WO2021033787A1 - Visible and near-infrared image providing system and method which use single color camera and can simultaneously acquire visible and near-infrared images - Google Patents

Visible and near-infrared image providing system and method which use single color camera and can simultaneously acquire visible and near-infrared images Download PDF

Info

Publication number
WO2021033787A1
WO2021033787A1 PCT/KR2019/010472 KR2019010472W WO2021033787A1 WO 2021033787 A1 WO2021033787 A1 WO 2021033787A1 KR 2019010472 W KR2019010472 W KR 2019010472W WO 2021033787 A1 WO2021033787 A1 WO 2021033787A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
visible
image
ray detection
detection value
Prior art date
Application number
PCT/KR2019/010472
Other languages
French (fr)
Korean (ko)
Inventor
배수진
이대식
김한석
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to PCT/KR2019/010472 priority Critical patent/WO2021033787A1/en
Publication of WO2021033787A1 publication Critical patent/WO2021033787A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to an imaging system, and more particularly, to a system and method for providing an optical image such as visible light or near-infrared fluorescence image for biological tissue examination.
  • Optical imaging using fluorescence has advantages such as sensitivity, selectivity, and convenient use. Since living tissues have less autofluorescence in the near-infrared region of 700 to 900 nm, various biological tissues that need to be visualized using near-infrared fluorescent materials and near-infrared fluorescence images that target diseased tissues including cancer are diverse in the medical field. Is being utilized.
  • ICG Indocyanin green
  • albumin a water-soluble protein present in the cytoplasm and tissues of the body
  • the location and distribution of surrounding lymph nodes can be identified, and the flow of blood and lymph fluid can be observed.
  • the visible and near-infrared image detection systems use individual image sensors for visible and near-infrared channels, or use a single sensor sequentially.
  • a fusion image is generated by simultaneously acquiring different wavelength images such as a visible light wavelength region and a near infrared wavelength region in order to observe the near-infrared fluorescence and surrounding tissues of a target object.
  • wavelength images such as a visible light wavelength region and a near infrared wavelength region
  • this method requires accurate optical alignment and a plurality of parts, there is a problem that the configuration is complicated and the price is high.
  • the method of using a single detector is a selective and sequential detection method for a specific wavelength range, and acquires visible and near-infrared wavelength images and generates a fused image through image processing.
  • the visible light image and the near-infrared fluorescence image are sequentially provided, there is a problem in that the object image cannot be detected simultaneously.
  • the present invention has been devised to solve the above-described conventional problems, and provides an imaging system and method capable of simultaneously acquiring and providing surrounding tissue images and near-infrared images by simultaneously detecting visible and near-infrared wavelengths while having a single camera. It aims to provide.
  • the system for providing visible and near-infrared rays includes a conventional CMOS in which an irradiation light source unit for irradiating visible and near-infrared rays of preset wavelengths to a subject and red, green, and blue filters are intersected in a predetermined pattern.
  • a system for providing visible and near-infrared rays including a color camera including a CCD image sensor and an image processing unit that processes detected image data, wherein the irradiation light source unit receives visible and near-infrared rays excluding some wavelength regions of red, green, and blue.
  • the image processing unit includes a near-infrared ray detection value calculation unit, a visible ray detection value calculation unit, and an estimated visible ray detection value calculation unit.
  • the near-infrared detection value calculation unit calculates the near-infrared detection value of the surrounding pixels through the near-infrared detection value obtained from some pixels in which only near-infrared ray is detected among the image detection sensors, and the visible ray detection value calculation unit calculates the calculated near-infrared ray detection value and the obtained visible light.
  • the corrected visible ray detection value is calculated through the ray detection value, and the estimated visible ray detection value calculator calculates estimated visible ray detection values of pixels in which only near-infrared rays are detected using the calculated visible ray detection values of other pixels.
  • this configuration by using light of different wavelengths respectively detected from different pixels of a single image detection sensor, while equipped with a single camera, it simultaneously detects the visible and near-infrared wavelengths to simultaneously display surrounding tissue images and near-infrared images. Be able to acquire and provide.
  • the image system may further include an image detector including an image detection sensor, and the image detector may further include a filter to pass through a near-infrared region excluding a visible region and an excitation wavelength.
  • some wavelength regions excluded from the irradiation light source unit may include a red visible ray region, and the irradiation light source unit includes a visible light source unit for selectively irradiating visible light of a preset wavelength, and a preset excitation wavelength to excite fluorescence. It may include a near-infrared light source for irradiating near-infrared rays of.
  • an image output unit for outputting image data provided by the image processing unit may be further included, and in this case, the image output unit may convert a near-infrared fluorescence signal into a virtual color and output it.
  • the wavelength of visible light irradiated together with the near-infrared light of the excitation wavelength by the irradiation light source unit is blue
  • the pixel that detects the red and green wavelengths of visible light of the image detection sensor detects only the excited near-infrared fluorescence
  • the image processing unit detects the near-infrared ray.
  • the wavelength of visible light irradiated together with the near-infrared ray of the excitation wavelength by the irradiation light source unit is blue and green
  • the pixel detecting the red visible ray of the image detection sensor detects only the excited near-infrared fluorescence
  • the image processing unit detects the near-infrared ray detection value.
  • a calibration unit for calibrating a detected value from the image detection sensor according to a preset reference may be further included.
  • irradiation light in the visible and near-infrared wavelength ranges set in consideration of the sensitivity characteristics of each color channel pixel in a single image detection sensor, and excitation light in the near-infrared wavelength range, and each detected in different pixels of the single image detection sensor
  • Using light detection values of different wavelengths it is possible to simultaneously acquire and provide surrounding tissue images and near-infrared fluorescence images by simultaneously detecting visible and near-infrared wavelengths while having a single camera.
  • FIG. 1 is a schematic block diagram of a system for providing visible and near-infrared rays according to an embodiment of the present invention.
  • FIG. 2 is a graph showing spectral characteristics of the image detection sensor of FIG. 1.
  • FIG. 3 is a diagram illustrating a white light area irradiated from the visible light source unit of FIG. 1.
  • FIG. 4 is a view showing a near-infrared region irradiated from the near-infrared light source of FIG. 1;
  • FIG. 5 is a diagram illustrating visible and near-infrared regions when visible and near-infrared rays are simultaneously irradiated from the irradiation light source of FIG. 1;
  • FIG. 6 is a diagram illustrating detection wavelength characteristics of an image detection unit filter unit of FIG. 1.
  • FIG. 7 is a diagram illustrating an example of a Bayer pattern.
  • FIG. 8 to 10 schematically illustrate the concept of a near-infrared fluorescence image (I NIR ), a color background image (I VIS ), and a fusion image (I) of a near-infrared fluorescence image (I NIR ) and a color background image (I VIS), respectively.
  • I NIR near-infrared fluorescence image
  • I VIS color background image
  • I fusion image
  • FIG. 11 is a diagram illustrating an example of color value interpolation performed by the image processing unit of FIG. 1.
  • the visible and near-infrared image providing system 100 includes an irradiation light source unit 110, an image detection unit 120, an image processing unit 130, and an image output unit 140.
  • the irradiation light source unit 110 again includes a visible light source unit 112 and a near-infrared light source unit 114
  • the image detection unit 120 again includes an image detection sensor 122 and a filter unit 124
  • an image processing unit 130 again includes a near infrared ray detection value calculation unit 132, a visible ray detection value calculation unit 134, an estimated visible ray detection value calculation unit 136, and a calibration unit 138.
