WO2021033429A1 - Photosensitive transfer member, method for producing resin pattern, method for producing circuit wiring, and method for producing touch panel - Google Patents

Photosensitive transfer member, method for producing resin pattern, method for producing circuit wiring, and method for producing touch panel Download PDF

Info

Publication number
WO2021033429A1
WO2021033429A1 PCT/JP2020/025462 JP2020025462W WO2021033429A1 WO 2021033429 A1 WO2021033429 A1 WO 2021033429A1 JP 2020025462 W JP2020025462 W JP 2020025462W WO 2021033429 A1 WO2021033429 A1 WO 2021033429A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
photosensitive
layer
transfer member
photosensitive resin
Prior art date
Application number
PCT/JP2020/025462
Other languages
French (fr)
Japanese (ja)
Inventor
一真 両角
隆志 有冨
藤本 進二
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202080044332.3A priority Critical patent/CN113994262A/en
Priority to JP2021540650A priority patent/JP7312258B2/en
Publication of WO2021033429A1 publication Critical patent/WO2021033429A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to a photosensitive transfer member, a resin pattern manufacturing method, a circuit wiring manufacturing method, and a touch panel manufacturing method.
  • the electrode pattern corresponding to the sensor of the visual recognition part, the peripheral wiring part, and the wiring of the extraction wiring part are wired.
  • a conductive layer pattern such as is provided inside the touch panel.
  • the number of steps for obtaining the required pattern shape is small, so that a layer of a photosensitive resin composition provided on an arbitrary substrate using a photosensitive transfer member is used.
  • a method of developing after exposure through a mask having a desired pattern is widely used.
  • Patent Document 1 discloses a pattern-forming material having a cushion layer and a photosensitive resin layer in this order on a support.
  • Patent Document 2 discloses a photosensitive resin laminate having an intermediate layer having a layer thickness of 0.1 ⁇ m or more and 10 ⁇ m or less and a photosensitive resin layer in this order on the support film.
  • the present inventors have a temporary support, an intermediate layer including at least a thermoplastic resin layer, and a photosensitive resin layer in this order, and the thickness of the photosensitive resin layer is high.
  • the present invention has been completed by finding that a photosensitive transfer member in which the total thickness of the temporary support and the intermediate layer is adjusted to a predetermined range is excellent in resolution and high-speed lamination. That is, the present inventors have found that the above-mentioned problems can be achieved by the following configurations.
  • a photosensitive transfer member having a temporary support, an intermediate layer, and a photosensitive resin layer in this order.
  • the intermediate layer has a thermoplastic resin layer and A photosensitive transfer member having a thickness of the photosensitive resin layer of less than 5 ⁇ m and a total thickness of the temporary support and the intermediate layer of 35 ⁇ m or less.
  • the intermediate layer described above further has a water-soluble resin layer.
  • the photosensitive transfer member according to [1], wherein the water-soluble resin layer is located between the thermoplastic resin layer and the photosensitive resin layer.
  • the photosensitive transfer member according to [1] or [2], wherein the thickness of the thermoplastic resin layer is 10 ⁇ m or less.
  • the temporary support has a particle-containing layer on a surface opposite to the intermediate layer.
  • the surface of the photosensitive transfer member according to any one of [1] to [11] opposite to the intermediate layer of the photosensitive resin layer is brought into contact with a substrate having a conductive layer and bonded.
  • a photosensitive transfer member having excellent resolution and high-speed laminating property, a method for manufacturing a resin pattern, a method for manufacturing a circuit wiring, and a method for manufacturing a touch panel.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the photosensitive transfer member of the present invention.
  • FIG. 2 is a schematic view showing the pattern A.
  • FIG. 3 is a schematic view showing the pattern B.
  • the present invention will be described in detail.
  • the description of the constituent elements described below may be based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • a substance corresponding to each component may be used alone or in combination of two or more.
  • the content of the component refers to the total content of the substances used in combination unless otherwise specified.
  • exposure includes not only exposure using light but also drawing using particle beams such as an electron beam and an ion beam, unless otherwise specified.
  • Examples of the light used for exposure generally include the emission line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and active rays (active energy rays) such as electron beams. ..
  • the photosensitive transfer member of the present invention has a temporary support, an intermediate layer, and a photosensitive resin layer in this order.
  • the intermediate layer represents all the layers between the temporary support and the photosensitive resin layer
  • the photosensitive transfer member of the present invention has at least a thermoplastic resin layer.
  • the thickness of the photosensitive resin layer is less than 5 ⁇ m, and the total thickness of the temporary support and the intermediate layer is 35 ⁇ m or less.
  • the photosensitive transfer member of the present invention having such a structure has good resolution and high-speed laminating property. This is not clear in detail, but the present inventors speculate as follows. In a thin film having a photosensitive resin layer of less than 5 ⁇ m, when the photosensitive transfer member is laminated on the substrate at high speed, a pattern disorder may occur by biting air bubbles generated between the photosensitive transfer member and the substrate. However, by using a photosensitive transfer member having a temporary support, a thermoplastic resin layer, and a photosensitive resin layer in this order, it becomes possible to reduce foaming when the photosensitive transfer member is laminated on a substrate, and the photosensitive transfer member becomes photosensitive. Since the resin layer can follow the substrate, it is considered that the laminateability at high speed can be improved.
  • the high-speed laminating property is preferably a laminating condition at a linear speed of 2.0 m / min or more, and more preferably a laminating condition at a linear speed of 4.0 m / min or more. ..
  • the thickness of the photosensitive resin layer is set to less than 5 ⁇ m, development proceeds rapidly even if the pattern is fine, and the pattern can be formed with excellent resolution without collapsing or connecting. It is considered possible.
  • the total thickness of the temporary support and the intermediate layer to 35 ⁇ m or less, it is possible to suppress the diffraction of light generated at the distance from the mask to the photosensitive resin layer during pattern exposure, and the pattern can be formed. It is considered that high-resolution pattern formation becomes possible without blurring.
  • the photosensitive transfer member of the present invention has a temporary support.
  • the temporary support is a removable support.
  • the temporary support used in the present disclosure preferably has light transmittance from the viewpoint of being able to expose the photosensitive resin layer through the temporary support when the photosensitive resin layer is exposed to a pattern. Having light transmittance means that the transmittance of the main wavelength of light used for pattern exposure is 50% or more, and the transmittance of the main wavelength of light used for pattern exposure is from the viewpoint of improving exposure sensitivity. Therefore, 60% or more is preferable, and 70% or more is more preferable.
  • Examples of the method for measuring the transmittance include a method of measuring using MCPD Series manufactured by Otsuka Electronics Co., Ltd.
  • Examples of the temporary support include a glass substrate, a resin film, paper, and the like, and a resin film is particularly preferable from the viewpoint of strength, flexibility, and the like.
  • Examples of the resin film include polyethylene terephthalate film, cellulose triacetate film, polystyrene film, polycarbonate film, polyimide film and the like. Of these, a biaxially stretched polyethylene terephthalate film is particularly preferable.
  • the thickness of the temporary support is preferably 25 ⁇ m or less, and more preferably 20 ⁇ m or less, for the reason that the resolution of the photosensitive transfer member is further improved.
  • As the lower limit from the viewpoint of transportability and supportability, 5 ⁇ m or more is preferable, and 10 ⁇ m or more is more preferable.
  • the thickness of the temporary support can be measured by the following method. In the cross-sectional observation image in the thickness direction of the temporary support, the arithmetic mean value of the thickness of the temporary support measured at 10 randomly selected points is obtained, and the obtained value is defined as the thickness of the temporary support.
  • a cross-sectional observation image of the temporary support in the thickness direction can be obtained by using a scanning electron microscope (SEM).
  • the haze of the temporary support is preferably 0.5 or less, more preferably 0.4 or less, and more preferably 0.3 or less, for the reason that the resolution of the photosensitive transfer member is further improved. Is even more preferable.
  • the lower limit is not particularly limited, but may be more than 0.0.
  • the haze of the temporary support can be measured as a total light haze using a haze meter (device name: NDH2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.).
  • the temporary support preferably has a particle-containing layer on the surface opposite to the intermediate layer.
  • the average particle size of the particles contained in the particle-containing layer is preferably 30 to 600 nm, more preferably 30 to 200 nm, and even more preferably 40 to 100 nm.
  • the average particle size of the particles contained in the particle-containing layer is 30 nm or more, the laminating property of the photosensitive transfer member at high speed is further improved, and the average particle size of the particles contained in the particle-containing layer is 600 nm or less. , The resolution of the photosensitive transfer member is more excellent.
  • the average particle size of the particles contained in the particle-containing layer can be measured by the following method.
  • the layer containing particles is specified as the particle-containing layer.
  • TEM transmission electron microscope
  • arbitrary five points on the cross section of the particle-containing layer were photographed under the conditions of a magnification of 20000 times and an acceleration voltage of 100 kV to obtain cross-sectional photographs.
  • the diameters of all the particles in the obtained cross-sectional photographs were measured, and the average value (arithmetic mean particle size) was obtained and used as the average particle size of the particles. Obviously large aggregates (foreign matter, dust, etc.) are not counted.
  • Examples of the particles contained in the particle-containing layer include inorganic particles and organic particles.
  • Examples of the inorganic particles include silicon oxide (silica) particles, titanium oxide (titania) particles, zirconium oxide (zirconia) particles, magnesium oxide (magnesia) particles, aluminum oxide (alumina) particles, and the like. Among them, silica particles. Is particularly preferable.
  • Examples of the organic particles include acrylic resin particles, polyester particles, polyurethane particles, polycarbonate particles, polyolefin particles, polystyrene particles and the like.
  • the particle-containing layer may contain the particles alone or may contain two or more of the particles.
  • the content of the particles in the particle-containing layer is preferably 0.01% by mass to 20% by mass, preferably from the viewpoint of easy control of surface roughness and suppression of wrinkles during transportation. It is more preferably 1% by mass to 10% by mass, and particularly preferably 0.5% by mass to 5% by mass.
  • the particles in the particle-containing layer may be present inside the particle-containing layer, or a part of the particles may be exposed on the surface of the particle-containing layer. For example, when the particle-containing layer is provided on the surface of the temporary support opposite to the intermediate layer, the particles may be exposed on the surface of the temporary support on the opposite side.
  • the material other than the particles contained in the particle-containing layer is not particularly limited, and for example, the same material as the material of the temporary support described above can be included.
  • the particle-containing layer preferably contains a resin, and particularly preferably an acrylic resin.
  • the particle-containing layer may contain one type of resin alone or two or more types of resin.
  • the thickness of the particle-containing layer is preferably 5 to 300 nm, more preferably 10 to 100 nm, and particularly preferably 30 to 70 nm, because the resolution of the photosensitive transfer member and the laminating property at high speed are further improved.
  • the particle-containing layer may be one layer or two layers. When the number of particle-containing layers is two or more, the preferable thickness of the particle-containing layer is a preferable thickness for each of the particle-containing layers. The thickness of the particle-containing layer can be measured by the same method as the thickness of the temporary support described above.
  • Examples of commercially available products of the temporary support having the particle-containing layer include Lumirer (registered trademark; the same applies hereinafter) 12QS62, Lumirer 16KS40, 16FB40 (all manufactured by Toray Industries, Inc.) and the like.
  • the film used as the temporary support has no deformation such as wrinkles or scratches.
  • the number of fine particles, foreign substances, and defects contained in the temporary support is small.
  • the number of the above fine particles and foreign matter and defect diameter 1 ⁇ m is preferably 50/10 mm 2 or less, more preferably 10/10 mm 2 or less, further preferably 3/10 mm 2 or less , 0 pieces / 10 mm 2 is particularly preferable.
  • Preferred embodiments of the provisional support include, for example, paragraphs 0017 to 0018 of JP2014-85643, paragraphs 0019 to 0026 of JP2016-27363, and paragraphs 0041 to 0057 of International Publication No. 2012/081680. , International Publication No. 2018/179370, paragraphs 0029 to 0040, the contents of these publications are incorporated herein by reference.
  • the photosensitive transfer member of the present invention has an intermediate layer including at least a thermoplastic resin layer between the temporary support and the photosensitive resin layer.
  • the thickness of the intermediate layer may be set so that the total thickness of the temporary support and the intermediate layer is 35 ⁇ m or less, but the developing speed of the photosensitive transfer member is excellent and the resolution is excellent. For the reason of further improvement, 20 ⁇ m or less is preferable, 15 ⁇ m or less is more preferable, and 10 ⁇ m or less is further preferable. As the lower limit, 2 ⁇ m or more is preferable, and 4 ⁇ m or more is more preferable, because the photosensitive transfer member has better laminating property at high speed.
  • the total thickness of the temporary support and the intermediate layer may be 35 ⁇ m or less, but 34 ⁇ m or less is preferable, and 32 ⁇ m or less is more preferable.
  • the lower limit 10 ⁇ m or more is preferable because the laminating property of the photosensitive transfer member at high speed is further improved.
  • the total thickness of the temporary support and the intermediate layer (hereinafter, "thickness B") with respect to the thickness of the photosensitive resin layer (hereinafter, abbreviated as "thickness A") described later.
  • the ratio (thickness B / thickness A) (abbreviated) is preferably 6.0 to 12.0, preferably 7.0 to 11 for the reason that the resolution of the photosensitive transfer member is further improved. It is more preferably .5, and even more preferably 8.0 to 10.5.
  • the thickness of the intermediate layer and the photosensitive resin layer can be measured by the same method as the thickness of the temporary support described above.
  • the intermediate layer has at least a thermoplastic resin layer.
  • the thermoplastic resin layer preferably does not have photosensitivity, and preferably does not have a photopolymerization initiator.
  • the thermoplastic resin layer preferably has a thermoplastic resin.
  • the thermoplastic resin is not particularly limited as long as it is a resin that is plasticized by heat, and for example, acrylic resin, polystyrene resin, styrene-acrylic copolymer, polyurethane resin, polyvinyl alcohol, polyvinylformal, polyamide resin, polyester resin, polyamide. Examples thereof include resins, epoxy resins, polyacetal resins, polyhydroxystyrene resins, polyimide resins, polybenzoxazole resins, polysiloxane resins, polyethyleneimines, polyallylamines, and polyalkylene glycols.
  • the thermoplastic resin is preferably an acrylic resin.
  • the acrylic resin is selected from the group consisting of a structural unit formed of (meth) acrylic acid, a structural unit formed of (meth) acrylic acid ester, and a structural unit formed of (meth) acrylic acid amide. It refers to a resin having at least one structural unit, and the content of the structural unit is preferably 50% by mass or more with respect to the total mass of the resin.
  • the thermoplastic resin preferably contains a polymer having an acid group for the reason that the developing speed is good.
  • the acid group include a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group and the like, and among them, the carboxy group is preferably used.
  • the polymer having an acid group as a thermoplastic resin preferably has an acid value of 60 mgKOH / g or more, and is a carboxy group-containing acrylic resin having an acid value of 60 mgKOH / g or more, for the reason that the development speed is good. More preferred.
  • the carboxy group-containing acrylic resin having an acid value of 60 mgKOH / g or more is not particularly limited, and can be appropriately selected from known resins and used.
  • carboxy group-containing acrylic resins having an acid value of 60 mgKOH / g or more for example, among the polymers described in paragraphs 0025 of JP2011-95716A, carboxy group-containing acrylic resins having an acid value of 60 mgKOH / g or more, and the polymers described in paragraphs 0033 to 0052 of JP2010-237589A.
  • carboxy group-containing acrylic resins having an acid value of 60 mgKOH / g or more include carboxy group-containing acrylic resins having an acid value of 60 mgKOH / g or more. Preferred.
  • the copolymerization ratio of the monomer having a carboxy group in the carboxy group-containing acrylic resin is preferably 5% by mass to 50% by mass, and 10% by mass to 40% by mass, based on the total mass of the acrylic resin. Is more preferable, and 12% by mass to 30% by mass is further preferable.
  • the acid value of the thermoplastic resin is preferably 60 mgKOH / g to 200 mgKOH / g, and more preferably 60 mgKOH / g to 180 mgKOH / g.
  • the acid value is the mass [mg] of potassium hydroxide required to neutralize 1 g of the sample, and the unit is described as mgKOH / g in the present specification.
  • the acid value can be calculated, for example, from the average content of acid groups in the compound.
  • the weight average molecular weight of the thermoplastic resin is preferably 2,000 or more, more preferably 10,000 to 100,000, and even more preferably 20,000 to 70,000.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • Tetrahydrofuran Tetrahydrofuran
  • the thermoplastic resin layer may contain one type of thermoplastic resin alone, or may contain two or more types of thermoplastic resin.
  • the content of the thermoplastic resin is preferably 10% by mass or more and 99% by mass or less with respect to the total mass of the thermoplastic resin layer from the viewpoint of further improving the resolution and the laminating property at high speed. It is more preferably mass% or more and 90 mass% or less, and further preferably 30 mass% or more and 80 mass% or less.
  • the glass transition temperature (Tg) of the thermoplastic resin contained in the thermoplastic resin layer is preferably 100 ° C. or lower because the photosensitive transfer member is more excellent in laminating property at high speed.
  • the method for measuring the glass transition temperature is as follows. Specifically, it can be carried out according to the measurement method described in JIS K 7121 (1987). As the glass transition temperature in the present disclosure, the extrapolated glass transition start temperature (hereinafter, may be referred to as Tig) is used. The method for measuring the glass transition temperature will be described more specifically. When determining the glass transition temperature, after holding the device at a temperature about 50 ° C. lower than the expected Tg of the polymer until the apparatus stabilizes, the heating rate is 20 ° C./min, which is about 30 ° C.
  • the extra glass transition start temperature (Tig), that is, the glass transition temperature Tg in the present specification is a straight line extending the baseline on the low temperature side of the DTA curve or DSC curve to the high temperature side, and the stepwise change portion of the glass transition. It is calculated as the temperature at the intersection with the tangent line drawn at the point where the slope of the curve is maximized.
  • a differential scanning calorimeter (DSC6200, manufactured by Seiko Instruments, Inc.) was used as the analyzer.
  • the lower limit of the glass transition temperature of the thermoplastic resin is preferably 40 ° C. or higher because it suppresses a phenomenon in which the resin composition exudes from the end face of the roll when it is wound and stored in a roll shape, that is, so-called edge fusion.
  • the thermoplastic resin layer preferably has a plasticizer because the photosensitive transfer member is more excellent in laminating property at high speed.
  • the plasticizer preferably has a smaller molecular weight or weight average molecular weight than the thermoplastic resin.
  • the molecular weight of the plasticizer is preferably 200 to 2,000.
  • the plasticizer is not particularly limited as long as it is a compound that is compatible with the thermoplastic resin and exhibits plasticity, but from the viewpoint of imparting plasticity, the plasticizer preferably has an alkyleneoxy group in the molecule, and is a polyalkylene glycol. More preferably, it is a compound.
  • the alkyleneoxy group contained in the plasticizer is more preferably a polyethyleneoxy structure or a polypropyleneoxy structure.
  • the plasticizer preferably contains a (meth) acrylate compound
  • the thermoplastic resin is an acrylic resin from the viewpoint of compatibility, resolution and adhesion to a substrate, and the plasticizer is described above.
  • the agent contains a (meth) acrylate compound.
  • (meth) acrylate represents acrylate or methacrylate
  • (meth) acrylic represents acrylic or methacrylic.
  • a (meth) acrylate compound contained in the polymerizable compound in the photosensitive resin layer described later is preferably mentioned, and has a polyfunctional (meth) acrylate compound and an acid group ( A meta) acrylate compound, a urethane (meth) acrylate compound and the like can also be preferably used.
  • both the thermoplastic resin layer and the photosensitive resin layer contain the same (meth) acrylate compound.
  • the thermoplastic resin layer may contain one type of plasticizer alone, or may contain two or more types of plasticizer.
  • the content of the plasticizer is 1% by mass to 70% by mass with respect to the total mass of the thermoplastic resin layer because the photosensitive transfer member is more excellent in laminating property at high speed. It is preferably by mass%, more preferably 5% by mass to 50% by mass.
  • the thermoplastic resin layer includes an acid-reactive dye or a base-reactive dye (hereinafter abbreviated as “dye B”), a photoacid generator or a photobase generator, a surfactant, and the like. It may have other components such as a sensitizer, a polymerization inhibitor, and a rust preventive.
  • the thermoplastic resin layer preferably has an acid-reactive dye or a base-reactive dye (dye B).
  • Dye B represents a dye whose maximum absorption wavelength changes depending on an acid or a base.
  • the dye B preferably has a maximum absorption wavelength of 450 nm or more in the wavelength range of 400 nm to 780 nm at the time of color development.
  • the maximum absorption wavelength of the dye changes depending on the acid or base means that the dye in the color-developing state is decolorized from the acid or base, and the dye in the decolorized state is colored by the acid or base.
  • the dye B is preferably a dye whose maximum absorption wavelength is changed by an acid, and the dye B is changed by an acid. It is particularly preferable that the dye is used in combination with a photoacid generator described later.
  • an acid is generated by adding a photoacid generator or a photobase generator to the thermoplastic resin layer and exposing the dye B with an acid or base generated from the photoacid generator or the like.
  • a photoacid generator or a photobase generator examples thereof include a mode in which a reactive dye or a base-reactive dye (for example, a leuco dye) develops a color.
  • the method for measuring the maximum absorption wavelength is to measure the transmission spectrum in the range of 400 nm to 780 nm using a spectrophotometer (device name: UV3100, manufactured by Shimadzu Corporation) at 25 ° C. in an atmospheric atmosphere.
  • the wavelength at which the light intensity is minimized shall be measured.
  • Examples of the dye B include leuco compounds, diarylmethane dyes, oxazine dyes, xanthene dyes, iminonaphthoquinone dyes, azomethine dyes, anthraquinone dyes, and the like, and have visibility of exposed and unexposed areas. From the viewpoint, leuco compounds are preferable. Preferred embodiments of the dye B include those similar to the specific latent dyes described in paragraphs 0023 to 0039 of International Publication No. 2019/022089.
  • Dye B include Brilliant Green, Ethyl Violet, Methyl Green, Crystal Violet, Basic Fuxin, Methyl Violet 2B, Kinaldine Red, Rose Bengal, Metanyl Yellow, Timor Sulfophthalene, Xylenol Blue, Methyl Orange, and Para.
  • the dye B may be used alone or in combination of two or more.
  • the content of the dye B is 0.01% by mass or more with respect to the total mass of the thermoplastic resin layer from the viewpoint of visibility of the exposed portion and the non-exposed portion. It is preferable, and it is more preferable that it is 0.02% by mass to 6% by mass.
  • thermoplastic resin layer preferably contains a photoacid generator or a photobase generator in combination with the dye B for the reason of improving the visibility of the exposed portion and the non-exposed portion.
  • a more preferred embodiment is one comprising an acid-reactive dye and a photoacid generator.
  • the photoacid generator or photobase generator used in the present disclosure is a compound capable of generating an acid or a base by irradiating with active rays such as ultraviolet rays, far ultraviolet rays, X-rays, and electron beams.
  • active rays such as ultraviolet rays, far ultraviolet rays, X-rays, and electron beams.
  • a compound that is sensitive to active light having a wavelength of 300 nm or more, preferably a wavelength of 300 nm to 450 nm and generates an acid or a base is preferable, but the chemical structure thereof is Not limited.
  • a photoacid generator or a photobase generator that is not directly sensitive to active light having a wavelength of 300 nm or more is also a compound that is sensitive to active light having a wavelength of 300 nm or more and generates an acid or a base when used in combination with a sensitizer. If there is, it can be preferably used in combination with a sensitizer.
  • Examples of the photoacid generator include an ionic photoacid generator and a nonionic photoacid generator.
  • Examples of the ionic photoacid generator include onium salt compounds such as diaryliodonium salts and triarylsulfonium salts, and quaternary ammonium salts. Of these, onium salt compounds are preferable, and triarylsulfonium salts and diaryliodonium salts are particularly preferable.
  • the ionic photoacid generator described in paragraphs 0114 to 0133 of JP-A-2014-85643 can also be preferably used.
  • nonionic photoacid generator examples include trichloromethyl-s-triazines, diazomethane compounds, imide sulfonate compounds, oxime sulfonate compounds and the like.
  • Specific examples of the trichloromethyl-s-triazines, the diazomethane compound and the imide sulfonate compound include the compounds described in paragraphs 0083 to 0088 of JP2011-221494.
  • the photoacid generator is preferably an oxime sulfonate compound.
  • oxime sulfonate compound those described in paragraphs 0084 to 0088 of International Publication No. 2018/179640 can be preferably used.
  • thermoplastic resin layer one type of photoacid generator or photobase generator may be used alone, or two or more types may be used.
  • the thermoplastic resin layer preferably contains a surfactant from the viewpoint of thickness uniformity.
  • the surfactant include anionic, cationic, nonionic (nonionic) and amphoteric surfactants.
  • Preferred surfactants are nonionic surfactants.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkylphenyl ethers, polyoxyethylene glycol higher fatty acid diesters, silicone-based surfactants, and fluorine-based surfactants. Therefore, a fluorine-based surfactant can be preferably used.
  • the surfactant examples include the interfaces described in paragraphs 0120 to 0125 of International Publication No. 2018/179640, paragraphs 0017 of Japanese Patent No. 4502784, and paragraphs 0060 to 0071 of Japanese Patent Application Laid-Open No. 2009-237362.
  • Activators can be used.
  • a commercially available product of the surfactant for example, Megafuck F-552 or F-554 (all manufactured by DIC Corporation) can be used.
  • the content of the surfactant is preferably 0.001% by mass to 10% by mass, preferably 0.01% by mass, based on the total mass of the thermoplastic resin layer. More preferably, it is% to 3% by mass.
  • the thermoplastic resin layer one type of surfactant may be used alone, or two or more types may be used.
  • thermoplastic resin layer may contain other additives other than those described above.
  • the other additives are not particularly limited, and known additives can be used. Further, for a preferred embodiment of the thermoplastic resin layer, paragraphs 0189 to 0193 of JP-A-2014-85643 can also be referred to.
  • the thickness of the thermoplastic resin layer is preferably 18 ⁇ m or less, more preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less, for the reason that the developing speed of the photosensitive transfer member is excellent and the resolution is further improved. It is more preferably present, and particularly preferably 6 ⁇ m or less. If the thermoplastic resin layer is too thick, it takes a long time to develop, so that a residue may remain between the formed patterns and the resolution may be deteriorated.
  • the lower limit is preferably 0.5 ⁇ m or more because the photosensitive transfer member is more excellent in laminating property at high speed.
  • the thickness of the thermoplastic resin layer can be measured by the same method as the thickness of the temporary support described above.
  • the viscosity of the thermoplastic resin layer is preferably lower than the viscosity of the photosensitive resin layer described above.
  • the viscosity of the thermoplastic resin layer is lower than the viscosity of the photosensitive resin layer at 70 ° C.
  • the thermoplastic resin layer is deformed without being deformed and can follow the substrate, so that the resolution is high. And better laminating properties at high speeds.
  • values measured by the following method using a rheometer are adopted for the following method using a rheometer are adopted. First, the thermoplastic resin layer or the photosensitive resin layer is taken out as a sample from the photosensitive transfer member.
  • the sample is placed on the Peltier plate, and the Gap of the 20 mmf parallel plate and the Peltier plate is set to 0.25 to 0.40 mm.
  • the sample is melted or softened at 90 ° C ⁇ 5 ° C, it is cooled to 50 ° C at a temperature lowering rate of 5 ° C / min, and in Gap constant mode, the temperature is 50 to 100 ° C, the temperature rise rate is 5 ° C / min, the frequency is 1 Hz, and distortion.
  • the temperature of the sample is raised under the condition of 0.5%, and the viscosity is measured.
  • the ratio (viscosity A / viscosity C) of the viscosity of the thermoplastic resin layer (hereinafter abbreviated as “viscosity C”) to the viscosity of the photosensitive resin layer (hereinafter abbreviated as “viscosity A”) is preferably 1 or more. 1 to 10 is more preferable, and 1 to 5 is even more preferable.
  • the intermediate layer has a water-soluble resin layer, and the thermoplastic resin layer and the photosensitive resin layer are photosensitive for the reason of suppressing the mixing of the thermoplastic resin layer and the photosensitive resin layer. It is more preferable to have a water-soluble resin layer between the resin layer and the resin layer.
  • the water-soluble resin layer preferably contains a water-soluble resin.
  • water-soluble means that the solubility in 100 g of water having a pH of 7.0 at 22 ° C. is 0.1 g or more.
  • the water-soluble resin include polyvinyl alcohol-based resins, polyvinylpyrrolidone-based resins, cellulose-based resins, acrylamide-based resins, polyethylene oxide-based resins, gelatin, vinyl ether-based resins, polyamide resins, and resins such as copolymers thereof. Can be configured using.
  • the water-soluble resin is a thermoplastic resin contained in the thermoplastic resin layer. It is preferably a different resin.
  • the water-soluble resin preferably contains polyvinyl alcohol, and particularly preferably contains polyvinyl alcohol and polyvinylpyrrolidone, from the viewpoint of oxygen blocking property and suppressing component mixing with adjacent layers. ..
  • the water-soluble resin layer may contain the above-mentioned resin alone or in combination of two or more.
  • the content of the water-soluble resin in the water-soluble resin layer is not particularly limited, but is 60 mass with respect to the total mass of the water-soluble resin layer from the viewpoint of oxygen blocking property and suppressing component mixing with the adjacent layer. It is preferably% to 100% by mass, more preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass. Additives such as a surfactant may be added to the water-soluble resin layer, if necessary.
  • the thickness of the water-soluble resin layer may be set so that the total thickness of the temporary support and the intermediate layer is 35 ⁇ m or less, but the laminating property at high speed is further improved. It is preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less. The lower limit is not particularly limited, but is preferably 0.1 ⁇ m or more. The thickness of the water-soluble resin layer can be measured by the same method as the thickness of the temporary support described above.
  • the photosensitive transfer member of the present invention has a photosensitive resin layer.
  • the thickness of the photosensitive resin layer may be less than 5 ⁇ m, but 4 ⁇ m or less is preferable, and 3 ⁇ m or less is more preferable, because the developing speed of the photosensitive transfer member is excellent and the resolution is further improved.
  • the lower limit is not particularly limited, but may be 0.1 ⁇ m or more.
  • the photosensitive resin layer is not particularly limited, and a known photosensitive resin layer can be used, but a negative photosensitive resin layer is preferable because the laminating property at high speed is more excellent.
  • the negative type photosensitive resin layer refers to a photosensitive resin layer whose solubility in a developing solution is reduced by exposure.
  • the photosensitive resin layer preferably has a polymerizable compound, a polymer having an acid group, and a photopolymerization initiator.
  • the photosensitive resin layer for example, the photosensitive resin layer described in JP-A-2016-224162 may be used.
  • the photosensitive resin layer preferably contains a polymerizable compound.
  • the polymerizable compound is a component that contributes to the photosensitivity (that is, photocurability) of the negative photosensitive resin layer and the strength of the cured film.
  • an ethylenically unsaturated compound is preferable, and a bifunctional or higher functional ethylenically unsaturated compound is more preferable.
  • the ethylenically unsaturated compound is a compound having one or more ethylenically unsaturated groups, and the bifunctional or higher functional ethylenically unsaturated compound has two ethylenically unsaturated groups in one molecule. It means a compound having the above.
  • a (meth) acryloyl group is more preferable.
  • As the ethylenically unsaturated compound a (meth) acrylate compound is preferable.
  • the bifunctional ethylenically unsaturated compound is not particularly limited and may be appropriately selected from known compounds. Specifically, tricyclodecanedimethanol diacrylate (A-DCP, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), tricyclodecanedimethanol dimethacrylate (DCP, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), 1,9 -Nonanediol diacrylate (A-NOD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), 1,6-hexanediol diacrylate (A-HD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) and the like can be mentioned. ..
  • A-DCP tricyclodecanedimethanol diacrylate
  • DCP tricyclodecanedimethanol dimethacrylate
  • A-NOD-N 1,9 -Nonanediol diacrylate
  • A-HD-N manufactured by Shin-
  • bifunctional ethylenically unsaturated compound a bifunctional ethylenically unsaturated compound having a bisphenol structure is also preferably used.
  • the bifunctional ethylenically unsaturated compound having a bisphenol structure include the compounds described in paragraphs 0072 to 0080 of JP-A-2016-224162. Specific examples thereof include alkylene oxide-modified bisphenol A di (meth) acrylate, and include 2,2-bis (4- (methacryloxydiethoxy) phenyl) propane and 2,2-bis (4- (methacryloxyethoxy) ethoxy).
  • Preferable examples thereof include dimethacrylate (BPE-500, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) of polyethylene glycol in which an average of 5 mol of ethylene oxide is added to both ends of propoxy) phenyl) propane and bisphenol A.
  • the trifunctional or higher functional ethylenically unsaturated compound is not particularly limited and can be appropriately selected from known compounds.
  • Examples thereof include acid (meth) acrylate and (meth) acrylate compounds having a glycerin tri (meth) acrylate skeleton.
  • (tri / tetra / penta / hexa) (meth) acrylate) is a concept including tri (meth) acrylate, tetra (meth) acrylate, penta (meth) acrylate, and hexa (meth) acrylate.
  • (Tri / tetra) (meth) acrylate” is a concept that includes tri (meth) acrylate and tetra (meth) acrylate.
  • ethylenically unsaturated compounds examples include caprolactone-modified (meth) acrylate compounds (KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku Co., Ltd., A-9300-1CL manufactured by Shin Nakamura Chemical Industry Co., Ltd., etc.) and alkylene oxides.
  • Modified (meth) acrylate compounds (KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E, A-9300 manufactured by Shin Nakamura Chemical Industry Co., Ltd., EBECRYL (registered trademark) 135 manufactured by Daicel Ornex Co., Ltd., etc.), ethoxyl Glycerin triacrylate (A-GLY-9E manufactured by Shin Nakamura Chemical Industry Co., Ltd.), Aronix (registered trademark) TO-2349 (manufactured by Toa Synthetic Co., Ltd.), Aronix M-520 (manufactured by Toa Synthetic Co., Ltd.) , Aronix M-270 (manufactured by Toa Synthetic Co., Ltd.), Aronix M-510 (manufactured by Toa Synthetic Co., Ltd.), and the like.
  • a urethane (meth) acrylate compound (preferably a trifunctional or higher functional urethane (meth) acrylate compound) can also be used.
  • a urethane (meth) acrylate compound preferably a trifunctional or higher functional urethane (meth) acrylate compound
  • 8UX-015A manufactured by Taisei Fine Chemical Industry Co., Ltd.
  • UA- Examples thereof include 32P (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) and UA-1100H (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.).
  • a polymerizable compound having an acid group described in paragraphs 0025 to 0030 of JP-A-2004-239942 may be used.
  • the weight average molecular weight (Mw) of the polymerizable compound used in the present disclosure is preferably 200 to 3,000, more preferably 280 to 2,200, and even more preferably 300 to 2,200.
  • the polymerizable compound may be used alone or in combination of two or more.
  • the content of the polymerizable compound is preferably 10% by mass to 70% by mass, more preferably 20% by mass to 60% by mass, based on the total mass of the photosensitive resin layer. It is preferable, and more preferably 20% by mass to 50% by mass.
  • the photosensitive resin layer preferably contains a polymer having an acid group.
  • a preferred form of the polymer having an acid group contained in the photosensitive resin layer is the same as the polymer having an acid group exemplified as the thermoplastic resin having the above-mentioned thermoplastic resin layer.
  • the photosensitive resin layer may contain one kind of polymer having an acid group alone, or may contain two or more kinds of polymers.
  • the content of the polymer having an acid group is 10% by mass or more and 90% by mass with respect to the total mass of the photosensitive resin layer from the viewpoint of photosensitivity. It is preferably 20% by mass or more, more preferably 80% by mass or less, and further preferably 30% by mass or more and 70% by mass or less.
  • the photosensitive resin layer preferably contains a photopolymerization initiator.
  • the photopolymerization initiator receives active light such as ultraviolet rays and visible light to start the polymerization of the polymerizable compound.
  • the photopolymerization initiator is not particularly limited, and a known photopolymerization initiator can be used. Examples of the photopolymerization initiator include a photoradical polymerization initiator and a photocationic polymerization initiator, and a photoradical polymerization initiator is preferable.
  • the photopolymerization initiator in the photosensitive resin layer at least one selected from the group consisting of 2,4,5-triarylimidazole dimer and its derivative is selected from the viewpoint of photosensitivity and resolvability. It is preferable to include it.
  • the photopolymerization initiator for example, the polymerization initiators described in paragraphs 0031 to 0042 of JP2011-95716A and paragraphs 0064 to 0081 of JP2015-014783 may be used. ..
  • photopolymerization initiators include 1- [4- (phenylthio)] -1,2-octanedione-2- (O-benzoyloxime) [trade name: IRGACURE (registered trademark) OXE-01, BASF).
  • the photosensitive resin layer may contain one type of photopolymerization initiator alone, or may contain two or more types of photopolymerization initiators.
  • the content of the photopolymerization initiator is not particularly limited, but is preferably 0.1% by mass or more based on the total mass of the photosensitive resin layer. 5% by mass or more is more preferable, and 1.0% by mass or more is further preferable.
  • the content of the photopolymerization initiator is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the photosensitive resin layer.
  • the photosensitive resin layer may contain known additives, if necessary.
  • known additives known ones can be used, and examples thereof include polymerization inhibitors, plasticizers, sensitizers, hydrogen donors, heterocyclic compounds, color formers, decolorants, solvents and the like.
  • the polymerization inhibitor for example, the thermal polymerization inhibitor described in paragraph 0018 of Japanese Patent No. 4502784 can be used. Among them, phenothiazine, phenothiazine or 4-methoxyphenol can be preferably used.
  • the content of the polymerization inhibitor is preferably 0.01% by mass to 3% by mass, preferably 0.01% by mass or more, based on the total mass of the photosensitive resin layer. 1% by mass is more preferable, and 0.01% by mass to 0.8% by mass is further preferable.
  • the sensitizer include known sensitizers, dyes, pigments and the like.
  • the plasticizer and the heterocyclic compound include those described in paragraphs 097 to 0103 and 0111 to 0118 of International Publication No. 2018/179640.
  • the color former for example, the color former described in paragraph 0417 of JP-A-2007-178459 can be used, and leuco crystal violet, crystal violet lactone, Victoria pure blue-naphthalene sulfonate and the like are more preferably used. Be done.
  • the content of the coloring agent is 0.1 mass with respect to the total mass of the photosensitive resin layer from the viewpoint of visibility and resolution of the exposed portion and the non-exposed portion. It is preferably% to 10% by mass, more preferably 0.1% by mass to 5% by mass, and particularly preferably 0.1% by mass to 1% by mass.
  • the photosensitive resin layer in the present disclosure includes metal oxide particles, antioxidants, dispersants, acid growth agents, development accelerators, conductive fibers, colorants, thermal radical polymerization initiators, thermal acid generators, etc.
  • Further known additives such as UV absorbers, thickeners, crosslinkers, and organic or inorganic anti-precipitation agents can be added. Preferred embodiments of other components are described in paragraphs 0165 to 0184 of JP2014-85643, respectively, and the contents of this publication are incorporated in the present specification.
  • the photosensitive transfer member according to the present disclosure preferably has a cover film on the surface opposite to the intermediate layer of the photosensitive resin layer of the photosensitive transfer member.
  • the cover film include a resin film and paper, and a resin film is particularly preferable from the viewpoint of strength, flexibility, and the like.
  • the resin film include polyethylene film, polypropylene film, polyethylene terephthalate film, cellulose triacetate film, polystyrene film, polycarbonate film and the like. Of these, polyethylene film, polypropylene film, and polyethylene terephthalate film are preferable.
  • the thickness of the cover film is not particularly limited, and for example, one having a thickness of 1 ⁇ m to 2 mm is preferable.
  • the photosensitive transfer member according to the present disclosure may have layers other than those described above (hereinafter, abbreviated as "other layers”).
  • other layers include a contrast enhancement layer, an easily peelable layer, a BARC layer (lower layer antireflection film), and the like.
  • Preferred embodiments of the contrast enhancement layer are described in paragraph 0134 of WO 2018/179640, the contents of which are incorporated herein.
  • the layer structure of the photosensitive transfer member is schematically shown.
  • a temporary support 10 a thermoplastic resin layer 12, a water-soluble resin layer 14, a photosensitive resin layer 16, and a cover film 18 are laminated in this order.
  • the intermediate layer 15 is a layer composed of a thermoplastic resin layer 12 and a water-soluble resin layer 14.
  • the method for producing the photosensitive transfer member of the present invention is not particularly limited, and a known production method can be used. Specifically, a composition such as a thermoplastic resin composition is prepared by mixing the above-mentioned constituent components of each layer and a solvent, and the above composition is applied on a temporary support or a cover film to temporarily prepare the composition. It is possible to obtain a photosensitive transfer member having a support, an intermediate layer having at least a thermoplastic resin layer, and a photosensitive resin layer in this order.
  • a step of applying a thermoplastic resin composition on a temporary support and drying it to form a thermoplastic resin layer, and a water-soluble resin composition being used as a thermoplastic resin layer a step of applying a thermoplastic resin composition on a temporary support and drying it to form a thermoplastic resin layer, and a water-soluble resin composition being used as a thermoplastic resin layer.
  • a method including a step of applying and drying on the water-soluble resin layer to form a water-soluble resin layer and a step of applying and drying the photosensitive resin composition on the water-soluble resin layer to form a photosensitive resin layer are preferably mentioned.
  • the method for manufacturing a photosensitive transfer member according to the present disclosure preferably further includes a step of providing a cover film on the photosensitive resin layer after the step of forming the photosensitive resin layer.
  • the method for producing the resin pattern of the present invention is not particularly limited as long as it is the method for producing the resin pattern using the photosensitive transfer member according to the present disclosure, but the method is not particularly limited to that of the intermediate layer of the photosensitive resin layer of the photosensitive transfer member.
  • exposure step a step of developing the exposed photosensitive resin layer to form a resin pattern
  • development step are preferably included in this order.
  • the surface opposite to the intermediate layer of the photosensitive resin layer means the surface of the photosensitive resin layer exposed when the cover film is peeled off.
  • the surface on the side opposite to the intermediate layer of the photosensitive resin layer is the BARC layer exposed when the cover film is peeled off. It refers to the surface.
  • the method for manufacturing the circuit wiring of the present invention may be any method using the photosensitive transfer member according to the present disclosure, but the surface of the photosensitive transfer member on the side opposite to the intermediate layer of the photosensitive resin layer is a conductive layer.
  • the surface of the photosensitive transfer member opposite to the intermediate layer of the photosensitive resin layer is formed on a substrate having a conductive layer. It is preferable to include a step of contacting and bonding (bonding step). In the bonding step, it is preferable that the conductive layer and the surface of the photosensitive transfer member on the opposite side of the intermediate layer of the photosensitive resin layer are pressure-bonded so as to be in contact with each other.
  • the patterned photosensitive resin layer after exposure and development can be suitably used as an etching resist when etching the conductive layer.
  • the method of crimping the substrate and the photosensitive transfer member is not particularly limited, and a known transfer method and a laminating method can be used.
  • the bonding of the photosensitive transfer member to the substrate is performed by superimposing the surface of the photosensitive transfer member on the side opposite to the intermediate layer of the photosensitive resin layer on the substrate, pressurizing and heating with a roll or the like. Is preferable.
  • known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator capable of further increasing productivity can be used.
  • the circuit wiring manufacturing method according to the present disclosure is preferably performed by a roll-to-roll method. Therefore, the base material constituting the substrate is preferably a resin film. The roll-to-roll method will be described below.
  • the roll-to-roll method uses a substrate that can be wound and unwound as a substrate, and unwinds the substrate or a structure including the substrate before any of the steps included in the circuit wiring manufacturing method.
  • a step of winding up a structure including a base material or a substrate also referred to as a “winding step”) after any of the steps (also referred to as “unwinding step”), and at least one of the steps.
  • all steps refers to a method in which a base material or a structure including a substrate is transported.
  • the unwinding method in the unwinding step and the winding method in the winding step are not particularly limited, and a known method may be used in the manufacturing method to which the roll-to-roll method is applied.
  • the substrate used in the present disclosure is preferably a substrate having a conductive layer, and more preferably a substrate having a conductive layer on the surface of the base material.
  • the substrate has a conductive layer on a base material such as glass, silicon, or a film, and any layer may be formed if necessary.
  • Preferred embodiments of the substrate are described, for example, in paragraph 0140 of WO 2018/155193, the contents of which are incorporated herein.
  • the substrate having a conductive layer on the substrate is preferably a film substrate from the viewpoint of performing the bonding step by a roll-to-roll method.
  • the base material is a sheet-like resin composition.
  • the conductive layer of the substrate is at least one selected from the group consisting of a metal layer, a conductive metal oxide layer, a graphene layer, a carbon nanotube layer, and a conductive polymer layer from the viewpoint of conductivity and fine wire forming property. It is preferably a layer of, more preferably a metal layer, and particularly preferably a copper layer or a silver layer. Further, the base material may have one conductive layer or two or more conductive layers. When there are two or more conductive layers, it is preferable to have conductive layers made of different materials. Preferred embodiments of the conductive layer are described, for example, in paragraph 0141 of WO 2018/155193, the contents of which are incorporated herein.
  • the method for manufacturing a resin pattern according to the present disclosure or the method for manufacturing a circuit wiring according to the present disclosure preferably includes a step (exposure step) of pattern-exposing the photosensitive resin layer after the bonding step.
  • the detailed arrangement and specific size of the pattern are not particularly limited. Since it is desired to improve the display quality of a display device (for example, a touch panel) provided with an input device having a circuit wiring manufactured by the circuit wiring manufacturing method according to the present disclosure, and to make the area occupied by the take-out wiring as small as possible, the pattern At least a part (particularly the electrode pattern of the touch panel and the portion of the take-out wiring) is preferably a fine wire of 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the method for manufacturing a resin pattern according to the present disclosure, or the method for manufacturing a circuit wiring according to the present disclosure is a step of developing the exposed photosensitive resin layer to form a resin pattern after the exposure step (development step). ) Is preferably included.
  • the photosensitive transfer member has a water-soluble resin layer
  • the thermoplastic resin layer and the water-soluble resin layer in the non-exposed portion are also removed together with the photosensitive resin layer in the non-exposed portion in the developing step.
  • the thermoplastic resin layer and the water-soluble resin layer of the exposed portion may also be removed in a form of being dissolved or dispersed in the developing solution.
  • the exposed photosensitive resin layer in the developing step can be developed by using a developing solution.
  • the developing solution and developing method are not particularly limited as long as the non-image portion of the photosensitive resin layer can be removed, and a known developing solution and developing method can be used.
  • Examples of the developer preferably used in the present disclosure include the developer described in paragraph 0194 of International Publication No. 2015/093271, and examples of the developing method preferably used include International Publication No. 2015/093271.
  • the developing method described in paragraph 0195 of the issue can be mentioned.
  • the circuit wiring manufacturing method according to the present disclosure preferably includes a step (etching step) of etching a substrate in a region where the resin pattern is not arranged.
  • the etching step the pattern formed from the photosensitive resin layer by the developing step is used as an etching resist, and the conductive layer is etched.
  • the etching treatment method include the methods described in paragraphs 0209 to 0210 of JP-A-2017-120435, the methods described in paragraphs 0048-paragraph 0054 of JP-A-2010-152155, and known plasma etching.
  • a known method such as a method by dry etching can be applied.
  • a step of removing the resin pattern (hereinafter, abbreviated as "removal step”).
  • the removing step is not particularly limited and can be performed as needed, but it is preferably performed after the etching step.
  • the method for removing the remaining photosensitive resin layer is not particularly limited, and examples thereof include a method for removing by chemical treatment, and it is particularly preferable to use a removing solution.
  • a method for removing the photosensitive resin layer a substrate having a photosensitive resin layer or the like is immersed in a removing solution being stirred at preferably at 30 ° C. to 80 ° C., more preferably 50 ° C. to 80 ° C. for 1 minute to 30 minutes. The method can be mentioned.
  • the removing liquid examples include inorganic alkaline components such as sodium hydroxide and potassium hydroxide, or organic alkalis such as primary amine compounds, secondary amine compounds, tertiary amine compounds, and quaternary ammonium salt compounds. Examples thereof include a removal solution in which the components are dissolved in water, dimethylsulfoxide, N-methylpyrrolidone, or a mixed solution thereof. Further, the removing liquid may be used and removed by a spray method, a shower method, a paddle method or the like.
  • inorganic alkaline components such as sodium hydroxide and potassium hydroxide
  • organic alkalis such as primary amine compounds, secondary amine compounds, tertiary amine compounds, and quaternary ammonium salt compounds. Examples thereof include a removal solution in which the components are dissolved in water, dimethylsulfoxide, N-methylpyrrolidone, or a mixed solution thereof.
  • the removing liquid may be used and removed by a spray method, a shower method, a
  • the circuit wiring manufacturing method according to the present disclosure may include any steps (other steps) other than those described above.
  • a step of peeling off the cover film of the photosensitive transfer member a step of reducing the visible light reflectance according to paragraph 0172 of International Publication No. 2019/22089
  • Examples thereof include a step of forming a new conductive layer on the insulating film described in paragraph 0172 of International Publication No. 2019/22089, but the steps are not limited to these steps.
  • the methods described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be preferably used in the present disclosure.
  • the circuit wiring manufactured by the circuit wiring manufacturing method according to the present disclosure can be applied to various devices.
  • Examples of the device provided with the circuit wiring manufactured by the method for manufacturing the circuit wiring according to the present disclosure include an input device and the like, and a touch panel is preferable, and a capacitance type touch panel is more preferable.
  • the input device can be applied to a display device such as an organic EL display device and a liquid crystal display device.
  • the method for manufacturing the touch panel of the present invention may be any method using the photosensitive transfer member according to the present disclosure, but the surface of the photosensitive transfer member on the side opposite to the intermediate layer of the photosensitive resin layer is formed by forming a conductive layer.
  • the touch panel manufacturing method according to the present disclosure specific aspects of each step and embodiments such as the order in which each step is performed are as described in the above-mentioned "Circuit wiring manufacturing method" section. The same applies to the preferred embodiment.
  • a known method for manufacturing the touch panel can be referred to except for the above.
  • the touch panel manufacturing method according to the present disclosure may include an arbitrary step (other steps) other than those described above.
  • FIG. 2 and 3 show an example of a mask pattern used in the touch panel manufacturing method according to the present disclosure.
  • SL and G are image portions (openings), and DL is a virtual representation of the alignment frame.
  • DL is a virtual representation of the alignment frame.
  • the touch panel according to the present disclosure is a touch panel having at least the circuit wiring manufactured by the method for manufacturing the circuit wiring according to the present disclosure. Further, the touch panel according to the present disclosure preferably has at least a transparent substrate, electrodes, and an insulating layer or a protective layer.
  • the detection method in the touch panel according to the present disclosure any known method such as a resistive film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, and an optical method may be used. Above all, the capacitance method is preferable.
  • the touch panel type includes a so-called in-cell type (for example, those described in FIGS.
  • a temporary support was prepared by the following method.
  • Particle-Containing Layer Forming Composition 1 Each component was mixed with the formulation shown below to obtain a particle-containing layer forming composition 1. After preparing the particle-containing layer forming composition 1, the film is filtered through a 6 ⁇ m filter (F20, manufactured by Mare Filter Systems Co., Ltd.), and subsequently, a membrane is used using a 2x6 radial flow superphobic (manufactured by Polypore Co., Ltd.). I degassed.
  • a 6 ⁇ m filter F20, manufactured by Mare Filter Systems Co., Ltd.
  • the film thickness of the particle-containing layer was 40 nm as measured from a cross-sectional TEM photograph.
  • the average particle size of the particles contained in the particle-containing layer was measured by the above method using an HT-7700 type transmission electron microscope (TEM) manufactured by Hitachi High-Technologies Corporation, and found to be 50 nm.
  • TEM transmission electron microscope
  • Production Example 2 A temporary support of Production Example 2 was obtained in the same manner as in Production Example 1 except that the stretch ratio of Production Example 1 was changed and the thickness of the polyester film after film formation was changed from 25 ⁇ m to 28 ⁇ m.
  • Production Example 4 A temporary support of Production Example 4 was obtained in the same manner as in Production Example 1 except that the stretch ratio of Production Example 1 was changed and the thickness of the polyester film after film formation was changed from 25 ⁇ m to 20 ⁇ m.
  • Production Example 5 A temporary support of Production Example 5 was obtained in the same manner as in Production Example 1 except that the stretch ratio of Production Example 1 was changed and the thickness of the polyester film after film formation was changed from 25 ⁇ m to 35 ⁇ m.
  • Production Example 6 A temporary support of Production Example 6 was obtained in the same manner as in Production Example 1 except that the stretch ratio of Production Example 1 was changed and the thickness of the polyester film after film formation was changed from 25 ⁇ m to 16 ⁇ m.
  • the prepared photosensitive resin composition 1 is applied to the temporary support prepared in Production Example 1 so as to have a width of 1.0 m and a thickness of 3.0 ⁇ m using a slit-shaped nozzle, and a drying zone at 80 ° C. is formed. It was passed over 40 seconds to obtain a photosensitive resin layer. The viscosity of the obtained photosensitive resin layer at 70 ° C. was measured and found to be 36000 Pa ⁇ s. Viscosity was measured by the method described above. As an apparatus, a rheometer DHR-2 manufactured by TA Instruments Japan Co., Ltd. was used.
  • the prepared photosensitive resin composition 2 is applied to the temporary support prepared in Production Example 1 so as to have a width of 1.0 m and a thickness of 2.0 ⁇ m using a slit-shaped nozzle, and a drying zone at 80 ° C. is formed. It was passed over 40 seconds to obtain a photosensitive resin layer. The viscosity of the obtained photosensitive resin layer at 70 ° C. was measured and found to be 37,000 Pa ⁇ s.
  • ⁇ Preparation of water-soluble resin composition 1> The following components were mixed to prepare a water-soluble resin composition. The unit of the amount of each component is a mass part. Ion-exchanged water: 38.12 parts Methanol (manufactured by Mitsubishi Gas Chemical Company, Inc.): 57.17 parts Clarepovar PVA-205 (polyvinyl alcohol, manufactured by Kuraray Co., Ltd.): 3.22 parts Polyvinylpyrrolidone K-30 (Japan) Catalyst Co., Ltd.): 1.49 parts Megafuck F-444 (fluorine-based surfactant, manufactured by DIC Co., Ltd.): 0.0015 parts
  • ⁇ Preparation of water-soluble resin composition 2> The following components were mixed to prepare a water-soluble resin composition. The unit of the amount of each component is a mass part. Ion-exchanged water: 38.12 parts Methanol (manufactured by Mitsubishi Gas Chemical Company, Inc.): 57.17 parts Clarepovar 4-88LA (polyvinyl alcohol, manufactured by Kuraray Co., Ltd.): 3.22 parts Polyvinylpyrrolidone K-30 (Japan) Catalyst Co., Ltd.): 1.49 parts Megafuck F-444 (fluorine-based surfactant, manufactured by DIC Co., Ltd.): 0.0035 parts
  • thermoplastic resin compositions 1 to 7 The following components were mixed by parts by mass shown in Table 2 below to prepare a thermoplastic resin composition.
  • C-1 Compound having the structure shown below (photoacid generator, compound described in paragraph 0227 of JP2013-47765A, synthesized according to the method described in paragraph 0227).
  • C-2 A compound having the structure shown below (photoacid generator, synthesized according to the method described in paragraph 0210 of JP-A-2014-197155).
  • D-3 NK ester A-DCP (tricyclodecanedimethanol diacrylate, manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
  • D-4 8UX-015A (polyfunctional urethane acrylate compound, manufactured by Taisei Fine Chemicals Co., Ltd.)
  • D-5 Aronix TO-2349 (polyfunctional acrylate compound having a carboxy group, manufactured by Toagosei Co., Ltd.)
  • E-1 Mega Fvck F552 (manufactured by DIC Corporation)
  • the prepared thermoplastic resin composition 1 is applied to the temporary support prepared in Production Example 1 so as to have a width of 1.0 m and a thickness of 3.0 ⁇ m using a slit-shaped nozzle, and a drying zone at 80 ° C. is formed. It was passed over 40 seconds to obtain a thermoplastic resin layer 1.
  • Thermoplastic resin layers 2 to 7 were obtained in the same manner as in the thermoplastic resin layer 1 except that the thermoplastic resin composition 1 was changed to the thermoplastic resin compositions 2 to 7.
  • the dynamic viscoelasticity of the obtained thermoplastic resin layers 1 to 7 was measured by the same method as that of the photosensitive resin layer described above.
  • the melt viscosity was measured by the method described above.
  • Example 1 Manufacturing of photosensitive transfer member>
  • the temporary support produced in Production Example 1 is prepared.
  • the thermoplastic composition 1 was applied to the surface of the temporary support on the side opposite to the particle-containing layer using a slit-shaped nozzle so that the coating width was 1.0 m and the thickness was 4 ⁇ m, and the temperature was 80 ° C.
  • a thermoplastic resin layer was formed by passing through the drying zone of the above for 40 seconds.
  • the water-soluble resin composition is applied onto the thermoplastic resin layer using a slit-shaped nozzle so that the coating width is 1.0 m and the thickness is 1.1 ⁇ m, and a drying zone at 80 ° C. is applied for 40 seconds.
  • a water-soluble resin layer was formed by passing through the resin layer.
  • the photosensitive resin composition 1 is applied onto the water-soluble resin layer so that the coating width is 1.0 m and the thickness is 3.0 ⁇ m using a slit-shaped nozzle, and a drying zone at 80 ° C. is 40. It was passed over a second to form a negative photosensitive resin layer.
  • a PET film manufactured by Toray Industries, Inc., Lumirror 16KS40
  • a copper layer having a thickness of 200 nm was provided on a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m by a sputtering method, and a PET substrate with a copper layer was prepared. After unwinding the produced photosensitive transfer member, it was laminated on the PET substrate with a copper layer under laminating conditions of a roll temperature of 100 ° C., a linear pressure of 1.0 MPa, and a linear velocity of 4.0 m / min.
  • PET polyethylene terephthalate
  • Resolution is less than 5 ⁇ m 4: Resolution is 5 ⁇ m or more and less than 7 ⁇ m 3: Resolution is 7 ⁇ m or more and less than 9 ⁇ m 2: Resolution is 9 ⁇ m or more and less than 11 ⁇ m 1: Resolution is 11 ⁇ m or more
  • ⁇ Development speed evaluation> After unwinding the produced photosensitive transfer member, it was laminated on the PET substrate with a copper layer under laminating conditions of a roll temperature of 100 ° C., a linear pressure of 1.0 MPa, and a linear velocity of 4.0 m / min.
  • the temporary support was peeled off and shower-developed using a 1.0% sodium carbonate aqueous solution at 25 ° C.
  • the time required for the photosensitive transfer member to completely dissolve was measured and evaluated. The higher the score, the better the development speed, preferably 3 or more.
  • Lami bubbles are observed on the entire surface of the PET substrate, and the bubbles do not disappear even after autoclaving under the above condition II (50 ° C., 0.5 MPa, 2 hours).
  • the Lami bubble means that the bubble is mixed between the photosensitive transfer member and the PET substrate with a copper layer.
  • Example 2 in the same manner as in Example 1 except that the temporary support, the thermoplastic resin composition, the water-soluble resin composition, the photosensitive resin composition, and the thickness of each layer were changed as shown in Table 3.
  • the photosensitive transfer members of No. 14 and Comparative Examples 1 to 6 were prepared and evaluated, respectively. The evaluation results are summarized in Table 3.
  • the temporary support, the intermediate layer including at least the thermoplastic resin layer, and the photosensitive resin layer are provided in this order, the thickness of the photosensitive resin layer is less than 5 ⁇ m, and the temporary support and the intermediate layer It was found that the photosensitive transfer members having a total thickness of 35 ⁇ m or less are excellent in both resolution and high-speed lamination (Examples 1 to 14).
  • the photosensitive transfer member in which the glass transition temperature of the thermoplastic resin contained in the thermoplastic resin layer was 100 ° C. or lower was superior in resolution (Examples 1 and 5 to 6). Further, it was found that the photosensitive transfer member having a viscosity of the thermoplastic resin layer at 70 ° C. lower than the viscosity of the photosensitive resin layer was further excellent in laminating property at high speed (Examples 1 and 5 to 6). ). Further, it was found that the photosensitive transfer member having the haze of the temporary support of 0.5 or less had even better resolution (Example 1, Example 4 and Example 9).
  • Example 101 On a 100 ⁇ m thick PET substrate, ITO was formed into a film with a thickness of 150 nm by sputtering as a second conductive layer, and copper was formed into a film with a thickness of 200 nm as a conductive layer of the first layer by a vacuum deposition method. As a circuit forming substrate.
  • the photosensitive transfer member obtained in Example 1 was peeled off from the cover film on the copper layer and bonded to the substrate under the following laminating conditions to obtain a laminated body. The obtained laminate was exposed to a contact pattern using a photomask provided with pattern A shown in FIG. 2, which had a structure in which conductive layer pads were connected in one direction without peeling off the temporary support.
  • a high-pressure mercury lamp having i-line (365 nm) as the main exposure wavelength was used.
  • the temporary support was peeled off, developed, and washed with water to obtain pattern A.
  • the copper layer is etched with a copper etching solution (Cu-02 manufactured by Kanto Chemical Co., Ltd.), and then the ITO layer is etched with an ITO etching solution (ITO-02 manufactured by Kanto Chemical Co., Ltd.).
  • Copper and ITO were both drawn in pattern A to obtain a substrate.
  • the photosensitive transfer member obtained in Example 1 was peeled off from the cover film and reattached on the remaining resist (cured negative photosensitive layer) under the following laminating conditions.
  • the temporary support In the aligned state, the temporary support is not peeled off, and the pattern is exposed using a photomask provided with the pattern B shown in FIG. 3, after which the temporary support is peeled off, developed, and washed with water to obtain the pattern B. Obtained.
  • the copper wiring was etched with Cu-02, and the remaining cured negative photosensitive layer was peeled off with a stripping solution (KP-301 manufactured by Kanto Chemical Co., Ltd.) to obtain a circuit wiring board.
  • KP-301 manufactured by Kanto Chemical Co., Ltd.
  • Temporary support 12 Thermoplastic resin layer 14: Water-soluble resin layer 15: Intermediate layer 16: Photosensitive resin layer 18: Cover film 100: Photosensitive transfer member SL: Image part (exposure part) G: Image section (exposure section) DL: Alignment frame

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Materials For Photolithography (AREA)

Abstract

The present invention addresses the problem of providing a photosensitive transfer member that has excellent resolution and laminateability at high speeds, a method for producing a resin pattern, a method for producing circuit wiring, and a method for producing a touch panel. The photosensitive transfer member has a temporary support body, an intermediate layer, and a photosensitive resin layer, in that order. The intermediate layer has a thermoplastic resin layer, the thickness of the photosensitive resin layer is less than 5 μm, and the total thickness of the temporary support body and the intermediate layer is 35 μm or less.

