WO2024004430A1 - Transfer film, pattern forming method, and circuit wiring manufacturing method - Google Patents

Transfer film, pattern forming method, and circuit wiring manufacturing method Download PDF

Info

Publication number
WO2024004430A1
WO2024004430A1 PCT/JP2023/018834 JP2023018834W WO2024004430A1 WO 2024004430 A1 WO2024004430 A1 WO 2024004430A1 JP 2023018834 W JP2023018834 W JP 2023018834W WO 2024004430 A1 WO2024004430 A1 WO 2024004430A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
temporary support
mass
transfer film
transfer
Prior art date
Application number
PCT/JP2023/018834
Other languages
French (fr)
Japanese (ja)
Inventor
壮二 石坂
一真 両角
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024004430A1 publication Critical patent/WO2024004430A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present disclosure relates to a transfer film, a pattern forming method, and a circuit wiring manufacturing method.
  • a widely used method is to place a transfer layer on an arbitrary substrate using a transfer film, expose the transfer layer to light through a mask, and then develop it. ing.
  • International Publication No. 2017/007001 discloses a photosensitive element comprising a support film, an intermediate layer, and a photosensitive layer in this order, wherein the support film has a thickness of 20 ⁇ m or more, and the support film contains A photosensitive element is disclosed in which the number of particles with a diameter of 5 ⁇ m or more is 30 particles/mm 2 or less.
  • a transfer film capable of suppressing deformation of a substrate used in a transfer process is provided. Further, according to other embodiments of the present invention, a method for forming a pattern using the above transfer film and a method for manufacturing a circuit board are provided.
  • a transfer film comprising a temporary support and a transfer layer disposed on the temporary support, wherein the temporary support has a thermal deformation rate of 1.0% or less.
  • ⁇ 4> The transfer film according to any one of ⁇ 1> to ⁇ 3>, wherein the transfer layer includes a photosensitive layer.
  • ⁇ 5> The transfer film according to ⁇ 4>, wherein the transfer layer includes an intermediate layer between the temporary support and the photosensitive layer.
  • ⁇ 6> The transfer film according to ⁇ 5>, wherein the transfer layer includes a thermoplastic resin layer between the temporary support and the intermediate layer.
  • ⁇ 7> The transfer film according to any one of ⁇ 1> to ⁇ 6>, wherein the temporary support has a haze of greater than 2.0%.
  • the temporary support is any one of ⁇ 1> to ⁇ 8>, including a region in which the total area ratio of optically abnormal regions is larger than 300 ppm when observed with an epi-reflection laser microscope in an area of 13.5 mm 2 1.
  • the transfer film according to item 1. ⁇ 10> The transfer film according to any one of ⁇ 1> to ⁇ 9>, wherein the temporary support has a thickness of 25 ⁇ m or more.
  • the photosensitive layer contains an alkali-soluble resin having an acid value of 80 mgKOH/g to 250 mgKOH/g.
  • the photosensitive layer is an alkali-soluble layer in which the mass ratio of the content of (meth)acrylic acid ester-derived structural units to the total content of styrene-derived structural units and styrene derivative-derived structural units is 0.3 to 2.5.
  • ⁇ 15> The transfer film according to any one of ⁇ 4> to ⁇ 6>, wherein the photosensitive layer has a water content of 0.1% by mass or more based on the total amount of the photosensitive layer.
  • ⁇ 16> The transfer layer according to any one of ⁇ 1> to ⁇ 14>, wherein the content of iron atoms is 0.01 ppm to 10.0 ppm on a mass basis with respect to the total amount of the transfer layer. film.
  • ⁇ 17> The photosensitive layer has an iron atom content of 0.01 ppm to 10.0 ppm on a mass basis based on the total amount of the photosensitive layer, described in any one of ⁇ 4> to ⁇ 6>. transfer film.
  • a step of preparing a transfer film including a temporary support and a transfer layer disposed on the temporary support; a step of attaching the laminate so that it is in contact with the laminate, a step of peeling off the temporary support to obtain a laminate, a step of exposing the laminate to light in a pattern, and a step of developing the laminate after exposure to form a pattern.
  • a step of plating an area of the substrate where no pattern is placed, and a step of peeling off the pattern, and the temporary support is a circuit wiring having a thermal deformation rate of 1.0% or less. manufacturing method.
  • a transfer film capable of suppressing deformation of a substrate used in a transfer process is provided. Further, according to other embodiments of the present invention, a method for forming a pattern using the above transfer film and a method for manufacturing a circuit board are provided.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a transfer film according to the present disclosure.
  • a numerical range expressed using " ⁇ " means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described in stages.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the value shown in the Examples.
  • each component may contain multiple types of corresponding substances.
  • the term "layer” includes, when observing a region where the layer or film exists, not only the case where the layer or film is formed in the entire region, but also the case where the layer or film is formed only in a part of the region. This also includes cases.
  • step is used not only to refer to an independent step, but also to include the term “step” even if it cannot be clearly distinguished from other steps, as long as the intended purpose of the step is achieved.
  • transmittance means that the average transmittance of visible light with a wavelength of 400 nm to 700 nm is 80% or more, preferably 90% or more.
  • transmittance is a value measured using a spectrophotometer, and can be measured using, for example, a spectrophotometer U-3310 manufactured by Hitachi, Ltd.
  • weight average molecular weight (Mw) and number average molecular weight (Mn) refer to columns such as TSKgel GMHxL, TSKgel G4000HxL, or TSKgel G2000HxL (all brand names manufactured by Tosoh Corporation). ), using THF (tetrahydrofuran) as the eluent, a differential refractometer as the detector, and polystyrene as the standard material, and the value calculated using polystyrene as the standard material measured with a gel permeation chromatography (GPC) analyzer.
  • GPC gel permeation chromatography
  • ratios of constituent units of polymers are mass ratios.
  • the molecular weight of a compound with a molecular weight distribution is the weight average molecular weight (Mw).
  • (meth)acrylic is a concept that includes both acrylic and methacrylic.
  • (Meth)acryloyloxy group is a concept that includes both acryloyloxy group and methacryloyloxy group.
  • (Meth)acryloyl group is a concept that includes both acryloyl group and methacryloyl group.
  • alkali-soluble means that the solubility in 100 g of a 1% by mass aqueous solution of sodium carbonate at 22° C. is 0.1 g or more.
  • water-soluble means that the solubility in 100 g of water with a pH of 7.0 and a liquid temperature of 22° C. is 0.1 g or more. Therefore, for example, water-soluble resin is intended to be a resin that satisfies the above-mentioned solubility conditions.
  • the "solid content" of the composition refers to the components forming the composition layer formed using the composition, and when the composition contains a solvent (organic solvent, water, etc.), the solvent is means all ingredients except.
  • liquid components are also considered solid components as long as they form a composition layer.
  • thickness is calculated as the average value of five arbitrary points measured by cross-sectional observation of a target using a SEM (Scanning Electron Microscope).
  • the transfer film according to the present disclosure includes a temporary support and a transfer layer disposed on the temporary support, and the temporary support has a thermal deformation rate of 1.0% or less.
  • the present inventors have discovered that by setting the thermal deformation rate of the temporary support on the side of the transfer film to be bonded to the substrate in the transfer process to be 1.0% or less, deformation occurring in the substrate in the transfer process is suppressed. .
  • the transfer film of the present disclosure since the thermal deformation rate of the temporary support is 1.0% or less, expansion and contraction of the transfer film due to heat is unlikely to occur, and the transfer film is adhered to the transfer film. Deformation of the substrates to be matched is suppressed.
  • the transfer film according to the present disclosure includes a temporary support and a transfer layer disposed on the temporary support.
  • the temporary support and the transfer layer may be directly laminated without any other layer, or the temporary support and the transfer layer may be laminated with another layer interposed therebetween. Further, another layer may be laminated on the surface of the transfer layer opposite to the surface facing the temporary support.
  • Examples of layers other than the temporary support and the transfer layer include a protective film.
  • the protective film is preferably placed on the surface of the transfer layer opposite to the surface facing the temporary support.
  • each layer may be a single layer or a multilayer of two or more layers.
  • the photosensitive layer may be either a negative photosensitive layer or a positive photosensitive layer, but is preferably a negative photosensitive layer.
  • the photosensitive layer is a colored resin layer.
  • the transfer film according to the present disclosure is preferably used as a transfer film for etching resist.
  • the total thickness of the other layers arranged on the side opposite to the temporary support side of the photosensitive layer is the photosensitive layer.
  • the amount is preferably 0.1% to 30%, more preferably 0.1% to 20%, based on the thickness of the sexual layer.
  • the maximum width of the waviness of the transfer film is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 60 ⁇ m or less.
  • the maximum width of the waviness of the transfer film is preferably 0 ⁇ m or more, more preferably 0.1 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the maximum width of waviness of the transfer film is a value measured by the following procedure.
  • a test sample is prepared by cutting the transfer film in a direction perpendicular to the main surface to a size of 20 cm in length x 20 cm in width.
  • the protective film is peeled off.
  • the test sample is placed on a stage with a smooth and horizontal surface so that the surface of the temporary support faces the stage.
  • the surface of the test sample was scanned with a laser microscope (for example, VK-9700SP manufactured by Keyence Corporation) for a 10 cm square area at the center of the test sample to obtain a three-dimensional surface image. Subtract the minimum concavity height from the maximum convexity height observed in the dimensional surface image.
  • the above operation is performed on 10 test samples, and the arithmetic mean value thereof is defined as the "maximum waviness of the transfer film".
  • the transfer film 20 shown in FIG. 1 includes a temporary support 11, a transfer layer 12 including a thermoplastic resin layer 13, an intermediate layer 15, and a photosensitive layer 17, and a protective film 19 in this order.
  • the transfer film 20 shown in FIG. 1 has a protective film 19 disposed therein, the protective film 19 does not need to be disposed.
  • the transfer film 20 shown in FIG. 1 has a form in which a thermoplastic resin layer 13 and an intermediate layer 15 are arranged, but the thermoplastic resin layer 13 or the intermediate layer 15, or the thermoplastic resin layer 13 and the intermediate layer 15, It does not have to be placed.
  • the transfer film according to the present disclosure includes a temporary support.
  • the temporary support is a support that supports the transfer layer and is removable.
  • the temporary support may be a single layer or a laminate of two or more layers.
  • Examples of temporary supports include those consisting only of a base material; a laminate comprising a base material and a particle-containing layer disposed on one side of the base material; and a base material and both sides of the base material.
  • a laminate including a particle-containing layer disposed in a particle-containing layer is mentioned.
  • the base material constituting the temporary support examples include glass, resin film, and paper.
  • the base material constituting the temporary support is preferably a resin film from the viewpoints of strength, flexibility, and light transmittance.
  • the resin film examples include polyethylene terephthalate (PET) film, cellulose triacetate film, polystyrene film, and polycarbonate film.
  • PET polyethylene terephthalate
  • the resin film is preferably a PET film, more preferably a biaxially stretched PET film.
  • the number of particle-containing layers may be one layer, or two or more layers.
  • the particle-containing layer is formed, for example, by applying a particle-containing layer composition onto a base material and drying it. Moreover, the particle-containing layer can also be arranged by a coextrusion method when forming a resin film.
  • the particle-containing layer composition includes a binder polymer and particles.
  • the type of binder polymer is not particularly limited, and can be appropriately selected depending on the purpose, for example. Examples of the binder polymer include acrylic resin, urethane resin, olefin resin, styrene-butadiene resin, ester resin, vinyl chloride resin, and vinylidene chloride resin.
  • PET When disposing the particle-containing layer by coextrusion, it is preferable to use PET as the binder polymer.
  • the particle-containing layer may contain one type of binder polymer and particles, or may contain two or more types of particles.
  • the particles contained in the particle-containing layer are not particularly limited and can be appropriately selected depending on the purpose.
  • the content of particles in the particle-containing layer can be adjusted as appropriate by adjusting the amount of particles added to the composition for particle-containing layer.
  • the particles contained in the particle-containing layer are referred to as "additional particles.”
  • Additive particles are to be distinguished from impurities unexpectedly mixed in during the manufacturing process of the temporary support and particles formed during the manufacturing process of the temporary support.
  • the additive particles are preferably particles that do not melt at 200°C.
  • Whether or not the temporary support is an added particle can be determined, for example, by the following method. Since the additive particles usually have uniformity in shape and distribution, they can be identified by observing them with an optical microscope.
  • additive particles examples include inorganic particles and organic particles.
  • inorganic particles examples include particles of inorganic oxides such as silicon oxide (silica), titanium oxide (titania), zirconium oxide (zirconia), magnesium oxide (magnesia), and aluminum oxide (alumina).
  • inorganic oxides such as silicon oxide (silica), titanium oxide (titania), zirconium oxide (zirconia), magnesium oxide (magnesia), and aluminum oxide (alumina).
  • organic particles include particles of polymers such as acrylic resin, polyester, polyurethane, polycarbonate, polyolefin, and polystyrene.
  • the additive particles contained in the particle-containing layer are preferably particles of an inorganic oxide.
  • the average particle diameter of the additive particles is not particularly limited, but is, for example, 0.1 ⁇ m to 10 ⁇ m.
  • the average particle size is measured by cutting a section with a thickness of 100 nm using an ultramicrotome and using a TEM (transmission electron microscope).
  • the thermal deformation rate of the temporary support is 1.0% or less, preferably 0.5% or less.
  • the lower limit of the thermal deformation rate is not particularly limited, and is preferably 0%.
  • the thermal deformation rate of the temporary support is 1.0% or less, deformation of the substrate to be bonded to the transfer film is suppressed.
  • the thermal deformation rate is measured by the following method.
  • a direction parallel to one of the two opposing sides is defined as the A direction
  • B direction a direction perpendicular to the A direction
  • a test piece cut out to have a length of 30 mm in the A direction and 4 mm in the B direction, and a test piece cut out to have a length of 30 mm in the B direction and 4 mm in the A direction are prepared.
  • the following measurements are performed using two test pieces.
  • a thermal expansion coefficient measuring device product name "TMA450EM", manufactured by TA Instruments
  • the measurement conditions are as follows. Measurement mode: Tensile mode Grip distance: 16mm
  • Each test piece is heated from 25°C to 100°C at a heating rate of 20°C/min, the elongation rate of each test piece is measured five times, and the average value is calculated. Of the two test pieces, the one with the larger average elongation rate is adopted as the thermal deformation rate.
  • Examples of methods for reducing the thermal deformation rate of the temporary support include a method of increasing the thickness of the temporary support, and a method of increasing the number of particles contained in the temporary support by making the temporary support contain particles. It will be done.
  • the haze of the temporary support is preferably greater than 2.0% from the viewpoint of suppressing deformation of the substrate to be bonded to the transfer film.
  • the haze of the temporary support is more preferably 2.5% or more.
  • the upper limit of haze is not particularly limited, and is, for example, 10%.
  • the temporary support When forming a pattern using the transfer film according to the present disclosure, it is preferable to peel off the temporary support after the transfer film and the substrate are bonded together and before exposure. If the temporary support is peeled off before exposure, there is no need to consider the influence of the high haze of the temporary support on exposure.
  • haze is measured using a haze meter according to JIS K7136:2000.
  • the haze meter for example, the product name "NDH-2000" manufactured by Nippon Denshoku Kogyo Co., Ltd. is used.
  • the total number of particles with a diameter of 5 ⁇ m or more and aggregates with a diameter of 5 ⁇ m or more contained in the temporary support is 30. Preferably, it is greater than /mm 2 .
  • the total number of particles and aggregates is more preferably 40 particles/mm 2 or more.
  • the upper limit of the total number is not particularly limited, and is, for example, 50 pieces/mm 2 .
  • particles and aggregates as used herein means those having a region in which a difference in polarization from the surrounding region can be observed when the temporary support is observed with a polarizing microscope.
  • Particles and aggregates include, for example, resin carbides formed during the manufacture of the base material and catalysts used in the manufacture of the base material. Further, when providing a particle-containing layer as described above, the additive particles contained in the particle-containing layer also correspond to the above-mentioned particles.
  • the total number of particles and aggregates contained in the temporary support is measured by the following method.
  • the temporary support was observed with a polarizing microscope (product name: "BX60” with "U-POT” filter and "U-AN360” filter inserted to make a simple polarizing microscope, 10x objective lens, manufactured by Olympus). Then, the part where the polarization disturbance occurs is identified as a foreign object (particle or aggregate). The identified foreign matter is observed with an epi-illumination laser microscope (product name: "Confocal Laser Microscope VL2000D", manufactured by Lasertec). Further, the diameter of the foreign object is measured using an optical microscope (product name "BX60", objective lens 100 times, manufactured by Olympus Corporation), and the number of foreign objects with a diameter of 5 ⁇ m or more included in the observation area of 1 mm 2 is counted. Note that if the foreign object contains voids, the diameter is measured including the voids. If the foreign object is not circular, measure the longest diameter.
  • the temporary support When forming a pattern using the transfer film according to the present disclosure, it is preferable to peel off the temporary support after bonding the transfer film and the base material and before exposure. If the temporary support is peeled off before exposure, it is not necessary to consider the influence on exposure due to the large number of particles and aggregates contained in the temporary support.
  • the temporary support has an optically abnormal area when observed with an epi-illumination laser microscope in an area of 13.5 mm 2 It is preferable to include a region in which the total area ratio of is larger than 300 ppm.
  • the total area ratio of the optically abnormal region is 350 ppm or more.
  • the upper limit of the total area ratio is not particularly limited, and is, for example, 500 ppm.
  • the area of the optically abnormal region means the area of the optically abnormal region observed in a region up to 2 ⁇ m from the center position of the thickness of the temporary support in one or the other direction of the thickness.
  • an optically abnormal region is a region having different optical properties from the main region of the temporary support (resin constituting the temporary support) (specifically, whether the reflectance or refractive index is different from the main region, or a region in which optical phenomena such as scattering and diffraction occur more strongly than in the main region).
  • the optically abnormal region includes a light-shielding portion by the particles and an optically abnormal region other than the particles (for example, an abnormal refractive index region having a refractive index different from that of the particles and the main region of the temporary support).
  • the optically abnormal region include a region having a different orientation and/or crystallinity from the main region of the temporary support, an air region, a region of a gas other than air, a cavity region where almost no gas exists, and the like.
  • the total area of the optically abnormal region is measured by the following method.