  • the irradiation light source unit 110 may be implemented as a composite light source device including a visible light irradiation light source and a near-infrared fluorescence excitation light source, and at this time, the visible light irradiation light source may selectively adjust the wavelength of the irradiation light.
  • the visible light source unit 112 selectively irradiates visible light having a set wavelength in consideration of the spectral characteristics of the image detection sensor, and the near infrared light source unit 114 irradiates near infrared light having an excitation wavelength to excite the fluorescent material.
  • FIG. 2 is a graph showing spectral characteristics of the image detection sensor of FIG. 1
  • FIGS. 3 and 4 are diagrams showing a white light region irradiated by a visible light source unit and a near infrared region irradiated by a near infrared light source unit, respectively.
  • FIG. 5 is a diagram illustrating visible and near-infrared regions when visible and near-infrared rays are simultaneously irradiated by the irradiation light source of FIG. 1.
  • the visible light region is displayed only for some wavelengths selected by the visible light source unit 112.
  • the image detection unit 120 may be implemented as a single-chip color camera, and when the visible light irradiation light source and the near-infrared fluorescence excitation light source are simultaneously irradiated, the reflected light and the near-infrared fluorescence of the visible light irradiation light source can be simultaneously detected with a single-chip color camera. have.
  • the image detection sensor 122 includes pixels for detecting visible light and near-infrared light of some wavelengths of red, green, and blue, arranged according to a set pattern.
  • single-chip CMOS and CCD image detection sensors have a Bayer pattern with a color filter array (CFA), and R, G, and B filters have 50% G, depending on human visual characteristics. R and B are uniformly intersected so that each is 25%, and single color information is detected at each pixel location.
  • 7 is a diagram illustrating an example of a Bayer pattern.
  • each pixel of the image detection sensor is combined with only one of R, G, and B filters, one pixel detects only one color, so the missing color information for each pixel is the color value from the surrounding pixels.
  • Color information is completed through demosaicing, which is an image processing process that is interpolated.
  • a black and white camera does not have an infrared cut filter, but a color camera incorporates a cut filter for color reproduction.
  • a color camera incorporates a cut filter for color reproduction.
  • products without infrared cut filter have been released.
  • the near-infrared region is detected with the same signal sensitivity in all color channels as shown below.
  • G channel G VIS + G NIR
  • B channel B VIS + B NIR
  • R, G, and B pixels can also be used as near-infrared channels.
  • R ij , B ij , and G ij are the color components of CFA image I CFA , and if the color channel is 8 bits, the values of R ij , B ij and G ij are 0-255.
  • An image for outputting the missing color information for each pixel to the display through color value interpolation processing ) Can be obtained.
  • each pixel of the CFA image I CFA includes not only the visible region of the color filter but also the near infrared region. Therefore, the near infrared signal is separated from each pixel. and Can be obtained by dividing as follows.
  • a wavelength less than ⁇ 2 is the stopband limit wavelength of the color filter array red filter of the image detection sensor along with the near-infrared excitation light.
  • the R channel of the single-chip RGB camera detects near-infrared fluorescence
  • the G and B channels are light reflected from the surrounding tissues by irradiation with the irradiation light ( Reflection light) and near-infrared fluorescence can be detected.
  • G channel G VIS + G NIR
  • B channel B VIS + B NIR
  • the R channel has only near-infrared values and can be used to calculate estimated near-infrared values of the surrounding G and B channels.
  • I the estimated near-infrared values of the B and G channels.
  • CFA image I CFA data having only visible light signals can be estimated and calculated.
  • CFA image having only visible light signal I A background image of an object to be observed may be obtained as follows through demosaicing, an image processing process of interpolating color values from surrounding pixels using CFA.
  • a near-infrared fluorescence image (I NIR ) and a color background image (I VIS ) can be simultaneously acquired, and these images can be displayed alone or by fusion (I).
  • FIG. 8 to 10 schematically illustrate the concept of a near-infrared fluorescence image (I NIR ), a color background image (I VIS ), and a fusion image (I) of a near-infrared fluorescence image (I NIR ) and a color background image (I VIS), respectively. It is a drawing shown.
  • the filter unit 124 passes through a near-infrared region excluding visible light and an excitation wavelength, and may be configured as a notch filter.
  • 6 is a diagram illustrating a detection wavelength region after filtering by the filter of FIG. 1.
  • the near-infrared ray detection value calculating unit 132 calculates the near-infrared ray detection value of other pixels by using the near-infrared ray detection value obtained from some pixels in which only near-infrared ray is detected among the image detection sensors, and the visible ray detection value calculating unit 134 By using the calculated near-infrared detection value, the visible light detection value of other pixels is calculated, and the estimated visible ray detection value calculating unit 136 uses the calculated visible light detection value of the other pixels. The estimated visible light detection value is calculated.
  • this configuration by using light of different wavelengths respectively detected from different pixels of a single image detection sensor, while equipped with a single camera, it simultaneously detects the visible and near-infrared wavelengths to simultaneously display surrounding tissue images and near-infrared images. Be able to acquire and provide.
  • the calibration unit 138 calibrates the detected value from the image detection sensor 122 according to a preset reference.
  • the R, G, and B sensitivities differ depending on the wavelength.
  • the sensitivity is not 0 even in the 400 to 550 nm area of the shielding area, and there is a slight difference in the sensitivity of R, G, and B in the near infrared area. Therefore, it performs a function of calibrating it.
  • the visible light of the wavelength irradiated by the irradiation light source unit 110 is blue
  • the pixel detecting the visible light of the red and green wavelengths of the image detection sensor detects only near infrared rays
  • the image processing unit 130 detects near infrared rays Using the value, a near-infrared detection value in a blue visible ray detection pixel may be calculated, and an estimated blue visible ray detection value in a red and green visible ray detection pixel may be calculated.
  • FIG. 11 is a diagram for describing an example of color value interpolation performed by the image processing unit of FIG. 1.
  • FIG. 11 shows an example of calculating a near-infrared ray value of a blue cell by using the near-infrared ray detection values of red and green cells around a blue cell.
  • the visible light source and the near-infrared fluorescence excitation light source are simultaneously irradiated, if the wavelength of the irradiated light is ⁇ EX ⁇ 1 , the detected R and G channel signals are near-infrared fluorescence signals, and the detected B channel is near-infrared fluorescence. And reflected light of visible light irradiation.
  • the near-infrared fluorescence image is obtained by estimating the near-infrared fluorescence signal of the B channel from the near-infrared fluorescence signal of the R channel and G channel, and the reflected light information of the R and G channels is estimated from the visible light signal of the B channel.
  • the background image of the object may be acquired as follows.
  • R channel R NIR
  • G channel G NIR
  • B channel B VIS + B NIR
  • the visible light of the wavelength irradiated by the irradiation light source unit 110 is blue and green
  • the pixel detecting the red visible light of the image detection sensor 122 detects only near-infrared light
  • the image processing unit 130 Using the near-infrared detection value, a near-infrared detection value in a blue and green visible ray detection pixel may be calculated, and an estimated blue and green visible ray detection value in a red visible ray detection pixel may be calculated.
  • the intensity of the near-infrared fluorescence signal of the G channel and the near-infrared fluorescence signal of the B channel from the R channel having only the near-infrared fluorescence signal And calculate the intensity of reflected light of the G and B channels.
  • a background image of the observation object composed of the reflected light may be obtained as follows.
  • G channel G VIS + G NIR
  • B channel B VIS + B NIR
  • the image output unit 140 outputs image data provided by the image processing unit 130.
  • the image output unit 140 may display reflected light of the visible light irradiation light source and near-infrared fluorescence at the same time or overlap each other, and at this time, the near-infrared fluorescence signal may be displayed in pseudo color.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Endoscopes (AREA)

