WO2021033531A1 - Liquid discharging device, and control method and program therefor - Google Patents

Liquid discharging device, and control method and program therefor Download PDF

Info

Publication number
WO2021033531A1
WO2021033531A1 PCT/JP2020/029784 JP2020029784W WO2021033531A1 WO 2021033531 A1 WO2021033531 A1 WO 2021033531A1 JP 2020029784 W JP2020029784 W JP 2020029784W WO 2021033531 A1 WO2021033531 A1 WO 2021033531A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
actuators
supply circuits
assigned
concentration
Prior art date
Application number
PCT/JP2020/029784
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 康成
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Priority to CN202080057191.9A priority Critical patent/CN114222665B/en
Publication of WO2021033531A1 publication Critical patent/WO2021033531A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism

Definitions

  • the present invention relates to a liquid discharge device provided with a plurality of actuators and a plurality of power supply circuits, a control method and a program thereof.
  • Patent Document 1 shows that, in performing unevenness correction (correction of variation in discharge characteristics for each nozzle), a plurality of power supply circuits are provided, and a plurality of grouped drive elements (actuators) are assigned to each power supply circuit. Has been done.
  • Patent Document 1 the density difference between a plurality of actuators assigned to each power supply circuit is not taken into consideration, and when the density difference is large, unevenness correction cannot be appropriately performed even if a different voltage is output for each power supply circuit. Problems can arise.
  • An object of the present invention is to provide a liquid discharge device, a control method and a program thereof, which can suppress a concentration difference in a plurality of actuators assigned to each power supply circuit and can appropriately correct unevenness.
  • different voltages are output to a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and an actuator assigned to the plurality of actuators.
  • a plurality of power supply circuits and a control unit are provided, and the control unit allocates one of the plurality of actuators to each of the plurality of power supply circuits, and the plurality of units assigned in the allocation process.
  • the plurality of actuators are driven by each of the power supply circuits to discharge the liquid from the plurality of nozzles, and the discharge process is executed. After the allocation process and before the discharge process, the plurality of power supplies are used.
  • a specific circuit which is a power supply circuit in which the number of the actuators does not reach the maximum number defined for the power supply circuit
  • the maximum value of the concentration of the liquid discharged from the nozzle and the discharge from the nozzle is executed to determine whether or not the concentration difference, which is the difference from the minimum value of the concentration of the liquid, is equal to or less than the predetermined value, and the concentration difference of the specific circuit is not equal to or less than the predetermined value in the determination process. If it is determined, a liquid discharge device is provided, which comprises executing the allocation process again.
  • different voltages are output to a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and an actuator assigned to the plurality of actuators.
  • the plurality of actuators are driven by each of the plurality of power supply circuits to discharge the liquid from the plurality of nozzles, and the discharge process is executed.
  • a specific circuit which is a power supply circuit in which the number of actuators does not reach the maximum number defined for the power supply circuit, the maximum value of the concentration of the liquid discharged from the nozzle and the said.
  • a determination process is executed to determine whether or not the concentration difference, which is the difference from the minimum value of the concentration of the liquid discharged from the nozzle, is equal to or less than a predetermined value, and in the determination process, the concentration difference of the specific circuit is the predetermined value. If it is determined that the value is not less than or equal to the value, a control method is provided, which comprises executing the allocation process again.
  • different voltages are output to a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and an actuator assigned to the plurality of actuators.
  • a liquid discharge device including a plurality of power supply circuits for assigning any of the plurality of actuators to each of the plurality of power supply circuits, an allocation means, and each of the plurality of power supply circuits assigned by the allocation means.
  • the discharge means for driving the plurality of actuators and discharging the liquid from the plurality of nozzles, and after the allocation by the allocation means and before the discharge by the discharge means.
  • a specific circuit which is a power supply circuit in which the number of actuators does not reach the maximum number specified for the power supply circuit
  • the maximum value of the concentration of the liquid discharged from the nozzle and the liquid discharged from the nozzle In a specific circuit, which is a power supply circuit in which the number of actuators does not reach the maximum number specified for the power supply circuit, the maximum value of the concentration of the liquid discharged from the nozzle and the liquid discharged from the nozzle.
  • a program that functions as a determination means for determining whether or not the concentration difference, which is the difference from the minimum value of the concentration, is equal to or less than a predetermined value, and the determination means causes the concentration difference of the specific circuit to be equal to or less than the predetermined value. If it is determined that this is not the case, a program is provided, characterized in that the allocation means executes the allocation again.
  • the first to third viewpoints it is possible to suppress the density difference in a plurality of actuators assigned to each power supply circuit and appropriately correct unevenness.
  • the control unit When there are a plurality of the specific circuits, the control unit re-executes the allocation process when it is determined in the determination process that the concentration difference is not equal to or less than the predetermined value in at least one of the plurality of specific circuits. You can do it. In this case, the above effect (the effect of suppressing the density difference in the plurality of actuators assigned to each power supply circuit and appropriately performing unevenness correction) can be obtained more reliably.
  • the control unit When the control unit has a plurality of correspondences between the plurality of power supply circuits including the specific circuit for which the concentration difference is determined to be equal to or less than the predetermined value in the determination process and the plurality of actuators, the plurality of control units.
  • the discharge process may be executed based on the correspondence relationship in which the average value of the concentration differences in the plurality of power supply circuits is the smallest. In this case, the above effect (the effect of suppressing the density difference in the plurality of actuators assigned to each power supply circuit and appropriately performing unevenness correction) can be obtained more reliably.
  • the control unit Prior to the allocation process, the control unit executes a sort process of sorting the plurality of actuators in order of the concentration of the liquid discharged from the nozzle by driving the actuator, and in the allocation process, the plurality of actuators.
  • the first determination step in which the actuators are assigned to one of the plurality of power supply circuits in the order sorted by the sorting process, and it is determined whether or not the concentration difference has reached the threshold value in the power supply circuit.
  • the first determination step is executed again for the power supply circuit, and the first determination step is executed.
  • the actuators are assigned to the power supply circuit.
  • the first determination step may be executed for a power supply circuit that is finished and is different from the power supply circuit among the plurality of power supply circuits, and for an actuator that has not been assigned among the plurality of actuators. In this case, the allocation process can be executed efficiently.
  • the control unit determines in the determination process that the concentration difference of the specific circuit is not equal to or less than the predetermined value and executes the allocation process again, the control unit executes the first determination step and the second determination step.
  • the control unit executes the first determination step and the second determination step.
  • any one of the plurality of actuators is not assigned to any of the plurality of power supply circuits, based on the correspondence relationship between the plurality of power supply circuits and the plurality of actuators which are the targets of the latest determination processing.
  • the discharge process may be executed. In this case, it is possible to obtain the above effect (the effect of suppressing the density difference in the plurality of actuators assigned to each power supply circuit and appropriately performing unevenness correction) while reliably allocating the actuators.
  • the control unit sets the threshold value. It may be lowered and the allocation process may be executed again. In this case, the actuator can be reliably assigned.
  • control unit may lower the threshold value and re-execute the allocation process. In this case, the actuator can be reliably assigned.
  • the initial value of the threshold value is a value obtained by subtracting the minimum concentration in the plurality of actuators from the maximum concentration in the plurality of actuators until the plurality of actuators are sequentially assigned to each of the plurality of power supply circuits until the maximum number is reached.
  • the number of actuators may be the value divided by the number of power supply circuits that do not reach the maximum number. In this case, the allocation process can be executed efficiently.
  • the predetermined value may be a value based on the average value of the concentration differences in the plurality of specific circuits.
  • the judgment process can be executed efficiently, and the above effect (the effect of suppressing the density difference in the plurality of actuators assigned to each power supply circuit and appropriately correcting the unevenness) can be obtained more reliably. it can.
  • FIG. 1 It is a perspective view which shows the multifunction device which concerns on one Embodiment of this invention. It is a perspective view which shows the state which the cover is closed in the multifunction device of FIG. It is a top view which shows the inside of the housing of the multifunction device of FIG. It is a partial cross-sectional view of the head shown in FIG. It is a top view which shows the upper part of the housing of the multifunction device of FIG. It is a side view which shows the upper part of the housing of the multifunction device of FIG. It is a block diagram which shows the electric structure of the multifunction device of FIG. It is a flow chart which shows the unevenness correction program executed by the control part of the multifunction device of FIG.
  • the multifunction device 1 includes a housing 1a, an inkjet image forming unit 10 provided inside the housing 1a, and a housing 1a. It is provided with a flatbed type image reading unit 50 provided on the upper part, a cover 1c operably attached to the upper part of the housing 1a, a paper feed tray 1 m, and a paper output tray 1n.
  • the inside of the housing 1a is provided with a transport mechanism 20, a platen 30, and a control unit 90 in addition to the image forming unit 10.
  • the image forming unit 10 is a line-type head unit that is long in the paper width direction (direction orthogonal to the vertical direction) and includes four heads 11. Each of the four heads 11 has a plurality of nozzles 11x and is arranged in a staggered pattern in the paper width direction.
  • each head 11 includes a flow path unit 11m and an actuator unit 11n.
  • a plurality of nozzles 11x are open on the lower surface of the flow path unit 11 m.
  • a common flow path 11a communicating with an ink tank (not shown) and an individual flow path 11b for each nozzle 11x are formed.
  • the individual flow path 11b is a flow path from the outlet of the common flow path 11a to the nozzle 11x via the pressure chamber 11p.
  • a plurality of pressure chambers 11p are opened on the upper surface of the flow path unit 11m.
  • the actuator unit 11n is composed of a metal diaphragm 11n1 arranged on the upper surface of the flow path unit 11m so as to cover a plurality of pressure chambers 11p, a piezoelectric layer 11n2 arranged on the upper surface of the diaphragm 11n1, and a piezoelectric layer 11n2. It includes a plurality of individual electrodes 11n3 arranged so as to face each of the plurality of pressure chambers 11p on the upper surface.
  • the diaphragm 11n1 and the plurality of individual electrodes 11n3 are electrically connected to the driver IC 11d.
  • the driver IC 11d maintains the potential of the diaphragm 11n1 at the ground potential, while changing the potential of the individual electrodes 11n3.
  • the driver IC 11d generates a drive signal based on the control signal from the control unit 90, and applies the drive signal to the individual electrodes 11n3 via the signal line 11s.
  • the potential of the individual electrodes 11n3 changes between the predetermined drive potential and the ground potential.
  • the portion (actuator 11n4) sandwiched between the individual electrodes 11n3 and each pressure chamber 11p in the diaphragm 11n1 and the piezoelectric layer 11n2 is deformed so as to be convex toward the pressure chamber 11p, so that the pressure chamber is formed.
  • the volume of 11p changes, pressure is applied to the ink in the pressure chamber 11p, and the ink is ejected from the nozzle 11x.
  • the actuator 11n4 is provided for each individual electrode 11n3, and can be independently deformed according to the potential applied to the individual electrode 11n3.
  • the transport mechanism 20 has a paper feed roller (not shown) and two roller pairs 21 and 22 (see FIG. 3). An image forming portion 10 is arranged between the roller pair 21 and the roller pair 22 in the transport direction (direction orthogonal to the vertical direction and the paper width direction).
  • the transport motor 20 m (see FIG. 7) is driven by the control of the control unit 90, the paper 100 arranged in the paper feed tray 1 m (see FIGS. 1 and 2) is fed by the paper feed roller and then the rollers. It is conveyed in the transport direction by pairs 21 and 22, and is received by the output tray 1n (see FIGS. 1 and 2).
  • a translucent plate 61 made of plastic, glass, or the like is fitted in the platen 60. As shown in FIG. 6, the paper 100 to be read is placed on the upper surface of the translucent plate 61.
  • the line sensor 71 extends in a direction orthogonal to the moving direction and the vertical direction.
  • the line sensor 71 is a CIS (Contact Image Sensor) method (equal magnification optical system), and has a plurality of light sources 71a each composed of RGB (red, green, blue) three-color light emitting diodes, and a plurality of tubular shapes and the like. It includes a magnification lens 71b and a plurality of reading elements 71c.
  • Each reading element 71c is composed of, for example, CMOS (Complementary Metal Oxide Semiconductor).
  • the cover 1c can be opened and closed with respect to the platen 60, and by closing the cover 1c, light from the outside is suppressed from entering the reading unit 70 (see FIG. 6). ).
  • the moving mechanism 80 includes a guide 81 extending in the moving direction, a pair of pulleys 82a and 82b arranged with the light transmitting plate 61 sandwiched in the moving direction, and a belt 83 wound around the pulleys 82a and 82b.
  • the carriage 72 is supported on the upper surface of the guide 81 and fixed to the upper end surface of the belt 83.
  • the pulley 82a is rotated by driving the CIS moving motor 80m, and the belt 83 travels, so that the carriage 72 moves in the moving direction along the guide 81.
  • the control unit 90 controls the CIS moving motor 80m to move the carriage 72 in the moving direction. At this time, the control unit 90 turns on the plurality of light sources 71a and irradiates the paper 100 placed on the translucent plate 61 with light from each of the plurality of light sources 71a. The light passes through the translucent plate 61, is reflected by the paper 100, passes through the lens 71b, and enters the reading element 71c. The reading element 71c converts the received light into an electric signal to generate image reading data (data indicating the amount of received light), and outputs the reading data to the control unit 90.
  • the control unit 90 has a CPU (Central Processing Unit) 91, a ROM (Read Only Memory) 92, and a RAM (Random Access Memory) 93.
  • the ROM 92 stores programs and data for the CPU 91 to perform various controls.
  • the RAM 93 temporarily stores data used by the CPU 91 when executing a program.
  • the CPU 91 executes processing according to the programs and data stored in the ROM 92 and the RAM 93 based on the data input from the external device (PC or the like) or the input unit (switches and buttons provided in the housing 1a). To do.
  • each head 11 is provided with six power supply circuits 11e1 to 11e6 electrically connected to the driver IC 11d.
  • Each power supply circuit 11e1 to 11e6 may be, for example, a DC / DC converter composed of a plurality of electronic components such as FETs, inductors, resistors, and electrolytic capacitors.
  • the control unit 90 outputs a voltage designation signal for designating the output voltage of each power supply circuit 11e1 to 11e6 to each power supply circuit 11e1 to 11e6.
  • the power supply circuits 11e1 to 11e6 output the output voltage specified by the voltage designation signal to the driver IC 11d.
  • the voltages output by the six power supply circuits 11e1 to 11e6 are different from each other.
  • the control unit 90 has, for example, that the power supply of the multifunction device 1 has been switched from OFF to ON, that ink has been introduced into each head 11 from the ink tank, that a predetermined time has passed since the latest unevenness correction program was executed, and the like. Is used as a trigger to execute the unevenness correction program shown in FIG.
  • control unit 90 first forms an inspection image on the paper 100 (S1).
  • control unit 90 controls the driver IC 11d of each head 11 and the transfer motor 20 m, and while the transfer mechanism 20 conveys the paper 100 in the transfer direction, ink is ejected from the nozzles 11x of each head 11. As a result, ink dots are formed on the paper 100, and an inspection image is formed.
  • control unit 90 reads the inspection image formed in S1 (S2).
  • the paper 100 on which the inspection image is formed is placed on the translucent plate 61 of the platen 60.
  • the user moves the paper 100 on which the inspection image is formed by S1 and received in the output tray 1n onto the translucent plate 61 of the platen 60, it is provided in the input unit (housing 1a).
  • An instruction may be given via a switch or a button), and the control unit 90 may start S2 using the instruction as a trigger.
  • a mechanism provided in the multifunction device 1 moves the paper 100 on which the inspection image is formed by S1 and received in the output tray 1n onto the translucent plate 61 of the platen 60, and the paper 100 transmits light.
  • the control unit 90 may start S2 with the placement on the plate 61 as a trigger.
  • control unit 90 irradiates the inspection image with light from each light source 71a while moving the carriage 72 in the moving direction by driving the CIS moving motor 80m, and indicates the read data (light receiving amount) of the inspection image. Data) is generated by the reading element 71c.
  • control unit 90 associates the actuators 11n4 with the power supply circuits 11e1 to 11e6 based on the read data generated in S2 (S3).
  • S3 The specific processing of S3 will be described in detail later.
  • control unit 90 ends the unevenness correction program.
  • the control unit 90 executes the recording program shown in FIG. 9 after the unevenness correction program shown in FIG.
  • the control unit 90 first determines whether or not a recording command has been received (S11).
  • the recording command is transmitted to the control unit 90 from an external device (PC or the like) or an input unit (switches or buttons provided in the housing 1a).
  • control unit 90 When the recording command is received (S11: YES), the control unit 90 forms an image on the paper 100 based on the image data included in the recording command (S12: ejection process).
  • control unit 90 controls the driver IC 11d of each head 11 and the transfer motor 20 m, and while the transfer mechanism 20 conveys the paper 100 in the transfer direction, ink is introduced from the nozzle 11x of each head 11. Is discharged. As a result, dots of ink are formed on the paper 100, and an image is formed.
