WO2021033455A1 - 力センサ、及びそれを含むセンサアレイ並びに把持装置 - Google Patents

力センサ、及びそれを含むセンサアレイ並びに把持装置 Download PDF

Info

Publication number
WO2021033455A1
WO2021033455A1 PCT/JP2020/027073 JP2020027073W WO2021033455A1 WO 2021033455 A1 WO2021033455 A1 WO 2021033455A1 JP 2020027073 W JP2020027073 W JP 2020027073W WO 2021033455 A1 WO2021033455 A1 WO 2021033455A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
light
emitting element
light emitting
resin body
Prior art date
Application number
PCT/JP2020/027073
Other languages
English (en)
French (fr)
Inventor
滉平 菅原
博 渡邊
加藤 貴敏
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021540665A priority Critical patent/JP7211522B2/ja
Publication of WO2021033455A1 publication Critical patent/WO2021033455A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/166Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using photoelectric means

Definitions

  • the present invention relates to a force sensor, particularly a force sensor using light, a sensor array including the force sensor, and a gripping device.
  • Such sensors include, for example, sensors that sense pressure and force as described in Patent Document 1.
  • the sensor of Patent Document 1 senses the pressure and force acting on the sensor surface using an optical principle.
  • the sensor 103 includes a light emitting element 105 that emits light, a light receiving element 107 that receives light emitted from the light emitting element 105, and a cover layer 113 that covers the entire sensor 103. Further, the sensor 103 is arranged in the cover layer 113 and is flexible enough to fill the space between the reflective layer 115 that reflects light, the carrier element 109 that supports them, and the reflective layer 115 and the carrier element 109. It comprises a filling element 111 made of a material.
  • the light emitted from the light emitting element 105 is reflected by the reflecting layer 115 and the amount of reflected light returned is detected by the light receiving element 107, so that the pressure and force of the object Bt6 pushing the sensor can be detected.
  • Patent Document 1 As shown in FIG. 25, when a load due to the object Bt6 is applied to the sensor 103, not only the cover layer 113 but also the reflection layer 115 in the sensor 103 is deformed. The deformation of the reflection layer 115 differs depending on the shape of the object, and the reflection profile differs even with the same load. As a result, the detected value of the reflected light amount may change depending on the shape of the object Bt6, that is, the contact area to which the load is applied, even though the same load is applied.
  • Patent Document 1 also shows a sensor 123 having an outer layer 133 made of a hard material and having a flat contact surface with an object Bt7 in the outer layer 133.
  • the sensor 123 cannot detect a change in load such that the reflective layer 115 is displaced in parallel with the plurality of light receiving elements 107.
  • An object of the present invention is to provide a force sensor, a sensor array, and a gripping device that can reduce the change in the detected value of the amount of light depending on the shape of an object and can detect the displacement in the direction parallel to the light receiving portion. It is in.
  • the force sensor includes a light emitting element that emits light and A light receiving unit having a first light receiving element and a second light receiving element that receives the emitted light from the light emitting element, and A substrate that supports the light emitting element and the light receiving portion, A first resin body which is arranged on the substrate, seals the light emitting element and the light receiving portion, and transmits light emitted from the light emitting element, and A reflective surface that reflects light from the light emitting element to the light receiving portion,
  • the first resin body is provided with an outer layer, which is arranged on the opposite side of the substrate and is harder than the first resin body.
  • the light emitting element is arranged between two straight lines that are orthogonal to the line segment connecting the first light receiving element and the second light receiving element and pass through each end point of the line segment.
  • the reflective surface is arranged on the substrate side of the outer layer or between the outer layer and the light emitting element, and is inclined or curved with respect to the extending direction of the line segment.
  • the sensor array according to the present invention includes a plurality of the above-mentioned force sensors.
  • the gripping device includes the above-mentioned sensor array.
  • a force sensor According to the force sensor according to the present invention, a force sensor, a sensor array, and a gripping device that reduce the change in the detected value of the amount of light depending on the shape of the object and can detect the displacement in the direction parallel to the light receiving portion are provided. Can be provided.
  • FIG. 2A Top view of the optical sensor of the first embodiment FIG. 2A, a longitudinal sectional view taken along the line IIB
  • Graph showing the amount of light received by the light receiving part during the contact process of an object The figure for demonstrating the reflected light when the contact surface is not loaded.
  • the figure which shows the modification of the optical sensor of Embodiment 1. The figure which shows the modification of the optical sensor of Embodiment 1.
  • the figure which shows the modification of the optical sensor of Embodiment 1. The figure which shows the modification of the optical sensor of Embodiment 1.
  • the figure which shows the modification of the optical sensor of Embodiment 1. The figure which shows the modification of the optical sensor of Embodiment 1.
  • the figure which shows the modification of the optical sensor of Embodiment 1. The figure which shows the modification of the optical sensor of Embodiment 1.
  • the figure which shows the modification of the optical sensor of Embodiment 1. The figure which shows the modification of the optical sensor of Embodiment 1.
  • the figure which shows the modification of the optical sensor of Embodiment 1. The figure which shows the modification of the optical sensor of Embodiment 1.
  • Top view of the optical sensor of the second embodiment The figure which shows the modification of the optical sensor of Embodiment 2.
  • the figure which shows the sensor array provided in the grip part The figure which shows the sensor array provided in the grip part
  • Top view of the modified optical sensor Top view of the modified optical sensor
  • the figure for demonstrating the outline of the conventional force sensor The figure for demonstrating the outline of the conventional force sensor
  • each embodiment is an example, and partial replacement or combination of the configurations shown in different embodiments is possible.
  • the modified example the description of the matters common to those of the first embodiment will be omitted, and only the differences will be described. In particular, similar actions and effects with the same configuration will not be mentioned sequentially for each embodiment.
  • FIG. 1 is a diagram for explaining an outline of the force sensor 1 according to the first embodiment.
  • FIG. 2A is a top view of the optical sensor 3.
  • FIG. 2B is a vertical cross-sectional view taken along the line IIB of FIG. 2A.
  • the force sensor 1 includes an optical sensor 3, a drive unit 15, an amplifier circuit unit 17, and a control unit 19.
  • the force sensor 1 can be applied to applications in which various objects to be gripped are objects to be sensed, for example, in a robot hand.
  • the optical sensor 3 includes a light emitting element 5, a light receiving unit 7, a substrate 9, a first resin body 11, and an outer layer 13.
  • the first resin body 11 is an example of a cover member arranged so as to cover the light emitting element 5 and the light receiving portion 7.
  • the direction in which the first resin body 11 protrudes from the substrate 9 is defined as the “Z direction”, and the two directions orthogonal to the Z direction and orthogonal to each other are the “X direction” and the “Y direction”.
  • the positive direction of the Z axis is upward, and the negative direction of the Z axis is downward.
  • the optical sensor 3 of the first embodiment causes the light emitting element 5 to emit light inside the first resin body 11, and receives the reflected light transmitted through the first resin body 11 and reflected on the reflecting surface 13a of the outer layer 13. 7 detects the light, and outputs a light receiving signal P1 according to the amount of light received from the light receiving unit 7.
  • the light emitting element 5 is, for example, a solid-state light emitting element such as a surface emitting laser (VCSEL) or an LED.
  • VCSEL surface emitting laser
  • LED light emitting diode
  • a surface emitting laser is used as the light emitting element 5
  • a laser having a narrow emission angle can be emitted.
  • the light emitted from the light emitting element 5 can be reduced from being emitted toward the side surface of the resin body 11, it is possible to reduce the light reflected from the side surface of the resin body 11 from being incident on the light receiving portion 7.
  • the emitted light from the light emitting element 5 can be reduced from leaking to the outside of the optical sensor 3, the emitted light leaked to the outside is reflected from the contact object of the optical sensor 3 or other objects and incident on the light receiving unit 7. Can be reduced. As a result, the offset of the light receiving unit 7 can be reduced, and the SN ratio can be improved.
  • the light emitting element 5 may be a solid-state light emitting element other than the surface emitting laser and the LED.
  • the optical sensor 3 may include a collimating lens that collimates the light from the light emitting element 5.
  • the light emitting element 5 emits light having a wavelength in the near infrared region, for example.
  • the peak wavelength of the light emitted from the light emitting element 5 is included, for example, between 700 nm and 1000 nm, and here is 850 nm.
  • Light whose peak wavelength is included in this range can be received by a light receiving element made of Si-based material.
  • the light receiving unit 7 receives the reflected light emitted from the light emitting element 5 and reflected by the reflecting surface 13a.
  • the light receiving unit 7 includes, for example, a light receiving element composed of a photodiode (PD).
  • the light receiving unit 7 includes at least two light receiving elements, and in FIG. 1, the light receiving unit 7 includes two light receiving elements 7a and 7b.
  • the light receiving unit 7 detects the amount of reflected light by receiving light and generating a light receiving signal P1 indicating the light receiving result.
  • the generated light receiving signal P1 is transmitted to the amplifier circuit unit 17.
  • the light receiving unit 7 is not limited to the photodiode, and may include various light receiving elements such as a position detection element (PSD) or a CMOS image sensor (CIS).
  • the substrate 9 is, for example, a resin substrate.
  • the substrate 9 supports the light emitting element 5 arranged on the same plane and the light receiving elements 7a and 7b of the light receiving unit 7.
  • the light emitting element 5 is arranged at the center of the plate-shaped substrate 9.
  • the two light receiving elements 7a and 7b of the light receiving unit 7 are arranged with the light emitting element 5 interposed therebetween, for example, and the light receiving element 7a, the light emitting element 5 and the light receiving element 7b are arranged in a straight line.
  • the substrate 9 supports a first resin body 11 that seals the light emitting element 5 and the light receiving portion 7.
  • the optical sensor 3 can be miniaturized and reduced in height.
  • the light receiving elements 7a and 7b have the same height from the substrate 9, the light emitting element 5 and the light receiving elements 7a and 7b may have different heights from the substrate 9. In other words, the light emitting element 5 and the light receiving unit 7 may be displaced from each other in the Z direction.
  • the first resin body 11 seals the light emitting element 5 and the light receiving portion 7.
  • the first resin body 11 has transparency so that the light emitted from the light emitting element 5 can be transmitted.
  • the first resin body 11 is formed in, for example, a quadrangular pyramid trapezoidal shape, or a rotating body shape such as a conical trapezoidal shape and a cylindrical shape.
  • the first resin body 11 is formed of an elastic body that deforms in response to an external force such as an external stress, and is formed of, for example, a silicone-based or epoxy-based resin.
  • the lower surface of the first resin body 11 is, for example, 0.5 to 50 mm square.
  • the area of the upper surface of the first resin body 11 is equal to or less than the area of the lower surface.