Abstract

Disclosed is a visible and near-infrared image providing system which uses a single color camera and can simultaneously acquire visible and near-infrared images. The visible and near-infrared image providing system comprises: an emission light-source unit for emitting visible rays and near-infrared rays of preset wavelengths at a subject; and an image processing unit for processing image data detected by an image detection sensor comprising pixels, which are arranged in a preset pattern, detect a visible ray region of partial wavelengths of red, green, and blue colors, and have similar sensitivity in a near-infrared ray region, wherein the emission light-source unit simultaneously emit visible rays and near-infrared rays except in regions of partial wavelengths of red, green, and blue colors, and the image processing unit comprises a near-infrared ray detection value calculation unit, a visible ray detection value calculation unit, and an estimated visible ray detection value calculation unit.

Description

단일 컬러 카메라를 이용하고 가시광선 및 근적외선 영상 동시 획득이 가능한 가시광선 및 근적외선 영상 제공 시스템 및 방법Visible and near-infrared image providing system and method capable of simultaneously acquiring visible and near-infrared images using a single color camera
본 발명은 영상 시스템에 관한 것으로서, 더욱 상세하게는 생체 조직 검사 등을 위해 가시광선이나 근적외선 형광 영상과 같은 광학 영상을 제공하는 시스템 및 방법에 관한 것이다.The present invention relates to an imaging system, and more particularly, to a system and method for providing an optical image such as visible light or near-infrared fluorescence image for biological tissue examination.
형광을 이용하는 광학 영상법은 민감도나 선택성 그리고 편리한 사용법 등의 장점을 가진다. 생체 조직들은 700~900nm의 근적외선 영역에서 고유형광(Autofluorescence) 영향이 적기 때문에, 근적외선 형광물질을 이용하여 시각화가 필요한 다양한 생체 조직들과 암을 포함한 질병 조직을 표적화하는 근적외선 형광 영상이 의료분야에서 다양하게 활용되고 있다.Optical imaging using fluorescence has advantages such as sensitivity, selectivity, and convenient use. Since living tissues have less autofluorescence in the near-infrared region of 700 to 900 nm, various biological tissues that need to be visualized using near-infrared fluorescent materials and near-infrared fluorescence images that target diseased tissues including cancer are diverse in the medical field. Is being utilized.
일 예로, ICG(Indocyanin green)는 체내 세포질과 조직에 존재하는 수용성 단백질인 알부민과 결합하며, 805nm의 적외선 파장에서 835nm로 형광 발현하는 특징을 가지므로, 기존의 내시경 영상들로는 확인이 어려웠던 혈관, 병변 주변 림프절의 위치 및 분포를 파악할 수 있으며, 혈액과 림프액의 흐름을 관찰할 수 있게 된다. As an example, ICG (Indocyanin green) binds to albumin, a water-soluble protein present in the cytoplasm and tissues of the body, and has a characteristic of fluorescently expressing at 835 nm at an infrared wavelength of 805 nm. The location and distribution of surrounding lymph nodes can be identified, and the flow of blood and lymph fluid can be observed.
한편, 일반적으로 가시광선 및 근적외선 영상 검출시스템은, 가시광선과 근적외선 채널용으로 개별 영상센서를 사용하거나, 단일 센서를 순차적으로 사용하는 방식을 사용한다.On the other hand, in general, the visible and near-infrared image detection systems use individual image sensors for visible and near-infrared channels, or use a single sensor sequentially.
다중 채널 검출기를 사용하는 방식은, 표적 객체의 근적외선 형광과 주변 조직을 관찰하기 위하여 가시광선 파장 영역과 근적외선 파장영역 등 다른 파장 영상을 동시에 획득하여 융합 영상을 생성한다. 그런데 이러한 방식은 정확한 광학 정렬과 복수의 부품이 요구되기 때문에 그 구성이 복잡하며 가격이 높다는 문제점이 있다.In the method of using a multi-channel detector, a fusion image is generated by simultaneously acquiring different wavelength images such as a visible light wavelength region and a near infrared wavelength region in order to observe the near-infrared fluorescence and surrounding tissues of a target object. However, since this method requires accurate optical alignment and a plurality of parts, there is a problem that the configuration is complicated and the price is high.
또한, 단일 검출기를 사용하는 방식은 특정 파장 범위에 대해 선택적이며 순차적인 검출 방식으로서, 가시광선과 근적외선 파장 영상을 획득하고 영상처리를 통해 융합 영상을 생성한다. 하지만, 이 경우 가시광선 영상과 근적외선 형광 영상을 순차적(sequential)으로 영상 제공하기 때문에, 동시간의 대상체 영상을 검출할 수 없다는 문제점이 있다. In addition, the method of using a single detector is a selective and sequential detection method for a specific wavelength range, and acquires visible and near-infrared wavelength images and generates a fused image through image processing. However, in this case, since the visible light image and the near-infrared fluorescence image are sequentially provided, there is a problem in that the object image cannot be detected simultaneously.
본 발명은 상술한 종래의 문제점을 해결하기 위해 안출된 것으로서, 단일 카메라를 구비하면서도 가시광선 파장과 근적외선 파장을 동시에 검출하여 주변 조직영상과 근적외선 영상을 동시에 획득하고 제공할 수 있는 영상 시스템 및 방법을 제공하는 것을 목적으로 한다.The present invention has been devised to solve the above-described conventional problems, and provides an imaging system and method capable of simultaneously acquiring and providing surrounding tissue images and near-infrared images by simultaneously detecting visible and near-infrared wavelengths while having a single camera. It aims to provide.
상기 목적을 달성하기 위해 본 발명에 따른 가시광선 및 근적외선 영상 제공 시스템은, 피사체에 미리 설정된 파장의 가시광선과 근적외선을 조사하는 조사 광원부와 적색, 녹색, 청색 필터들이 일정한 패턴으로 교차 배치된 전통적인 CMOS, CCD 이미지 센서를 포함하는 컬러 카메라, 및 검출된 영상 데이터를 처리하는 영상 처리부를 포함하는 가시광선 및 근적외선 영상 제공 시스템으로서, 조사 광원부는 적색, 녹색, 청색 중 일부 파장 영역을 제외한 가시 광선 및 근적외선을 동시에 조사하고, 영상 처리부는 근적외선 검출값 산출부, 가시광선 검출값 산출부, 및 추정 가시광선 검출값 산출부를 포함한다.In order to achieve the above object, the system for providing visible and near-infrared rays according to the present invention includes a conventional CMOS in which an irradiation light source unit for irradiating visible and near-infrared rays of preset wavelengths to a subject and red, green, and blue filters are intersected in a predetermined pattern. A system for providing visible and near-infrared rays including a color camera including a CCD image sensor and an image processing unit that processes detected image data, wherein the irradiation light source unit receives visible and near-infrared rays excluding some wavelength regions of red, green, and blue. At the same time, the image processing unit includes a near-infrared ray detection value calculation unit, a visible ray detection value calculation unit, and an estimated visible ray detection value calculation unit.
근적외선 검출값 산출부는 영상 검출 센서 중 근적외선만이 검출되는 일부 화소들로부터 획득된 근적외선 검출값을 통해 주변 화소들의 근적외선 검출값을 산출하고, 가시광선 검출값 산출부는 산출된 근적외선 검출값과 획득된 가시광선 검출값을 통해 보정된 가시광선 검출값을 산출하며, 추정 가시광선 검출값 산출부는 산출된 다른 화소들의 가시광선 검출값을 이용하여 근적외선만이 검출된 화소들의 추정 가시광선 검출값을 산출한다.The near-infrared detection value calculation unit calculates the near-infrared detection value of the surrounding pixels through the near-infrared detection value obtained from some pixels in which only near-infrared ray is detected among the image detection sensors, and the visible ray detection value calculation unit calculates the calculated near-infrared ray detection value and the obtained visible light. The corrected visible ray detection value is calculated through the ray detection value, and the estimated visible ray detection value calculator calculates estimated visible ray detection values of pixels in which only near-infrared rays are detected using the calculated visible ray detection values of other pixels.
이와 같은 구성에 의하면, 단일 영상 검출 센서의 서로 다른 화소에서 각각 검출된 서로 다른 파장의 광을 이용하여, 단일 카메라를 구비하면서도 가시광선 파장과 근적외선 파장을 동시에 검출하여 주변 조직영상과 근적외선 영상을 동시에 획득하고 제공할 수 있게 된다.According to this configuration, by using light of different wavelengths respectively detected from different pixels of a single image detection sensor, while equipped with a single camera, it simultaneously detects the visible and near-infrared wavelengths to simultaneously display surrounding tissue images and near-infrared images. Be able to acquire and provide.
이때, 영상 시스템은 영상 검출 센서를 포함하는 영상 검출부를 더 포함할 수 있으며, 영상 검출부는 가시광선 영역과 여기 파장을 제외한 근적외선 영역을 통과시키는 필터부를 더 포함할 수 있다.In this case, the image system may further include an image detector including an image detection sensor, and the image detector may further include a filter to pass through a near-infrared region excluding a visible region and an excitation wavelength.
또한, 조사 광원부에서 제외되는 일부 파장 영역은 적색 가시광선 영역을 포함할 수 있으며, 조사 광원부는 미리 설정된 파장의 가시광선을 선택적으로 조사하기 위한 가시광선 광원부, 및 형광을 여기시키기 위해 미리 설정된 여기 파장의 근적외선을 조사하는 근적외선 광원부를 포함할 수 있다.In addition, some wavelength regions excluded from the irradiation light source unit may include a red visible ray region, and the irradiation light source unit includes a visible light source unit for selectively irradiating visible light of a preset wavelength, and a preset excitation wavelength to excite fluorescence. It may include a near-infrared light source for irradiating near-infrared rays of.