  • control unit 90 sends the driver IC 11d the allocation signal (six power supply circuits 11e1 to 11e6 for each actuator 11n4) obtained in the association step (S3) of the unevenness correction program.
  • a control signal including a signal for assigning one of them) is output.
  • each actuator 11n4 is driven by the assigned power supply circuit among the six power supply circuits 11e1 to 11e6.
  • control unit 90 ends the recording program.
  • the control unit 90 first linearizes the concentration voltage with respect to the voltage (S21), as shown in FIG. Specifically, the relationship between the voltage output to the driver IC 11d and the density of the ink ejected from the nozzle 11x when the actuator 11n4 is driven by the drive signal generated by the voltage may be non-linear. In this case, the read data generated in S2 is corrected so that the relationship becomes linear.
  • the read data generated in S2 is RGB luminance data and can be converted into CMYK density data.
  • the control unit 90 converts the read data generated in S2 into CMYK density data, and then performs the processing in S21.
  • the control unit 90 sorts a plurality of actuators 11n4 in order of the density of ink ejected from the nozzle 11x by driving the actuators based on the data corrected in S21 (S22: sorting process).
  • FIG. 11 shows an example in which a total of 1680 actuators 11n4 are sorted in order of concentration.
  • the control unit 90 sets the threshold value T to the initial value Ti (S23).
  • the initial value Ti is the value obtained by subtracting the minimum concentration Dmin in the plurality of actuators 11n4 from the maximum concentration Dmax in the plurality of actuators 11n4 until x (the plurality of actuators 11n4 reach the maximum number sequentially in the six power supply circuits 11e1 to 11e6). It is a value divided by the number of power supply circuits in which the number of actuators 11n4 does not reach the maximum number when assigned.
  • the “maximum number” is the number of actuators 11n4 that can be assigned to the power supply circuits 11e1 to 11e6, is defined for each of the power supply circuits 11e1 to 11e6, and is stored in the ROM 92. For example, when the total number of actuators 11n4 is 1680 and the maximum number defined for each power supply circuit 11e1 to 11e6 is 540, 540 actuators 11n4 are sequentially assigned to the first to third power supply circuits 11e1 to 11e3. Then, the number of the remaining actuators 11n4 is 60 (less than 540), and the maximum number of actuators 11n4 cannot be assigned to the fourth to sixth power supply circuits 11e4 to 11e6.
  • the number (x) of the power supply circuits in which the number of actuators 11n4 does not reach the maximum number is "3".
  • the value of x can be calculated based on the total number of actuators 11n4, the total number of power supply circuits 11e1 to 11e6, and the "maximum number", and is stored in the ROM 92.
  • control unit 90 allocates a predetermined number of actuators 11n4 sorted in order of density in S22 (sort processing) to the nth power supply circuit in order from the actuator 11n4 having the lowest density (S25).
  • the allocated data in S25 is stored in the RAM 93.
  • the control unit 90 determines whether or not the concentration difference has reached the threshold value in the actuator 11n4 assigned to the nth power supply circuit (S26: first determination step).
  • the “concentration difference” is the difference between the maximum value of the concentration in the plurality of actuators 11n4 assigned to the nth power supply circuit and the minimum value of the concentration in the plurality of actuators 11n4 assigned to the nth power supply circuit.
  • the control unit 90 determines whether or not the number of actuators 11n4 assigned to the nth power supply circuit has reached the maximum number (S27: second determination). Step).
  • control unit 90 determines whether or not all the actuators 11n4 have been assigned to the power supply circuit (S28).
  • the control unit 90 When the allocation of all the actuators 11n4 to the power supply circuit is not completed (S28: NO), the control unit 90 returns the process to S25, and the actuator 11n4 whose allocation to the power supply circuit is not completed has a low concentration. A predetermined number of actuators 11n4 are assigned to the nth power supply circuit in this order.
  • the control unit 90 ends the allocation of the actuator 11n4 to the nth power supply circuit (S29), and proceeds to the process in S33.
  • the control unit 90 ends the allocation of the actuators 11n4 to the nth power supply circuit. (S30), it is determined whether or not all the actuators 11n4 have been assigned to the power supply circuit (S31).
  • a predetermined number of actuators 11n4 that do not exist are assigned to the nth power supply circuit in order from the actuator 11n4 having the smallest concentration.
  • control unit 90 determines whether or not n ⁇ 6.
  • the maximum number (540) actuators 11n4 are assigned to each of the first to third power supply circuits 11e1 to 11e3 (S27: YES ⁇ S30), and the maximum number is assigned to the fourth power supply circuit 11e4. Less than (50) actuators 11n4 are assigned (S26: YES ⁇ S30), less than the maximum number (10) actuators 11n4 are assigned to the fifth power supply circuit 11e5 (S28: YES ⁇ S29), and the sixth power supply circuit Actuator 11n4 is not assigned to 11e6.
  • S24 to S34 correspond to "allocation processing".
  • allocation process S24 to S34
  • any one of the plurality of actuators 11n4 is assigned to each of the six power supply circuits 11e1 to 11e6.
  • the control unit 90 determines the specific circuit among the six power supply circuits 11e1 to 11e6 (the “specific circuit” is the power supply circuit in which the number of actuators 11n4 does not reach the maximum number. It is determined whether or not the concentration difference of) is equal to or less than a predetermined value (S36: determination process).
  • the "predetermined value” is a value based on the average value of the concentration differences in the plurality of specific circuits (for example, the average value derived from the read data generated in S2 and stored in the ROM 92. It may be the sum of the fixed value ⁇ ).
  • the concentration difference between the plurality of actuators 11n4 assigned to the third power supply circuit is 11D (D: concentration unit).
  • the concentration difference in the plurality of actuators 11n4 assigned to the fourth power supply circuit is 10D
  • the concentration difference in the plurality of actuators 11n4 assigned to the fifth power supply circuit is 9D
  • the concentration difference in the plurality of actuators 11n4 assigned to the sixth power supply circuit It is assumed that the difference is 10D.
  • a predetermined value S36: NO
  • the allocation process S24 to S34
  • T T ⁇ 0.9.
  • the density difference between the plurality of actuators 11n4 assigned to the fourth power supply circuit is 10.1D
  • the concentration difference between the plurality of actuators 11n4 assigned to the fifth power supply circuit is 9.8D
  • the plurality of actuators 11n4 assigned to the sixth power supply circuit is 10D.
  • the average value of the concentration differences in the four specific circuits is 10D
  • the fixed value ⁇ 0.5D
  • the control unit 90 determines whether or not the threshold value T is less than the lower limit value Tx (S37).
  • the control unit 90 When the threshold value T is not less than the lower limit value Tx (S37: NO), the control unit 90 maintains the correspondence between the power supply circuits 11e1 to 11e6 stored in the RAM 93 at the time of determination in S37 and the actuator 11n4, and performs processing. Return to S34. That is, in this case, the control unit 90 creates and stores data related to another correspondence relationship while holding the data related to the correspondence relationship obtained by the current allocation processing (S24 to S34).
  • the control unit 90 is a power supply circuit including a specific circuit in which the concentration difference is determined to be equal to or less than a predetermined value in the correspondence relationship stored in the RAM 93 (S36). It is determined whether or not there are a plurality of (corresponding relationships between 11e1 to 11e6 and the actuator 11n4) (S38).
  • the control unit 90 holds in the RAM 93 the correspondence in which the average value of the concentration differences in the six power supply circuits 11e1 to 11e6 is the smallest among the plurality of correspondences, and other than that.
  • the correspondence between the above is erased from the RAM 93 (S39).
  • the actuator 11n4 in addition to the first to sixth power supply circuits 11e1 to 11e6, the actuator 11n4 is also assigned to the seventh power supply circuit not provided in the head 11.
  • the concentration difference of the specific circuit is not less than or equal to the predetermined value (S36: NO)
  • the allocation process (S24 to S34) is executed again. This corresponds to the case where the actuator 11n4 is not assigned to any of the six power supply circuits 11e1 to 11e6.
  • the correspondence relationship in FIG. 11E (that is, the correspondence relationship when n> 6) is erased from the RAM 93 (S40).
  • the control unit 90 executes S12 (discharge processing) in the recording program (FIG. 9) based on the correspondence stored in the RAM 93 by the association step (S3).
  • the control unit 90 determines that the concentration difference of the specific circuit is not equal to or less than a predetermined value (S36: NO)
  • the allocation process (S24). ⁇ S34) is executed again.
  • the density difference in the plurality of actuators 11n4 assigned to the power supply circuits 11e1 to 11e6 can be suppressed, and unevenness correction can be appropriately performed.
  • the process can be simplified by performing S36 (judgment process) not for all the power supply circuits 11e1 to 11e6 but for a specific circuit in which the number of actuators 11n4 does not reach the maximum number.
  • the control unit 90 re-executes the allocation process (S24 to S34) when it is determined that the concentration difference is not less than or equal to a predetermined value (S36: NO) in at least one of the plurality of specific circuits. ..
  • a predetermined value S36: NO
  • the above effect the effect of suppressing the density difference in the plurality of actuators 11n4 assigned to each power supply circuit 11e1 to 11e6 and appropriately performing unevenness correction
  • the control unit 90 When the control unit 90 has a plurality of correspondences between the power supply circuits 11e1 to 11e6 including the specific circuit determined that the concentration difference is equal to or less than a predetermined value (S36: YES) and the actuator 11n4 (S38: YES), the control unit 90 has a plurality of correspondences.
  • S12 discharge processing
  • S39 the correspondence relationship in which the average value of the concentration differences in the six power supply circuits 11e1 to 11e6 is the smallest (S39).
  • the control unit 90 executes S22 (sort processing) before the allocation processing (S24 to S34), and sets the actuator 11n4 to one of the six power supply circuits 11e1 to 11e6 in the order sorted by S22 (sort processing). (S25), and it is determined whether or not the concentration difference has reached the threshold value in the power supply circuit (S26: first determination step). Then, when it is determined that the concentration difference has not reached the threshold value (S26: NO), the control unit 90 determines whether or not the number of actuators 11n4 assigned to the power supply circuit has reached the maximum number (S27). : Second determination step), when it is determined that the number of actuators 11n4 has not reached the maximum number (S27: NO), S26 (first determination step) is executed again for the power supply circuit.
  • the control unit 90 When it is determined that the concentration difference has reached the threshold value (S26: YES), or when it is determined that the number of actuators 11n4 has reached the maximum number (S27: YES), the control unit 90 said the power supply circuit. (S30), the actuators 11e1 to 11e6 of the six power supply circuits 11e1 to 11e6 that are different from the power supply circuit (S32), and the actuators 11n4 that have not been assigned are not completed. S26 (first determination step) is executed. In this case, the allocation processing (S24 to S34) can be efficiently executed.
  • the allocation processing (S24 to S34) is executed again, and by executing S26 (first determination step) and S27 (second determination step),
  • One of the plurality of actuators 11n4 may not be assigned to any of the six power supply circuits 11e1 to 11e6 (S35: NO, see FIG. 11E).
  • the control unit 90 executes S12 (discharge processing) based on the correspondence between the power supply circuits 11e1 to 11e6 and the actuator 11n4, which are the targets of the latest S36 (determination processing) (S40). In this case, it is possible to obtain (the effect of suppressing the density difference in the plurality of actuators 11n4 assigned to each power supply circuit 11e1 to 11e6 and appropriately performing unevenness correction) while reliably allocating the actuators 11n4. ..
  • the control unit 90 executes any of the plurality of actuators 11n4 in each of the six power supply circuits 11e1 to 11e6 by executing S26 (first determination step) and S27 (second determination step).
  • S26 first determination step
  • S27 second determination step
  • the threshold value T is lowered (S34), and the allocation processing (S24 to S34) is executed again. In this case, the actuator 11n4 can be reliably assigned.
  • control unit 90 determines that the density difference of the specific circuit is not equal to or less than a predetermined value (S36: NO)
  • the control unit 90 lowers the threshold value T (S34) and executes the allocation process (S24 to S34) again. In this case, the actuator 11n4 can be reliably assigned.
  • the initial value Ti of the threshold value T is a value obtained by subtracting the minimum concentration Dmin in the plurality of actuators 11n4 from the maximum concentration Dmax in the plurality of actuators 11n4, and x (the maximum number of the plurality of actuators 11n4 in the six power supply circuits 11e1 to 11e6 in sequence. It is a value divided by the number of power supply circuits in which the number of actuators 11n4 does not reach the maximum number when allotted until the number reaches. In this case, the allocation processing (S24 to S34) can be efficiently executed.
  • the predetermined value may be a value based on the average value of the concentration differences in the plurality of specific circuits.
  • S36 judgment processing
  • the above effect effect of suppressing the density difference in the plurality of actuators 11n4 assigned to each power supply circuit 11e1 to 11e6 and appropriately performing unevenness correction. Can be obtained more reliably.
  • the actuators with the lowest concentration are assigned in order, but the actuators with the highest concentration may be assigned in order.
  • the concentration difference reaches the maximum number without reaching the threshold value in the first half stage. Since the allocation can be performed up to, the allocation process can be executed efficiently.
  • the allocation process is executed again.
  • the allocation process may be executed again.
  • the predetermined value is limited to a value based on the average value of the concentration differences in a plurality of specific circuits (for example, the sum of the above average value derived from the read data generated in S2 and the fixed value ⁇ stored in the ROM 92). However, it may be a fixed value ⁇ stored in the ROM 92.
  • the initial value of the threshold value is not limited to the value exemplified in the above-described embodiment.
  • the threshold value is multiplied by 0.9 in the above embodiment, but the present invention is not limited to this.
  • the threshold may be multiplied by any minority other than 0.9, divided by any number greater than 1, or subtracted by any positive number. Further, the threshold value may be lowered differently between the first S34 and the second S34.
  • the actuator is not limited to the piezoelectric method, and may be another method (for example, a thermal method using a heat generating element, an electrostatic method using electrostatic force, etc.).
  • the head is a line type in the above embodiment, but may be a serial type.
  • the head may eject a liquid other than the ink (for example, a treatment liquid that aggregates or precipitates components in the ink).
  • a liquid other than the ink for example, a treatment liquid that aggregates or precipitates components in the ink.
  • the recording medium is not limited to paper, and may be, for example, cloth, a resin member, or the like.
  • the liquid discharge device according to the present invention is not limited to the multifunction device (that is, it may be a device having an image forming unit but not an image reading unit).
  • the present invention can also be applied to printers, facsimiles, copiers and the like.
  • the present invention can also be applied to a liquid discharge device used for purposes other than image recording (for example, a liquid discharge device that discharges a conductive liquid onto a substrate to form a conductive pattern).
  • the inspection image is read (S2) by a device different from the liquid discharge device according to the present invention, and then the association step (S2) is performed by the liquid discharge device according to the present invention based on the read data received from the other device.
  • S3) may be executed.
  • the inspection image may be read (S2) using a spectrophotometer (“SpectroEye” manufactured by X-Rite, etc.).
  • the liquid discharge device according to the present invention may execute the association step (S3) based on the read data received from the spectrophotometer.
  • the program according to the present invention can be recorded and distributed on a removable recording medium such as a flexible disk or a fixed recording medium such as a hard disk, and can also be distributed via a communication line.
  • a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and an actuator assigned among the plurality of actuators are output with different voltages.
  • a plurality of power supply circuits and a control unit are provided, and the control unit has a concentration difference of liquid discharged from the nozzle of the actuator assigned to each of the plurality of power supply circuits to be a predetermined value or less.
  • each of the plurality of actuators is assigned to one of the plurality of power supply circuits, and any of the plurality of actuators is assigned to each of the plurality of power supply circuits.
  • Liquid discharge device "" a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and a plurality of actuators that output different voltages to the actuators assigned to the plurality of actuators.
  • the allocation process is characterized in that each of the plurality of actuators is assigned to one of the plurality of power supply circuits, and one of the plurality of actuators is assigned to each of the plurality of power supply circuits.
  • Control method "and" Output different voltages to a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and an actuator assigned to the plurality of actuators.
  • the liquid discharge device including the plurality of power supply circuits is provided so that the concentration difference of the liquid discharged from the nozzles is equal to or less than a predetermined value.
  • S36 judgment processing
  • S36 is not limited to being performed on a specific circuit in which the number of actuators 11n4 has not reached the maximum number, and may be performed on all power supply circuits 11e1 to 11e6.
  • Multifunction device liquid discharge device
  • Image forming unit 11e1 to 11e6
  • Power supply circuit 11n4
  • Actuator 11x Nozzle 90 Control unit

Landscapes

  • Ink Jet (AREA)
  • Coating Apparatus (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

According to the present invention, the density difference between a plurality of actuators allocated to each power supply circuit is suppressed, and unevenness correction can be performed appropriately. A control unit executes an allocation process (S24-S34) of allocating one of the actuators to each power supply circuit, and a discharge process of discharging a liquid from a nozzle by driving the actuator via the power supply circuit allocated in the allocation process. Further, the control unit determines, after the allocation process (S24-S34) and before the discharge process, whether or not the density difference, which is the difference between the maximum density of the liquid discharged from the nozzle and the minimum density of the liquid discharged from the nozzle, is equal to or less than a predetermined value in a specific circuit that is a power supply circuit in which the number of the actuators does not reach the maximum number specified for the power supply circuit among the plurality of power supply circuits (S36), and executes the allocation process (S24-S34) again when it is determined that the density difference of the specific circuit is not equal to or less than the predetermined value (S36: NO).