  • the shearing direction is the shearing direction of the first resin body 11 and also the direction parallel to the plurality of light receiving elements.
  • the outer layer 13 is arranged on the opposite side of the substrate 9 in the first resin body 11, and is harder than the first resin body 11.
  • the upper surface of the first resin body 11 is covered with an outer layer 13 which is harder than the first resin body 11.
  • the chemical adhesion at the interface between the first resin body 11 and the outer layer 13 can be strengthened. Further, the difference in linear expansion coefficient between the first resin body 11 and the outer layer 13 can be reduced. Therefore, peeling at the interface occurs when operating under environmental loads such as high temperature and low temperature, when an excessive load is applied, or when a repeated load is applied from the object Bt for a long period of time. It is possible to suppress and realize a sensor having excellent durability and reliability.
  • the first resin body 11 and the outer layer 13 can both be formed of, for example, a silicone-based material. Further, the first resin body 11 is formed of, for example, methyl silicone in which all the substituents are composed of methyl groups, or phenyl silicone in which the substituents are composed of methyl groups and phenyl groups.
  • the outer layer 13 is formed of, for example, a modified silicone having an organic substituent other than a methyl group and a phenyl group as a substituent. By adopting such a first resin body 11 and an outer layer 13, it is possible to realize an outer layer 13 which is harder than the first resin body 11 with the same material. In addition to the silicone-based resin, epoxy-based resins having different hardness may be used.
  • the outer layer 13 has a reflecting surface 13a that reflects the light emitted from the light emitting element 5 to the light receiving unit 7, and a contact surface 13b that comes into contact with the object Bt.
  • the reflective surface 13a is a surface of the outer layer 13 on the light emitting element 5 side, and is curved so that the central portion projects toward the substrate 9.
  • the upper surface of the first resin body 11 has a shape that fits the reflective surface 13a, and the central portion of the first resin body 11 is curved so as to be recessed toward the substrate 9.
  • the distance between the light emitting element 5 and the reflecting surface 13a on the central axis of the light emitting element 5 is 5 mm or less.
  • a reflective white pigment is added to the outer layer 13.
  • the light reflection function of the reflection surface 13a which is the surface of the outer layer 13 on the light emitting element 5 side, can be improved.
  • the first resin body 11 and the outer layer 13 are made of different materials, a difference in refractive index occurs between the first resin body 11 and the outer layer 13.
  • the interface of the outer layer 13 on the light emitting element 5 side can function as a reflecting surface.
  • the outer layer 13 may be made of an epoxy-based, acrylic-based, or polycarbonate-based resin, or may be made of metal.
  • the contact surface 13b has a planar shape. As a result, the contact area with the object Bt can be maximized, and the frictional force with the object Bt can be increased. Further, the contact surface 13b has a coefficient of static friction of, for example, 0.1 or more.
  • the contact surface 13b of the outer layer 13 has, for example, a size equal to or larger than the contact area with the object Bt which is the contact object. Further, the contact surface 13b is larger than a circle in which at least one of the light receiving elements 7a and 7b, which is centered on the light emitting element 5 and is farther from the light emitting element 5, is located on the circumference of the contact surface 13b. The size is smaller than the bottom surface of the resin body 11 of 1.
  • the straight line L1 is orthogonal to the line segment Ls connecting the light receiving element 7a and the light receiving element 7b, and passes through the end point Pe1 of the line segment Ls on the light receiving element 7a side.
  • the straight line L2 is orthogonal to the line segment Ls connecting the light receiving element 7a and the light receiving element 7b, and passes through the end point Pe2 on the light receiving element 7b side of the line segment Ls.
  • the light emitting element 5 is arranged between the straight line L1 and the straight line L2.
  • the reflecting surface 13a is curved in a direction intersecting the extending direction of the line segment Ls in the vertical cross-sectional view including the line segment Ls.
  • the reflecting surface 13a is curved with respect to the extending direction of the line segment Ls.
  • the reflecting surface 13a is a curved line in a vertical cross-sectional view including the line segment Ls.
  • the light receiving unit 7 can detect the amount of displacement of the reflecting surface 13a that is displaced in the line segment Ls direction.
  • the light emitting element 5 is arranged on a straight line L3 passing between the two light receiving elements 7a and 7b.
  • the straight line L3 is parallel to the straight lines L1 and L2. If the reflecting surface 13a is curved in a direction orthogonal to the straight line L3, the light receiving unit 7 can detect the amount of displacement of the reflecting surface 13a that is displaced in the direction orthogonal to the straight line L3.
  • the drive unit 15 supplies electric power to the light emitting element 5 according to the timing signal from the control unit 19 to drive the light emitting element 5. As a result, the light emitting element 5 can emit light at a predetermined cycle.
  • the amplifier circuit unit 17 amplifies the light receiving signal P1 detected by the light receiving elements 7a and 7b of the light receiving unit 7 and transmits the light receiving signal P1 to the control unit 19.
  • the control unit 19 analyzes the light receiving signal P1 from the light receiving unit 7 to detect the load of the object Bt (see FIG. 3A) on the optical sensor 3. Since the amount of light changes as the load from the object Bt increases, the distance from the substrate 9 to the reflecting surface 13a is detected according to the change in the amount of light profile. Thereby, the contact force according to the pushing distance by the object Bt can be detected. Further, the control unit 19 controls the light emission cycle of the light emitting element 5 and the light detection cycle of the light receiving unit 7.
  • the control unit 19 is composed of a CPU, a microprocessor, or an FPGA.
  • the optical sensor 3 may be provided as a module separate from the drive unit 15, the amplifier circuit unit 17, and the control unit 19.
  • FIGS. 3A and 3B illustrate a state in which the objects Bt and Bt2 each push the force sensor 1 in the negative direction of the Z axis.
  • FIG. 5A is a diagram for explaining the reflected light when the contact surface 13b is not loaded.
  • the light emitting element 5 emits light LH1 inside the first resin body 11 as illustrated in FIG. 5A.
  • the light LH1 emitted from the light emitting element 5 passes through the first resin body 11 and is reflected by the reflecting surface 13a of the outer layer 13 to generate the reflected light LH2.
  • the reflected light LH2 passes through the first resin body 11 again and is incident on the light receiving unit 7.
  • the first resin body 11 of the optical sensor 3 is deformed so as to expand laterally (in the XY plane direction) according to the contact force acting on the objects Bt and Bt2 in contact with each other. ing. Since the amount of reflected light to the light receiving unit 7 changes according to the distance from the reflecting surface 13a, the load value can be measured by detecting the change in the amount of reflected light from the light receiving unit 7.
  • the optical sensor 3 performs tactile sensing that senses a contact force in the Z-axis direction by outputting a light receiving result that changes in response to such deformation as a light receiving signal P1.
  • the area of contact with the contact surface 13b of the outer layer 13 is different between the objects Bt and Bt2.
  • the outer layer 13 is made of a material harder than the first resin body 11, it is less likely to be deformed than the first resin body 11. Therefore, while the first resin body 11 is pushed by the objects Bt and Bt2 and deformed, the amount of deformation of the outer layer 13 is smaller than that of the first resin body 11, and the amount of deformation of the reflecting surface 13a is also small.
  • the reflecting surface 13a approaches the light emitting element 5 and the light receiving unit 7 according to the load without being affected by the contact area with the object.
  • the light receiving unit 7 receives the same amount of light. can do.
  • FIG. 4 is a graph showing the amount of light received by the light receiving unit 7 in the contact process between the objects Bt and Bt2.
  • the graph shows the change in the output value of the optical sensor 3 when the objects Bt and Bt2 come into contact with the outer layer 13 of the optical sensor 3 and then are pushed further.
  • indicates a graph of changes in the amount of light received by the light receiving unit 7 when the object Bt pushes the optical sensor 3.
  • the x mark is a graph of change in the amount of light received by the light receiving unit 7 when the object Bt2 pushes the optical sensor 3.
  • the force sensor 1 can accurately detect the pushing force of the object regardless of the shape of the object. it can.
  • FIG. 5B is a diagram for explaining reflected light when a load is applied in a direction parallel to a plurality of optical elements.
  • the light LH1 emitted from the light emitting element 5 Is reflected by the reflecting surface 13a, and the reflected light LH2 is uniformly received by, for example, the light receiving elements 7a and 7b.
  • the change in the amount of reflected light to the light receiving elements 7a and 7b is reversed with respect to the force in the direction opposite to the force shown in FIG. 5B.
  • the size of the component in the Ls direction can be detected.
  • the reflecting surface 13a has a convex shape toward the light emitting element 5 side and a curved surface shape, the angle of the reflecting surface can be gradually changed when a force in the shearing direction is applied. Therefore, the reflection angle of the light emitted from the light emitting element 5 can be gradually changed, and the influence of the positional deviation of the light emitting element 5 and the light receiving elements 7a and 7b at the time of manufacturing can be reduced.
  • the force sensor 1 of the first embodiment has a light emitting element 5 that emits light, and a light receiving unit having a first light receiving element 7a and a second light receiving element 7b that receive the light emitted from the light emitting element 5.
  • a first which is arranged on the substrate 9 and has a substrate 9 that supports the light emitting element 5 and the light receiving portion 7, seals the light emitting element 5 and the light receiving portion 7, and transmits the light emitted from the light emitting element 5.
  • the light emitting element 5 is arranged between two straight lines L1 and L2 that are orthogonal to the line segment Ls connecting the first light receiving element 7a and the second light receiving element 7b and pass through the respective end points Pe1 and Pe2 of the line segment Ls.
  • the reflecting surface 13a is curved with respect to the extending direction of the line segment Ls.
  • the reflecting surface 13a is curved with respect to the extending direction of the line segment Ls, when the outer layer 13 changes in the extending direction of the line segment Ls, the angle of the reflecting surface 13a gradually changes. Since the angle of the reflecting surface 13a changes, the directivity of the reflected light changes, and the amount of reflected light to the two light receiving elements 7a and 7b changes, respectively. From the rate of change in the amount of reflected light, it is possible to detect a force in the shearing direction such that the reflecting surface 13a moves in the direction in which the line segment Ls extends. In this way, according to the force sensor 1, it is possible to detect the contact force in the biaxial directions of the Z direction and the X direction.
  • the main materials of the first resin body 11 and the outer layer 13 may be the same resin. Since the first resin body 11 and the outer layer 13 are made of the same resin, the adhesive force between the resins is strong, and the resin is hard to peel off due to strong external force, repeated external force, and environmental load, so that the resin is hard to peel off for a long period of time. It is possible to improve the reliability during operation.
  • the contact surface 13b with an object in the outer layer 13 has a planar shape.
