中的目标基站,图1-图8所示实施例中目标基站的任意实施方式都可以被本实施例中的上述基站180所实现,以及达到相同的有益效果,此处不再赘述。参见图28,图中示出一种基站的结构,该基站为原基站,且该基站包括处理器2800、收发机2810、存储器2820、用户接口2830和总线接口,其中处理 器2800,用于读取存储器2820中的程序,执行下列过程:在UE从原基站切换到目标基站的切换过程中,通过收发机2810保持该UE的数据传输;在保持该UE的数据传输时,通过收发机2810向目标基站传输该数据。
其中,收发机2810用于在处理器2800的控制下接收和发送数据。
在图28中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2800代表的一个或多个处理器和存储器2820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2810可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2830还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2800负责管理总线架构和通常的处理,存储器2820可以存储处理器2800在执行操作时所使用的数据。
可选的,该数据包括下行数据包,保持该UE的数据传输包括:向该UE传输该下行数据包。在保持该UE的数据传输时,向目标基站传输该数据,包括:在向该UE发送该下行数据包时,向目标基站传输该下行数据包。
可选的,处理器2800还用于:通过收发机2810向目标基站传输该下行数据包的当前HFN值。
可选的,该数据包括上行数据包,保持该UE的数据传输包括:向网关设备传输该上行数据包。在保持该UE的数据传输时,该向目标基站传输该数据,包括:在向该网关设备传输该上行数据包时,向目标基站传输该上行数据包。
可选的,处理器2800还用于:通过收发机2810向目标基站传输该上行数据包的当前HFN值。
可选的,原基站向目标基站传输的上行数据包用于,使目标基站在该UE与目标基站建立连接成功时,由目标基站根据接收的上行数据包构建PDCP的状态报告,并由目标基站发送给该UE。
可选的,原基站向目标基站发送的下行数据包的HFN值用于,使目标基 站根据原基站发送的HFN值和下行数据包确定后续向该UE传输的下行数据包的HFN值。
可选的,原基站向目标基站发送的上行数据包的HFN值用于,使目标基站根据原基站发送的HFN值和上行数据包确定后续来自该UE传输的上行数据包的HFN值。
可选的,处理器2800还用于在原基站停止该UE的下行数据包的传输时,构建该UE的下行数据包的SN状态报告,并通过收发机2810向目标基站发送该SN状态报告,其中,该SN状态报告包含目标基站对该UE的下行数据包应分配的PDCP SN信息。
可选的,处理器2800还用于在原基站停止该UE的上行数据包的传输时,构建该UE的上行数据包的SN状态报告,并通过收发机2810向目标基站发送该SN状态报告,其中,该SN状态报告包含该UE的上行数据包的接收状态,以及针对该UE的上行数据包的期待的HFN值。
可选的,处理器2800还用于在原基站停止该UE的上行数据包的传输时,停止向网关设备发送该UE的上行数据包。
需要说明的是,本实施例中上述基站可以图1-图8所示的实施例中的原基站,图1-图8所示实施例中原基站的任意实施方式都可以被本实施例中的上述基站所实现,以及达到相同的有益效果,此处不再赘述。
参见图29,图中示出一种UE的结构,该UE包括:处理器2900、收发机2910、存储器2920、用户接口2930和总线接口,其中处理器2900,用于读取存储器2920中的程序,执行下列过程:在UE从原基站切换到目标基站的切换过程中,通过收发机2910与原基站保持该UE的数据传输,其中,在该UE与原基站保持该UE的数据传输时,原基站还向目标基站传输该UE的数据。
其中,收发机2910用于在处理器2900的控制下接收和发送数据。
在图29中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2900代表的一个或多个处理器和存储器2920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对 其进行进一步描述。总线接口提供接口。收发机2910可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2930还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2900负责管理总线架构和通常的处理,存储器2920可以存储处理器2900在执行操作时所使用的数据。
可选的,该数据包括下行数据包,与原基站保持该UE的数据传输包括接收原基站传输的该下行数据包,且在该UE接收原基站传输该下行数据包时,原基站会向目标基站传输该下行数据包。
可选的,该数据包括上行数据包,与原基站保持该UE的数据传输包括向原基站传输的该上行数据包,且在该UE向原基站传输该上行数据包时,原基站会向所述目标基站传输所述上行数据包。
可选的,处理器2900还用于通过收发机2910接收目标基站传输的PDCP的状态报告,其中,该PDCP的状态报告是目标基站在该UE与目标基站建立连接成功时,由目标基站根据接收的上行数据包构建的PDCP的状态报告。
可选的,该UE在后续接收目标基站传输的下行数据包的HFN值是,目标基站根据原基站发送的下行数据包的HFN值和下行数据包确定的。
可选的,该UE在后续向目标基站传输的上行数据包的HFN值是,使目标基站根据原基站发送的上行数据包的HFN值和上行数据包确定的。
可选的,在原基站停止该UE的下行数据包的传输后,该UE的下行数据包的PDCP SN信息是,目标基站接收原基站发送的SN状态报告包含的,且是目标基站对该UE的下行数据包应分配的PDCP SN信息。