Description

感光性転写部材、樹脂パターンの製造方法、回路配線の製造方法およびタッチパネルの製造方法Photosensitive transfer member, resin pattern manufacturing method, circuit wiring manufacturing method, and touch panel manufacturing method
 本発明は、感光性転写部材、樹脂パターンの製造方法、回路配線の製造方法およびタッチパネルの製造方法に関する。 The present invention relates to a photosensitive transfer member, a resin pattern manufacturing method, a circuit wiring manufacturing method, and a touch panel manufacturing method.
 静電容量型入力装置などのタッチパネルを備えた表示装置(有機エレクトロルミネッセンス(EL)表示装置及び液晶表示装置など)では、視認部のセンサーに相当する電極パターン、周辺配線部分及び取り出し配線部分の配線などの導電層パターンがタッチパネル内部に設けられている。
 一般的にパターン化した層の形成には、必要とするパターン形状を得るための工程数が少ないといったことから、感光性転写部材を用いて任意の基板上に設けた感光性樹脂組成物の層に対して、所望のパターンを有するマスクを介して露光した後に現像する方法が広く使用されている。
 例えば、特許文献1には、支持体上に、クッション層と感光性樹脂層とをこの順に有するパターン形成材料が開示されている。
 また、特許文献2には、支持フィルム上に、層厚が0.1μm以上10μm以下の中間層及び感光性樹脂層をこの順に含んでなる感光性樹脂積層体が開示されている。
In display devices equipped with a touch panel such as a capacitance type input device (organic electroluminescence (EL) display device, liquid crystal display device, etc.), the electrode pattern corresponding to the sensor of the visual recognition part, the peripheral wiring part, and the wiring of the extraction wiring part are wired. A conductive layer pattern such as is provided inside the touch panel.
Generally, in forming a patterned layer, the number of steps for obtaining the required pattern shape is small, so that a layer of a photosensitive resin composition provided on an arbitrary substrate using a photosensitive transfer member is used. On the other hand, a method of developing after exposure through a mask having a desired pattern is widely used.
For example, Patent Document 1 discloses a pattern-forming material having a cushion layer and a photosensitive resin layer in this order on a support.
Further, Patent Document 2 discloses a photosensitive resin laminate having an intermediate layer having a layer thickness of 0.1 μm or more and 10 μm or less and a photosensitive resin layer in this order on the support film.
特開2007-178459号公報JP-A-2007-178459 国際公開第2007/125992号International Publication No. 2007/125992
 本発明者らは、特許文献1に記載された感光性転写部材について検討したところ、特に10μm以下の高解像なパターン形成を行うには、解像性に改善の余地があることを明らかとした。
 また、ドライフィルム分野においては、ロールトゥロールにて生産する方法が知られており、近年、生産性向上のため、高速ラミネートに対応できるドライフィルムが求められている。
 本発明者らは、特許文献2に記載された感光性転写部材について検討したところ、高速でのラミネート性に問題があることを明らかとした。
As a result of examining the photosensitive transfer member described in Patent Document 1, the present inventors have clarified that there is room for improvement in resolution, particularly in order to form a high-resolution pattern of 10 μm or less. did.
Further, in the field of dry film, a method of producing by roll-to-roll is known, and in recent years, in order to improve productivity, a dry film capable of high-speed lamination has been demanded.
As a result of examining the photosensitive transfer member described in Patent Document 2, the present inventors have clarified that there is a problem in laminating property at high speed.
 そこで、本発明は、解像性および高速でのラミネート性に優れた感光性転写部材、樹脂パターンの製造方法、回路配線の製造方法およびタッチパネルの製造方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a photosensitive transfer member having excellent resolution and high-speed laminating property, a method for manufacturing a resin pattern, a method for manufacturing a circuit wiring, and a method for manufacturing a touch panel.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、仮支持体と、少なくとも熱可塑性樹脂層を含む中間層と、感光性樹脂層とをこの順に有し、感光性樹脂層の厚さと、仮支持体および中間層の合計の厚さとを所定の範囲に調整した感光性転写部材が、解像性および高速でのラミネート性に優れることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題を達成することができることを見出した。
As a result of diligent studies to achieve the above problems, the present inventors have a temporary support, an intermediate layer including at least a thermoplastic resin layer, and a photosensitive resin layer in this order, and the thickness of the photosensitive resin layer is high. The present invention has been completed by finding that a photosensitive transfer member in which the total thickness of the temporary support and the intermediate layer is adjusted to a predetermined range is excellent in resolution and high-speed lamination.
That is, the present inventors have found that the above-mentioned problems can be achieved by the following configurations.
 [1] 仮支持体、中間層および感光性樹脂層をこの順に有する感光性転写部材であって、
 上記中間層が、熱可塑性樹脂層を有し、
 上記感光性樹脂層の厚さが5μm未満であり、かつ、上記仮支持体および上記中間層の合計の厚さが35μm以下である、感光性転写部材。
 [2] 上記記中間層が、さらに水溶性樹脂層を有し、
 上記水溶性樹脂層が、上記熱可塑性樹脂層と上記感光性樹脂層との間にある、[1]記載の感光性転写部材。
 [3] 上記熱可塑性樹脂層の厚さが10μm以下である、[1]または[2]記載の感光性転写部材。
 [4] 上記感光性樹脂層の厚さに対する、上記仮支持体および上記中間層の合計の厚さの比率が6.0~12.0である、[1]~[3]のいずれか1つに記載の感光性転写部材。
 [5] 上記熱可塑性樹脂層に含まれる熱可塑性樹脂のガラス転移温度が100℃以下である、[1]~[4]のいずれか1つに記載の感光性転写部材。
 [6] 上記熱可塑性樹脂層が可塑剤を有する、[1]~[5]のいずれか1つに記載の感光性転写部材。
 [7] 70℃において、上記熱可塑性樹脂層の粘度が、上記感光性樹脂層の粘度よりも低い、[1]~[6]のいずれか1つに記載の感光性転写部材。
 [8] 上記仮支持体の厚さが25μm以下である、[1]~[7]のいずれか1つに記載の感光性転写部材。
 [9] 上記仮支持体のヘーズが0.5以下である、[1]~[8]のいずれか1つに記載の感光性転写部材。
 [10] 上記仮支持体が、上記中間層とは反対側の面に粒子含有層を有し、
 上記粒子含有層に含まれる粒子の平均粒子径が30~600nmである、[1]~[9]のいずれか1つに記載の感光性転写部材。
 [11] 上記感光性樹脂層が、ネガ型感光性樹脂層である、[1]~[10]のいずれか1つに記載の感光性転写部材。
 [12] [1]~[11]のいずれか1つに記載の感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、導電層を有する基板に接触させて貼り合せる工程と、
 上記感光性樹脂層をパターン露光する工程と、
 露光された上記感光性樹脂層を現像して樹脂パターンを形成する工程と、をこの順に含む樹脂パターンの製造方法。
 [13] [1]~[11]のいずれか1つに記載の感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、導電層を有する基板に接触させて貼り合せる工程と、
 上記感光性樹脂層をパターン露光する工程と、
 露光された上記感光性樹脂層を現像して樹脂パターンを形成する工程と、
 上記樹脂パターンが配置されていない領域における上記基板をエッチング処理する工程と、をこの順に含む回路配線の製造方法。
 [14] [1]~[11]のいずれか1つに記載の感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、導電層を有する基板に接触させて貼り合せる工程と、
 上記感光性樹脂層をパターン露光する工程と、
 露光された上記感光性樹脂層を現像して樹脂パターンを形成する工程と、
 上記樹脂パターンが配置されていない領域における上記基板をエッチング処理する工程と、をこの順に含むタッチパネルの製造方法。
[1] A photosensitive transfer member having a temporary support, an intermediate layer, and a photosensitive resin layer in this order.
The intermediate layer has a thermoplastic resin layer and
A photosensitive transfer member having a thickness of the photosensitive resin layer of less than 5 μm and a total thickness of the temporary support and the intermediate layer of 35 μm or less.
[2] The intermediate layer described above further has a water-soluble resin layer.
The photosensitive transfer member according to [1], wherein the water-soluble resin layer is located between the thermoplastic resin layer and the photosensitive resin layer.
[3] The photosensitive transfer member according to [1] or [2], wherein the thickness of the thermoplastic resin layer is 10 μm or less.
[4] Any one of [1] to [3], wherein the ratio of the total thickness of the temporary support and the intermediate layer to the thickness of the photosensitive resin layer is 6.0 to 12.0. The photosensitive transfer member according to 1.
[5] The photosensitive transfer member according to any one of [1] to [4], wherein the glass transition temperature of the thermoplastic resin contained in the thermoplastic resin layer is 100 ° C. or lower.
[6] The photosensitive transfer member according to any one of [1] to [5], wherein the thermoplastic resin layer has a plasticizer.
[7] The photosensitive transfer member according to any one of [1] to [6], wherein the viscosity of the thermoplastic resin layer is lower than the viscosity of the photosensitive resin layer at 70 ° C.
[8] The photosensitive transfer member according to any one of [1] to [7], wherein the temporary support has a thickness of 25 μm or less.
[9] The photosensitive transfer member according to any one of [1] to [8], wherein the haze of the temporary support is 0.5 or less.
[10] The temporary support has a particle-containing layer on a surface opposite to the intermediate layer.
The photosensitive transfer member according to any one of [1] to [9], wherein the average particle size of the particles contained in the particle-containing layer is 30 to 600 nm.
[11] The photosensitive transfer member according to any one of [1] to [10], wherein the photosensitive resin layer is a negative type photosensitive resin layer.
[12] The surface of the photosensitive transfer member according to any one of [1] to [11] opposite to the intermediate layer of the photosensitive resin layer is brought into contact with a substrate having a conductive layer and bonded. Process and
The process of pattern exposure of the photosensitive resin layer and
A method for producing a resin pattern, which comprises a step of developing the exposed photosensitive resin layer to form a resin pattern, and the process of forming the resin pattern in this order.
[13] The surface of the photosensitive transfer member according to any one of [1] to [11] opposite to the intermediate layer of the photosensitive resin layer is brought into contact with a substrate having a conductive layer and bonded. Process and
The process of pattern exposure of the photosensitive resin layer and
The step of developing the exposed photosensitive resin layer to form a resin pattern, and
A method for manufacturing a circuit wiring including a step of etching a substrate in a region where the resin pattern is not arranged, and a step of etching the substrate in this order.
[14] The surface of the photosensitive transfer member according to any one of [1] to [11] opposite to the intermediate layer of the photosensitive resin layer is brought into contact with a substrate having a conductive layer and bonded. Process and
The process of pattern exposure of the photosensitive resin layer and
The process of developing the exposed photosensitive resin layer to form a resin pattern, and
A method for manufacturing a touch panel, which includes a step of etching the substrate in a region where the resin pattern is not arranged, and a step of etching the substrate in this order.
 本発明によれば、解像性および高速でのラミネート性に優れた感光性転写部材、樹脂パターンの製造方法、回路配線の製造方法およびタッチパネルの製造方法を提供することができる。 According to the present invention, it is possible to provide a photosensitive transfer member having excellent resolution and high-speed laminating property, a method for manufacturing a resin pattern, a method for manufacturing a circuit wiring, and a method for manufacturing a touch panel.
図1は、本発明の感光性転写部材の実施形態の一例を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the photosensitive transfer member of the present invention. 図2は、パターンAを示す概略図である。FIG. 2 is a schematic view showing the pattern A. 図3は、パターンBを示す概略図である。FIG. 3 is a schematic view showing the pattern B.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本願明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も含む。露光に用いられる光としては、一般的に、水銀灯の輝線スペクトル、エキシマレーザに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線(活性エネルギー線)が挙げられる。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the specification of the present application, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
Further, in the present specification, as each component, a substance corresponding to each component may be used alone or in combination of two or more. Here, when two or more kinds of substances are used in combination for each component, the content of the component refers to the total content of the substances used in combination unless otherwise specified.
Further, in the present specification, "exposure" includes not only exposure using light but also drawing using particle beams such as an electron beam and an ion beam, unless otherwise specified. Examples of the light used for exposure generally include the emission line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and active rays (active energy rays) such as electron beams. ..
[感光性転写部材]
 本発明の感光性転写部材は、仮支持体、中間層および感光性樹脂層をこの順に有する。
 ここで、上記中間層とは、上記仮支持体と上記感光性樹脂層との間にある全ての層を表し、本発明の感光性転写部材においては、少なくとも熱可塑性樹脂層を有する。
 また、本発明の感光性転写部材においては、上記感光性樹脂層の厚さは5μm未満であり、かつ、上記仮支持体および上記中間層の合計の厚さが35μm以下である。
[Photosensitive transfer member]
The photosensitive transfer member of the present invention has a temporary support, an intermediate layer, and a photosensitive resin layer in this order.
Here, the intermediate layer represents all the layers between the temporary support and the photosensitive resin layer, and the photosensitive transfer member of the present invention has at least a thermoplastic resin layer.
Further, in the photosensitive transfer member of the present invention, the thickness of the photosensitive resin layer is less than 5 μm, and the total thickness of the temporary support and the intermediate layer is 35 μm or less.
 このような構成を有する本発明の感光性転写部材は、解像性および高速でのラミネート性が良好となる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 感光性樹脂層が5μm未満の薄膜では、感光性転写部材を基板へ高速でラミネートする際に、感光性転写部材と基板との間に生じる気泡を噛んでパターン障害が生じることがある。しかしながら、仮支持体、熱可塑性樹脂層および感光性樹脂層をこの順に有する感光性転写部材とすることで、感光性転写部材が基板へラミネートする際の泡かみを低減できるようになり、感光性樹脂層が基板に追従できるので、高速でのラミネート性を改善できるものと考えられる。
 なお、本開示において、高速でのラミネート性とは、線速度2.0m/min以上でのラミネート条件であることが好ましく、線速度4.0m/min以上でのラミネート条件であることがより好ましい。
 また、感光性樹脂層の厚さを5μm未満とすることで、微細なパターンであっても現像が速やかに進行し、パターンが倒れたり繋がったりすることなく、解像性に優れたパターン形成が可能と考えられる。
 さらに、仮支持体および中間層の合計の厚さを35μm以下とすることで、パターン露光する際に、マスクから感光性樹脂層までの距離で発生する光の回折を抑えることができ、パターンが不鮮明になることなく、高解像なパターン形成が可能になると考えられる。
The photosensitive transfer member of the present invention having such a structure has good resolution and high-speed laminating property.
This is not clear in detail, but the present inventors speculate as follows.
In a thin film having a photosensitive resin layer of less than 5 μm, when the photosensitive transfer member is laminated on the substrate at high speed, a pattern disorder may occur by biting air bubbles generated between the photosensitive transfer member and the substrate. However, by using a photosensitive transfer member having a temporary support, a thermoplastic resin layer, and a photosensitive resin layer in this order, it becomes possible to reduce foaming when the photosensitive transfer member is laminated on a substrate, and the photosensitive transfer member becomes photosensitive. Since the resin layer can follow the substrate, it is considered that the laminateability at high speed can be improved.
In the present disclosure, the high-speed laminating property is preferably a laminating condition at a linear speed of 2.0 m / min or more, and more preferably a laminating condition at a linear speed of 4.0 m / min or more. ..
Further, by setting the thickness of the photosensitive resin layer to less than 5 μm, development proceeds rapidly even if the pattern is fine, and the pattern can be formed with excellent resolution without collapsing or connecting. It is considered possible.
Further, by setting the total thickness of the temporary support and the intermediate layer to 35 μm or less, it is possible to suppress the diffraction of light generated at the distance from the mask to the photosensitive resin layer during pattern exposure, and the pattern can be formed. It is considered that high-resolution pattern formation becomes possible without blurring.
〔仮支持体〕
 本発明の感光性転写部材は、仮支持体を有する。
 仮支持体とは、剥離可能な支持体である。
 本開示に用いられる仮支持体は、感光性樹脂層をパターン露光する場合において、仮支持体を介して感光性樹脂層を露光し得る観点から光透過性を有することが好ましい。
 光透過性を有するとは、パターン露光に使用する光の主波長の透過率が50%以上であることを意味し、パターン露光に使用する光の主波長の透過率は、露光感度向上の観点から、60%以上が好ましく、70%以上がより好ましい。透過率の測定方法としては、大塚電子(株)製MCPD Seriesを用いて測定する方法が挙げられる。
 仮支持体としては、例えば、ガラス基板、樹脂フィルム、紙等が挙げられ、強度及び可撓性等の観点から、樹脂フィルムが特に好ましい。樹脂フィルムとしては、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム等が挙げられる。中でも、2軸延伸ポリエチレンテレフタレートフィルムが特に好ましい。
[Temporary support]
The photosensitive transfer member of the present invention has a temporary support.
The temporary support is a removable support.
The temporary support used in the present disclosure preferably has light transmittance from the viewpoint of being able to expose the photosensitive resin layer through the temporary support when the photosensitive resin layer is exposed to a pattern.
Having light transmittance means that the transmittance of the main wavelength of light used for pattern exposure is 50% or more, and the transmittance of the main wavelength of light used for pattern exposure is from the viewpoint of improving exposure sensitivity. Therefore, 60% or more is preferable, and 70% or more is more preferable. Examples of the method for measuring the transmittance include a method of measuring using MCPD Series manufactured by Otsuka Electronics Co., Ltd.
Examples of the temporary support include a glass substrate, a resin film, paper, and the like, and a resin film is particularly preferable from the viewpoint of strength, flexibility, and the like. Examples of the resin film include polyethylene terephthalate film, cellulose triacetate film, polystyrene film, polycarbonate film, polyimide film and the like. Of these, a biaxially stretched polyethylene terephthalate film is particularly preferable.
 仮支持体の厚さは、感光性転写部材の解像性がさらに良好となる理由から、25μm以下であることが好ましく、20μm以下であることがより好ましい。下限としては、搬送性および支持性の観点から、5μm以上が好ましく、10μm以上がより好ましい。
 仮支持体の厚さは、以下の方法により測定することができる。
 仮支持体の厚さ方向の断面観察像において、無作為に選択した10箇所で測定される仮支持体の厚さの算術平均値を求め、得られる値を仮支持体の厚さとする。仮支持体の厚さ方向の断面観察像は、走査型電子顕微鏡(SEM)を用いて得ることができる。
The thickness of the temporary support is preferably 25 μm or less, and more preferably 20 μm or less, for the reason that the resolution of the photosensitive transfer member is further improved. As the lower limit, from the viewpoint of transportability and supportability, 5 μm or more is preferable, and 10 μm or more is more preferable.
The thickness of the temporary support can be measured by the following method.
In the cross-sectional observation image in the thickness direction of the temporary support, the arithmetic mean value of the thickness of the temporary support measured at 10 randomly selected points is obtained, and the obtained value is defined as the thickness of the temporary support. A cross-sectional observation image of the temporary support in the thickness direction can be obtained by using a scanning electron microscope (SEM).
 仮支持体のヘーズは、感光性転写部材の解像性がさらに良好となる理由から、0.5以下であることが好ましく、0.4以下であることがより好ましく、0.3以下であることが更に好ましい。下限としては、特に限定されないが、0.0超が挙げられる。
 仮支持体のヘーズは、ヘーズメーター(装置名:NDH2000、日本電色工業(株)製)を用いて全光ヘーズとして測定できる。
The haze of the temporary support is preferably 0.5 or less, more preferably 0.4 or less, and more preferably 0.3 or less, for the reason that the resolution of the photosensitive transfer member is further improved. Is even more preferable. The lower limit is not particularly limited, but may be more than 0.0.
The haze of the temporary support can be measured as a total light haze using a haze meter (device name: NDH2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.).
 仮支持体は、上記中間層とは反対側の面に粒子含有層を有することが好ましい。上記粒子含有層に含まれる粒子の平均粒子径は、30~600nmであることが好ましく、30~200nmであることがより好ましく、40~100nmであることが更に好ましい。粒子含有層に含まれる粒子の平均粒子径が30nm以上であると、感光性転写部材の高速でのラミネート性がさらに良好となり、粒子含有層に含まれる粒子の平均粒子径が600nm以下であると、感光性転写部材の解像性がより優れる。 The temporary support preferably has a particle-containing layer on the surface opposite to the intermediate layer. The average particle size of the particles contained in the particle-containing layer is preferably 30 to 600 nm, more preferably 30 to 200 nm, and even more preferably 40 to 100 nm. When the average particle size of the particles contained in the particle-containing layer is 30 nm or more, the laminating property of the photosensitive transfer member at high speed is further improved, and the average particle size of the particles contained in the particle-containing layer is 600 nm or less. , The resolution of the photosensitive transfer member is more excellent.
 上記粒子含有層に含まれる粒子の平均粒子径は、以下の方法で測定することができる。
 仮支持体の厚さ方向の断面観察像において、粒子を含む層を粒子含有層と特定する。
 次に、透過型電子顕微鏡(TEM)を用いて、倍率20000倍、加速電圧100kVの条件で、粒子含有層の断面の任意の5か所を撮影し、断面写真を得た。得られた断面写真における全ての粒子の直径を測定し、その平均値(算術平均粒径)を求め、粒子の平均粒子径とした。なお、明らかに大きな凝集物(異物、ゴミ等)はカウントしないものとする。
The average particle size of the particles contained in the particle-containing layer can be measured by the following method.
In the cross-sectional observation image of the temporary support in the thickness direction, the layer containing particles is specified as the particle-containing layer.
Next, using a transmission electron microscope (TEM), arbitrary five points on the cross section of the particle-containing layer were photographed under the conditions of a magnification of 20000 times and an acceleration voltage of 100 kV to obtain cross-sectional photographs. The diameters of all the particles in the obtained cross-sectional photographs were measured, and the average value (arithmetic mean particle size) was obtained and used as the average particle size of the particles. Obviously large aggregates (foreign matter, dust, etc.) are not counted.
 上記粒子含有層に含有される上記粒子としては、例えば、無機粒子、有機粒子等が挙げられる。
 無機粒子としては、例えば、酸化ケイ素(シリカ)粒子、酸化チタン(チタニア)粒子、酸化ジルコニウム(ジルコニア)粒子、酸化マグネシウム(マグネシア)粒子、酸化アルミニウム(アルミナ)粒子などが挙げられ、中でも、シリカ粒子が特に好ましい。
 有機粒子としては、例えば、アクリル樹脂粒子、ポリエステル粒子、ポリウレタン粒子、ポリカーボネート粒子、ポリオレフィン粒子、ポリスチレン粒子などが挙げられる。
Examples of the particles contained in the particle-containing layer include inorganic particles and organic particles.
Examples of the inorganic particles include silicon oxide (silica) particles, titanium oxide (titania) particles, zirconium oxide (zirconia) particles, magnesium oxide (magnesia) particles, aluminum oxide (alumina) particles, and the like. Among them, silica particles. Is particularly preferable.
Examples of the organic particles include acrylic resin particles, polyester particles, polyurethane particles, polycarbonate particles, polyolefin particles, polystyrene particles and the like.
 上記粒子含有層は、上記粒子を1種単独で含有していても、2種以上を含有していてもよい。
 上記粒子含有層における上記粒子の含有量は、表面粗さの制御容易性、および、搬送時のシワ発生抑制性の観点から、0.01質量%~20質量%であることが好ましく、0.1質量%~10質量%であることがより好ましく、0.5質量%~5質量%であることが特に好ましい。
 また、上記粒子含有層における上記粒子は、上記粒子含有層の内部に存在しても、一部が上記粒子含有層の表面に露出していてもよい。例えば、上記仮支持体の中間層とは反対側の面に、上記粒子含有層を有する場合、上記仮支持体における上記反対側の面に上記粒子が露出していてもよい。
The particle-containing layer may contain the particles alone or may contain two or more of the particles.
The content of the particles in the particle-containing layer is preferably 0.01% by mass to 20% by mass, preferably from the viewpoint of easy control of surface roughness and suppression of wrinkles during transportation. It is more preferably 1% by mass to 10% by mass, and particularly preferably 0.5% by mass to 5% by mass.
Further, the particles in the particle-containing layer may be present inside the particle-containing layer, or a part of the particles may be exposed on the surface of the particle-containing layer. For example, when the particle-containing layer is provided on the surface of the temporary support opposite to the intermediate layer, the particles may be exposed on the surface of the temporary support on the opposite side.
 上記粒子含有層に含有される上記粒子以外の材質としては、特に制限はなく、例えば、上述する仮支持体の材質と同様のものを含むことができる。上記粒子含有層は、樹脂を含むことが好ましく、アクリル樹脂を含むことが特に好ましい。上記粒子含有層は、樹脂を1種単独で含有していても、2種以上を含有していてもよい。 The material other than the particles contained in the particle-containing layer is not particularly limited, and for example, the same material as the material of the temporary support described above can be included. The particle-containing layer preferably contains a resin, and particularly preferably an acrylic resin. The particle-containing layer may contain one type of resin alone or two or more types of resin.
 粒子含有層の厚さは、感光性転写部材の解像性および高速でのラミネート性がさらに良好となる理由から、5~300nmが好ましく、10~100nmがより好ましく、30~70nmが特に好ましい。なお、上記粒子含有層は1層であっても、2層であってもよい。粒子含有層が2層以上の場合は、上記粒子含有層の好ましい厚さは、上記粒子含有層1層毎の好ましい厚さである。
 上記粒子含有層の厚さは、上述した仮支持体の厚さと同様の方法により測定することができる。
The thickness of the particle-containing layer is preferably 5 to 300 nm, more preferably 10 to 100 nm, and particularly preferably 30 to 70 nm, because the resolution of the photosensitive transfer member and the laminating property at high speed are further improved. The particle-containing layer may be one layer or two layers. When the number of particle-containing layers is two or more, the preferable thickness of the particle-containing layer is a preferable thickness for each of the particle-containing layers.
The thickness of the particle-containing layer can be measured by the same method as the thickness of the temporary support described above.
 上記粒子含有層を有する仮支持体の市販品としては、例えば、ルミラー(登録商標。以下同じ。)12QS62、ルミラー16KS40、16FB40(いずれも東レ(株)製)等が挙げられる。 Examples of commercially available products of the temporary support having the particle-containing layer include Lumirer (registered trademark; the same applies hereinafter) 12QS62, Lumirer 16KS40, 16FB40 (all manufactured by Toray Industries, Inc.) and the like.
 また、仮支持体として使用するフィルムには、シワ等の変形、傷などがないことが好ましい。
 仮支持体を介するパターン露光時のパターン形成性、及び、仮支持体の透明性の観点から、仮支持体に含まれる微粒子や異物や欠陥の数は少ない方が好ましい。直径1μm以上の微粒子や異物や欠陥の数は、50個/10mm以下であることが好ましく、10個/10mm以下であることがより好ましく、3個/10mm以下であることが更に好ましく、0個/10mmであることが特に好ましい。
Further, it is preferable that the film used as the temporary support has no deformation such as wrinkles or scratches.
From the viewpoint of pattern formation during pattern exposure via the temporary support and transparency of the temporary support, it is preferable that the number of fine particles, foreign substances, and defects contained in the temporary support is small. The number of the above fine particles and foreign matter and defect diameter 1μm is preferably 50/10 mm 2 or less, more preferably 10/10 mm 2 or less, further preferably 3/10 mm 2 or less , 0 pieces / 10 mm 2 is particularly preferable.
 仮支持体の好ましい態様としては、例えば、特開2014-85643号公報の段落0017~段落0018、特開2016-27363号公報の段落0019~0026、国際公開第2012/081680号の段落0041~0057、国際公開第2018/179370号の段落0029~0040に記載があり、これらの公報の内容は本明細書に組み込まれる。 Preferred embodiments of the provisional support include, for example, paragraphs 0017 to 0018 of JP2014-85643, paragraphs 0019 to 0026 of JP2016-27363, and paragraphs 0041 to 0057 of International Publication No. 2012/081680. , International Publication No. 2018/179370, paragraphs 0029 to 0040, the contents of these publications are incorporated herein by reference.
〔中間層〕
 本発明の感光性転写部材は、仮支持体と感光性樹脂層との間に、少なくとも熱可塑性樹脂層を含む中間層を有する。
 中間層の厚さは、仮支持体および中間層の合計の厚さが35μm以下になるように設定される厚さであればよいが、感光性転写部材の現像速度に優れ、解像性がさらに良好となる理由から、20μm以下が好ましく、15μm以下がより好ましく、10μm以下が更に好ましい。下限としては、感光性転写部材が高速でのラミネート性がさらに良好となる理由から、2μm以上が好ましく、4μm以上がより好ましい。
[Middle layer]
The photosensitive transfer member of the present invention has an intermediate layer including at least a thermoplastic resin layer between the temporary support and the photosensitive resin layer.
The thickness of the intermediate layer may be set so that the total thickness of the temporary support and the intermediate layer is 35 μm or less, but the developing speed of the photosensitive transfer member is excellent and the resolution is excellent. For the reason of further improvement, 20 μm or less is preferable, 15 μm or less is more preferable, and 10 μm or less is further preferable. As the lower limit, 2 μm or more is preferable, and 4 μm or more is more preferable, because the photosensitive transfer member has better laminating property at high speed.
 本発明においては、上述した通り、仮支持体および中間層の合計の厚さは35μm以下であればよいが、34μm以下が好ましく、32μm以下がより好ましい。下限としては、感光性転写部材の高速でのラミネート性がさらに良好となる理由から、10μm以上が好ましい。 In the present invention, as described above, the total thickness of the temporary support and the intermediate layer may be 35 μm or less, but 34 μm or less is preferable, and 32 μm or less is more preferable. As the lower limit, 10 μm or more is preferable because the laminating property of the photosensitive transfer member at high speed is further improved.
 本発明においては、後述する感光性樹脂層の厚さ(以下、「厚さA」と略す。)に対する、上記仮支持体および上記中間層の合計の厚さ(以下、「厚さB」と略す。)の比率(厚さB/厚さA)は、感光性転写部材の解像性がさらに良好となる理由から、6.0~12.0であることが好ましく、7.0~11.5であることがより好ましく、8.0~10.5であることが更に好ましい。
 中間層および感光性樹脂層の厚さは、上述した仮支持体の厚さと同様の方法により測定することができる。
In the present invention, the total thickness of the temporary support and the intermediate layer (hereinafter, "thickness B") with respect to the thickness of the photosensitive resin layer (hereinafter, abbreviated as "thickness A") described later. The ratio (thickness B / thickness A) (abbreviated) is preferably 6.0 to 12.0, preferably 7.0 to 11 for the reason that the resolution of the photosensitive transfer member is further improved. It is more preferably .5, and even more preferably 8.0 to 10.5.