  • the contact area with the object Bt can be maximized. Therefore, the static frictional force acting on the load in the shearing direction for gripping the force sensor 1 becomes large, and a stable gripping operation can be realized. Further, the measurement range in the shear direction as a sensor can be improved.
  • FIGS. 7 to 19 are explanatory views for explaining a modification of the first embodiment, respectively. It should be noted that although the vertical cross-sectional views are shown in FIGS. 7 to 19, hatching is omitted in order to make the drawings easier to see.
  • the reflecting surface 13a may have an inclined shape having an apex angle instead of a curved surface shape.
  • the reflecting surface 13a In the vertical cross-sectional view including the line segment LS, the reflecting surface 13a is inclined toward the center, for example, in the direction of the substrate 9. Since the reflecting surface 13a is inclined with respect to the extending direction of the line segment Ls, when the outer layer 13 changes in the extending direction of the line segment Ls, the angle of the reflecting surface 13a gradually changes. Since the angle of the reflecting surface 13a changes, the directivity of the reflected light changes, and the amount of reflected light to the two light receiving elements 7a and 7b changes, respectively. From the rate of change in the amount of reflected light, it is possible to detect a force in the shearing direction such that the reflecting surface 13a moves in the direction in which the line segment Ls extends.
  • the outer layer 13 has a concave shape instead of a downward convex shape. That is, the reflecting surface 13a has a shape away from the light emitting element 5 toward the central portion of the reflecting surface 13a. In other words, the reflective surface 13a has a shape that is separated from the substrate 9 from the outer peripheral portion to the central portion in the vertical cross-sectional view including the line segment LS. As shown by the broken line, the reflecting surface 13a may have an inclination so as to have a concave shape instead of being curved.
  • the outer layer 13 may have a convex shape protruding downward, and the lowermost end portion may have a plane region having a predetermined area. .. With such a shape, it is possible to detect only when a large force is applied in the shearing direction to some extent, and it is possible to reduce erroneous detection due to noise. As shown by the broken line, the side portion of the reflecting surface 13a and the plane region may have an inclination instead of a curved surface.
  • the reflecting surface 13a does not have a downward convex shape, but has a curved surface shape that is uniformly bent from one side portion to the other side portion. As shown by the broken line, the reflecting surface 13a may not be curved, but may have an inclination having a constant inclination angle with respect to the substrate 9 from one side portion to the other side portion.
  • the reflecting surface 13a is not convex downward, but from one side portion of the reflecting surface 13a to the central portion via directly above one light receiving element 7a.
  • a flat surface is formed from one side portion of the reflecting surface 13a through directly above one light receiving element 7a to the central portion, and from the central portion of the reflecting surface 13a directly above the other light receiving element 7b. You may incline toward the substrate 9 side to the other side part.
  • the reflecting surface 13a is not convex downward, but from one side portion of the reflecting surface 13a to the central portion via directly above one light receiving element 7a.
  • a flat surface is formed from one side portion of the reflecting surface 13a through directly above one light receiving element 7a to the central portion, and from the central portion of the reflecting surface 13a directly above the other light receiving element 7b.
  • the contact surface 13b may be inclined to the other side.
  • the resin body below the outer layer 13 may have a reflective surface.
  • another resin body 21 having a different refractive index from the first resin body 11 may be arranged between the first resin body 11 and the outer layer 13.
  • the surface 21a on the substrate 9 side of the resin body 21 can function as a reflective surface. Since the difference in refractive index is used, the resin body 21 may have transparency.
  • the reflective ability on the surface 21a may be improved by adding a reflective pigment to the resin body 21.
  • the resin body 21 may have no difference in refractive index from the first resin body 11, and may be, for example, the same resin material as the first resin body 11.
  • a gap 23 may be provided between the outer layer 13 and the first resin body 11.
  • a recess is formed in the upper part of the first resin body 11, and the uppermost surface of the recess supports the outer layer 13.
  • the upper surface 11a of the first resin body 11 can be used as a reflecting surface by using the difference in the refractive index at the interface between the void 23 and the first resin body 11.
  • the reflecting surface 11b may be formed inside the first resin body 11.
  • the reflective surface 11b is formed, for example, by a resin layer containing a reflective pigment or a metal layer.
  • the contact surface 13b of the outer layer 13 may have an arc shape depending on the shape of the object to be contacted.
  • the contact surface 13b may have a convex shape, and the central portion of the contact surface 13b may project upward.
  • the contact surface 13b of the outer layer 13 may have a small uneven shape. The size of each unevenness is smaller than the contact area of the object Bt. By doing so, for example, when the contact surface of the object Bt is not planar, the frictional force between the object Bt and the contact surface 13b of the outer layer 13 can be improved.
  • the light receiving elements 7a to 7d are arranged on the same plane rotationally symmetrically with the light emitting element 5 as the center.
  • the light emitting element 5 is arranged in a quadrangular region having the light receiving elements 7a to 7d as vertices.
  • the light emitting element 5 is located between the light receiving elements 7a and 7b in the X direction, and the light emitting element 5 is located between the light receiving elements 7c and 7d in the Y direction.
  • the light emitting element 5 and the light receiving elements 7a to 7d are arranged at equal intervals.
  • the amount of displacement of the reflecting surface 13Da in the X direction can be detected from the balance of the amount of light detected by the light receiving elements 7a and 7b, and the amount of displacement of the reflecting surface 13Da in the Y direction is the amount of light detected by the light receiving elements 7c and 7d. It can be detected from the balance of.
  • the first resin body 11D has a shape that is rotationally symmetric with respect to the light emitting element 5.
  • the first resin body 11D has a shape that is rotationally symmetric with respect to the optical axis of the light emitted from the light emitting element 5, and has, for example, a truncated cone shape or a cylindrical shape.
  • the reflecting surface 13Da of the outer layer 13D is inclined or curved rotationally symmetrically with respect to the central axis of the light emitting element 5, and has, for example, a spherical convex shape.
  • the reflecting surface 13Da projects toward the light emitting element 5. Since the reflecting surface 13Da has a rotationally symmetric shape, a component in all horizontal directions is used as a shearing force that causes the contact surface 13b to move in the horizontal direction from the balance of changes in the amount of reflected light to the light receiving elements 7a to 7d.
  • the direction and size (biaxial directions of the X direction and the Y direction) can be detected.
  • the force sensor 1D may include an optical element 3E in which the light receiving unit 7E has three light receiving elements 7a to 7c. If the light receiving unit 7E has three light receiving elements, the force sensor 1D can detect the force in the three axial directions of the X direction, the Y direction, and the Z direction.
  • the light receiving elements 7a to 7c are arranged on the same plane rotationally symmetrically with respect to the light emitting element 5. For example, the light receiving elements 7a and 7b are arranged on the same straight line in the X direction, and the light receiving elements 7c and the light emitting element 5 are arranged on the same straight line in the Y direction.
  • the light emitting element 5 is arranged in the region of the triangle Tr having the light receiving elements 7a to 7c as vertices.
  • the light receiving elements 7a to 7c are arranged around the light emitting element 5 at intervals of, for example, 120 °. Further, the light emitting element 5 and the light receiving elements 7a to 7c are arranged at equal intervals.
  • the amount of displacement of the reflecting surface 13Da in the X direction can be detected from the balance of the amount of light detected by the light receiving elements 7a and 7b, and the amount of displacement of the reflecting surface 13Da in the Y direction is determined by the light receiving elements 7a, 7b and 7c. It can be detected from the balance of the amount of light to be detected.
  • 21 and 22 show, as an example, a gripping device 41 including a sensor array 31 in which a plurality of force sensors 1D are arranged and a sensor array 31.
  • the gripping device 41 that grips the objects Bt4 and Bt5 is connected to, for example, the tip of the robot arm.
  • the gripping device 41 has, for example, a first finger 41a and a second finger 42b that can be displaced in the Z direction by a motor, an actuator, or the like.
  • a plurality of force sensors 1D are arranged in a one-dimensional array, a two-dimensional array, or a two-dimensional matrix.
  • four force sensors 4D are arranged in an array in the X direction on the first finger 41a and the second finger 41b of the gripping device 41.
  • a plurality of optical sensors 3 or 3D may be arranged in an array to share the drive unit 15, the amplifier circuit unit 17, and the control unit 19.
  • the sensor array 31 in which a plurality of force sensors 1D are arranged in an array makes it possible to detect the size and contact position of an object by functioning the entire array surface as one sensor.
  • the gripping device 41 can detect the difference in length in the X direction between the objects Bt4 and Bt5. Further, since the force in the direction parallel to the contact surface (X direction) can be detected, the objects Bt4 and Bt5 can be gripped with an appropriate gripping force (force in the Z direction). Further, when the minus direction in the X direction is the gravity direction, it is possible to determine whether or not the object is sufficiently gripped against the gravity by detecting the frictional force between the objects Bt4 and Bt5 in the X direction.
  • the sensor array 31 may employ any of the force sensors 1, 1A, 1B, and 1C instead of the force sensor 1D.
  • the first resin body 11 directly seals the light emitting element 5 and the light receiving portion 7. Since a hard material is used as the outer layer 13, the force from the object is easily transmitted to the first resin body 11 through the hard outer layer 13, and the strain stress is easily propagated to the light emitting element 5 and the light receiving portion 7. Therefore, as shown in FIGS. 23 and 24, the second resin body 25, which is harder than the first resin body 11, places the light emitting element 5 and the light receiving portion 7 between the first resin body 11 and the substrate 9. The second resin body 25 may be sealed and the first resin body 11 may cover the second resin body 25.
  • the amount of deformation of the second resin body 25 is smaller than the amount of deformation of the first resin body 11, so even if the first resin body 11 is deformed by the object Bt, the load is applied to the light emitting element 5 and the light receiving portion. It is possible to reduce the participation in 7 and realize high reliability.
  • the second resin body 25 is, for example, a cube, a rectangular parallelepiped, or a rotating body, and the side portion of the second resin body 25 may be exposed to the outside.
  • the light receiving elements 7b and 7c are located on both sides of the light emitting element 5 (in the X direction).
  • the position of the light receiving unit 7 is not limited to the focal point, and can be appropriately set to various positions.
  • the light receiving unit 7 may be configured by arranging four or more light receiving elements around the light emitting element 5. Further, instead of the plurality of light receiving elements, a plurality of light emitting elements 5 may be caused to emit light from a plurality of positions in a time division manner as a light emitting unit, and sensing by the optical sensor 3 may be performed.
  • the shape of the first resin body 11 of the optical sensor 3 is not limited to the rotating body, and may be formed by using various curved surfaces such as a spherical surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