  • a polarizing filter (OLS4000-QWP) is inserted above the objective lens of an epi-reflection laser microscope (OLYMPUS OLS-4100).
  • OLS4000-QWP epi-reflection laser microscope
  • the temporary support cut into 30 mm x 30 mm is horizontally suctioned and fixed onto the stage of a laser microscope using a porous suction plate (65F-HG manufactured by Universal Giken) and a vacuum pump.
  • the suction-fixed temporary support is observed under the conditions of a 50x objective lens and a laser light intensity of 60 nm (laser wavelength is 405 nm).
  • the light amount difference between the pixel with the maximum light amount and the pixel with the minimum light amount in the measured image is divided into 4096 gradations (the value of the maximum light amount is 4095 and the value of the minimum light amount is 0).
  • a histogram horizontal axis: gradation of light amount (minimum value 0, maximum value 4095), vertical axis: number of pixels) is created as a graph of the light amount distribution of pixels in the image.
  • the measured image is binarized using the gradation that is 400 gradations plus 400 gradations from the larger of the two base values of the created histogram as the threshold, and the areas of pixels with a larger amount of light than the threshold are summed.
  • the total area is the total area of the optically abnormal region.
  • the ratio of the total area of the optical abnormality region to the measurement area is calculated.
  • the thickness of the temporary support is preferably 25 ⁇ m or more, more preferably 50 ⁇ m or more, and even more preferably 75 ⁇ m or more, from the viewpoint of suppressing deformation of the substrate to be bonded to the transfer film.
  • the upper limit of the thickness is not particularly limited, and is, for example, 200 ⁇ m.
  • the surface of the temporary support in contact with the transfer layer may be subjected to surface treatment such as ultraviolet irradiation, corona discharge, plasma treatment, etc., from the viewpoint of improving adhesion with the transfer layer.
  • surface treatment such as ultraviolet irradiation, corona discharge, plasma treatment, etc.
  • the exposure amount is preferably 10 mJ/cm 2 to 2000 mJ/cm 2 , more preferably 50 mJ/cm 2 to 1000 mJ/cm 2 .
  • Examples of light sources for ultraviolet irradiation include light sources that emit light in the wavelength range of 150 nm to 450 nm (for example, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, electrode discharge lamps, and light emitting diodes (LEDs).
  • the output and illuminance are not particularly limited.
  • the transfer layer is preferably in contact with the surface of the temporary support.
  • the surface roughness Rmax of the surface of the temporary support on the transfer layer side is preferably 0.5 ⁇ m or less, more preferably 0.01 ⁇ m to 0.5 ⁇ m. preferable.
  • the surface roughness Rmax of the surface of the temporary support on the transfer layer side is measured by the following method.
  • the surface roughness Rmax is measured using a three-dimensional optical profiler (New View 7300, manufactured by Zygo).
  • the temporary support is peeled off from the transfer film. Obtain the surface profile of the surface of the temporary support on the transfer layer side.
  • Microscope Application of MetroPro ver. 8.3.2 is used as the measurement/analysis software.
  • a Surface Map screen is displayed using the measurement/analysis software, and histogram data is obtained on the Surface Map screen.
  • the surface roughness Rmax is obtained from the obtained histogram data. Note that the surface roughness Rmax corresponds to the maximum height of the roughness curve at the reference length.
  • the temporary support may be a recycled product.
  • recycled products include those made by cleaning used films and the like, turning them into chips, and using the chips as raw materials to make films.
  • a specific example of a recycled product is Toray's Ecouse series.
  • the transfer film according to the present disclosure includes a transfer layer.
  • the surface free energy of the transfer layer on the side facing the temporary support is preferably 68.0 mJ/m 2 or less, and 50.0 mJ/cm 2 to 68. It is more preferably 0 mJ/cm 2 , and even more preferably 55.0 mJ/cm 2 to 65.0 mJ/cm 2 .
  • the surface free energy (unit: mJ/m 2 ) of the transfer layer on the side facing the temporary support is calculated by the following method.
  • the contact angle of two types of liquids, pure water and methylene iodide was measured using a contact angle meter CA-A model (Kyowa Kaimen Kagaku Co., Ltd.) under an atmosphere of room temperature 25°C and relative humidity 50%. After 20 seconds, 12 ⁇ L of the contact angle was dropped using the following method: 12 ⁇ L was dropped, and 20 seconds later, measurements were taken at 3 points, and the average value was taken as the contact angle.
  • the transfer layer preferably has a water content of 0.1% by mass or more, more preferably 0.15% by mass or more, based on the total amount of the transfer layer.
  • the content is preferably 0.3% by mass or more, and more preferably 0.3% by mass or more.
  • the upper limit of the water content is not particularly limited, and is, for example, 1.0% by mass.
  • the water content in the transfer layer can be adjusted by the drying method used when forming the transfer layer.
  • the water content in the transfer layer is measured by the following method.
  • a transfer film cut into a size of 5 mm x 30 mm was used as a sample, and the sample was inserted into a primary trap tube (PAT) and capped.
  • PAT primary trap tube
  • the sample was prepared by peeling off the protective film, and the sample was inserted immediately after peeling off.
  • Sample preparation was performed at 23° C. and 45% RH. Heating using a thermal desorption device (product name "JTD-505III", manufactured by Japan Analytical Industry Co., Ltd.) and measuring outgas using a gas chromatograph mass spectrometer (product name "GCMS-QP2010", manufactured by Shimadzu Corporation) The water content was measured.
  • the transfer layer preferably has an iron atom content of 0.01 ppm to 10.0 ppm on a mass basis with respect to the total amount of the transfer layer. It is more preferably from .1 ppm to 10 ppm, and even more preferably from 0.2 ppm to 10 ppm.
  • the iron content in the transfer layer can be adjusted by the composition of the photosensitive composition.
  • the content of iron atoms in the transfer layer is measured by the following method.
  • the content of iron atoms is measured by inductively coupled plasma (ICP) emission spectrometry described in JIS K1200-6.
  • ICP-MS inductively coupled plasma mass spectrometer
  • ICPMS-2030 manufactured by Shimadzu Corporation
  • 1.000 g of the transfer layer is weighed out from the transfer film, and the transfer layer is incinerated using an electric furnace.
  • Add 5 mL of a nitric acid aqueous solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.; an aqueous solution containing a 1:1 mixture of special grade nitric acid and ultrapure water) to the platinum crucible taken out of the electric furnace to dissolve the ash.
  • 15 ml of ultrapure water is added to obtain an aqueous solution of the ash.
  • the obtained aqueous solution is measured by inductively coupled plasma (ICP) emission spectrometry described in JIS K1200-6, and the content of iron atoms in the transfer layer is calculated.
  • ICP inductively coupled plasma
  • the transfer layer preferably includes a photosensitive layer in order to form a pattern.
  • a display device equipped with a touch panel such as a capacitive input device (organic electroluminescence (EL) display device, liquid crystal display device, etc.)
  • the electrode pattern corresponding to the sensor in the viewing section the wiring of the peripheral wiring part and the lead-out wiring part
  • a conductive layer pattern such as the above is provided inside the touch panel.
  • a patterned layer for example, a negative photosensitive layer is provided on a substrate using a transfer film or the like, and the photosensitive layer is exposed to light through a mask having a desired pattern. , developing methods are widely used.
  • the photosensitive layer is preferably a negative photosensitive layer in which the solubility of exposed areas in a developer decreases upon exposure, and the non-exposed areas are removed through development.
  • the photosensitive layer is not limited to a negative photosensitive layer, and may be a positive photosensitive layer in which the solubility of the exposed area in a developer is improved by exposure, and the exposed area is removed by development.
  • the photosensitive layer is obtained, for example, by applying a photosensitive composition and drying it.
  • the photosensitive layer When the photosensitive layer is a negative photosensitive layer, the photosensitive layer preferably contains a resin, a polymerizable compound, and a polymerization initiator. Further, when the photosensitive layer is a negative photosensitive layer, as described below, it is also preferable that an alkali-soluble resin (such as Polymer A which is an alkali-soluble resin) is included as part or all of the resin. That is, in one embodiment, the photosensitive layer preferably contains a resin including an alkali-soluble resin, a polymerizable compound, and a polymerization initiator.
  • an alkali-soluble resin such as Polymer A which is an alkali-soluble resin
  • Such a photosensitive layer contains 10% to 90% by weight of a resin, 5% to 70% by weight of a polymerizable compound, and a polymerization initiator, based on the total weight of the photosensitive layer. It is preferable to contain 0.01% to 20% by mass. Each component will be explained in order below.
  • Examples of the polymer A include (meth)acrylic resins, styrene resins, epoxy resins, amide resins, amide epoxy resins, alkyd resins, phenol resins, ester resins, urethane resins, and combinations of epoxy acrylate resins and acid anhydrides.
  • Examples include acid-modified epoxy acrylate resins obtained by reaction. It is not limited to this.
  • (meth)acrylic resin is preferable.
  • (meth)acrylic resin means a resin having a structural unit derived from a (meth)acrylic compound.
  • the content of structural units derived from the (meth)acrylic compound is preferably 30% by mass or more, more preferably 50% by mass or more, and 60% by mass or more, based on the total mass of the (meth)acrylic resin. More preferably, the amount is % by mass or more.
  • polymer A a polymer having a structural unit derived from a (meth)acrylic compound and a structural unit derived from a styrene compound is also preferable.
  • the polymer A is an alkali-soluble resin.
  • the acid value of the polymer A is preferably 250 mgKOH/g or less, more preferably less than 200 mgKOH/g, and less than 190 mgKOH/g from the viewpoint of better resolution by suppressing swelling of the photosensitive layer by the developer. is even more preferable.
  • the lower limit of the acid value of Polymer A is not particularly limited.
  • the acid value of the polymer A is preferably 60 mgKOH/g or more, more preferably 80 mgKOH/g or more, and even more preferably 120 mgKOH/g or more, from the viewpoint of better developability.
  • the acid value (mgKOH/g) is the mass [mg] of potassium hydroxide required to neutralize 1 g of sample.
  • the acid value can be calculated, for example, from the average content of acid groups in the compound.
  • the acid value of the polymer A may be adjusted depending on the type of structural units constituting the polymer A and the content of the structural units containing acid groups.
  • the weight average molecular weight of Polymer A is preferably 5,000 to 500,000.
  • a weight average molecular weight of 500,000 or less is preferred from the viewpoint of improving resolution and developability.
  • the weight average molecular weight is more preferably 100,000 or less, and even more preferably 60,000 or less.
  • the weight average molecular weight is 5,000 or more, it is preferable from the viewpoint of controlling the properties of the developed aggregate and the properties of the unexposed film such as edge fusing property and cut chip property when formed into a photosensitive resin laminate.
  • the weight average molecular weight is more preferably 10,000 or more, even more preferably 20,000 or more, and particularly preferably 30,000 or more.
  • Edge fusing property refers to the degree to which the photosensitive layer easily protrudes from the end surface of the roll when the photosensitive resin laminate is wound into a roll.
  • the cut chip property refers to the degree to which chips easily fly when an unexposed film is cut with a cutter.
  • the photosensitive resin laminate is a laminate obtained by bonding a transfer film and a base material.
  • the degree of dispersion of polymer A is preferably 1.0 to 6.0, more preferably 1.0 to 5.0, even more preferably 1.0 to 4.0, particularly preferably 1.0 to 3.0. .
  • dispersity is the ratio of weight average molecular weight to number average molecular weight (weight average molecular weight/number average molecular weight).
  • weight average molecular weight and number average molecular weight are values measured using gel permeation chromatography.
  • the polymer A contains a structural unit based on a monomer having an aromatic hydrocarbon group.
  • aromatic hydrocarbon groups include, for example, substituted or unsubstituted phenyl groups and substituted or unsubstituted aralkyl groups.
  • the content of the structural unit based on the monomer having an aromatic hydrocarbon group in the polymer A is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total mass of the polymer A.
  • the upper limit is not particularly limited, but is preferably 95% by mass or less, more preferably 85% by mass or less.
  • the average value of the content of structural units based on monomers having aromatic hydrocarbon groups falls within the above range.
  • Monomers having an aromatic hydrocarbon group include, for example, monomers having an aralkyl group, styrene, and polymerizable styrene derivatives (for example, methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoate). acids, styrene dimers, styrene trimers, etc.). Among these, monomers having an aralkyl group or styrene are preferred.
  • the content of the styrene-based structural unit is 20% by mass to 70% by mass based on the total mass of polymer A. It is preferably 25% to 65% by weight, even more preferably 30% to 60% by weight, and particularly preferably 30% to 55% by weight.
  • the content rate of the structural unit which has an aromatic hydrocarbon group is calculated
  • aralkyl group examples include a substituted or unsubstituted phenylalkyl group (excluding a benzyl group), a substituted or unsubstituted benzyl group, and a substituted or unsubstituted benzyl group is preferred.
  • Examples of the monomer having a phenylalkyl group include phenylethyl (meth)acrylate and the like.
  • Examples of monomers having a benzyl group include (meth)acrylates having a benzyl group, such as benzyl (meth)acrylate and chlorobenzyl (meth)acrylate; vinyl monomers having a benzyl group, such as vinylbenzyl chloride; Examples include vinylbenzyl alcohol. Among them, benzyl (meth)acrylate is preferred.
  • the monomer component having an aromatic hydrocarbon group in polymer A is benzyl (meth)acrylate
  • the content of the structural unit based on benzyl (meth)acrylate is based on the total mass of polymer A. On the other hand, it is preferably 50% by mass to 95% by mass, more preferably 60% by mass to 90% by mass, even more preferably 70% by mass to 90% by mass, and particularly preferably 75% by mass to 90% by mass.
  • Polymer A containing a structural unit based on a monomer having an aromatic hydrocarbon group is a monomer having an aromatic hydrocarbon group and at least one of the first monomers described below and/or the following monomers. It is preferably obtained by polymerizing with at least one second monomer.
  • the polymer A containing no structural unit based on a monomer having an aromatic hydrocarbon group is obtained by polymerizing at least one of the first monomers described below, and the first monomer It is more preferable to obtain the monomer by copolymerizing at least one of the monomers and at least one of the second monomers described below.
  • the first monomer is a monomer having a carboxyl group in the molecule.
  • the first monomer include (meth)acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, 4-vinylbenzoic acid, maleic anhydride, and maleic acid half ester. .
  • (meth)acrylic acid is preferred.
  • the content of the structural unit based on the first monomer in polymer A is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 40% by mass, based on the total mass of polymer A. More preferably 15% by mass to 30% by mass.
  • the content be 5% by mass or more from the viewpoint of expressing good developability and controlling edge fusing property. It is preferable that the content be 50% by mass or less from the viewpoint of high resolution and groove shape of the resist pattern, and further from the viewpoint of chemical resistance of the resist pattern.
  • the second monomer is a monomer that is non-acidic and has at least one polymerizable unsaturated group in its molecule.
  • Examples of the second monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • (meth)acrylates such as tert-butyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, cyclohexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate; acetic acid
  • esters of vinyl alcohol such as vinyl
  • (meth)acrylonitrile examples include esters of vinyl alcohol such as vinyl; and (meth)acrylonitrile.
  • the second monomer is preferably methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, or n-butyl (meth)acrylate, and more preferably methyl (meth)acrylate.
  • the content of the structural unit based on the second monomer in polymer A is preferably 5% by mass to 60% by mass, more preferably 15% by mass to 50% by mass, based on the total mass of polymer A. More preferably 17% by mass to 45% by mass.
  • polymer A contains a structural unit based on a monomer having an aralkyl group and/or a structural unit based on a styrene monomer, it suppresses thickening of line width and deterioration of resolution when the focal position shifts during exposure.
  • a copolymer containing a constitutional unit based on methacrylic acid, a constitutional unit based on benzyl methacrylate, and a constitutional unit based on styrene a constitutional unit based on methacrylic acid, a constitutional unit based on methyl methacrylate, a constitutional unit based on benzyl methacrylate, and a copolymer containing a constitutional unit based on styrene.
  • Copolymers containing structural units based on the above are preferred.
  • the polymer A contains 25% to 55% by mass of structural units based on a monomer having an aromatic hydrocarbon group, and 20% to 35% by mass of structural units based on the first monomer. , a polymer containing 15% by mass to 45% by mass of structural units based on the second monomer.
  • the weight containing 70% by mass to 90% by mass of structural units based on a monomer having an aromatic hydrocarbon group and 10% by mass to 25% by mass of structural units based on the first monomer.
  • it is a combination.
  • Polymer A may have a linear structure, a branched structure, or an alicyclic structure in its side chain.
  • a monomer containing a group having a branched structure in the side chain or a monomer containing a group having an alicyclic structure in the side chain a branched structure or alicyclic structure can be introduced into the side chain of the polymer A.
  • the group having an alicyclic structure may be monocyclic or polycyclic.
  • monomers containing a group having a branched structure in the side chain include isopropyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, ( Isoamyl meth)acrylate, tert-amyl (meth)acrylate, sec-amyl (meth)acrylate, 2-octyl (meth)acrylate, 3-octyl (meth)acrylate and tert-octyl (meth)acrylate etc.
  • isopropyl (meth)acrylate, isobutyl (meth)acrylate, and tert-butyl methacrylate are preferred, and isopropyl methacrylate or tert-butyl methacrylate is more preferred.
  • monomers containing a group having an alicyclic structure in the side chain include monomers having a monocyclic aliphatic hydrocarbon group and monomers having a polycyclic aliphatic hydrocarbon group.
  • monomers containing a group having an alicyclic structure in the side chain include (meth)acrylates having an alicyclic hydrocarbon group having 5 to 20 carbon atoms.
  • More specific examples include (meth)acrylic acid (bicyclo[2.2.1]heptyl-2), (meth)acrylic acid-1-adamantyl, (meth)acrylic acid-2-adamantyl, (meth)acrylic acid-2-adamantyl; 3-methyl-1-adamantyl acrylate, 3,5-dimethyl-1-adamantyl (meth)acrylate, 3-ethyladamantyl (meth)acrylate, 3-methyl-5-(meth)acrylate Ethyl-1-adamantyl, (meth)acrylic acid-3,5,8-triethyl-1-adamantyl, (meth)acrylic acid-3,5-dimethyl-8-ethyl-1-adamantyl, (meth)acrylic acid 2 -Methyl-2-adamantyl, 2-ethyl-2-adamantyl (meth)acrylate, 3-hydroxy-1-adamantyl (meth)acrylate, oct
  • monomers containing a group having an alicyclic structure in the side chain include cyclohexyl (meth)acrylate, (nor)bornyl (meth)acrylate, isobornyl (meth)acrylate, 1-adamantyl (meth)acrylate, 2-adamantyl (meth)acrylate, fentyl (meth)acrylate, 1-menthyl (meth)acrylate, or tricyclodecane (meth)acrylate is preferred, and cyclohexyl (meth)acrylate, (meth)acrylate More preferred are (nor)bornyl, isobornyl (meth)acrylate, 2-adamantyl (meth)acrylate, or tricyclodecane (meth)acrylate.