The thickness of the intermediate layer and the photosensitive resin layer can be measured by the same method as the thickness of the temporary support described above.
<熱可塑性樹脂層>
 上記中間層は、上述した通り、少なくとも熱可塑性樹脂層を有する。
 熱可塑性樹脂層は、感光性を有さないことが好ましく、光重合開始剤を有さないことが好ましい。
<Thermoplastic resin layer>
As described above, the intermediate layer has at least a thermoplastic resin layer.
The thermoplastic resin layer preferably does not have photosensitivity, and preferably does not have a photopolymerization initiator.
(熱可塑性樹脂)
 熱可塑性樹脂層は、熱可塑性樹脂を有することが好ましい。
 熱可塑性樹脂は、熱により可塑化する樹脂であれば特に限定されないが、例えば、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合体、ポリウレタン樹脂、ポリビニルアルコール、ポリビニルホルマール、ポリアミド樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリアセタール樹脂、ポリヒドロキシスチレン樹脂、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリシロキサン樹脂、ポリエチレンイミン、ポリアリルアミン、ポリアルキレングリコール等が挙げられる。中でも、現像性及び転写性の観点から、熱可塑性樹脂は、アクリル樹脂であることが好ましい。
 ここで、アクリル樹脂は、(メタ)アクリル酸により形成された構成単位、(メタ)アクリル酸エステルにより形成された構成単位及び(メタ)アクリル酸アミドにより形成された構成単位よりなる群から選ばれた少なくとも1種の構成単位を有する樹脂を指し、上記構成単位の含有量が、樹脂の全質量に対し、50質量%以上であることが好ましい。
(Thermoplastic resin)
The thermoplastic resin layer preferably has a thermoplastic resin.
The thermoplastic resin is not particularly limited as long as it is a resin that is plasticized by heat, and for example, acrylic resin, polystyrene resin, styrene-acrylic copolymer, polyurethane resin, polyvinyl alcohol, polyvinylformal, polyamide resin, polyester resin, polyamide. Examples thereof include resins, epoxy resins, polyacetal resins, polyhydroxystyrene resins, polyimide resins, polybenzoxazole resins, polysiloxane resins, polyethyleneimines, polyallylamines, and polyalkylene glycols. Above all, from the viewpoint of developability and transferability, the thermoplastic resin is preferably an acrylic resin.
Here, the acrylic resin is selected from the group consisting of a structural unit formed of (meth) acrylic acid, a structural unit formed of (meth) acrylic acid ester, and a structural unit formed of (meth) acrylic acid amide. It refers to a resin having at least one structural unit, and the content of the structural unit is preferably 50% by mass or more with respect to the total mass of the resin.
 熱可塑性樹脂としては、現像速度が良好となる理由から、酸基を有する重合体を含むことが好ましい。
 酸基としては、例えば、カルボキシ基、スルホ基、リン酸基、ホスホン酸基等が挙げられ、中でも、カルボキシ基が好ましく用いられる。
 熱可塑性樹脂としての酸基を有する重合体は、現像速度が良好となる理由から、酸価60mgKOH/g以上であることが好ましく、酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂であることがより好ましい。
 酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂としては、特に制限はなく、公知の樹脂から適宜選択して用いることができる。例えば、特開2011-95716号公報の段落0025に記載のポリマーのうちの酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂、特開2010-237589号公報の段落0033~段落0052に記載のポリマーのうちの酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂、特開2016-224162号公報の段落0053~段落0068に記載のバインダーポリマーのうちの酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂等が好ましく挙げられる。
 上記カルボキシ基含有アクリル樹脂におけるカルボキシ基を有するモノマーの共重合比は、アクリル樹脂の全質量に対して、5質量%~50質量%であることが好ましく、10質量%~40質量%であることがより好ましく、12質量%~30質量%であることが更に好ましい。
The thermoplastic resin preferably contains a polymer having an acid group for the reason that the developing speed is good.
Examples of the acid group include a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group and the like, and among them, the carboxy group is preferably used.
The polymer having an acid group as a thermoplastic resin preferably has an acid value of 60 mgKOH / g or more, and is a carboxy group-containing acrylic resin having an acid value of 60 mgKOH / g or more, for the reason that the development speed is good. More preferred.
The carboxy group-containing acrylic resin having an acid value of 60 mgKOH / g or more is not particularly limited, and can be appropriately selected from known resins and used. For example, among the polymers described in paragraphs 0025 of JP2011-95716A, carboxy group-containing acrylic resins having an acid value of 60 mgKOH / g or more, and the polymers described in paragraphs 0033 to 0052 of JP2010-237589A. Among the binder polymers described in paragraphs 0053 to 0068 of JP-A-2016-224162, carboxy group-containing acrylic resins having an acid value of 60 mgKOH / g or more, and carboxy group-containing acrylic resins having an acid value of 60 mgKOH / g or more. Preferred.
The copolymerization ratio of the monomer having a carboxy group in the carboxy group-containing acrylic resin is preferably 5% by mass to 50% by mass, and 10% by mass to 40% by mass, based on the total mass of the acrylic resin. Is more preferable, and 12% by mass to 30% by mass is further preferable.
 熱可塑性樹脂の酸価は、アルカリ現像性の観点から、60mgKOH/g~200mgKOH/gであることが好ましく、60mgKOH/g~180mgKOH/gであることがより好ましい。
 ここで、酸価は、試料1gを中和するのに必要な水酸化カリウムの質量[mg]であり、本明細書においては、単位をmgKOH/gと記載する。酸価は、例えば、化合物中における酸基の平均含有量から算出できる。
From the viewpoint of alkali developability, the acid value of the thermoplastic resin is preferably 60 mgKOH / g to 200 mgKOH / g, and more preferably 60 mgKOH / g to 180 mgKOH / g.
Here, the acid value is the mass [mg] of potassium hydroxide required to neutralize 1 g of the sample, and the unit is described as mgKOH / g in the present specification. The acid value can be calculated, for example, from the average content of acid groups in the compound.
 熱可塑性樹脂の重量平均分子量は、2,000以上が好ましく、1万~10万がより好ましく、2万~7万が更に好ましい。
 ここで、重量平均分子量(Mw)は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置により、溶剤THF(テトラヒドロフラン)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。
The weight average molecular weight of the thermoplastic resin is preferably 2,000 or more, more preferably 10,000 to 100,000, and even more preferably 20,000 to 70,000.
Here, the weight average molecular weight (Mw) is determined by a gel permeation chromatography (GPC) analyzer using columns of TSKgel GMHxL, TSKgel G4000HxL, and TSKgel G2000HxL (all of which are trade names manufactured by Toso Co., Ltd.). Tetrahydrofuran), a molecular weight converted by detecting with a differential refractometer and using polystyrene as a standard substance.
 熱可塑性樹脂層は、熱可塑性樹脂を1種単独で含有していても、2種以上を含有していてもよい。
 熱可塑性樹脂の含有量は、解像性および高速でのラミネート性がさらに良好となる観点から、熱可塑性樹脂層の全質量に対し、10質量%以上99質量%以下であることが好ましく、20質量%以上90質量%以下であることがより好ましく、30質量%以上80質量%以下であることが更に好ましい。
The thermoplastic resin layer may contain one type of thermoplastic resin alone, or may contain two or more types of thermoplastic resin.
The content of the thermoplastic resin is preferably 10% by mass or more and 99% by mass or less with respect to the total mass of the thermoplastic resin layer from the viewpoint of further improving the resolution and the laminating property at high speed. It is more preferably mass% or more and 90 mass% or less, and further preferably 30 mass% or more and 80 mass% or less.
 熱可塑性樹脂層に含まれる熱可塑性樹脂のガラス転移温度(Tg)は、感光性転写部材の高速でのラミネート性がさらに優れる理由から、100℃以下であることが好ましい。
 ガラス転移温度の測定方法としては、以下の通りである。
 具体的には、JIS K 7121(1987年)に記載の測定方法に準じて行うことができる。本開示におけるガラス転移温度は、補外ガラス転移開始温度(以下、Tigと称することがある)を用いている。
 ガラス転移温度の測定方法をより具体的に説明する。
 ガラス転移温度を求める場合、予想される重合体のTgより約50℃低い温度にて装置が安定するまで保持した後、加熱速度:20℃/分で、ガラス転移が終了した温度よりも約30℃高い温度まで加熱し,DTA曲線又はDSC曲線を描かせる。
 補外ガラス転移開始温度(Tig)、すなわち、本明細書におけるガラス転移温度Tgは、DTA曲線又はDSC曲線における低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になる点で引いた接線との交点の温度として求める。分析装置には示差走査熱量計(セイコーインスツルメンツ(株)製、DSC6200)を用いた。
 熱可塑性樹脂のガラス転移温度の下限としては、ロール状に巻き取って保存する場合にロール端面から樹脂組成物が染み出す現象、いわゆるエッジフュージョン、を抑制する理由から、40℃以上が好ましい。
The glass transition temperature (Tg) of the thermoplastic resin contained in the thermoplastic resin layer is preferably 100 ° C. or lower because the photosensitive transfer member is more excellent in laminating property at high speed.
The method for measuring the glass transition temperature is as follows.
Specifically, it can be carried out according to the measurement method described in JIS K 7121 (1987). As the glass transition temperature in the present disclosure, the extrapolated glass transition start temperature (hereinafter, may be referred to as Tig) is used.
The method for measuring the glass transition temperature will be described more specifically.
When determining the glass transition temperature, after holding the device at a temperature about 50 ° C. lower than the expected Tg of the polymer until the apparatus stabilizes, the heating rate is 20 ° C./min, which is about 30 ° C. than the temperature at which the glass transition is completed. Heat to a high temperature and have the DTA or DSC curve drawn.
The extra glass transition start temperature (Tig), that is, the glass transition temperature Tg in the present specification is a straight line extending the baseline on the low temperature side of the DTA curve or DSC curve to the high temperature side, and the stepwise change portion of the glass transition. It is calculated as the temperature at the intersection with the tangent line drawn at the point where the slope of the curve is maximized. A differential scanning calorimeter (DSC6200, manufactured by Seiko Instruments, Inc.) was used as the analyzer.
The lower limit of the glass transition temperature of the thermoplastic resin is preferably 40 ° C. or higher because it suppresses a phenomenon in which the resin composition exudes from the end face of the roll when it is wound and stored in a roll shape, that is, so-called edge fusion.
(可塑剤)
 熱可塑性樹脂層は、感光性転写部材の高速でのラミネート性がさらに優れる理由から、可塑剤を有することが好ましい。
 可塑剤は、熱可塑性樹脂よりも分子量または重量平均分子量が小さいことが好ましい。
可塑剤の分子量としては、200~2,000が好ましい。
 可塑剤は、熱可塑性樹脂と相溶して可塑性を発現する化合物であれば特に限定されないが、可塑性付与の観点から、可塑剤は、分子中にアルキレンオキシ基を有することが好ましく、ポリアルキレングリコール化合物であることがより好ましい。可塑剤に含まれるアルキレンオキシ基は、ポリエチレンオキシ構造又はポリプロピレンオキシ構造であることがより好ましい。
(Plasticizer)
The thermoplastic resin layer preferably has a plasticizer because the photosensitive transfer member is more excellent in laminating property at high speed.
The plasticizer preferably has a smaller molecular weight or weight average molecular weight than the thermoplastic resin.
The molecular weight of the plasticizer is preferably 200 to 2,000.
The plasticizer is not particularly limited as long as it is a compound that is compatible with the thermoplastic resin and exhibits plasticity, but from the viewpoint of imparting plasticity, the plasticizer preferably has an alkyleneoxy group in the molecule, and is a polyalkylene glycol. More preferably, it is a compound. The alkyleneoxy group contained in the plasticizer is more preferably a polyethyleneoxy structure or a polypropyleneoxy structure.
 また、上記可塑剤としては、(メタ)アクリレート化合物を含有することが好ましく、相溶性、解像性および基材への密着性の観点から、熱可塑性樹脂が、アクリル樹脂であり、かつ上記可塑剤が、(メタ)アクリレート化合物を含有することがより好ましい。
 本明細書において、「(メタ)アクリレート」はアクリレートまたはメタクリレートを表し、「(メタ)アクリル」とは、アクリルまたはメタクリルを表す。
 上記可塑剤として用いられる(メタ)アクリレート化合物としては、後述する感光性樹脂層における重合性化合物に含まれる(メタ)アクリレート化合物が好ましく挙げられ、多官能(メタ)アクリレート化合物、酸基を有する(メタ)アクリレート化合物、ウレタン(メタ)アクリレート化合物等も好適に用いることができる。
 特に、保存安定性の観点から、熱可塑性樹脂層および感光性樹脂層の両方にそれぞれ同じ(メタ)アクリレート化合物を含むことが好ましい。同じ(メタ)アクリレート化合物を、熱可塑性樹脂層及び感光性樹脂層の両方にそれぞれ含むことで、層間の成分拡散が抑制され、保存安定性が向上する。
 上記可塑剤として(メタ)アクリレート化合物を含有する場合、解像性の観点から、露光後の露光部においても上記(メタ)アクリレート化合物が熱可塑性樹脂層中において重合しないことが好ましい。
Further, the plasticizer preferably contains a (meth) acrylate compound, and the thermoplastic resin is an acrylic resin from the viewpoint of compatibility, resolution and adhesion to a substrate, and the plasticizer is described above. More preferably, the agent contains a (meth) acrylate compound.
As used herein, "(meth) acrylate" represents acrylate or methacrylate, and "(meth) acrylic" represents acrylic or methacrylic.
As the (meth) acrylate compound used as the plasticizing agent, a (meth) acrylate compound contained in the polymerizable compound in the photosensitive resin layer described later is preferably mentioned, and has a polyfunctional (meth) acrylate compound and an acid group ( A meta) acrylate compound, a urethane (meth) acrylate compound and the like can also be preferably used.
In particular, from the viewpoint of storage stability, it is preferable that both the thermoplastic resin layer and the photosensitive resin layer contain the same (meth) acrylate compound. By containing the same (meth) acrylate compound in both the thermoplastic resin layer and the photosensitive resin layer, diffusion of components between layers is suppressed and storage stability is improved.
When the (meth) acrylate compound is contained as the plasticizer, it is preferable that the (meth) acrylate compound does not polymerize in the thermoplastic resin layer even in the exposed portion after exposure from the viewpoint of resolution.
 熱可塑性樹脂層は、可塑剤を、1種単独で含んでいてもよいし、2種以上を含んでいてもよい。
 熱可塑性樹脂層が可塑剤を含有する場合、可塑剤の含有量は、感光性転写部材の高速でのラミネート性がより優れる点から、熱可塑性樹脂層の全質量に対し、1質量%~70質量%であることが好ましく、5質量%~50質量%であることがより好ましい。
The thermoplastic resin layer may contain one type of plasticizer alone, or may contain two or more types of plasticizer.
When the thermoplastic resin layer contains a plasticizer, the content of the plasticizer is 1% by mass to 70% by mass with respect to the total mass of the thermoplastic resin layer because the photosensitive transfer member is more excellent in laminating property at high speed. It is preferably by mass%, more preferably 5% by mass to 50% by mass.
(その他の成分)
 熱可塑性樹脂層は、熱可塑性樹脂および可塑剤以外に、酸反応性色素または塩基反応性色素(以下、「色素B」と略す。)、光酸発生剤または光塩基発生剤、界面活性剤、増感剤、重合禁止剤、防錆剤などのその他の成分を有していてもよい。
(Other ingredients)
In addition to the thermoplastic resin and the plasticizer, the thermoplastic resin layer includes an acid-reactive dye or a base-reactive dye (hereinafter abbreviated as “dye B”), a photoacid generator or a photobase generator, a surfactant, and the like. It may have other components such as a sensitizer, a polymerization inhibitor, and a rust preventive.
 (色素B)
 熱可塑性樹脂層は、酸反応性色素または塩基反応性色素(色素B)を有することが好ましい。色素Bは、酸または塩基により最大吸収波長が変化する色素を表す。色素Bは、発色時の波長範囲400nm~780nmにおける最大吸収波長が450nm以上であることが好ましい。
 ここで、色素が「酸または塩基により最大吸収波長が変化する」とは、発色状態にある色素が酸または塩基より消色する態様、消色状態にある色素が酸または塩基により発色する態様、発色状態にある色素が酸または塩基により他の色相の発色状態に変化する態様のいずれの態様を指すものであってもよい。
 露光部及び非露光部の視認性、および、解像性の観点から、色素Bは、酸により最大吸収波長が変化する色素であることが好ましく、色素Bが、酸により最大吸収波長が変化する色素であり、かつ、後述する光酸発生剤を併用する態様が特に好ましい。
(Dye B)
The thermoplastic resin layer preferably has an acid-reactive dye or a base-reactive dye (dye B). Dye B represents a dye whose maximum absorption wavelength changes depending on an acid or a base. The dye B preferably has a maximum absorption wavelength of 450 nm or more in the wavelength range of 400 nm to 780 nm at the time of color development.
Here, "the maximum absorption wavelength of the dye changes depending on the acid or base" means that the dye in the color-developing state is decolorized from the acid or base, and the dye in the decolorized state is colored by the acid or base. It may refer to any aspect of a mode in which a dye in a color-developing state is changed to a color-developing state of another hue by an acid or a base.
From the viewpoint of visibility and resolution of the exposed and unexposed areas, the dye B is preferably a dye whose maximum absorption wavelength is changed by an acid, and the dye B is changed by an acid. It is particularly preferable that the dye is used in combination with a photoacid generator described later.
 本開示における色素Bの発色機構の例としては、熱可塑性樹脂層に光酸発生剤または光塩基発生剤を添加して、露光した後に上記光酸発生剤等から発生する酸または塩基によって、酸反応性色素または塩基反応性色素(例えばロイコ色素)が発色する態様等が挙げられる。 As an example of the color-developing mechanism of the dye B in the present disclosure, an acid is generated by adding a photoacid generator or a photobase generator to the thermoplastic resin layer and exposing the dye B with an acid or base generated from the photoacid generator or the like. Examples thereof include a mode in which a reactive dye or a base-reactive dye (for example, a leuco dye) develops a color.
 極大吸収波長の測定方法は、大気の雰囲気下で、25℃にて分光光度計(装置名:UV3100、(株)島津製作所製)を用いて、400nm~780nmの範囲で透過スペクトルを測定し、光の強度が極小となる波長(極大吸収波長)を測定するものとする。 The method for measuring the maximum absorption wavelength is to measure the transmission spectrum in the range of 400 nm to 780 nm using a spectrophotometer (device name: UV3100, manufactured by Shimadzu Corporation) at 25 ° C. in an atmospheric atmosphere. The wavelength at which the light intensity is minimized (maximum absorption wavelength) shall be measured.
 色素Bとしては、例えば、ロイコ化合物、ジアリールメタン系色素、オキザジン系色素、キサンテン系色素、イミノナフトキノン系色素、アゾメチン系色素、アントラキノン系色素等が挙げられ、露光部及び非露光部の視認性の観点から、ロイコ化合物が好ましい。
 色素Bの好ましい態様については、国際公開第2019/022089号の段落0023~段落0039に記載の特定潜在色素と同様のものが挙げられる。
 色素Bの具体例としては、ブリリアントグリーン、エチルバイオレット、メチルグリーン、クリスタルバイオレット、ベイシックフクシン、メチルバイオレット2B、キナルジンレッド、ローズベンガル、メタニルイエロー、チモールスルホフタレイン、キシレノールブルー、メチルオレンジ、パラメチルレッド、コンゴーフレッド、ベンゾプルプリン4B、α-ナフチルレッド、ナイルブルー2B、ナイルブルーA、メチルバイオレット、マラカイトグリーン、パラフクシン、ビクトリアピュアブルー-ナフタレンスルホン酸塩、ビクトリアピュアブルーBOH(保土谷化学工業(株)製)、オイルブルー#603(オリエント化学工業(株)製)、オイルピンク#312(オリエント化学工業(株)製)、オイルレッド5B(オリエント化学工業(株)製)、オイルスカーレット#308(オリエント化学工業(株)製)、オイルレッドOG(オリエント化学工業(株)製)、オイルレッドRR(オリエント化学工業(株)製)、オイルグリーン#502(オリエント化学工業(株)製)、スピロンレッドBEHスペシャル(保土谷化学工業(株)製)、m-クレゾールパープル、クレゾールレッド、ローダミンB、ローダミン6G、スルホローダミンB、オーラミン、4-p-ジエチルアミノフェニルイミノナフトキノン、2-カルボキシアニリノ-4-p-ジエチルアミノフェニルイミノナフトキノン、2-カルボキシステアリルアミノ-4-p-N,N-ビス(ヒドロキシエチル)アミノ-フェニルイミノナフトキノン、1-フェニル-3-メチル-4-p-ジエチルアミノフェニルイミノ-5-ピラゾロン、1-β-ナフチル-4-p-ジエチルアミノフェニルイミノ-5-ピラゾロン等の染料やp,p’,p”-ヘキサメチルトリアミノトリフェニルメタン(ロイコクリスタルバイオレット)、Pergascript Blue SRB(チバガイギー社製)等のロイコ化合物が挙げられる。
Examples of the dye B include leuco compounds, diarylmethane dyes, oxazine dyes, xanthene dyes, iminonaphthoquinone dyes, azomethine dyes, anthraquinone dyes, and the like, and have visibility of exposed and unexposed areas. From the viewpoint, leuco compounds are preferable.
Preferred embodiments of the dye B include those similar to the specific latent dyes described in paragraphs 0023 to 0039 of International Publication No. 2019/022089.
Specific examples of Dye B include Brilliant Green, Ethyl Violet, Methyl Green, Crystal Violet, Basic Fuxin, Methyl Violet 2B, Kinaldine Red, Rose Bengal, Metanyl Yellow, Timor Sulfophthalene, Xylenol Blue, Methyl Orange, and Para. Methyl Red, Congofred, Benzopurpurin 4B, α-Naftil Red, Nile Blue 2B, Nile Blue A, Methyl Violet, Malakite Green, Parafuxin, Victoria Pure Blue-Naphthalene Sulfonate, Victoria Pure Blue BOH (Hodogaya Chemical Industry) (Made by Orient Chemical Industry Co., Ltd.), Oil Blue # 603 (Made by Orient Chemical Industry Co., Ltd.), Oil Pink # 312 (Made by Orient Chemical Industry Co., Ltd.), Oil Red 5B (Made by Orient Chemical Industry Co., Ltd.), Oil Scarlet # 308 (manufactured by Orient Chemical Industry Co., Ltd.), Oil Red OG (manufactured by Orient Chemical Industry Co., Ltd.), Oil Red RR (manufactured by Orient Chemical Industry Co., Ltd.), Oil Green # 502 (manufactured by Orient Chemical Industry Co., Ltd.) , Spiron Red BEH Special (manufactured by Hodoya Chemical Industry Co., Ltd.), m-cresol purple, cresol red, rhodamine B, rhodamine 6G, sulfolodamine B, auramine, 4-p-diethylaminophenyliminonaphthoquinone, 2-carboxyanilino- 4-p-diethylaminophenyliminonaphthoquinone, 2-carboxystearylamino-4-p-N, N-bis (hydroxyethyl) amino-phenyliminonaphthoquinone, 1-phenyl-3-methyl-4-p-diethylaminophenylimino- Dyes such as 5-pyrazolone, 1-β-naphthyl-4-p-diethylaminophenylimino-5-pyrazolone, p, p', p "-hexamethyltriaminotriphenylmethane (leucocrystal violet), Pergascript Blue SRB ( Leuco compounds such as (manufactured by Ciba Geigy) can be mentioned.
 色素Bは、1種単独で使用しても、2種以上を使用してもよい。
 熱可塑性樹脂層が色素Bを含有する場合、色素Bの含有量は、露光部及び非露光部の視認性の観点から、熱可塑性樹脂層の全質量に対し、0.01質量%以上であることが好ましく、0.02質量%~6質量%であることがより好ましい。
The dye B may be used alone or in combination of two or more.
When the thermoplastic resin layer contains the dye B, the content of the dye B is 0.01% by mass or more with respect to the total mass of the thermoplastic resin layer from the viewpoint of visibility of the exposed portion and the non-exposed portion. It is preferable, and it is more preferable that it is 0.02% by mass to 6% by mass.
 (光酸発生剤または光塩基発生剤)
 熱可塑性樹脂層は、露光部と非露光部の視認性を向上する理由から、色素Bと併用して光酸発生剤または光塩基発生剤を含むことが好ましい。より好ましい態様は、酸反応性色素と光酸発生剤とを含む態様である。
(Photoacid generator or photobase generator)
The thermoplastic resin layer preferably contains a photoacid generator or a photobase generator in combination with the dye B for the reason of improving the visibility of the exposed portion and the non-exposed portion. A more preferred embodiment is one comprising an acid-reactive dye and a photoacid generator.
 本開示で使用される光酸発生剤または光塩基発生剤としては、紫外線、遠紫外線、X線、電子線等の活性光線を照射することにより酸または塩基を発生することができる化合物である。
 本開示で使用される光酸発生剤または光塩基発生剤としては、波長300nm以上、好ましくは波長300nm~450nmの活性光線に感応し、酸または塩基を発生する化合物が好ましいが、その化学構造は制限されない。また、波長300nm以上の活性光線に直接感応しない光酸発生剤または光塩基発生剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸または塩基を発生する化合物であれば、増感剤と組み合わせて好ましく用いることができる。
The photoacid generator or photobase generator used in the present disclosure is a compound capable of generating an acid or a base by irradiating with active rays such as ultraviolet rays, far ultraviolet rays, X-rays, and electron beams.
As the photoacid generator or photobase generator used in the present disclosure, a compound that is sensitive to active light having a wavelength of 300 nm or more, preferably a wavelength of 300 nm to 450 nm and generates an acid or a base is preferable, but the chemical structure thereof is Not limited. Further, a photoacid generator or a photobase generator that is not directly sensitive to active light having a wavelength of 300 nm or more is also a compound that is sensitive to active light having a wavelength of 300 nm or more and generates an acid or a base when used in combination with a sensitizer. If there is, it can be preferably used in combination with a sensitizer.
 光酸発生剤としては、イオン性光酸発生剤及び非イオン性光酸発生剤を挙げることができる。
 イオン性光酸発生剤の例として、ジアリールヨードニウム塩類及びトリアリールスルホニウム塩類等のオニウム塩化合物、第四級アンモニウム塩類等を挙げることができる。これらのうち、オニウム塩化合物が好ましく、トリアリールスルホニウム塩類及びジアリールヨードニウム塩類が特に好ましい。
 イオン性光酸発生剤としては、特開2014-85643号公報の段落0114~段落0133に記載のイオン性光酸発生剤も好ましく用いることができる。
 非イオン性光酸発生剤の例としては、トリクロロメチル-s-トリアジン類、ジアゾメタン化合物、イミドスルホネート化合物、及び、オキシムスルホネート化合物などを挙げることができる。トリクロロメチル-s-トリアジン類、ジアゾメタン化合物及びイミドスルホネート化合物の具体例としては、特開2011-221494号公報の段落0083~段落0088に記載の化合物が例示できる。
 これらの中でも、感度、解像性、及び、密着性の観点から、光酸発生剤がオキシムスルホネート化合物であることが好ましい。
Examples of the photoacid generator include an ionic photoacid generator and a nonionic photoacid generator.
Examples of the ionic photoacid generator include onium salt compounds such as diaryliodonium salts and triarylsulfonium salts, and quaternary ammonium salts. Of these, onium salt compounds are preferable, and triarylsulfonium salts and diaryliodonium salts are particularly preferable.
As the ionic photoacid generator, the ionic photoacid generator described in paragraphs 0114 to 0133 of JP-A-2014-85643 can also be preferably used.
Examples of the nonionic photoacid generator include trichloromethyl-s-triazines, diazomethane compounds, imide sulfonate compounds, oxime sulfonate compounds and the like. Specific examples of the trichloromethyl-s-triazines, the diazomethane compound and the imide sulfonate compound include the compounds described in paragraphs 0083 to 0088 of JP2011-221494.
Among these, from the viewpoint of sensitivity, resolution, and adhesion, the photoacid generator is preferably an oxime sulfonate compound.
 オキシムスルホネート化合物としては、国際公開第2018/179640号の段落0084~段落0088に記載されたものを好適に用いることができる。 As the oxime sulfonate compound, those described in paragraphs 0084 to 0088 of International Publication No. 2018/179640 can be preferably used.
 熱可塑性樹脂層は、光酸発生剤または光塩基発生剤を1種単独で使用しても、2種以上を使用してもよい。 As the thermoplastic resin layer, one type of photoacid generator or photobase generator may be used alone, or two or more types may be used.
 (界面活性剤)
 熱可塑性樹脂層は、厚さ均一性の観点から、界面活性剤を含有することが好ましい。
 界面活性剤としては、例えば、アニオン性、カチオン性、ノニオン性(非イオン性)、及び、両性界面活性剤が挙げられる。好ましい界面活性剤はノニオン性界面活性剤である。
 ノニオン性界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、シリコーン系界面活性剤、フッ素系界面活性剤を挙げることができ、フッ素系界面活性剤を好ましく用いることができる。
(Surfactant)
The thermoplastic resin layer preferably contains a surfactant from the viewpoint of thickness uniformity.
Examples of the surfactant include anionic, cationic, nonionic (nonionic) and amphoteric surfactants. Preferred surfactants are nonionic surfactants.
Examples of nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkylphenyl ethers, polyoxyethylene glycol higher fatty acid diesters, silicone-based surfactants, and fluorine-based surfactants. Therefore, a fluorine-based surfactant can be preferably used.
 界面活性剤としては、例えば、国際公開第2018/179640号の段落0120~段落0125、特許第4502784号公報の段落0017、および、特開2009-237362号公報の段落0060~段落0071に記載の界面活性剤を用いることができる。
 また、界面活性剤の市販品としては、例えば、メガファックF-552又はF-554(以上、DIC(株)製)を用いることができる。
 熱可塑性樹脂層が界面活性剤を含有する場合、界面活性剤の含有量は、熱可塑性樹脂層の全質量に対し、0.001質量%~10質量%であることが好ましく、0.01質量%~3質量%であることがより好ましい。
 熱可塑性樹脂層は、界面活性剤を1種単独で使用しても、2種以上を使用してもよい。
Examples of the surfactant include the interfaces described in paragraphs 0120 to 0125 of International Publication No. 2018/179640, paragraphs 0017 of Japanese Patent No. 4502784, and paragraphs 0060 to 0071 of Japanese Patent Application Laid-Open No. 2009-237362. Activators can be used.
Further, as a commercially available product of the surfactant, for example, Megafuck F-552 or F-554 (all manufactured by DIC Corporation) can be used.
When the thermoplastic resin layer contains a surfactant, the content of the surfactant is preferably 0.001% by mass to 10% by mass, preferably 0.01% by mass, based on the total mass of the thermoplastic resin layer. More preferably, it is% to 3% by mass.
As the thermoplastic resin layer, one type of surfactant may be used alone, or two or more types may be used.
 また、熱可塑性樹脂層には、上述した以外のその他の添加剤を含有していてもよい。その他の添加剤としては、特に制限はなく、公知の添加剤を用いることができる。
 更に、熱可塑性樹脂層の好ましい態様については、特開2014-85643号公報の段落0189~段落0193を参照することもできる。
Further, the thermoplastic resin layer may contain other additives other than those described above. The other additives are not particularly limited, and known additives can be used.
Further, for a preferred embodiment of the thermoplastic resin layer, paragraphs 0189 to 0193 of JP-A-2014-85643 can also be referred to.
 熱可塑性樹脂層の厚さは、感光性転写部材の現像速度に優れ、解像性がさらに良好となる理由から、18μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることが更に好ましく、6μm以下であることが特に好ましい。熱可塑性樹脂層が厚すぎると現像に時間がかかるため、形成されたパターンとパターンの間に残渣が残り、解像性が低下することがある。下限としては、感光性転写部材の高速でのラミネート性がさらに優れる理由から、0.5μm以上であることが好ましい。
 熱可塑性樹脂層の厚さは、上述した仮支持体の厚さと同様の方法により測定することができる。
The thickness of the thermoplastic resin layer is preferably 18 μm or less, more preferably 15 μm or less, and more preferably 10 μm or less, for the reason that the developing speed of the photosensitive transfer member is excellent and the resolution is further improved. It is more preferably present, and particularly preferably 6 μm or less. If the thermoplastic resin layer is too thick, it takes a long time to develop, so that a residue may remain between the formed patterns and the resolution may be deteriorated. The lower limit is preferably 0.5 μm or more because the photosensitive transfer member is more excellent in laminating property at high speed.
The thickness of the thermoplastic resin layer can be measured by the same method as the thickness of the temporary support described above.
 70℃において、熱可塑性樹脂層の粘度は、上述した感光性樹脂層の粘度よりも低いことが好ましい。70℃において、熱可塑性樹脂層の粘度が、感光性樹脂層の粘度よりも低いと、感光性樹脂層が変形することなく熱可塑性樹脂層が変形して基材に追従できるので、解像性および高速でのラミネート性がより優れる。
 70℃における、熱可塑性樹脂層の粘度、および、後述する感光性樹脂層の粘度は、レオメータを用いて、以下の方法により測定した値を採用する。
 まず、感光性転写部材から熱可塑性樹脂層または感光性樹脂層を試料として取り出す。
 次に、ペルチェプレート上に試料を配置し、20mmfのパラレルプレートおよびペルチェプレートのGapを0.25~0.40mmに設定する。90℃±5℃で試料を溶解または軟化させた後、降温速度5℃/minで50℃まで冷却し、Gap一定モードで温度50~100℃、昇温速度5℃/min、周波数1Hz、歪み0.5%の条件で試料を昇温させ、粘度を測定する。
 熱可塑性樹脂層の粘度(以下、「粘度C」と略す。)と感光性樹脂層の粘度(以下、「粘度A」と略す。)との比率(粘度A/粘度C)は1以上が好ましく、1~10がより好ましく、1~5が更に好ましい。
At 70 ° C., the viscosity of the thermoplastic resin layer is preferably lower than the viscosity of the photosensitive resin layer described above. When the viscosity of the thermoplastic resin layer is lower than the viscosity of the photosensitive resin layer at 70 ° C., the thermoplastic resin layer is deformed without being deformed and can follow the substrate, so that the resolution is high. And better laminating properties at high speeds.