Description

液体吐出装置、その制御方法及びプログラムLiquid discharge device, its control method and program
 本発明は、複数のアクチュエータ及び複数の電源回路を備えた液体吐出装置、その制御方法及びプログラムに関する。 The present invention relates to a liquid discharge device provided with a plurality of actuators and a plurality of power supply circuits, a control method and a program thereof.
 特許文献1には、ムラ補正(ノズル毎の吐出特性のバラツキ補正)を行うにあたり、複数の電源回路を設け、各電源回路に、グループ分けされた複数の駆動素子(アクチュエータ)を割り当てることが示されている。 Patent Document 1 shows that, in performing unevenness correction (correction of variation in discharge characteristics for each nozzle), a plurality of power supply circuits are provided, and a plurality of grouped drive elements (actuators) are assigned to each power supply circuit. Has been done.
特開2019-064151号公報JP-A-2019-064151
 特許文献1では、各電源回路に割り当てられた複数のアクチュエータにおける濃度差が考慮されておらず、濃度差が大きい場合、電源回路毎に異なる電圧を出力しても、ムラ補正が適切に行えない問題が生じ得る。 In Patent Document 1, the density difference between a plurality of actuators assigned to each power supply circuit is not taken into consideration, and when the density difference is large, unevenness correction cannot be appropriately performed even if a different voltage is output for each power supply circuit. Problems can arise.
 本発明の目的は、各電源回路に割り当てられた複数のアクチュエータにおける濃度差を抑制し、ムラ補正を適切に行える、液体吐出装置、その制御方法及びプログラムを提供することにある。 An object of the present invention is to provide a liquid discharge device, a control method and a program thereof, which can suppress a concentration difference in a plurality of actuators assigned to each power supply circuit and can appropriately correct unevenness.
 本発明の第1観点によれば、複数のノズルと、複数のノズルのそれぞれに対して設けられた複数のアクチュエータと、前記複数のアクチュエータのうち割り当てられたアクチュエータに対し、互いに異なる電圧を出力する複数の電源回路と、制御部と、を備え、前記制御部は、前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかを割り当てる、割当処理と、前記割当処理で割り当てられた前記複数の電源回路のそれぞれによって前記複数のアクチュエータを駆動させ、前記複数のノズルから液体を吐出させる、吐出処理と、を実行し、前記割当処理の後、かつ、前記吐出処理の前に、前記複数の電源回路のうち、前記アクチュエータの数が当該電源回路に対して定められた最大数に達していない電源回路である特定回路において、前記ノズルから吐出される液体の濃度の最大値と前記ノズルから吐出される液体の濃度の最小値との差である濃度差が、所定値以下か否かを判断する、判断処理を実行し、前記判断処理において前記特定回路の前記濃度差が前記所定値以下でないと判断された場合、前記割当処理を再度実行することを特徴とする、液体吐出装置が提供される。 According to the first aspect of the present invention, different voltages are output to a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and an actuator assigned to the plurality of actuators. A plurality of power supply circuits and a control unit are provided, and the control unit allocates one of the plurality of actuators to each of the plurality of power supply circuits, and the plurality of units assigned in the allocation process. The plurality of actuators are driven by each of the power supply circuits to discharge the liquid from the plurality of nozzles, and the discharge process is executed. After the allocation process and before the discharge process, the plurality of power supplies are used. Among the circuits, in a specific circuit which is a power supply circuit in which the number of the actuators does not reach the maximum number defined for the power supply circuit, the maximum value of the concentration of the liquid discharged from the nozzle and the discharge from the nozzle. A determination process is executed to determine whether or not the concentration difference, which is the difference from the minimum value of the concentration of the liquid, is equal to or less than the predetermined value, and the concentration difference of the specific circuit is not equal to or less than the predetermined value in the determination process. If it is determined, a liquid discharge device is provided, which comprises executing the allocation process again.
 本発明の第2観点によれば、複数のノズルと、前記複数のノズルのそれぞれに対して設けられた複数のアクチュエータと、前記複数のアクチュエータのうち割り当てられたアクチュエータに対し、互いに異なる電圧を出力する複数の電源回路と、を備えた液体吐出装置を制御する制御方法であって、前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかを割り当てる、割当処理と、前記割当処理で割り当てられた前記複数の電源回路のそれぞれによって前記複数のアクチュエータを駆動させ、前記複数のノズルから液体を吐出させる、吐出処理と、を実行し、前記割当処理の後、かつ、前記吐出処理の前に、前記複数の電源回路のうち、前記アクチュエータの数が当該電源回路に対して定められた最大数に達していない電源回路である特定回路において、前記ノズルから吐出される液体の濃度の最大値と前記ノズルから吐出される液体の濃度の最小値との差である濃度差が、所定値以下か否かを判断する、判断処理を実行し、前記判断処理において前記特定回路の前記濃度差が前記所定値以下でないと判断された場合、前記割当処理を再度実行することを特徴とする、制御方法が提供される。 According to the second aspect of the present invention, different voltages are output to a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and an actuator assigned to the plurality of actuators. A control method for controlling a liquid discharge device including a plurality of power supply circuits, wherein any of the plurality of actuators is assigned to each of the plurality of power supply circuits, and the allocation process is assigned by the allocation process. The plurality of actuators are driven by each of the plurality of power supply circuits to discharge the liquid from the plurality of nozzles, and the discharge process is executed. After the allocation process and before the discharge process, Among the plurality of power supply circuits, in a specific circuit which is a power supply circuit in which the number of actuators does not reach the maximum number defined for the power supply circuit, the maximum value of the concentration of the liquid discharged from the nozzle and the said. A determination process is executed to determine whether or not the concentration difference, which is the difference from the minimum value of the concentration of the liquid discharged from the nozzle, is equal to or less than a predetermined value, and in the determination process, the concentration difference of the specific circuit is the predetermined value. If it is determined that the value is not less than or equal to the value, a control method is provided, which comprises executing the allocation process again.
 本発明の第3観点によれば、複数のノズルと、前記複数のノズルのそれぞれに対して設けられた複数のアクチュエータと、前記複数のアクチュエータのうち割り当てられたアクチュエータに対し、互いに異なる電圧を出力する複数の電源回路と、を備えた液体吐出装置を、前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかを割り当てる、割当手段、前記割当手段により割り当てられた前記複数の電源回路のそれぞれによって前記複数のアクチュエータを駆動させ、前記複数のノズルから液体を吐出させる、吐出手段、及び、前記割当手段による割当の後、かつ、前記吐出手段による吐出の前に、前記複数の電源回路のうち、前記アクチュエータの数が当該電源回路に対して定められた最大数に達していない電源回路である特定回路において、前記ノズルから吐出される液体の濃度の最大値と前記ノズルから吐出される液体の濃度の最小値との差である濃度差が、所定値以下か否かを判断する、判断手段、として機能させるプログラムであって、前記判断手段により前記特定回路の前記濃度差が前記所定値以下でないと判断された場合、前記割当手段が再度割当を実行することを特徴とする、プログラムが提供される。 According to the third aspect of the present invention, different voltages are output to a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and an actuator assigned to the plurality of actuators. A liquid discharge device including a plurality of power supply circuits for assigning any of the plurality of actuators to each of the plurality of power supply circuits, an allocation means, and each of the plurality of power supply circuits assigned by the allocation means. Of the plurality of power supply circuits, the discharge means for driving the plurality of actuators and discharging the liquid from the plurality of nozzles, and after the allocation by the allocation means and before the discharge by the discharge means. In a specific circuit, which is a power supply circuit in which the number of actuators does not reach the maximum number specified for the power supply circuit, the maximum value of the concentration of the liquid discharged from the nozzle and the liquid discharged from the nozzle. A program that functions as a determination means for determining whether or not the concentration difference, which is the difference from the minimum value of the concentration, is equal to or less than a predetermined value, and the determination means causes the concentration difference of the specific circuit to be equal to or less than the predetermined value. If it is determined that this is not the case, a program is provided, characterized in that the allocation means executes the allocation again.
 第1~第3観点によれば、各電源回路に割り当てられた複数のアクチュエータにおける濃度差を抑制し、ムラ補正を適切に行える。 According to the first to third viewpoints, it is possible to suppress the density difference in a plurality of actuators assigned to each power supply circuit and appropriately correct unevenness.
 前記制御部は、前記特定回路が複数ある場合、前記判断処理において、前記複数の特定回路の少なくとも1つにおいて、前記濃度差が前記所定値以下でないと判断されたとき、前記割当処理を再度実行してよい。この場合、上記効果(各電源回路に割り当てられた複数のアクチュエータにおける濃度差を抑制し、ムラ補正を適切に行える、という効果)をより確実に得ることができる。 When there are a plurality of the specific circuits, the control unit re-executes the allocation process when it is determined in the determination process that the concentration difference is not equal to or less than the predetermined value in at least one of the plurality of specific circuits. You can do it. In this case, the above effect (the effect of suppressing the density difference in the plurality of actuators assigned to each power supply circuit and appropriately performing unevenness correction) can be obtained more reliably.
 前記制御部は、前記判断処理において前記濃度差が前記所定値以下であると判断された前記特定回路を含む前記複数の電源回路と前記複数のアクチュエータとの対応関係が複数ある場合、前記複数の対応関係のうち、前記複数の電源回路における前記濃度差の平均値が最も小さい対応関係に基づき、前記吐出処理を実行してよい。この場合、上記効果(各電源回路に割り当てられた複数のアクチュエータにおける濃度差を抑制し、ムラ補正を適切に行える、という効果)をより確実に得ることができる。 When the control unit has a plurality of correspondences between the plurality of power supply circuits including the specific circuit for which the concentration difference is determined to be equal to or less than the predetermined value in the determination process and the plurality of actuators, the plurality of control units. The discharge process may be executed based on the correspondence relationship in which the average value of the concentration differences in the plurality of power supply circuits is the smallest. In this case, the above effect (the effect of suppressing the density difference in the plurality of actuators assigned to each power supply circuit and appropriately performing unevenness correction) can be obtained more reliably.
 前記制御部は、前記割当処理の前に、前記複数のアクチュエータを、当該アクチュエータの駆動により前記ノズルから吐出された液体の濃度順にソートする、ソート処理を実行し、前記割当処理において、前記複数のアクチュエータを、前記ソート処理でソートされた順に、前記複数の電源回路のうちの1つに割り当て、当該電源回路において前記濃度差が閾値に達したか否かを判断する、第1判断ステップと、前記第1判断ステップにおいて前記濃度差が前記閾値に達していないと判断された場合、当該電源回路に割り当てられた前記アクチュエータの数が前記最大数に達したか否かを判断する、第2判断ステップと、を実行し、前記第2判断ステップにおいて前記アクチュエータの数が前記最大数に達していないと判断された場合、当該電源回路について前記第1判断ステップを再度実行し、前記第1判断ステップにおいて前記濃度差が前記閾値に達したと判断された場合、又は、前記第2判断ステップにおいて前記アクチュエータの数が前記最大数に達したと判断された場合、当該電源回路に対する前記アクチュエータの割り当てを終了し、前記複数の電源回路のうち当該電源回路とは別の電源回路について、かつ、前記複数のアクチュエータのうち割り当てが完了していないアクチュエータについて、前記第1判断ステップを実行してよい。この場合、割当処理を効率的に実行できる。 Prior to the allocation process, the control unit executes a sort process of sorting the plurality of actuators in order of the concentration of the liquid discharged from the nozzle by driving the actuator, and in the allocation process, the plurality of actuators. The first determination step, in which the actuators are assigned to one of the plurality of power supply circuits in the order sorted by the sorting process, and it is determined whether or not the concentration difference has reached the threshold value in the power supply circuit. When it is determined in the first determination step that the concentration difference has not reached the threshold value, it is determined whether or not the number of the actuators assigned to the power supply circuit has reached the maximum number. If it is determined in the second determination step that the number of actuators has not reached the maximum number, the first determination step is executed again for the power supply circuit, and the first determination step is executed. When it is determined that the concentration difference has reached the threshold value, or when it is determined that the number of the actuators has reached the maximum number in the second determination step, the actuators are assigned to the power supply circuit. The first determination step may be executed for a power supply circuit that is finished and is different from the power supply circuit among the plurality of power supply circuits, and for an actuator that has not been assigned among the plurality of actuators. In this case, the allocation process can be executed efficiently.
 前記制御部は、前記判断処理において前記特定回路の前記濃度差が前記所定値以下でないと判断されて前記割当処理を再度実行した場合に、前記第1判断ステップ及び前記第2判断ステップの実行により、前記複数のアクチュエータのいずれかが前記複数の電源回路のいずれかに割り当てられないときは、直近の前記判断処理の対象である前記複数の電源回路と前記複数のアクチュエータとの対応関係に基づき、前記吐出処理を実行してよい。
この場合、アクチュエータの割り当てを確実に行いつつ、上記効果(各電源回路に割り当てられた複数のアクチュエータにおける濃度差を抑制し、ムラ補正を適切に行える、という効果)を得ることができる。
When the control unit determines in the determination process that the concentration difference of the specific circuit is not equal to or less than the predetermined value and executes the allocation process again, the control unit executes the first determination step and the second determination step. When any one of the plurality of actuators is not assigned to any of the plurality of power supply circuits, based on the correspondence relationship between the plurality of power supply circuits and the plurality of actuators which are the targets of the latest determination processing. The discharge process may be executed.
In this case, it is possible to obtain the above effect (the effect of suppressing the density difference in the plurality of actuators assigned to each power supply circuit and appropriately performing unevenness correction) while reliably allocating the actuators.
 前記制御部は、前記割当処理において、前記第1判断ステップ及び前記第2判断ステップの実行により、前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかが割り当てられないときは、前記閾値を下げて、前記割当処理を再度実行してよい。この場合、アクチュエータの割り当てを確実に行える。 When any of the plurality of actuators is not assigned to each of the plurality of power supply circuits by executing the first determination step and the second determination step in the allocation process, the control unit sets the threshold value. It may be lowered and the allocation process may be executed again. In this case, the actuator can be reliably assigned.
 前記制御部は、前記判断処理において前記特定回路の前記濃度差が前記所定値以下でないと判断された場合、前記閾値を下げて、前記割当処理を再度実行してよい。この場合、アクチュエータの割り当てを確実に行える。 When the control unit determines in the determination process that the concentration difference of the specific circuit is not equal to or less than the predetermined value, the control unit may lower the threshold value and re-execute the allocation process. In this case, the actuator can be reliably assigned.
 前記閾値の初期値は、前記複数のアクチュエータにおける最大濃度から、前記複数のアクチュエータにおける最小濃度を減算した値を、前記複数のアクチュエータを前記複数の電源回路のそれぞれに順次前記最大数に達するまで割り当てた場合に前記アクチュエータの数が前記最大数に達しない電源回路の数、で除算した値であってよい。この場合、割当処理を効率的に実行できる。 The initial value of the threshold value is a value obtained by subtracting the minimum concentration in the plurality of actuators from the maximum concentration in the plurality of actuators until the plurality of actuators are sequentially assigned to each of the plurality of power supply circuits until the maximum number is reached. In this case, the number of actuators may be the value divided by the number of power supply circuits that do not reach the maximum number. In this case, the allocation process can be executed efficiently.
 前記所定値は、前記特定回路が複数ある場合、前記複数の特定回路における前記濃度差の平均値に基づく値であってよい。この場合、判断処理を効率的に実行でき、ひいては上記効果(各電源回路に割り当てられた複数のアクチュエータにおける濃度差を抑制し、ムラ補正を適切に行える、という効果)をより確実に得ることができる。 When there are a plurality of the specific circuits, the predetermined value may be a value based on the average value of the concentration differences in the plurality of specific circuits. In this case, the judgment process can be executed efficiently, and the above effect (the effect of suppressing the density difference in the plurality of actuators assigned to each power supply circuit and appropriately correcting the unevenness) can be obtained more reliably. it can.
 本発明によれば、各電源回路に割り当てられた複数のアクチュエータにおける濃度差を抑制し、ムラ補正を適切に行える。 According to the present invention, it is possible to suppress the density difference in a plurality of actuators assigned to each power supply circuit and appropriately correct unevenness.
本発明の一実施形態に係る複合機を示す斜視図である。It is a perspective view which shows the multifunction device which concerns on one Embodiment of this invention. 図1の複合機においてカバーが閉じた状態を示す斜視図である。It is a perspective view which shows the state which the cover is closed in the multifunction device of FIG. 図1の複合機の筐体の内部を示す平面図である。It is a top view which shows the inside of the housing of the multifunction device of FIG. 図3に示すヘッドの部分断面図である。It is a partial cross-sectional view of the head shown in FIG. 図1の複合機の筐体の上部を示す平面図である。It is a top view which shows the upper part of the housing of the multifunction device of FIG. 図1の複合機の筐体の上部を示す側面図である。It is a side view which shows the upper part of the housing of the multifunction device of FIG. 図1の複合機の電気的構成を示すブロック図である。It is a block diagram which shows the electric structure of the multifunction device of FIG. 図1の複合機の制御部が実行するムラ補正プログラムを示すフロー図である。It is a flow chart which shows the unevenness correction program executed by the control part of the multifunction device of FIG. 図1の複合機の制御部が実行する記録プログラムを示すフロー図である。It is a flow chart which shows the recording program executed by the control part of the multifunction device of FIG. ムラ補正プログラムの対応付けステップで実行される処理を示すフロー図である。It is a flow chart which shows the process which is executed in the association step of an unevenness correction program. 濃度順にソートされたアクチュエータを順次各電源回路に割り当てる例を示す説明図である。It is explanatory drawing which shows the example which sequentially assigns the actuator sorted in order of concentration to each power supply circuit.
 本発明の一実施形態に係る複合機1は、図1及び図2に示すように、筐体1aと、筐体1aの内部に設けられたインクジェット方式の画像形成部10と、筐体1aの上部に設けられたフラットベッド方式の画像読取部50と、筐体1aの上部に開閉可能に取り付けられたカバー1cと、給紙トレイ1mと、排紙トレイ1nとを備えている。 As shown in FIGS. 1 and 2, the multifunction device 1 according to the embodiment of the present invention includes a housing 1a, an inkjet image forming unit 10 provided inside the housing 1a, and a housing 1a. It is provided with a flatbed type image reading unit 50 provided on the upper part, a cover 1c operably attached to the upper part of the housing 1a, a paper feed tray 1 m, and a paper output tray 1n.
 筐体1aの内部には、図3に示すように、画像形成部10の他、搬送機構20、プラテン30及び制御部90が設けられている。 As shown in FIG. 3, the inside of the housing 1a is provided with a transport mechanism 20, a platen 30, and a control unit 90 in addition to the image forming unit 10.
 画像形成部10は、紙幅方向(鉛直方向と直交する方向)に長尺であり、4つのヘッド11を含むライン式のヘッドユニットである。4つのヘッド11は、それぞれ複数のノズル11xを有し、紙幅方向に千鳥状に配列されている。 The image forming unit 10 is a line-type head unit that is long in the paper width direction (direction orthogonal to the vertical direction) and includes four heads 11. Each of the four heads 11 has a plurality of nozzles 11x and is arranged in a staggered pattern in the paper width direction.