  • the number of polymers A contained in the photosensitive layer may be one or two or more.
  • polymer A When two or more types of polymer A are included, two types of polymer A containing structural units based on monomers having aromatic hydrocarbon groups, or based on monomers having aromatic hydrocarbon groups It is preferable to include a polymer A containing a structural unit and a polymer A not containing a structural unit based on a monomer having an aromatic hydrocarbon group.
  • the proportion of polymer A containing structural units based on monomers having aromatic hydrocarbon groups is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total mass of polymer A. It is preferably at least 80% by mass, more preferably at least 90% by mass.
  • the photosensitive layer preferably contains an alkali-soluble resin having a crosslinkable group.
  • the crosslinkable group is preferably a polymerizable group from the viewpoints of developability, sensitivity, and resolution.
  • the polymerizable group is not particularly limited as long as it participates in a polymerization reaction, and includes, for example, a group having an ethylenically unsaturated group such as a vinyl group, (meth)acryloyl group, styryl group, and maleimide group; and epoxy and a group having a cationic polymerizable group such as a group and an oxetane group.
  • a group having an ethylenically unsaturated group is preferable, and an acryloyl group or a methacryloyl group is more preferable.
  • the alkali-soluble resin having a crosslinkable group is preferably an acrylic resin having an ethylenically unsaturated group, and more preferably an acrylic resin having a structural unit having an ethylenically unsaturated group.
  • Polymer A is synthesized by adding a radical polymerization initiator such as benzoyl peroxide and azoisobutyronitrile to a solution of the monomer or plural monomers mentioned above diluted with a solvent such as acetone, methyl ethyl ketone, and isopropanol. It is preferable to add an appropriate amount of and heat and stir. In some cases, synthesis may be carried out while dropping a portion of the mixture into the reaction solution. After the reaction is completed, a solvent may be further added to adjust the concentration to a desired level. As a synthesis means, in addition to solution polymerization, bulk polymerization, suspension polymerization, or emulsion polymerization may be used.
  • a radical polymerization initiator such as benzoyl peroxide and azoisobutyronitrile
  • the glass transition temperature Tg of polymer A is preferably 30°C to 135°C.
  • Polymer A having a Tg of 135° C. or less it is possible to suppress thickening of line width and deterioration of resolution when the focal position during exposure is shifted.
  • the Tg of the polymer A is preferably 130°C or lower, more preferably 120°C or lower, and particularly preferably 110°C or lower.
  • Polymer A having a Tg of 30° C. or higher from the viewpoint of improving edge fuse resistance.
  • the Tg of the polymer A is more preferably 40°C or higher, further preferably 50°C or higher, particularly preferably 60°C or higher, and most preferably 70°C or higher.
  • the photosensitive layer may contain other resins than those mentioned above as the polymer A.
  • resins include acrylic resin, styrene-acrylic copolymer, polyurethane resin, polyvinyl alcohol, polyvinyl formal, polyamide resin, polyester resin, polyamide resin, epoxy resin, polyacetal resin, polyhydroxystyrene resin, polyimide resin, Examples include benzoxazole resins, polysiloxane resins, polyethyleneimines, polyallylamines, and polyalkylene glycols.
  • an alkali-soluble resin described in the section of the thermoplastic resin layer below may be used.
  • the content of polymer A is preferably 10% to 90% by mass, more preferably 30% to 70% by mass, and 40% to 60% by mass, based on the total mass of the photosensitive layer. More preferably, it is expressed in mass %. It is preferable that the content of the polymer A is 90% by mass or less based on the total mass of the photosensitive layer because the development time can be controlled. On the other hand, it is preferable that the content of the polymer A is 10% by mass or more based on the total mass of the photosensitive layer because edge fuse resistance is improved.
  • the photosensitive layer is a negative photosensitive layer
  • the photosensitive layer contains a polymerizable compound having a polymerizable group.
  • the term "polymerizable compound” refers to a compound that polymerizes under the action of a polymerization initiator, which will be described later, and which is different from the polymer A described above.
  • the polymerizable group possessed by the polymerizable compound is not particularly limited as long as it participates in the polymerization reaction, and includes, for example, ethylenically unsaturated groups such as a vinyl group, (meth)acryloyl group, styryl group, and maleimide group. group; and a group having a cationic polymerizable group such as an epoxy group and an oxetane group.
  • a group having an ethylenically unsaturated group is preferable, and a (meth)acryloyl group is more preferable.
  • a compound having one or more ethylenically unsaturated groups is preferable, since the photosensitivity of the photosensitive layer is better.
  • Compounds having unsaturated groups are more preferred.
  • the number of ethylenically unsaturated groups in one molecule of the ethylenically unsaturated compound is preferably 6 or less, more preferably 3 or less, and 2 or less. More preferred.
  • the photosensitive layer is a difunctional or trifunctional ethylenic material having two or three ethylenically unsaturated groups in one molecule, since it has a better balance between the photosensitivity, resolution, and peelability of the photosensitive layer. It is preferable to contain an unsaturated compound, and more preferably to contain a bifunctional ethylenically unsaturated compound having two ethylenically unsaturated groups in one molecule.
  • the content of the bifunctional ethylenically unsaturated compound is preferably 20% by mass or more, more preferably more than 40% by mass, and further preferably 55% by mass or more, based on the total mass of the polymerizable compound, from the viewpoint of excellent peelability. preferable.
  • the upper limit of the content of the bifunctional ethylenically unsaturated compound is not particularly limited, and may be 100% by mass. That is, all of the polymerizable compounds may be difunctional ethylenically unsaturated compounds.
  • a (meth)acrylate compound having a (meth)acryloyl group as a polymerizable group is preferable.
  • the photosensitive layer contains a polymerizable compound B1 having an aromatic ring and two ethylenically unsaturated groups.
  • the polymerizable compound B1 is a bifunctional ethylenically unsaturated compound having one or more aromatic rings in one molecule among the above-mentioned polymerizable compounds.
  • the mass ratio of the content of polymerizable compound B1 to the total mass of polymerizable compounds is preferably 40% or more, more preferably 50% by mass or more, and 55% by mass from the viewpoint of better resolution.
  • the content is more preferably 60% by mass or more, particularly preferably 60% by mass or more.
  • the upper limit is not particularly limited, but from the viewpoint of releasability, it is, for example, 100% by mass or less, preferably 99% by mass or less, more preferably 95% by mass or less, even more preferably 90% by mass or less, particularly 85% by mass or less. preferable.
  • aromatic ring possessed by the polymerizable compound B1 examples include aromatic hydrocarbon rings such as a benzene ring, naphthalene ring, and anthracene ring; aromatic rings such as a thiophene ring, a furan ring, a pyrrole ring, an imidazole ring, a triazole ring, and a pyridine ring; Examples include heterocycles and fused rings thereof, with aromatic hydrocarbon rings being preferred and benzene rings being more preferred. Note that the aromatic ring may have a substituent.
  • the polymerizable compound B1 may have only one aromatic ring, or may have two or more aromatic rings.
  • the polymerizable compound B1 preferably has a bisphenol structure from the viewpoint of improving resolution by suppressing swelling of the photosensitive layer by the developer.
  • bisphenol structures include bisphenol A structure derived from bisphenol A (2,2-bis(4-hydroxyphenyl)propane) and bisphenol A structure derived from bisphenol F (2,2-bis(4-hydroxyphenyl)methane). F structure and bisphenol B structure derived from bisphenol B (2,2-bis(4-hydroxyphenyl)butane), and bisphenol A structure is preferred.
  • Examples of the polymerizable compound B1 having a bisphenol structure include a compound having a bisphenol structure and two polymerizable groups (preferably (meth)acryloyl groups) bonded to both ends of the bisphenol structure.
  • Both ends of the bisphenol structure and the two polymerizable groups may be bonded directly or via one or more alkyleneoxy groups.
  • the alkyleneoxy group added to both ends of the bisphenol structure is preferably an ethyleneoxy group or a propyleneoxy group, and more preferably an ethyleneoxy group.
  • the number of alkyleneoxy groups added to the bisphenol structure is not particularly limited, but is preferably 4 to 16, more preferably 6 to 14 per molecule.
  • the polymerizable compound B1 having a bisphenol structure is described in paragraphs 0072 to 0080 of JP-A-2016-224162, and the contents of this publication are incorporated herein.
  • polymerizable compound B1 a bifunctional ethylenically unsaturated compound having a bisphenol A structure is preferable, and 2,2-bis(4-((meth)acryloxypolyalkoxy)phenyl)propane is more preferable.
  • 2,2-bis(4-((meth)acryloxypolyalkoxy)phenyl)propane for example, 2,2-bis(4-(methacryloxydiethoxy)phenyl)propane (FA-324M, Hitachi Chemical Co., Ltd.
  • polymerizable compound B1 a compound represented by the following general formula (B1) is also preferable.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group.
  • A represents C2H4 .
  • B represents C3H6 .
  • n1 and n3 are each independently an integer of 1 to 39, and n1+n3 is an integer of 2 to 40.
  • n2 and n4 are each independently an integer of 0 to 29, and n2+n4 is an integer of 0 to 30.
  • the arrangement of the constituent units of -(AO)- and -(BO)- may be random or block. In the case of a block, either -(AO)- or -(BO)- may be on the bisphenol group side.
  • n1+n2+n3+n4 is preferably 2 to 20, more preferably 2 to 16, and even more preferably 4 to 12. Further, n2+n4 is preferably 0 to 10, more preferably 0 to 4, even more preferably 0 to 2, and particularly preferably 0.
  • the number of polymerizable compounds B1 contained in the photosensitive layer may be one, or two or more.
  • the content of the polymerizable compound B1 is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total mass of the photosensitive layer.
  • the upper limit is not particularly limited, but from the viewpoint of transferability and edge fusion (a phenomenon in which the photosensitive resin oozes out from the edge of the transfer member), it is preferably 70% by mass or less, and more preferably 60% by mass or less.
  • the photosensitive layer may contain a polymerizable compound other than the above-mentioned polymerizable compound B1.
  • Polymerizable compounds other than polymerizable compound B1 are not particularly limited, and can be appropriately selected from known compounds. For example, compounds that have one ethylenically unsaturated group in one molecule (monofunctional ethylenically unsaturated compounds), bifunctional ethylenically unsaturated compounds that do not have an aromatic ring, and trifunctional or higher functional ethylenically unsaturated compounds. can be mentioned.
  • Examples of monofunctional ethylenically unsaturated compounds include ethyl (meth)acrylate, ethylhexyl (meth)acrylate, 2-(meth)acryloyloxyethyl succinate, polyethylene glycol mono(meth)acrylate, and polypropylene glycol mono(meth)acrylate. , and phenoxyethyl (meth)acrylate.
  • bifunctional ethylenically unsaturated compounds having no aromatic ring examples include alkylene glycol di(meth)acrylate, polyalkylene glycol di(meth)acrylate, urethane di(meth)acrylate, and trimethylolpropane diacrylate. .
  • alkylene glycol di(meth)acrylate examples include tricyclodecane dimethanol diacrylate (A-DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), tricyclodecane dimethanol dimethacrylate (DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), 1,9-nonanediol diacrylate (A-NOD-N, manufactured by Shin Nakamura Chemical Co., Ltd.), 1,6-hexanediol diacrylate (A-HD-N, manufactured by Shin Nakamura Chemical Co., Ltd.), ethylene glycol dimethacrylate , 1,10-decanediol diacrylate, and neopentyl glycol di(meth)acrylate.
  • A-DCP tricyclodecane dimethanol diacrylate
  • DCP manufactured by Shin Nakamura Chemical Co., Ltd.
  • 1,9-nonanediol diacrylate A-NOD-N, manufactured by Shin Nakamura
  • polyalkylene glycol di(meth)acrylate examples include polyethylene glycol di(meth)acrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, and polypropylene glycol di(meth)acrylate.
  • urethane di(meth)acrylate examples include propylene oxide-modified urethane di(meth)acrylate, and ethylene oxide and propylene oxide-modified urethane di(meth)acrylate.
  • Commercially available products include, for example, 8UX-015A (manufactured by Taisei Fine Chemical Co., Ltd.), UA-32P (manufactured by Shin Nakamura Chemical Co., Ltd.), and UA-1100H (manufactured by Shin Nakamura Chemical Co., Ltd.).
  • the content of the bifunctional ethylenically unsaturated compound is preferably 20% by mass or more, more preferably 30% by mass or more based on the total mass of the negative photosensitive layer, from the viewpoint of better resolution and resist removability. It is preferably 40% by mass or more, and more preferably 40% by mass or more.
  • the upper limit is preferably 70% by mass or less, more preferably 60% by mass or less, from the viewpoint of transferability and edge fusion (a phenomenon in which the photosensitive composition oozes out from the edge of the transfer member).
  • the content of the bifunctional ethylenically unsaturated compound is preferably 40% by mass or more, based on the total mass of the polymerizable compound having an ethylenically unsaturated group, from the viewpoint of better resolution and resist removability. It is more preferably at least 80% by mass, and even more preferably at least 80% by mass.
  • the upper limit is preferably 100% by mass or less, more preferably 90% by mass or less, from the viewpoints of transferability and edge fusion (a phenomenon in which the photosensitive composition oozes out from the edges of the transfer film).
  • trifunctional or more ethylenically unsaturated compounds include dipentaerythritol (tri/tetra/penta/hexa) (meth)acrylate, pentaerythritol (tri/tetra)(meth)acrylate, trimethylolpropane tri(meth) Examples include acrylate, ditrimethylolpropane tetra(meth)acrylate, trimethylolethane tri(meth)acrylate, isocyanuric acid tri(meth)acrylate, glycerin tri(meth)acrylate, and alkylene oxide modified products thereof.
  • (tri/tetra/penta/hexa)(meth)acrylate is a concept that includes tri(meth)acrylate, tetra(meth)acrylate, penta(meth)acrylate, and hexa(meth)acrylate.
  • (tri/tetra)(meth)acrylate” is a concept that includes tri(meth)acrylate and tetra(meth)acrylate.
  • the photosensitive layer preferably contains the above-mentioned polymerizable compound B1 and a trifunctional or higher functional ethylenically unsaturated compound, and the above-mentioned polymerizable compound B1 and two or more trifunctional or higher functional ethylenically unsaturated compounds It is more preferable to include a compound.
  • the photosensitive layer preferably contains the above-mentioned polymerizable compound B1 and two or more trifunctional ethylenically unsaturated compounds.
  • alkylene oxide-modified compounds of trifunctional or higher-functional ethylenically unsaturated compounds include caprolactone-modified (meth)acrylate compounds (KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku Co., Ltd., A-9300 manufactured by Shin Nakamura Chemical Co., Ltd.
  • alkylene oxide-modified (meth)acrylate compounds (KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E and A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd., EBECRYL (registered trademark) 135 manufactured by Daicel Allnex Co., Ltd., etc.)
  • ethoxylated glycerin triacrylate (A-GLY-9E, etc.
  • a polymerizable compound having an acid group (carboxy group, etc.) may be used.
  • the above acid group may form an acid anhydride group.
  • the polymerizable compound having an acid group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix (registered trademark) M-520 (manufactured by Toagosei Co., Ltd.), and Aronix (registered trademark) M-510 (manufactured by Toagosei Co., Ltd.). manufactured by Toagosei Co., Ltd.).
  • the polymerizable compound having an acid group for example, the polymerizable compounds having an acid group described in paragraphs 0025 to 0030 of JP-A No. 2004-239942 may be used.
  • the number of polymerizable compounds contained in the photosensitive layer may be one, or two or more.
  • the content of the polymerizable compound is preferably 10% by mass to 70% by mass, more preferably 15% by mass to 70% by mass, and even more preferably 20% by mass to 70% by mass, based on the total mass of the photosensitive layer.
  • the molecular weight (weight average molecular weight if it has a molecular weight distribution) of the polymerizable compound (including polymerizable compound B1) is preferably 200 to 3,000, more preferably 280 to 2,200, and 300 to 2,200. More preferred.
  • the photosensitive layer is a negative photosensitive layer
  • the photosensitive layer contains a polymerization initiator.
  • the polymerization initiator is selected depending on the type of polymerization reaction, and includes, for example, a thermal polymerization initiator and a photopolymerization initiator.
  • the polymerization initiator may be a radical polymerization initiator or a cationic polymerization initiator.
  • the photosensitive layer contains a photopolymerization initiator.
  • a photopolymerization initiator is a compound that initiates polymerization of a polymerizable compound upon receiving actinic rays such as ultraviolet rays, visible rays, and X-rays.
  • the photopolymerization initiator is not particularly limited, and any known photopolymerization initiator can be used.
  • photopolymerization initiator examples include radical photopolymerization initiators and cationic photopolymerization initiators, with radical photopolymerization initiators being preferred.
  • radical photopolymerization initiator examples include a photopolymerization initiator having an oxime ester structure, a photopolymerization initiator having an ⁇ -aminoalkylphenone structure, a photopolymerization initiator having an ⁇ -hydroxyalkylphenone structure, and acylphosphine oxide.
  • examples include a photopolymerization initiator having a structure and a photopolymerization initiator having an N-phenylglycine structure.
  • the photosensitive layer uses 2,4,5-triarylimidazole dimer and its derivatives as a photoradical polymerization initiator. It is preferable to include at least one selected from the group consisting of: Note that the two 2,4,5-triarylimidazole structures in the 2,4,5-triarylimidazole dimer and its derivatives may be the same or different.
  • Examples of derivatives of 2,4,5-triarylimidazole dimer include 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer and 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer.
  • (methoxyphenyl)imidazole dimer 2-(o-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(o-methoxyphenyl)-4,5-diphenylimidazole dimer, and 2- (p-methoxyphenyl)-4,5-diphenylimidazole dimer.