基板(9)上に配置され、発光素子(5)と受光部(7)とを封止し、発光素子(5)からの出射光を透過する第1の樹脂体(11)と、発光素子(5)からの光を受光部(7)へ反射させる反射面(13a)と、第1の樹脂体において基板の反対側に配置され、第1の樹脂体よりも硬い、外層(13)と、を備える力センサ(1)である。第1受光素子(7a)と第2受光素子(7b)とを結ぶ線分(Ls)と直交し、かつ、線分(Ls)のそれぞれの端点(Pe1、Pe2)を通る、2つの直線(L1、L2)間に発光素子(5)が配置され、反射面(13a)は、外層(13)の基板側または外層(13)と発光素子(5)との間に配置され、線分(Ls)の延びる方向に対して傾斜または湾曲している。

Description

力センサ、及びそれを含むセンサアレイ並びに把持装置
 本発明は、力センサに関し、特に光を用いた力センサ、及びそれを含むセンサアレイ並びに把持装置に関する。
 近年、ロボットハンド等に搭載され、触覚のセンシングを可能とする各種センサが提案されている。このようなセンサには、例えば、特許文献1に記載されているような圧力及び力を感知するセンサがある。
 特許文献1のセンサは、光学的原理を用いてセンサ表面に作用する圧力及び力を感知する。図25に示すように、センサ103は、光を発光する発光素子105と、発光素子105から出射された光を受光する受光素子107と、センサ103全体を覆うカバー層113とを備える。さらに、センサ103は、カバー層113内に配置され、光を反射する反射層115と、これらを支持するキャリア要素109と、反射層115とキャリア要素109との間の空間を充填する、柔軟な材料で形成された充填要素111と、を備える。
 発光素子105から出射された光が反射層115で反射して返ってくる反射光量を受光素子107にて検出することで、物体Bt6がセンサを押す圧力及び力を感知することができる。
米国特許出願公開第2014/0326882号
 しかしながら、特許文献1において、図25に示すように、物体Bt6による荷重がセンサ103に加わると、カバー層113だけでなくセンサ103内の反射層115も変形する。反射層115の変形は、物体の形状に応じて異なり、同じ荷重であっても反射プロファイルが異なることになる。これにより、同じ荷重を受けているにもかかわらず、物体Bt6の形状、すなわち、荷重の加わる接触面積によって反射光量の検出値が変化するおそれがある。
 また、図26に示すように、特許文献1には、硬い材質の外層133を備え、外層133において物体Bt7との接触面を平面としたセンサ123も示されている。この構造では、物体Bt7が充填要素111のせん断方向に変位する場合、反射光のプロファイルが変化しない。したがって、センサ123は、反射層115が複数の受光素子107に対して平行に変位するような荷重の変化を検出することができない。
 本発明の目的は、物体の形状により光量の検出値が変化するのを低減し、受光部に対して平行な方向の変位も検出可能な力センサ、センサアレイ、及び、把持装置を提供することにある。
 本発明に係る力センサは、光を出射する発光素子と、
 前記発光素子からの出射光を受光する、第1受光素子及び第2受光素子を有する受光部と、
 前記発光素子と前記受光部とを支持する基板と、
 前記基板上に配置され、前記発光素子と前記受光部とを封止し、前記発光素子からの出射光を透過する第1の樹脂体と、
 前記発光素子からの光を前記受光部へ反射させる反射面と、
 前記第1の樹脂体において前記基板の反対側に配置され、前記第1の樹脂体よりも硬い、外層と、を備え、
 前記第1受光素子と前記第2受光素子とを結ぶ線分とそれぞれ直交し、かつ、前記線分のそれぞれの端点を通る2つの直線間に、前記発光素子が配置され、
 前記反射面は、前記外層の前記基板側または前記外層と前記発光素子との間に配置され、前記線分の延びる方向に対して傾斜または湾曲している。
 本発明に係るセンサアレイは、上述の力センサを複数個備える。
 本発明に係る把持装置は、上述のセンサアレイを備える。
 本発明に係る力センサによると、物体の形状により光量の検出値が変化するのを低減し、受光部に対して平行な方向の変位も検出可能な力センサ、センサアレイ、及び、把持装置を提供することができる。
実施の形態1の力センサの概要を説明するための図 実施の形態1の光学センサの上面図 図2AのIIB矢視縦断面図 物体の荷重による光学センサの変形を説明するための図 物体の荷重による光学センサの変形を説明するための図 物体の接触過程で受光部が受光する光量を示すグラフ 接触面に荷重されていない場合の反射光を説明するための図 複数の光学素子と平行な方向に荷重された場合の反射光を説明するための図 図5Aの状態から図5Bの状態へ荷重の変化に伴う反射光量の変化を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態1の光学センサの変形例を示す図 実施の形態2の力センサの概要を説明するための図 実施の形態2の光学センサの上面図 実施の形態2の光学センサの変形例を示す図 把持部に備えられたセンサアレイを示す図 把持部に備えられたセンサアレイを示す図 変形例の光学センサの上面図 変形例の光学センサの上面図 従来例の力センサの概要を説明するための図 従来例の力センサの概要を説明するための図
 以下、添付の図面を参照して本発明に係る力センサの実施の形態を説明する。
 各実施の形態は例示であり、異なる実施の形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。変形例については実施の形態1と共通の事項についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施の形態ごとには逐次言及しない。
(実施の形態1)
 実施の形態1では、本発明に係る力センサの一例として、光学センサを用いた簡単な光学的機構による物体との接触検出について説明する。
1.構成
 実施の形態1に係る力センサの構成について、図1、2A、2Bを参照して説明する。図1は、実施の形態1に係る力センサ1の概要を説明するための図である。図2Aは、光学センサ3の上面図である。図2Bは、図2AのIIB矢視縦断面図である。
 図1に示すように、実施の形態1に係る力センサ1は、光学センサ3と、駆動部15と、アンプ回路部17と、制御部19とを備える。力センサ1は、例えばロボットハンドにおいて、把持する対象の各種物体をセンシングの対象物とする用途に適用可能である。
 光学センサ3は、発光素子5と、受光部7と、基板9と第1の樹脂体11と、外層13とを備える。第1の樹脂体11は、発光素子5及び受光部7を覆うように配置されたカバー部材の一例である。以下では、光学センサ3において、第1の樹脂体11が基板9から突出する方向を「Z方向」とし、Z方向に直交して且つ互いに直交する2方向を「X方向」及び「Y方向」とする。なお、Z軸のプラス方向を上方、Z軸のマイナス方向を下方とする。
 実施の形態1の光学センサ3は、第1の樹脂体11内部で発光素子5を発光させて、第1の樹脂体11を透過して外層13の反射面13aに反射した反射光を受光部7により検出して、受光部7から受光量に応じた受光信号P1を出力する。
 発光素子5は、例えば、面発光レーザ(VCSEL)やLEDのような固体発光素子である。発光素子5として面発光レーザを用いると、狭出射角のレーザを発光することができる。これにより、発光素子5からの出射光が受光部7に直接入射するのを低減することができる。また、発光素子5からの出射光が樹脂体11の側面方向に出射するのを低減できるので、樹脂体11の側面での反射光が受光部7に入射するのを低減することができる。さらに、発光素子5からの出射光が、光学センサ3の外部へ漏れるのを低減できるので、外部へ漏れた出射光が光学センサ3の接触対象もしくはその他の物体から反射して受光部7に入射するのを低減することができる。この結果、受光部7のオフセットを低減することができ、SN比を向上することができる。なお、発光素子5として、LEDを用いる場合は、LEDにリフレクタを備えることでLEDから照射される光に指向性をもたせることができる。発光素子5は、面発光レーザ及びLED以外の固体発光素子であってもよい。また、光学センサ3は、発光素子5からの光をコリメートするコリメートレンズを備えてもよい。
 発光素子5は、例えば、近赤外線領域の波長を有する光を出射する。実施の形態1において、発光素子5から出射される光のピーク波長は、例えば、700nmから1000nmの間に含まれ、ここでは850nmである。ピーク波長がこの範囲に含まれる光は、Si系材料の受光素子で受光可能である。
 受光部7は、発光素子5から出射した光が反射面13aで反射した反射光を受光する。受光部7は、例えば、フォトダイオード(PD)で構成された受光素子を含む。受光部7は、少なくとも2個の受光素子を備え、図1では、2個の受光素子7a、7bを備える。受光部7は、光を受光して受光結果を示す受光信号P1を生成することで、反射光の光量を検出する。生成した受光信号P1は、アンプ回路部17へ送信される。受光部7は、フォトダイオードに限らず、例えば、位置検出素子(PSD)あるいはCMOSイメージセンサ(CIS)など種々の受光素子を含んでもよい。