 各ヘッド11は、図4に示すように、流路ユニット11mと、アクチュエータユニット11nとを含む。 As shown in FIG. 4, each head 11 includes a flow path unit 11m and an actuator unit 11n.
 流路ユニット11mの下面に、複数のノズル11xが開口している。流路ユニット11mの内部には、インクタンク(図示略)に連通する共通流路11aと、ノズル11x毎に個別の個別流路11bとが形成されている。個別流路11bは、共通流路11aの出口から圧力室11pを経てノズル11xに至る流路である。流路ユニット11mの上面には、複数の圧力室11pが開口している。 A plurality of nozzles 11x are open on the lower surface of the flow path unit 11 m. Inside the flow path unit 11m, a common flow path 11a communicating with an ink tank (not shown) and an individual flow path 11b for each nozzle 11x are formed. The individual flow path 11b is a flow path from the outlet of the common flow path 11a to the nozzle 11x via the pressure chamber 11p. A plurality of pressure chambers 11p are opened on the upper surface of the flow path unit 11m.
 アクチュエータユニット11nは、流路ユニット11mの上面に複数の圧力室11pを覆うように配置された金属製の振動板11n1と、振動板11n1の上面に配置された圧電層11n2と、圧電層11n2の上面に複数の圧力室11pのそれぞれと対向するように配置された複数の個別電極11n3とを含む。 The actuator unit 11n is composed of a metal diaphragm 11n1 arranged on the upper surface of the flow path unit 11m so as to cover a plurality of pressure chambers 11p, a piezoelectric layer 11n2 arranged on the upper surface of the diaphragm 11n1, and a piezoelectric layer 11n2. It includes a plurality of individual electrodes 11n3 arranged so as to face each of the plurality of pressure chambers 11p on the upper surface.
 振動板11n1及び複数の個別電極11n3は、ドライバIC11dと電気的に接続されている。ドライバIC11dは、振動板11n1の電位をグランド電位に維持する一方、個別電極11n3の電位を変化させる。具体的には、ドライバIC11dは、制御部90からの制御信号に基づいて駆動信号を生成し、信号線11sを介して当該駆動信号を個別電極11n3に付与する。これにより、個別電極11n3の電位が所定の駆動電位とグランド電位との間で変化する。このとき、振動板11n1及び圧電層11n2において各個別電極11n3と各圧力室11pとで挟まれた部分(アクチュエータ11n4)が、圧力室11pに向かって凸となるように変形することにより、圧力室11pの容積が変化し、圧力室11p内のインクに圧力が付与され、ノズル11xからインクが吐出される。アクチュエータ11n4は、個別電極11n3毎に設けられており、当該個別電極11n3に付与される電位に応じて独立して変形可能である。 The diaphragm 11n1 and the plurality of individual electrodes 11n3 are electrically connected to the driver IC 11d. The driver IC 11d maintains the potential of the diaphragm 11n1 at the ground potential, while changing the potential of the individual electrodes 11n3. Specifically, the driver IC 11d generates a drive signal based on the control signal from the control unit 90, and applies the drive signal to the individual electrodes 11n3 via the signal line 11s. As a result, the potential of the individual electrodes 11n3 changes between the predetermined drive potential and the ground potential. At this time, the portion (actuator 11n4) sandwiched between the individual electrodes 11n3 and each pressure chamber 11p in the diaphragm 11n1 and the piezoelectric layer 11n2 is deformed so as to be convex toward the pressure chamber 11p, so that the pressure chamber is formed. The volume of 11p changes, pressure is applied to the ink in the pressure chamber 11p, and the ink is ejected from the nozzle 11x. The actuator 11n4 is provided for each individual electrode 11n3, and can be independently deformed according to the potential applied to the individual electrode 11n3.
 搬送機構20は、給紙ローラ(図示略)と、2つのローラ対21,22(図3参照)とを有する。搬送方向(鉛直方向及び紙幅方向と直交する方向)においてローラ対21とローラ対22との間に、画像形成部10が配置されている。制御部90の制御により搬送モータ20m(図7参照)が駆動されると、給紙トレイ1m(図1及び図2参照)に配置された用紙100は、給紙ローラにより送り出された後、ローラ対21,22により搬送方向に搬送され、排紙トレイ1n(図1及び図2参照)に受容される。 The transport mechanism 20 has a paper feed roller (not shown) and two roller pairs 21 and 22 (see FIG. 3). An image forming portion 10 is arranged between the roller pair 21 and the roller pair 22 in the transport direction (direction orthogonal to the vertical direction and the paper width direction). When the transport motor 20 m (see FIG. 7) is driven by the control of the control unit 90, the paper 100 arranged in the paper feed tray 1 m (see FIGS. 1 and 2) is fed by the paper feed roller and then the rollers. It is conveyed in the transport direction by pairs 21 and 22, and is received by the output tray 1n (see FIGS. 1 and 2).
 画像読取部50は、図5及び図6に示すように、筐体1aの上部により構成される原稿台60と、筐体1a内に配置された読取ユニット70及び移動機構80とを有する。 As shown in FIGS. 5 and 6, the image reading unit 50 has a document base 60 formed by the upper part of the housing 1a, a reading unit 70 arranged in the housing 1a, and a moving mechanism 80.
 原稿台60には、プラスチックやガラス等からなる透光板61が嵌め込まれている。図6に示すように、透光板61の上面に、読取対象となる用紙100が載置される。 A translucent plate 61 made of plastic, glass, or the like is fitted in the platen 60. As shown in FIG. 6, the paper 100 to be read is placed on the upper surface of the translucent plate 61.
 読取ユニット70は、ラインセンサ71と、ラインセンサ71を保持するキャリッジ72とを有する。キャリッジ72は、移動機構80により、移動方向(本実施形態では、図3に示す紙幅方向と平行な方向)に沿って往復移動可能である。 The reading unit 70 has a line sensor 71 and a carriage 72 that holds the line sensor 71. The carriage 72 can be reciprocated along a moving direction (in this embodiment, a direction parallel to the paper width direction shown in FIG. 3) by the moving mechanism 80.
 ラインセンサ71は、移動方向及び鉛直方向と直交する方向に延びている。ラインセンサ71は、CIS(Contact Image Sensor)方式(等倍光学系)であり、RGB(レッド、グリーン、ブルー)3色の発光ダイオードでそれぞれ構成される複数の光源71aと、複数の筒状等倍レンズ71bと、複数の読取素子71cとを含む。各読取素子71cは、例えばCMOS(Complementary Metal Oxide Semiconductor)で構成される。 The line sensor 71 extends in a direction orthogonal to the moving direction and the vertical direction. The line sensor 71 is a CIS (Contact Image Sensor) method (equal magnification optical system), and has a plurality of light sources 71a each composed of RGB (red, green, blue) three-color light emitting diodes, and a plurality of tubular shapes and the like. It includes a magnification lens 71b and a plurality of reading elements 71c. Each reading element 71c is composed of, for example, CMOS (Complementary Metal Oxide Semiconductor).
 カバー1cは、図1及び図2に示すように原稿台60に対して開閉可能であり、カバー1cを閉じることで、外部からの光が読取ユニット70に入り込むことが抑制される(図6参照)。 As shown in FIGS. 1 and 2, the cover 1c can be opened and closed with respect to the platen 60, and by closing the cover 1c, light from the outside is suppressed from entering the reading unit 70 (see FIG. 6). ).
 移動機構80は、移動方向に延びるガイド81と、移動方向に透光板61を挟んで配置された一対のプーリ82a,82bと、プーリ82a,82bに巻回されたベルト83とを含む。 The moving mechanism 80 includes a guide 81 extending in the moving direction, a pair of pulleys 82a and 82b arranged with the light transmitting plate 61 sandwiched in the moving direction, and a belt 83 wound around the pulleys 82a and 82b.
 キャリッジ72は、ガイド81の上面に支持され、かつ、ベルト83の上端面に固定されている。CIS移動モータ80mの駆動により、プーリ82aが回転し、ベルト83が走行することにより、キャリッジ72がガイド81に沿って移動方向に移動する。 The carriage 72 is supported on the upper surface of the guide 81 and fixed to the upper end surface of the belt 83. The pulley 82a is rotated by driving the CIS moving motor 80m, and the belt 83 travels, so that the carriage 72 moves in the moving direction along the guide 81.
 透光板61上に載置された用紙100の画像を読み取る際、制御部90は、CIS移動モータ80mを制御し、キャリッジ72を移動方向に移動させる。また、このとき制御部90は、複数の光源71aを点灯させ、複数の光源71aのそれぞれから、透光板61上に載置された用紙100に向けて光を照射させる。当該光は、透光板61を透過して用紙100で反射され、レンズ71bを通って、読取素子71cに入射する。読取素子71cは、受けた光を電気信号に変換することで、画像の読取データ(受光量を示すデータ)を生成し、当該読取データを制御部90に出力する。 When reading the image of the paper 100 placed on the translucent plate 61, the control unit 90 controls the CIS moving motor 80m to move the carriage 72 in the moving direction. At this time, the control unit 90 turns on the plurality of light sources 71a and irradiates the paper 100 placed on the translucent plate 61 with light from each of the plurality of light sources 71a. The light passes through the translucent plate 61, is reflected by the paper 100, passes through the lens 71b, and enters the reading element 71c. The reading element 71c converts the received light into an electric signal to generate image reading data (data indicating the amount of received light), and outputs the reading data to the control unit 90.
 制御部90は、図7に示すように、CPU(Central Processing Unit)91、ROM(Read Only Memory)92及びRAM(Random Access Memory)93を有する。ROM92には、CPU91が各種制御を行うためのプログラムやデータが格納されている。RAM93は、CPU91がプログラムを実行する際に用いるデータを一時的に記憶する。CPU91は、外部装置(PC等)や入力部(筐体1aに設けられたスイッチやボタン)から入力されたデータに基づいて、ROM92やRAM93に記憶されているプログラムやデータにしたがい、処理を実行する。 As shown in FIG. 7, the control unit 90 has a CPU (Central Processing Unit) 91, a ROM (Read Only Memory) 92, and a RAM (Random Access Memory) 93. The ROM 92 stores programs and data for the CPU 91 to perform various controls. The RAM 93 temporarily stores data used by the CPU 91 when executing a program. The CPU 91 executes processing according to the programs and data stored in the ROM 92 and the RAM 93 based on the data input from the external device (PC or the like) or the input unit (switches and buttons provided in the housing 1a). To do.
 また、図7に示すように、各ヘッド11には、ドライバIC11dと電気的に接続された6つの電源回路11e1~11e6が設けられている。各電源回路11e1~11e6は、例えば、FET、インダクタ、抵抗、電解コンデンサ等の複数の電子部品で構成されたDC/DCコンバータであってよい。 Further, as shown in FIG. 7, each head 11 is provided with six power supply circuits 11e1 to 11e6 electrically connected to the driver IC 11d. Each power supply circuit 11e1 to 11e6 may be, for example, a DC / DC converter composed of a plurality of electronic components such as FETs, inductors, resistors, and electrolytic capacitors.
 制御部90は、各電源回路11e1~11e6に対し、各電源回路11e1~11e6の出力電圧を指定するための電圧指定信号を出力する。各電源回路11e1~11e6は、電圧指定信号で指定された出力電圧をドライバIC11dに出力する。6つの電源回路11e1~11e6が出力する電圧は、互いに異なる。 The control unit 90 outputs a voltage designation signal for designating the output voltage of each power supply circuit 11e1 to 11e6 to each power supply circuit 11e1 to 11e6. The power supply circuits 11e1 to 11e6 output the output voltage specified by the voltage designation signal to the driver IC 11d. The voltages output by the six power supply circuits 11e1 to 11e6 are different from each other.
 ドライバIC11dは、複数の信号線11sを介して、複数の個別電極11n3のそれぞれと接続されている(図4及び図7参照)。ここで、制御部90からドライバIC11dに出力される上記制御信号には、各アクチュエータ11n4に対して6つの電源回路11e1~11e6のうちの1つを割り当てるための割当信号が含まれる。ドライバIC11dは、各個別電極11n3に対し、割当信号にしたがって割り当てられた電源回路からの出力電圧によって駆動信号を生成し、信号線11sを介して当該駆動信号を各個別電極11n3に付与する。 The driver IC 11d is connected to each of the plurality of individual electrodes 11n3 via the plurality of signal lines 11s (see FIGS. 4 and 7). Here, the control signal output from the control unit 90 to the driver IC 11d includes an allocation signal for allocating one of the six power supply circuits 11e1 to 11e6 to each actuator 11n4. The driver IC 11d generates a drive signal for each individual electrode 11n3 by the output voltage from the power supply circuit assigned according to the assigned signal, and applies the drive signal to each individual electrode 11n3 via the signal line 11s.
 次いで、図8及び図9を参照し、制御部90が実行するプログラムについて説明する。 Next, the program executed by the control unit 90 will be described with reference to FIGS. 8 and 9.
 制御部90は、例えば、複合機1の電源がOFFからONに切り替わったこと、インクタンクから各ヘッド11にインクが導入されたこと、直近のムラ補正プログラムの実行から所定時間が経過したこと等をトリガーとして、図8に示すムラ補正プログラムを実行する。 The control unit 90 has, for example, that the power supply of the multifunction device 1 has been switched from OFF to ON, that ink has been introduced into each head 11 from the ink tank, that a predetermined time has passed since the latest unevenness correction program was executed, and the like. Is used as a trigger to execute the unevenness correction program shown in FIG.
 ムラ補正プログラムにおいて、制御部90は、先ず、用紙100上に検査画像を形成する(S1)。 In the unevenness correction program, the control unit 90 first forms an inspection image on the paper 100 (S1).
 S1において、制御部90は、各ヘッド11のドライバIC11dと、搬送モータ20mとを制御し、搬送機構20によって用紙100を搬送方向に搬送しつつ、各ヘッド11のノズル11xからインクを吐出させる。これにより、用紙100上に、インクのドットが形成され、検査画像が形成される。 In S1, the control unit 90 controls the driver IC 11d of each head 11 and the transfer motor 20 m, and while the transfer mechanism 20 conveys the paper 100 in the transfer direction, ink is ejected from the nozzles 11x of each head 11. As a result, ink dots are formed on the paper 100, and an inspection image is formed.
 S1の後、制御部90は、S1で形成された検査画像の読取を行う(S2)。 After S1, the control unit 90 reads the inspection image formed in S1 (S2).
 S1の後かつS2の前に、検査画像が形成された用紙100が、原稿台60の透光板61上に載置される。例えば、ユーザが、S1により検査画像が形成されて排紙トレイ1nに受容された用紙100を、原稿台60の透光板61上に移動させた後、入力部(筐体1aに設けられたスイッチやボタン)を介して指示をし、当該指示をトリガーとして、制御部90がS2を開始してよい。或いは、複合機1に設けられた機構が、S1により検査画像が形成されて排紙トレイ1nに受容された用紙100を、原稿台60の透光板61上に移動させ、用紙100が透光板61上に載置されたことをトリガーとして、制御部90がS2を開始してもよい。 After S1 and before S2, the paper 100 on which the inspection image is formed is placed on the translucent plate 61 of the platen 60. For example, after the user moves the paper 100 on which the inspection image is formed by S1 and received in the output tray 1n onto the translucent plate 61 of the platen 60, it is provided in the input unit (housing 1a). An instruction may be given via a switch or a button), and the control unit 90 may start S2 using the instruction as a trigger. Alternatively, a mechanism provided in the multifunction device 1 moves the paper 100 on which the inspection image is formed by S1 and received in the output tray 1n onto the translucent plate 61 of the platen 60, and the paper 100 transmits light. The control unit 90 may start S2 with the placement on the plate 61 as a trigger.
 S2において、制御部90は、CIS移動モータ80mの駆動によりキャリッジ72を移動方向に移動させつつ、各光源71aから検査画像に対して光を照射させ、当該検査画像の読取データ(受光量を示すデータ)を読取素子71cに生成させる。 In S2, the control unit 90 irradiates the inspection image with light from each light source 71a while moving the carriage 72 in the moving direction by driving the CIS moving motor 80m, and indicates the read data (light receiving amount) of the inspection image. Data) is generated by the reading element 71c.
 S2の後、制御部90は、S2で生成された読取データに基づき、各電源回路11e1~11e6にアクチュエータ11n4を対応付ける(S3)。S3の具体的な処理については、後に詳述する。 After S2, the control unit 90 associates the actuators 11n4 with the power supply circuits 11e1 to 11e6 based on the read data generated in S2 (S3). The specific processing of S3 will be described in detail later.
 S3の後、制御部90は、ムラ補正プログラムを終了する。 After S3, the control unit 90 ends the unevenness correction program.
 制御部90は、図8に示すムラ補正プログラムの後、図9に示す記録プログラムを実行する。 The control unit 90 executes the recording program shown in FIG. 9 after the unevenness correction program shown in FIG.
 記録プログラムにおいて、制御部90は、先ず、記録指令を受信したか否かを判断する(S11)。記録指令は、外部装置(PC等)や入力部(筐体1aに設けられたスイッチやボタン)から、制御部90に送信される。 In the recording program, the control unit 90 first determines whether or not a recording command has been received (S11). The recording command is transmitted to the control unit 90 from an external device (PC or the like) or an input unit (switches or buttons provided in the housing 1a).
 記録指令を受信していない場合(S11:NO)、制御部90は、S11の処理を繰り返す。 When the recording command is not received (S11: NO), the control unit 90 repeats the process of S11.
 記録指令を受信した場合(S11:YES)、制御部90は、記録指令に含まれる画像データに基づき、用紙100上に画像を形成する(S12:吐出処理)。 When the recording command is received (S11: YES), the control unit 90 forms an image on the paper 100 based on the image data included in the recording command (S12: ejection process).
 S12(吐出処理)において、制御部90は、各ヘッド11のドライバIC11dと、搬送モータ20mとを制御し、搬送機構20によって用紙100を搬送方向に搬送しつつ、各ヘッド11のノズル11xからインクを吐出させる。これにより、用紙100上に、インクのドットが形成され、画像が形成される。 In S12 (discharge processing), the control unit 90 controls the driver IC 11d of each head 11 and the transfer motor 20 m, and while the transfer mechanism 20 conveys the paper 100 in the transfer direction, ink is introduced from the nozzle 11x of each head 11. Is discharged. As a result, dots of ink are formed on the paper 100, and an image is formed.
 また、S12(吐出処理)において、制御部90は、ドライバIC11dに対し、ムラ補正プログラムの対応付けステップ(S3)で得られた割当信号(各アクチュエータ11n4に対して6つの電源回路11e1~11e6のうちの1つを割り当てるための信号)を含む制御信号を出力する。これにより、各アクチュエータ11n4が、6つの電源回路11e1~11e6のうちの割り当てられた電源回路によって駆動される。 Further, in S12 (discharge processing), the control unit 90 sends the driver IC 11d the allocation signal (six power supply circuits 11e1 to 11e6 for each actuator 11n4) obtained in the association step (S3) of the unevenness correction program. A control signal including a signal for assigning one of them) is output. As a result, each actuator 11n4 is driven by the assigned power supply circuit among the six power supply circuits 11e1 to 11e6.
 S12(吐出処理)の後、制御部90は、記録プログラムを終了する。 After S12 (discharge processing), the control unit 90 ends the recording program.
 次いで、図10及び図11を参照し、図8に示すムラ補正プログラムの対応付けステップ(S3)について説明する。 Next, the association step (S3) of the unevenness correction program shown in FIG. 8 will be described with reference to FIGS. 10 and 11.
 対応付けステップ(S3)において、制御部90は、先ず、図10に示すように、濃度の電圧に対する線形化を行う(S21)。具体的には、ドライバIC11dに出力される電圧と、当該電圧によって生成された駆動信号によりアクチュエータ11n4が駆動して、ノズル11xから吐出されるインクの濃度との関係は、非線形の場合がある。この場合、当該関係が線形となるように、S2で生成された読取データを補正する。 In the association step (S3), the control unit 90 first linearizes the concentration voltage with respect to the voltage (S21), as shown in FIG. Specifically, the relationship between the voltage output to the driver IC 11d and the density of the ink ejected from the nozzle 11x when the actuator 11n4 is driven by the drive signal generated by the voltage may be non-linear. In this case, the read data generated in S2 is corrected so that the relationship becomes linear.
 なお、S2で生成された読取データは、RGBの輝度データであり、CMYKの濃度データに変換可能である。制御部90は、S2で生成された読取データをCMYKの濃度データに変換した上で、S21の処理を行う。 The read data generated in S2 is RGB luminance data and can be converted into CMYK density data. The control unit 90 converts the read data generated in S2 into CMYK density data, and then performs the processing in S21.
 S21の後、制御部90は、S21で補正されたデータに基づき、複数のアクチュエータ11n4を、当該アクチュエータの駆動によりノズル11xから吐出されるインクの濃度順にソートする(S22:ソート処理)。図11には、計1680個のアクチュエータ11n4を濃度順にソートした一例が示されている。 After S21, the control unit 90 sorts a plurality of actuators 11n4 in order of the density of ink ejected from the nozzle 11x by driving the actuators based on the data corrected in S21 (S22: sorting process). FIG. 11 shows an example in which a total of 1680 actuators 11n4 are sorted in order of concentration.