可选的,在原基站停止该UE的上行数据包的传输后,该UE的上行数据包的HFN值是目标基站接收原基站发送的SN状态报告包含的,且是针对该UE的上行数据包的期待的HFN值,且该SN状态报告还包含该UE的上行数据包的接收状态。
可选的,处理器2900还用于通过收发机2910向目标基站传输当前第一个没有接收到的下行PDCP的协议数据单元PDU的SN和/或HFN值,其中,该第一个没有接收到的下行PDCP的PDU指该UE在原基站第一个没有正确 接收的PDU。
可选的,向目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和HFN值,包括:通过下行PDCP状态报告向目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
可选的,处理器2900还用于通过收发机2910向目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,该第一个没有接收确认的上行PDCP的PDU是指该UE在原基站第一个没有接收确认的PDU。
可选的,向目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值,包括:通过下行PDCP状态报告向目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
需要说明的是,本实施例中上述UE可以图1-图8所示的实施例中的UE,图1-图8所示实施例中UE的任意实施方式都可以被本实施例中的上述UE所实现,以及达到相同的有益效果,此处不再赘述。
参见图30,图中示出一种基站的结构,该基站为目标基站,该基站包括处理器3000、收发机3010、存储器3020、用户接口3030和总线接口,其中处理器3000,用于读取存储器3020中的程序,执行下列过程:在UE从原基站切换到目标基站的切换过程中,通过收发机3010接收原基站传输的该UE的数据,其中,在目标基站接收原基站传输的该UE的数据时,原基站保持该UE的数据传输。
其中,收发机3010用于在处理器3000的控制下接收和发送数据。
在图30中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器3000代表的一个或多个处理器和存储器3020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机3010可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口3030还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器3000负责管理总线架构和通常的处理,存储器3020可以存储处理器3000在执行操作时所使用的数据。
可选的,该数据包括下行数据包,接收原基站传输的该UE的数据包括:接收原基站传输的该下行数据包,在目标基站接收原基站传输的该下行数据包时,原基站会向该UE传输该下行数据包。
可选的,处理器3000还用于通过收发机3010接收原基站传输的该下行数据包的当前HFN值。
可选的,该数据包括上行数据包,接收原基站传输的该UE的数据包括接收原基站传输的该上行数据包,在目标基站接收原基站传输的该上行数据包时,原基站会向网关设备传输该上行数据包。
可选的,处理器3000还用于通过收发机3010接收原基站传输的该上行数据包的当前HFN值。
可选的,处理器3000还用于目标基站在该UE与目标基站建立连接成功时,根据接收的上行数据包构建PDCP的状态报告,并通过收发机3010发送给该UE。
可选的,处理器3000还用于根据原基站发送的HFN值和下行数据包确定后续向该UE传输的下行数据包的HFN值。
可选的,处理器3000还用于根据原基站发送的HFN值和上行数据包确定后续来自该UE传输的上行数据包的HFN值。
可选的,处理器3000还用于在原基站停止该UE的下行数据包的传输时,通过收发机3010接收原基站传输的SN状态报告,其中,该SN状态报告由原基站构建的该UE的下行数据包的SN状态报告,且该SN状态报告包含目标基站对该UE的下行数据包应分配的PDCP SN信息。
可选的,处理器3000还用于在原基站停止该UE的上行数据包的传输时,通过收发机3010接收原基站传输的SN状态报告,其中,该SN状态报告由原基站构建的该UE的上行数据包的SN状态报告,且该SN状态报告包含该UE的上行数据包的接收状态,以及针对该UE的上行数据包的期待的HFN值。
可选的,处理器3000还用于通过收发机3010接收该UE传输的当前第 一个没有接收到的下行PDCP的PDU的SN和/或HFN值,其中,该第一个没有接收到的下行PDCP的PDU是在该UE与目标基站建立连接成功后的第一个。
可选的,接收该UE传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值,包括接收该UE通过下行PDCP状态报告传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
可选的,处理器3000还用于通过收发机3010接收该UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,该第一个没有接收确认的上行PDCP的PDU是指该UE在原基站第一个没有接收确认的PDU。
可选的,接收该UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值,包括接收该UE通过下行PDCP状态报告传输的当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
需要说明的是,本实施例中上述基站可以图1-图8所示的实施例中的目标基站,图1-图8所示实施例中目标基站的任意实施方式都可以被本实施例中的上述基站所实现,以及达到相同的有益效果,此处不再赘述。