 基板9は、例えば、樹脂基板である。基板9は、同一平面上に配置された発光素子5と受光部7の受光素子7a、7bとを支持する。例えば、板状の基板9の中心には、発光素子5が配置される。受光部7の2つの受光素子7a、7bは、例えば、発光素子5を中心に発光素子5を挟んで配置され、受光素子7a、発光素子5及び受光素子7bが直線上に配置される。さらに、基板9は、発光素子5及び受光部7を封止する第1の樹脂体11を支持する。発光素子5と受光素子7a、7bとが同一平面上に配置されているので、光学センサ3の小型化及び低背化を実現できる。なお、受光素子7a、及び、7bは、それぞれ基板9から同じ高さであるが、発光素子5と受光素子7a、7bとは、基板9からの高さが異なってもよい。言い換えると、発光素子5と受光部7とは、Z方向に対して位置がずれていてもよい。
 第1の樹脂体11は、発光素子5及び受光部7を封止する。第1の樹脂体11は、発光素子5から発光される光が透過可能な透明性を有する。第1の樹脂体11は、例えば、四角錐台形状、または、円錐台形及び円柱形等の回転体形状に形成される。第1の樹脂体11は、外部応力等の外力に応じて変形する弾性体で形成され、例えば、シリコーン系またはエポキシ系樹脂で形成される。第1の樹脂体11の下面は、例えば、0.5~50mm角である。第1の樹脂体11の上面の面積は下面の面積以下である。なお、光学センサ3において、せん断方向とは、第1の樹脂体11のせん断方向であり、また、複数の受光素子と平行な方向でもある。
 外層13は、第1の樹脂体11において基板9の反対側に配置され、第1の樹脂体11よりも硬い。第1の樹脂体11の上面は、第1の樹脂体11よりも硬い外層13で覆われている。これにより、物体Bt(図3参照)が光学センサ3を押しても、物体Btの形状によって反射面13aの変形状態と変位状態とが変わるのを低減することができる。この結果、物体Btの形状が異なる場合でも、同じような反射光の状態変化が生じ、同じような信号変化を受光素子で検知できるので、接触力の検出精度を向上させることができる。また、力センサ1の耐久性、信頼性を向上することができる。
 第1の樹脂体11と外層13とのそれぞれの主材料が同一系樹脂であれば、第1の樹脂体11と外層13との界面における化学的な密着性を強くすることができる。また、第1の樹脂体11と外層13との線膨張係数の差を小さくすることができる。したがって、高温及び低温下などの環境負荷を受ける中で動作する場合や、過度な荷重が印加された場合や、長期間にわたって物体Btから繰り返し荷重を受ける場合での、界面での剥離の発生を抑制し、耐久性及び信頼性に優れたセンサを実現することができる。
 第1の樹脂体11及び外層13は、例えば、どちらもシリコーン系材料で形成することができる。さらに、第1の樹脂体11が、例えば、置換基が全てメチル基で構成されたメチルシリコーン、又は、置換基がメチル基及びフェニル基で構成されたフェニルシリコーンで形成される。外層13は、例えば、置換基にメチル基、フェニル基以外の有機置換基を備える変性シリコーンで形成される。このような第1の樹脂体11及び外層13を採用することで、同一系統の材料で、第1の樹脂体11よりも硬い外層13を実現することができる。なお、シリコーン系樹脂の他に、硬さの異なるエポキシ系樹脂を用いてもよい。
 外層13は、発光素子5から出射された光を受光部7へ反射させる反射面13aと、物体Btと接触する接触面13bとを有する。反射面13aは外層13の発光素子5側の面であり、中央部が基板9側へ突出するように湾曲している。なお、第1の樹脂体11の上面は反射面13aとフィットする形状を有しており、第1の樹脂体11の中央部が基板9の方へ凹むように湾曲している。発光素子5の中心軸における発光素子5と反射面13aとの距離は、5mm以下である。
 外層13には、例えば、反射性の白色顔料が添加されている。これにより、外層13の発光素子5側の面である反射面13aの光の反射機能を向上させることができる。また、第1の樹脂体11と外層13とが別材料であれば、第1の樹脂体11と外層13とで屈折率差が生じる。これにより、外層13の発光素子5側の界面を反射面として機能させることができる。外層13は、シリコーン系材料の他にも、エポキシ系、アクリル系、及びポリカーボネイト系の樹脂で形成されてもよいし、金属製であってもよい。
 接触面13bは、平面形状を有する。これにより、物体Btとの接触面積を最大限に大きくすることができ、物体Btとの摩擦力を強くすることができる。また、接触面13bは、静止摩擦係数が、例えば、0.1以上の値を有する。外層13の接触面13bは、例えば、接触対象物である物体Btとの接触面積以上の大きさを有する。また、接触面13bは、上面視で、例えば、発光素子5を中心とし、発光素子5からの距離が遠い方の受光素子7a、7bの少なくとも1つを円周に位置する円より大きく、第1の樹脂体11の底面以下の大きさである。
 図2Aに示すように、直線L1は、受光素子7aと受光素子7bとを結ぶ線分Lsと直交し、線分Lsの受光素子7a側の端点Pe1を通る。また、直線L2は、受光素子7aと受光素子7bとを結ぶ線分Lsと直交し、線分Lsの受光素子7b側の端点Pe2を通る。発光素子5は、直線L1と、直線L2との間に配置されている。また、反射面13aは、図2Bに示すように、線分Lsを含む縦断面視において線分Lsの延びる方向と交差する方向に湾曲している。したがって、反射面13aは、線分Lsの延びる方向に対して湾曲している。言い換えると、反射面13aは、線分Lsを含む縦断面視において、曲線である。これにより、線分Ls方向に変位する反射面13aの変位量を受光部7が検出することができる。また、発光素子5は、2つの受光素子7a、7b間を通る直線L3上に配置されている。直線L3は、直線L1及びL2と平行である。反射面13aは、直線L3と直交する方向に対して湾曲していれば、直線L3と直交する方向に変位する反射面13aの変位量を受光部7が検出することができる。
 駆動部15は、制御部19からのタイミング信号にしたがって、発光素子5に電力を供給して発光素子5を駆動する。これにより、発光素子5は、予め定められた周期で発光することができる。
 アンプ回路部17は、受光部7の各受光素子7a、7bが検出した受光信号P1を増幅して制御部19へ送信する。
 制御部19は、受光部7からの受光信号P1を解析して、光学センサ3への物体Bt(図3A参照)の荷重を検出する。物体Btからの荷重が増すと、光量が変化するので、光量プロファイルの変化に応じて基板9から反射面13aまでの距離が検出される。これにより、物体Btによる押し込み距離に応じた接触力を検出することができる。また、制御部19は、発光素子5の発光周期及び受光部7の光検出周期を制御する。制御部19は、CPU、マイクロプロセッサ、または、FPGAで構成される。なお、光学センサ3が、駆動部15、アンプ回路部17及び制御部19とは別体のモジュールとして提供されてもよい。
2.動作
 次に、図3A、図3B及び図5Aを参照して、力センサ1の動作について以下に説明する。図3A及び3Bは、物体Bt、Bt2がそれぞれ、力センサ1をZ軸のマイナス方向に押し込んだ状態を例示している。図5Aは、接触面13bに荷重されていない場合の反射光を説明するための図である。
 力センサ1において発光素子5は、図5Aに例示するように、第1の樹脂体11の内部で光LH1を発光する。発光素子5から出射された光LH1は、第1の樹脂体11を透過して、外層13の反射面13aで反射することで反射光LH2が生じる。反射光LH2は再び第1の樹脂体11を透過して、受光部7に入射する。
 図3A及び図3Bの例では、光学センサ3の第1の樹脂体11は、物体Bt、Bt2がそれぞれ接触して作用する接触力に応じて側方(XY平面方向)に拡がるように変形している。受光部7への反射光量は、反射面13aとの距離に応じて変化するので受光部7の反射光量の変化を検出することで、荷重の値を測定することができる。光学センサ3は、このような変形に対応して変化する受光結果を受光信号P1として出力することにより、Z軸方向の接触力を感知する触覚センシングを行う。
 物体BtとBt2とでは、外層13の接触面13bと接触する面積がそれぞれ異なる。しかしながら、外層13が、第1の樹脂体11よりも硬い材質であるので、第1の樹脂体11よりも変形しにくい。したがって、第1の樹脂体11が物体Bt及びBt2に押されて変形するのに対して、外層13の変形量は第1の樹脂体11よりも小さく、反射面13aの変形量も小さい。この結果、物体との接触面積に影響されることなく、反射面13aは、荷重に応じて発光素子5と受光部7へ接近する。これにより、物体の荷重面積の違いにより反射面13aでの反射光のプロファイルが変わるのを低減することができ、Z方向の荷重の大きさが同じであれば、受光部7は同じ光量を受光することができる。