 S22(ソート処理)の後、制御部90は、閾値Tを初期値Tiに設定する(S23)。初期値Tiは、複数のアクチュエータ11n4における最大濃度Dmaxから、複数のアクチュエータ11n4における最小濃度Dminを減算した値を、x(複数のアクチュエータ11n4を6つの電源回路11e1~11e6に順次最大数に達するまで割り当てた場合にアクチュエータ11n4の数が最大数に達しない電源回路の数)で除算した値である。「最大数」は、電源回路11e1~11e6に割り当て可能なアクチュエータ11n4の数であって、電源回路11e1~11e6毎に定められており、ROM92に記憶されている。例えば、アクチュエータ11n4の数が計1680個、各電源回路11e1~11e6に対して定められた最大数が540個の場合、第1~第3電源回路11e1~11e3に順次540個のアクチュエータ11n4を割り当てると、残りのアクチュエータ11n4の数は60個(540個未満)となり、第4~第6電源回路11e4~11e6には最大数のアクチュエータ11n4を割り当てることができない。この場合、アクチュエータ11n4の数が最大数に達しない電源回路の数(x)は、「3」となる。このように、xの値は、アクチュエータ11n4の総数と、電源回路11e1~11e6の総数と、「最大数」とに基づいて算出可能であり、ROM92に記憶されている。 After S22 (sort processing), the control unit 90 sets the threshold value T to the initial value Ti (S23). The initial value Ti is the value obtained by subtracting the minimum concentration Dmin in the plurality of actuators 11n4 from the maximum concentration Dmax in the plurality of actuators 11n4 until x (the plurality of actuators 11n4 reach the maximum number sequentially in the six power supply circuits 11e1 to 11e6). It is a value divided by the number of power supply circuits in which the number of actuators 11n4 does not reach the maximum number when assigned. The "maximum number" is the number of actuators 11n4 that can be assigned to the power supply circuits 11e1 to 11e6, is defined for each of the power supply circuits 11e1 to 11e6, and is stored in the ROM 92. For example, when the total number of actuators 11n4 is 1680 and the maximum number defined for each power supply circuit 11e1 to 11e6 is 540, 540 actuators 11n4 are sequentially assigned to the first to third power supply circuits 11e1 to 11e3. Then, the number of the remaining actuators 11n4 is 60 (less than 540), and the maximum number of actuators 11n4 cannot be assigned to the fourth to sixth power supply circuits 11e4 to 11e6. In this case, the number (x) of the power supply circuits in which the number of actuators 11n4 does not reach the maximum number is "3". As described above, the value of x can be calculated based on the total number of actuators 11n4, the total number of power supply circuits 11e1 to 11e6, and the "maximum number", and is stored in the ROM 92.
 S23の後、制御部90は、n=1とする(S24)。 After S23, the control unit 90 sets n = 1 (S24).
 S24の後、制御部90は、S22(ソート処理)で濃度順にソートされたアクチュエータ11n4を、濃度が小さいアクチュエータ11n4から順に、所定個数、第n電源回路に割り当てる(S25)。S25における割当データは、RAM93に記憶される。 After S24, the control unit 90 allocates a predetermined number of actuators 11n4 sorted in order of density in S22 (sort processing) to the nth power supply circuit in order from the actuator 11n4 having the lowest density (S25). The allocated data in S25 is stored in the RAM 93.
 S25の後、制御部90は、第n電源回路に割り当てられたアクチュエータ11n4において、濃度差が閾値に達したか否かを判断する(S26:第1判断ステップ)。「濃度差」は、第n電源回路に割り当てられた複数のアクチュエータ11n4における濃度の最大値と、第n電源回路に割り当てられた複数のアクチュエータ11n4における濃度の最小値との差である。 After S25, the control unit 90 determines whether or not the concentration difference has reached the threshold value in the actuator 11n4 assigned to the nth power supply circuit (S26: first determination step). The “concentration difference” is the difference between the maximum value of the concentration in the plurality of actuators 11n4 assigned to the nth power supply circuit and the minimum value of the concentration in the plurality of actuators 11n4 assigned to the nth power supply circuit.
 濃度差が閾値に達していない場合(S26:NO)、制御部90は、第n電源回路に割り当てられたアクチュエータ11n4の数が最大数に達したか否かを判断する(S27:第2判断ステップ)。 When the concentration difference does not reach the threshold value (S26: NO), the control unit 90 determines whether or not the number of actuators 11n4 assigned to the nth power supply circuit has reached the maximum number (S27: second determination). Step).
 アクチュエータ11n4の数が最大数に達していない場合(S27:NO)、制御部90は、全てのアクチュエータ11n4の電源回路への割り当てが完了したか否かを判断する(S28)。 When the number of actuators 11n4 has not reached the maximum number (S27: NO), the control unit 90 determines whether or not all the actuators 11n4 have been assigned to the power supply circuit (S28).
 全てのアクチュエータ11n4の電源回路への割り当てが完了していない場合(S28:NO)、制御部90は、処理をS25に戻し、電源回路への割り当てが完了していないアクチュエータ11n4を、濃度が小さいアクチュエータ11n4から順に、所定個数、第n電源回路に割り当てる。 When the allocation of all the actuators 11n4 to the power supply circuit is not completed (S28: NO), the control unit 90 returns the process to S25, and the actuator 11n4 whose allocation to the power supply circuit is not completed has a low concentration. A predetermined number of actuators 11n4 are assigned to the nth power supply circuit in this order.
 全てのアクチュエータ11n4の電源回路への割り当てが完了した場合(S28:YES)、制御部90は、第n電源回路に対するアクチュエータ11n4の割り当てを終了し(S29)、処理をS33に進める。 When the allocation of all the actuators 11n4 to the power supply circuit is completed (S28: YES), the control unit 90 ends the allocation of the actuator 11n4 to the nth power supply circuit (S29), and proceeds to the process in S33.
 濃度差が閾値に達した場合(S26:YES)、又は、アクチュエータ11n4の数が最大数に達した場合(S27:YES)、制御部90は、第n電源回路に対するアクチュエータ11n4の割り当てを終了し(S30)、全てのアクチュエータ11n4の電源回路への割り当てが完了したか否かを判断する(S31)。 When the concentration difference reaches the threshold value (S26: YES) or the number of actuators 11n4 reaches the maximum number (S27: YES), the control unit 90 ends the allocation of the actuators 11n4 to the nth power supply circuit. (S30), it is determined whether or not all the actuators 11n4 have been assigned to the power supply circuit (S31).
 全てのアクチュエータ11n4の電源回路への割り当てが完了していない場合(S31:NO)、制御部90は、n=n+1として(S32)、処理をS25に戻し、電源回路への割り当てが完了していないアクチュエータ11n4を、濃度が小さいアクチュエータ11n4から順に、所定個数、第n電源回路に割り当てる。 When the allocation of all actuators 11n4 to the power supply circuit is not completed (S31: NO), the control unit 90 returns the process to S25 with n = n + 1 (S32), and the allocation to the power supply circuit is completed. A predetermined number of actuators 11n4 that do not exist are assigned to the nth power supply circuit in order from the actuator 11n4 having the smallest concentration.
 全てのアクチュエータ11n4の電源回路への割り当てが完了した場合(S31:YES)、制御部90は、処理をS33に進める。 When the allocation of all the actuators 11n4 to the power supply circuit is completed (S31: YES), the control unit 90 advances the process to S33.
 S33において、制御部90は、n≧6か否かを判断する。 In S33, the control unit 90 determines whether or not n ≧ 6.
 n≧6でない場合(S33:NO)、制御部90は、閾値T=T×0.9とし(S34)、RAM93に記憶されている割当データを消去した上で、処理をS24に戻す。即ち、電源回路11e1~11e6のいずれかにアクチュエータ11n4が割り当てられていない場合(換言すると、6つの電源回路11e1~11e6のそれぞれに複数のアクチュエータ11n4のいずれかが割り当てられていない場合)、制御部90は、閾値Tを下げて、割当処理を再度実行する(換言すると、第1電源回路11e1から順にアクチュエータ11n4の割り当てをやり直す)。閾値Tを下げて割当処理を再度実行することにより、アクチュエータ11n4の割り当てを確実に行える。 When n ≧ 6 (S33: NO), the control unit 90 sets the threshold value T = T × 0.9 (S34), erases the allocated data stored in the RAM 93, and then returns the process to S24. That is, when the actuator 11n4 is not assigned to any of the power supply circuits 11e1 to 11e6 (in other words, when any one of the plurality of actuators 11n4 is not assigned to each of the six power supply circuits 11e1 to 11e6), the control unit The 90 lowers the threshold value T and executes the allocation process again (in other words, the actuators 11n4 are reassigned in order from the first power supply circuit 11e1). By lowering the threshold value T and executing the allocation process again, the actuator 11n4 can be reliably assigned.
 図11(a)の例では、第1~第3電源回路11e1~11e3のそれぞれに最大数(540個)のアクチュエータ11n4が割り当てられ(S27:YES→S30)、第4電源回路11e4に最大数未満(50個)のアクチュエータ11n4が割り当てられ(S26:YES→S30)、第5電源回路11e5に最大数未満(10個)のアクチュエータ11n4が割り当てられ(S28:YES→S29)、第6電源回路11e6にアクチュエータ11n4が割り当てられていない。この場合、制御部90は、n≧6でないと判断し(S33:NO)、閾値T=T×0.9として(S34)、第1電源回路11e1から順にアクチュエータ11n4の割り当てをやり直す。 In the example of FIG. 11A, the maximum number (540) actuators 11n4 are assigned to each of the first to third power supply circuits 11e1 to 11e3 (S27: YES → S30), and the maximum number is assigned to the fourth power supply circuit 11e4. Less than (50) actuators 11n4 are assigned (S26: YES → S30), less than the maximum number (10) actuators 11n4 are assigned to the fifth power supply circuit 11e5 (S28: YES → S29), and the sixth power supply circuit Actuator 11n4 is not assigned to 11e6. In this case, the control unit 90 determines that n ≧ 6 (S33: NO), sets the threshold value T = T × 0.9 (S34), and reassigns the actuators 11n4 in order from the first power supply circuit 11e1.
 S24~S34が、「割当処理」に該当する。割当処理(S24~S34)によって、6つの電源回路11e1~11e6のそれぞれに複数のアクチュエータ11n4のいずれかが割り当てられる。 S24 to S34 correspond to "allocation processing". By the allocation process (S24 to S34), any one of the plurality of actuators 11n4 is assigned to each of the six power supply circuits 11e1 to 11e6.
 n≧6である場合(S33:YES)、制御部90は、n=6か否かを判断する(S35)。 When n ≧ 6 (S33: YES), the control unit 90 determines whether or not n = 6 (S35).
 図11(b)の例では、第1及び第2電源回路11e1,11e2のそれぞれに最大数(540個)のアクチュエータ11n4が割り当てられ(S27:YES→S30)、第3~第5電源回路11e3~11e5のそれぞれに最大数未満(400個、190個、7個)のアクチュエータ11n4が割り当てられ(S26:YES→S30)、第6電源回路11e6に最大数未満(3個)のアクチュエータ11n4が割り当てられている(S28:YES→S29)。この場合、制御部90は、n≧6であると判断し(S33:YES)、さらにn=6であると判断する(S35:YES)。 In the example of FIG. 11B, the maximum number (540) actuators 11n4 are assigned to each of the first and second power supply circuits 11e1 and 11e2 (S27: YES → S30), and the third to fifth power supply circuits 11e3 Less than the maximum number (400, 190, 7) actuators 11n4 are assigned to each of ~ 11e5 (S26: YES → S30), and less than the maximum number (3) actuators 11n4 are assigned to the sixth power supply circuit 11e6. (S28: YES → S29). In this case, the control unit 90 determines that n ≧ 6 (S33: YES), and further determines that n = 6 (S35: YES).
 n=6である場合(S35:YES)、制御部90は、6つの電源回路11e1~11e6のうちの特定回路(「特定回路」とは、アクチュエータ11n4の数が最大数に達していない電源回路をいう。)の濃度差が、所定値以下か否かを判断する(S36:判断処理)。 When n = 6 (S35: YES), the control unit 90 determines the specific circuit among the six power supply circuits 11e1 to 11e6 (the “specific circuit” is the power supply circuit in which the number of actuators 11n4 does not reach the maximum number. It is determined whether or not the concentration difference of) is equal to or less than a predetermined value (S36: determination process).
 「所定値」は、特定回路が複数ある場合、複数の特定回路における濃度差の平均値に基づく値(例えば、S2で生成された読取データから導出される上記平均値と、ROM92に記憶された固定値αとの和)であってよい。 When there are a plurality of specific circuits, the "predetermined value" is a value based on the average value of the concentration differences in the plurality of specific circuits (for example, the average value derived from the read data generated in S2 and stored in the ROM 92. It may be the sum of the fixed value α).
 例えば図11(b)の例では、4つの特定回路(第3~第6電源回路)があり、第3電源回路に割り当てられた複数のアクチュエータ11n4における濃度差が11D(D:濃度単位)、第4電源回路に割り当てられた複数のアクチュエータ11n4における濃度差が10D、第5電源回路に割り当てられた複数のアクチュエータ11n4における濃度差が9D、第6電源回路に割り当てられた複数のアクチュエータ11n4における濃度差が10Dであるとする。この場合、4つの特定回路における濃度差の平均値は10Dであり、固定値α=0.5Dとすると、第1電源回路の濃度差(11D)が所定値(平均値+固定値α=10.5D)以下でない(S36:NO)と判断される。 For example, in the example of FIG. 11B, there are four specific circuits (third to sixth power supply circuits), and the concentration difference between the plurality of actuators 11n4 assigned to the third power supply circuit is 11D (D: concentration unit). The concentration difference in the plurality of actuators 11n4 assigned to the fourth power supply circuit is 10D, the concentration difference in the plurality of actuators 11n4 assigned to the fifth power supply circuit is 9D, and the concentration difference in the plurality of actuators 11n4 assigned to the sixth power supply circuit. It is assumed that the difference is 10D. In this case, the average value of the concentration difference in the four specific circuits is 10D, and if the fixed value α = 0.5D, the concentration difference (11D) of the first power supply circuit is a predetermined value (mean value + fixed value α = 10). It is judged that it is not less than .5D) (S36: NO).
 特定回路が複数ある場合、複数の特定回路の少なくとも1つにおいて、濃度差が所定値以下でない場合(S36:NO)、制御部90は、処理をS34に戻す。つまりこの場合、制御部90は、閾値T=T×0.9とし(S34)、RAM93に記憶されている割当データを消去して、割当処理を再度実行する(換言すると、第1電源回路11e1から順にアクチュエータ11n4の割り当てをやり直す)。 When there are a plurality of specific circuits, and when the concentration difference is not equal to or less than a predetermined value in at least one of the plurality of specific circuits (S36: NO), the control unit 90 returns the process to S34. That is, in this case, the control unit 90 sets the threshold value T = T × 0.9 (S34), erases the allocation data stored in the RAM 93, and executes the allocation process again (in other words, the first power supply circuit 11e1). Reassign the actuators 11n4 in order from the beginning).
 例えば図11(b)の例で、上記のように第1電源回路の濃度差が所定値以下でないと判断され(S36:NO)、閾値T=T×0.9として割当処理(S24~S34)が再度実行されて、図11(c)の対応関係が得られたとする。図11(c)の例では、4つの特定回路(第3~第6電源回路)があり、第3電源回路に割り当てられた複数のアクチュエータ11n4における濃度差が10.1D(D:濃度単位)、第4電源回路に割り当てられた複数のアクチュエータ11n4における濃度差が10.1D、第5電源回路に割り当てられた複数のアクチュエータ11n4における濃度差が9.8D、第6電源回路に割り当てられた複数のアクチュエータ11n4における濃度差が10Dであるとする。この場合、4つの特定回路における濃度差の平均値は10Dであり、固定値α=0.5Dとすると、全ての特定回路(第3~第6電源回路)の濃度差が所定値(平均値+固定値α=10.5D)以下である(S36:YES)と判断される。 For example, in the example of FIG. 11B, it is determined that the concentration difference of the first power supply circuit is not equal to or less than a predetermined value (S36: NO) as described above, and the allocation process (S24 to S34) is performed with the threshold value T = T × 0.9. ) Is executed again, and the correspondence shown in FIG. 11C is obtained. In the example of FIG. 11C, there are four specific circuits (third to sixth power supply circuits), and the concentration difference between the plurality of actuators 11n4 assigned to the third power supply circuit is 10.1D (D: concentration unit). , The density difference between the plurality of actuators 11n4 assigned to the fourth power supply circuit is 10.1D, the concentration difference between the plurality of actuators 11n4 assigned to the fifth power supply circuit is 9.8D, and the plurality of actuators 11n4 assigned to the sixth power supply circuit. It is assumed that the concentration difference in the actuator 11n4 of the above is 10D. In this case, the average value of the concentration differences in the four specific circuits is 10D, and if the fixed value α = 0.5D, the concentration differences of all the specific circuits (third to sixth power supply circuits) are predetermined values (mean values). It is determined that the value is + fixed value α = 10.5D) or less (S36: YES).
 全ての特定回路の濃度差が所定値以下である場合(S36:YES)、制御部90は、閾値Tが下限値Tx未満であるか否かを判断する(S37)。 When the concentration difference of all the specific circuits is equal to or less than a predetermined value (S36: YES), the control unit 90 determines whether or not the threshold value T is less than the lower limit value Tx (S37).
 閾値Tが下限値Tx未満でない場合(S37:NO)、制御部90は、S37の判断時点でRAM93に記憶されている電源回路11e1~11e6とアクチュエータ11n4との対応関係を保持すると共に、処理をS34に戻す。つまりこの場合、制御部90は、今回の割当処理(S24~S34)によって得られた対応関係に係るデータを保持しつつ、さらに別の対応関係に係るデータを作成し記憶していく。 When the threshold value T is not less than the lower limit value Tx (S37: NO), the control unit 90 maintains the correspondence between the power supply circuits 11e1 to 11e6 stored in the RAM 93 at the time of determination in S37 and the actuator 11n4, and performs processing. Return to S34. That is, in this case, the control unit 90 creates and stores data related to another correspondence relationship while holding the data related to the correspondence relationship obtained by the current allocation processing (S24 to S34).
 閾値Tが下限値Tx未満である場合(S37:YES)、制御部90は、RAM93に記憶されている対応関係(S36において濃度差が所定値以下であると判断された特定回路を含む電源回路11e1~11e6とアクチュエータ11n4との対応関係)が複数あるか否かを判断する(S38)。 When the threshold value T is less than the lower limit value Tx (S37: YES), the control unit 90 is a power supply circuit including a specific circuit in which the concentration difference is determined to be equal to or less than a predetermined value in the correspondence relationship stored in the RAM 93 (S36). It is determined whether or not there are a plurality of (corresponding relationships between 11e1 to 11e6 and the actuator 11n4) (S38).
 対応関係が複数ある場合(S38:YES)、制御部90は、複数の対応関係のうち、6つの電源回路11e1~11e6における濃度差の平均値が最も小さい対応関係をRAM93に保持し、それ以外の対応関係をRAM93から消去する(S39)。 When there are a plurality of correspondences (S38: YES), the control unit 90 holds in the RAM 93 the correspondence in which the average value of the concentration differences in the six power supply circuits 11e1 to 11e6 is the smallest among the plurality of correspondences, and other than that. The correspondence between the above is erased from the RAM 93 (S39).
 例えば図11(c)の例で、閾値Tが下限値Tx未満でないと判断され(S37:NO)、閾値T=T×0.9として割当処理(S24~S34)が再度実行されて、図11(d)の対応関係が得られたとする。そして図11(d)の例で、閾値Tが下限値Tx未満であると判断された場合(S37:YES)、この時点でRAM93に記憶されている対応関係は図11(c)及び図11(d)の2つであり、RAM93に記憶されている対応関係が複数あると判断される(S38:YES)。この場合、図11(c)及び図11(d)に示される対応関係のうち、6つの電源回路11e1~11e6における濃度差の平均値が小さい一方の対応関係がRAM93に保持され、他方の対応関係がRAM93から消去される。 For example, in the example of FIG. 11C, it is determined that the threshold value T is not less than the lower limit value Tx (S37: NO), the allocation process (S24 to S34) is executed again with the threshold value T = T × 0.9, and FIG. It is assumed that the correspondence of 11 (d) is obtained. Then, in the example of FIG. 11 (d), when it is determined that the threshold value T is less than the lower limit value Tx (S37: YES), the correspondence relationships stored in the RAM 93 at this point are shown in FIGS. 11 (c) and 11 (c). It is determined that there are a plurality of correspondences stored in the RAM 93, which are the two of (d) (S38: YES). In this case, of the correspondences shown in FIGS. 11C and 11D, one of the correspondences in which the average value of the concentration differences in the six power supply circuits 11e1 to 11e6 is small is held in the RAM 93, and the other correspondence is held. The relationship is erased from RAM 93.
 図11(e)の例では、第1~第6電源回路11e1~11e6に加え、ヘッド11に備えられていない第7電源回路にも、アクチュエータ11n4が割り当てられている。図11(e)の例は、特定回路の濃度差が所定値以下でない(S36:NO)と判断されて割当処理(S24~S34)が再度実行された結果、計1680個のうち90個のアクチュエータ11n4が6つの電源回路11e1~11e6のいずれかに割り当てられない場合に該当する。この場合、制御部90は、n=6でない(S35:NO)と判断し、直近のS36(判断処理)の対象である電源回路11e1~11e6とアクチュエータ11n4との対応関係をRAM93に保持し、図11(e)の対応関係(即ち、n>6のときの対応関係)をRAM93から消去する(S40)。 In the example of FIG. 11 (e), in addition to the first to sixth power supply circuits 11e1 to 11e6, the actuator 11n4 is also assigned to the seventh power supply circuit not provided in the head 11. In the example of FIG. 11 (e), it is determined that the concentration difference of the specific circuit is not less than or equal to the predetermined value (S36: NO), and the allocation process (S24 to S34) is executed again. This corresponds to the case where the actuator 11n4 is not assigned to any of the six power supply circuits 11e1 to 11e6. In this case, the control unit 90 determines that n = 6 (S35: NO), and holds in the RAM 93 the correspondence between the power supply circuits 11e1 to 11e6 and the actuator 11n4, which are the targets of the latest S36 (judgment processing). The correspondence relationship in FIG. 11E (that is, the correspondence relationship when n> 6) is erased from the RAM 93 (S40).