请参阅图31,图31是本公开实施例提供的数据传输系统的一个示例的结构示意图。如图31所示,该数据传输系统的一个示例包括:原基站3101,用于在UE 3102从原基站3101切换到目标基站3103的切换过程中,保持该UE的数据传输;UE 3102,用于在该UE3102从原基站3101切换到目标基站3103的切换过程中,与原基站3101保持该UE3102的数据传输;原基站3101还用于在保持该UE3102的数据传输时,向目标基站3103传输该数据;目标基站3103,用于在该UE3102从原基站3101切换到目标基站3103的切换过程中,接收原基站3101传输的该UE3102的数据。
本实施例中,原基站3101、UE3102和目标基站3103可以是图1-图30所示实施例中介绍的原基站、UE和目标基站,其实施方式都可以参见图1-图30所示的实施方式,也能达到相同的技术效果,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所公开方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的, 例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例该收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上该是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开该原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (78)

  1. 一种数据传输方法,包括:
    在用户终端UE从原基站切换到目标基站的切换过程中,所述原基站保持所述UE的数据传输;以及
    在保持所述UE的数据传输时,所述原基站向所述目标基站传输所述数据。
  2. 如权利要求1所述的方法,其中,所述数据包括下行数据包,所述原基站保持所述UE的数据传输包括:所述原基站向所述UE传输所述下行数据包;
    所述在保持所述UE的数据传输时,所述原基站向所述目标基站传输所述数据,包括:在向所述UE发送所述下行数据包时,所述原基站向所述目标基站传输所述下行数据包。
  3. 如权利要求2所述的方法,还包括:
    所述原基站向所述目标基站传输所述下行数据包的当前超帧号HFN值。
  4. 如权利要求1所述的方法,其中,所述数据包括上行数据包,所述原基站保持所述UE的数据传输,包括:所述原基站向网关设备传输所述上行数据包;
    所述在保持所述UE的数据传输时,所述原基站向所述目标基站传输所述数据,包括:在向所述网关设备传输所述上行数据包时,所述原基站向所述目标基站传输所述上行数据包。
  5. 如权利要求4所述的方法,还包括:
    所述原基站向所述目标基站传输所述上行数据包的当前HFN值。
  6. 如权利要求4或5所述的方法,其中,所述原基站向所述目标基站传输的上行数据包用于,使所述目标基站在所述UE与所述目标基站建立连接成功时,由所述目标基站根据接收的上行数据包构建分组数据汇聚协议PDCP的状态报告,并由所述目标基站发送给所述UE。
  7. 如权利要求3所述的方法,其中,所述原基站向所述目标基站发送的下行数据包的HFN值用于,使所述目标基站根据所述原基站发送的HFN值和下行数据包确定后续向所述UE传输的下行数据包的HFN值。
  8. 如权利要求5所述的方法,其中,所述原基站向所述目标基站发送的 上行数据包的HFN值用于,使所述目标基站根据所述原基站发送的HFN值和上行数据包确定后续来自所述UE传输的上行数据包的HFN值。
  9. 如权利要求1所述的方法,还包括:
    在所述原基站停止所述UE的下行数据包的传输时,构建所述UE的下行数据包的序列号SN状态报告,并向所述目标基站发送所述SN状态报告,其中,所述SN状态报告包含所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
  10. 如权利要求1所述的方法,还包括:
    在所述原基站停止所述UE的上行数据包的传输时,构建所述UE的上行数据包的SN状态报告,并向所述目标基站发送所述SN状态报告,其中,所述SN状态报告包含所述UE的上行数据包的接收状态,以及针对所述UE的上行数据包的期待的HFN值。
  11. 如权利要求10所述的方法,还包括:
    在所述原基站停止所述UE的上行数据包的传输时,所述原基站停止向网关设备发送所述UE的上行数据包。
  12. 一种数据传输方法,包括:
    在用户终端UE从原基站切换到目标基站的切换过程中,所述UE与所述原基站保持所述UE的数据传输,其中,在所述UE与所述原基站保持所述UE的数据传输时,所述原基站还向所述目标基站传输所述UE的数据。
  13. 如权利要求12所述的方法,其中,所述数据包括下行数据包,所述UE与所述原基站保持所述UE的数据传输,包括:
    所述UE接收所述原基站传输的所述下行数据包,且在所述UE接收所述原基站传输所述下行数据包时,所述原基站会向所述目标基站传输所述下行数据包。
  14. 如权利要求12所述的方法,其中,所述数据包括上行数据包,所述UE与所述原基站保持所述UE的数据传输,包括:
    所述UE向所述原基站传输的所述上行数据包,且在所述UE向所述原基站传输所述上行数据包时,所述原基站会向所述目标基站传输所述上行数据包。
  15. 如权利要求14所述的方法,还包括:
    所述UE接收所述目标基站传输的分组数据汇聚协议PDCP的状态报告,其中,所述PDCP的状态报告是所述目标基站在所述UE与所述目标基站建立连接成功时,由所述目标基站根据接收的上行数据包构建的PDCP的状态报告。
  16. 如权利要求13所述的方法,其中,所述UE在后续接收所述目标基站传输的下行数据包的超帧号HFN值是,所述目标基站根据所述原基站发送的下行数据包的HFN值和下行数据包确定的。