또한, 영상 처리부에 의해 제공되는 영상 데이터를 출력하는 영상 출력부를 더 포함할 수 있으며, 이때, 영상 출력부는 근적외선 형광 신호를 가상 색으로 변환하여 출력할 수 있다.In addition, an image output unit for outputting image data provided by the image processing unit may be further included, and in this case, the image output unit may convert a near-infrared fluorescence signal into a virtual color and output it.
또한, 조사 광원부에 의해 여기 파장의 근적외선과 함께 조사되는 가시광선 파장은 청색이고, 영상 검출 센서의 적색과 녹색 파장의 가시광선을 검출하는 화소에서는 여기된 근적외선 형광만을 검출하며, 영상 처리부는 근적외선 검출값을 이용하여 청색 가시광선 검출 화소에서의 근적외선 검출값을 산출하고, 적색과 녹색 가시광선 검출 화소에서의 추정 청색 가시광선 검출값을 산출할 수 있다.In addition, the wavelength of visible light irradiated together with the near-infrared light of the excitation wavelength by the irradiation light source unit is blue, the pixel that detects the red and green wavelengths of visible light of the image detection sensor detects only the excited near-infrared fluorescence, and the image processing unit detects the near-infrared ray. Using the value, a near-infrared detection value in a blue visible ray detection pixel may be calculated, and an estimated blue visible ray detection value in a red and green visible ray detection pixel may be calculated.
또한, 조사 광원부에 의해 여기 파장의 근적외선과 함께 조사되는 가시광선 파장은 청색 및 녹색이고, 영상 검출 센서의 적색의 가시광선을 검출하는 화소에서는 여기된 근적외선 형광만을 검출하며, 영상 처리부는 근적외선 검출값을 이용하여 청색 및 녹색 가시광선 검출 화소에서의 근적외선 검출값을 산출하고, 적색 가시광선 검출 화소에서의 추정 청색 및 녹색 가시광선 검출값을 산출할 수 있다.In addition, the wavelength of visible light irradiated together with the near-infrared ray of the excitation wavelength by the irradiation light source unit is blue and green, the pixel detecting the red visible ray of the image detection sensor detects only the excited near-infrared fluorescence, and the image processing unit detects the near-infrared ray detection value. By using, near-infrared detection values in blue and green visible light detection pixels may be calculated, and estimated blue and green visible light detection values in red visible light detection pixels may be calculated.
또한, 영상 검출 센서에서의 검출값을 미리 설정된 기준에 따라 캘리브레이션하는 캘리브레이션부를 더 포함할 수 있다. In addition, a calibration unit for calibrating a detected value from the image detection sensor according to a preset reference may be further included.
아울러, 상기 시스템을 방법의 형태로 구현한 발명과 상기 방법을 실행시키기 위한 영상 처리 장치 및 영상 처리 방법이 개시된다.In addition, the invention in which the system is implemented in the form of a method, and an image processing apparatus and an image processing method for executing the method are disclosed.
본 발명에 의하면, 단일 영상 검출 센서내 컬러 채널 화소의 파장별 감도 특성을 고려하여 설정된 가시광선 파장 영역의 조사광과 근적외선 파장 영역의 여기광과, 단일 영상 검출 센서의 서로 다른 화소에서 각각 검출된 서로 다른 파장의 광 검출값을 이용하여, 단일 카메라를 구비하면서도 가시광선 파장과 근적외선 파장을 동시에 검출하여 주변 조직영상과 근적외선 형광 영상을 동시에 획득하고 제공할 수 있게 된다.According to the present invention, irradiation light in the visible and near-infrared wavelength ranges set in consideration of the sensitivity characteristics of each color channel pixel in a single image detection sensor, and excitation light in the near-infrared wavelength range, and each detected in different pixels of the single image detection sensor Using light detection values of different wavelengths, it is possible to simultaneously acquire and provide surrounding tissue images and near-infrared fluorescence images by simultaneously detecting visible and near-infrared wavelengths while having a single camera.
도 1은 본 발명의 일 실시예에 따른 가시광선 및 근적외선 영상 제공 시스템의 개략적인 블록도.1 is a schematic block diagram of a system for providing visible and near-infrared rays according to an embodiment of the present invention.
도 2는 도 1의 영상 검출 센서의 스펙트럼 특성을 도시한 그래프.2 is a graph showing spectral characteristics of the image detection sensor of FIG. 1.
도 3은 도 1의 가시광선 광원부에서 조사되는 백색광 영역을 도시한 도면.3 is a diagram illustrating a white light area irradiated from the visible light source unit of FIG. 1.
도 4는 도 1의 근적외선 광원부에서 조사되는 근적외선 영역을 도시한 도면. 4 is a view showing a near-infrared region irradiated from the near-infrared light source of FIG. 1;
도 5는 도 1의 조사 광원부에서 가시광선과 근적외선이 동시 조사되는 경우 가시광선과 근적외선 영역을 도시한 도면.FIG. 5 is a diagram illustrating visible and near-infrared regions when visible and near-infrared rays are simultaneously irradiated from the irradiation light source of FIG. 1;
도 6은 도 1의 영상 검출부 필터부의 검출 파장 특성이 도시된 도면.FIG. 6 is a diagram illustrating detection wavelength characteristics of an image detection unit filter unit of FIG. 1.
도 7은 베이어 패턴의 예가 도시된 도면.7 is a diagram illustrating an example of a Bayer pattern.
도 8 내지 도 10은 각각 근적외선 형광 영상(INIR), 컬러 배경 영상(IVIS), 및 근적외선 형광 영상(INIR)과 컬러 배경 영상(IVIS)의 융합 영상(I)의 개념을 개략적으로 도시한 도면.8 to 10 schematically illustrate the concept of a near-infrared fluorescence image (I NIR ), a color background image (I VIS ), and a fusion image (I) of a near-infrared fluorescence image (I NIR ) and a color background image (I VIS), respectively. Figure shown.
도 11은 도 1의 영상 처리부에서 수행하는 색상값 보간의 예를 설명하기 위한 도면.11 is a diagram illustrating an example of color value interpolation performed by the image processing unit of FIG. 1.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 가시광선 및 근적외선 영상 제공 시스템의 개략적인 블록도이다. 가시광선 및 근적외선 영상 제공 시스템(100)은, 조사 광원부(110), 영상 검출부(120), 영상 처리부(130), 및 영상 출력부(140)를 포함한다. 1 is a schematic block diagram of a system for providing visible and near-infrared rays according to an embodiment of the present invention. The visible and near-infrared image providing system 100 includes an irradiation light source unit 110, an image detection unit 120, an image processing unit 130, and an image output unit 140.
또한, 조사 광원부(110)는 다시 가시광선 광원부(112) 및 근적외선 광원부(114)를 포함하고, 영상 검출부(120)는 다시 영상 검출 센서(122) 및 필터부(124)를 포함하고, 영상 처리부(130)는 다시 근적외선 검출값 산출부(132), 가시광선 검출값 산출부(134), 추정 가시광선 검출값 산출부(136), 및 캘리브레이션부(138)를 포함한다.In addition, the irradiation light source unit 110 again includes a visible light source unit 112 and a near-infrared light source unit 114, the image detection unit 120 again includes an image detection sensor 122 and a filter unit 124, and an image processing unit 130 again includes a near infrared ray detection value calculation unit 132, a visible ray detection value calculation unit 134, an estimated visible ray detection value calculation unit 136, and a calibration unit 138.
조사 광원부(110)는 가시광선 조사광원과 근적외선 형광 여기광원을 구비한 복합광원장치로 구현될 수 있으며, 이때, 가시광선 조사광원은 선택적으로 조사광의 파장을 조절할 수 있다.The irradiation light source unit 110 may be implemented as a composite light source device including a visible light irradiation light source and a near-infrared fluorescence excitation light source, and at this time, the visible light irradiation light source may selectively adjust the wavelength of the irradiation light.
이를 위해, 가시광선 광원부(112)는 영상 검출 센서의 스펙트럼 특성을 고려하여 설정된 파장의 가시광선을 선택적으로 조사하고, 근적외선 광원부(114)는 형광 물질을 여기시키는 여기 파장의 근적외선을 조사한다.To this end, the visible light source unit 112 selectively irradiates visible light having a set wavelength in consideration of the spectral characteristics of the image detection sensor, and the near infrared light source unit 114 irradiates near infrared light having an excitation wavelength to excite the fluorescent material.
도 2는 도 1의 영상 검출 센서의 스펙트럼 특성을 도시한 그래프이고, 도 3 및 도 4는 각각 가시광선 광원부에서 조사되는 백색광 영역과 근적외선 광원부서 조사되는 근적외선 영역을 도시한 도면이다. FIG. 2 is a graph showing spectral characteristics of the image detection sensor of FIG. 1, and FIGS. 3 and 4 are diagrams showing a white light region irradiated by a visible light source unit and a near infrared region irradiated by a near infrared light source unit, respectively.
또한, 도 5는 도 1의 조사 광원부에서 가시광선과 근적외선이 동시 조사되는 경우 가시광선과 근적외선 영역이 도시된 도면이다. 특히, 도 5에서, 가시광선 영역은 가시광선 광원부(112)에 의해 선택된 일부 파장에 대해서만 표시된 것을 확인할 수 있다.In addition, FIG. 5 is a diagram illustrating visible and near-infrared regions when visible and near-infrared rays are simultaneously irradiated by the irradiation light source of FIG. 1. In particular, in FIG. 5, it can be seen that the visible light region is displayed only for some wavelengths selected by the visible light source unit 112.