 図4は、物体Bt及びBt2の接触過程での受光部7が受光する光量を示すグラフである。グラフは、物体Bt及びBt2が、光学センサ3の外層13に接触してから、さらに押し込んだ場合の、光学センサ3の出力値の変化を示す。図4において、○印は、物体Btが光学センサ3を押し込む場合の受光部7が受光する光量の変化グラフである。×印は、物体Bt2が光学センサ3を押し込む場合の受光部7が受光する光量の変化グラフである。図4に示すように、物体Bt及びBt2のどちらの場合でも、検出光量の変化に違いがないので、力センサ1は、物体の形状に関係なく、正確に物体の押し込み力を検出することができる。
 次に、図5A、5Bを参照して、物体がせん断方向に変位する場合の力の検出について説明する。図5Bは、複数の光学素子と平行な方向に荷重された場合の反射光を説明するための図である。
 図5Aに示すように、外層13の接触面13bが荷重を受けていない場合、及び、外層13の接触面13bがZ方向の荷重を受けている場合は、発光素子5から出射された光LH1は反射面13aで反射し、その反射光LH2は、例えば、受光素子7a及び7bにより均等に受光される。
 これに対して、図5Bに示すように、外層13の接触面13bが、線分LSの延びる方向(X軸のマイナス方向)に移動するような成分を有する力を受けると、反射面13aが線分LSの延びる方向に対して湾曲しているので、反射光LH2の指向性が変化する。この結果、例えば図6に示すように、各受光素子7a、7bが検出する反射光量が変化する。図6において、○印は第2受光素子7bが受光する光量の変化を示し、×印は第1受光素子7aが受光する光量の変化を示す。
 図5Bで示す力と逆向きの力に対しては、受光素子7a、7bへの反射光量の変化は逆転する。このように、2つの受光素子7a、7bへの反射光量の変化のバランスから、接触面13bが水平方向に移動するようなせん断方向の力のうち、2つの受光素子7a、7bを結ぶ線分Ls方向の成分の大きさを検出することができる。また、反射面13aが、発光素子5側に凸形状で、かつ、曲面形状であるので、せん断方向の力を受けた際に反射面の角度を徐々に変化することができる。したがって、発光素子5からの出射光の反射角を緩やかに変化させることができ、製造時における発光素子5や受光素子7a、7bの位置ズレの影響を低減することができる。
 以上のように、実施の形態1の力センサ1は、光を出射する発光素子5と、発光素子5からの出射光を受光する、第1受光素子7a及び第2受光素子7bを有する受光部7と、発光素子5と受光部7とを支持する基板9と、基板9上に配置され、発光素子5と受光部7とを封止し、発光素子5からの出射光を透過する第1の樹脂体11と、発光素子5からの光を受光部7へ反射させる反射面13aと、第1の樹脂体11において基板9の反対側に配置され、第1の樹脂体11よりも硬い、外層13と、を備える。発光素子5は、第1受光素子7aと第2受光素子7bとを結ぶ線分Lsと直交し、かつ、線分Lsのそれぞれの端点Pe1、Pe2を通る、2つの直線L1、L2間に配置され、反射面13aは、線分Lsの延びる方向に対して湾曲している。この構成により、物体と接触する外層13が、第1の樹脂体よりも硬いので、物体の荷重が加わる面積が異なった場合でも反射面の形状が変化しにくい。したがって、荷重の加わる面積に影響されることなく、荷重の強さを正確に測定することができる。また、反射面13aが、線分Lsの延びる方向に対して湾曲しているので、外層13が線分Lsの延びる方向に変異すると、反射面13aの角度が徐々に変化する。反射面13aの角度が変化するので、反射光の指向性が変化し、2個ある受光素子7a、7bへの反射光量がそれぞれ変化する。それらの反射光量の変化の割合から反射面13aが線分Lsの延びる方向に移動するようなせん断方向の力を検出することができる。このように、力センサ1によれば、Z方向とX方向との2軸方向の接触力を検出することができる。
 また、第1の樹脂体11と外層13とは、それぞれの主材料が同一系樹脂でもよい。第1の樹脂体11と外層13とが、同一系樹脂にて構成されているため、樹脂同士の密着力が強く、強い外力や繰り返しの外力、環境負荷によって、樹脂が剥がれにくいので、長期間動作時の信頼性を向上することができる。
 また、外層13における物体との接触面13bは、平面形状である。これにより、物体Btとの接触面積を最大限に大きくすることができる。したがって、力センサ1を把持用のせん断方向の荷重に対して作用する静止摩擦力が大きくなり、安定な把持動作を実現できる。さらに、センサとしてのせん断方向の測定レンジを向上することができる。
 次に、実施の形態1の変形例について順に説明する。図7から図19は、それぞれ、実施の形態1の変形例を説明する説明図である。なお、図7から図19において、それぞれ縦断面図を示しているが、図を見やすくするために、ハッチングを省略して示している。
 図7に示す実施の形態1の変形例1における力センサ1において、反射面13aが曲面形状ではなく、頂角をもつ傾斜状の形状を有してもよい。反射面13aは、線分LSを含む縦断面視において、例えば、中央部に向けて基板9の方向に傾いて傾斜している。反射面13aが、線分Lsの延びる方向に対して傾斜しているので、外層13が線分Lsの延びる方向に変異すると、反射面13aの角度が徐々に変化する。反射面13aの角度が変化するので、反射光の指向性が変化し、2個ある受光素子7a、7bへの反射光量がそれぞれ変化する。それらの反射光量の変化の割合から反射面13aが線分Lsの延びる方向に移動するようなせん断方向の力を検出することができる。
 図8に示す実施の形態1の変形例2における力センサ1において、外層13が、下方に凸形状ではなく、凹形状を有している。すなわち、反射面13aは、反射面13aの中央部に向けて発光素子5から離れる形状を有する。言い換えると、反射面13aは、線分LSを含む縦断面視において、外周部から中央部にかけて基板9から離れる形状を有する。なお、破線で示すように、反射面13aが湾曲ではなく、凹形状となるような傾斜を有してもよい。
 図9に示す実施の形態1の変形例3における力センサ1において、外層13が下方に突出した凸形状を有し、最下端部が予め定められた面積を有する平面領域を有してもよい。このような形状とすることで、せん断方向に対してある程度大きな力が荷重された場合だけ検出することができ、ノイズによる誤検出を低減することができる。なお、破線で示すように、反射面13aの側部と平面領域との間が曲面ではなく、傾斜を有してもよい。
 図10に示す実施の形態1の変形例4における力センサ1において、反射面13aが下方に凸形状ではなく、一方の側部から他方の側部へ一様に曲げられた曲面形状を有する。なお、破線で示すように、反射面13aが湾曲ではなく、一方の側部から他方の側部へ基板9に対して一定の傾斜角度を有する傾斜を有してもよい。
 図11に示す実施の形態1の変形例5における力センサ1において、反射面13aが下方に凸形状ではなく、反射面13aの一方の側部から一方の受光素子7aの直上を経て中央部までが平面であり、反射面13aの中央部から他方の受光素子7bの直上を経て他方の側部まで受光素子7bに対して凹型に湾曲している。なお、破線で示すように、反射面13aの一方の側部から一方の受光素子7aの直上を経て中央部までが平面であり、反射面13aの中央部から他方の受光素子7bの直上を経て他方の側部まで基板9側に傾斜してもよい。
 図12に示す実施の形態1の変形例6における力センサ1において、反射面13aが下方に凸形状ではなく、反射面13aの一方の側部から一方の受光素子7aの直上を経て中央部までが平面であり、反射面13aの中央部から他方の受光素子7bの直上を経て他方の側部まで受光素子7bに対して凸型に湾曲している。なお、破線で示すように、反射面13aの一方の側部から一方の受光素子7aの直上を経て中央部までが平面であり、反射面13aの中央部から他方の受光素子7bの直上を経て他方の側部まで接触面13b側に傾斜してもよい。
 図13に示す実施の形態1の変形例7における力センサ1Aにおいて、外層13の基板9側に反射面13aが配置される代わりに、外層13と発光素子5との間に配置されてもよく、例えば、外層13の下方の樹脂体が反射面を有してもよい。例えば、第1の樹脂体11と外層13との間に、第1の樹脂体11と屈折率の異なる別の樹脂体21を配置してもよい。第1の樹脂体11と樹脂体21との界面の屈折率差を用いて、樹脂体21の基板9側の面21aを反射面として機能させることができる。屈折率差を用いるので、樹脂体21は、透明性を有していてもよい。また、樹脂体21に反射性の顔料を添加することで、面21aでの反射能力を向上してもよい。この場合、樹脂体21は、第1の樹脂体11と屈折率の差がなくてもよく、例えば、第1の樹脂体11と同じ樹脂材料であってもよい。