  • the photoradical polymerization initiator for example, the polymerization initiators described in paragraphs 0031 to 0042 of JP-A No. 2011-95716 and paragraphs 0064 to 0081 of JP-A No. 2015-14783 may be used.
  • photoradical polymerization initiators examples include ethyl dimethylaminobenzoate (DBE, CAS No. 10287-53-3), benzoin methyl ether, anisyl (p,p'-dimethoxybenzyl), and TAZ-110 (trade name: Midori Kagaku Co., Ltd.), benzophenone, 4,4'-bis(diethylamino)benzophenone, TAZ-111 (product name: Midori Kagaku Co., Ltd.), Irgacure OXE01, OXE02, OXE03, OXE04 (BASF Co., Ltd.), Omnirad651 and 369 (product name: Midori Kagaku Co., Ltd.) Name: IGM Resins manufactured by B.V.), and 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole (Tokyo Chemical Industry Co., Ltd.) ).
  • photoradical polymerization initiator for example, 1-[4-(phenylthio)]-1,2-octanedione-2-(O-benzoyloxime) (trade name: IRGACURE (registered trademark) OXE-01 , manufactured by BASF), 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone-1-(O-acetyloxime) (product name: IRGACURE OXE-02, BASF ), IRGACURE OXE-03 (manufactured by BASF), IRGACURE OXE-04 (manufactured by BASF), 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4 -morpholinyl)phenyl]-1-butanone (trade name: Omnirad 379EG, manufactured by IGM Resins B.V.), 2-methyl-1-(4-methylthiophenyl
  • a photocationic polymerization initiator is a compound that generates acid upon receiving actinic rays.
  • the photocationic polymerization initiator is preferably a compound that is sensitive to actinic rays with a wavelength of 300 nm or more, preferably 300 to 450 nm, and generates an acid, but its chemical structure is not limited.
  • the sensitizer can be used as a sensitizer. It can be preferably used in combination with
  • a photocationic polymerization initiator that generates an acid with a pKa of 4 or less is preferable, a photocationic polymerization initiator that generates an acid with a pKa of 3 or less is more preferable, and a photocationic polymerization initiator that generates an acid with a pKa of 2 or less is preferable.
  • Particularly preferred are photocationic polymerization initiators that are generated.
  • the lower limit of pKa is not particularly determined, it is preferably -10.0 or more, for example.
  • cationic photopolymerization initiator examples include ionic cationic photopolymerization initiators and nonionic cationic photopolymerization initiators.
  • Examples of the ionic photocationic polymerization initiator include onium salt compounds such as diaryliodonium salts and triarylsulfonium salts, and quaternary ammonium salts.
  • the ionic photocationic polymerization initiator As the ionic photocationic polymerization initiator, the ionic photocationic polymerization initiator described in paragraphs 0114 to 0133 of JP 2014-085643A may be used.
  • nonionic photocationic polymerization initiator examples include trichloromethyl-s-triazines, diazomethane compounds, imidosulfonate compounds, and oxime sulfonate compounds.
  • trichloromethyl-s-triazines, diazomethane compounds, and imidosulfonate compounds compounds described in paragraphs 0083 to 0088 of JP-A No. 2011-221494 may be used.
  • oxime sulfonate compound compounds described in paragraphs 0084 to 0088 of International Publication No. 2018/179640 may be used.
  • the photosensitive layer preferably contains a photoradical polymerization initiator, and more preferably contains at least one selected from the group consisting of 2,4,5-triarylimidazole dimers and derivatives thereof.
  • the number of polymerization initiators contained in the photosensitive layer may be one, or two or more.
  • the content of the polymerization initiator is not particularly limited, but is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and 1% by mass or more based on the total mass of the photosensitive layer. More preferably, the content is .0% by mass or more.
  • the upper limit is not particularly limited, but is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less, based on the total mass of the negative photosensitive layer.
  • the photosensitive layer has a maximum absorption wavelength of 450 nm or more in a wavelength range of 400 nm to 780 nm during color development, from the viewpoint of visibility of exposed areas and unexposed areas, pattern visibility after development, and resolution, and, It is also preferable to include a dye (also referred to as "dye N") whose maximum absorption wavelength changes depending on the acid, base, or radical.
  • dye N also referred to as "dye N”
  • dye N although the detailed mechanism is unknown, adhesion with adjacent layers (for example, intermediate layer) is improved, resulting in better resolution.
  • the phrase "the maximum absorption wavelength of a dye changes due to an acid, a base, or a radical” refers to a state in which a dye in a colored state is decolored by an acid, a base, or a radical, and a state in which a dye in a decolored state is decolored by an acid, a base, or a radical. , a base, or a radical, and an aspect in which a dye in a coloring state changes to a coloring state of another hue.
  • the dye N may be a compound that changes from a decolorized state and develops color upon exposure to light, or may be a compound that changes from a color developed state and decolorizes upon exposure.
  • it may be a dye that changes its coloring or decoloring state when acids, bases, or radicals are generated and act within the photosensitive layer upon exposure; It may also be a dye whose coloring or decoloring state changes as the pH changes (for example, pH). It may also be a dye that changes its coloring or decoloring state when directly stimulated by an acid, base, or radical without being exposed to light.
  • the dye N is preferably a dye whose maximum absorption wavelength changes with acid or radicals, and more preferably a dye whose maximum absorption wavelength changes with radicals.
  • the photosensitive layer is a negative type photosensitive layer, from the viewpoint of visibility and resolution of exposed and non-exposed areas, the photosensitive layer contains a dye whose maximum absorption wavelength changes with radicals as the dye N, and It is preferable to include both a photoradical polymerization initiator and a photoradical polymerization initiator.
  • the dye N is a dye that develops color with an acid, a base, or a radical.
  • a photoradical polymerization initiator As an example of the coloring mechanism of dye N, a photoradical polymerization initiator, a photocationic polymerization initiator (photoacid generator), or a photobase generator is added to the photosensitive layer, and after exposure, the photoradical polymerization initiator.
  • examples include embodiments in which radical-reactive dyes, acid-reactive dyes, or base-reactive dyes (for example, leuco dyes) develop color due to radicals, acids, or bases generated from a photocationic polymerization initiator or a photobase generator.
  • the dye N preferably has a maximum absorption wavelength of 550 nm or more in the wavelength range of 400 nm to 780 nm during color development, more preferably 550 nm to 700 nm, and 550 nm or more. More preferably, the wavelength is 650 nm.
  • the dye N may have only one maximum absorption wavelength in the wavelength range of 400 nm to 780 nm during color development, or may have two or more.
  • the dye N has two or more maximum absorption wavelengths in the wavelength range of 400 nm to 780 nm during color development, it is sufficient that the maximum absorption wavelength with the highest absorbance among the two or more maximum absorption wavelengths is 450 nm or more.
  • the maximum absorption wavelength of dye N is determined by the transmission spectrum of a solution containing dye N (liquid temperature 25°C) in the range of 400 to 780 nm under atmospheric conditions using a spectrophotometer: UV3100 (manufactured by Shimadzu Corporation). It can be obtained by measuring the wavelength and detecting the wavelength at which the light intensity is minimum (maximum absorption wavelength).
  • An example of a dye that develops or discolors upon exposure to light is a leuco compound.
  • dyes that disappear upon exposure to light include leuco compounds, diarylmethane dyes, oxazine dyes, xanthene dyes, iminonaphthoquinone dyes, azomethine dyes, and anthraquinone dyes.
  • the dye N a leuco compound is preferable from the viewpoint of visibility of exposed areas and non-exposed areas.
  • leuco compounds examples include leuco compounds having a triarylmethane skeleton (triarylmethane dyes), leuco compounds having a spiropyran skeleton (spiropyran dyes), leuco compounds having a fluorane skeleton (fluoran dyes), and diarylmethane skeletons.
  • leuco compounds leuco auramine pigments.
  • the dye N is preferably a triarylmethane dye or a fluoran dye, and more preferably a leuco compound having a triphenylmethane skeleton (triphenylmethane dye) or a fluoran dye.
  • the leuco compound preferably has a lactone ring, a sultine ring, or a sultone ring from the viewpoint of visibility of exposed and non-exposed areas.
  • the lactone ring, sultine ring, or sultone ring of the leuco compound is reacted with the radical generated from the photoradical polymerization initiator or the acid generated from the photocationic polymerization initiator, and the leuco compound is changed into a ring-closed state.
  • the color can be removed by changing the leuco compound to an open ring state, or the color can be developed by changing the leuco compound to an open ring state.
  • the leuco compound is preferably a compound that has a lactone ring, a sultine ring, or a sultone ring, and develops color when the lactone ring, sultine ring, or sultone ring opens with a radical or an acid. More preferred are compounds that develop color when the lactone ring opens with an acid.
  • Examples of the dye N include the following dyes and leuco compounds. Specific examples of dyes among the dyes N include brilliant green, ethyl violet, methyl green, crystal violet, basic fuchsin, methyl violet 2B, quinaldine red, rose bengal, methanil yellow, thymol sulfophthalein, xylenol blue, and methyl.
  • leuco compounds among the dyes N include p, p', p''-hexamethyltriaminotriphenylmethane (leuco crystal violet), Pergascript Blue SRB (manufactured by Ciba Geigy), crystal violet lactone, malachite green lactone, Benzoylleucomethylene blue, 2-(N-phenyl-N-methylamino)-6-(N-p-tolyl-N-ethyl)aminofluorane, 2-anilino-3-methyl-6-(N-ethyl-p -Toluidino)fluorane, 3,6-dimethoxyfluorane, 3-(N,N-diethylamino)-5-methyl-7-(N,N-dibenzylamino)fluorane, 3-(N-cyclohexyl-N-methyl Amino)-6-methyl-7-anilinofluorane, 3-(N,N-diethyla
  • the dye N is preferably a dye whose maximum absorption wavelength changes with radicals, from the viewpoint of visibility of exposed areas and non-exposed areas, pattern visibility after development, and resolution, and is preferably a dye that develops color due to radicals. It is more preferable that there be.
  • the dye N leuco crystal violet, crystal violet lactone, brilliant green, or Victoria Pure Blue-naphthalene sulfonate is preferable.
  • the number of dyes N contained in the photosensitive layer may be one, or two or more.
  • the content of the dye N is preferably 0.1% by mass or more based on the total mass of the photosensitive layer from the viewpoint of visibility of exposed areas and non-exposed areas, pattern visibility after development, and resolution. , more preferably 0.1% by mass to 10% by mass, even more preferably 0.1% by mass to 5% by mass, particularly preferably 0.1% by mass to 1% by mass.
  • the content of the dye N means the content of the dye when all the dye N contained in the total mass of the photosensitive layer is brought into a colored state.
  • a method for quantifying the content of the dye N will be explained using a dye that develops color due to radicals as an example.
  • a solution is prepared by dissolving 0.001 g and 0.01 g of the dye in 100 mL of methyl ethyl ketone.
  • a photoradical polymerization initiator, Irgacure OXE01 (trade name: BASF Japan Ltd.), is added to each of the obtained solutions, and irradiation with 365 nm light generates radicals, causing all the dyes to become colored. Thereafter, the absorbance of each solution at a liquid temperature of 25° C.
  • the absorbance of the solution in which all the dyes are colored is measured in the same manner as above except that 3 g of the photosensitive layer is dissolved in methyl ethyl ketone instead of the dye. From the absorbance of the obtained solution containing the photosensitive layer, the content of the dye contained in the photosensitive layer is calculated based on a calibration curve. Note that 3 g of the photosensitive layer is the same as 3 g of the total solid content in the photosensitive composition.
  • the photosensitive layer is a negative photosensitive layer
  • the photosensitive layer preferably contains a thermally crosslinkable compound from the viewpoint of the strength of the resulting cured film and the tackiness of the resulting uncured film.
  • the thermally crosslinkable compound having an ethylenically unsaturated group which will be described later, is not treated as a polymerizable compound, but as a thermally crosslinkable compound.
  • thermally crosslinkable compounds examples include epoxy compounds, oxetane compounds, methylol compounds, and blocked isocyanate compounds.
  • blocked isocyanate compounds are preferred from the viewpoint of the strength of the resulting cured film and the tackiness of the resulting uncured film.
  • Blocked isocyanate compounds react with hydroxy groups and carboxy groups, so if the resin and/or polymerizable compound has at least one of a hydroxy group and a carboxy group, the hydrophilicity of the formed film decreases. There is a tendency for the function to be enhanced when a film obtained by hardening a negative photosensitive layer is used as a protective film.
  • blocked isocyanate compound refers to "a compound having a structure in which the isocyanate group of isocyanate is protected (so-called masked) with a blocking agent.”
  • the dissociation temperature of the blocked isocyanate compound is not particularly limited, but is preferably 100°C to 160°C, more preferably 130°C to 150°C.
  • the dissociation temperature of blocked isocyanate means "the temperature of the endothermic peak associated with the deprotection reaction of blocked isocyanate when measured by DSC (differential scanning calorimetry) analysis using a differential scanning calorimeter.”
  • differential scanning calorimeter for example, a differential scanning calorimeter (model: DSC6200) manufactured by Seiko Instruments Inc. can be suitably used.
  • the differential scanning calorimeter is not limited to this.
  • a blocking agent having a dissociation temperature of 100 to 160°C for example, from the viewpoint of storage stability, at least one kind selected from oxime compounds is preferable.
  • the blocked isocyanate compound preferably has an isocyanurate structure, for example, from the viewpoint of improving the brittleness of the film and improving the adhesion to the transfer target.
  • a blocked isocyanate compound having an isocyanurate structure can be obtained, for example, by converting hexamethylene diisocyanate into isocyanurate and protecting it.
  • a compound having an oxime structure using an oxime compound as a blocking agent is easier to maintain the dissociation temperature in a preferable range than a compound without an oxime structure, and produces less development residue. This is preferable from the viewpoint of ease of use.
  • the blocked isocyanate compound may have a polymerizable group.
  • the polymerizable group is not particularly limited, and any known polymerizable group can be used, with radically polymerizable groups being preferred.
  • Examples of the polymerizable group include ethylenically unsaturated groups such as (meth)acryloyl group, (meth)acrylamide group, and styryl group, and groups having epoxy groups such as glycidyl group.
  • an ethylenically unsaturated group is preferable, a (meth)acryloyl group is more preferable, and an acryloyl group is even more preferable.
  • block isocyanate compounds examples include Karenz (registered trademark) AOI-BM, Karenz (registered trademark) MOI-BM, Karenz (registered trademark) MOI-BP (all manufactured by Showa Denko), block type Examples include the Duranate series (eg, Duranate (registered trademark) TPA-B80E, Duranate (registered trademark) WT32-B75P, manufactured by Asahi Kasei Chemicals).
  • a compound having the following structure can also be used as the blocked isocyanate compound.
  • the number of thermally crosslinkable compounds contained in the photosensitive layer may be one, or two or more.
  • the content of the thermally crosslinkable compound is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass, based on the total mass of the photosensitive layer. preferable.
  • the photosensitive layer preferably contains a surfactant from the viewpoint of thickness uniformity.
  • surfactant examples include the surfactants described in paragraph [0017] of Japanese Patent No. 4502784 and paragraphs [0060] to [0071] of JP-A-2009-237362.
  • the surfactant examples include hydrocarbon surfactants, fluorine surfactants, and silicone surfactants. From the viewpoint of improving environmental suitability, the surfactant preferably does not contain fluorine atoms. As the surfactant, hydrocarbon surfactants or silicone surfactants are preferred.
  • fluorosurfactants include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144. , F-437, F-475, F-477, F-479, F-482, F-551-A, F-552, F-554, F-555-A, F-556, F-557, F -558, F-559, F-560, F-561, F-565, F-563, F-568, F-575, F-780, EXP.MFS-330, EXP. MFS-578, EXP. MFS-578-2, EXP. MFS-579, EXP. MFS-586, EXP.
  • fluorine-based surfactants include acrylic compounds that have a molecular structure with a functional group containing a fluorine atom, and when heat is applied, the functional group containing the fluorine atom is severed and the fluorine atom evaporates.
  • fluorine-based surfactants include the Megafac DS series manufactured by DIC Corporation (Kagaku Kogyo Nippo (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)), An example is DS-21.
  • fluorine-based surfactant it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound.
  • block polymers can also be used as the fluorosurfactant.
  • the fluorine-based surfactant has a structural unit derived from a (meth)acrylate compound having a fluorine atom and two or more (preferably five or more) alkyleneoxy groups (preferably ethyleneoxy groups, propyleneoxy groups).
  • a fluorine-containing polymer compound containing a structural unit derived from a (meth)acrylate compound can also be preferably used.
  • fluorine-based surfactant a fluorine-containing polymer having an ethylenically unsaturated bond-containing group in its side chain can also be used.
  • fluorine-based surfactant examples include Megafac RS-101, RS-102, RS-718K, and RS-72-K (manufactured by DIC Corporation).
  • fluorosurfactants from the viewpoint of improving environmental suitability, compounds having a linear perfluoroalkyl group having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), are used.
  • PFOA perfluorooctanoic acid
  • PFOS perfluorooctane sulfonic acid
  • Surfactants derived from alternative materials are preferred.
  • hydrocarbon surfactants include glycerol, trimethylolpropane, trimethylolethane, and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether , polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, and the like.
  • hydrocarbon surfactants include Pluronic (registered trademark) L10, L31, L61, L62, 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 901, 904, 150R1, HYDROPALAT WE 3323 (and above).
  • Silicone surfactants include linear polymers consisting of siloxane bonds, modified siloxane polymers with organic groups introduced into the side chains and terminals, and structural units with hydrophilic groups in the side chains and siloxane bonds in the side chains. Polymers having structural units having groups can be mentioned.
  • the silicone surfactant is preferably a polymer having a constitutional unit having a hydrophilic group in the side chain and a constitutional unit having a siloxane bond-containing group in the side chain.
  • the polymer may be a random copolymer or a block copolymer.
  • Examples of the structural unit having a hydrophilic group in the side chain include structural units based on the following monomers.
  • R 4 is a hydrogen atom or a methyl group
  • R 5 is a hydrogen atom or a methyl group
  • n is an integer from 1 to 4
  • m is an integer from 1 to 100.
  • Examples of the structural unit having a siloxane bond-containing group in the side chain include structural units based on the following monomers.