영상 검출부(120)는 단일 칩 컬러 카메라로 구현될 수 있으며, 가시광선 조사광원과 근적외선 형광 여기 광원이 동시에 조사될 때, 가시광선 조사광원의 반사광과 근적외선 형광을 동시에 단일 칩 컬러 카메라로 검출할 수 있다. The image detection unit 120 may be implemented as a single-chip color camera, and when the visible light irradiation light source and the near-infrared fluorescence excitation light source are simultaneously irradiated, the reflected light and the near-infrared fluorescence of the visible light irradiation light source can be simultaneously detected with a single-chip color camera. have.
영상 검출 센서(122)는 설정된 패턴에 따라 배열된 적색, 녹색, 청색 중 일부 파장의 가시광선 및 근적외선을 검출하는 화소들을 포함한다. 일반적인 단일 칩 CMOS, CCD로 구성된 영상 검출 센서에서는 컬러 필터 어레이(Color filter array; CFA)로 베이어 패턴(Bayer pattern)을 갖고, R, G, B 필터들은 인간의 시각 특성을 따라 G가 50%, R과 B가 각각 25%가 되도록 일정하게 교차 배치되며 각 픽셀 위치에서 단일 색상 정보를 감지한다. 도 7은 베이어 패턴의 예가 도시된 도면이다.The image detection sensor 122 includes pixels for detecting visible light and near-infrared light of some wavelengths of red, green, and blue, arranged according to a set pattern. In general, single-chip CMOS and CCD image detection sensors have a Bayer pattern with a color filter array (CFA), and R, G, and B filters have 50% G, depending on human visual characteristics. R and B are uniformly intersected so that each is 25%, and single color information is detected at each pixel location. 7 is a diagram illustrating an example of a Bayer pattern.
컬러 영상을 출력, 디스플레이할 때 영상 검출 센서의 각 화소는 R, G, B 필터 중 하나로만 결합되기 때문에 하나의 화소는 하나의 색만 감지하므로 각 화소마다 누락된 색 정보는 주변 화소들로부터 색상값 보간(interpolation)하는 영상 처리 과정인 demosaicing을 통해 색 정보를 완성하게 된다. When outputting and displaying a color image, since each pixel of the image detection sensor is combined with only one of R, G, and B filters, one pixel detects only one color, so the missing color information for each pixel is the color value from the surrounding pixels. Color information is completed through demosaicing, which is an image processing process that is interpolated.
한편, 일반적으로, 흑백 카메라에는 적외선 차단 필터(Infrared Cut Filter)가 없지만, 컬러 카메라는 색재현력을 위해 차단 필터를 내장한다. 하지만, 최근에는 이미지 센서와 이미지 프로세싱 기술의 발전으로 적외선 차단 필터를 뺀 제품들이 출시되고 있다. 이때, 적외선 차단 필터를 갖지 않으면서 R, G, B 컬러 필터가 배치된 단일 칩 RGB 카메라에서 근적외선 영역은 아래에 표시된 바와 같이 모든 컬러 채널에서 동일한 신호 감도로 감지된다. Meanwhile, in general, a black and white camera does not have an infrared cut filter, but a color camera incorporates a cut filter for color reproduction. However, recently, due to the development of image sensor and image processing technology, products without infrared cut filter have been released. In this case, in a single-chip RGB camera with no infrared cut-off filter and R, G, and B color filters disposed, the near-infrared region is detected with the same signal sensitivity in all color channels as shown below.
R 채널 : RVIS + RNIR R Channel: R VIS + R NIR
G 채널 : GVIS + GNIR G channel: G VIS + G NIR
B 채널 : BVIS + BNIR B channel: B VIS + B NIR
이러한 사실은 도 2에서 모든 컬러 채널에서 근적외선 영역이 거의 동일한 신호 감도로 감지되는 것을 확인할 수 있다. 이에 따라, R, G, B 픽셀은 근적외선 채널로도 사용할 수 있다.This fact can be seen from FIG. 2 that the near-infrared region is detected with almost the same signal sensitivity in all color channels. Accordingly, R, G, and B pixels can also be used as near-infrared channels.
보다 구체적으로, ICFA 영상 검출 장치에서 검출된 각 픽셀의 단일 컬러 컴포넌트(single color component)라 할 때, 각 픽셀의 ICFA(i,j)는 i = 1, 2...M, j = 1, 2...N 일때, 아래와 같이 표현할 수 있다.More specifically, I CFA When referring to a single color component of each pixel detected by the image detection device, the I CFA (i,j) of each pixel is i = 1, 2...M, j = 1, 2... When it is N, it can be expressed as follows.
Figure PCTKR2019010472-appb-I000001
Figure PCTKR2019010472-appb-I000001
Rij, Bij, Gij는 CFA image ICFA의 color component이고 컬러 채널 8bit인 경우, Rij, Bij, Gij 값은 0-255이다. 각 화소마다 누락된 색 정보를 주변 화소들로부터 색상값 보간 처리를 통해 디스플레이에 출력하기 위한 영상(
Figure PCTKR2019010472-appb-I000002
)을 획득할 수 있다.
R ij , B ij , and G ij are the color components of CFA image I CFA , and if the color channel is 8 bits, the values of R ij , B ij and G ij are 0-255. An image for outputting the missing color information for each pixel to the display through color value interpolation processing
Figure PCTKR2019010472-appb-I000002
) Can be obtained.
이때 영상 검출 센서의 컬러 필터 어레이 스펙트럼 특성에 의해 CFA image ICFA 의 각 화소들은 해당 컬러 필터의 가시광선 영역 뿐 만 아니라 근적외선 영역도 포함하고 있기 때문에 각 화소들로부터 근적외선 신호의 분리를 통해
Figure PCTKR2019010472-appb-I000003
Figure PCTKR2019010472-appb-I000004
을 다음과 같이 구분하여 획득할 수 있다.
At this time, due to the color filter array spectral characteristics of the image detection sensor, each pixel of the CFA image I CFA includes not only the visible region of the color filter but also the near infrared region. Therefore, the near infrared signal is separated from each pixel.
Figure PCTKR2019010472-appb-I000003
and
Figure PCTKR2019010472-appb-I000004
Can be obtained by dividing as follows.
Figure PCTKR2019010472-appb-I000005
Figure PCTKR2019010472-appb-I000005
Figure PCTKR2019010472-appb-I000006
Figure PCTKR2019010472-appb-I000006
이때,
Figure PCTKR2019010472-appb-I000007
,
Figure PCTKR2019010472-appb-I000008
,
Figure PCTKR2019010472-appb-I000009
는 누락된 색 정보 추정값이다.
At this time,
Figure PCTKR2019010472-appb-I000007
,
Figure PCTKR2019010472-appb-I000008
,
Figure PCTKR2019010472-appb-I000009
Is the missing color information estimate.
예를 들어, 근적외선 형광을 관찰할 때 근적외선 여기광(excitation light)과 더불어 영상 검출 센서의 컬러 필터 어레이 적색 필터(Color filter array Red filter)의 스탑 리밋 파장(stopband limit wavelength)인 λ2 이하의 파장을 주변 조직을 관찰하기 위한 조사광(illumination light)으로 조사하는 경우, 단일 칩 RGB 카메라의 R 채널은 근적외선 형광을 검출하고 G 채널과 B 채널은 조사광에 조사에 따른 주변 조직에서 반사되는 광(Reflection light)과 근적외선 형광을 검출할 수 있게 된다.For example, when observing near-infrared fluorescence, a wavelength less than λ 2 is the stopband limit wavelength of the color filter array red filter of the image detection sensor along with the near-infrared excitation light. Is irradiated with illumination light for observing surrounding tissues, the R channel of the single-chip RGB camera detects near-infrared fluorescence, and the G and B channels are light reflected from the surrounding tissues by irradiation with the irradiation light ( Reflection light) and near-infrared fluorescence can be detected.
R 채널 : RNIR R channel: R NIR
G 채널 : GVIS + GNIR G channel: G VIS + G NIR
B 채널 : BVIS + BNIR B channel: B VIS + B NIR
R 채널은 근적외선 값만을 가지며 주변 G 채널과 B 채널의 추정 근적외선 값을 산출하는데 이용될 수 있다.The R channel has only near-infrared values and can be used to calculate estimated near-infrared values of the surrounding G and B channels.
Figure PCTKR2019010472-appb-I000010
Figure PCTKR2019010472-appb-I000010
Figure PCTKR2019010472-appb-I000011
,
Figure PCTKR2019010472-appb-I000012
는 B채널과 G채널의 추정 근적외선 값이다. 각 화소로부터 근적외선 신호를 분리함으로써 가시광선 신호만을 갖는 CFA image ICFA 데이터를 추정하여 산출할 수 있다.
Figure PCTKR2019010472-appb-I000011
,
Figure PCTKR2019010472-appb-I000012
Is the estimated near-infrared values of the B and G channels. By separating the near-infrared signal from each pixel, CFA image I CFA data having only visible light signals can be estimated and calculated.
Figure PCTKR2019010472-appb-I000013
Figure PCTKR2019010472-appb-I000013
가시광선 신호만을 갖는 CFA image ICFA를 이용하여 주변 화소들로부터 색상값 보간(interpolation) 하는 영상 처리 과정인 demosaicing을 거쳐 다음과 같은 관찰 대상체의 배경 영상을 획득할 수 있다. CFA image having only visible light signal I A background image of an object to be observed may be obtained as follows through demosaicing, an image processing process of interpolating color values from surrounding pixels using CFA.
Figure PCTKR2019010472-appb-I000014
Figure PCTKR2019010472-appb-I000014
따라서 본 발명에서는 근적외선 형광 영상(INIR), 컬러 배경 영상(IVIS)을 동시에 획득할 수 있으며, 이 영상들은 각각 단독으로 또는 융합(I)하여 디스플레이 할 수 있다. Accordingly, in the present invention, a near-infrared fluorescence image (I NIR ) and a color background image (I VIS ) can be simultaneously acquired, and these images can be displayed alone or by fusion (I).
즉 단일 RGB 카메라를 구비한 시스템을 가지고 복수개의 카메라 또는 센서를 구비한 시스템과 마찬가지로, 동시에 가시광선 영역의 컬러 배경 영상과 근적외선 영역의 형광 영상 획득이 가능하다. 더욱이 근적외선 형광 신호 분리가 되므로 근적외선 형광 신호 세기만 강조하는 강조 영상 생산도 가능하다. That is, similar to a system having a single RGB camera and a system having a plurality of cameras or sensors, it is possible to simultaneously acquire a color background image in the visible light region and a fluorescence image in the near infrared region. Moreover, since the near-infrared fluorescence signal is separated, it is possible to produce an emphasis image that emphasizes only the intensity of the near-infrared fluorescence signal.