 図14に示す実施の形態1の変形例8における力センサ1Bにおいて、外層13が反射面13aを有する代わりに、外層13と第1の樹脂体11の間に空隙23を有してもよい。この場合、第1の樹脂体11の上部に凹部が形成されており、凹部の最上面が外層13を支持する。これにより、空隙23と第1の樹脂体11との界面の屈折率の差を用いて、第1の樹脂体11の上面11aを反射面として利用することができる。
 図15に示す実施の形態1の変形例9における力センサ1Cにおいて、外層13が反射面13aを有する代わりに、第1の樹脂体11の内部に反射面11bを形成してもよい。反射面11bは、例えば、反射性顔料を含む樹脂の層または金属製の層により形成される。
 図16に示す実施の形態1の変形例10における力センサ1において、外層13の接触面13bが平面形状である代わりに、接触対象の物体の形状に応じて、円弧状でもよい。例えば、接触面13bが凸形状を有し、接触面13bの中央部が上方にむけて突出してもよい。また、図17に示すように、外層13の接触面13bが小さな凹凸形状を有してもよい。それぞれの凹凸の大きさは、物体Btの接触面積よりも小さい。このようにすることで、例えば、物体Btの接触面が平面形状でない場合に、物体Btと外層13の接触面13bとの摩擦力を向上させることができる。
(実施の形態2)
 実施の形態1における力センサ1は、受光部7が2つの受光素子7a、7bを備えるので、X方向及びZ方向の2軸方向の力を検出することができる。これに対して、実施の形態2の力センサ1Dは、光学センサ3Dの受光部7Dが4つの受光素子7a~7dを備えるので、X方向、Y方向及びZ方向の3軸方向の力を検出することができる。
 受光素子7a~7dは、それぞれ発光素子5を中心に回転対称に同一平面上に配置されている。発光素子5は、受光素子7a~7dをそれぞれ頂点とする四角形の領域内に配置されている。例えば、X方向において受光素子7aと7bとの間に発光素子5が位置し、Y方向において、受光素子7cと7dとの間に発光素子5が位置するようにそれぞれ配置されている。また、発光素子5と各受光素子7a~7dとは等間隔に配置されている。これにより、反射面13DaのX方向の変位量は受光素子7aと7bが検出する光量のバランスから検知することができ、反射面13DaのY方向の変位量は受光素子7cと7dが検出する光量のバランスから検知することができる。
 第1の樹脂体11Dは、発光素子5に対して回転対称の形状を有する。第1の樹脂体11Dは、発光素子5からの出射光の光軸に対して回転対称の形状を有し、例えば、円錐台形状または円柱形状である。発光素子5及び受光部7を封止する樹脂体の形状を回転対称体とすることで、水平方向における全ての方向からの荷重に対しても、反射面13Daが等しく変位する。これにより、水平方向における全方位の荷重を等しく検出することができる。
 外層13Dの反射面13Daは、発光素子5の中心軸に対して回転対称に傾斜または湾曲しており、例えば、球面の凸型形状を有する。反射面13Daは、発光素子5の方に突出している。反射面13Daが回転対称な形状を有することで、受光素子7a~7dへの反射光量の変化のバランスから、接触面13bが水平方向に移動するようなせん断方向の力として、水平全方向の成分(X方向及びY方向の2軸方向)の向きと大きさを検出することができる。
 また、図20に示すように、力センサ1Dは、受光部7Eが3つの受光素子7a~7cを有する光学素子3Eを備えてもよい。受光部7Eが3つの受光素子を有していれば、力センサ1Dは、X方向、Y方向及びZ方向の3軸方向の力を検出することができる。受光素子7a~7cは、それぞれ発光素子5を中心に回転対称に同一平面上に配置されている。例えば、X方向において受光素子7aと7bが同一直線上に配置され、Y方向において、受光素子7cと発光素子5と同一直線上に配置されている。発光素子5は、受光素子7a~7cをそれぞれ頂点とする三角形Trの領域内に配置されている。受光素子7a~7cは、発光素子5を中心に、例えば、120°間隔で配置されている。また、発光素子5と各受光素子7a~7cとは等間隔に配置されている。これにより、反射面13DaのX方向の変位量は受光素子7aと7bが検出する光量のバランスから検知することができ、反射面13DaのY方向の変位量は受光素子7a、7bと7cとが検出する光量のバランスから検知することができる。
 次に、図21及び図22を参照して、力センサ1~1Dを複数個配列したセンサアレイ及びセンサアレイを備える把持装置を説明する。図21及び図22には、一例として、力センサ1Dを複数個配列したセンサアレイ31及びセンサアレイ31を備える把持装置41を示す。物体Bt4及びBt5を把持する把持装置41は、例えば、ロボットアームの先端に接続されている。把持装置41は、例えば、モータ及びアクチュエータ等によりZ方向に変位可能な第1指41aと第2指42bとを有する。
 センサアレイ31において、複数個の力センサ1Dが1次元アレイ状、2次元アレイ状または2次元マトリックス状に配置されている。センサアレイ31は、例えば、4つの力センサ4Dが把持装置41の第1指41a及び第2指41bにX方向にアレイ状に配置されている。なお、複数個の光学センサ3又は3Dをアレイ状に配置して、駆動部15、アンプ回路部17、及び制御部19を共通化してもよい。
 複数個の力センサ1Dをアレイ状に配置したセンサアレイ31により、アレイ面全体を1つのセンサとして機能することで、物体のサイズや接触位置の検出を可能にする。例えば、把持装置41は、物体Bt4とBt5とにおけるX方向の長さの違いを検出することができる。また、接触面と平行な方向(X方向)の力を検出することができるので適切な把持力(Z方向の力)で物体Bt4、Bt5を把持することができる。また、X方向のマイナス方向が重力方向の場合、物体Bt4とBt5のX方向の摩擦力を検出することにより、重力に対抗して物体を十分に把持しているかどうかを判定することもできる。なお、センサアレイ31は、力センサ1Dの代わりに、力センサ1、1A、1B、1Cのいずれかを採用してもよい。
(他の実施の形態)
 本発明は、上記実施の形態のものに限らず、次のように変形実施することができる。
 (1)上記各実施の形態において、第1の樹脂体11は、発光素子5及び受光部7を直接封止していた。外層13として硬質な材料を採用するので、物体からの力が硬い外層13を介して第1の樹脂体11に伝わりやすく、発光素子5及び受光部7に歪み応力が伝播されやすい。そこで、図23及び図24に示すように、第1の樹脂体11よりも硬い第2の樹脂体25が、第1の樹脂体11と基板9との間で発光素子5及び受光部7を封止し、第2の樹脂体25を第1の樹脂体11が覆う構成でもよい。これにより、第2の樹脂体25の変形量は第1の樹脂体11の変形量よりも小さいので、第1の樹脂体11が物体Btにより変形してもその荷重が発光素子5及び受光部7に加わるのを低減することができ、高信頼性を実現することができる。第2の樹脂体25は、例えば、立方体、直方体また回転体であり、第2の樹脂体25の側部が外部に露出していてもよい。
 (2)上記各実施の形態では、発光部として1つの発光素子5を用いる例を説明したが、発光素子の個数は特に1つに限定されず、複数の個数を採用してもよい。また、発光素子5の位置は中央に限定されず、種々の位置に適宜、設定可能である。
 (3)実施の形態1の例において、受光素子7b及び7cは、(X方向における)発光素子5の両側に位置する。受光部7の位置は焦点に限らず、種々の位置に適宜、設定可能である。受光部7は、発光素子5の周囲に4個以上の受光素子を並べて構成されてもよい。また、複数の受光素子の代わりに、発光部として複数の発光素子5を複数の位置から時分割で発光させて、光学センサ3によるセンシングが行われてもよい。
 (4)上記各実施の形態において、光学センサ3の第1の樹脂体11の形状は、回転体に限定されず、球面など各種曲面を用いて構成されてもよい。
   1、1A、1B、1C、1D 力センサ
   3、3A、3B、3C、3D 光学センサ
   5  発光素子
   7  受光部
   7a 第1受光素子
   7b 第2受光素子
   7c 第3受光素子
   7d 第4受光素子
   9  基板
  11  第1の樹脂体
  11a 上面
  11b 反射面
  13、13D 外層
  13a、13Da 反射面
  13b 接触面
  15  駆動部
  17  アンプ回路部
  19  制御部
  21  樹脂体
  21a 面
  23  空隙
  25  第2の樹脂体
  31  センサアレイ
  41  把持装置
  41a 第1指
  41b 第2指
  45  アーム
 103  センサ
 105  発光素子
 107  受光素子
 109  キャリア要素
 111  充填要素
 115  反射層
  Bt、Bt2、Bt3、Bt4、Bt5 物体
  L1、L2、L3 直線
  Ls 線分
  P1  受光信号
  Sq  四角形
  Tr  三角形