For the viscosity of the thermoplastic resin layer at 70 ° C. and the viscosity of the photosensitive resin layer described later, values measured by the following method using a rheometer are adopted.
First, the thermoplastic resin layer or the photosensitive resin layer is taken out as a sample from the photosensitive transfer member.
Next, the sample is placed on the Peltier plate, and the Gap of the 20 mmf parallel plate and the Peltier plate is set to 0.25 to 0.40 mm. After the sample is melted or softened at 90 ° C ± 5 ° C, it is cooled to 50 ° C at a temperature lowering rate of 5 ° C / min, and in Gap constant mode, the temperature is 50 to 100 ° C, the temperature rise rate is 5 ° C / min, the frequency is 1 Hz, and distortion. The temperature of the sample is raised under the condition of 0.5%, and the viscosity is measured.
The ratio (viscosity A / viscosity C) of the viscosity of the thermoplastic resin layer (hereinafter abbreviated as "viscosity C") to the viscosity of the photosensitive resin layer (hereinafter abbreviated as "viscosity A") is preferably 1 or more. 1 to 10 is more preferable, and 1 to 5 is even more preferable.
<水溶性樹脂層>
 本発明においては、上記中間層が、水溶性樹脂層を有していることが好ましく、熱可塑性樹脂層と感光性樹脂層とが混合することを抑止する理由から、熱可塑性樹脂層と感光性樹脂層との間に水溶性樹脂層を有していることがより好ましい。
<Water-soluble resin layer>
In the present invention, it is preferable that the intermediate layer has a water-soluble resin layer, and the thermoplastic resin layer and the photosensitive resin layer are photosensitive for the reason of suppressing the mixing of the thermoplastic resin layer and the photosensitive resin layer. It is more preferable to have a water-soluble resin layer between the resin layer and the resin layer.
 水溶性樹脂層は、水溶性樹脂を含有することが好ましい。
 ここで、水溶性とは、22℃においてpH7.0の水100gへの溶解度が0.1g以上であることを意味する。
 水溶性樹脂としては、例えば、ポリビニルアルコール系樹脂、ポリビニルピロリドン系樹脂、セルロース系樹脂、アクリルアミド系樹脂、ポリエチレンオキサイド系樹脂、ゼラチン、ビニルエーテル系樹脂、ポリアミド樹脂、及び、これらの共重合体などの樹脂を用いて構成することができる。
 感光性転写部材を作製する際に、熱可塑性樹脂層と後述する水溶性樹脂層との成分が混合することを抑制する観点から、水溶性樹脂は、熱可塑性樹脂層に含まれる熱可塑性樹脂と異なる樹脂であることが好ましい。
 中でも、水溶性樹脂としては、酸素遮断性、および、隣接する層との成分混合を抑制する観点から、ポリビニルアルコールを含有することが好ましく、ポリビニルアルコール、及び、ポリビニルピロリドンを含有することが特に好ましい。
 水溶性樹脂層は、上記樹脂を1種単独で含有していても、2種以上を含有していてもよい。
The water-soluble resin layer preferably contains a water-soluble resin.
Here, water-soluble means that the solubility in 100 g of water having a pH of 7.0 at 22 ° C. is 0.1 g or more.
Examples of the water-soluble resin include polyvinyl alcohol-based resins, polyvinylpyrrolidone-based resins, cellulose-based resins, acrylamide-based resins, polyethylene oxide-based resins, gelatin, vinyl ether-based resins, polyamide resins, and resins such as copolymers thereof. Can be configured using.
From the viewpoint of suppressing the mixing of the components of the thermoplastic resin layer and the water-soluble resin layer described later when producing the photosensitive transfer member, the water-soluble resin is a thermoplastic resin contained in the thermoplastic resin layer. It is preferably a different resin.
Among them, the water-soluble resin preferably contains polyvinyl alcohol, and particularly preferably contains polyvinyl alcohol and polyvinylpyrrolidone, from the viewpoint of oxygen blocking property and suppressing component mixing with adjacent layers. ..
The water-soluble resin layer may contain the above-mentioned resin alone or in combination of two or more.
 水溶性樹脂層における水溶性樹脂の含有量は、特に制限はないが、酸素遮断性、および、隣接する層との成分混合を抑制する観点から、水溶性樹脂層の全質量に対し、60質量%~100質量%であることが好ましく、80質量%~100質量%であることがより好ましく、90質量%~100質量%であることが特に好ましい。
 水溶性樹脂層には、必要に応じて界面活性剤などの添加剤を添加してもよい。
The content of the water-soluble resin in the water-soluble resin layer is not particularly limited, but is 60 mass with respect to the total mass of the water-soluble resin layer from the viewpoint of oxygen blocking property and suppressing component mixing with the adjacent layer. It is preferably% to 100% by mass, more preferably 80% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
Additives such as a surfactant may be added to the water-soluble resin layer, if necessary.
 水溶性樹脂層の厚さは、仮支持体および中間層の合計の厚さが35μm以下になるように設定される厚さであればよいが、高速でのラミネート性がさらに良好となる理由から、5μm以下が好ましく、3μm以下がより好ましい。下限としては、特に限定されないが、0.1μm以上が好ましい。
 水溶性樹脂層の厚さは、上述した仮支持体の厚さと同様の方法により測定することができる。
The thickness of the water-soluble resin layer may be set so that the total thickness of the temporary support and the intermediate layer is 35 μm or less, but the laminating property at high speed is further improved. It is preferably 5 μm or less, and more preferably 3 μm or less. The lower limit is not particularly limited, but is preferably 0.1 μm or more.
The thickness of the water-soluble resin layer can be measured by the same method as the thickness of the temporary support described above.
〔感光性樹脂層〕
 本発明の感光性転写部材は、感光性樹脂層を有する。
 上記感光性樹脂層の厚さは5μm未満であればよいが、感光性転写部材の現像速度に優れ、解像性がさらに良好となる理由から、4μm以下が好ましく、3μm以下がより好ましい。下限としては、特に限定されないが、0.1μm以上が挙げられる。
[Photosensitive resin layer]
The photosensitive transfer member of the present invention has a photosensitive resin layer.
The thickness of the photosensitive resin layer may be less than 5 μm, but 4 μm or less is preferable, and 3 μm or less is more preferable, because the developing speed of the photosensitive transfer member is excellent and the resolution is further improved. The lower limit is not particularly limited, but may be 0.1 μm or more.
 感光性樹脂層は、特に制限はなく、公知の感光性樹脂層を用いることができるが、高速でのラミネート性がより優れることから、ネガ型感光性樹脂層であることが好ましい。
 ここで、ネガ型感光性樹脂層とは、露光により現像液に対する溶解性が低下する感光性樹脂層のこという。
The photosensitive resin layer is not particularly limited, and a known photosensitive resin layer can be used, but a negative photosensitive resin layer is preferable because the laminating property at high speed is more excellent.
Here, the negative type photosensitive resin layer refers to a photosensitive resin layer whose solubility in a developing solution is reduced by exposure.
 感光性樹脂層は、パターン形成性の観点から、重合性化合物、酸基を有する重合体および光重合開始剤を有することが好ましい。
 感光性樹脂層としては、例えば、特開2016-224162号公報に記載の感光性樹脂層を用いてもよい。
From the viewpoint of pattern forming property, the photosensitive resin layer preferably has a polymerizable compound, a polymer having an acid group, and a photopolymerization initiator.
As the photosensitive resin layer, for example, the photosensitive resin layer described in JP-A-2016-224162 may be used.
(重合性化合物)
 感光性樹脂層は、重合性化合物を含有することが好ましい。
 重合性化合物は、ネガ型感光性樹脂層の感光性(すなわち、光硬化性)および硬化膜の強度に寄与する成分である。
 重合性化合物としては、エチレン性不飽和化合物が好ましく、2官能以上のエチレン性不飽和化合物であることがより好ましい。
 ここで、エチレン性不飽和化合物とは、1つ以上のエチレン性不飽和基を有する化合物であり、2官能以上のエチレン性不飽和化合物とは、一分子中にエチレン性不飽和基を2つ以上有する化合物を意味する。
 エチレン性不飽和基としては、(メタ)アクリロイル基がより好ましい。
 エチレン性不飽和化合物としては、(メタ)アクリレート化合物が好ましい。
(Polymerizable compound)
The photosensitive resin layer preferably contains a polymerizable compound.
The polymerizable compound is a component that contributes to the photosensitivity (that is, photocurability) of the negative photosensitive resin layer and the strength of the cured film.
As the polymerizable compound, an ethylenically unsaturated compound is preferable, and a bifunctional or higher functional ethylenically unsaturated compound is more preferable.
Here, the ethylenically unsaturated compound is a compound having one or more ethylenically unsaturated groups, and the bifunctional or higher functional ethylenically unsaturated compound has two ethylenically unsaturated groups in one molecule. It means a compound having the above.
As the ethylenically unsaturated group, a (meth) acryloyl group is more preferable.
As the ethylenically unsaturated compound, a (meth) acrylate compound is preferable.
 2官能エチレン性不飽和化合物としては、特に制限はなく、公知の化合物の中から適宜選択できる。具体的には、トリシクロデカンジメタノールジアクリレート(A-DCP、新中村化学工業(株)製)、トリシクロデカンジメタノールジメタクリレート(DCP、新中村化学工業(株)製)、1,9-ノナンジオールジアクリレート(A-NOD-N、新中村化学工業(株)製)、1,6-ヘキサンジオールジアクリレート(A-HD-N、新中村化学工業(株)製)等が挙げられる。
 また、2官能エチレン性不飽和化合物としては、ビスフェノール構造を有する2官能エチレン性不飽和化合物も好適に用いられる。
 ビスフェノール構造を有する2官能エチレン性不飽和化合物としては、特開2016-224162号公報の段落0072~段落0080に記載の化合物が挙げられる。
 具体的には、アルキレンオキサイド変性ビスフェノールAジ(メタ)アクリレート等が挙げられ、2,2-ビス(4-(メタクリロキシジエトキシ)フェニル)プロパン、2,2-ビス(4-(メタクリロキシエトキシプロポキシ)フェニル)プロパン、ビスフェノールAの両端にそれぞれ平均5モルずつのエチレンオキサイドを付加したポリエチレングリコールのジメタクリレート(BPE-500、新中村化学工業(株)製)等が好ましく挙げられる。
The bifunctional ethylenically unsaturated compound is not particularly limited and may be appropriately selected from known compounds. Specifically, tricyclodecanedimethanol diacrylate (A-DCP, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), tricyclodecanedimethanol dimethacrylate (DCP, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), 1,9 -Nonanediol diacrylate (A-NOD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), 1,6-hexanediol diacrylate (A-HD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) and the like can be mentioned. ..
Further, as the bifunctional ethylenically unsaturated compound, a bifunctional ethylenically unsaturated compound having a bisphenol structure is also preferably used.
Examples of the bifunctional ethylenically unsaturated compound having a bisphenol structure include the compounds described in paragraphs 0072 to 0080 of JP-A-2016-224162.
Specific examples thereof include alkylene oxide-modified bisphenol A di (meth) acrylate, and include 2,2-bis (4- (methacryloxydiethoxy) phenyl) propane and 2,2-bis (4- (methacryloxyethoxy) ethoxy). Preferable examples thereof include dimethacrylate (BPE-500, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) of polyethylene glycol in which an average of 5 mol of ethylene oxide is added to both ends of propoxy) phenyl) propane and bisphenol A.
 3官能以上のエチレン性不飽和化合物としては、特に制限はなく、公知の化合物の中から適宜選択できる。例えば、ジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート、ペンタエリスリトール(トリ/テトラ)(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、イソシアヌル酸(メタ)アクリレート、グリセリントリ(メタ)アクリレート骨格の(メタ)アクリレート化合物等が挙げられる。 The trifunctional or higher functional ethylenically unsaturated compound is not particularly limited and can be appropriately selected from known compounds. For example, dipentaerythritol (tri / tetra / penta / hexa) (meth) acrylate, pentaerythritol (tri / tetra) (meth) acrylate, trimethylolpropane tri (meth) acrylate, dimethylolpropane tetra (meth) acrylate, isocyanul. Examples thereof include acid (meth) acrylate and (meth) acrylate compounds having a glycerin tri (meth) acrylate skeleton.
 ここで、「(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート」は、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、及びヘキサ(メタ)アクリレートを包含する概念であり、「(トリ/テトラ)(メタ)アクリレート」は、トリ(メタ)アクリレート及びテトラ(メタ)アクリレートを包含する概念である。 Here, "(tri / tetra / penta / hexa) (meth) acrylate" is a concept including tri (meth) acrylate, tetra (meth) acrylate, penta (meth) acrylate, and hexa (meth) acrylate. , "(Tri / tetra) (meth) acrylate" is a concept that includes tri (meth) acrylate and tetra (meth) acrylate.
 エチレン性不飽和化合物としては、カプロラクトン変性(メタ)アクリレート化合物(日本化薬(株)製KAYARAD(登録商標)DPCA-20、新中村化学工業(株)製A-9300-1CL等)、アルキレンオキサイド変性(メタ)アクリレート化合物(日本化薬(株)製KAYARAD RP-1040、新中村化学工業(株)製ATM-35E、A-9300、ダイセル・オルネクス社製EBECRYL(登録商標) 135等)、エトキシル化グリセリントリアクリレート(新中村化学工業(株)製A-GLY-9E等)、アロニックス(登録商標)TO-2349(東亞合成(株)製)、アロニックスM-520(東亞合成(株)製)、アロニックスM-270(東亞合成(株)製)、又は、アロニックスM-510(東亞合成(株)製)等が挙げられる。
 エチレン性不飽和化合物としては、ウレタン(メタ)アクリレート化合物(好ましくは3官能以上のウレタン(メタ)アクリレート化合物)も用いることができ、例えば、8UX-015A(大成ファインケミカル(株)製)、UA-32P(新中村化学工業(株)製)、UA-1100H(新中村化学工業(株)製)等が挙げられる。
 また、エチレン性不飽和化合物としては、特開2004-239942号公報の段落0025~段落0030に記載の酸基を有する重合性化合物を用いてもよい。
Examples of ethylenically unsaturated compounds include caprolactone-modified (meth) acrylate compounds (KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku Co., Ltd., A-9300-1CL manufactured by Shin Nakamura Chemical Industry Co., Ltd., etc.) and alkylene oxides. Modified (meth) acrylate compounds (KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E, A-9300 manufactured by Shin Nakamura Chemical Industry Co., Ltd., EBECRYL (registered trademark) 135 manufactured by Daicel Ornex Co., Ltd., etc.), ethoxyl Glycerin triacrylate (A-GLY-9E manufactured by Shin Nakamura Chemical Industry Co., Ltd.), Aronix (registered trademark) TO-2349 (manufactured by Toa Synthetic Co., Ltd.), Aronix M-520 (manufactured by Toa Synthetic Co., Ltd.) , Aronix M-270 (manufactured by Toa Synthetic Co., Ltd.), Aronix M-510 (manufactured by Toa Synthetic Co., Ltd.), and the like.
As the ethylenically unsaturated compound, a urethane (meth) acrylate compound (preferably a trifunctional or higher functional urethane (meth) acrylate compound) can also be used. For example, 8UX-015A (manufactured by Taisei Fine Chemical Industry Co., Ltd.), UA- Examples thereof include 32P (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) and UA-1100H (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.).
Further, as the ethylenically unsaturated compound, a polymerizable compound having an acid group described in paragraphs 0025 to 0030 of JP-A-2004-239942 may be used.
 本開示に用いられる重合性化合物の重量平均分子量(Mw)としては、200~3,000が好ましく、280~2,200がより好ましく、300~2,200が更に好ましい。 The weight average molecular weight (Mw) of the polymerizable compound used in the present disclosure is preferably 200 to 3,000, more preferably 280 to 2,200, and even more preferably 300 to 2,200.
 重合性化合物は、1種単独で使用しても、2種以上を併用してもよい。
 感光性樹脂層が重合性化合物を含有する場合、重合性化合物の含有量は、感光性樹脂層の全質量に対し、10質量%~70質量%が好ましく、20質量%~60質量%がより好ましく、20質量%~50質量%が更に好ましい。
The polymerizable compound may be used alone or in combination of two or more.
When the photosensitive resin layer contains a polymerizable compound, the content of the polymerizable compound is preferably 10% by mass to 70% by mass, more preferably 20% by mass to 60% by mass, based on the total mass of the photosensitive resin layer. It is preferable, and more preferably 20% by mass to 50% by mass.
(酸基を有する重合体)
 感光性樹脂層は、酸基を有する重合体を含有することが好ましい。
 感光性樹脂層に含まれる酸基を有する重合体の好ましい形態は、上述の熱可塑性樹脂層が有する熱可塑性樹脂として例示した酸基を有する重合体と同様のものが挙げられる。
(Polymer having an acid group)
The photosensitive resin layer preferably contains a polymer having an acid group.
A preferred form of the polymer having an acid group contained in the photosensitive resin layer is the same as the polymer having an acid group exemplified as the thermoplastic resin having the above-mentioned thermoplastic resin layer.
 感光性樹脂層は、酸基を有する重合体を、1種単独で含んでいてもよいし、2種以上を含んでいてもよい。
 感光性樹脂層が酸基を有する重合体を含有する場合、酸基を有する重合体の含有量は、感光性の観点から、感光性樹脂層の全質量に対し、10質量%以上90質量%以下であることが好ましく、20質量%以上80質量%以下であることがより好ましく、30質量%以上70質量%以下であることが更に好ましい。
The photosensitive resin layer may contain one kind of polymer having an acid group alone, or may contain two or more kinds of polymers.
When the photosensitive resin layer contains a polymer having an acid group, the content of the polymer having an acid group is 10% by mass or more and 90% by mass with respect to the total mass of the photosensitive resin layer from the viewpoint of photosensitivity. It is preferably 20% by mass or more, more preferably 80% by mass or less, and further preferably 30% by mass or more and 70% by mass or less.
(光重合開始剤)
 感光性樹脂層は、光重合開始剤を含むことが好ましい。
 光重合開始剤は、紫外線、可視光線等の活性光線を受けて、重合性化合物の重合を開始する。
 光重合開始剤としては、特に制限はなく、公知の光重合開始剤を用いることができる。
 光重合開始剤としては、光ラジカル重合開始剤、及び、光カチオン重合開始剤が挙げられ、光ラジカル重合開始剤であることが好ましい。
 更に、感光性樹脂層における光重合開始剤としては、感光性および解像性の観点から、2,4,5-トリアリールイミダゾール二量体及びその誘導体からなる群より選択される少なくとも1種を含むことが好ましい。
(Photopolymerization initiator)
The photosensitive resin layer preferably contains a photopolymerization initiator.
The photopolymerization initiator receives active light such as ultraviolet rays and visible light to start the polymerization of the polymerizable compound.
The photopolymerization initiator is not particularly limited, and a known photopolymerization initiator can be used.
Examples of the photopolymerization initiator include a photoradical polymerization initiator and a photocationic polymerization initiator, and a photoradical polymerization initiator is preferable.
Further, as the photopolymerization initiator in the photosensitive resin layer, at least one selected from the group consisting of 2,4,5-triarylimidazole dimer and its derivative is selected from the viewpoint of photosensitivity and resolvability. It is preferable to include it.
 また、光重合開始剤としては、例えば、特開2011-95716号公報の段落0031~0042、及び、特開2015-014783号公報の段落0064~0081に記載された重合開始剤を用いてもよい。 Further, as the photopolymerization initiator, for example, the polymerization initiators described in paragraphs 0031 to 0042 of JP2011-95716A and paragraphs 0064 to 0081 of JP2015-014783 may be used. ..
 光重合開始剤の市販品としては、1-[4-(フェニルチオ)]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)〔商品名:IRGACURE(登録商標) OXE-01、BASF社製〕、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)〔商品名:IRGACURE(登録商標) OXE-02、BASF社製〕、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン〔商品名:IRGACURE(登録商標) 379EG、BASF社製〕、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン〔商品名:IRGACURE(登録商標) 907、BASF社製〕、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン〔商品名:IRGACURE(登録商標) 127、BASF社製〕、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1〔商品名:IRGACURE(登録商標) 369、BASF社製〕、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン〔商品名:IRGACURE(登録商標) 1173、BASF社製〕、1-ヒドロキシシクロヘキシルフェニルケトン〔商品名:IRGACURE(登録商標) 184、BASF社製〕、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン〔商品名:IRGACURE 651、BASF社製〕等、オキシムエステル系の〔商品名:Lunar(登録商標) 6、DKSHジャパン(株)製〕などが挙げられる。 Commercially available photopolymerization initiators include 1- [4- (phenylthio)] -1,2-octanedione-2- (O-benzoyloxime) [trade name: IRGACURE (registered trademark) OXE-01, BASF). Made], 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl] etanone-1- (O-acetyloxime) [trade name: IRGACURE (registered trademark) OXE-02, BASF], 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone [trade name: IRGACURE (registered trademark) 379EG , BASF], 2-Methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one [trade name: IRGACURE (registered trademark) 907, BASF], 2-hydroxy-1- {4- [4- (2-Hydroxy-2-methylpropionyl) benzyl] phenyl} -2-methylpropan-1-one [trade name: IRGACURE (registered trademark) 127, manufactured by BASF], 2-benzyl-2 -Dimethylamino-1- (4-morpholinophenyl) butanone-1 [trade name: IRGACURE (registered trademark) 369, manufactured by BASF], 2-hydroxy-2-methyl-1-phenylpropan-1-one [commodity] Name: IRGACURE (registered trademark) 1173, manufactured by BASF], 1-hydroxycyclohexylphenylketone [trade name: IRGACURE (registered trademark) 184, manufactured by BASF], 2,2-dimethoxy-1,2-diphenylethane-1 -On [trade name: IRGACURE 651, manufactured by BASF] and the like, oxime ester-based [trade name: Lunar (registered trademark) 6, manufactured by DKSH Japan Co., Ltd.] and the like can be mentioned.
 感光性樹脂層は、光重合開始剤を、1種単独で含んでいてもよいし、2種以上を含んでいてもよい。
 感光性樹脂層が光重合開始剤を含有する場合、光重合開始剤の含有量は、特に制限はないが、感光性樹脂層の全質量に対し、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上が更に好ましい。
 また、光重合開始剤の含有量は、感光性樹脂層の全質量に対し、10質量%以下が好ましく、5質量%以下がより好ましい。
The photosensitive resin layer may contain one type of photopolymerization initiator alone, or may contain two or more types of photopolymerization initiators.
When the photosensitive resin layer contains a photopolymerization initiator, the content of the photopolymerization initiator is not particularly limited, but is preferably 0.1% by mass or more based on the total mass of the photosensitive resin layer. 5% by mass or more is more preferable, and 1.0% by mass or more is further preferable.
The content of the photopolymerization initiator is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the photosensitive resin layer.
(その他の添加剤)
 感光性樹脂層は、上記成分以外にも、必要に応じて公知の添加剤を含むことができる。
 その他の添加剤としては、公知のものを用いることができ、例えば、重合禁止剤、可塑剤、増感剤、水素供与体、ヘテロ環状化合物、発色剤、消色剤、溶媒等が挙げられる。
 重合禁止剤としては、例えば、特許第4502784号公報の段落0018に記載された熱重合防止剤を用いることができる。中でも、フェノチアジン、フェノキサジン又は4-メトキシフェノールを好適に用いることができる。
 感光性樹脂層が重合禁止剤を含有する場合、重合禁止剤の含有量は、感光性樹脂層の全質量に対して、0.01質量%~3質量%が好ましく、0.01質量%~1質量%がより好ましく、0.01質量%~0.8質量%が更に好ましい。
 増感剤としては、公知の増感剤、染料、又は顔料などが挙げられる。
 可塑剤及びヘテロ環状化合物としては、国際公開第2018/179640号の段落0097~段落0103及び段落0111~段落0118に記載されたものが挙げられる。
 発色剤としては、例えば、特開2007-178459号公報の段落0417に記載された発色剤を用いることができ、ロイコクリスタルバイオレット、クリスタルバイオレットラクトン、ビクトリアピュアブルー-ナフタレンスルホン酸塩等がより好ましく用いられる。
 感光性樹脂層が発色剤を含有する場合、発色剤の含有量は、露光部と非露光部の視認性および解像性の観点から、感光性樹脂層の全質量に対し、0.1質量%~10質量%であることが好ましく、0.1質量%~5質量%であることがより好ましく、0.1質量%~1質量%であることが特に好ましい。
(Other additives)
In addition to the above components, the photosensitive resin layer may contain known additives, if necessary.
As other additives, known ones can be used, and examples thereof include polymerization inhibitors, plasticizers, sensitizers, hydrogen donors, heterocyclic compounds, color formers, decolorants, solvents and the like.
As the polymerization inhibitor, for example, the thermal polymerization inhibitor described in paragraph 0018 of Japanese Patent No. 4502784 can be used. Among them, phenothiazine, phenothiazine or 4-methoxyphenol can be preferably used.
When the photosensitive resin layer contains a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.01% by mass to 3% by mass, preferably 0.01% by mass or more, based on the total mass of the photosensitive resin layer. 1% by mass is more preferable, and 0.01% by mass to 0.8% by mass is further preferable.
Examples of the sensitizer include known sensitizers, dyes, pigments and the like.
Examples of the plasticizer and the heterocyclic compound include those described in paragraphs 097 to 0103 and 0111 to 0118 of International Publication No. 2018/179640.
As the color former, for example, the color former described in paragraph 0417 of JP-A-2007-178459 can be used, and leuco crystal violet, crystal violet lactone, Victoria pure blue-naphthalene sulfonate and the like are more preferably used. Be done.
When the photosensitive resin layer contains a coloring agent, the content of the coloring agent is 0.1 mass with respect to the total mass of the photosensitive resin layer from the viewpoint of visibility and resolution of the exposed portion and the non-exposed portion. It is preferably% to 10% by mass, more preferably 0.1% by mass to 5% by mass, and particularly preferably 0.1% by mass to 1% by mass.
 また、本開示における感光性樹脂層には、金属酸化物粒子、酸化防止剤、分散剤、酸増殖剤、現像促進剤、導電性繊維、着色剤、熱ラジカル重合開始剤、熱酸発生剤、紫外線吸収剤、増粘剤、架橋剤、及び、有機又は無機の沈殿防止剤などの公知の添加剤を更に加えることができる。
 その他の成分の好ましい態様については特開2014-85643号公報の段落0165~段落0184にそれぞれ記載があり、この公報の内容は本明細書に組み込まれる。
In addition, the photosensitive resin layer in the present disclosure includes metal oxide particles, antioxidants, dispersants, acid growth agents, development accelerators, conductive fibers, colorants, thermal radical polymerization initiators, thermal acid generators, etc. Further known additives such as UV absorbers, thickeners, crosslinkers, and organic or inorganic anti-precipitation agents can be added.
Preferred embodiments of other components are described in paragraphs 0165 to 0184 of JP2014-85643, respectively, and the contents of this publication are incorporated in the present specification.
〔カバーフィルム〕
 本開示に係る感光性転写部材は、感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面に、カバーフィルムを有することが好ましい。
 カバーフィルムとしては、樹脂フィルム、紙等が挙げられ、強度及び可撓性等の観点から、樹脂フィルムが特に好ましい。樹脂フィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられる。中でも、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルムが好ましい。
[Cover film]
The photosensitive transfer member according to the present disclosure preferably has a cover film on the surface opposite to the intermediate layer of the photosensitive resin layer of the photosensitive transfer member.
Examples of the cover film include a resin film and paper, and a resin film is particularly preferable from the viewpoint of strength, flexibility, and the like. Examples of the resin film include polyethylene film, polypropylene film, polyethylene terephthalate film, cellulose triacetate film, polystyrene film, polycarbonate film and the like. Of these, polyethylene film, polypropylene film, and polyethylene terephthalate film are preferable.
 カバーフィルムの厚さは、特に限定されず、例えば、1μm~2mmのものが好ましく挙げられる。 The thickness of the cover film is not particularly limited, and for example, one having a thickness of 1 μm to 2 mm is preferable.
〔その他の層〕
 本開示に係る感光性転写部材は、上述した以外の層(以下、「その他の層」と略す。)を有していてもよい。その他の層としては、コントラストエンハンスメント層、易剥離層、BARC層(下層反射防止膜)等を挙げることができる。
 コントラストエンハンスメント層の好ましい態様については国際公開第2018/179640号の段落0134に記載があり、内容は本明細書に組み込まれる。
[Other layers]
The photosensitive transfer member according to the present disclosure may have layers other than those described above (hereinafter, abbreviated as "other layers"). Examples of other layers include a contrast enhancement layer, an easily peelable layer, a BARC layer (lower layer antireflection film), and the like.
Preferred embodiments of the contrast enhancement layer are described in paragraph 0134 of WO 2018/179640, the contents of which are incorporated herein.
 ここで図1を参照して、本開示に係る感光性転写部材の層構成の一例を概略的に示す。
 図1に示す感光性転写部材100は、仮支持体10と、熱可塑性樹脂層12と、水溶性樹脂層14と、感光性樹脂層16と、カバーフィルム18とがこの順に積層されている。
図1において、中間層15は、熱可塑性樹脂層12と、水溶性樹脂層14とからなる層である。
Here, with reference to FIG. 1, an example of the layer structure of the photosensitive transfer member according to the present disclosure is schematically shown.
In the photosensitive transfer member 100 shown in FIG. 1, a temporary support 10, a thermoplastic resin layer 12, a water-soluble resin layer 14, a photosensitive resin layer 16, and a cover film 18 are laminated in this order.
In FIG. 1, the intermediate layer 15 is a layer composed of a thermoplastic resin layer 12 and a water-soluble resin layer 14.
[感光性転写部材の製造方法]
 本発明の感光性転写部材の製造方法は、特に制限はなく、公知の製造方法を用いることができる。
 具体的には、上述した各層の構成成分と溶媒とを混合して熱可塑性樹脂組成物などの組成物を調製し、仮支持体またはカバーフィルム上に、上記組成物を塗布することにより、仮支持体と、少なくとも熱可塑性樹脂層を有する中間層と、感光性樹脂層とをこの順に有する感光性転写部材を得ることができる。
 中でも、本開示に係る感光性転写部材の製造方法としては、熱可塑性樹脂組成物を仮支持体上に塗布および乾燥し熱可塑性樹脂層を形成する工程、水溶性樹脂組成物を熱可塑性樹脂層上に塗布および乾燥し水溶性樹脂層を形成する工程、並びに、感光性樹脂組成物を水溶性樹脂層上に塗布および乾燥し感光性樹脂層を形成する工程を含む方法が好ましく挙げられる。
 また、本開示に係る感光性転写部材の製造方法は、上記感光性樹脂層を形成する工程の後に、上記感光性樹脂層上にカバーフィルムを設ける工程を更に含むことが好ましい。
[Manufacturing method of photosensitive transfer member]
The method for producing the photosensitive transfer member of the present invention is not particularly limited, and a known production method can be used.
Specifically, a composition such as a thermoplastic resin composition is prepared by mixing the above-mentioned constituent components of each layer and a solvent, and the above composition is applied on a temporary support or a cover film to temporarily prepare the composition. It is possible to obtain a photosensitive transfer member having a support, an intermediate layer having at least a thermoplastic resin layer, and a photosensitive resin layer in this order.
Among them, as a method for producing a photosensitive transfer member according to the present disclosure, a step of applying a thermoplastic resin composition on a temporary support and drying it to form a thermoplastic resin layer, and a water-soluble resin composition being used as a thermoplastic resin layer. A method including a step of applying and drying on the water-soluble resin layer to form a water-soluble resin layer and a step of applying and drying the photosensitive resin composition on the water-soluble resin layer to form a photosensitive resin layer are preferably mentioned.
Further, the method for manufacturing a photosensitive transfer member according to the present disclosure preferably further includes a step of providing a cover film on the photosensitive resin layer after the step of forming the photosensitive resin layer.
[樹脂パターンの製造方法]
 本発明の樹脂パターンの製造方法は、本開示に係る感光性転写部材を用いた樹脂パターンの製造方法であれば、特に制限はないが、感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、導電層を有する基板に接触させて貼り合せる工程(以下、「貼り合せ工程」と略す。)と、上記感光性樹脂層をパターン露光する工程(以下、「露光工程」と略す。)と、露光された上記感光性樹脂層を現像して樹脂パターンを形成する工程(以下、「現像工程」と略す。)と、をこの順に含むことが好ましい。
 感光性転写部材がカバーフィルムを有する場合には、感光性樹脂層の中間層とは反対側の表面とは、カバーフィルムを剥がしたときに露出する感光性樹脂層の表面のことをいう。また、例えば、感光性樹脂層とカバーフィルムの間にBARC層を有する場合には、感光性樹脂層の中間層とは反対側の表面とは、カバーフィルムを剥がしたときに露出するBARC層の表面のことをいう。
[Manufacturing method of resin pattern]