 S39の後、対応関係が複数でない場合(S38:NO)、又は、S40の後、制御部90は、当該ルーチンを終了する。 After S39, if there are not a plurality of correspondences (S38: NO), or after S40, the control unit 90 ends the routine.
 制御部90は、対応付けステップ(S3)によってRAM93に記憶された対応関係に基づき、記録プログラム(図9)におけるS12(吐出処理)を実行する。 The control unit 90 executes S12 (discharge processing) in the recording program (FIG. 9) based on the correspondence stored in the RAM 93 by the association step (S3).
 以上に述べたように、本実施形態によれば、図10に示すように、制御部90は、特定回路の濃度差が所定値以下でないと判断した場合(S36:NO)、割当処理(S24~S34)を再度実行する。これにより、各電源回路11e1~11e6に割り当てられた複数のアクチュエータ11n4における濃度差を抑制し、ムラ補正を適切に行える。 As described above, according to the present embodiment, as shown in FIG. 10, when the control unit 90 determines that the concentration difference of the specific circuit is not equal to or less than a predetermined value (S36: NO), the allocation process (S24). ~ S34) is executed again. As a result, the density difference in the plurality of actuators 11n4 assigned to the power supply circuits 11e1 to 11e6 can be suppressed, and unevenness correction can be appropriately performed.
 また本実施形態によれば、S36(判断処理)を、全ての電源回路11e1~11e6についてではなく、アクチュエータ11n4の数が最大数に達していない特定回路について行うことで、処理を簡素化できる。 Further, according to the present embodiment, the process can be simplified by performing S36 (judgment process) not for all the power supply circuits 11e1 to 11e6 but for a specific circuit in which the number of actuators 11n4 does not reach the maximum number.
 制御部90は、特定回路が複数ある場合、複数の特定回路の少なくとも1つにおいて濃度差が所定値以下でない(S36:NO)と判断されたとき、割当処理(S24~S34)を再度実行する。この場合、上記効果(各電源回路11e1~11e6に割り当てられた複数のアクチュエータ11n4における濃度差を抑制し、ムラ補正を適切に行える、という効果)をより確実に得ることができる。 When there are a plurality of specific circuits, the control unit 90 re-executes the allocation process (S24 to S34) when it is determined that the concentration difference is not less than or equal to a predetermined value (S36: NO) in at least one of the plurality of specific circuits. .. In this case, the above effect (the effect of suppressing the density difference in the plurality of actuators 11n4 assigned to each power supply circuit 11e1 to 11e6 and appropriately performing unevenness correction) can be obtained more reliably.
 制御部90は、濃度差が所定値以下である(S36:YES)と判断された特定回路を含む電源回路11e1~11e6とアクチュエータ11n4との対応関係が複数ある場合(S38:YES)、複数の対応関係のうち、6つの電源回路11e1~11e6における濃度差の平均値が最も小さい対応関係に基づき(S39)、S12(吐出処理)を実行する。この場合、上記効果(各電源回路11e1~11e6に割り当てられた複数のアクチュエータ11n4における濃度差を抑制し、ムラ補正を適切に行える、という効果)をより確実に得ることができる。 When the control unit 90 has a plurality of correspondences between the power supply circuits 11e1 to 11e6 including the specific circuit determined that the concentration difference is equal to or less than a predetermined value (S36: YES) and the actuator 11n4 (S38: YES), the control unit 90 has a plurality of correspondences. Among the correspondence relationships, S12 (discharge processing) is executed based on the correspondence relationship in which the average value of the concentration differences in the six power supply circuits 11e1 to 11e6 is the smallest (S39). In this case, the above effect (the effect of suppressing the density difference in the plurality of actuators 11n4 assigned to each power supply circuit 11e1 to 11e6 and appropriately performing unevenness correction) can be obtained more reliably.
 制御部90は、割当処理(S24~S34)の前にS22(ソート処理)を実行し、S22(ソート処理)でソートされた順に、アクチュエータ11n4を6つの電源回路11e1~11e6のうちの1つに割り当て(S25)、当該電源回路において濃度差が閾値に達したか否かを判断する(S26:第1判断ステップ)。そして制御部90は、濃度差が閾値に達していないと判断された場合(S26:NO)、当該電源回路に割り当てられたアクチュエータ11n4の数が最大数に達したか否かを判断し(S27:第2判断ステップ)、アクチュエータ11n4の数が最大数に達していないと判断された場合(S27:NO)、当該電源回路についてS26(第1判断ステップ)を再度実行する。制御部90は、濃度差が閾値に達したと判断された場合(S26:YES)、又は、アクチュエータ11n4の数が最大数に達したと判断された場合(S27:YES)において、当該電源回路に対するアクチュエータ11n4の割り当てを終了し(S30)、6つの電源回路11e1~11e6のうち当該電源回路とは別の電源回路について(S32)、かつ、複数のアクチュエータ11n4のうち割り当てが完了していないアクチュエータについて、S26(第1判断ステップ)を実行する。この場合、割当処理(S24~S34)を効率的に実行できる。 The control unit 90 executes S22 (sort processing) before the allocation processing (S24 to S34), and sets the actuator 11n4 to one of the six power supply circuits 11e1 to 11e6 in the order sorted by S22 (sort processing). (S25), and it is determined whether or not the concentration difference has reached the threshold value in the power supply circuit (S26: first determination step). Then, when it is determined that the concentration difference has not reached the threshold value (S26: NO), the control unit 90 determines whether or not the number of actuators 11n4 assigned to the power supply circuit has reached the maximum number (S27). : Second determination step), when it is determined that the number of actuators 11n4 has not reached the maximum number (S27: NO), S26 (first determination step) is executed again for the power supply circuit. When it is determined that the concentration difference has reached the threshold value (S26: YES), or when it is determined that the number of actuators 11n4 has reached the maximum number (S27: YES), the control unit 90 said the power supply circuit. (S30), the actuators 11e1 to 11e6 of the six power supply circuits 11e1 to 11e6 that are different from the power supply circuit (S32), and the actuators 11n4 that have not been assigned are not completed. S26 (first determination step) is executed. In this case, the allocation processing (S24 to S34) can be efficiently executed.
 特定回路の濃度差が所定値以下でない(S36:NO)と判断されて割当処理(S24~S34)が再度実行され、S26(第1判断ステップ)及びS27(第2判断ステップ)の実行により、複数のアクチュエータ11n4のいずれかが6つの電源回路11e1~11e6のいずれかに割り当てられない場合がある(S35:NO、図11(e)参照)。この場合、制御部90は、直近のS36(判断処理)の対象である電源回路11e1~11e6とアクチュエータ11n4との対応関係に基づき(S40)、S12(吐出処理)を実行する。この場合、アクチュエータ11n4の割り当てを確実に行いつつ、(各電源回路11e1~11e6に割り当てられた複数のアクチュエータ11n4における濃度差を抑制し、ムラ補正を適切に行える、という効果)を得ることができる。 It is determined that the concentration difference of the specific circuit is not less than or equal to the predetermined value (S36: NO), the allocation processing (S24 to S34) is executed again, and by executing S26 (first determination step) and S27 (second determination step), One of the plurality of actuators 11n4 may not be assigned to any of the six power supply circuits 11e1 to 11e6 (S35: NO, see FIG. 11E). In this case, the control unit 90 executes S12 (discharge processing) based on the correspondence between the power supply circuits 11e1 to 11e6 and the actuator 11n4, which are the targets of the latest S36 (determination processing) (S40). In this case, it is possible to obtain (the effect of suppressing the density difference in the plurality of actuators 11n4 assigned to each power supply circuit 11e1 to 11e6 and appropriately performing unevenness correction) while reliably allocating the actuators 11n4. ..
 制御部90は、割当処理(S24~S34)において、S26(第1判断ステップ)及びS27(第2判断ステップ)の実行により、6つの電源回路11e1~11e6のそれぞれに複数のアクチュエータ11n4のいずれかが割り当てられていないときは(S33:NO)、閾値Tを下げて(S34)、割当処理(S24~S34)を再度実行する。この場合、アクチュエータ11n4の割り当てを確実に行える。 In the allocation process (S24 to S34), the control unit 90 executes any of the plurality of actuators 11n4 in each of the six power supply circuits 11e1 to 11e6 by executing S26 (first determination step) and S27 (second determination step). When is not assigned (S33: NO), the threshold value T is lowered (S34), and the allocation processing (S24 to S34) is executed again. In this case, the actuator 11n4 can be reliably assigned.
 制御部90は、特定回路の濃度差が所定値以下でないと判断した場合(S36:NO)、閾値Tを下げて(S34)、割当処理(S24~S34)を再度実行する。この場合、アクチュエータ11n4の割り当てを確実に行える。 When the control unit 90 determines that the density difference of the specific circuit is not equal to or less than a predetermined value (S36: NO), the control unit 90 lowers the threshold value T (S34) and executes the allocation process (S24 to S34) again. In this case, the actuator 11n4 can be reliably assigned.
 閾値Tの初期値Tiは、複数のアクチュエータ11n4における最大濃度Dmaxから、複数のアクチュエータ11n4における最小濃度Dminを減算した値を、x(複数のアクチュエータ11n4を6つの電源回路11e1~11e6に順次最大数に達するまで割り当てた場合にアクチュエータ11n4の数が最大数に達しない電源回路の数)で除算した値である。この場合、割当処理(S24~S34)を効率的に実行できる。 The initial value Ti of the threshold value T is a value obtained by subtracting the minimum concentration Dmin in the plurality of actuators 11n4 from the maximum concentration Dmax in the plurality of actuators 11n4, and x (the maximum number of the plurality of actuators 11n4 in the six power supply circuits 11e1 to 11e6 in sequence. It is a value divided by the number of power supply circuits in which the number of actuators 11n4 does not reach the maximum number when allotted until the number reaches. In this case, the allocation processing (S24 to S34) can be efficiently executed.
 所定値は、特定回路が複数ある場合、複数の特定回路における濃度差の平均値に基づく値であってよい。この場合、S36(判断処理)を効率的に実行でき、ひいては上記効果(各電源回路11e1~11e6に割り当てられた複数のアクチュエータ11n4における濃度差を抑制し、ムラ補正を適切に行える、という効果)をより確実に得ることができる。 When there are a plurality of specific circuits, the predetermined value may be a value based on the average value of the concentration differences in the plurality of specific circuits. In this case, S36 (judgment processing) can be efficiently executed, and the above effect (effect of suppressing the density difference in the plurality of actuators 11n4 assigned to each power supply circuit 11e1 to 11e6 and appropriately performing unevenness correction). Can be obtained more reliably.
 <変形例>
 以上、本発明の好適な実施形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な設計変更が可能なものである。
<Modification example>
Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various design changes can be made as long as it is described in the claims.
 例えば、上述の実施形態では、濃度の小さいアクチュエータから順に割り当てを行うが、濃度の大きいアクチュエータから順に割り当てを行ってもよい。なお、濃度順にソートされたアクチュエータにおいて濃度変化が小さい方(図11の例では濃度が小さい方)から順に割り当てを行うことで、前半の段階で、濃度差が閾値に達することなく最大数に達するまで割り当てを行えるため、割当処理を効率的に実行できる。 For example, in the above-described embodiment, the actuators with the lowest concentration are assigned in order, but the actuators with the highest concentration may be assigned in order. By assigning the actuators sorted in order of concentration in ascending order of concentration change (smaller concentration in the example of FIG. 11), the concentration difference reaches the maximum number without reaching the threshold value in the first half stage. Since the allocation can be performed up to, the allocation process can be executed efficiently.
 特定回路が複数ある場合、上述の実施形態では、複数の特定回路の少なくとも1つにおいて濃度差が所定値以下でない(S36:NO)と判断されたときに、割当処理を再度実行するが、これに限定されず、全ての特定回路において濃度差が所定値以下でない(S36:NO)と判断されたときに、割当処理を再度実行してもよい。 When there are a plurality of specific circuits, in the above-described embodiment, when it is determined that the concentration difference is not less than or equal to a predetermined value (S36: NO) in at least one of the plurality of specific circuits, the allocation process is executed again. When it is determined that the concentration difference is not less than or equal to the predetermined value (S36: NO) in all the specific circuits, the allocation process may be executed again.
 所定値は、複数の特定回路における濃度差の平均値に基づく値(例えば、S2で生成された読取データから導出される上記平均値と、ROM92に記憶された固定値αとの和)に限定されず、ROM92に記憶された固定値βであってもよい。 The predetermined value is limited to a value based on the average value of the concentration differences in a plurality of specific circuits (for example, the sum of the above average value derived from the read data generated in S2 and the fixed value α stored in the ROM 92). However, it may be a fixed value β stored in the ROM 92.
 閾値の初期値は、上述の実施形態で例示した値に限定されない。 The initial value of the threshold value is not limited to the value exemplified in the above-described embodiment.
 閾値を下げる場合に、上述の実施形態では閾値に0.9を乗じるが、これに限定されない。例えば、閾値に対し、0.9以外の任意の少数を乗じてもよいし、1を超える任意の数を除してもよいし、任意の正の数を減じてもよい。また、1回目のS34と2回目のS34とで閾値の下げ幅を異ならせてもよい。 When lowering the threshold value, the threshold value is multiplied by 0.9 in the above embodiment, but the present invention is not limited to this. For example, the threshold may be multiplied by any minority other than 0.9, divided by any number greater than 1, or subtracted by any positive number. Further, the threshold value may be lowered differently between the first S34 and the second S34.
 アクチュエータは、圧電方式に限定されず、その他の方式(例えば、発熱素子を用いたサーマル方式、静電力を用いた静電方式等)であってもよい。 The actuator is not limited to the piezoelectric method, and may be another method (for example, a thermal method using a heat generating element, an electrostatic method using electrostatic force, etc.).
 ヘッドは、上述の実施形態ではライン式であるが、シリアル式であってもよい。 The head is a line type in the above embodiment, but may be a serial type.
 ヘッドは、インク以外の液体(例えば、インク中の成分を凝集又は析出させる処理液等)を吐出してもよい。 The head may eject a liquid other than the ink (for example, a treatment liquid that aggregates or precipitates components in the ink).
 記録媒体は、用紙に限定されず、例えば、布、樹脂部材等であってもよい。 The recording medium is not limited to paper, and may be, for example, cloth, a resin member, or the like.
 本発明に係る液体吐出装置は、複合機に限定されない(即ち、画像形成部を有するが画像読取部を有さない装置であってもよい)。本発明は、プリンタ、ファクシミリ、コピー機等にも適用可能である。また、本発明は、画像の記録以外の用途で使用される液体吐出装置(例えば、基板に導電性の液体を吐出して導電パターンを形成する液体吐出装置)にも適用可能である。 The liquid discharge device according to the present invention is not limited to the multifunction device (that is, it may be a device having an image forming unit but not an image reading unit). The present invention can also be applied to printers, facsimiles, copiers and the like. The present invention can also be applied to a liquid discharge device used for purposes other than image recording (for example, a liquid discharge device that discharges a conductive liquid onto a substrate to form a conductive pattern).
 本発明に係る液体吐出装置とは別の装置によって検査画像の読取(S2)が行われ、その後、本発明に係る液体吐出装置が、別の装置から受信した読取データに基づいて対応付けステップ(S3)を実行してもよい。例えば、分光測色計(X-Rite社製の「SpectoroEye」等)を用いて検査画像の読取(S2)を行ってよい。この場合、本発明に係る液体吐出装置は、分光測色計から受信した読取データに基づいて対応付けステップ(S3)を実行してよい。 The inspection image is read (S2) by a device different from the liquid discharge device according to the present invention, and then the association step (S2) is performed by the liquid discharge device according to the present invention based on the read data received from the other device. S3) may be executed. For example, the inspection image may be read (S2) using a spectrophotometer (“SpectroEye” manufactured by X-Rite, etc.). In this case, the liquid discharge device according to the present invention may execute the association step (S3) based on the read data received from the spectrophotometer.
 本発明に係るプログラムは、フレキシブルディスク等のリムーバブル型記録媒体やハードディスク等の固定型記録媒体に記録して配布可能である他、通信回線を介して配布可能である。 The program according to the present invention can be recorded and distributed on a removable recording medium such as a flexible disk or a fixed recording medium such as a hard disk, and can also be distributed via a communication line.
 本発明の参考例によれば、「複数のノズルと、前記複数のノズルのそれぞれに対して設けられた複数のアクチュエータと、前記複数のアクチュエータのうち割り当てられたアクチュエータに対し、互いに異なる電圧を出力する複数の電源回路と、制御部と、を備え、前記制御部は、前記複数の電源回路のそれぞれに割り当てられた前記アクチュエータにおいて、前記ノズルから吐出される液体の濃度差が所定値以下となるように、前記複数のアクチュエータのそれぞれを前記複数の電源回路のいずれかに割り当て、かつ、前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかを割り当てる、割当処理を実行することを特徴とする、液体吐出装置」、「複数のノズルと、前記複数のノズルのそれぞれに対して設けられた複数のアクチュエータと、前記複数のアクチュエータのうち割り当てられたアクチュエータに対し、互いに異なる電圧を出力する複数の電源回路と、を備えた液体吐出装置を制御する制御方法であって、前記複数の電源回路のそれぞれに割り当てられた前記アクチュエータにおいて、前記ノズルから吐出される液体の濃度差が所定値以下となるように、前記複数のアクチュエータのそれぞれを前記複数の電源回路のいずれかに割り当て、かつ、前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかを割り当てる、割当処理を実行することを特徴とする、制御方法」、及び、「複数のノズルと、前記複数のノズルのそれぞれに対して設けられた複数のアクチュエータと、前記複数のアクチュエータのうち割り当てられたアクチュエータに対し、互いに異なる電圧を出力する複数の電源回路と、を備えた液体吐出装置を、前記複数の電源回路のそれぞれに割り当てられた前記アクチュエータにおいて、前記ノズルから吐出される液体の濃度差が所定値以下となるように、前記複数のアクチュエータのそれぞれを前記複数の電源回路のいずれかに割り当て、かつ、前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかを割り当てる、割当手段として機能させることを特徴とする、プログラム」が提供される。本参考例では、S36(判断処理)を、アクチュエータ11n4の数が最大数に達していない特定回路について行うことに限定されず、全ての電源回路11e1~11e6について行ってよい。 According to the reference example of the present invention, "a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and an actuator assigned among the plurality of actuators are output with different voltages. A plurality of power supply circuits and a control unit are provided, and the control unit has a concentration difference of liquid discharged from the nozzle of the actuator assigned to each of the plurality of power supply circuits to be a predetermined value or less. As described above, each of the plurality of actuators is assigned to one of the plurality of power supply circuits, and any of the plurality of actuators is assigned to each of the plurality of power supply circuits. Liquid discharge device "," a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and a plurality of actuators that output different voltages to the actuators assigned to the plurality of actuators. A control method for controlling a liquid discharge device including the power supply circuit of the above, wherein the concentration difference of the liquid discharged from the nozzle is equal to or less than a predetermined value in the actuator assigned to each of the plurality of power supply circuits. The allocation process is characterized in that each of the plurality of actuators is assigned to one of the plurality of power supply circuits, and one of the plurality of actuators is assigned to each of the plurality of power supply circuits. Control method "and" Output different voltages to a plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and an actuator assigned to the plurality of actuators. In the actuator assigned to each of the plurality of power supply circuits, the liquid discharge device including the plurality of power supply circuits is provided so that the concentration difference of the liquid discharged from the nozzles is equal to or less than a predetermined value. A program characterized in that each of a plurality of actuators is assigned to one of the plurality of power supply circuits, and any of the plurality of actuators is assigned to each of the plurality of power supply circuits, so as to function as an allocation means. " Is provided. In this reference example, S36 (judgment processing) is not limited to being performed on a specific circuit in which the number of actuators 11n4 has not reached the maximum number, and may be performed on all power supply circuits 11e1 to 11e6.
 1 複合機(液体吐出装置)
 10 画像形成部
 11e1~11e6 電源回路
 11n4 アクチュエータ
 11x ノズル
 90 制御部
1 Multifunction device (liquid discharge device)
10 Image forming unit 11e1 to 11e6 Power supply circuit 11n4 Actuator 11x Nozzle 90 Control unit