Claims (14)

  1.  光を出射する発光素子と、
     前記発光素子からの出射光を受光する、第1受光素子及び第2受光素子を有する受光部と、
     前記発光素子と前記受光部とを支持する基板と、
     前記基板上に配置され、前記発光素子と前記受光部とを封止し、前記発光素子からの出射光を透過する第1の樹脂体と、
     前記発光素子からの光を前記受光部へ反射させる反射面と、
     前記第1の樹脂体において前記基板の反対側に配置され、前記第1の樹脂体よりも硬い、外層と、を備え、
     前記第1受光素子と前記第2受光素子とを結ぶ線分とそれぞれ直交し、かつ、前記線分のそれぞれの端点を通る2つの直線間に、前記発光素子が配置され、
     前記反射面は、前記外層の前記基板側または前記外層と前記発光素子との間に配置され、前記線分の延びる方向に対して傾斜または湾曲している、
     力センサ。
  2.  前記反射面は、前記発光素子に対して回転対称に傾斜または湾曲している、
     請求項1に記載の力センサ。
  3.  前記受光部は、前記発光素子からの出射光を受光する第3受光素子を備え、
     前記発光素子は、前記第1受光素子、前記第2受光素子及び前記第3受光素子をそれぞれ頂点とする三角形の領域内に配置されている、
     請求項1または2に記載の力センサ。
  4.  前記受光部は、前記発光素子からの出射光を受光する、第3受光素子及び第4受光素子を備え、
     前記発光素子は、前記第1受光素子、前記第2受光素子、前記第3受光素子及び前記第4受光素子をそれぞれ頂点とする四角形の領域内に配置されている、
     請求項1または2に記載の力センサ。
  5.  前記第1受光素子、前記第2受光素子、前記第3受光素子及び前記第4受光素子は、前記発光素子を中心として回転対称に配置される、
     請求項4に記載の力センサ。
  6.  前記第1の樹脂体と前記外層とは、それぞれの主材料が同一系樹脂である、
     請求項1から5のいずれか1つに記載の力センサ。
  7.  前記反射面は、前記外層の発光素子側の面である、
     請求項1から6のいずれか1つに記載の力センサ。
  8.  前記外層における物体との接触面が平面形状である、
     請求項1から7のいずれか1つに記載の力センサ。
  9.  前記接触面は、前記物体との接触面積以上の大きさを有する、
     請求項8に記載の力センサ。
  10.   前記第1の樹脂体は、円柱形状または円錐台形状である、
     請求項1から9のいずれか1つに記載の力センサ。
  11.  前記第1の樹脂体よりも硬く、前記第1の樹脂体と前記基板との間で前記発光素子と前記受光部とを封止する、第2の樹脂体を備える、
     請求項1から10のいずれか1つに記載の力センサ。
  12.  前記反射面からの反射光を受光した前記受光部の信号に基づいて、前記反射面と前記受光部との距離を検出することにより、前記外層に接触する物体による接触力を検出する、
     請求項1から11のいずれか1つに記載の力センサ。
  13.  請求項1から12のいずれか1つに記載の前記力センサを複数個備える、
     センサアレイ。
  14.  請求項13に記載の前記センサアレイを備える、
     把持装置。
PCT/JP2020/027073 2019-08-19 2020-07-10 力センサ、及びそれを含むセンサアレイ並びに把持装置 WO2021033455A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021540665A JP7211522B2 (ja) 2019-08-19 2020-07-10 力センサ、及びそれを含むセンサアレイ並びに把持装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-149813 2019-08-19
JP2019149813 2019-08-19

Publications (1)

Publication Number Publication Date
WO2021033455A1 true WO2021033455A1 (ja) 2021-02-25

Family

ID=74660909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027073 WO2021033455A1 (ja) 2019-08-19 2020-07-10 力センサ、及びそれを含むセンサアレイ並びに把持装置

Country Status (2)

Country Link
JP (1) JP7211522B2 (ja)
WO (1) WO2021033455A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249875A3 (en) * 2022-03-25 2023-11-29 Samsung Electronics Co., Ltd. Apparatus and method for estimating optical-based force
WO2023234075A1 (ja) * 2022-06-03 2023-12-07 ソニーグループ株式会社 力覚センサ、センサモジュールおよびロボットハンド
WO2024053381A1 (ja) * 2022-09-07 2024-03-14 株式会社村田製作所 光学センサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024195278A1 (ja) * 2023-03-20 2024-09-26 株式会社村田製作所 複合センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539474A (ja) * 2007-09-10 2010-12-16 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー 力分布測定用光学センサ
WO2014045685A1 (ja) * 2012-09-21 2014-03-27 株式会社安川電機 力センサおよび力センサを有するロボット
US20140326882A1 (en) * 2011-11-17 2014-11-06 Optoforce Müszaki Fejlesztö És Innovációs Kft Electrically Insulated Screen and Method of Erecting an Electrically Insulated Screen
JP2017058186A (ja) * 2015-09-15 2017-03-23 株式会社村田製作所 光触覚センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539474A (ja) * 2007-09-10 2010-12-16 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー 力分布測定用光学センサ
US20140326882A1 (en) * 2011-11-17 2014-11-06 Optoforce Müszaki Fejlesztö És Innovációs Kft Electrically Insulated Screen and Method of Erecting an Electrically Insulated Screen
WO2014045685A1 (ja) * 2012-09-21 2014-03-27 株式会社安川電機 力センサおよび力センサを有するロボット
JP2017058186A (ja) * 2015-09-15 2017-03-23 株式会社村田製作所 光触覚センサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249875A3 (en) * 2022-03-25 2023-11-29 Samsung Electronics Co., Ltd. Apparatus and method for estimating optical-based force
WO2023234075A1 (ja) * 2022-06-03 2023-12-07 ソニーグループ株式会社 力覚センサ、センサモジュールおよびロボットハンド
WO2024053381A1 (ja) * 2022-09-07 2024-03-14 株式会社村田製作所 光学センサ

Also Published As

Publication number Publication date
JPWO2021033455A1 (ja) 2021-02-25
JP7211522B2 (ja) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2021033455A1 (ja) 力センサ、及びそれを含むセンサアレイ並びに把持装置
EP2195628B1 (en) Optical sensor for measuring a force distribution
US9366587B2 (en) Optical force sensor and apparatus using optical force sensor
CN112105900B (zh) 触觉以及接近传感器和传感器阵列
CN104040313A (zh) 传感器装置
US9052775B1 (en) Optical based tactile shear and normal load sensor
WO2019078314A1 (ja) 力覚センサ及び該センサを備える装置
WO2021085098A1 (ja) 光学式センサおよび光学式センサモジュール
WO2021085186A1 (ja) センサ装置
WO2021005952A1 (ja) 光学センサ、及び、それを備えた近接センサ
JP7231033B2 (ja) 光学センサ、及び、それを備えた近接センサ
CN101206540B (zh) 光学导航系统、用于其中的光学装置、光学导航方法
JPWO2020166185A1 (ja) 触覚及び近接センサ
WO2022257558A1 (zh) 飞行时间模组、终端及深度检测方法
JP6983713B2 (ja) 光学式センサ、およびその光学式センサを備えた装置
WO2023053898A1 (ja) ユーザインタフェース装置
TW201507172A (zh) 光學感測器
RU2594992C2 (ru) Оптический министик
WO2022230410A1 (ja) センサ装置
US20240003764A1 (en) Tactile sensor and apparatus including tactile sensor
JP3573400B2 (ja) 光学式入力装置
JPH0629684B2 (ja) 触覚センサ
JP2003269956A (ja) 姿勢センサ
JP2021015071A (ja) 反射型ロータリーエンコーダ及び光学センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853947

Country of ref document: EP

Kind code of ref document: A1