The method for producing the resin pattern of the present invention is not particularly limited as long as it is the method for producing the resin pattern using the photosensitive transfer member according to the present disclosure, but the method is not particularly limited to that of the intermediate layer of the photosensitive resin layer of the photosensitive transfer member. Is a step of bringing the surface on the opposite side into contact with a substrate having a conductive layer and bonding them (hereinafter, abbreviated as "bonding step") and a step of pattern-exposing the photosensitive resin layer (hereinafter, "exposure step"). (Abbreviated as) and a step of developing the exposed photosensitive resin layer to form a resin pattern (hereinafter, abbreviated as “development step”) are preferably included in this order.
When the photosensitive transfer member has a cover film, the surface opposite to the intermediate layer of the photosensitive resin layer means the surface of the photosensitive resin layer exposed when the cover film is peeled off. Further, for example, when the BARC layer is provided between the photosensitive resin layer and the cover film, the surface on the side opposite to the intermediate layer of the photosensitive resin layer is the BARC layer exposed when the cover film is peeled off. It refers to the surface.
[回路配線の製造方法]
 本発明の回路配線の製造方法は、本開示に係る感光性転写部材を用いる方法であればよいが、感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、導電層を有する基板に貼り合せる工程と、貼り合せた上記感光性転写部材における上記感光性樹脂層をパターン露光する工程と、パターン露光された上記感光性樹脂層を現像して樹脂パターンを形成する工程と、上記樹脂パターンが配置されていない領域における上記基板をエッチング処理する工程(以下、「エッチング工程」と略す。)と、をこの順に含むことが好ましい。
[Manufacturing method of circuit wiring]
The method for manufacturing the circuit wiring of the present invention may be any method using the photosensitive transfer member according to the present disclosure, but the surface of the photosensitive transfer member on the side opposite to the intermediate layer of the photosensitive resin layer is a conductive layer. A step of bonding the photosensitive resin layer to the substrate having the above, a step of pattern-exposing the photosensitive resin layer in the bonded photosensitive transfer member, and a step of developing the pattern-exposed photosensitive resin layer to form a resin pattern. It is preferable to include a step of etching the substrate in a region where the resin pattern is not arranged (hereinafter, abbreviated as "etching step") in this order.
〔貼り合せ工程〕
 本開示に係る樹脂パターンの製造方法、または、本開示に係る回路配線の製造方法は、感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、導電層を有する基板に接触させて貼り合せる工程(貼り合せ工程)を含むことが好ましい。
 上記貼り合せ工程においては、上記導電層と、上記感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面と、が接触するように圧着させることが好ましい。上記態様であると、露光及び現像後のパターン形成された感光性樹脂層を、導電層をエッチングする際のエッチングレジストとして好適に用いることができる。
 上記基板と上記感光性転写部材とを圧着する方法としては、特に制限はなく、公知の転写方法、及び、ラミネート方法を用いることができる。
 感光性転写部材の基板への貼り合せは、感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、基板に重ね、ロール等による加圧及び加熱することに行われることが好ましい。貼り合せには、ラミネーター、真空ラミネーター、及び、より生産性を高めることができるオートカットラミネーター等の公知のラミネーターを使用することができる。
 本開示に係る回路配線の製造方法は、ロールトゥロール方式により行われることが好ましい。そのため、基板を構成する基材は、樹脂フィルムであることが好ましい。
 以下、ロールトゥロール方式について説明する。
 ロールトゥロール方式とは、基板として、巻き取り及び巻き出しが可能な基板を用い、回路配線の製造方法に含まれるいずれかの工程の前に、基板又は基板を含む構造体を巻き出す工程(「巻き出し工程」ともいう。)と、いずれかの工程の後に、基材又は基板を含む構造体を巻き取る工程(「巻き取り工程」ともいう。)と、を含み、少なくともいずれかの工程(好ましくは、全ての工程)を、基材又は基板を含む構造体を搬送しながら行う方式をいう。
 巻き出し工程における巻き出し方法、及び巻き取り工程における巻取り方法としては、特に制限されず、ロールトゥロール方式を適用する製造方法において、公知の方法を用いればよい。
[Lasting process]
In the method for manufacturing a resin pattern according to the present disclosure or the method for manufacturing a circuit wiring according to the present disclosure, the surface of the photosensitive transfer member opposite to the intermediate layer of the photosensitive resin layer is formed on a substrate having a conductive layer. It is preferable to include a step of contacting and bonding (bonding step).
In the bonding step, it is preferable that the conductive layer and the surface of the photosensitive transfer member on the opposite side of the intermediate layer of the photosensitive resin layer are pressure-bonded so as to be in contact with each other. In the above aspect, the patterned photosensitive resin layer after exposure and development can be suitably used as an etching resist when etching the conductive layer.
The method of crimping the substrate and the photosensitive transfer member is not particularly limited, and a known transfer method and a laminating method can be used.
The bonding of the photosensitive transfer member to the substrate is performed by superimposing the surface of the photosensitive transfer member on the side opposite to the intermediate layer of the photosensitive resin layer on the substrate, pressurizing and heating with a roll or the like. Is preferable. For bonding, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator capable of further increasing productivity can be used.
The circuit wiring manufacturing method according to the present disclosure is preferably performed by a roll-to-roll method. Therefore, the base material constituting the substrate is preferably a resin film.
The roll-to-roll method will be described below.
The roll-to-roll method uses a substrate that can be wound and unwound as a substrate, and unwinds the substrate or a structure including the substrate before any of the steps included in the circuit wiring manufacturing method. A step of winding up a structure including a base material or a substrate (also referred to as a “winding step”) after any of the steps (also referred to as “unwinding step”), and at least one of the steps. (Preferably, all steps) refers to a method in which a base material or a structure including a substrate is transported.
The unwinding method in the unwinding step and the winding method in the winding step are not particularly limited, and a known method may be used in the manufacturing method to which the roll-to-roll method is applied.
 本開示に用いられる基板は、導電層を有する基板であることが好ましく、基材の表面に導電層を有する基板であることがより好ましい。
 基板は、ガラス、シリコン、フィルムなどの基材上に、導電層を有し、必要により任意の層が形成されてもよい。
 基板の好ましい態様としては、例えば、国際公開第2018/155193号の段落0140に記載があり、この内容は本明細書に組み込まれる。
The substrate used in the present disclosure is preferably a substrate having a conductive layer, and more preferably a substrate having a conductive layer on the surface of the base material.
The substrate has a conductive layer on a base material such as glass, silicon, or a film, and any layer may be formed if necessary.
Preferred embodiments of the substrate are described, for example, in paragraph 0140 of WO 2018/155193, the contents of which are incorporated herein.
 基材上に導電層を有する基板は、貼り合せ工程をロールトゥロール方式で行う観点から、フィルム基材であることが好ましい。本開示に係る回路配線の製造方法は、タッチパネル用の回路配線である場合、基材がシート状樹脂組成物であることが特に好ましい。 The substrate having a conductive layer on the substrate is preferably a film substrate from the viewpoint of performing the bonding step by a roll-to-roll method. In the circuit wiring manufacturing method according to the present disclosure, when the circuit wiring is for a touch panel, it is particularly preferable that the base material is a sheet-like resin composition.
 基板が有する導電層としては、導電性および細線形成性の観点から、金属層、導電性金属酸化物層、グラフェン層、カーボンナノチューブ層、及び、導電ポリマー層よりなる群から選ばれた少なくとも1種の層であることが好ましく、金属層であることがより好ましく、銅層、又は、銀層であることが特に好ましい。
 また、基材上に導電層を1層有していても、2層以上有していてもよい。導電層が2層以上の場合は、異なる材質の導電層を有することが好ましい。
 導電層の好ましい態様としては、例えば、国際公開第2018/155193号の段落0141に記載があり、この内容は本明細書に組み込まれる。
The conductive layer of the substrate is at least one selected from the group consisting of a metal layer, a conductive metal oxide layer, a graphene layer, a carbon nanotube layer, and a conductive polymer layer from the viewpoint of conductivity and fine wire forming property. It is preferably a layer of, more preferably a metal layer, and particularly preferably a copper layer or a silver layer.
Further, the base material may have one conductive layer or two or more conductive layers. When there are two or more conductive layers, it is preferable to have conductive layers made of different materials.
Preferred embodiments of the conductive layer are described, for example, in paragraph 0141 of WO 2018/155193, the contents of which are incorporated herein.
〔露光工程〕
 本開示に係る樹脂パターンの製造方法、または、本開示に係る回路配線の製造方法は、上記貼り合せ工程の後、上記感光性樹脂層をパターン露光する工程(露光工程)を含むことが好ましい。
[Exposure process]
The method for manufacturing a resin pattern according to the present disclosure or the method for manufacturing a circuit wiring according to the present disclosure preferably includes a step (exposure step) of pattern-exposing the photosensitive resin layer after the bonding step.
 本開示においてパターンの詳細な配置及び具体的サイズは特に制限されない。本開示に係る回路配線の製造方法により製造される回路配線を有する入力装置を備えた表示装置(例えばタッチパネル)の表示品質を高め、また、取り出し配線の占める面積をできるだけ小さくしたいことから、パターンの少なくとも一部(特にタッチパネルの電極パターン及び取り出し配線の部分)は20μm以下の細線であることが好ましく、10μm以下の細線であることが更に好ましい。 In the present disclosure, the detailed arrangement and specific size of the pattern are not particularly limited. Since it is desired to improve the display quality of a display device (for example, a touch panel) provided with an input device having a circuit wiring manufactured by the circuit wiring manufacturing method according to the present disclosure, and to make the area occupied by the take-out wiring as small as possible, the pattern At least a part (particularly the electrode pattern of the touch panel and the portion of the take-out wiring) is preferably a fine wire of 20 μm or less, and more preferably 10 μm or less.
 露光に使用する光源、露光量および露光方法の好ましい態様としては、例えば、国際公開第2018/155193号の段落0146~0147に記載があり、これらの内容は本明細書に組み込まれる。 Preferred embodiments of the light source, exposure amount and exposure method used for exposure are described in, for example, paragraphs 0146 to 0147 of International Publication No. 2018/155193, and these contents are incorporated in the present specification.
〔現像工程〕
 本開示に係る樹脂パターンの製造方法、または、本開示に係る回路配線の製造方法は、上記露光工程の後、露光された上記感光性樹脂層を現像して樹脂パターンを形成する工程(現像工程)を含むことが好ましい。
 また、上記感光性転写部材が水溶性樹脂層を有する場合、現像工程においては、非露光部の熱可塑性樹脂層及び水溶性樹脂層も、非露光部の感光性樹脂層とともに除去される。更に、現像工程においては、露光部の熱可塑性樹脂層及び水溶性樹脂層も現像液に溶解あるいは分散する形で除去されてもよい。
[Development process]
The method for manufacturing a resin pattern according to the present disclosure, or the method for manufacturing a circuit wiring according to the present disclosure, is a step of developing the exposed photosensitive resin layer to form a resin pattern after the exposure step (development step). ) Is preferably included.
When the photosensitive transfer member has a water-soluble resin layer, the thermoplastic resin layer and the water-soluble resin layer in the non-exposed portion are also removed together with the photosensitive resin layer in the non-exposed portion in the developing step. Further, in the developing step, the thermoplastic resin layer and the water-soluble resin layer of the exposed portion may also be removed in a form of being dissolved or dispersed in the developing solution.
 上記現像工程における露光された上記感光性樹脂層の現像は、現像液を用いて行うことができる。
 現像液および現像方式としては、感光性樹脂層の非画像部を除去することができれば特に制限はなく、公知の現像液および現像方式を使用することができる。本開示において好適に用いられる現像液としては、例えば、国際公開第2015/093271号の段落0194に記載の現像液が挙げられ、好適に用いられる現像方式としては、例えば、国際公開第2015/093271号の段落0195に記載の現像方式が挙げられる。
The exposed photosensitive resin layer in the developing step can be developed by using a developing solution.
The developing solution and developing method are not particularly limited as long as the non-image portion of the photosensitive resin layer can be removed, and a known developing solution and developing method can be used. Examples of the developer preferably used in the present disclosure include the developer described in paragraph 0194 of International Publication No. 2015/093271, and examples of the developing method preferably used include International Publication No. 2015/093271. The developing method described in paragraph 0195 of the issue can be mentioned.
〔エッチング工程〕
 本開示に係る回路配線の製造方法は、上記樹脂パターンが配置されていない領域における基板をエッチング処理する工程(エッチング工程)を含むことが好ましい。
[Etching process]
The circuit wiring manufacturing method according to the present disclosure preferably includes a step (etching step) of etching a substrate in a region where the resin pattern is not arranged.
 上記エッチング工程では、上記現像工程により上記感光性樹脂層から形成されたパターンを、エッチングレジストとして使用し、上記導電層のエッチング処理を行う。
 エッチング処理の方法としては、特開2017-120435号公報の段落0209~段落0210に記載の方法、特開2010-152155号公報の段落0048~段落0054等に記載の方法、公知のプラズマエッチング等のドライエッチングによる方法など、公知の方法を適用することができる。
In the etching step, the pattern formed from the photosensitive resin layer by the developing step is used as an etching resist, and the conductive layer is etched.
Examples of the etching treatment method include the methods described in paragraphs 0209 to 0210 of JP-A-2017-120435, the methods described in paragraphs 0048-paragraph 0054 of JP-A-2010-152155, and known plasma etching. A known method such as a method by dry etching can be applied.
〔除去工程〕
 本開示に係る回路配線の製造方法は、樹脂パターンを除去する工程(以下、「除去工程」と略す。)を行うことが好ましい。
 除去工程は、特に制限はなく、必要に応じて行うことができるが、エッチング工程の後に行うことが好ましい。
 残存する感光性樹脂層を除去する方法としては特に制限はないが、薬品処理により除去する方法を挙げることができ、除去液を用いることが特に好ましく挙げることができる。
 感光性樹脂層の除去方法としては、好ましくは30℃~80℃、より好ましくは50℃~80℃にて撹拌中の除去液に感光性樹脂層などを有する基板を1分~30分間浸漬する方法が挙げられる。
[Removal process]
In the circuit wiring manufacturing method according to the present disclosure, it is preferable to perform a step of removing the resin pattern (hereinafter, abbreviated as "removal step").
The removing step is not particularly limited and can be performed as needed, but it is preferably performed after the etching step.
The method for removing the remaining photosensitive resin layer is not particularly limited, and examples thereof include a method for removing by chemical treatment, and it is particularly preferable to use a removing solution.
As a method for removing the photosensitive resin layer, a substrate having a photosensitive resin layer or the like is immersed in a removing solution being stirred at preferably at 30 ° C. to 80 ° C., more preferably 50 ° C. to 80 ° C. for 1 minute to 30 minutes. The method can be mentioned.
 除去液としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機アルカリ成分、又は、第1級アミン化合物、第2級アミン化合物、第3級アミン化合物、第4級アンモニウム塩化合物等の有機アルカリ成分を水、ジメチルスルホキシド、N-メチルピロリドン又はこれらの混合溶液に溶解させた除去液が挙げられる。
 また、除去液を使用し、スプレー法、シャワー法、パドル法等により除去してもよい。
Examples of the removing liquid include inorganic alkaline components such as sodium hydroxide and potassium hydroxide, or organic alkalis such as primary amine compounds, secondary amine compounds, tertiary amine compounds, and quaternary ammonium salt compounds. Examples thereof include a removal solution in which the components are dissolved in water, dimethylsulfoxide, N-methylpyrrolidone, or a mixed solution thereof.
Further, the removing liquid may be used and removed by a spray method, a shower method, a paddle method or the like.
〔その他の工程〕
 本開示に係る回路配線の製造方法は、上述した以外の任意の工程(その他の工程)を含んでもよい。例えば、感光性転写部材がカバーフィルムを有する場合には、上記感光性転写部材のカバーフィルムを剥離する工程、国際公開第2019/22089号の段落0172に記載の可視光線反射率を低下させる工程、国際公開第2019/22089号の段落0172に記載の絶縁膜上に新たな導電層を形成する工程などが挙げられるが、これらの工程に制限されない。
 また、本開示における露光工程、現像工程、及びその他の工程の例としては、特開2006-23696号公報の段落0035~段落0051に記載の方法を本開示においても好適に用いることができる。
[Other processes]
The circuit wiring manufacturing method according to the present disclosure may include any steps (other steps) other than those described above. For example, when the photosensitive transfer member has a cover film, a step of peeling off the cover film of the photosensitive transfer member, a step of reducing the visible light reflectance according to paragraph 0172 of International Publication No. 2019/22089, Examples thereof include a step of forming a new conductive layer on the insulating film described in paragraph 0172 of International Publication No. 2019/22089, but the steps are not limited to these steps.
Further, as an example of the exposure step, the developing step, and other steps in the present disclosure, the methods described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be preferably used in the present disclosure.
 本開示に係る回路配線の製造方法により製造される回路配線は、種々の装置に適用することができる。本開示に係る回路配線の製造方法により製造される回路配線を備えた装置としては、例えば、入力装置等が挙げられ、タッチパネルであることが好ましく、静電容量型タッチパネルであることがより好ましい。また、上記入力装置は、有機EL表示装置、液晶表示装置等の表示装置に適用することができる。 The circuit wiring manufactured by the circuit wiring manufacturing method according to the present disclosure can be applied to various devices. Examples of the device provided with the circuit wiring manufactured by the method for manufacturing the circuit wiring according to the present disclosure include an input device and the like, and a touch panel is preferable, and a capacitance type touch panel is more preferable. Further, the input device can be applied to a display device such as an organic EL display device and a liquid crystal display device.
[タッチパネルの製造方法]
 本発明のタッチパネルの製造方法は、本開示に係る感光性転写部材を用いる方法であればよいが、感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、導電層を有する基板に接触させて貼り合せる貼り合せ工程(貼り合せ工程)と、上記感光性樹脂層をパターン露光する工程(露光工程)と、露光された上記感光性樹脂層を現像して樹脂パターンを形成する工程(現像工程)と、上記樹脂パターンが配置されていない領域における上記基板をエッチング処理する工程(エッチング工程)と、をこの順に含むことが好ましい。
[Manufacturing method of touch panel]
The method for manufacturing the touch panel of the present invention may be any method using the photosensitive transfer member according to the present disclosure, but the surface of the photosensitive transfer member on the side opposite to the intermediate layer of the photosensitive resin layer is formed by forming a conductive layer. A bonding step (bonding step) of contacting and bonding with the substrate to be held, a step of pattern-exposing the photosensitive resin layer (exposure step), and developing the exposed photosensitive resin layer to form a resin pattern. It is preferable to include the step of performing the process (development step) and the step of etching the substrate in the region where the resin pattern is not arranged (etching step) in this order.
 本開示に係るタッチパネルの製造方法における、各工程の具体的な態様、及び、各工程を行う順序等の実施態様については、上述の「回路配線の製造方法」の項において説明した通りであり、好ましい態様も同様である。
 本開示に係るタッチパネルの製造方法は、上述した以外は、公知のタッチパネルの製造方法を参照することができる。
 また、本開示に係るタッチパネルの製造方法は、上述した以外の任意の工程(その他の工程)を含んでもよい。
In the touch panel manufacturing method according to the present disclosure, specific aspects of each step and embodiments such as the order in which each step is performed are as described in the above-mentioned "Circuit wiring manufacturing method" section. The same applies to the preferred embodiment.
As the method for manufacturing the touch panel according to the present disclosure, a known method for manufacturing the touch panel can be referred to except for the above.
In addition, the touch panel manufacturing method according to the present disclosure may include an arbitrary step (other steps) other than those described above.
 本開示に係るタッチパネルの製造方法において用いられるマスクのパターンの一例を、図2及び図3に示す。
 図2に示されるパターンA、及び、図3に示されるパターンBにおいて、SL及びGは画像部(開口部)であり、DLはアライメント合わせの枠を仮想的に示したものである。本開示に係るタッチパネルの製造方法において、例えば、図2に示されるパターンAを有するマスクを介して感光性樹脂層を露光することで、SL及びGに対応するパターンAを有する回路配線が形成されたタッチパネルを製造できる。
2 and 3 show an example of a mask pattern used in the touch panel manufacturing method according to the present disclosure.
In the pattern A shown in FIG. 2 and the pattern B shown in FIG. 3, SL and G are image portions (openings), and DL is a virtual representation of the alignment frame. In the method for manufacturing a touch panel according to the present disclosure, for example, by exposing the photosensitive resin layer through a mask having the pattern A shown in FIG. 2, a circuit wiring having the pattern A corresponding to SL and G is formed. Can manufacture touch panels.
 本開示に係るタッチパネルは、本開示に係る回路配線の製造方法により製造された回路配線を少なくとも有するタッチパネルである。また、本開示に係るタッチパネルは、透明基板と、電極と、絶縁層又は保護層とを少なくとも有することが好ましい。
 本開示に係るタッチパネルにおける検出方法としては、抵抗膜方式、静電容量方式、超音波方式、電磁誘導方式、及び、光学方式など公知の方式いずれでもよい。中でも、静電容量方式が好ましい。
 タッチパネル型としては、いわゆる、インセル型(例えば、特表2012-517051号公報の図5、図6、図7、図8に記載のもの)、いわゆる、オンセル型(例えば、特開2013-168125号公報の図19に記載のもの、特開2012-89102号公報の図1や図5に記載のもの)、OGS(One Glass Solution)型、TOL(Touch-on-Lens)型(例えば、特開2013-54727号公報の図2に記載のもの)、その他の構成(例えば、特開2013-164871号公報の図6に記載のもの)、各種アウトセル型(いわゆる、GG、G1・G2、GFF、GF2、GF1、G1Fなど)等を挙げることができる。
 本開示に係るタッチパネルとしては、例えば、特開2017-120345号公報の段落0229に記載のものが挙げられる。
The touch panel according to the present disclosure is a touch panel having at least the circuit wiring manufactured by the method for manufacturing the circuit wiring according to the present disclosure. Further, the touch panel according to the present disclosure preferably has at least a transparent substrate, electrodes, and an insulating layer or a protective layer.
As the detection method in the touch panel according to the present disclosure, any known method such as a resistive film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, and an optical method may be used. Above all, the capacitance method is preferable.
The touch panel type includes a so-called in-cell type (for example, those described in FIGS. 5, 6, 7, and 8 of JP-A-2012-517501), a so-called on-cell type (for example, Japanese Patent Application Laid-Open No. 2013-168125). The one described in FIG. 19 of the publication, the one described in FIGS. 1 and 5 of Japanese Patent Application Laid-Open No. 2012-89102), OGS (One Glass Solution) type, TOR (Touch-on-Lens) type (for example, Japanese Patent Application Laid-Open No. (The one described in FIG. 2 of 2013-54727), other configurations (for example, the one shown in FIG. 6 of Japanese Patent Application Laid-Open No. 2013-164871), various out-selling types (so-called GG, G1, G2, GFF, GF2, GF1, G1F, etc.) and the like.
Examples of the touch panel according to the present disclosure include those described in paragraph 0229 of JP2017-120345A.
 以下に、実施例を挙げて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the examples shown below.
<仮支持体の作製>
(製造例1)
 仮支持体を、以下の方法により作製した。
<Making a temporary support>
(Manufacturing Example 1)
A temporary support was prepared by the following method.
〔粒子含有層形成組成物1の作製〕
 下記に示す配合で、各成分を混合し、粒子含有層形成組成物1を得た。粒子含有層形成組成物1を調製後、6μmフィルター(F20、マーレフィルターシステムズ(株)製)にてろ過し、続いて、2x6ラジアルフロースーパーフォビック(ポリポア(株)製)を用いて、膜脱気した。
[Preparation of Particle-Containing Layer Forming Composition 1]
Each component was mixed with the formulation shown below to obtain a particle-containing layer forming composition 1. After preparing the particle-containing layer forming composition 1, the film is filtered through a 6 μm filter (F20, manufactured by Mare Filter Systems Co., Ltd.), and subsequently, a membrane is used using a 2x6 radial flow superphobic (manufactured by Polypore Co., Ltd.). I degassed.
・アクリルポリマー(AS-563A、ダイセルファインケム(株)製、固形分27.5質量%)167部
・ノニオン系界面活性剤(ナロアクティーCL95、三洋化成工業(株)製、固形分100質量%)0.7部
・アニオン系界面活性剤(ラピゾールA-90、日油(株)製、固形分1質量%に水で希釈)114.4部
・カルナバワックス分散物(セロゾール524、中京油脂(株)製、固形分30質量%)7部
・カルボジイミド化合物(カルボジライトV-02-L2、日清紡(株)製、固形分10質量%に水で希釈)20.9部
・マット剤(スノーテックスXL、日産化学(株)製、固形分40質量%、平均粒子径50nm)2.8部
・水 690.2部
-Acrylic polymer (AS-563A, manufactured by Daisel Finechem Co., Ltd., solid content 27.5% by mass) 167 parts-Nonion-based surfactant (Naroacty CL95, manufactured by Sanyo Kasei Kogyo Co., Ltd., solid content 100% by mass) 0.7 parts ・ Anionic surfactant (Lapisol A-90, manufactured by Nichiyu Co., Ltd., diluted with water to 1% by mass of solid content) 114.4 parts ・ Carnauba wax dispersion (Cerozole 524, Chukyo Oil & Fat Co., Ltd.) ), Solid content 30% by mass) 7 parts ・ Carbodiimide compound (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., diluted with water to 10% by mass solid content) 20.9 parts ・ Matting agent (Snowtex XL, Made by Nissan Chemical Co., Ltd., solid content 40% by mass, average particle size 50 nm) 2.8 parts, water 690.2 parts
〔押出成形〕
 特許第5575671号公報に記載のクエン酸キレート有機チタン錯体を重合触媒としたポリエチレンテレフタレートのペレットを、含水率50ppm以下に乾燥させた後、直径30mmの1軸混練押出し機のホッパーに投入し、280℃で溶融して押出した。この溶融体(メルト)を、濾過器(孔径3μm)を通した後、ダイから25℃の冷却ロールに押出し、未延伸フィルムを得た。なお、押出されたメルトは、静電印加法を用い冷却ロールに密着させた。 
[Extrusion molding]
Pellets of polyethylene terephthalate using the citrate chelated organic titanium complex described in Japanese Patent No. 5575671 as a polymerization catalyst are dried to a water content of 50 ppm or less, and then charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm and 280. Melted at ° C and extruded. This melt was passed through a filter (pore diameter 3 μm) and then extruded from a die onto a cooling roll at 25 ° C. to obtain an unstretched film. The extruded melt was brought into close contact with the cooling roll by using an electrostatic application method.
〔延伸、塗布〕
 上記方法で冷却ロール上に押出し、固化した未延伸フィルムに対し、以下の方法で逐次2軸延伸を施し、厚み25μmのポリエステルフィルムと厚み40nmの粒子含有層を有する仮支持体を得た。
[Stretching, coating]
The unstretched film extruded onto the cooling roll by the above method and solidified was sequentially biaxially stretched by the following method to obtain a temporary support having a polyester film having a thickness of 25 μm and a particle-containing layer having a thickness of 40 nm.
(a)縦延伸
 未延伸フィルムを周速の異なる2対のニップロールの間に通し、縦方向(搬送方向)に延伸した。なお、予熱温度を75℃、延伸温度を90℃、延伸倍率を3.4倍、延伸速度を1300%/秒として実施した。
(A) Longitudinal stretching An unstretched film was passed between two pairs of nip rolls having different peripheral speeds and stretched in the longitudinal direction (conveying direction). The preheating temperature was 75 ° C., the stretching temperature was 90 ° C., the stretching ratio was 3.4 times, and the stretching speed was 1300% / sec.
(b)塗布
 縦延伸したフィルムの片面に、粒子含有層形成組成物1を、製膜後40nmの厚さとなるように、バーコーターで塗布した。
(B) Coating The particle-containing layer forming composition 1 was coated on one side of the vertically stretched film with a bar coater so as to have a thickness of 40 nm after film formation.
(c)横延伸
 上記縦延伸と塗布を行ったフィルムに対し、テンターを用いて下記条件にて横延伸した。
-横延伸条件-
 予熱温度:110℃
 延伸温度:120℃
 延伸倍率:4.2倍
 延伸速度:50%/秒
(C) Transverse stretching The film subjected to the above longitudinal stretching and coating was laterally stretched under the following conditions using a tenter.
-Transverse stretching conditions-
Preheating temperature: 110 ° C
Stretching temperature: 120 ° C
Stretching ratio: 4.2 times Stretching speed: 50% / sec
〔熱固定、熱緩和〕
 続いて、縦延伸及び横延伸を終えた後の二軸延伸フィルムを下記条件で熱固定した。さらに、熱固定した後、テンター幅を縮め、下記条件で熱緩和した。
-熱固定条件-
 熱固定温度:227℃
 熱固定時間:6秒
-熱緩和条件-
 熱緩和温度:190℃
 熱緩和率:4%
[Heat fixation, heat relaxation]
Subsequently, the biaxially stretched film after the longitudinal stretching and the transverse stretching were completed was heat-fixed under the following conditions. Further, after heat fixing, the tenter width was reduced and heat was relaxed under the following conditions.
-Heat fixing conditions-
Heat fixing temperature: 227 ° C
Heat fixing time: 6 seconds-Heat relaxation conditions-
Heat relaxation temperature: 190 ° C
Heat relaxation rate: 4%
〔巻き取り〕
 熱固定及び熱緩和の後、両端をトリミングし、端部に幅10mmで押出し加工(ナーリング)した後、張力40kg/mで巻き取った。なお、幅は1.5m、巻長は6300mであった。得られたフィルムロールを、製造例1の仮支持体とした。
 得られた仮支持体のヘーズは0.2であった。なお、ヘーズはヘーズメーター(日本電色工業(株)製、NDH2000)を用いて全光ヘーズとして測定した。
 また、150℃、30分加熱による熱収縮率は、MD(搬送方向、Machine Direction)側で1.0%であり、TD(フィルムの面上において搬送方向と直交する方向、Transverse Direction)側で0.2%であった。
 また、粒子含有層の膜厚は断面TEM写真から測定し、40nmであった。粒子含有層に含まれる粒子の平均粒子径を、(株)日立ハイテクノロジーズ製HT-7700型透過型電子顕微鏡(TEM)を用いて、上述の方法で測定したところ、50nmであった。
〔Winding〕
After heat fixing and heat relaxation, both ends were trimmed, extruded (knurled) at the ends with a width of 10 mm, and then wound at a tension of 40 kg / m. The width was 1.5 m and the winding length was 6300 m. The obtained film roll was used as a temporary support of Production Example 1.
The haze of the obtained temporary support was 0.2. The haze was measured as a total light haze using a haze meter (NDH2000 manufactured by Nippon Denshoku Kogyo Co., Ltd.).
The heat shrinkage rate due to heating at 150 ° C. for 30 minutes is 1.0% on the MD (Machine Direction) side and on the TD (Transverse Direction) side on the film surface. It was 0.2%.
The film thickness of the particle-containing layer was 40 nm as measured from a cross-sectional TEM photograph. The average particle size of the particles contained in the particle-containing layer was measured by the above method using an HT-7700 type transmission electron microscope (TEM) manufactured by Hitachi High-Technologies Corporation, and found to be 50 nm.
(製造例2)
 製造例1の延伸率を変えて、製膜後のポリエステルフィルムの厚みを25μmから28μmに変えた以外は製造例1と同様にして製造例2の仮支持体を得た。