  17. 如权利要求14所述的方法,其中,所述UE在后续向所述目标基站传输的上行数据包的HFN值是,使所述目标基站根据所述原基站发送的上行数据包的HFN值和上行数据包确定的。
  18. 如权利要求12所述的方法,其中,在所述原基站停止所述UE的下行数据包的传输后,所述UE的下行数据包的PDCP SN信息是,所述目标基站接收所述原基站发送的序列号SN状态报告包含的,且是所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
  19. 如权利要求12所述的方法,其中,在所述原基站停止所述UE的上行数据包的传输后,所述UE的上行数据包的HFN值是所述目标基站接收所述原基站发送的SN状态报告包含的,且是针对所述UE的上行数据包的期待的HFN值,且所述SN状态报告还包含所述UE的上行数据包的接收状态。
  20. 如权利要求12所述的方法,还包括:
    所述UE向所述目标基站传输当前第一个没有接收到的下行PDCP的协议数据单元PDU的SN和/或HFN值,其中,所述第一个没有接收到的下行PDCP的PDU指所述UE在所述原基站第一个没有正确接收的PDU。
  21. 如权利要求20所述的方法,其中,所述UE向所述目标基站传输当前第一个没有接收到的下行PDCP的协议数据单元PDU的SN和HFN值,包括:
    所述UE通过下行PDCP状态报告向所述目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
  22. 如权利要求12所述的方法,还包括:
    所述UE向所述目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收确认的上行PDCP的PDU是指所述UE在所述原基站第一个没有接收确认的PDU。
  23. 如权利要求22所述的方法,其中,所述UE向所述目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值,包括:
    所述UE通过下行PDCP状态报告向所述目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
  24. 一种数据传输方法,包括:
    在用户终端UE从原基站切换到目标基站的切换过程中,所述目标基站接收所述原基站传输的所述UE的数据,其中,在所述目标基站接收所述原基站传输的所述UE的数据时,所述原基站保持所述UE的数据传输。
  25. 如权利要求24所述的方法,其中,所述数据包括下行数据包,所述目标基站接收所述原基站传输的所述UE的数据,包括:
    所述目标基站接收所述原基站传输的所述下行数据包,在所述目标基站接收所述原基站传输的所述下行数据包时,所述原基站会向所述UE传输所述下行数据包。
  26. 如权利要求25所述的方法,还包括:
    所述目标基站接收所述原基站传输的所述下行数据包的当前超帧号HFN值。
  27. 如权利要求24所述的方法,其中,所述数据包括上行数据包,所述目标基站接收所述原基站传输的所述UE的数据,包括:
    所述目标基站接收所述原基站传输的所述上行数据包,在所述目标基站接收所述原基站传输的所述上行数据包时,所述原基站会向网关设备传输所述上行数据包。
  28. 如权利要求27所述的方法,还包括:
    所述目标基站接收所述原基站传输的所述上行数据包的当前HFN值。
  29. 如权利要求27或28所述的方法,还包括:
    所述目标基站在所述UE与所述目标基站建立连接成功时,所述目标基站根据接收的上行数据包构建分组数据汇聚协议PDCP的状态报告,并发送给所述UE。
  30. 如权利要求26所述的方法,包括:
    所述目标基站根据所述原基站发送的HFN值和下行数据包确定后续向所 述UE传输的下行数据包的HFN值。
  31. 如权利要求28所述的方法,还包括:
    所述目标基站根据所述原基站发送的HFN值和上行数据包确定后续来自所述UE传输的上行数据包的HFN值。
  32. 如权利要求24所述的方法,还包括:
    在所述原基站停止所述UE的下行数据包的传输时,所述目标基站接收所述原基站传输的序列号SN状态报告,其中,所述SN状态报告由所述原基站构建的所述UE的下行数据包的SN状态报告,且所述SN状态报告包含所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
  33. 如权利要求24所述的方法,还包括:
    在所述原基站停止所述UE的上行数据包的传输时,所述目标基站接收所述原基站传输的SN状态报告,其中,所述SN状态报告由所述原基站构建的所述UE的上行数据包的SN状态报告,且所述SN状态报告包含所述UE的上行数据包的接收状态,以及针对所述UE的上行数据包的期待的HFN值。
  34. 如权利要求24所述的方法,还包括:
    所述目标基站接收所述UE传输的当前第一个没有接收到的下行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收到的下行PDCP的PDU是在所述UE与所述目标基站建立连接成功后的第一个。
  35. 如权利要求34所述的方法,其中,所述目标基站接收所述UE传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值,包括:
    所述目标基站接收所述UE通过下行PDCP状态报告传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
  36. 如权利要求24所述的方法,还包括:
    所述目标基站接收所述UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收确认的上行PDCP的PDU是指所述UE在所述原基站第一个没有接收确认的PDU。
  37. 如权利要求36所述的方法,其中,所述目标基站接收所述UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值,包括:
    所述目标基站接收所述UE通过下行PDCP状态报告传输的当前第一个没 有接收确认的上行PDCP的PDU的SN和HFN值。
  38. 一种基站,所述基站为原基站,所述基站包括:
    第一传输模块,用于在UE从所述原基站切换到目标基站的切换过程中,保持所述UE的数据传输;
    第二传输模块,用于在保持所述UE的数据传输时,向所述目标基站传输所述数据。
  39. 如权利要求38所述的基站,其中,所述数据包括下行数据包,所述第一传输模块用于向所述UE传输所述下行数据包;
    所述第二传输模块用于在向所述UE发送所述下行数据包时,向所述目标基站传输所述下行数据包。
  40. 如权利要求39所述的基站,还包括:
    第三传输模块,用于向所述目标基站传输所述下行数据包的当前超帧号HFN值。
  41. 如权利要求38所述的基站,其中,所述数据包括上行数据包,所述第一传输模块用于向网关设备传输所述上行数据包;
    所述第二传输模块用于在向所述网关设备传输所述上行数据包时,向所述目标基站传输所述上行数据包。
  42. 如权利要求41所述的基站,还包括:
    第四传输模块,用于向所述目标基站传输所述上行数据包的当前HFN值。
  43. 如权利要求41或42所述的基站,其中,所述原基站向所述目标基站传输的上行数据包用于,使所述目标基站在所述UE与所述目标基站建立连接成功时,由所述目标基站根据接收的上行数据包构建分组数据汇聚协议PDCP的状态报告,并由所述目标基站发送给所述UE。
  44. 如权利要求40所述的基站,其中,所述原基站向所述目标基站发送的下行数据包的HFN值用于,使所述目标基站根据所述原基站发送的HFN值和下行数据包确定后续向所述UE传输的下行数据包的HFN值。
  45. 如权利要求42所述的基站,其中,所述原基站向所述目标基站发送的上行数据包的HFN值用于,使所述目标基站根据所述原基站发送的HFN值和上行数据包确定后续来自所述UE传输的上行数据包的HFN值。
  46. 如权利要求38所述的基站,还包括:
    第五传输模块,用于在所述原基站停止所述UE的下行数据包的传输时,构建所述UE的下行数据包的序列号SN状态报告,并向所述目标基站发送所述SN状态报告,其中,所述SN状态报告包含所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
  47. 如权利要求38所述的基站,还包括:
    第六传输模块,用于在所述原基站停止所述UE的上行数据包的传输时,构建所述UE的上行数据包的SN状态报告,并向所述目标基站发送所述SN状态报告,其中,所述SN状态报告包含所述UE的上行数据包的接收状态,以及针对所述UE的上行数据包的期待的HFN值。
  48. 如权利要求47所述的基站,还包括:
    停止模块,用于在所述原基站停止所述UE的上行数据包的传输时,所述原基站停止向网关设备发送所述UE的上行数据包。
  49. 一种用户终端UE,包括:
    第一传输模块,用于在所述UE从原基站切换到目标基站的切换过程中,与所述原基站保持所述UE的数据传输,其中,在所述UE与所述原基站保持所述UE的数据传输时,所述原基站还向所述目标基站传输所述UE的数据。
  50. 如权利要求49所述的UE,其中,所述数据包括下行数据包,所述第一传输模块用于接收所述原基站传输的所述下行数据包,且在所述UE接收所述原基站传输的所述下行数据包时,所述原基站会向所述目标基站传输所述下行数据包。
  51. 如权利要求49所述的UE,其中,所述数据包括上行数据包,所述第一传输模块用于向所述原基站传输的所述上行数据包,且在所述UE向所述原基站传输的所述上行数据包时,所述原基站会向所述目标基站传输所述上行数据包。
  52. 如权利要求51所述的UE,还包括:
    接收模块,用于接收所述目标基站传输的分组数据汇聚协议PDCP的状态报告,其中,所述PDCP的状态报告是所述目标基站在所述UE与所述目标基站建立连接成功时,由所述目标基站根据接收的上行数据包构建的PDCP的状 态报告。
  53. 如权利要求50所述的UE,其中,所述UE在后续接收所述目标基站传输的下行数据包的超帧号HFN值是,所述目标基站根据所述原基站发送的下行数据包的HFN值和下行数据包确定的。
  54. 如权利要求51所述的UE,其中,所述UE在后续向所述目标基站传输的上行数据包的HFN值是,使所述目标基站根据所述原基站发送的上行数据包的HFN值和上行数据包确定的。
  55. 如权利要求49所述的UE,其中,在所述原基站停止所述UE的下行数据包的传输后,所述UE的下行数据包的PDCP SN信息是,所述目标基站接收所述原基站发送的SN状态报告包含的,且是所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
  56. 如权利要求49所述的UE,其中,在所述原基站停止所述UE的上行数据包的传输后,所述UE的上行数据包的HFN值是所述目标基站接收所述原基站发送的序列号SN状态报告包含的,且是针对所述UE的上行数据包的期待的HFN值,且所述SN状态报告还包含所述UE的上行数据包的接收状态。
  57. 如权利要求49所述的UE,还包括:
    第二传输模块,用于向所述目标基站传输当前第一个没有接收到的下行PDCP的协议数据单元PDU的SN和/或HFN值,其中,所述第一个没有接收到的下行PDCP的PDU指所述UE在所述原基站第一个没有正确接收的PDU。
  58. 如权利要求57所述的UE,其中,所述第二传输模块用于通过下行PDCP状态报告向所述目标基站传输当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
  59. 如权利要求49所述的UE,还包括:
    第三传输模块,用于向所述目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收确认的上行PDCP的PDU是指所述UE在所述原基站第一个没有接收确认的PDU。
  60. 如权利要求59所述的UE,其中,所述第三传输模块用于通过下行PDCP状态报告向所述目标基站传输当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
  61. 一种基站,所述基站为目标基站,所述基站包括:
    第一接收模块,用于在用户终端UE从原基站切换到目标基站的切换过程中,接收所述原基站传输的所述UE的数据,其中,在所述目标基站接收所述原基站传输的所述UE的数据时,所述原基站保持所述UE的数据传输。
  62. 如权利要求61所述的基站,其中,所述数据包括下行数据包,所述第一接收模块用于接收所述原基站传输的所述下行数据包,在所述目标基站接收所述原基站传输的所述下行数据包时,所述原基站会向所述UE传输所述下行数据包。
  63. 如权利要求62所述的基站,还包括:
    第二接收模块,用于接收所述原基站传输的所述下行数据包的当前超帧号HFN值。
  64. 如权利要求61所述的基站,其中,所述数据包括上行数据包,所述第一接收模块用于接收所述原基站传输的所述上行数据包,在所述目标基站接收所述原基站传输的所述上行数据包时,所述原基站会向网关设备传输所述上行数据包。
  65. 如权利要求64所述的基站,还包括:
    第三接收模块,用于接收所述原基站传输的所述上行数据包的当前HFN值。
  66. 如权利要求64或65所述的基站,还包括:
    传输模块,用于在所述UE与所述目标基站建立连接成功时,所述目标基站根据接收的上行数据包构建分组数据汇聚协议PDCP的状态报告,并发送给所述UE。
  67. 如权利要求63所述的基站,还包括:
    第一确定模块,用于根据所述原基站发送的HFN值和下行数据包确定后续向所述UE传输的下行数据包的HFN值。
  68. 如权利要求65所述的基站,还包括:
    第二确定模块,用于根据所述原基站发送的HFN值和上行数据包确定后续来自所述UE传输的上行数据包的HFN值。
  69. 如权利要求61所述的基站,还包括:
    第四接收模块,用于在所述原基站停止所述UE的下行数据包的传输时,接收所述原基站传输的序列号SN状态报告,其中,所述SN状态报告由所述原基站构建的所述UE的下行数据包的SN状态报告,且所述SN状态报告包含所述目标基站对所述UE的下行数据包应分配的PDCP SN信息。
  70. 如权利要求61所述的基站,还包括:
    第五接收模块,用于在所述原基站停止所述UE的上行数据包的传输时,接收所述原基站传输的SN状态报告,其中,所述SN状态报告由所述原基站构建的所述UE的上行数据包的SN状态报告,且所述SN状态报告包含所述UE的上行数据包的接收状态,以及针对所述UE的上行数据包的期待的HFN值。
  71. 如权利要求61所述的基站,还包括:
    第六接收模块,用于接收所述UE传输的当前第一个没有接收到的下行PDCP的协议数据单元PDU的SN和/或HFN值,其中,所述第一个没有接收到的下行PDCP的PDU是在所述UE与所述目标基站建立连接成功后的第一个。
  72. 如权利要求71所述的基站,其中,所述第六接收模块用于接收所述UE通过下行PDCP状态报告传输的当前第一个没有接收到的下行PDCP的PDU的SN和HFN值。
  73. 如权利要求61所述的基站,还包括:
    第七接收模块,用于接收所述UE传输的当前第一个没有接收确认的上行PDCP的PDU的SN和/或HFN值,其中,所述第一个没有接收确认的上行PDCP的PDU是指所述UE在所述原基站第一个没有接收确认的PDU。
  74. 如权利要求73所述的基站,其中,所述第七接收模块用于接收所述UE通过下行PDCP状态报告传输的当前第一个没有接收确认的上行PDCP的PDU的SN和HFN值。
  75. 一种数据传输系统,包括:
    原基站,用于在用户终端UE从所述原基站切换到目标基站的切换过程中,保持所述UE的数据传输;
    所述UE,用于在所述UE从所述原基站切换到目标基站的切换过程中,与所述原基站保持所述UE的数据传输;
    所述原基站还用于在保持所述UE的数据传输时,向所述目标基站传输所 述数据;
    所述目标基站,用于在所述UE从所述原基站切换到所述目标基站的切换过程中,接收所述原基站传输的所述UE的数据。
  76. 一种基站,所述基站为原基站,所述基站包括:
    处理器,收发机,存储器,用户接口和总线接口,其中所述收发机用于在所述处理器的控制下接收和发送数据,其中所述处理器用于读取所述存储器中的程序,以执行根据权利要求1-11中任一项所述的方法。
  77. 一种用户终端UE,包括:
    处理器,收发机,存储器,用户接口和总线接口,其中所述收发机用于在所述处理器的控制下接收和发送数据,其中所述处理器用于读取所述存储器中的程序,以执行根据权利要求12-23中任一项所述的方法。
  78. 一种基站,所述基站为目标基站,所述基站包括:
    处理器,收发机,存储器,用户接口和总线接口,其中所述收发机用于在所述处理器的控制下接收和发送数据,其中所述处理器用于读取所述存储器中的程序,以执行根据权利要求24-37中任一项所述的方法。
PCT/CN2017/081808 2016-05-13 2017-04-25 一种数据传输方法、用户终端、基站和系统 WO2017193807A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/301,427 US10827403B2 (en) 2016-05-13 2017-04-25 Data transmission method, user equipment, base station, and system