도 8 내지 도 10은 각각 근적외선 형광 영상(INIR), 컬러 배경 영상(IVIS), 및 근적외선 형광 영상(INIR)과 컬러 배경 영상(IVIS)의 융합 영상(I)의 개념을 개략적으로 도시한 도면이다.8 to 10 schematically illustrate the concept of a near-infrared fluorescence image (I NIR ), a color background image (I VIS ), and a fusion image (I) of a near-infrared fluorescence image (I NIR ) and a color background image (I VIS), respectively. It is a drawing shown.
필터부(124)는 가시광선과 여기 파장을 제외한 근적외선 영역을 통과시키며, 노치필터 등으로 구성할 수 있다. 도 6은 도 1의 필터부에 의해 필터링된 이후의 검출 파장 영역이 도시된 도면이다.The filter unit 124 passes through a near-infrared region excluding visible light and an excitation wavelength, and may be configured as a notch filter. 6 is a diagram illustrating a detection wavelength region after filtering by the filter of FIG. 1.
근적외선 검출값 산출부(132)는 영상 검출 센서 중 근적외선만이 검출되는 일부 화소들로부터 획득된 근적외선 검출값을 이용하여 다른 화소들의 근적외선 검출값을 산출하고, 가시광선 검출값 산출부(134)는 산출된 근적외선 검출값을 이용하여 다른 화소들의 가시광선 검출값을 산출하며, 추정 가시광선 검출값 산출부(136)는 산출된 다른 화소들의 가시광선 검출값을 이용하여 근적외선만이 검출된 일부 화소들의 추정 가시광선 검출값을 산출한다.The near-infrared ray detection value calculating unit 132 calculates the near-infrared ray detection value of other pixels by using the near-infrared ray detection value obtained from some pixels in which only near-infrared ray is detected among the image detection sensors, and the visible ray detection value calculating unit 134 By using the calculated near-infrared detection value, the visible light detection value of other pixels is calculated, and the estimated visible ray detection value calculating unit 136 uses the calculated visible light detection value of the other pixels. The estimated visible light detection value is calculated.
이와 같은 구성에 의하면, 단일 영상 검출 센서의 서로 다른 화소에서 각각 검출된 서로 다른 파장의 광을 이용하여, 단일 카메라를 구비하면서도 가시광선 파장과 근적외선 파장을 동시에 검출하여 주변 조직영상과 근적외선 영상을 동시에 획득하고 제공할 수 있게 된다.According to this configuration, by using light of different wavelengths respectively detected from different pixels of a single image detection sensor, while equipped with a single camera, it simultaneously detects the visible and near-infrared wavelengths to simultaneously display surrounding tissue images and near-infrared images. Be able to acquire and provide.
캘리브레이션부(138)는 영상 검출 센서(122)에서의 검출값을 미리 설정된 기준에 따라 캘리브레이션(calibration)한다. 도 2에 도시된 바와 같이 R, G, B 감도는 파장에 따라 차이가 있다. 예를 들어, R이라고 하더라도 차폐영역인 400~550nm 영역에서도 감도가 0이 아니며, 근적외선영역에서의 R, G, B 감도도 약간의 차이가 있다. 따라서 이를 캘리브레이션(calibration)하는 기능을 수행하는 것이다.The calibration unit 138 calibrates the detected value from the image detection sensor 122 according to a preset reference. As shown in FIG. 2, the R, G, and B sensitivities differ depending on the wavelength. For example, even in the case of R, the sensitivity is not 0 even in the 400 to 550 nm area of the shielding area, and there is a slight difference in the sensitivity of R, G, and B in the near infrared area. Therefore, it performs a function of calibrating it.
일 예로서, 조사 광원부(110)에 의해 조사되는 파장의 가시광선은 청색이고, 영상 검출 센서의 적색과 녹색 파장의 가시광선을 검출하는 화소에서는 근적외선만을 검출하며, 영상 처리부(130)는 근적외선 검출값을 이용하여 청색 가시광선 검출 화소에서의 근적외선 검출값을 산출하고, 적색과 녹색 가시광선 검출 화소에서의 추정 청색 가시광선 검출값을 산출할 수 있다. As an example, the visible light of the wavelength irradiated by the irradiation light source unit 110 is blue, the pixel detecting the visible light of the red and green wavelengths of the image detection sensor detects only near infrared rays, and the image processing unit 130 detects near infrared rays Using the value, a near-infrared detection value in a blue visible ray detection pixel may be calculated, and an estimated blue visible ray detection value in a red and green visible ray detection pixel may be calculated.
도 11은 도 1의 영상 처리부에서 수행하는 색상값 보간의 예를 설명하기 위한 도면이다. 도 11에는 청색 셀 주위의 적색과 녹색 셀의 근적외선 검출값을 이용하여 청색 셀의 근적외선값을 산출하는 예가 도시되어 있다.11 is a diagram for describing an example of color value interpolation performed by the image processing unit of FIG. 1. FIG. 11 shows an example of calculating a near-infrared ray value of a blue cell by using the near-infrared ray detection values of red and green cells around a blue cell.
보다 구체적으로, 가시광선 조사광원과 근적외선 형광 여기광원이 동시에 조사할 때, 조사광의 파장 λEX < λ1 이면, 검출된 R 채널과 G 채널 신호는 근적외선 형광 신호이며, 검출된 B 채널은 근적외선 형광과 가시광선 조사광의 반사광을 포함하고 있다.More specifically, when the visible light source and the near-infrared fluorescence excitation light source are simultaneously irradiated, if the wavelength of the irradiated light is λ EX1 , the detected R and G channel signals are near-infrared fluorescence signals, and the detected B channel is near-infrared fluorescence. And reflected light of visible light irradiation.
따라서, R 채널과 G 채널 근적외선 형광 신호로부터 B 채널의 근적외선 형광 신호를 추정하여 근적외선 형광 영상을 획득하고, B 채널의 가시광선 신호로부터 R 채널과 G 채널의 반사광 정보를 추정하여, 반사광으로 이루어진 관찰 대상체의 배경 영상을 아래와 같이 획득할 수 있다.Therefore, the near-infrared fluorescence image is obtained by estimating the near-infrared fluorescence signal of the B channel from the near-infrared fluorescence signal of the R channel and G channel, and the reflected light information of the R and G channels is estimated from the visible light signal of the B channel. The background image of the object may be acquired as follows.
λEX < λ 1 일 때,When λ EX1 ,
R 채널 : RNIR, R channel: R NIR,
G 채널 : GNIR G channel: G NIR
B 채널 : BVIS + BNIR B channel: B VIS + B NIR
Figure PCTKR2019010472-appb-I000015
Figure PCTKR2019010472-appb-I000015
다른 예로서, 조사 광원부(110)에 의해 조사되는 파장의 가시광선은 청색 및 녹색이고, 영상 검출 센서(122)의 적색의 가시광선을 검출하는 화소에서는 근적외선만을 검출하며, 영상 처리부(130)는 근적외선 검출값을 이용하여 청색 및 녹색 가시광선 검출 화소에서의 근적외선 검출값을 산출하고, 적색 가시광선 검출 화소에서의 추정 청색 및 녹색 가시광선 검출값을 산출할 수 있다.As another example, the visible light of the wavelength irradiated by the irradiation light source unit 110 is blue and green, the pixel detecting the red visible light of the image detection sensor 122 detects only near-infrared light, and the image processing unit 130 Using the near-infrared detection value, a near-infrared detection value in a blue and green visible ray detection pixel may be calculated, and an estimated blue and green visible ray detection value in a red visible ray detection pixel may be calculated.
보다 구체적으로, 가시광선 조사광원과 근적외선 형광 여기광원이 동시에 조사할 때, λ 1 < λEX < λ 2이면 근적외선 형광 신호만을 갖는 R 채널로부터 G 채널의 근적외선 형광 신호와 B 채널의 근적외선 형광 신호 세기를 추정하고, G 채널과 B 채널의 반사광의 세기를 계산한다. G 채널과 B 채널의 반사광의 세기로부터 R 채널의 반사광 정보를 추정하여, 반사광으로 이루어진 관찰 대상체의 배경 영상을 아래와 같이 획득할 수 있다. More specifically, when the visible light source and the near-infrared fluorescence excitation light source are simultaneously irradiated, if λ 1EX2, the intensity of the near-infrared fluorescence signal of the G channel and the near-infrared fluorescence signal of the B channel from the R channel having only the near-infrared fluorescence signal And calculate the intensity of reflected light of the G and B channels. By estimating the reflected light information of the R channel from the intensity of the reflected light of the G channel and the B channel, a background image of the observation object composed of the reflected light may be obtained as follows.
λ1 < λEX < λ 2 일 때, When λ 1EX2 ,
R 채널 : RNIR R channel: R NIR
G 채널 : GVIS + GNIR G channel: G VIS + G NIR
B 채널 : BVIS + BNIR B channel: B VIS + B NIR
Figure PCTKR2019010472-appb-I000016
Figure PCTKR2019010472-appb-I000016
Figure PCTKR2019010472-appb-I000017
Figure PCTKR2019010472-appb-I000017
영상 출력부(140)는 영상 처리부(130)에 의해 제공되는 영상 데이터를 출력한다. 이때, 영상 출력부(140)는 가시광선 조사광원의 반사광과 근적외선 형광을 동시에 각각 또는 오버랩하여 디스플레이할 수 있으며, 이때, 근적외선 형광신호를 Pseudo color로 표시할 수도 있다.The image output unit 140 outputs image data provided by the image processing unit 130. In this case, the image output unit 140 may display reflected light of the visible light irradiation light source and near-infrared fluorescence at the same time or overlap each other, and at this time, the near-infrared fluorescence signal may be displayed in pseudo color.
본 발명이 비록 일부 바람직한 실시예에 의해 설명되었지만, 본 발명의 범위는 이에 의해 제한되어서는 아니 되고, 특허청구범위에 의해 뒷받침되는 상기 실시예의 변형이나 개량에도 미쳐야 할 것이다.Although the present invention has been described by some preferred embodiments, the scope of the present invention should not be limited thereto, and modifications or improvements of the above embodiments supported by the claims should also be reached.