(Manufacturing Example 2)
A temporary support of Production Example 2 was obtained in the same manner as in Production Example 1 except that the stretch ratio of Production Example 1 was changed and the thickness of the polyester film after film formation was changed from 25 μm to 28 μm.
(製造例3)
 粒子含有層形成組成物1におけるマット剤の量を増やし、粒子含有層形成組成物1を塗布する際のバーを調整して製膜後の粒子含有層の厚みを40nmから50nmに変えた以外は製造例1と同様にして製造例3の仮支持体を得た。
(Manufacturing Example 3)
Except for increasing the amount of the matting agent in the particle-containing layer forming composition 1 and adjusting the bar when applying the particle-containing layer forming composition 1 to change the thickness of the particle-containing layer after film formation from 40 nm to 50 nm. A temporary support of Production Example 3 was obtained in the same manner as in Production Example 1.
(製造例4)
 製造例1の延伸率を変えて、製膜後のポリエステルフィルムの厚みを25μmから20μmに変えた以外は製造例1と同様にして製造例4の仮支持体を得た。
(Manufacturing Example 4)
A temporary support of Production Example 4 was obtained in the same manner as in Production Example 1 except that the stretch ratio of Production Example 1 was changed and the thickness of the polyester film after film formation was changed from 25 μm to 20 μm.
(製造例5)
 製造例1の延伸率を変えて、製膜後のポリエステルフィルムの厚みを25μmから35μmに変えた以外は製造例1と同様にして製造例5の仮支持体を得た。
(Manufacturing Example 5)
A temporary support of Production Example 5 was obtained in the same manner as in Production Example 1 except that the stretch ratio of Production Example 1 was changed and the thickness of the polyester film after film formation was changed from 25 μm to 35 μm.
(製造例6)
 製造例1の延伸率を変えて、製膜後のポリエステルフィルムの厚みを25μmから16μmに変えた以外は製造例1と同様にして製造例6の仮支持体を得た。
(Manufacturing Example 6)
A temporary support of Production Example 6 was obtained in the same manner as in Production Example 1 except that the stretch ratio of Production Example 1 was changed and the thickness of the polyester film after film formation was changed from 25 μm to 16 μm.
<重合体の製造>
 以下の合成例において、以下の略語はそれぞれ以下の化合物を表す。
 St:スチレン(富士フイルム和光純薬(株)製)
 MAA:メタクリル酸(富士フイルム和光純薬(株)製)
 MMA:メタクリル酸メチル(富士フイルム和光純薬(株)製)
 BzMA:ベンジルメタクリレート(富士フイルム和光純薬(株)製)
 AA:アクリル酸(東京化成(株)製)
 PGMEA:プロピレングリコールモノメチルエーテルアセテート(昭和電工(株)製)
 MEK:メチルエチルケトン(三協化学(株)製)
 V-601:ジメチル-2,2’-アゾビス(2-メチルプロピオネート)(富士フイルム和光純薬(株)製)
<Manufacturing of polymer>
In the following synthesis examples, the following abbreviations represent the following compounds, respectively.
St: Styrene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
MAA: Methacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
MMA: Methyl methacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
BzMA: Benzyl methacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
AA: Acrylic acid (manufactured by Tokyo Kasei Co., Ltd.)
PGMEA: Propylene glycol monomethyl ether acetate (manufactured by Showa Denko KK)
MEK: Methyl ethyl ketone (manufactured by Sankyo Chemical Co., Ltd.)
V-601: Dimethyl-2,2'-azobis (2-methylpropionate) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
<重合体A-1の合成>
 3つ口フラスコにPGMEA(116.5部)を入れ、窒素雰囲気下において90℃に昇温した。St(52.0部)、MMA(19.0部)、MAA(29.0部)、V-601(4.0部)、および、PGMEA(116.5部)を加えた溶液を、90℃±2℃に維持した3つ口フラスコ溶液中に2時間かけて滴下した。滴下終了後、90℃±2℃にて2時間撹拌することで、重合体A-1(固形分濃度30.0%)を得た。
<Synthesis of polymer A-1>
PGMEA (116.5 parts) was placed in a three-necked flask, and the temperature was raised to 90 ° C. in a nitrogen atmosphere. 90 parts of a solution containing St (52.0 parts), MMA (19.0 parts), MAA (29.0 parts), V-601 (4.0 parts), and PGMEA (116.5 parts). The solution was added dropwise to a three-necked flask solution maintained at ° C. ± 2 ° C. over 2 hours. After completion of the dropping, the mixture was stirred at 90 ° C. ± 2 ° C. for 2 hours to obtain polymer A-1 (solid content concentration 30.0%).
<重合体A-2の合成>
 モノマーの種類等を下記表1に示す通りに変更し、その他の条件については、重合体A-1と同様の方法で合成した。重合体A-2の固形分濃度は30質量%とした。
 なお、表1のモノマーの量の単位は、質量%である。
<Synthesis of polymer A-2>
The types of monomers and the like were changed as shown in Table 1 below, and other conditions were synthesized in the same manner as in the polymer A-1. The solid content concentration of the polymer A-2 was 30% by mass.
The unit of the amount of the monomer in Table 1 is mass%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<感光性樹脂組成物1の調製>
 以下の成分を混合し、感光性樹脂組成物1の調製を行った。なお、各成分の量の単位は、質量部である。
 重合体A-1(固形分濃度30.0%):21.87部
 B-2:LCV(ロイコクリスタルバイオレット、山田化学工業(株)製、ラジカルにより発色する色素):0.053部
 C-2:B-CIM(光ラジカル重合開始剤、2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、Hampford社製):0.89部
 C-3:EAB-F(光ラジカル重合開始剤(増感剤)、4,4‘-ビス(ジエチルアミノ)ベンゾフェノン、東京化成(株)製):0.05部
 D-1:NKエステルBPE-500(エトキシ化ビスフェノールAジメタクリレート、新中村化学工業(株)製):4.85部
 D-2:アロニックスM-270(ポリプロピレングリコールジアクリレート、東亞合成(株)製):0.51部
 フェノチアジン(富士フイルム和光純薬(株)製):0.025部
 1-フェニル-3-ピラゾリドン(富士フイルム和光純薬(株)製):0.001部
 E-1(メガファックF552(DIC(株)製)):0.02部
 メチルエチルケトン(三協化学(株)製):30.87部
 PGMEA(昭和電工(株)製):33.92部
 テトラヒドロフラン(三菱ケミカル(株)製):6.93部
<Preparation of Photosensitive Resin Composition 1>
The following components were mixed to prepare the photosensitive resin composition 1. The unit of the amount of each component is a mass part.
Polymer A-1 (solid content concentration 30.0%): 21.87 parts B-2: LCV (Leuko Crystal Violet, manufactured by Yamada Chemical Industry Co., Ltd., dye that develops color by radicals): 0.053 parts C- 2: B-CIM (photoradical polymerization initiator, 2- (2-chlorophenyl) -4,5-diphenylimidazole dimer, manufactured by Hampford): 0.89 parts C-3: EAB-F (photoradical polymerization) Initiator (sensitizer), 4,4'-bis (diethylamino) benzophenone, manufactured by Tokyo Kasei Co., Ltd.): 0.05 parts D-1: NK ester BPE-500 (ethoxylated bisphenol A dimethacrylate, Shin-Nakamura) Chemical Industry Co., Ltd.): 4.85 parts D-2: Aronix M-270 (polypropylene glycol diacrylate, manufactured by Toa Synthetic Co., Ltd.): 0.51 parts Phenothiazine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) : 0.025 part 1-Phenyl-3-pyrazolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.): 0.001 part E-1 (Megafuck F552 (manufactured by DIC Co., Ltd.)): 0.02 part Methyl ethyl ketone (manufactured by DIC Co., Ltd.) Sankyo Chemical Co., Ltd.): 30.87 parts PGMEA (Showa Denko Co., Ltd.): 33.92 parts tetrahydrofuran (Mitsubishi Chemical Co., Ltd.): 6.93 parts
 調製した感光性樹脂組成物1を、スリット状ノズルを用いて幅1.0m、厚さ3.0μmとなるように、製造例1で作製した仮支持体に塗布し、80℃の乾燥ゾーンを40秒間かけて通過させ、感光性樹脂層を得た。得られた感光性樹脂層について、70℃における粘度を測定した結果、36000Pa・sであった。粘度は、上述に記載した方法で測定した。装置としては、ティー・エイ・インスツルメント・ジャパン社製レオメータDHR-2を用いた。 The prepared photosensitive resin composition 1 is applied to the temporary support prepared in Production Example 1 so as to have a width of 1.0 m and a thickness of 3.0 μm using a slit-shaped nozzle, and a drying zone at 80 ° C. is formed. It was passed over 40 seconds to obtain a photosensitive resin layer. The viscosity of the obtained photosensitive resin layer at 70 ° C. was measured and found to be 36000 Pa · s. Viscosity was measured by the method described above. As an apparatus, a rheometer DHR-2 manufactured by TA Instruments Japan Co., Ltd. was used.
<感光性樹脂組成物2の調製>
 以下の成分を混合し、感光性樹脂組成物1の調製を行った。なお、各成分の量の単位は、質量部である。
 重合体A-1(固形分濃度30.0%):25.2部
 B-2:LCV(ロイコクリスタルバイオレット、山田化学工業(株)製、ラジカルにより発色する色素):0.06部
 C-2:B-CIM(光ラジカル重合開始剤、2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、Hampford社製):1.03部
 C-3:EAB-F(光ラジカル重合開始剤(増感剤)、4,4‘-ビス(ジエチルアミノ)ベンゾフェノン、東京化成(株)製):0.045部
 C-4(N-フェニルカルバモイルメチル-N-カルボキシメチルアニリン(富士フイルム和光純薬(株)製)):0.02部
 D-1:NKエステルBPE-500(エトキシ化ビスフェノールAジメタクリレート、新中村化学工業(株)製):5.61部
 D-2:アロニックスM-270(ポリプロピレングリコールジアクリレート、東亞合成(株)製):0.58部
 F-1(フェノチアジン(富士フイルム和光純薬(株)製)):0.040部
 F-2(CBT-1(城北化学(株)製):0.015部
 4-ヒドロキシメチルー4―メチル-1-フェニル-3-ピラゾリドン(富士フイルム和光純薬(株)製):0.002部
 E-1(メガファックF552(DIC(株)製)):0.048部
 メチルエチルケトン(三協化学(株)製):43.8部
 PGMEA(昭和電工(株)製):19.7部
 MFG(日本乳化剤(株)製):3.89部
<Preparation of Photosensitive Resin Composition 2>
The following components were mixed to prepare the photosensitive resin composition 1. The unit of the amount of each component is a mass part.
Polymer A-1 (solid content concentration 30.0%): 25.2 parts B-2: LCV (Leuco Crystal Violet, manufactured by Yamada Chemical Industries, Ltd., dye that develops color by radicals): 0.06 parts C- 2: B-CIM (photoradical polymerization initiator, 2- (2-chlorophenyl) -4,5-diphenylimidazole dimer, manufactured by Hampford): 1.03 parts C-3: EAB-F (photoradical polymerization) Initiator (sensitizer), 4,4'-bis (diethylamino) benzophenone, manufactured by Tokyo Kasei Co., Ltd.): 0.045 parts C-4 (N-phenylcarbamoylmethyl-N-carboxymethylaniline (Fujifilm sum) Kojunyaku Co., Ltd.)): 0.02 parts D-1: NK ester BPE-500 (ethoxyylated bisphenol A dimethacrylate, manufactured by Shin-Nakamura Chemical Industries, Ltd.): 5.61 parts D-2: Aronix M -270 (Polypropylene glycol diacrylate, manufactured by Toa Synthetic Co., Ltd.): 0.58 parts F-1 (Phenothiazine (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)): 0.040 parts F-2 (CBT-1 (CBT-1) Johoku Kagaku Co., Ltd.): 0.015 parts 4-Hydroxymethyl-4-methyl-1-phenyl-3-pyrazolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.): 0.002 parts E-1 (Megafuck) F552 (manufactured by DIC Co., Ltd.)): 0.048 parts Methyl ethyl ketone (manufactured by Sankyo Chemical Co., Ltd.): 43.8 parts PGMEA (manufactured by Showa Denko Co., Ltd.): 19.7 parts MFG (Nippon Embroidery Co., Ltd.) Made): 3.89 copies
 調製した感光性樹脂組成物2を、スリット状ノズルを用いて幅1.0m、厚さ2.0μmとなるように、製造例1で作製した仮支持体に塗布し、80℃の乾燥ゾーンを40秒間かけて通過させ、感光性樹脂層を得た。得られた感光性樹脂層について、70℃における粘度を測定した結果、37,000Pa・sであった。 The prepared photosensitive resin composition 2 is applied to the temporary support prepared in Production Example 1 so as to have a width of 1.0 m and a thickness of 2.0 μm using a slit-shaped nozzle, and a drying zone at 80 ° C. is formed. It was passed over 40 seconds to obtain a photosensitive resin layer. The viscosity of the obtained photosensitive resin layer at 70 ° C. was measured and found to be 37,000 Pa · s.
<水溶性樹脂組成物1の調製>
 以下の成分を混合し、水溶性樹脂組成物の調製を行った。なお、各成分の量の単位は、質量部である。
 イオン交換水:38.12部
 メタノール(三菱ガス化学(株)製):57.17部
 クラレポバールPVA-205(ポリビニルアルコール、(株)クラレ製):3.22部
 ポリビニルピロリドンK-30(日本触媒(株)製):1.49部
 メガファックF-444(フッ素系界面活性剤、DIC(株)製):0.0015部
<Preparation of water-soluble resin composition 1>
The following components were mixed to prepare a water-soluble resin composition. The unit of the amount of each component is a mass part.
Ion-exchanged water: 38.12 parts Methanol (manufactured by Mitsubishi Gas Chemical Company, Inc.): 57.17 parts Clarepovar PVA-205 (polyvinyl alcohol, manufactured by Kuraray Co., Ltd.): 3.22 parts Polyvinylpyrrolidone K-30 (Japan) Catalyst Co., Ltd.): 1.49 parts Megafuck F-444 (fluorine-based surfactant, manufactured by DIC Co., Ltd.): 0.0015 parts
<水溶性樹脂組成物2の調製>
 以下の成分を混合し、水溶性樹脂組成物の調製を行った。なお、各成分の量の単位は、質量部である。
 イオン交換水:38.12部
 メタノール(三菱ガス化学(株)製):57.17部
 クラレポバール 4-88LA(ポリビニルアルコール、(株)クラレ製):3.22部
 ポリビニルピロリドンK-30(日本触媒(株)製):1.49部
 メガファックF-444(フッ素系界面活性剤、DIC(株)製):0.0035部
<Preparation of water-soluble resin composition 2>
The following components were mixed to prepare a water-soluble resin composition. The unit of the amount of each component is a mass part.
Ion-exchanged water: 38.12 parts Methanol (manufactured by Mitsubishi Gas Chemical Company, Inc.): 57.17 parts Clarepovar 4-88LA (polyvinyl alcohol, manufactured by Kuraray Co., Ltd.): 3.22 parts Polyvinylpyrrolidone K-30 (Japan) Catalyst Co., Ltd.): 1.49 parts Megafuck F-444 (fluorine-based surfactant, manufactured by DIC Co., Ltd.): 0.0035 parts
<熱可塑性樹脂組成物1~7の調製>
 以下の成分を下記表2に示す質量部で混合し、熱可塑性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000002
<Preparation of Thermoplastic Resin Compositions 1 to 7>
The following components were mixed by parts by mass shown in Table 2 below to prepare a thermoplastic resin composition.
Figure JPOXMLDOC01-appb-T000002
 表2において、略語はそれぞれ以下の化合物を表す。
 B-1:下記に示す構造の化合物(酸により発色する色素)
Figure JPOXMLDOC01-appb-C000003
In Table 2, the abbreviations represent the following compounds, respectively.
B-1: Compound with the structure shown below (dye that develops color with acid)
Figure JPOXMLDOC01-appb-C000003
 C-1:下記に示す構造の化合物(光酸発生剤、特開2013-47765号公報の段落0227に記載の化合物、段落0227に記載の方法に従って合成した。)
Figure JPOXMLDOC01-appb-C000004
C-1: Compound having the structure shown below (photoacid generator, compound described in paragraph 0227 of JP2013-47765A, synthesized according to the method described in paragraph 0227).
Figure JPOXMLDOC01-appb-C000004
 C-2:下記に示す構造の化合物(光酸発生剤、特開2014-197155号公報の段落0210に記載の方法に従って合成した。)
Figure JPOXMLDOC01-appb-C000005
C-2: A compound having the structure shown below (photoacid generator, synthesized according to the method described in paragraph 0210 of JP-A-2014-197155).
Figure JPOXMLDOC01-appb-C000005
 D-3:NKエステルA-DCP(トリシクロデカンジメタノールジアクリレート、新中村化学工業(株)製)
 D-4:8UX-015A(多官能ウレタンアクリレート化合物、大成ファインケミカル(株)製)
 D-5:アロニックスTO-2349(カルボキシ基を有する多官能アクリレート化合物、東亞合成(株)製)
 E-1:メガファックF552(DIC(株)製)
D-3: NK ester A-DCP (tricyclodecanedimethanol diacrylate, manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
D-4: 8UX-015A (polyfunctional urethane acrylate compound, manufactured by Taisei Fine Chemicals Co., Ltd.)
D-5: Aronix TO-2349 (polyfunctional acrylate compound having a carboxy group, manufactured by Toagosei Co., Ltd.)
E-1: Mega Fvck F552 (manufactured by DIC Corporation)
 調製した熱可塑性樹脂組成物1を、スリット状ノズルを用いて幅1.0m、厚さ3.0μmとなるように、製造例1で作製した仮支持体に塗布し、80℃の乾燥ゾーンを40秒間かけて通過させ、熱可塑性樹脂層1を得た。熱可塑性樹脂組成物1を熱可塑性樹脂組成物2~7に変更した以外は、熱可塑性樹脂層1と同様にして、熱可塑性樹脂層2~7を得た。得られた熱可塑性樹脂層1~7について、上述した感光性樹脂層と同様の方法で動的粘弾性を測定した。溶融粘度は、上述に記載した方法で測定した。 The prepared thermoplastic resin composition 1 is applied to the temporary support prepared in Production Example 1 so as to have a width of 1.0 m and a thickness of 3.0 μm using a slit-shaped nozzle, and a drying zone at 80 ° C. is formed. It was passed over 40 seconds to obtain a thermoplastic resin layer 1. Thermoplastic resin layers 2 to 7 were obtained in the same manner as in the thermoplastic resin layer 1 except that the thermoplastic resin composition 1 was changed to the thermoplastic resin compositions 2 to 7. The dynamic viscoelasticity of the obtained thermoplastic resin layers 1 to 7 was measured by the same method as that of the photosensitive resin layer described above. The melt viscosity was measured by the method described above.
(実施例1)
<感光性転写部材の作製>
 製造例1で作製した仮支持体を用意する。
 次いで、上記仮支持体の、粒子含有層とは反対側の表面に、スリット状ノズルを用いて塗布幅が1.0m、厚さ4μmとなるように熱可塑性組成物1を塗布し、80℃の乾燥ゾーンを40秒間かけて通過させて熱可塑性樹脂層を形成した。
 その後、上記熱可塑性樹脂層の上に、スリット状ノズルを用いて塗布幅が1.0m、厚さ1.1μmとなるように水溶性樹脂組成物を塗布し、80℃の乾燥ゾーンを40秒間かけて通過させて、水溶性樹脂層を形成した。
 更に、上記水溶性樹脂層の上に、スリット状ノズルを用いて塗布幅が1.0m、厚さ3.0μmとなるように感光性樹脂組成物1を塗布し、80℃の乾燥ゾーンを40秒間かけて通過させて、ネガ型感光性樹脂層を形成した。
 次いで、ネガ型感光性樹脂層の上にカバーフィルムとしてPETフィルム(東レ社製、ルミラー16KS40)を圧着して感光性転写部材を作製し、巻き取ってロール形態にした。
(Example 1)
<Manufacturing of photosensitive transfer member>
The temporary support produced in Production Example 1 is prepared.
Next, the thermoplastic composition 1 was applied to the surface of the temporary support on the side opposite to the particle-containing layer using a slit-shaped nozzle so that the coating width was 1.0 m and the thickness was 4 μm, and the temperature was 80 ° C. A thermoplastic resin layer was formed by passing through the drying zone of the above for 40 seconds.
Then, the water-soluble resin composition is applied onto the thermoplastic resin layer using a slit-shaped nozzle so that the coating width is 1.0 m and the thickness is 1.1 μm, and a drying zone at 80 ° C. is applied for 40 seconds. A water-soluble resin layer was formed by passing through the resin layer.
Further, the photosensitive resin composition 1 is applied onto the water-soluble resin layer so that the coating width is 1.0 m and the thickness is 3.0 μm using a slit-shaped nozzle, and a drying zone at 80 ° C. is 40. It was passed over a second to form a negative photosensitive resin layer.
Next, a PET film (manufactured by Toray Industries, Inc., Lumirror 16KS40) was pressure-bonded onto the negative-type photosensitive resin layer as a cover film to prepare a photosensitive transfer member, which was wound into a roll form.
<解像性評価>
 厚さ100μmのポリエチレンテレフタレート(PET)フィルム上に、スパッタ法にて厚さ200nmの銅層を設け、銅層付きPET基板を用意した。
 作製した感光性転写部材を巻き出した後、ロール温度100℃、線圧1.0MPa、線速度4.0m/minのラミネート条件で、上記銅層付きPET基板にラミネートした。仮支持体を剥離せずにラインアンドスペースパターンマスク(Duty比 1:1、線幅1μm~20μmまで1μmおきに段階的に変化)を介して超高圧水銀灯で露光後、仮支持体を剥離して現像した。現像は25℃の1.0%炭酸ナトリウム水溶液を用い、シャワー現像で30秒行った。
 上記方法にて20μmのラインアンドスペースパターンを形成したとき、スペース部の残渣を走査型電子顕微鏡(SEM)により観察し、レジスト線幅が20μmとなる露光量で露光した際、レジストパターンが剥離及び残渣なく解像可能な最小の線幅を解像度として評価した。より点数が高いほど解像性は良好であり、3以上であることが好ましい。
<Resolution evaluation>
A copper layer having a thickness of 200 nm was provided on a polyethylene terephthalate (PET) film having a thickness of 100 μm by a sputtering method, and a PET substrate with a copper layer was prepared.
After unwinding the produced photosensitive transfer member, it was laminated on the PET substrate with a copper layer under laminating conditions of a roll temperature of 100 ° C., a linear pressure of 1.0 MPa, and a linear velocity of 4.0 m / min. After exposure with an ultra-high pressure mercury lamp via a line-and-space pattern mask (duty ratio 1: 1, line width 1 μm to 20 μm, gradually changing every 1 μm) without peeling the temporary support, the temporary support is peeled off. And developed. Development was carried out by shower development for 30 seconds using a 1.0% sodium carbonate aqueous solution at 25 ° C.
When a 20 μm line-and-space pattern was formed by the above method, the residue in the space portion was observed with a scanning electron microscope (SEM), and when exposed at an exposure amount such that the resist line width was 20 μm, the resist pattern was peeled off and peeled off. The minimum line width that can be resolved without residue was evaluated as the resolution. The higher the score, the better the resolution, preferably 3 or more.
  5:解像度が5μm未満
  4:解像度が5μm以上7μm未満
  3:解像度が7μm以上9μm未満
  2:解像度が9μm以上11μm未満
  1:解像度が11μm以上
5: Resolution is less than 5 μm 4: Resolution is 5 μm or more and less than 7 μm 3: Resolution is 7 μm or more and less than 9 μm 2: Resolution is 9 μm or more and less than 11 μm 1: Resolution is 11 μm or more
<現像速度評価>
 作製した感光性転写部材を巻き出した後、ロール温度100℃、線圧1.0MPa、線速度4.0m/minのラミネート条件で、上記銅層付きPET基板にラミネートした。仮支持体を剥離して25℃の1.0%炭酸ナトリウム水溶液を用い、シャワー現像した。感光性転写部材が完全に溶解する時間を測定し、評価した。より点数が高いほど現像速度は良好であり、3以上であることが好ましい。
  5:10秒以内で完全に溶解した
  4:完全に溶解するのに10秒を超えるが、15秒以内で完全に溶解した
  3:完全に溶解するのに15秒を超えるが、20秒以内で完全に溶解した
  2:完全に溶解するのに20秒を超えるが、30秒以内で完全に溶解した
  1:30秒で完全に溶解できない
<Development speed evaluation>
After unwinding the produced photosensitive transfer member, it was laminated on the PET substrate with a copper layer under laminating conditions of a roll temperature of 100 ° C., a linear pressure of 1.0 MPa, and a linear velocity of 4.0 m / min. The temporary support was peeled off and shower-developed using a 1.0% sodium carbonate aqueous solution at 25 ° C. The time required for the photosensitive transfer member to completely dissolve was measured and evaluated. The higher the score, the better the development speed, preferably 3 or more.
Completely dissolved within 5:10 seconds 4: Completely dissolved within 10 seconds, but completely dissolved within 15 seconds 3: Completely dissolved within 15 seconds, but within 20 seconds Completely dissolved 2: It takes more than 20 seconds to completely dissolve, but it is completely dissolved within 30 seconds, but it cannot be completely dissolved in 1:30 seconds.
<高速でのラミネート性評価>
 作製した感光性転写部材を巻き出した後、ロール温度90℃、線圧1.0MPa、線速度4.0m/minのラミネート条件で、上記銅層付きPET基板にラミネートした。
 この基板を、目視及び光学顕微鏡で観察し、以下の様に評価した。より点数が高いほどラミネート性は良好であり、3以上であることが好ましい。
〔評価基準〕
 5:PET基板上にラミ泡が全く見られず、目視の平面性も問題ない状態。
 4:PET基板上に微かにラミ泡が見られるが、条件I(30℃、0.5MPa、2時間)にてオートクレーブ処理すると、泡が消失するため問題ない状態。
 3:PET基板上に微かにラミ泡が見られ、上記処理Iでオートクレーブ処理しても泡が消失しないが、条件II(50℃、0.5MPa、2時間)にてオートクレーブ処理すると、泡が消失するため問題ない状態。
 2:PET基板上にラミ泡が観察され、上記条件II(50℃、0.5MPa、2時間)でオートクレーブ処理しても、泡が消失しない状態。
 1:PET基板の全面にラミ泡が観測され、上記条件II(50℃、0.5MPa、2時間)でオートクレーブ処理しても、泡が消失しない状態。
 なお、ラミ泡とは、感光性転写部材と銅層付きPET基板との間に気泡の混入が生じていることを表す。
<Evaluation of laminateability at high speed>
After unwinding the produced photosensitive transfer member, it was laminated on the PET substrate with a copper layer under laminating conditions of a roll temperature of 90 ° C., a linear pressure of 1.0 MPa, and a linear velocity of 4.0 m / min.
This substrate was observed visually and with an optical microscope and evaluated as follows. The higher the score, the better the laminate property, and it is preferable that the score is 3 or more.
〔Evaluation criteria〕
5: No lami bubbles are seen on the PET substrate, and there is no problem with visual flatness.
4: Slight lami bubbles can be seen on the PET substrate, but there is no problem because the bubbles disappear when autoclaved under condition I (30 ° C, 0.5 MPa, 2 hours).
3: Slight lami bubbles are seen on the PET substrate, and the bubbles do not disappear even if the autoclave treatment is performed in the above treatment I, but the bubbles are formed when the autoclave treatment is performed under the condition II (50 ° C., 0.5 MPa, 2 hours). There is no problem because it disappears.
2: Lami bubbles are observed on the PET substrate, and the bubbles do not disappear even after autoclaving under the above condition II (50 ° C., 0.5 MPa, 2 hours).
1: Lami bubbles are observed on the entire surface of the PET substrate, and the bubbles do not disappear even after autoclaving under the above condition II (50 ° C., 0.5 MPa, 2 hours).
In addition, the Lami bubble means that the bubble is mixed between the photosensitive transfer member and the PET substrate with a copper layer.
(実施例2~14、及び、比較例1~6)
 仮支持体、熱可塑性樹脂組成物、水溶性樹脂組成物、感光性樹脂組成物および各層の厚さを表3に記載の通りに変更した以外は、実施例1と同様にして、実施例2~14及び比較例1~6の感光性転写部材をそれぞれ作製し、評価した。評価結果を表3にまとめて示す。
(Examples 2 to 14 and Comparative Examples 1 to 6)
Example 2 in the same manner as in Example 1 except that the temporary support, the thermoplastic resin composition, the water-soluble resin composition, the photosensitive resin composition, and the thickness of each layer were changed as shown in Table 3. The photosensitive transfer members of No. 14 and Comparative Examples 1 to 6 were prepared and evaluated, respectively. The evaluation results are summarized in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表3に示すように、熱可塑性樹脂層を有さない感光性転写部材は、解像性および高速でのラミネート性が劣ることが分かった(比較例1および6)。
 また、感光性樹脂層の厚さが5μm以上の感光性転写部材は、解像性が劣ることが分かった(比較例2および5)。
 また、仮支持体および中間層の合計の厚さが35μmを超える感光性転写部材は、解像性が劣ることが分かった(比較例3および4)。
 これに対し、仮支持体、少なくとも熱可塑性樹脂層を含む中間層および感光性樹脂層をこの順に有し、感光性樹脂層の厚さが5μm未満であり、かつ、仮支持体および中間層の合計の厚さが35μm以下である感光性転写部材は、解像性および高速でのラミネート性のいずれにも優れることが分かった(実施例1~14)。
As shown in Table 3 above, it was found that the photosensitive transfer member having no thermoplastic resin layer was inferior in resolution and laminating property at high speed (Comparative Examples 1 and 6).
Further, it was found that the photosensitive transfer member having a photosensitive resin layer thickness of 5 μm or more was inferior in resolution (Comparative Examples 2 and 5).
Further, it was found that the photosensitive transfer member having a total thickness of the temporary support and the intermediate layer exceeding 35 μm was inferior in resolution (Comparative Examples 3 and 4).
On the other hand, the temporary support, the intermediate layer including at least the thermoplastic resin layer, and the photosensitive resin layer are provided in this order, the thickness of the photosensitive resin layer is less than 5 μm, and the temporary support and the intermediate layer It was found that the photosensitive transfer members having a total thickness of 35 μm or less are excellent in both resolution and high-speed lamination (Examples 1 to 14).
 特に、熱可塑性樹脂層に含まれる熱可塑性樹脂のガラス転移温度を100℃以下とした感光性転写部材は、解像性により優れることが分かった(実施例1および実施例5~6)。
 また、70℃における、熱可塑性樹脂層の粘度を感光性樹脂層の粘度よりも低い感光性転写部材は、高速でのラミネート性がさらに優れることが分かった(実施例1および実施例5~6)。
 さらに、仮支持体のヘーズを0.5以下とした感光性転写部材は、解像性がさらに良好となることが分かった(実施例1、実施例4および実施例9)。
In particular, it was found that the photosensitive transfer member in which the glass transition temperature of the thermoplastic resin contained in the thermoplastic resin layer was 100 ° C. or lower was superior in resolution (Examples 1 and 5 to 6).
Further, it was found that the photosensitive transfer member having a viscosity of the thermoplastic resin layer at 70 ° C. lower than the viscosity of the photosensitive resin layer was further excellent in laminating property at high speed (Examples 1 and 5 to 6). ).
Further, it was found that the photosensitive transfer member having the haze of the temporary support of 0.5 or less had even better resolution (Example 1, Example 4 and Example 9).
(実施例101)
 100μm厚PET基材上に、第2層の導電層としてITOをスパッタリングで150nm厚にて成膜し、その上に第1層の導電層として銅を真空蒸着法で200nm厚にて成膜して、回路形成用基板とした。
 銅層上に実施例1で得られた感光性転写部材を、カバーフィルムを剥離して、下記ラミネート条件で基板に貼り合せて、積層体とした。
 得られた積層体を、仮支持体を剥離せずに一方向に導電層パッドが連結された構成を持つ図2に示すパターンAを設けたフォトマスクを用いてコンタクトパターン露光した。露光にはi線(365nm)を露光主波長とする高圧水銀灯を用いた。
 その後、仮支持体を剥離し、現像、水洗を行ってパターンAを得た。
 次いで、銅エッチング液(関東化学(株)製Cu-02)を用いて銅層をエッチングした後、ITOエッチング液(関東化学(株)製ITO-02)を用いてITO層をエッチングすることで、銅とITOが共にパターンAで描画された基板を得た。
 次いで、残存しているレジスト(硬化したネガ型感光性層)上に、実施例1で得られた感光性転写部材を、カバーフィルムを剥離して、以下のラミネート条件で再度貼り合せた。
 アライメントを合わせた状態で、仮支持体を剥離せずに図3に示すパターンBを設けたフォトマスクを用いてパターン露光し、その後仮支持体を剥離し、現像、水洗を行ってパターンBを得た。
 次いで、Cu-02を用いて銅配線をエッチングし、残った硬化したネガ型感光性層を剥離液(関東化学(株)製KP-301)を用いて剥離し、回路配線基板を得た。
 得られた回路配線基板を、顕微鏡で観察したところ、剥がれ、欠けなどは無く、きれいなパターンであった。
<ラミネート条件>
・ラミネートロール温度:100℃
・線圧:0.8MPa
・線速度:3.0m/min.
(Example 101)
On a 100 μm thick PET substrate, ITO was formed into a film with a thickness of 150 nm by sputtering as a second conductive layer, and copper was formed into a film with a thickness of 200 nm as a conductive layer of the first layer by a vacuum deposition method. As a circuit forming substrate.
The photosensitive transfer member obtained in Example 1 was peeled off from the cover film on the copper layer and bonded to the substrate under the following laminating conditions to obtain a laminated body.
The obtained laminate was exposed to a contact pattern using a photomask provided with pattern A shown in FIG. 2, which had a structure in which conductive layer pads were connected in one direction without peeling off the temporary support. For the exposure, a high-pressure mercury lamp having i-line (365 nm) as the main exposure wavelength was used.
Then, the temporary support was peeled off, developed, and washed with water to obtain pattern A.
Next, the copper layer is etched with a copper etching solution (Cu-02 manufactured by Kanto Chemical Co., Ltd.), and then the ITO layer is etched with an ITO etching solution (ITO-02 manufactured by Kanto Chemical Co., Ltd.). , Copper and ITO were both drawn in pattern A to obtain a substrate.
Next, the photosensitive transfer member obtained in Example 1 was peeled off from the cover film and reattached on the remaining resist (cured negative photosensitive layer) under the following laminating conditions.
In the aligned state, the temporary support is not peeled off, and the pattern is exposed using a photomask provided with the pattern B shown in FIG. 3, after which the temporary support is peeled off, developed, and washed with water to obtain the pattern B. Obtained.
Next, the copper wiring was etched with Cu-02, and the remaining cured negative photosensitive layer was peeled off with a stripping solution (KP-301 manufactured by Kanto Chemical Co., Ltd.) to obtain a circuit wiring board.
When the obtained circuit wiring board was observed with a microscope, there was no peeling or chipping, and the pattern was clean.
<Laminating conditions>
・ Laminate roll temperature: 100 ℃
・ Linear pressure: 0.8MPa
-Line speed: 3.0 m / min.
 10:仮支持体
 12:熱可塑性樹脂層
 14:水溶性樹脂層
 15:中間層
 16:感光性樹脂層
 18:カバーフィルム
 100:感光性転写部材
 SL:画像部(露光部)
 G:画像部(露光部)
 DL:アライメント合せの枠
10: Temporary support 12: Thermoplastic resin layer 14: Water-soluble resin layer 15: Intermediate layer 16: Photosensitive resin layer 18: Cover film 100: Photosensitive transfer member SL: Image part (exposure part)
G: Image section (exposure section)
DL: Alignment frame