  • R is each independently an alkyl group having 1 to 3 carbon atoms
  • R 1 is a hydrogen atom or a methyl group
  • L 1 is a divalent organic group or a single bond.
  • Examples of the structural unit having a siloxane bond-containing group in the side chain include structural units based on the following monomers.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkylene group having 1 to 10 carbon atoms
  • R 3 is an alkyl group having 1 to 4 carbon atoms
  • n is an integer from 5 to 50.
  • silicone surfactants include: EXP. S-309-2, EXP. S-315, EXP. S-503-2, EXP. S-505-2 (manufactured by DIC Corporation), DOWSIL 8032 ADDITIVE, Toray Silicone DC3PA, Toray Silicone SH7PA, Toray Silicone DC11PA, Toray Silicone SH21PA, Toray Silicone SH28PA, Toray Silicone SH29PA, Toray Silicone SH30PA, Toray Silicone SH8400 (the above, Toray Silicone SH8400) Co., Ltd.), X-22-4952, X-22-4272, X-22-6266, KF-351A, K354L, KF-355A, KF-945, KF-640, KF-642, KF-643, X-22-4515, KF-6004, KF-6001, KF-6002, KP-101KP-103, KP-104, KP-105, KP-106, KP-109, KP-
  • nonionic surfactants are preferred.
  • the number of surfactants contained in the photosensitive layer may be one type or two or more types.
  • the content of the surfactant is preferably 0.01% by mass to 3.0% by mass, and 0.01% by mass to 1% by mass, based on the total mass of the photosensitive layer. 0.0% by weight is more preferable, and 0.05% by weight to 0.80% by weight is even more preferable.
  • the photosensitive layer may contain known additives as necessary.
  • additives include radical polymerization inhibitors, chain transfer agents, sensitizers, plasticizers, heterocyclic compounds (triazole, etc.), benzotriazoles, carboxybenzotriazoles, pyridines (isonicotinamide, etc.), and Examples include purine bases (adenine, etc.).
  • Each additive contained in the photosensitive layer may be one type or two or more types.
  • the photosensitive layer may contain a radical polymerization inhibitor.
  • radical polymerization inhibitors examples include thermal polymerization inhibitors described in paragraph 0018 of Japanese Patent No. 4502784. Among these, phenothiazine, phenoxazine, or 4-methoxyphenol is preferred.
  • Other radical polymerization inhibitors include naphthylamine, cuprous chloride, nitrosophenylhydroxyamine aluminum salt, diphenylnitrosamine, and the like. Nitrosophenylhydroxyamine aluminum salt is preferred in order not to impair the sensitivity of the photosensitive layer.
  • the content of the polymerization inhibitor is preferably 0.001% by mass to 5.0% by mass, and 0.01% by mass to 3% by mass, based on the total mass of the photosensitive layer. 0.0% by weight is more preferable, and 0.02% by weight to 2.0% by weight is even more preferable.
  • the content of the polymerization inhibitor is preferably 0.005% by mass to 5.0% by mass, more preferably 0.01% by mass to 3.0% by mass, and 0.01% by mass, based on the total mass of the polymerizable compound. More preferably, the amount is from % by mass to 1.0% by mass.
  • benzotriazoles include 1,2,3-benzotriazole, 1-chloro-1,2,3-benzotriazole, bis(N-2-ethylhexyl)aminomethylene-1,2,3-benzotriazole, Bis(N-2-ethylhexyl)aminomethylene-1,2,3-tolyltriazole, bis(N-2-hydroxyethyl)aminomethylene-1,2,3-benzotriazole, and the like can be mentioned.
  • carboxybenzotriazoles include 4-carboxy-1,2,3-benzotriazole, 5-carboxy-1,2,3-benzotriazole, and N-(N,N-di-2-ethylhexyl)aminomethylene.
  • Examples include carboxybenzotriazole, N-(N,N-di-2-hydroxyethyl)aminomethylenecarboxybenzotriazole, and N-(N,N-di-2-ethylhexyl)aminoethylenecarboxybenzotriazole.
  • carboxybenzotriazole for example, commercially available products such as CBT-1 (trade name: Johoku Kagaku Kogyo Co., Ltd.) can be used.
  • the total content of benzotriazoles and carboxybenzotriazoles is preferably 0.01% by mass to 3% by mass, and 0.05% by mass to 1% by mass, based on the total mass of the photosensitive layer. is more preferable.
  • the content is 0.01% by mass or more, the storage stability of the photosensitive layer is better.
  • the content is 3% by mass or less, sensitivity can be maintained and dye decolorization can be suppressed more effectively.
  • the photosensitive layer may contain a sensitizer.
  • the sensitizer is not particularly limited, and known sensitizers, dyes, and pigments can be used.
  • the sensitizer include dialkylaminobenzophenone compounds, pyrazoline compounds, anthracene compounds, coumarin compounds, xanthone compounds, thioxanthone compounds, acridone compounds, oxazole compounds, benzoxazole compounds, thiazole compounds, benzothiazole compounds, triazole compounds (for example, 1,2,4-triazole), stilbene compounds, triazine compounds, thiophene compounds, naphthalimide compounds, triarylamine compounds, and aminoacridine compounds.
  • the number of sensitizers contained in the photosensitive layer may be one, or two or more.
  • the content of the sensitizer can be selected as appropriate depending on the purpose. It is preferably 0.01% by mass to 5% by mass, more preferably 0.05% by mass to 1% by mass, based on the total mass of the sexual layer.
  • the photosensitive layer may contain at least one selected from the group consisting of a plasticizer and a heterocyclic compound.
  • plasticizer and heterocyclic compound examples include compounds described in paragraphs 0097 to 0103 and 0111 to 0118 of International Publication No. 2018/179640.
  • the photosensitive layer also contains metal oxide particles, antioxidants, dispersants, acid multiplying agents, development accelerators, conductive fibers, ultraviolet absorbers, thickeners, crosslinking agents, and organic or inorganic suspending agents. It may further contain known additives such as.
  • the thickness of the photosensitive layer is generally 0.1 ⁇ m to 300 ⁇ m, preferably 0.2 ⁇ m to 100 ⁇ m, more preferably 0.5 ⁇ m to 50 ⁇ m, even more preferably 0.5 ⁇ m to 15 ⁇ m, and 0.5 ⁇ m to 10 ⁇ m. is particularly preferred, and 0.5 ⁇ m to 8 ⁇ m is most preferred. This improves the developability of the photosensitive layer and improves the resolution.
  • the thickness is preferably 0.5 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m to 4 ⁇ m, and even more preferably 0.5 ⁇ m to 3 ⁇ m.
  • the transmittance of the photosensitive layer for light at a wavelength of 365 nm is preferably 10% or more, more preferably 30% or more, and even more preferably 50% or more.
  • the upper limit is not particularly limited, but is preferably 99.9% or less.
  • the photosensitive layer may contain a predetermined amount of impurities.
  • impurities include sodium, potassium, magnesium, calcium, iron, manganese, copper, aluminum, titanium, chromium, cobalt, nickel, zinc, tin, halogen, and ions thereof.
  • halide ions, sodium ions, and potassium ions are likely to be mixed in as impurities, so it is preferable to have the following content.
  • the content of impurities in the photosensitive layer is preferably 80 ppm or less, more preferably 10 ppm or less, and even more preferably 2 ppm or less, based on mass.
  • the content of impurities can be 1 ppb or more, and may be 0.1 ppm or more, based on mass.
  • Methods for keeping impurities within the above range include selecting materials with a low content of impurities as raw materials for the composition, preventing contamination of impurities during the preparation of the photosensitive layer, and removing them by washing. . By such a method, the amount of impurities can be kept within the above range.
  • Impurities can be quantified by known methods such as ICP (Inductively Coupled Plasma) emission spectroscopy, atomic absorption spectroscopy, and ion chromatography.
  • ICP Inductively Coupled Plasma
  • the content of compounds such as benzene, formaldehyde, trichloroethylene, 1,3-butadiene, carbon tetrachloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, and hexane in the photosensitive layer may be small. preferable.
  • the content of these compounds relative to the total mass of the photosensitive layer is preferably 100 ppm or less, more preferably 20 ppm or less, and even more preferably 4 ppm or less, based on mass.
  • the lower limit of the content is preferably 10 ppb, more preferably 100 ppb, based on the total mass of the photosensitive layer.
  • the content of these compounds can be suppressed in the same manner as the above-mentioned metal impurities. Moreover, it can be quantified by a known measuring method.
  • the water content of the photosensitive layer is preferably 0.1% by mass or more, and preferably 0.15% by mass or more, based on the total amount of the photosensitive layer. is more preferable, and even more preferably 0.3% by mass or more.
  • the upper limit of the water content is not particularly limited, and is, for example, 1.0% by mass.
  • the water content in the photosensitive layer is measured in the same manner as the water content in the transfer layer.
  • the content of iron atoms in the transfer layer is preferably 0.01 ppm to 10.0 ppm on a mass basis with respect to the total amount of the photosensitive layer. It is more preferably from .1 ppm to 10 ppm, and even more preferably from 0.2 ppm to 10 ppm.
  • the content of iron atoms in the photosensitive layer is measured in the same manner as the content of iron atoms in the transfer layer.
  • the photosensitive layer may be a colored resin layer containing a pigment.
  • a cover glass with a black frame-shaped light-shielding layer formed on the periphery of the back surface of a transparent glass substrate, etc. is sometimes attached to the liquid crystal display window of recent electronic devices.
  • a colored resin layer may be used to form such a light-blocking layer.
  • the pigment may be appropriately selected according to the desired hue, and can be selected from black pigments, white pigments, and chromatic pigments other than black and white. Among these, when forming a black pattern, a black pigment is preferably selected as the pigment.
  • any known black pigment such as an organic pigment or an inorganic pigment
  • the black pigment include carbon black, titanium oxide, titanium carbide, iron oxide, and graphite, with carbon black being particularly preferred.
  • carbon black whose surface is at least partially coated with resin is preferable as carbon black.
  • the number average particle size of the black pigment is preferably 0.001 ⁇ m to 0.1 ⁇ m, more preferably 0.01 ⁇ m to 0.08 ⁇ m.
  • the particle size refers to the diameter of a circle when the area of the pigment particle is determined from a photographic image of the pigment particle taken with an electron microscope and the area is the same as the area of the pigment particle, and the number average particle size is the average value obtained by determining the above particle size for 100 arbitrary particles and averaging the 100 determined particle sizes.
  • the white pigment other than the black pigment the white pigment described in paragraphs 0015 and 0114 of JP-A No. 2005-007765 can be used.
  • white pigments titanium oxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, or barium sulfate are preferable as inorganic pigments, and titanium oxide or zinc oxide is more preferable.
  • titanium oxide is more preferable.
  • inorganic pigment rutile-type or anatase-type titanium oxide is more preferable, and rutile-type titanium oxide is particularly preferable.
  • titanium oxide may be subjected to silica treatment, alumina treatment, titania treatment, zirconia treatment, or organic substance treatment, or two or more treatments may be performed. This suppresses the catalytic activity of titanium oxide and improves heat resistance, fading resistance, and the like.
  • the surface treatment of the titanium oxide surface is preferably at least one of alumina treatment and zirconia treatment, and both alumina treatment and zirconia treatment are particularly preferred.
  • the photosensitive layer is a colored resin layer, from the viewpoint of transferability, it is also preferable that the photosensitive layer further contains a chromatic pigment other than the black pigment and the white pigment.
  • a chromatic pigment is included, the particle size of the chromatic pigment is preferably 0.1 ⁇ m or less, more preferably 0.08 ⁇ m or less, in terms of better dispersibility.
  • chromatic pigments include Victoria Pure Blue BO (Color Index (hereinafter referred to as C.I.) 42595), Auramine (C.I. 41000), Fat Black HB (C.I. 26150), and Monolight.
  • C.I. Color Index
  • C.I. Color Index
  • Auramine C.I. 41000
  • Fat Black HB C.I. 26150
  • Monolight - Yellow GT (C.I. Pigment Yellow 12), Permanent Yellow GR (C.I. Pigment Yellow 17), Permanent Yellow HR (C.I. Pigment Yellow 83), Permanent Carmine FBB (C Pigment Red 146), Hoster Balm Red ESB (C.I. Pigment Violet 19), Permanent Ruby FBH (C.I. Pigment Red 11), Fastel Pink B Splatter (C.I. Pigment ⁇ Red 81), Monastral Fast Blue (C.I.)
  • Pigment Blue 15 Monolite Fast Black B (C.I. Pigment Black 1) and Carbon, C.I. I. Pigment Red 97, C. I. Pigment Red 122, C. I. Pigment Red 149, C. I. Pigment Red 168, C. I. Pigment Red 177, C. I. Pigment Red 180, C. I. Pigment Red 192, C. I. Pigment Red 215, C. I. Pigment Green 7, C. I. Pigment Blue 15:1, C. I. Pigment Blue 15:4, C. I. Pigment Blue 22, C. I. Pigment Blue 60, C. I. Pigment Blue 64, and C.I. I. Pigment Violet 23 and the like. Among them, C. I. Pigment Red 177 is preferred.
  • the content of the pigment is preferably more than 3% by mass and not more than 40% by mass, more preferably more than 3% by mass and not more than 35% by mass, based on the total mass of the photosensitive layer. It is more preferably more than 35% by mass, and particularly preferably 10% by mass or more and 35% by mass or less.
  • the content of pigments other than black pigments is preferably 30% by mass or less, and 1% by mass to 20% by mass based on the black pigment. It is more preferably 3% by mass to 15% by mass.
  • the photosensitive layer contains a black pigment and is formed from a photosensitive composition
  • the black pigment preferably carbon black
  • the photosensitive composition in the form of a pigment dispersion. It is preferable that
  • the dispersion liquid may be prepared by adding a mixture obtained by pre-mixing a black pigment and a pigment dispersant to an organic solvent (or vehicle) and dispersing the mixture using a dispersion machine.
  • the pigment dispersant may be selected depending on the pigment and the solvent, and for example, commercially available dispersants can be used.
  • the vehicle refers to the part of the medium in which the pigment is dispersed when it is made into a pigment dispersion, and is liquid, and includes a binder component that holds the black pigment in a dispersed state and a solvent component that dissolves and dilutes the binder component. (organic solvent).
  • dispersants include urethane dispersants such as polyurethane, polycarboxylic acid esters such as polyacrylate, unsaturated polyamides, polycarboxylic acids, polycarboxylic acid (partial) amine salts, polycarboxylic acid ammonium salts, and polycarboxylic acids.
  • Alkylamine salts such as their salts, (meth)acrylic acid-styrene copolymers, (meth)acrylic acid-(meth)acrylic acid ester copolymers, styrene-maleic acid copolymers, polyvinyl alcohol, polyvinylpyrrolidone Examples include water-soluble resins such as water-soluble polymer compounds, polyester systems, modified polyacrylate systems, ethylene oxide/propylene oxide adducts, phosphate ester systems, and the like.
  • the aspect of the dispersant may be selected from the items described in paragraphs [0021] to [0065] of JP-A-2021-012355.
  • Preferred dispersants include, for example, basic polymer type dispersants.
  • Examples of the basic polymer type dispersant include a polymer containing a nitrogen atom. Nitrogen atoms may be included in the main chain of the polymer. Nitrogen atoms may be included in the side chains of the polymer. Nitrogen atoms may be included in the main chain and side chains of the polymer.
  • the basic polymer type dispersant is preferably a polymer containing a nitrogen atom in a side chain. Since the surface of carbon black is generally acidic, when carbon black is used as a pigment, a basic polymer type dispersant is particularly preferred as the dispersant.
  • Examples of the polymer containing a nitrogen atom include a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium base, and a nitrogen-containing polymer.
  • Examples include polymers containing at least one atomic group selected from the group consisting of heterocyclic groups.
  • a polymer containing a quaternary ammonium base is preferred.
  • the atomic group is preferably introduced into the side chain of the polymer.
  • the counter ion of the quaternary ammonium cation in the quaternary ammonium base include carboxylic acid ions.
  • carboxylic acid ions include aliphatic carboxylic acid ions and aromatic carboxylic acid ions.
  • the polymer containing a nitrogen atom is preferably a polymer containing a structural unit derived from styrene and a structural unit derived from a maleimide derivative. More preferably, it is a copolymer with a maleimide derivative.
  • a maleimide derivative has a structure in which at least one hydrogen atom of maleimide is substituted with a substituent.
  • a maleimide derivative for example, at least one atomic group selected from the group consisting of a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium base, and a nitrogen-containing heterocyclic group is used. Examples include maleimide derivatives containing.
  • the maleimide derivative is preferably a maleimide derivative containing a quaternary ammonium base.
  • the dispersant may be a commercially available dispersant, such as BYK-2012 (BYK-2012). Japan Co., Ltd.).
  • the photosensitive layer may contain a dispersion aid (also referred to as a pigment dispersion aid) in addition to the pigment.
  • the dispersion aid may be selected from known dispersion aids.
  • Examples of the dispersion aid include compounds having organic dye residues.
  • organic pigments include phthalocyanine pigments, diketopyrrolopyrrole pigments, anthraquinone pigments, quinacridone pigments, dioxazine pigments, perinone pigments, perylene pigments, thiazine indigo pigments, triazine pigments, and benzimidazo pigments.
  • Ron pigments indole pigments such as benzoisoindole, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, naphthol pigments, threne pigments, metal complex pigments, azo pigments such as azo, disazo, polyazo, etc.
  • the compound having an organic dye residue may have an acidic substituent, a basic substituent, or a neutral substituent.
  • acidic substituents include sulfo groups, carboxy groups, and phosphoric acid groups.
  • basic substituent include a sulfonamide group and an amino group.
  • neutral substituents include phenyl groups and phthalimidoalkyl groups.
  • the aspect of the dispersion aid may be selected from the items described in paragraphs [0067] to [0084] of JP-A-2021-012355.
  • Preferred dispersion aids include, for example, compounds having phthalocyanine residues.
  • the dispersion aid is preferably a phthalocyanine pigment derivative or a salt thereof having an acidic substituent, and at least one acidic substituent selected from the group consisting of a sulfo group, a carboxy group, and a phosphoric acid group.
  • a phthalocyanine pigment derivative having a sulfo group or a salt thereof is more preferable, and a phthalocyanine pigment derivative having a sulfo group or a salt thereof is even more preferable.