Claims (20)

  1. 피사체에 미리 설정된 파장의 가시광선과 근적외선을 조사하는 조사 광원부; 및An irradiation light source unit for irradiating visible light and near-infrared light having a preset wavelength on the subject; And
    미리 설정된 패턴에 따라 배열되고 적색, 녹색, 청색 중 일부 파장의 가시광선 영역을 검출하고 근적외선 영역에서는 서로 미리 설정된 범위 이내의 감도를 가지는 화소들을 포함하는 영상 검출 센서로부터 검출된 영상 데이터를 처리하는 영상 처리부를 포함하는 가시광선 및 근적외선 영상 제공 시스템으로서,An image that is arranged according to a preset pattern and detects the visible light region of some wavelengths of red, green, and blue, and processes image data detected from an image detection sensor including pixels having sensitivity within a preset range in the near-infrared region. A system for providing visible and near-infrared rays including a processing unit,
    상기 조사 광원부는 상기 적색, 녹색, 청색 중 일부 파장 영역을 제외한 가시 광선 및 근적외선을 동시에 조사하고,The irradiation light source unit simultaneously irradiates visible light and near-infrared light excluding some of the red, green, and blue wavelength regions,
    상기 영상 처리부는,The image processing unit,
    상기 영상 검출 센서 중 근적외선만이 검출되는 일부 화소들로부터 획득된 근적외선 검출값을 이용하여 다른 화소들의 근적외선 검출값을 산출하는 근적외선 검출값 산출부;A near-infrared ray detection value calculator configured to calculate near-infrared ray detection values of other pixels by using near-infrared ray detection values obtained from some pixels in which only near-infrared rays are detected among the image detection sensors;
    상기 산출된 근적외선 검출값을 이용하여 상기 다른 화소들의 가시광선 검출값을 산출하는 가시광선 검출값 산출부; 및A visible light detection value calculator configured to calculate a visible light detection value of the other pixels by using the calculated near infrared ray detection value; And
    상기 다른 화소들의 가시광선 검출값을 이용하여 상기 일부 화소들의 추정 가시광선 검출값을 산출하는 추정 가시광선 검출값 산출부를 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 시스템.And an estimated visible ray detection value calculator configured to calculate an estimated visible ray detection value of some of the pixels by using the visible ray detection value of the other pixels.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 영상 검출 센서를 포함하는 영상 검출부를 더 포함하는 것을 특징으로 하는 영상 시스템.An imaging system, further comprising an image detection unit including the image detection sensor.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 영상 검출부는 가시광선 영역과 상기 여기 파장을 제외한 근적외선 영역을 통과시키는 필터부를 더 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 시스템.The image detection unit further comprises a filter unit for passing through a visible light region and a near infrared region excluding the excitation wavelength.
  4. 청구항 1에 있어서, 상기 조사 광원부는The method according to claim 1, wherein the irradiation light source unit
    상기 미리 설정된 파장의 가시광선을 선택적으로 조사하기 위한 가시광선 광원부; 및A visible light source unit for selectively irradiating visible light of the preset wavelength; And
    형광을 여기시키기 위해 미리 설정된 여기 파장의 근적외선을 조사하는 근적외선 광원부를 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 시스템.Visible and near-infrared image providing system comprising a near-infrared light source unit for irradiating near-infrared rays of a preset excitation wavelength to excite fluorescence.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 영상 처리부에 의해 제공되는 영상 데이터를 출력하는 영상 출력부를 더 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 시스템.A visible and near-infrared image providing system, further comprising an image output unit that outputs image data provided by the image processing unit.
  6. 청구항 5에 있어서,The method of claim 5,
    상기 영상 출력부는 근적외선 형광 신호를 가상 색으로 변환하여 출력하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 시스템.The image output unit converts the near-infrared fluorescence signal into a virtual color and outputs the converted visible light and near-infrared image.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 제외되는 일부 파장 영역은 적색 가시광선 영역을 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 시스템.Visible and near-infrared image providing system, characterized in that the excluded some wavelength region includes a red visible light region.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 조사 광원부에 의해 조사되는 파장의 가시광선은 청색이고,Visible light of a wavelength irradiated by the irradiation light source unit is blue,
    상기 영상 검출 센서의 적색과 녹색 파장의 가시광선을 검출하는 화소에서는 근적외선만을 검출하며,In the pixel detecting visible light of red and green wavelengths of the image detection sensor, only near-infrared rays are detected,
    상기 영상 처리부는 근적외선 검출값을 이용하여 청색 가시광선 검출 화소에서의 근적외선 검출값을 산출하고, 적색과 녹색 가시광선 검출 화소에서의 추정 청색 가시광선 검출값을 산출하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 시스템. The image processing unit calculates a near-infrared ray detection value in a blue visible ray detection pixel by using the near-infrared ray detection value, and calculates an estimated blue visible ray detection value in a red and green visible ray detection pixel. Video delivery system.
  9. 청구항 7에 있어서,The method of claim 7,
    상기 조사 광원부에 의해 조사되는 파장의 가시광선은 청색 및 녹색이고,The visible light of the wavelength irradiated by the irradiation light source is blue and green,
    상기 영상 검출 센서의 적색의 가시광선을 검출하는 화소에서는 근적외선만을 검출하며,In the pixel detecting red visible light of the image detection sensor, only near-infrared light is detected,
    상기 영상 처리부는 근적외선 검출값을 이용하여 청색 및 녹색 가시광선 검출 화소에서의 근적외선 검출값을 산출하고, 적색 가시광선 검출 화소에서의 추정 청색 및 녹색 가시광선 검출값을 산출하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 시스템. The image processing unit calculates a near-infrared ray detection value in a blue and green visible ray detection pixel by using the near-infrared ray detection value, and calculates an estimated blue and green visible ray detection value in a red visible ray detection pixel. And near-infrared image providing system.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 영상 검출 센서에서의 검출값을 미리 설정된 기준에 따라 캘리브레이션하는 캘리브레이션부를 더 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 시스템. Visible and near-infrared image providing system, characterized in that it further comprises a calibration unit for calibrating the detected value from the image detection sensor according to a preset reference.
  11. 피사체에 미리 설정된 파장의 가시광선과 근적외선을 조사하는 광원 조사 단계; 및 A light source irradiation step of irradiating visible light and near-infrared light having a preset wavelength on the subject; And
    미리 설정된 패턴에 따라 배열되고 적색, 녹색, 청색 중 일부 파장의 가시광선 영역을 검출하고 근적외선 영역에서는 서로 미리 설정된 범위 이내의 감도를 가지는 화소들을 포함하는 영상 검출 센서로부터 검출된 영상 데이터를 처리하는 영상 처리 단계를 포함하는 가시광선 및 근적외선 영상 동시 시스템의 영상 제공 방법으로서,An image that is arranged according to a preset pattern and detects the visible light region of some wavelengths of red, green, and blue, and processes image data detected from an image detection sensor including pixels having sensitivity within a preset range in the near-infrared region. A method for providing an image of a simultaneous system of visible and near-infrared images including a processing step,
    상기 광원 조사 단계는 상기 적색, 녹색, 청색 중 일부 파장 영역을 제외한 가시 광선 및 근적외선을 동시에 조사하고,The light source irradiation step simultaneously irradiates visible light and near-infrared light except for some of the red, green, and blue wavelength regions,
    상기 영상 처리 단계는,The image processing step,
    상기 영상 검출 센서 중 근적외선만이 검출되는 일부 화소들로부터 획득된 근적외선 검출값을 이용하여 다른 화소들의 근적외선 검출값을 산출하는 근적외선 검출값 산출 단계;A near-infrared detection value calculating step of calculating near-infrared detection values of other pixels by using near-infrared detection values obtained from some pixels in which only near-infrared rays are detected among the image detection sensors;
    상기 산출된 근적외선 검출값을 이용하여 상기 다른 화소들의 가시광선 검출값을 산출하는 가시광선 검출값 산출 단계; 및A visible light detection value calculation step of calculating a visible light detection value of the other pixels by using the calculated near infrared ray detection value; And
    상기 다른 화소들의 가시광선 검출값을 이용하여 상기 일부 화소들의 추정 가시광선 검출값을 산출하는 추정 가시광선 검출값 산출 단계를 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 방법.And calculating an estimated visible ray detection value of some of the pixels by using the visible ray detection value of the other pixels.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 영상 검출 센서를 통해 가시광선 및 근적외선을 검출하는 영상 검출 단계를 더 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 방법.And an image detection step of detecting visible and near-infrared rays through the image detection sensor.
  13. 청구항 12에 있어서,The method of claim 12,
    상기 영상 검출 단계는 가시광선과 상기 여기 파장을 제외한 근적외선 영역을 통과시키는 필터링 단계를 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 방법.The image detection step includes a filtering step of passing through a near-infrared region excluding visible light and the excitation wavelength.
  14. 청구항 11에 있어서, 상기 광원 조사 단계는,The method of claim 11, wherein the light source irradiation step,
    상기 미리 설정된 파장의 가시광선을 선택적으로 조사하고, Selectively irradiating visible light of the preset wavelength,
    형광을 여기시키기 위해 미리 설정된 여기 파장의 근적외선을 상기 가시광선과 동시에 조사하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 방법.A method for providing visible and near-infrared rays, comprising irradiating near infrared rays having a preset excitation wavelength together with the visible rays to excite fluorescence.
  15. 청구항 11에 있어서,The method of claim 11,
    상기 영상 처리 단계에 의해 제공되는 영상 데이터를 출력하는 영상 출력 단계를 더 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 방법.And an image output step of outputting image data provided by the image processing step.
  16. 청구항 15에 있어서,The method of claim 15,
    상기 영상 출력 단계는 근적외선 형광 신호를 가상 색으로 변환하여 출력하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 방법.In the image outputting step, the near-infrared fluorescence signal is converted into a virtual color and then output.
  17. 청구항 11에 있어서,The method of claim 11,
    상기 제외되는 일부 파장 영역은 적색 가시광선 영역을 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 방법.The method for providing visible and near-infrared rays, characterized in that the excluded partial wavelength region includes a red visible ray region.
  18. 청구항 17에 있어서,The method of claim 17,
    상기 조사 광원 단계에 의해 조사되는 파장의 가시광선은 청색이고,Visible light of the wavelength irradiated by the irradiation light source step is blue,
    상기 영상 검출 센서의 적색과 녹색 파장의 가시광선을 검출하는 화소에서는 근적외선만을 검출하며,In the pixel detecting visible light of red and green wavelengths of the image detection sensor, only near-infrared rays are detected,
    상기 영상 처리 단계는 근적외선 검출값을 이용하여 청색 가시광선 검출 화소에서의 근적외선 검출값을 산출하고, 적색과 녹색 가시광선 검출 화소에서의 추정 청색 가시광선 검출값을 산출하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 방법. The image processing step includes calculating a near-infrared detection value in a blue visible ray detection pixel using the near-infrared ray detection value, and calculating an estimated blue visible ray detection value in a red and green visible ray detection pixel. Method of providing near-infrared image.
  19. 청구항 17에 있어서,The method of claim 17,
    상기 조사 광원 단계에 의해 조사되는 파장의 가시광선은 청색 및 녹색이고,The visible light of the wavelength irradiated by the irradiation light source step is blue and green,
    상기 영상 검출 센서의 적색 가시광선을 검출하는 화소에서는 근적외선만을 검출하며,In the pixel detecting red visible light of the image detection sensor, only near-infrared light is detected,
    상기 영상 처리 단계는 근적외선 검출값을 이용하여 청색 및 녹색 가시광선 검출 화소에서의 근적외선 검출값을 산출하고, 적색 가시광선 검출 화소에서의 추정 청색 및 녹색 가시광선 검출값을 산출하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 방법.The image processing step includes calculating a near-infrared detection value in a blue and green visible ray detection pixel using a near-infrared ray detection value, and calculating an estimated blue and green visible ray detection value in a red visible ray detection pixel. Method of providing light and near-infrared images.
  20. 청구항 11에 있어서,The method of claim 11,
    상기 영상 검출 센서에서의 검출값을 미리 설정된 기준에 따라 캘리브레이션하는 캘리브레이션 단계를 더 포함하는 것을 특징으로 하는 가시광선 및 근적외선 영상 제공 방법. And a calibration step of calibrating the detected value by the image detection sensor according to a preset reference.
PCT/KR2019/010472 2019-08-19 2019-08-19 Visible and near-infrared image providing system and method which use single color camera and can simultaneously acquire visible and near-infrared images WO2021033787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/010472 WO2021033787A1 (en) 2019-08-19 2019-08-19 Visible and near-infrared image providing system and method which use single color camera and can simultaneously acquire visible and near-infrared images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/010472 WO2021033787A1 (en) 2019-08-19 2019-08-19 Visible and near-infrared image providing system and method which use single color camera and can simultaneously acquire visible and near-infrared images