EP17795425.2A EP3457754B1 (en) 2016-05-13 2017-04-25 Data transmission method and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610320054.5A CN107371207A (zh) 2016-05-13 2016-05-13 一种数据传输方法、ue、基站和系统
CN201610320054.5 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017193807A1 true WO2017193807A1 (zh) 2017-11-16

Family

ID=60266304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081808 WO2017193807A1 (zh) 2016-05-13 2017-04-25 一种数据传输方法、用户终端、基站和系统

Country Status (4)

Country Link
US (1) US10827403B2 (zh)
EP (1) EP3457754B1 (zh)
CN (1) CN107371207A (zh)
WO (1) WO2017193807A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220361060A1 (en) * 2019-08-14 2022-11-10 Telefonaktiebolaget Lm Ericsson (Publ) User Equipment, Target Access Node and Methods in a Wireless Communications Network
CN112584450A (zh) * 2019-09-30 2021-03-30 大唐移动通信设备有限公司 一种锚点转换处理方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052213A (zh) * 2006-04-04 2007-10-10 华为技术有限公司 长期演进网络中用户设备切换时用户数据传输方法
US20110188476A1 (en) * 2008-09-29 2011-08-04 Kyocera Corporation Wireless communication system, wireless base station, wireless terminal, and wireless communication method
CN104469859A (zh) * 2013-09-23 2015-03-25 联芯科技有限公司 一种提高数据传输性能的方法和系统
CN105474696A (zh) * 2013-08-20 2016-04-06 株式会社Ntt都科摩 移动通信方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382611C (zh) * 2004-10-25 2008-04-16 华为技术有限公司 一种多媒体消息前转的方法
CN100426887C (zh) * 2006-03-20 2008-10-15 华为技术有限公司 短信前转的实现方法及系统
JP5019400B2 (ja) * 2006-04-25 2012-09-05 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおける無線接続設定方法及び装置
CN100542325C (zh) * 2006-06-22 2009-09-16 华为技术有限公司 切换控制方法
CN100461783C (zh) * 2006-09-05 2009-02-11 华为技术有限公司 一种实现传真文件前转的方法
US8855637B2 (en) * 2007-03-21 2014-10-07 Wi-Lan, Inc. Methods and apparatus for performing handoff based on the mobility of a subscriber station
US8208498B2 (en) * 2007-10-30 2012-06-26 Qualcomm Incorporated Methods and systems for HFN handling at inter-base station handover in mobile communication networks
KR101480929B1 (ko) * 2010-02-12 2015-01-12 인터디지탈 테크날러지 코포레이션 다중 사이트 간의 데이터 분할
CN102791008B (zh) * 2011-05-16 2017-10-27 南京中兴新软件有限责任公司 跨基站切换过程中数据的反传方法及基站
WO2013013412A1 (en) * 2011-07-28 2013-01-31 Renesas Mobile Corporation Switching between cellular and license-exempt (shared) bands
US9521600B2 (en) * 2013-01-28 2016-12-13 Blackberry Limited Handover mechanism in cellular networks
EP2833669B1 (en) * 2013-07-31 2022-06-22 Panasonic Intellectual Property Corporation of America Handoff procedure in a mobile communication system