Claims (11)

  1.  複数のノズルと、
     複数のノズルのそれぞれに対して設けられた複数のアクチュエータと、
     前記複数のアクチュエータのうち割り当てられたアクチュエータに対し、互いに異なる電圧を出力する複数の電源回路と、
     制御部と、を備え、
     前記制御部は、
     前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかを割り当てる、割当処理と、
     前記割当処理で割り当てられた前記複数の電源回路のそれぞれによって前記複数のアクチュエータを駆動させ、前記複数のノズルから液体を吐出させる、吐出処理と、を実行し、
     前記割当処理の後、かつ、前記吐出処理の前に、
     前記複数の電源回路のうち、前記アクチュエータの数が当該電源回路に対して定められた最大数に達していない電源回路である特定回路において、前記ノズルから吐出される液体の濃度の最大値と前記ノズルから吐出される液体の濃度の最小値との差である濃度差が、所定値以下か否かを判断する、判断処理を実行し、
     前記判断処理において前記特定回路の前記濃度差が前記所定値以下でないと判断された場合、前記割当処理を再度実行することを特徴とする、液体吐出装置。
    With multiple nozzles
    Multiple actuators provided for each of the multiple nozzles,
    A plurality of power supply circuits that output different voltages to the assigned actuators among the plurality of actuators, and
    With a control unit
    The control unit
    The allocation process, which allocates one of the plurality of actuators to each of the plurality of power supply circuits,
    Discharge processing, in which the plurality of actuators are driven by each of the plurality of power supply circuits assigned in the allocation processing and liquid is discharged from the plurality of nozzles, is executed.
    After the allocation process and before the discharge process,
    Among the plurality of power supply circuits, in a specific circuit which is a power supply circuit in which the number of actuators does not reach the maximum number defined for the power supply circuit, the maximum value of the concentration of the liquid discharged from the nozzle and the said. A judgment process is executed to determine whether or not the concentration difference, which is the difference from the minimum concentration of the liquid discharged from the nozzle, is equal to or less than a predetermined value.
    A liquid discharge device, characterized in that, when it is determined in the determination process that the concentration difference of the specific circuit is not equal to or less than the predetermined value, the allocation process is executed again.
  2.  前記制御部は、
     前記特定回路が複数ある場合、前記判断処理において、前記複数の特定回路の少なくとも1つにおいて、前記濃度差が前記所定値以下でないと判断されたとき、前記割当処理を再度実行することを特徴とする、請求項1に記載の液体吐出装置。
    The control unit
    When there are a plurality of the specific circuits, the determination process re-executes the allocation process when it is determined that the concentration difference is not equal to or less than the predetermined value in at least one of the plurality of specific circuits. The liquid discharge device according to claim 1.
  3.  前記制御部は、
     前記判断処理において前記濃度差が前記所定値以下であると判断された前記特定回路を含む前記複数の電源回路と前記複数のアクチュエータとの対応関係が複数ある場合、
     前記複数の対応関係のうち、前記複数の電源回路における前記濃度差の平均値が最も小さい対応関係に基づき、前記吐出処理を実行することを特徴とする、請求項1又は2に記載の液体吐出装置。
    The control unit
    When there are a plurality of correspondences between the plurality of power supply circuits including the specific circuit for which the concentration difference is determined to be equal to or less than the predetermined value in the determination process and the plurality of actuators.
    The liquid discharge according to claim 1 or 2, wherein the discharge process is executed based on the correspondence relationship in which the average value of the concentration differences in the plurality of power supply circuits is the smallest among the plurality of correspondence relationships. apparatus.
  4.  前記制御部は、
     前記割当処理の前に、前記複数のアクチュエータを、当該アクチュエータの駆動により前記ノズルから吐出された液体の濃度順にソートする、ソート処理を実行し、
     前記割当処理において、
     前記複数のアクチュエータを、前記ソート処理でソートされた順に、前記複数の電源回路のうちの1つに割り当て、当該電源回路において前記濃度差が閾値に達したか否かを判断する、第1判断ステップと、
     前記第1判断ステップにおいて前記濃度差が前記閾値に達していないと判断された場合、当該電源回路に割り当てられた前記アクチュエータの数が前記最大数に達したか否かを判断する、第2判断ステップと、を実行し、
     前記第2判断ステップにおいて前記アクチュエータの数が前記最大数に達していないと判断された場合、当該電源回路について前記第1判断ステップを再度実行し、
     前記第1判断ステップにおいて前記濃度差が前記閾値に達したと判断された場合、又は、前記第2判断ステップにおいて前記アクチュエータの数が前記最大数に達したと判断された場合、当該電源回路に対する前記アクチュエータの割り当てを終了し、前記複数の電源回路のうち当該電源回路とは別の電源回路について、かつ、前記複数のアクチュエータのうち割り当てが完了していないアクチュエータについて、前記第1判断ステップを実行することを特徴とする、請求項1~3のいずれか1項に記載の液体吐出装置。
    The control unit
    Prior to the allocation process, a sort process is executed in which the plurality of actuators are sorted in order of the concentration of the liquid discharged from the nozzle by driving the actuator.
    In the allocation process
    A first determination in which the plurality of actuators are assigned to one of the plurality of power supply circuits in the order sorted by the sort process, and it is determined whether or not the concentration difference has reached a threshold value in the power supply circuit. Steps and
    When it is determined in the first determination step that the concentration difference has not reached the threshold value, it is determined whether or not the number of the actuators assigned to the power supply circuit has reached the maximum number. Step and perform,
    If it is determined in the second determination step that the number of actuators has not reached the maximum number, the first determination step is executed again for the power supply circuit.
    When it is determined in the first determination step that the concentration difference has reached the threshold value, or when it is determined in the second determination step that the number of the actuators has reached the maximum number, the power supply circuit is contacted. The first determination step is executed for the power supply circuit other than the power supply circuit among the plurality of power supply circuits and the actuator for which the allocation is not completed among the plurality of actuators. The liquid discharge device according to any one of claims 1 to 3, wherein the liquid discharge device is characterized in that.
  5.  前記制御部は、
     前記判断処理において前記特定回路の前記濃度差が前記所定値以下でないと判断されて前記割当処理を再度実行した場合に、前記第1判断ステップ及び前記第2判断ステップの実行により、前記複数のアクチュエータのいずれかが前記複数の電源回路のいずれかに割り当てられないときは、
     直近の前記判断処理の対象である前記複数の電源回路と前記複数のアクチュエータとの対応関係に基づき、前記吐出処理を実行することを特徴とする、請求項4に記載の液体吐出装置。
    The control unit
    When it is determined in the determination process that the concentration difference of the specific circuit is not equal to or less than the predetermined value and the allocation process is executed again, the plurality of actuators are executed by executing the first determination step and the second determination step. When any of the above cannot be assigned to any of the plurality of power supply circuits,
    The liquid discharge device according to claim 4, wherein the discharge process is executed based on the correspondence between the plurality of power supply circuits, which are the targets of the latest determination process, and the plurality of actuators.
  6.  前記制御部は、
     前記割当処理において、前記第1判断ステップ及び前記第2判断ステップの実行により、前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかが割り当てられないときは、
     前記閾値を下げて、前記割当処理を再度実行することを特徴とする、請求項4又は5に記載の液体吐出装置。
    The control unit
    In the allocation process, when any of the plurality of actuators is not assigned to each of the plurality of power supply circuits due to the execution of the first determination step and the second determination step,
    The liquid discharge device according to claim 4 or 5, wherein the threshold value is lowered and the allocation process is executed again.
  7.  前記制御部は、
     前記判断処理において前記特定回路の前記濃度差が前記所定値以下でないと判断された場合、前記閾値を下げて、前記割当処理を再度実行することを特徴とする、請求項4~6のいずれか1項に記載の液体吐出装置。
    The control unit
    Any of claims 4 to 6, wherein when it is determined in the determination process that the concentration difference of the specific circuit is not equal to or less than the predetermined value, the threshold value is lowered and the allocation process is executed again. The liquid discharge device according to item 1.
  8.  前記閾値の初期値は、前記複数のアクチュエータにおける最大濃度から、前記複数のアクチュエータにおける最小濃度を減算した値を、前記複数のアクチュエータを前記複数の電源回路のそれぞれに順次前記最大数に達するまで割り当てた場合に前記アクチュエータの数が前記最大数に達しない電源回路の数、で除算した値であることを特徴とする、請求項6又は7に記載の液体吐出装置。 The initial value of the threshold value is a value obtained by subtracting the minimum concentration in the plurality of actuators from the maximum concentration in the plurality of actuators until the plurality of actuators are sequentially assigned to each of the plurality of power supply circuits until the maximum number is reached. The liquid discharge device according to claim 6 or 7, wherein the number of actuators is a value divided by the number of power supply circuits that do not reach the maximum number.
  9.  前記所定値は、前記特定回路が複数ある場合、前記複数の特定回路における前記濃度差の平均値に基づく値であることを特徴とする、請求項1~8のいずれか1項に記載の液体吐出装置。 The liquid according to any one of claims 1 to 8, wherein the predetermined value is a value based on an average value of the concentration differences in the plurality of specific circuits when there are a plurality of the specific circuits. Discharge device.
  10.  複数のノズルと、前記複数のノズルのそれぞれに対して設けられた複数のアクチュエータと、前記複数のアクチュエータのうち割り当てられたアクチュエータに対し、互いに異なる電圧を出力する複数の電源回路と、を備えた液体吐出装置を制御する制御方法であって、
     前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかを割り当てる、割当処理と、
     前記割当処理で割り当てられた前記複数の電源回路のそれぞれによって前記複数のアクチュエータを駆動させ、前記複数のノズルから液体を吐出させる、吐出処理と、を実行し、
     前記割当処理の後、かつ、前記吐出処理の前に、
     前記複数の電源回路のうち、前記アクチュエータの数が当該電源回路に対して定められた最大数に達していない電源回路である特定回路において、前記ノズルから吐出される液体の濃度の最大値と前記ノズルから吐出される液体の濃度の最小値との差である濃度差が、所定値以下か否かを判断する、判断処理を実行し、
     前記判断処理において前記特定回路の前記濃度差が前記所定値以下でないと判断された場合、前記割当処理を再度実行することを特徴とする、制御方法。
    A plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and a plurality of power supply circuits for outputting different voltages to the actuators assigned to the plurality of actuators are provided. A control method that controls a liquid discharge device.
    The allocation process, which allocates one of the plurality of actuators to each of the plurality of power supply circuits,
    Discharge processing, in which the plurality of actuators are driven by each of the plurality of power supply circuits assigned in the allocation processing and liquid is discharged from the plurality of nozzles, is executed.
    After the allocation process and before the discharge process,
    Among the plurality of power supply circuits, in a specific circuit which is a power supply circuit in which the number of actuators does not reach the maximum number defined for the power supply circuit, the maximum value of the concentration of the liquid discharged from the nozzle and the said. A judgment process is executed to determine whether or not the concentration difference, which is the difference from the minimum concentration of the liquid discharged from the nozzle, is equal to or less than a predetermined value.
    A control method, characterized in that, when it is determined in the determination process that the concentration difference of the specific circuit is not equal to or less than the predetermined value, the allocation process is executed again.
  11.  複数のノズルと、前記複数のノズルのそれぞれに対して設けられた複数のアクチュエータと、前記複数のアクチュエータのうち割り当てられたアクチュエータに対し、互いに異なる電圧を出力する複数の電源回路と、を備えた液体吐出装置を、
     前記複数の電源回路のそれぞれに前記複数のアクチュエータのいずれかを割り当てる、割当手段、
     前記割当手段により割り当てられた前記複数の電源回路のそれぞれによって前記複数のアクチュエータを駆動させ、前記複数のノズルから液体を吐出させる、吐出手段、及び、 前記割当手段による割当の後、かつ、前記吐出手段による吐出の前に、
     前記複数の電源回路のうち、前記アクチュエータの数が当該電源回路に対して定められた最大数に達していない電源回路である特定回路において、前記ノズルから吐出される液体の濃度の最大値と前記ノズルから吐出される液体の濃度の最小値との差である濃度差が、所定値以下か否かを判断する、判断手段、として機能させるプログラムであって、
     前記判断手段により前記特定回路の前記濃度差が前記所定値以下でないと判断された場合、前記割当手段が再度割当を実行することを特徴とする、プログラム。
    A plurality of nozzles, a plurality of actuators provided for each of the plurality of nozzles, and a plurality of power supply circuits for outputting different voltages to the actuators assigned to the plurality of actuators are provided. Liquid discharge device,
    An assigning means, which assigns one of the plurality of actuators to each of the plurality of power supply circuits.
    The discharge means that drives the plurality of actuators by each of the plurality of power supply circuits assigned by the allocation means and discharges the liquid from the plurality of nozzles, and after the allocation by the allocation means and the discharge. Before ejection by means
    Among the plurality of power supply circuits, in a specific circuit which is a power supply circuit in which the number of actuators does not reach the maximum number defined for the power supply circuit, the maximum value of the concentration of the liquid discharged from the nozzle and the said. A program that functions as a determination means for determining whether or not the concentration difference, which is the difference from the minimum concentration of the liquid discharged from the nozzle, is equal to or less than a predetermined value.
    A program characterized in that, when the determination means determines that the concentration difference of the specific circuit is not equal to or less than the predetermined value, the allocation means executes allocation again.
PCT/JP2020/029784 2019-08-20 2020-08-04 Liquid discharging device, and control method and program therefor WO2021033531A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080057191.9A CN114222665B (en) 2019-08-20 2020-08-04 Liquid ejecting apparatus, control method thereof, and recording medium storing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019150585A JP7354667B2 (en) 2019-08-20 2019-08-20 Liquid discharge device, its control method and program
JP2019-150585 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021033531A1 true WO2021033531A1 (en) 2021-02-25