  • Phthalocyanine pigment derivatives are described, for example, in JP 2007-226161A, WO 2016/163351, JP 2017-165820, and Patent No. 5753266. These publications are incorporated herein by reference.
  • the dispersing machine is not particularly limited, and examples thereof include known dispersing machines such as a kneader, roll mill, attritor, super mill, dissolver, homomixer, and sand mill. Furthermore, it may be finely pulverized by mechanical grinding using frictional force. Regarding the dispersing machine and fine pulverization, reference can be made to the description in "Encyclopedia of Pigments" (written by Kunizo Asakura, 1st edition, Asakura Shoten, 2000, pages 438 and 310).
  • the transfer layer preferably includes an intermediate layer between the temporary support and the photosensitive layer.
  • the intermediate layer By arranging the intermediate layer, it is possible to suppress mixing of components during coating of a plurality of layer-forming compositions and during storage after coating.
  • the intermediate layer is preferably a water-soluble resin layer containing a water-soluble resin.
  • an oxygen barrier layer having an oxygen barrier function which is described as a "separation layer" in JP-A-5-072724, can also be used. It is preferable that the intermediate layer is an oxygen barrier layer because sensitivity during exposure is improved, time load on the exposure machine is reduced, and productivity is improved.
  • the oxygen barrier layer used as the intermediate layer may be appropriately selected from the known layers described in the above-mentioned publications. Among these, an oxygen barrier layer that exhibits low oxygen permeability and is dispersed or dissolved in water or an alkaline aqueous solution (a 1% by mass aqueous solution of sodium carbonate at 22° C.) is preferred.
  • the intermediate layer contains resin.
  • the above resin contains a water-soluble resin as part or all of it.
  • resins that can be used as water-soluble resins include polyvinyl alcohol resins, polyvinylpyrrolidone resins, cellulose resins, acrylamide resins, polyethylene oxide resins, gelatin, vinyl ether resins, polyamide resins, and copolymers thereof.
  • resins such as coalescence.
  • a copolymer of (meth)acrylic acid/vinyl compound, etc. can also be used.
  • a (meth)acrylic acid/vinyl compound copolymer a (meth)acrylic acid/allyl (meth)acrylate copolymer is preferred, and a methacrylic acid/allyl methacrylate copolymer is more preferred.
  • each composition ratio (mol%) is preferably 90/10 to 20/80, and 80/20 to 30/70, for example. More preferred.
  • the lower limit of the weight average molecular weight of the water-soluble resin is preferably 5,000 or more, more preferably 7,000 or more, and even more preferably 10,000 or more. Further, the upper limit thereof is preferably 200,000 or less, more preferably 100,000 or less, and even more preferably 50,000 or less.
  • the degree of dispersion (Mw/Mn) of the water-soluble resin is preferably 1 to 10, more preferably 1 to 5.
  • the resin contained in the intermediate layer is the same as the resin contained in the layer disposed on one side of the intermediate layer and the resin contained in the layer disposed on the other side of the intermediate layer. It is preferable that the resin is different from the resin contained in the.
  • the photosensitive layer contains polymer A and the thermoplastic resin layer contains thermoplastic resin (alkali-soluble resin)
  • the intermediate layer contains polymer A and thermoplastic resin (alkali-soluble resin). It is preferable that the resin is different from the soluble resin.
  • the water-soluble resin preferably contains polyvinyl alcohol, and more preferably contains both polyvinyl alcohol and polyvinylpyrrolidone, from the viewpoint of further improving oxygen barrier properties and interlayer mixing suppression ability.
  • the number of water-soluble resins contained in the intermediate layer may be one type, or two or more types.
  • the content of the water-soluble resin is not particularly limited, but is preferably 50% by mass or more based on the total mass of the water-soluble resin layer (intermediate layer) in order to further improve oxygen barrier properties and ability to suppress interlayer mixing. , more preferably 70% by mass or more, further preferably 80% by mass or more, particularly preferably 90% by mass or more.
  • the upper limit is not particularly limited, but is preferably 99.9% by mass or less, more preferably 99.8% by mass or less.
  • the intermediate layer may contain known additives such as surfactants, if necessary.
  • the number of surfactants contained in the intermediate layer may be one, or two or more.
  • the surfactant preferably includes at least one selected from the group consisting of nonionic surfactants, fluorine surfactants, and silicone surfactants.
  • the surfactant contains a silicone surfactant from the viewpoint of the releasability, resolution, oxygen blocking ability, defect suppression property, etc. of the temporary support.
  • silicone surfactants are preferred from the viewpoint of improving the adhesion between the intermediate layer and adjacent layers (photosensitive layer, thermoplastic resin, etc.) (hereinafter also referred to as "interlayer adhesion").
  • the content of the silicone surfactant is 60% by mass based on the total mass of the surfactant. It is preferably at least 80% by mass, preferably at least 95% by mass, and may be 100% by mass.
  • silicone surfactants include linear polymers consisting of siloxane bonds, modified siloxane polymers having an organic group introduced into at least one of a side chain and a terminal.
  • the content of the surfactant is 0.1% by mass to 0.1% by mass based on the total mass of the intermediate layer. It is preferably 10% by weight, more preferably 0.5% to 7% by weight, and even more preferably 1% to 5% by weight.
  • the thickness of the intermediate layer is not particularly limited, but is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m to 3 ⁇ m.
  • the oxygen barrier property is not reduced and the ability to suppress interlayer mixing is excellent. Furthermore, it is also possible to suppress an increase in the time required to remove the intermediate layer during development.
  • the transfer layer preferably includes a thermoplastic resin layer between the temporary support and the intermediate layer.
  • thermoplastic resin layer By including the thermoplastic resin layer in the transfer film, the followability to the substrate in the step of bonding the transfer film and the substrate is improved, and it is possible to suppress the inclusion of air bubbles between the substrate and the transfer film. As a result, adhesion between the thermoplastic resin layer and the layer adjacent to it (eg, temporary support) can be ensured.
  • the thermoplastic resin layer contains resin.
  • the resin includes a thermoplastic resin as part or all of the resin. That is, in one embodiment, it is also preferable that the resin in the thermoplastic resin layer is a thermoplastic resin.
  • thermoplastic resin is preferably an alkali-soluble resin.
  • alkali-soluble resins examples include acrylic resin, polystyrene resin, styrene-acrylic copolymer, polyurethane resin, polyvinyl alcohol, polyvinyl formal, polyamide resin, polyester resin, polyamide resin, epoxy resin, polyacetal resin, and polyhydroxystyrene resin. , polyimide resin, polybenzoxazole resin, polysiloxane resin, polyethyleneimine, polyallylamine, and polyalkylene glycol.
  • acrylic resin is preferred from the viewpoint of developability and adhesion with adjacent layers.
  • the acrylic resin is at least one selected from the group consisting of structural units derived from (meth)acrylic acid, structural units derived from (meth)acrylic esters, and structural units derived from (meth)acrylic acid amide. It means a resin having one type of structural unit.
  • the total content of structural units derived from (meth)acrylic acid, structural units derived from (meth)acrylic acid ester, and structural units derived from (meth)acrylic amide is the total content of the acrylic resin. It is preferable that the amount is 50% by mass or more based on the mass.
  • the total content of structural units derived from (meth)acrylic acid and structural units derived from (meth)acrylic acid ester is preferably 30% by mass to 100% by mass, and 50% by mass based on the total mass of the acrylic resin. More preferably from % by mass to 100% by mass.
  • the alkali-soluble resin contains at least one selected from the group consisting of structural units derived from styrene and structural units derived from styrene derivatives.
  • styrene derivatives include vinyltoluene, p-methylstyrene, and p-chlorostyrene.
  • the total content of structural units derived from styrene and structural units derived from styrene derivatives in the alkali-soluble resin is preferably 5% by mass to 60% by mass, and 10% by mass to 50% by mass, based on the total mass of the alkali-soluble resin. % is more preferable, and 15% to 40% by weight is even more preferable.
  • the alkali-soluble resin has a mass ratio of the content of structural units derived from (meth)acrylic acid ester to the total content of structural units derived from styrene and styrene derivatives from 0.3 to 2.5. It is preferably from 0.5 to 2.05, even more preferably from 0.7 to 1.75.
  • the alkali-soluble resin is preferably a polymer having acid groups.
  • Examples of the acid group include a carboxyl group, a sulfo group, a phosphoric acid group, and a phosphonic acid group, with a carboxy group being preferred.
  • the alkali-soluble resin is more preferably an alkali-soluble resin with an acid value of 60 mgKOH/g or more, and even more preferably a carboxyl group-containing acrylic resin with an acid value of 60 mgKOH/g or more.
  • the upper limit of the acid value of the alkali-soluble resin is not particularly limited, but is preferably 300 mgKOH/g or less, more preferably 250 mgKOH/g or less, even more preferably 200 mgKOH/g or less, and particularly preferably 150 mgKOH/g or less.
  • the carboxy group-containing acrylic resin having an acid value of 60 mgKOH/g or more is not particularly limited, and can be appropriately selected from known resins.
  • an alkali-soluble resin that is a carboxyl group-containing acrylic resin with an acid value of 60 mgKOH/g or more
  • the alkali-soluble resin described in paragraphs 0033 to 0052 of JP-A-2010-237589 examples include resin.
  • the copolymerization ratio of structural units having a carboxyl group in the above carboxy group-containing acrylic resin is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 40% by mass, and 12% by mass, more preferably 10% by mass to 40% by mass, based on the total mass of the acrylic resin. More preferably, the amount is from % by mass to 30% by mass.
  • an acrylic resin having a structural unit derived from (meth)acrylic acid is particularly preferable from the viewpoint of developability and adhesion with an adjacent layer.
  • the alkali-soluble resin may have a reactive group.
  • the reactive group may be any group that is capable of addition polymerization, and includes ethylenically unsaturated groups; polycondensable groups such as hydroxy groups and carboxy groups; and polyaddition reactive groups such as epoxy groups and (block) isocyanate groups. Can be mentioned.
  • the weight average molecular weight (Mw) of the alkali-soluble resin is preferably 1,000 or more, more preferably 10,000 to 100,000, and even more preferably 20,000 to 50,000.
  • the number of alkali-soluble resins contained in the thermoplastic resin layer may be one type or two or more types.
  • the content of the alkali-soluble resin is preferably 10 to 99% by mass, more preferably 20 to 90% by mass, based on the total mass of the thermoplastic resin layer. It is preferably 40 to 80% by weight, more preferably 50 to 75% by weight.
  • thermoplastic resin layer contains a dye (also simply referred to as "dye B") whose maximum absorption wavelength is 450 nm or more in the wavelength range of 400 to 780 nm during color development, and whose maximum absorption wavelength changes with acid, base, or radical. It is preferable.
  • a dye also simply referred to as "dye B”
  • maximum absorption wavelength is 450 nm or more in the wavelength range of 400 to 780 nm during color development, and whose maximum absorption wavelength changes with acid, base, or radical. It is preferable.
  • dye B are the same as the preferred embodiments of dye N described above, except for the points described below.
  • dye B is preferably a dye whose maximum absorption wavelength changes with acid or radicals, and more preferably a dye whose maximum absorption wavelength changes with acid.
  • the thermoplastic resin layer contains both a dye as dye B whose maximum absorption wavelength changes depending on an acid, and a compound that generates an acid when exposed to light, which will be described later. It is preferable to include.
  • the number of dyes B contained in the thermoplastic resin layer may be one, or two or more.
  • the content of dye B is preferably 0.2% by mass or more, and 0.2% by mass to 6% by mass, based on the total mass of the thermoplastic resin layer, from the viewpoint of visibility of exposed areas and non-exposed areas. It is more preferably 0.2% by mass to 5% by mass, and particularly preferably 0.25% by mass to 3.0% by mass.
  • the content of the dye B means the content of the dye when all of the dye B contained in the thermoplastic resin layer is brought into a colored state.
  • a method for quantifying the content of dye B will be explained using a dye that develops color due to radicals as an example.
  • a solution is prepared by dissolving 0.001 g and 0.01 g of the dye in 100 mL of methyl ethyl ketone.
  • a photoradical polymerization initiator, Irgacure OXE01 (trade name, BASF Japan Ltd.), is added to each of the obtained solutions, and irradiation with 365 nm light generates radicals to bring all the dyes into a colored state. Thereafter, the absorbance of each solution at a liquid temperature of 25° C.
  • thermoplastic resin layer is measured using a spectrophotometer (UV3100, manufactured by Shimadzu Corporation) under atmospheric conditions, and a calibration curve is created.
  • UV3100 UV3100, manufactured by Shimadzu Corporation
  • the absorbance of the solution in which all the dyes are colored is measured in the same manner as above except that 0.1 g of the thermoplastic resin layer is dissolved in methyl ethyl ketone instead of the dye. From the absorbance of the obtained solution containing the thermoplastic resin layer, the amount of dye contained in the thermoplastic resin layer is calculated based on a calibration curve. Note that 3 g of the thermoplastic resin layer is the same as 3 g of the solid content of the composition for forming a thermoplastic resin layer.
  • thermoplastic resin layer may contain a compound (also simply referred to as "compound C") that generates an acid, a base, or a radical when exposed to light.
  • the compound C is preferably a compound that generates an acid, a base, or a radical upon receiving actinic rays such as ultraviolet rays and visible rays.
  • photoacid generators As compound C, known photoacid generators, photobase generators, and photoradical polymerization initiators (photoradical generators) can be used.
  • thermoplastic resin layer may contain a photoacid generator from the viewpoint of resolution.
  • photoacid generator examples include the photocationic polymerization initiators that may be included in the photosensitive layer described above, and the preferred embodiments are the same except for the points described below.
  • the photoacid generator preferably contains at least one compound selected from the group consisting of onium salt compounds and oxime sulfonate compounds. From the viewpoint of properties, it is more preferable to include an oxime sulfonate compound. Further, as the photoacid generator, a photoacid generator having the following structure is also preferable.
  • thermoplastic resin layer may contain a photoradical polymerization initiator.
  • radical photopolymerization initiator examples include the radical photopolymerization initiator that the above-mentioned photosensitive layer may contain, and the preferred embodiments are also the same.
  • thermoplastic resin composition may also include a photobase generator.
  • the photobase generator is not particularly limited as long as it is a known photobase generator, and examples thereof include 2-nitrobenzylcyclohexylcarbamate, triphenylmethanol, O-carbamoylhydroxylamide, O-carbamoyloxime, [[(2, 6-dinitrobenzyl)oxy]carbonyl]cyclohexylamine, bis[[(2-nitrobenzyl)oxy]carbonyl]hexane 1,6-diamine, 4-(methylthiobenzoyl)-1-methyl-1-morpholinoethane, (4 -morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane, N-(2-nitrobenzyloxycarbonyl)pyrrolidine, hexaamminecobalt(III) tris(triphenylmethylborate), 2-benzyl-2-dimethylamino- 1-(4-morpholinophenyl)-butanone, 2,6-dimethyl-3,5-diacet
  • the number of compounds C contained in the thermoplastic resin layer may be one type, or two or more types.
  • the content of compound C is preferably 0.1% by mass to 10% by mass, and 0.5% by mass based on the total mass of the thermoplastic resin layer, from the viewpoint of visibility and resolution of exposed areas and non-exposed areas. More preferably, the amount is from % by mass to 5% by mass.
  • thermoplastic resin layer preferably contains a plasticizer from the viewpoints of resolution, adhesion with adjacent layers, and developability.
  • the plasticizer preferably has a smaller molecular weight (weight average molecular weight if it is an oligomer or polymer and has a molecular weight distribution) than the alkali-soluble resin.
  • the molecular weight (weight average molecular weight) of the plasticizer is preferably 200 to 2,000.
  • the plasticizer is not particularly limited as long as it is a compound that exhibits plasticity by being compatible with the alkali-soluble resin, but from the viewpoint of imparting plasticity, the plasticizer preferably has an alkyleneoxy group in the molecule, and polyalkylene glycol Compounds are more preferred. It is more preferable that the alkyleneoxy group contained in the plasticizer has a polyethyleneoxy structure or a polypropyleneoxy structure.
  • the plasticizer contains a (meth)acrylate compound from the viewpoint of resolution and storage stability.
  • the alkali-soluble resin is an acrylic resin and that the plasticizer contains a (meth)acrylate compound.
  • Examples of the (meth)acrylate compound used as a plasticizer include the (meth)acrylate compound described above as a polymerizable compound contained in the photosensitive layer.
  • thermoplastic resin layer and the photosensitive layer when the thermoplastic resin layer and the photosensitive layer are laminated in direct contact, it is preferable that both the thermoplastic resin layer and the negative photosensitive layer contain the same (meth)acrylate compound. This is because the thermoplastic resin layer and the photosensitive layer each contain the same (meth)acrylate compound, thereby suppressing component diffusion between the layers and improving storage stability.
  • thermoplastic resin layer contains a (meth)acrylate compound as a plasticizer
  • a (meth)acrylate compound as a plasticizer
  • the (meth)acrylate compound used as a plasticizer should contain two or more (meth) A polyfunctional (meth)acrylate compound having an acryloyl group is preferred.
  • the (meth)acrylate compound used as a plasticizer a (meth)acrylate compound or a urethane (meth)acrylate compound having an acid group is also preferable.
  • the number of plasticizers contained in the thermoplastic resin layer may be one type, or two or more types.
  • the content of the plasticizer is 1% by mass to 70% by mass based on the total mass of the thermoplastic resin layer, from the viewpoint of resolution of the thermoplastic resin layer, adhesion with adjacent layers, and developability. It is preferably 10% by mass to 60% by mass, more preferably 20% by mass to 50% by mass.
  • thermoplastic resin layer may contain a sensitizer.
  • the sensitizer is not particularly limited, and includes the sensitizers that may be included in the above-mentioned negative photosensitive layer.
  • the number of sensitizers contained in the thermoplastic resin layer may be one type or two or more types.
  • the content of the sensitizer can be selected as appropriate depending on the purpose, but from the viewpoint of improving sensitivity to light sources and visibility of exposed and non-exposed areas, the content of the sensitizer should be 0.01% based on the total mass of the thermoplastic resin layer. It is preferably from 0.05% to 1% by weight, more preferably from 0.05% to 1% by weight.
  • thermoplastic resin layer may also contain known additives such as surfactants, if necessary.
  • thermoplastic resin layer is described in paragraphs 0189 to 0193 of JP-A No. 2014-085643, and the contents of this publication are incorporated herein.