US9648514B2 (en) * 2013-08-09 2017-05-09 Blackberry Limited Method and system for protocol layer enhancements in data offload over small cells
US9967784B2 (en) * 2014-03-21 2018-05-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving signal in mobile communication system supporting a plurality of carriers
US9762482B2 (en) * 2015-07-30 2017-09-12 Qualcomm Incorporated Smart processing of WWAN packets transmitted over WLAN
WO2017171506A1 (en) 2016-04-01 2017-10-05 Samsung Electronics Co., Ltd. Method and enb equipment for supporting seamless handover

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052213A (zh) * 2006-04-04 2007-10-10 华为技术有限公司 长期演进网络中用户设备切换时用户数据传输方法
US20110188476A1 (en) * 2008-09-29 2011-08-04 Kyocera Corporation Wireless communication system, wireless base station, wireless terminal, and wireless communication method
CN105474696A (zh) * 2013-08-20 2016-04-06 株式会社Ntt都科摩 移动通信方法
CN104469859A (zh) * 2013-09-23 2015-03-25 联芯科技有限公司 一种提高数据传输性能的方法和系统

Also Published As

Publication number Publication date
EP3457754A1 (en) 2019-03-20
US20190166528A1 (en) 2019-05-30
EP3457754B1 (en) 2021-08-25
EP3457754A4 (en) 2019-03-27
US10827403B2 (en) 2020-11-03
CN107371207A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
US10750414B2 (en) System and method for handovers in a dual connectivity communications system
US10986549B2 (en) Handover method and device
WO2019096281A1 (zh) 一种通信方法,通信设备及其通信系统
US20200120572A1 (en) Methods and Units in a Network Node for Handling Communication with a Wireless Device
AU2017424739B2 (en) Switching method, access network device and terminal device
WO2013170789A1 (zh) 一种数据转发的方法、设备及通讯系统
WO2018202187A1 (zh) 一种切换的方法、终端设备及网络设备
CN110351030A (zh) 报文传输方法、装置和系统
WO2019024032A1 (zh) 数据传输方法、相关设备及通信系统
WO2020221048A1 (zh) 一种通信方法及装置
WO2016127666A1 (zh) 一种rlc数据包分流方法及基站
CN114175726B (zh) 用于移动性控制的无线通信方法
CN108781376A (zh) 数据传输方法、用户设备及接入网设备
WO2014166053A1 (zh) 一种通讯方法和终端
WO2018127220A1 (zh) 一种数据转发方法及装置
US20230276308A1 (en) Service node updating method, terminal device, and network-side device
EP3456146B1 (en) Method and device for loss mitigation during device to device communication mode switching
JP6406431B2 (ja) 通信装置、通信システム、制御方法
WO2017193807A1 (zh) 一种数据传输方法、用户终端、基站和系统
US10064237B2 (en) Communication apparatus, and layer 2 state control method
WO2021249425A1 (zh) 一种通信方法及相关装置
US20220394554A1 (en) Method and arrangements for desired buffer size target time
CN113475120B (zh) 小区切换时的数据传输方法及装置
WO2020097850A1 (zh) 数据的传输方法及装置
WO2019028812A1 (zh) 一种路径转换方法及相关设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017795425

Country of ref document: EP

Effective date: 20181213