Claims (14)

  1.  仮支持体、中間層および感光性樹脂層をこの順に有する感光性転写部材であって、
     前記中間層が、熱可塑性樹脂層を有し、
     前記感光性樹脂層の厚さが5μm未満であり、かつ、前記仮支持体および前記中間層の合計の厚さが35μm以下である、感光性転写部材。
    A photosensitive transfer member having a temporary support, an intermediate layer, and a photosensitive resin layer in this order.
    The intermediate layer has a thermoplastic resin layer and
    A photosensitive transfer member having a thickness of the photosensitive resin layer of less than 5 μm and a total thickness of the temporary support and the intermediate layer of 35 μm or less.
  2.  前記中間層が、さらに水溶性樹脂層を有し、
     前記水溶性樹脂層が、前記熱可塑性樹脂層と前記感光性樹脂層との間にある、請求項1記載の感光性転写部材。
    The intermediate layer further has a water-soluble resin layer.
    The photosensitive transfer member according to claim 1, wherein the water-soluble resin layer is located between the thermoplastic resin layer and the photosensitive resin layer.
  3.  前記熱可塑性樹脂層の厚さが10μm以下である、請求項1または2に記載の感光性転写部材。 The photosensitive transfer member according to claim 1 or 2, wherein the thickness of the thermoplastic resin layer is 10 μm or less.
  4.  前記感光性樹脂層の厚さに対する、前記仮支持体および前記中間層の合計の厚さの比率が6.0~12.0である、請求項1~3のいずれか1項に記載の感光性転写部材。 The photosensitive according to any one of claims 1 to 3, wherein the ratio of the total thickness of the temporary support and the intermediate layer to the thickness of the photosensitive resin layer is 6.0 to 12.0. Sex transfer member.
  5.  前記熱可塑性樹脂層に含まれる熱可塑性樹脂のガラス転移温度が100℃以下である、請求項1~4のいずれか1項に記載の感光性転写部材。 The photosensitive transfer member according to any one of claims 1 to 4, wherein the glass transition temperature of the thermoplastic resin contained in the thermoplastic resin layer is 100 ° C. or less.
  6.  前記熱可塑性樹脂層が可塑剤を有する、請求項1~5のいずれか1項に記載の感光性転写部材。 The photosensitive transfer member according to any one of claims 1 to 5, wherein the thermoplastic resin layer has a plasticizer.
  7.  70℃において、前記熱可塑性樹脂層の粘度が、前記感光性樹脂層の粘度よりも低い、請求項1~6のいずれか1項に記載の感光性転写部材。 The photosensitive transfer member according to any one of claims 1 to 6, wherein the viscosity of the thermoplastic resin layer is lower than the viscosity of the photosensitive resin layer at 70 ° C.
  8.  前記仮支持体の厚さが25μm以下である、請求項1~7のいずれか1項に記載の感光性転写部材。 The photosensitive transfer member according to any one of claims 1 to 7, wherein the temporary support has a thickness of 25 μm or less.
  9.  前記仮支持体のヘーズが0.5以下である、請求項1~8のいずれか1項に記載の感光性転写部材。 The photosensitive transfer member according to any one of claims 1 to 8, wherein the haze of the temporary support is 0.5 or less.
  10.  前記仮支持体が、前記中間層とは反対側の面に粒子含有層を有し、
     前記粒子含有層に含まれる粒子の平均粒子径が30~600nmである、請求項1~9のいずれか1項に記載の感光性転写部材。
    The temporary support has a particle-containing layer on a surface opposite to the intermediate layer.
    The photosensitive transfer member according to any one of claims 1 to 9, wherein the average particle size of the particles contained in the particle-containing layer is 30 to 600 nm.
  11.  前記感光性樹脂層が、ネガ型感光性樹脂層である、請求項1~10のいずれか1項に記載の感光性転写部材。 The photosensitive transfer member according to any one of claims 1 to 10, wherein the photosensitive resin layer is a negative type photosensitive resin layer.
  12.  請求項1~11のいずれか1項に記載の感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、導電層を有する基板に接触させて貼り合せる工程と、
     前記感光性樹脂層をパターン露光する工程と、
     露光された前記感光性樹脂層を現像して樹脂パターンを形成する工程と、をこの順に含む樹脂パターンの製造方法。
    A step of bringing the surface of the photosensitive transfer member according to any one of claims 1 to 11 opposite to the intermediate layer of the photosensitive resin layer into contact with a substrate having a conductive layer and bonding them together.
    The process of pattern exposure of the photosensitive resin layer and
    A method for producing a resin pattern, which comprises a step of developing the exposed photosensitive resin layer to form a resin pattern, and the process of forming the resin pattern in this order.
  13.  請求項1~11のいずれか1項に記載の感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、導電層を有する基板に接触させて貼り合せる工程と、
     前記感光性樹脂層をパターン露光する工程と、
     露光された前記感光性樹脂層を現像して樹脂パターンを形成する工程と、
     前記樹脂パターンが配置されていない領域における前記基板をエッチング処理する工程と、をこの順に含む回路配線の製造方法。
    A step of bringing the surface of the photosensitive transfer member according to any one of claims 1 to 11 opposite to the intermediate layer of the photosensitive resin layer into contact with a substrate having a conductive layer and bonding them together.
    The process of pattern exposure of the photosensitive resin layer and
    A step of developing the exposed photosensitive resin layer to form a resin pattern, and
    A method for manufacturing a circuit wiring including a step of etching the substrate in a region where the resin pattern is not arranged, and a step of etching the substrate in this order.
  14.  請求項1~11のいずれか1項に記載の感光性転写部材が有する感光性樹脂層の中間層とは反対側の表面を、導電層を有する基板に接触させて貼り合せる工程と、
     前記感光性樹脂層をパターン露光する工程と、
     露光された前記感光性樹脂層を現像して樹脂パターンを形成する工程と、
     前記樹脂パターンが配置されていない領域における前記基板をエッチング処理する工程と、をこの順に含むタッチパネルの製造方法。
    A step of bringing the surface of the photosensitive transfer member according to any one of claims 1 to 11 opposite to the intermediate layer of the photosensitive resin layer into contact with a substrate having a conductive layer and bonding them together.
    The process of pattern exposure of the photosensitive resin layer and
    A step of developing the exposed photosensitive resin layer to form a resin pattern, and
    A method for manufacturing a touch panel, comprising the step of etching the substrate in a region where the resin pattern is not arranged, and the step of etching the substrate in this order.
PCT/JP2020/025462 2019-08-20 2020-06-29 Photosensitive transfer member, method for producing resin pattern, method for producing circuit wiring, and method for producing touch panel WO2021033429A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080044332.3A CN113994262A (en) 2019-08-20 2020-06-29 Photosensitive transfer member, method for manufacturing resin pattern, method for manufacturing circuit wiring, and method for manufacturing touch panel
JP2021540650A JP7312258B2 (en) 2019-08-20 2020-06-29 Photosensitive transfer member, method for producing resin pattern, method for producing circuit wiring, and method for producing touch panel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-150529 2019-08-20
JP2019150529 2019-08-20
JP2019-203806 2019-11-11
JP2019203806 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021033429A1 true WO2021033429A1 (en) 2021-02-25