Family

ID=74660989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029784 WO2021033531A1 (en) 2019-08-20 2020-08-04 Liquid discharging device, and control method and program therefor

Country Status (3)

Country Link
JP (1) JP7354667B2 (en)
CN (1) CN114222665B (en)
WO (1) WO2021033531A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070024667A1 (en) * 2005-07-28 2007-02-01 Samsung Electronics Co., Ltd. Inkjet image forming apparatus and printing method
JP2009285998A (en) * 2008-05-29 2009-12-10 Brother Ind Ltd Recorder
JP2017177572A (en) * 2016-03-30 2017-10-05 ブラザー工業株式会社 Printing apparatus
JP2018144466A (en) * 2017-03-02 2018-09-20 富士ゼロックス株式会社 Droplet discharge unit drive device and image formation apparatus
JP2018171853A (en) * 2017-03-31 2018-11-08 ブラザー工業株式会社 Liquid discharge device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722145B2 (en) * 2006-12-28 2010-05-25 Toshiba Tec Kabushiki Kaisha Ink jet head driving apparatus and ink jet head driving method
JP5109420B2 (en) * 2007-03-13 2012-12-26 富士ゼロックス株式会社 Liquid ejection head drive device and liquid ejection device
JP6642168B2 (en) * 2016-03-23 2020-02-05 セイコーエプソン株式会社 Liquid discharge control device, liquid discharge control method, liquid discharge control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070024667A1 (en) * 2005-07-28 2007-02-01 Samsung Electronics Co., Ltd. Inkjet image forming apparatus and printing method
JP2009285998A (en) * 2008-05-29 2009-12-10 Brother Ind Ltd Recorder
JP2017177572A (en) * 2016-03-30 2017-10-05 ブラザー工業株式会社 Printing apparatus
JP2018144466A (en) * 2017-03-02 2018-09-20 富士ゼロックス株式会社 Droplet discharge unit drive device and image formation apparatus
JP2018171853A (en) * 2017-03-31 2018-11-08 ブラザー工業株式会社 Liquid discharge device

Also Published As

Publication number Publication date
CN114222665B (en) 2023-01-31
JP2021030500A (en) 2021-03-01
JP7354667B2 (en) 2023-10-03
CN114222665A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
US7616340B2 (en) Image processing method and apparatus, threshold value matrix creating method, image forming apparatus, sub-matrix creating method and program
US20060262151A1 (en) Image recording apparatus and method, and method of specifying density correction coefficients
US9931861B2 (en) Printing control apparatus and printing control method
US20130057879A1 (en) Image processing method, image processing program, and information processing apparatus
CN1906923A (en) An image-processing apparatus, an image- forming apparatus, and a program
US10241414B2 (en) Image forming device and dot pattern determining method
US10857807B2 (en) Imaging apparatus and method for reducing banding
US20100214626A1 (en) Exposure device, image forming apparatus, exposure control method and computer-readable medium
JP5813550B2 (en) Color adjustment method and apparatus, program, and ink jet apparatus
WO2021033531A1 (en) Liquid discharging device, and control method and program therefor
JP4604614B2 (en) Inkjet recording apparatus and inkjet recording method
CN110774772A (en) Recording apparatus, image processing apparatus, and recording method
US20090079782A1 (en) Image recording apparatus and method, and method of determining density correction coefficients
JP2006076086A (en) Ink jet recorder and recording method
JP2014100854A (en) Apparatus and method for image formation and method of calculating correction value
US11279141B2 (en) Liquid discharging apparatus, method for discharging liquid and recording medium
JP7439543B2 (en) Liquid discharge device, its control method and program
JP2006231699A (en) Image processing device, image processing method, program and printing device
JP2013169727A (en) Recording apparatus and its processing method
JP7302353B2 (en) MFP, CONTROL METHOD AND PROGRAM THEREOF
JP2021066079A (en) Liquid discharge device, liquid discharge method and program
JP5344053B2 (en) Printing apparatus, printing method, and program
JP6586821B2 (en) Image forming apparatus, print production method and program
JP7466691B2 (en) Recording head and recording device
JP5657432B2 (en) Image generating apparatus and method, and image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854990

Country of ref document: EP

Kind code of ref document: A1