  • the thickness of the thermoplastic resin layer is not particularly limited, but from the viewpoint of adhesion with adjacent layers, it is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the upper limit is not particularly limited, but from the viewpoint of developability and resolution, it is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 8 ⁇ m or less.
  • the transfer film may have a protective film.
  • a resin film having heat resistance and solvent resistance can be used, and examples thereof include polyolefin films such as polypropylene films and polyethylene films, polyester films such as polyethylene terephthalate films, polycarbonate films, and polystyrene films. It will be done.
  • a resin film made of the same material as the above-mentioned temporary support may be used as the protective film.
  • a polyolefin film is preferable, a polypropylene film or a polyethylene film is more preferable, and a polyethylene film is even more preferable.
  • the thickness of the protective film is preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m, even more preferably 5 ⁇ m to 40 ⁇ m, and particularly preferably 15 ⁇ m to 30 ⁇ m.
  • the thickness of the protective film is preferably 1 ⁇ m or more in terms of excellent mechanical strength, and preferably 100 ⁇ m or less in terms of being relatively inexpensive.
  • the number of fish eyes with a diameter of 80 ⁇ m or more contained in the protective film is 5 or less/m 2 .
  • fish eyes refers to foreign matter, undissolved matter, oxidized deterioration products, etc. of materials when manufacturing films by methods such as heat-melting, kneading, extrusion, biaxial stretching, and casting methods. was captured in the film.
  • the number of particles with a diameter of 3 ⁇ m or more contained in the protective film is preferably 30 particles/mm 2 or less, more preferably 10 particles/mm 2 or less, and even more preferably 5 particles/mm 2 or less.
  • the arithmetic mean roughness Ra of the surface of the protective film opposite to the surface in contact with the composition layer is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and 0.03 ⁇ m. The above is more preferable. On the other hand, it is preferably less than 0.50 ⁇ m, more preferably 0.40 ⁇ m or less, and even more preferably 0.30 ⁇ m or less.
  • the protective film may be a recycled product.
  • recycled products include those that have been washed and made into chips from used films, and made into films using these as materials.
  • a specific example of recycled products is Toray Industries' Ecouse series.
  • the arithmetic mean roughness Ra of the surface of the protective film in contact with the composition layer is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and even more preferably 0.03 ⁇ m or more. On the other hand, it is preferably less than 0.50 ⁇ m, more preferably 0.40 ⁇ m or less, and even more preferably 0.30 ⁇ m or less.
  • the method for producing the transfer film according to the present disclosure is not particularly limited, and any known method can be used.
  • a method for manufacturing the above-mentioned transfer film 20 for example, a composition for forming a thermoplastic resin layer is applied to the surface of the temporary support 11 to form a coating film, and this coating film is further dried to form a thermoplastic resin layer.
  • the method includes the steps of applying a photosensitive composition to the surface of the photosensitive layer 15 to form a coating film, and further drying the coating film to form the photosensitive layer 17.
  • the transfer film 20 is manufactured by pressing the protective film 19 onto the photosensitive layer 17 of the laminate manufactured by the above manufacturing method.
  • the method for manufacturing a transfer film according to the present disclosure includes the step of providing a protective film 19 in contact with the surface of the photosensitive layer 17 opposite to the side on which the temporary support 11 is provided. It is preferable to produce a transfer film 20 comprising a thermoplastic resin layer 13, an intermediate layer 15, a photosensitive layer 17, and a protective film 19. The thermoplastic resin layer 13, the intermediate layer 15, and the photosensitive layer 17 correspond to the transfer layer 12.
  • the transfer film 20 may be wound up to create and store a roll-shaped transfer film.
  • the transfer film in the form of a roll can be provided as it is for the step of bonding it to a substrate using a roll-to-roll method, which will be described later.
  • the method for manufacturing the transfer film 20 described above is a method in which the photosensitive layer 17 and the intermediate layer 15 are formed on the protective film 19, and then the thermoplastic resin layer 13 is formed on the surface of the intermediate layer 15. Good too.
  • thermoplastic resin layer on the temporary support is not particularly limited, and any known method can be used.
  • it can be formed by applying a composition for forming a thermoplastic resin layer onto a temporary support and drying it if necessary.
  • the composition for forming a thermoplastic resin layer preferably contains the various components that form the thermoplastic resin layer described above and a solvent.
  • the preferred range of the content of each component relative to the total solid content of the composition is the same as the preferred range of the content of each component relative to the total mass of the thermoplastic resin layer described above. be.
  • the solvent is not particularly limited as long as it can dissolve or disperse components other than the solvent, and any known solvent can be used.
  • Examples of the solvent include those similar to those contained in the photosensitive composition described below, and preferred embodiments are also the same.
  • the content of the solvent is preferably 50 parts by mass to 1,900 parts by mass, more preferably 100 parts by mass to 900 parts by mass, based on 100 parts by mass of the total solid content of the composition for forming a thermoplastic resin layer.
  • thermoplastic resin layer is not particularly limited as long as it can form a layer containing the above components, and for example, known coating methods (slit coating, spin coating, curtain coating, inkjet coating, etc.) may be used. Can be mentioned.
  • the composition for forming an intermediate layer preferably contains the various components for forming the intermediate layer described above and a solvent.
  • the preferred range of the content of each component relative to the total solid content of the intermediate layer forming composition is the same as the preferred range of the content of each component relative to the total mass of the intermediate layer described above. be.
  • the solvent is not particularly limited as long as it is capable of dissolving or dispersing the water-soluble resin, and is preferably at least one selected from the group consisting of water and water-miscible organic solvents; A mixed solvent with a solvent is more preferable.
  • water-miscible organic solvents include alcohols having 1 to 3 carbon atoms, acetone, ethylene glycol, and glycerin, with alcohols having 1 to 3 carbon atoms being preferred, and methanol or ethanol being more preferred.
  • the number of solvents contained in the intermediate layer forming composition may be one, or two or more.
  • the content of the solvent is preferably 50 parts by mass to 2,500 parts by mass, more preferably 50 parts by mass to 1,900 parts by mass, and 100 parts by mass based on 100 parts by mass of the total solid content of the intermediate layer forming composition. Parts to 900 parts by mass are more preferred.
  • the method for forming the intermediate layer is not particularly limited as long as it is a method that can form a layer containing the above components, and examples thereof include known coating methods (slit coating, spin coating, curtain coating, inkjet coating, etc.). .
  • a coating method using a photosensitive composition containing the components constituting the photosensitive layer e.g., polymer A, a polymerizable compound, a polymerization initiator, etc.
  • a solvent is advantageous in terms of productivity. It is desirable that the photosensitive composition containing the components constituting the photosensitive layer (e.g., polymer A, a polymerizable compound, a polymerization initiator, etc.) and a solvent is advantageous in terms of productivity. It is desirable that the components constituting the photosensitive layer (e.g., polymer A, a polymerizable compound, a polymerization initiator, etc.) and a solvent is advantageous in terms of productivity. It is desirable that the components constituting the photosensitive layer (e.g., polymer A, a polymerizable compound, a polymerization initiator, etc.) and a solvent is advantageous in terms of productivity. It is desirable that the photosensitive layer (e.g., polymer A, a polymerizable compound, a polymerization initiator
  • the method for producing a transfer film according to the present disclosure includes coating a photosensitive composition on an intermediate layer to form a coating film, and drying the coating film at a predetermined temperature to make it photosensitive.
  • a method of forming layers is preferred. Note that the amount of remaining solvent is adjusted by drying the coating film.
  • the photosensitive composition preferably contains the various components that form the photosensitive layer described above and a solvent.
  • the preferred range of the content of each component relative to the total solid content of the photosensitive composition is the same as the preferred range of the content of each component relative to the total mass of the photosensitive layer described above.
  • the solvent is not particularly limited as long as it can dissolve or disperse components other than the solvent, and any known solvent can be used.
  • any known solvent can be used.
  • the solvent preferably contains at least one selected from the group consisting of alkylene glycol ether solvents and alkylene glycol ether acetate solvents.
  • a mixed solvent containing at least one selected from the group consisting of alkylene glycol ether solvents and alkylene glycol ether acetate solvents and at least one selected from the group consisting of ketone solvents and cyclic ether solvents is more preferable.
  • a mixed solvent containing at least one selected from the group consisting of glycol ether solvents and alkylene glycol ether acetate solvents, a ketone solvent, and a cyclic ether solvent is more preferred.
  • alkylene glycol ether solvent examples include ethylene glycol monoalkyl ether, ethylene glycol dialkyl ether, propylene glycol monoalkyl ether (propylene glycol monomethyl ether acetate, etc.), propylene glycol dialkyl ether, diethylene glycol dialkyl ether, dipropylene glycol monoalkyl ether, and dipropylene glycol dialkyl ether.
  • alkylene glycol ether acetate solvent examples include ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, diethylene glycol monoalkyl ether acetate, and dipropylene glycol monoalkyl ether acetate.
  • the solvents described in paragraphs 0092 to 0094 of International Publication No. 2018/179640 and the solvents described in paragraph 0014 of JP2018-177889 may be used, and the contents of these are herein incorporated by reference. be incorporated into.
  • the number of solvents contained in the photosensitive composition may be one, or two or more.
  • the content of the solvent is preferably 50 parts by mass to 1,900 parts by mass, more preferably 100 parts by mass to 1200 parts by mass, and further preferably 100 parts by mass to 900 parts by mass, based on 100 parts by mass of the total solid content of the composition. preferable.
  • Examples of methods for applying the photosensitive composition include printing, spraying, roll coating, bar coating, curtain coating, spin coating, and die coating (ie, slit coating).
  • heat drying and reduced pressure drying are preferred.
  • the drying temperature is preferably 80°C or higher, more preferably 90°C or higher. Further, the upper limit thereof is preferably 130°C or less, more preferably 120°C or less. Drying can also be carried out by continuously changing the temperature.
  • the drying time is preferably 20 seconds or more, more preferably 40 seconds or more, and even more preferably 60 seconds or more. Further, the upper limit thereof is not particularly limited, but is preferably 600 seconds or less, and more preferably 300 seconds or less.
  • the transfer film according to the present disclosure can be manufactured by laminating a protective film to the photosensitive layer.
  • the method of bonding the protective film to the photosensitive layer is not particularly limited, and known methods may be used.
  • Examples of the device for laminating the protective film to the photosensitive layer include known laminators such as a vacuum laminator and an auto-cut laminator.
  • the laminator is preferably equipped with any heatable roller such as a rubber roller, and is capable of applying pressure and heating.
  • the transfer film according to the present disclosure can be applied to various uses.
  • the transfer film according to the present disclosure can be used, for example, as an electrode protective film, an insulating film, a flattening film, an overcoat film, a hard coat film, a passivation film, a partition wall, a spacer, a microlens, an optical filter, an antireflection film, an etching resist, and Applicable to plated parts.
  • the transfer film according to the present disclosure can be used as a protective film or insulating film for touch panel electrodes, a protective film or insulating film for printed wiring boards, a protective film or insulating film for TFT substrates, a color filter, and an overcoat film for color filters. It can be applied to etching resists for forming wiring, plating resists for forming wiring, and plating resists for forming flexible printed wiring boards.
  • the pattern forming method includes: A step of preparing a transfer film including a temporary support and a transfer layer disposed on the temporary support (preparation step); A step of bonding the transfer film and the substrate so that the surface of the transfer film opposite to the surface of the temporary support is in contact with the substrate (bonding step); a step of peeling off the temporary support to obtain a laminate (temporary support peeling step); A step of exposing the laminate to light in a pattern (exposure step); A step of developing the exposed laminate to form a pattern,
  • the temporary support preferably has a thermal deformation rate of 1.0% or less.
  • a transfer film including a temporary support and a transfer layer disposed on the temporary support is prepared.
  • a preferred embodiment of the transfer film is as described above.
  • the transfer film and the substrate are bonded together such that the surface of the transfer film opposite to the surface of the temporary support is in contact with the substrate.
  • the transfer film includes a protective film
  • the protective film is peeled off before being bonded to the substrate.
  • the transfer film is preferably bonded to the substrate by stacking the transfer layer on the substrate and applying pressure and heat using means such as a roll.
  • known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further improve productivity can be used.
  • the lamination temperature is preferably 70°C to 130°C.
  • the substrate may be a substrate having a conductive layer, or may be a substrate having a conductive layer on the surface of the base material.
  • the substrate may have any layer other than the conductive layer as necessary.
  • Examples of the base material constituting the substrate include glass, silicon, and resin film.
  • the base material When using glass as the base material, the base material is preferably transparent. Further, the refractive index of the base material is preferably 1.50 to 1.52.
  • transparent glass substrates examples include tempered glass represented by Corning's Gorilla Glass. Furthermore, as the transparent glass substrate, materials described in JP-A No. 2010-86684, JP-A No. 2010-152809, and JP-A No. 2010-257492 may be used.
  • the base material is preferably a resin film with low optical distortion and/or high transparency.
  • resin films include, for example, polyethylene terephthalate (PET) films, polyethylene naphthalate films, polycarbonate films, triacetylcellulose films, and cycloolefin polymer films.
  • the base material is preferably a resin film.
  • the base material is a resin sheet.
  • the thickness of the base material is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m.
  • the conductive layer is at least one layer selected from the group consisting of a metal layer, a conductive metal oxide layer, a graphene layer, a carbon nanotube layer, and a conductive polymer layer in terms of conductivity and fine line formation. It is preferable that there be.
  • conductive layer only one conductive layer or two or more conductive layers may be disposed on the base material.
  • conductive layers made of different materials.
  • the conductive layer is preferably a metal layer.
  • the metal layer is a layer containing metal, and the metal is not particularly limited, and any known metal can be used.
  • the metal layer is a conductive layer.
  • main metals examples include copper, chromium, lead, nickel, gold, silver, tin, and zinc. Note that the term “main metal” refers to the metal with the largest content among the metals contained in the metal layer.
  • the thickness of the conductive layer is not particularly limited, and is preferably 50 nm or more, more preferably 100 nm or more.
  • the upper limit is preferably 2 ⁇ m or less.
  • the method of forming the conductive layer is not particularly limited, and examples thereof include known methods such as a method of applying a dispersion in which fine metal particles are dispersed and sintering a coating film, a sputtering method, and a vapor deposition method.
  • Temporal support peeling process In the temporary support peeling step, the temporary support is peeled off to obtain a laminate. In the pattern forming method according to the present disclosure, since the temporary support is peeled off in advance, foreign matter contained in the temporary support does not affect the exposure in the exposure step.
  • the peeling method is not particularly limited, and a mechanism similar to the cover film peeling mechanism described in paragraphs [0161] to [0162] of JP-A-2010-072589 can be used.
  • Exposure process In the exposure step, the laminate obtained in the peeling step is exposed in a pattern.
  • the detailed arrangement and specific size of the pattern in pattern exposure are not particularly limited. It is preferable that at least a part of the pattern (preferably the electrode pattern of the touch panel and/or the lead-out wiring part) includes a thin line with a width of 20 ⁇ m or less, and more preferably a thin line with a width of 10 ⁇ m or less.
  • the display quality of a display device (for example, a touch panel) equipped with an input device having circuit wiring manufactured by the circuit wiring manufacturing method can be improved, and the area occupied by the lead wiring can be reduced.
  • the light source used for exposure is not particularly limited as long as it irradiates light with a wavelength that can expose the photosensitive layer (for example, 365 nm or 405 nm), and can be appropriately selected and used.
  • Examples of the light source include an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, and an LED (Light Emitting Diode).
  • the exposure amount is preferably 5 mJ/cm 2 to 200 mJ/cm 2 , more preferably 10 mJ/cm 2 to 100 mJ/cm 2 .
  • the mask and the photosensitive layer may be brought into contact with each other for exposure, or the mask and the photosensitive layer may be brought into close proximity without contacting each other for exposure.
  • the exposure method is contact exposure method in case of contact exposure method, proximity exposure method in case of non-contact exposure method, projection exposure method using lens system or mirror system, or direct exposure method using exposure laser etc. can be selected and used as appropriate.
  • a lens-based or mirror-based projection exposure method an exposure machine having an appropriate lens numerical aperture (NA) can be used depending on the required resolving power and depth of focus.
  • NA numerical aperture
  • the photosensitive layer may be directly exposed to light, or the photosensitive layer may be subjected to reduction projection exposure through a lens.
  • exposure may be performed not only under the atmosphere but also under reduced pressure or vacuum.
  • exposure may be performed with a liquid such as water interposed between the light source and the photosensitive layer.
  • Examples of masks include quartz masks, soda lime glass masks, and film masks. Among these, quartz masks are preferred because they have excellent dimensional accuracy, and film masks are preferred because they can be easily made large.
  • As the base material for the film mask a polyester film is preferred, and a polyethylene terephthalate film is more preferred.
  • a specific example of the base material of the film mask is XPR-7S SG (manufactured by Fujifilm Global Graphic Systems Co., Ltd.).
  • the exposed laminate is developed to form a pattern.
  • Development can be performed using a developer.
  • the developing solution is preferably an alkaline aqueous solution.
  • alkaline compounds that can be contained in the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrapropylammonium hydroxy. and choline (2-hydroxyethyltrimethylammonium hydroxide).
  • development methods include paddle development, shower development, spin development, and dip development.
  • Suitable developers include, for example, the developer described in paragraph [0194] of WO 2015/093271, and examples of development methods that are suitably used include, for example, the developer described in paragraph [0194] of WO 2015/093271. Examples include the development method described in [0195].
  • the pattern forming method according to the present disclosure may include a step of exposing the pattern obtained by the developing step (post-exposure step) and/or a step of heating (post-bake step).
  • the exposure amount of post-exposure is preferably 100 mJ/cm 2 to 5000 mJ/cm 2 , more preferably 200 mJ/cm 2 to 3000 mJ/cm 2 .
  • the post-bake temperature is preferably 80°C to 250°C, more preferably 90°C to 160°C.
  • the post-bake time is preferably 1 minute to 180 minutes, more preferably 10 minutes to 60 minutes.