Family

ID=74660832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025462 WO2021033429A1 (en) 2019-08-20 2020-06-29 Photosensitive transfer member, method for producing resin pattern, method for producing circuit wiring, and method for producing touch panel

Country Status (3)

Country Link
JP (1) JP7312258B2 (en)
CN (1) CN113994262A (en)
WO (1) WO2021033429A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078852A (en) * 2015-10-21 2017-04-27 富士フイルム株式会社 Dry film resist, method for producing circuit wiring, circuit wiring, input device and display device
JP2017094635A (en) * 2015-11-26 2017-06-01 富士フイルム株式会社 Transfer material, method for producing transfer material, laminate, method for producing laminate, method for manufacturing capacitive input device, and method for manufacturing image display device
JP2018024226A (en) * 2016-03-08 2018-02-15 富士フイルム株式会社 Transfer film, electrode protective film, laminate, capacitive input device, method for manufacturing capacitive input device, and method for manufacturing transfer film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3971129B2 (en) * 2001-06-13 2007-09-05 富士フイルム株式会社 Photosensitive transfer material and method for producing color filter
CN111201488A (en) * 2017-10-13 2020-05-26 富士胶片株式会社 Method for manufacturing circuit wiring, method for manufacturing touch panel, and method for manufacturing patterned substrate
WO2020203502A1 (en) * 2019-04-05 2020-10-08 富士フイルム株式会社 Photosensitive transfer material, method for producing resin pattern, method for producing circuit wiring line, and method for producing touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078852A (en) * 2015-10-21 2017-04-27 富士フイルム株式会社 Dry film resist, method for producing circuit wiring, circuit wiring, input device and display device
JP2017094635A (en) * 2015-11-26 2017-06-01 富士フイルム株式会社 Transfer material, method for producing transfer material, laminate, method for producing laminate, method for manufacturing capacitive input device, and method for manufacturing image display device
JP2018024226A (en) * 2016-03-08 2018-02-15 富士フイルム株式会社 Transfer film, electrode protective film, laminate, capacitive input device, method for manufacturing capacitive input device, and method for manufacturing transfer film

Also Published As

Publication number Publication date
CN113994262A (en) 2022-01-28
JP7312258B2 (en) 2023-07-20
JPWO2021033429A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2022019321A1 (en) Composition, transfer film, method for producing laminate, method for producing circuit wiring, and method for producing electronic device
WO2021199996A1 (en) Photosensitive transfer material, method for manufacturing resin pattern, method for manufacturing circuit wiring, and temporary support body for photosensitive transfer material
WO2021033451A1 (en) Photosensitive transfer member, circuit wiring-manufacturing method, and touch panel-manufacturing method
WO2020158316A1 (en) Photosensitive transfer material, resin pattern production method, circuit wiring production method, touch panel production method, and, film and production method therefor
WO2021060148A1 (en) Photosensitive transfer member, method for producing resin pattern, method for producing circuit wiring, and method for producing touch panel
WO2022163778A1 (en) Method for manufacturing laminate, method for manufacturing circuit wiring, method for manufacturing electronic device, and photosensitive transfer material
WO2021033429A1 (en) Photosensitive transfer member, method for producing resin pattern, method for producing circuit wiring, and method for producing touch panel
WO2021199542A1 (en) Light-sensitive transfer material, method for manufacturing resin pattern, and method for manufacturing circuit wiring
WO2022181455A1 (en) Transfer film, and method for manufacturing conductor pattern
WO2022181456A1 (en) Transfer film and method for manufacturing conductor pattern
WO2022138468A1 (en) Transfer material and method for producing laminated body
WO2024004430A1 (en) Transfer film, pattern forming method, and circuit wiring manufacturing method
WO2021220980A1 (en) Photosensitive transfer material, method for producing resin pattern, method for producing circuit wiring, and method for producing touch panel
WO2022054374A1 (en) Photosensitive transfer material, production method for resin pattern, production method for circuit wiring, and production method for electronic device
JP7275064B2 (en) Method for manufacturing resin pattern, method for manufacturing conductive pattern, laminated polyester film, photosensitive transfer material, resin pattern, and touch panel
WO2022045255A1 (en) Light-sensitive transfer material and method for manufacturing resin pattern
JP2023020993A (en) Method for manufacturing laminate including transparent conductive pattern, and, method for manufacturing touch panel
WO2022138246A1 (en) Transfer material and method for manufacturing laminate
WO2022181485A1 (en) Method for manufacturing laminate and method for manufacturing circuit wiring
WO2022181611A1 (en) Production method for laminate having conductor pattern
TW202242165A (en) Production method for vapor deposition mask, transfer film for producing vapor deposition mask and vapor deposition mask
JP2022168819A (en) Transfer film for manufacturing vapor deposition mask, vapor deposition mask, and method for manufacturing vapor deposition mask
JP2024018375A (en) Production method of laminate including conductive pattern and production method of touch panel
TW202311543A (en) Transfer film for forming vapor deposition mask, manufacturing method of vapor deposition mask and vapor deposition mask
JP2023043527A (en) Photosensitive composition, transfer film, and manufacturing method of laminate having conductor pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540650

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854859

Country of ref document: EP

Kind code of ref document: A1