Publications (1)

Publication Number Publication Date
WO2021033787A1 true WO2021033787A1 (en) 2021-02-25

Family

ID=74660245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010472 WO2021033787A1 (en) 2019-08-19 2019-08-19 Visible and near-infrared image providing system and method which use single color camera and can simultaneously acquire visible and near-infrared images

Country Status (1)

Country Link
WO (1) WO2021033787A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110242328A1 (en) * 2010-04-05 2011-10-06 Lockheed Martin Corporation Ir-based multispectral disturbed ground detection
KR20140093079A (en) * 2013-01-17 2014-07-25 삼성테크윈 주식회사 Apparatus and method for processing image
KR20170025087A (en) * 2015-08-27 2017-03-08 (주) 픽셀플러스 Image sensor, digital image processing apparatus using the sensor and image processing method of the same
JP2017208585A (en) * 2014-09-30 2017-11-24 株式会社ニコン Imaging apparatus and image data generation program
KR20180094029A (en) * 2015-12-11 2018-08-22 탈레스 Systems and methods for obtaining visible and near infrared images by a single matrix sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110242328A1 (en) * 2010-04-05 2011-10-06 Lockheed Martin Corporation Ir-based multispectral disturbed ground detection
KR20140093079A (en) * 2013-01-17 2014-07-25 삼성테크윈 주식회사 Apparatus and method for processing image
JP2017208585A (en) * 2014-09-30 2017-11-24 株式会社ニコン Imaging apparatus and image data generation program
KR20170025087A (en) * 2015-08-27 2017-03-08 (주) 픽셀플러스 Image sensor, digital image processing apparatus using the sensor and image processing method of the same
KR20180094029A (en) * 2015-12-11 2018-08-22 탈레스 Systems and methods for obtaining visible and near infrared images by a single matrix sensor

Similar Documents

Publication Publication Date Title
EP3269295B1 (en) Image processing device
US9430833B2 (en) Image processing device and endoscope device
JPH11326050A (en) Image analyzing device
US6574502B2 (en) Apparatus for displaying fluorescence images
JP3501388B2 (en) Video processor of electronic endoscope for fluorescence diagnosis
JP7135082B2 (en) Endoscope device, method of operating endoscope device, and program
JP4394356B2 (en) Electronic endoscope device
JP3467131B2 (en) Electronic endoscope device for fluorescence diagnosis
IL173288A (en) Method and device for the detection and characterization of biological tissue
JP2001137174A (en) Method for displaying fluorescence image and equipment
JP7015385B2 (en) Endoscopic image processing device, operation method of endoscopic device, and program
JPWO2020036121A1 (en) Endoscope system
JPH08140928A (en) Electronic endoscope apparatus for fluorescence diagnosis
JP2018126632A (en) Image processing device
WO2020022809A1 (en) Optical module for medical endoscope and medical endoscope system
WO2021141424A1 (en) Image filtering method
WO2021033787A1 (en) Visible and near-infrared image providing system and method which use single color camera and can simultaneously acquire visible and near-infrared images
JP2641654B2 (en) Endoscope device
JP2003024283A (en) Skin surface state observing apparatus
KR102190398B1 (en) System and method for providing visible ray image and near-infrared ray image, using a single color camera and capable of those images simultaneously
WO2023013860A1 (en) Multispectrum endoscope and endoscope system comprising same
WO2016195464A2 (en) Complex medical imaging system
WO2019124739A1 (en) Multi-image endoscope system
JPH04357929A (en) Endoscope device
JP2003230154A (en) Digital camera for microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941833

Country of ref document: EP

Kind code of ref document: A1