  • a step of preparing a transfer film including a temporary support and a transfer layer disposed on the temporary support (preparation step); A step of bonding the transfer film and the substrate so that the surface of the transfer film opposite to the surface of the temporary support is in contact with the substrate (bonding step); a step of peeling off the temporary support to obtain a laminate (temporary support peeling step); A step of exposing the laminate to light in a pattern (exposure step); A step of developing the exposed laminate to form a pattern (developing step); A process of plating an area of the substrate where no pattern is placed (plating process); A step of peeling off the pattern (pattern peeling step),
  • the temporary support preferably has a thermal deformation rate of 1.0% or less.
  • the preparation process, the bonding process, the temporary support peeling process, and the exposure process are the same as the pattern forming method described above, so their explanation will be omitted.
  • a conductor pattern is formed when plating is performed on an area where no pattern is placed. Generally, it is called a semi-additive method.
  • plating process In the plating process, plating is performed on areas of the substrate where no pattern is placed.
  • the plating method known methods can be applied, such as electroplating and electroless plating.
  • the plating is electroplating.
  • the metal included in the plating examples include known metals. Specific examples include metals such as copper, chromium, lead, nickel, gold, silver, tin, and zinc, and alloys of these metals. Among these, it is preferable that the plating contains copper or an alloy thereof, since the conductivity of the conductive pattern is more excellent. Further, from the viewpoint of improving the conductivity of the conductive pattern, it is preferable that the plating layer contains copper as a main component.
  • Components of the plating solution used in electroplating include, for example, water-soluble copper salts.
  • water-soluble copper salt water-soluble copper salts commonly used as components of plating solutions can be used.
  • the water-soluble copper salt is preferably at least one selected from the group consisting of, for example, an inorganic copper salt, an alkanesulfonic acid copper salt, an alkanolsulfonic acid copper salt, and an organic acid copper salt.
  • inorganic copper salts include copper sulfate, copper oxide, copper chloride, and copper carbonate.
  • copper alkanesulfonate include copper methanesulfonate and copper propanesulfonate.
  • copper alkanolsulfonate salts include copper isethionate and copper propanolsulfonate.
  • organic acid copper salts include copper acetate, copper citrate, and copper tartrate.
  • the plating solution may contain sulfuric acid. By including sulfuric acid in the plating solution, the pH and sulfate ion concentration of the plating solution can be adjusted.
  • a conductor pattern can be formed by supplying the laminate after the development process to a plating tank in which a plating solution is added.
  • a conductor pattern can be formed by, for example, controlling the current density and the transport speed of the transparent base material.
  • the temperature of the plating solution used for electroplating is preferably 70°C or lower, more preferably 10°C to 40°C.
  • the current density in electroplating is preferably 0.1 A/dm 2 to 100 A/dm 2 , more preferably 0.5 A/dm 2 to 20 A/dm 2 .
  • the productivity of conductor patterns can be improved by increasing the current density. By lowering the current density, the uniformity of the thickness of the conductor pattern can be improved.
  • the pattern peeling process is a process of peeling off the pattern.
  • methods for removing the remaining pattern include a method of removing it by chemical treatment, and a method of removing it using a stripping liquid is preferable.
  • a method for removing the remaining pattern for example, a known method such as a spray method, a shower method, and a paddle method using a stripping solution may be used.
  • the stripping solution examples include a stripping solution in which an alkaline compound is dissolved in at least one selected from the group consisting of water, dimethyl sulfoxide, and N-methylpyrrolidone.
  • alkaline compounds compounds that exhibit alkalinity when dissolved in water
  • alkaline inorganic compounds such as sodium hydroxide and potassium hydroxide, as well as primary amine compounds, secondary amine compounds, and tertiary amine compounds.
  • alkaline organic compounds such as quaternary ammonium salt compounds.
  • alkaline organic compound tetramethylammonium hydroxide or an alkanolamine compound is preferred.
  • a method for removing the pattern is to immerse the substrate with the remaining resist pattern in a stirring stripping solution at a temperature of 30°C to 80°C (preferably 50°C to 80°C) for 1 minute to 30 minutes. can be mentioned. It is also preferable that the stripping liquid does not dissolve the conductive layer.
  • the pH of the stripping solution during the stripping treatment is preferably 11 or higher, more preferably 12 or higher, and even more preferably 13 or higher.
  • the upper limit is preferably 14 or less, more preferably 13.8 or less.
  • the pH can be measured using a known pH meter according to JIS Z8802-1984.
  • the pH measurement temperature is 25°C.
  • the temperature of the stripping solution during the stripping process is preferably higher than the temperature of the developer during the development process.
  • the value obtained by subtracting the temperature of the developer from the temperature of the stripping solution is preferably 10°C or higher, more preferably 20°C or higher. preferable.
  • the upper limit is preferably 100°C or less, more preferably 80°C or less.
  • the pH of the stripping solution used in the stripping process is higher than the pH of the developer used in the development process.
  • the value obtained by subtracting the pH of the developer from the pH of the stripping solution is preferably 1 or more, more preferably 1.5 or more.
  • the upper limit is preferably 5 or less, more preferably 4 or less.
  • a rinsing process After removing the pattern with a remover, it is also preferable to perform a rinsing process to remove the remover remaining on the substrate. Water or the like can be used for rinsing. After stripping and/or rinsing the pattern using a stripping liquid, a drying process may be performed to remove excess liquid from the substrate.
  • the bonding step, the peeling step, the exposure step, and the step of etching the substrate in a region where a pattern is not arranged are provided.
  • etching step a step of peeling off the pattern
  • the pattern formed from the photosensitive layer is used as an etching resist to perform etching on the substrate.
  • etching treatment method known methods can be applied, such as the method described in paragraphs 0209 to 0210 of JP2017-120435A, and the method described in paragraphs 0048 to 0054 of JP2010-152155A.
  • Examples include a wet etching method using immersion in an etching solution, and a dry etching method such as plasma etching.
  • an acidic or alkaline etching solution may be appropriately selected depending on the object to be etched.
  • the acidic etching solution examples include an aqueous solution of an acidic component alone selected from hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrofluoric acid, oxalic acid, and phosphoric acid, and an aqueous solution of an acidic component selected from hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrofluoric acid, oxalic acid, and phosphoric acid; Mention may be made of mixed aqueous solutions with salts selected from potassium permanganate.
  • the acidic component may be a combination of multiple acidic components.
  • alkaline etching solution examples include an aqueous solution of an alkaline component alone selected from sodium hydroxide, potassium hydroxide, ammonia, organic amines, and salts of organic amines (such as tetramethylammonium hydroxide), and alkaline components and salts. (for example, potassium permanganate).
  • the alkaline component may be a combination of a plurality of alkaline components.
  • a rinsing process to remove the etching solution remaining on the substrate before proceeding to the next step.
  • Water or the like can be used for rinsing.
  • a drying process may be performed to remove excess liquid from the substrate.
  • the pattern peeling process in the second aspect can be performed in the same manner as the pattern peeling process in the first aspect.
  • the method for manufacturing circuit wiring according to the present disclosure may include any steps (other steps) other than the steps described above. Examples include, but are not limited to, the following steps.
  • examples of the exposure step, development step, and other steps applicable to the method for manufacturing circuit wiring include the steps described in paragraphs 0035 to 0051 of JP-A No. 2006-23696.
  • the method for manufacturing circuit wiring may include the step of performing a process of reducing the visible light reflectance of part or all of the conductive layer included in the substrate.
  • An example of the treatment for reducing visible light reflectance is oxidation treatment.
  • the visible light reflectance of the conductive layer can be reduced by oxidizing the copper to form copper oxide and blackening the conductive layer.
  • the method for manufacturing the circuit wiring includes the steps of forming an insulating film on the surface of the circuit wiring and forming a new conductive layer on the surface of the insulating film. Through the above steps, it is possible to form a second electrode pattern that is insulated from the first electrode pattern.
  • the step of forming the insulating film is not particularly limited, and includes known methods for forming a permanent film.
  • an insulating film having a desired pattern may be formed by photolithography using a photosensitive material having insulating properties.
  • the step of forming a new conductive layer on the insulating film is not particularly limited, and for example, a new conductive layer with a desired pattern may be formed by photolithography using a conductive photosensitive material.
  • circuit wiring it is also preferable to use a substrate having a plurality of conductive layers on both surfaces of the base material, and to form circuits on the conductive layers formed on both surfaces of the base material sequentially or simultaneously.
  • a substrate having a plurality of conductive layers on both surfaces of the base material it is possible to form circuit wiring for a touch panel in which the first conductive pattern is formed on one surface of the base material and the second conductive pattern is formed on the other surface.
  • circuit wiring for a touch panel having such a configuration from both sides of the base material by roll-to-roll.
  • the circuit wiring manufactured by the circuit wiring manufacturing method can be applied to various devices.
  • Examples of the device including circuit wiring manufactured by the above manufacturing method include an input device, preferably a touch panel, and more preferably a capacitive touch panel.
  • the input device can be applied to display devices such as organic EL display devices and liquid crystal display devices.
  • the transfer film of the present disclosure can be used for manufacturing printed wiring boards.
  • the method for manufacturing a printed wiring board includes the step of subjecting the substrate having the resist pattern to at least one selected from the group consisting of etching treatment and plating treatment.
  • the etching treatment or plating treatment of the substrate can be performed on the surface of the substrate by a known method using a developed resist pattern as a mask.
  • a residual film removal process may be performed using resin etching using a chemical solution containing potassium permanganate or the like, resin ashing using plasma, or the like.
  • Examples of the etching solution used in the etching process include a cupric chloride solution, a ferric chloride solution, and an alkaline etching solution.
  • Examples of plating include copper plating, solder plating, nickel plating, and gold plating.
  • the resist pattern After performing the etching treatment or the plating treatment, the resist pattern can be peeled off using an aqueous solution that is more strongly alkaline than the alkaline aqueous solution used for development, for example.
  • a strong alkaline aqueous solution for example, a 1% to 10% by mass aqueous sodium hydroxide solution and a 1% to 10% by mass potassium hydroxide aqueous solution are used.
  • examples of the peeling method include a dipping method and a spray method.
  • the printed wiring board on which the resist pattern is formed may be a multilayer printed wiring board, and may have small-diameter through holes.
  • This removal method includes, for example, a method in which the resist pattern is peeled off and then lightly etched; plating is followed by solder plating, and then the resist pattern is peeled off to mask the wiring part with solder, and then the wiring part is masked with solder.
  • One example is a method of processing using an etching solution that can etch only the portions of the conductor layer that are not etched.
  • ⁇ BPE-500 Product name "NK Ester BPE-500", ethoxylated bisphenol A dimethacrylate, average repeating number of ethylene oxide chains 10, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • ⁇ BPE-100 Product name "NK Ester BPE-100” ”, Ethoxylated bisphenol A dimethacrylate, average repeating number of ethylene oxide chains 2.6, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • M-270 Product name “Aronix M-270”, polypropylene glycol diacrylate, manufactured by Toagosei Co., Ltd. , the above BPE-500 and BPE-100 correspond to polymerizable compound B1.
  • ⁇ anti-rust ⁇ ⁇ CBT-1 Product name “CBT-1”, carboxybenzotriazole, manufactured by Johoku Kagaku Kogyo Co., Ltd.
  • thermoplastic resin layer ⁇ Preparation of composition for forming thermoplastic resin layer>
  • the components used to prepare the composition for forming a thermoplastic resin layer are as follows.
  • ⁇ Thermoplastic resin ⁇ - Alkali-soluble resin B1: benzyl methacrylate (BzMA)/methacrylic acid (MAA)/acrylic acid (AA) 78/14.5/7.5 (mass ratio), Mw: 12,500, acid value: 187 mgKOH/ g, glass transition temperature: 75°C, solid content: 30% by mass
  • ⁇ anti-rust ⁇ ⁇ CBT-1 Product name “CBT-1”, carboxybenzotriazole, manufactured by Johoku Kagaku Kogyo Co., Ltd.
  • B/A means the ratio of the total mass of polymerizable compound B1 to the total mass of polymer A.
  • Temporary supports 1 to 6 which are biaxially stretched PET films shown in Table 2, were prepared.
  • the thickness, thermal deformation rate, haze, surface energy, surface roughness Rmax, the total number of particles with a diameter of 5 ⁇ m or more and aggregates with a diameter of 5 ⁇ m or more, and the total area ratio of the optically abnormal region were measured.
  • the measurement method is as follows.
  • thermo deformation rate On the main surface of the temporary support, a direction parallel to one of the two opposing sides was defined as the A direction, and a direction perpendicular to the A direction was defined as the B direction.
  • a test piece cut out to have a length of 30 mm in the A direction and 4 mm in the B direction, and a test piece cut out to have a length of 30 mm in the B direction and 4 mm in the A direction were prepared. The following measurements were performed using two test pieces.
  • a thermal expansion coefficient measuring device product name "TMA450EM", manufactured by TA Instruments
  • Measurement mode Tensile mode Grip distance: 16mm
  • Set load Changed from 0.05N to 0.48N at 6.00N/min. Each test piece was heated from 25°C to 100°C at a heating rate of 20°C/min, and the elongation rate of each test piece was measured five times, and the average value was calculated. Of the two test pieces, the one with the larger average elongation rate was adopted as the thermal deformation rate.
  • the temporary support was peeled off from the transfer film. Obtain the surface profile of the surface of the temporary support on the transfer layer side. Microscope Application of MetroPro ver. 8.3.2 was used as the measurement/analysis software. Next, a Surface Map screen was displayed using the measurement/analysis software, and histogram data was obtained on the Surface Map screen. The surface roughness Rmax was obtained from the obtained histogram data.
  • Total number of particles with a diameter of 5 ⁇ m or more and aggregates with a diameter of 5 ⁇ m or more Observe the temporary support with a polarizing microscope (product name: "BX60” with "U-POT” filter and "U-AN360” filter inserted to make a simple polarizing microscope, 10x objective lens, manufactured by Olympus), The portion where the polarization disturbance occurred was identified as a foreign object (particle or aggregate). The identified foreign matter was observed with an epi-illumination laser microscope (product name: "Confocal Laser Microscope VL2000D", manufactured by Lasertec), and the total area ratio of the optically abnormal region, which will be described later, was measured.
  • the diameter of foreign particles was measured using an optical microscope (product name "BX60", objective lens 100 times, manufactured by Olympus Corporation), and the number of foreign particles with a diameter of 5 ⁇ m or more included in an observation area of 1 mm 2 was counted.
  • a polarizing filter (OLS4000-QWP) was inserted above the objective lens of an epi-reflection laser microscope (OLS-4100 manufactured by Olympus).
  • OLS-4100 epi-reflection laser microscope
  • the temporary support cut into 30 mm x 30 mm was horizontally suctioned and fixed on the stage of a laser microscope using a porous suction plate (65F-HG manufactured by Universal Giken) and a vacuum pump.
  • the suction-fixed temporary support was observed at a laser beam intensity of 60 (laser wavelength: 405 nm) with a 50-fold objective lens.
  • a region of 2 ⁇ m in the center of the temporary support in the thickness direction was set as the measurement region, and measurements were performed at 200 measurement points in the measurement region of 259 ⁇ m ⁇ 260 ⁇ m.
  • the light amount difference between the pixel with the maximum light amount and the pixel with the minimum light amount in the measured image is divided into 4096 gradations (the value of the maximum light amount is 4095 and the value of the minimum light amount is 0).
  • a histogram horizontal axis: gradation of light amount (minimum value 0, maximum value 4095), vertical axis: number of pixels) was created, which is a graph of the light amount distribution of pixels in the image.
  • the measured image is binarized using the gradation that is 400 gradations plus 400 gradations from the larger of the two base values of the created histogram as the threshold, and the areas of pixels with a larger amount of light than the threshold are summed. , the total area was taken as the total area of the optically abnormal region. The ratio of the total area of the optically abnormal region to the measured area was calculated.
  • Example 1 The composition for forming an intermediate layer was applied onto the temporary support 1 using a slit-shaped nozzle so that the thickness after drying would be the thickness of the intermediate layer shown in Table 1.
  • the coating film of the composition for forming an intermediate layer was dried at 90° C. for 120 seconds to form an intermediate layer.
  • a photosensitive composition was applied onto the intermediate layer using a slit-shaped nozzle so that the thickness after drying would be the thickness of the photosensitive layer shown in Table 1.
  • the coating film of the photosensitive composition was dried at 80° C. for 120 seconds to form a photosensitive layer. That is, an intermediate layer and a photosensitive layer were formed as a transfer layer 1 on a temporary support 1. Thereby, a transfer film having the temporary support 1, the intermediate layer, and the photosensitive layer in this order was obtained.
  • the surface free energy of the transfer layer 1 on the side facing the temporary support 1 was 60.1 mJ/m 2 .
  • the content of water in the transfer layer 1 was 0.1% by mass based on the total amount of the transfer layer 1.
  • the content of iron atoms in the transfer layer 1 was 0.01 ppm based on the total amount of the transfer layer 1.
  • the content of water in the photosensitive layer was 0.1% by mass based on the total amount of the photosensitive layer.
  • the content of iron atoms in the photosensitive layer was 0.01 ppm based on the total amount of the photosensitive layer.
  • Example 2 to Example 5 Comparative Example 1
  • a transfer film was obtained in the same manner as in Example 1, except that Temporary Support 1 was changed to Temporary Supports 2 to 6.
  • the surface free energy of the transfer layer 1 on the side facing each of the temporary supports 2 to 6 was 60.1 mJ/m 2 .
  • Example 6 The composition for forming an intermediate layer was applied onto the temporary support 2 using a slit-shaped nozzle so that the thickness after drying would be the thickness of the intermediate layer shown in Table 1.
  • the coating film of the composition for forming an intermediate layer was dried at 90° C. for 120 seconds to form an intermediate layer.
  • a composition for a thermoplastic resin layer was applied onto the intermediate layer using a slit-shaped nozzle so that the thickness after drying would be the thickness of the thermoplastic resin layer shown in Table 1.
  • the coating film of the composition for a thermoplastic resin layer was dried at 100° C. for 120 seconds to form a thermoplastic resin layer.
  • a photosensitive composition was applied onto the thermoplastic resin layer using a slit-shaped nozzle so that the thickness after drying would be the thickness of the photosensitive layer shown in Table 1.
  • the coating film of the photosensitive composition was dried at 80° C. for 120 seconds to form a photosensitive layer. That is, a thermoplastic resin layer, an intermediate layer, and a photosensitive layer were formed as a transfer layer 2 on a temporary support 2. Thereby, a transfer film having the temporary support 2, the thermoplastic resin layer, the intermediate layer, and the photosensitive layer in this order was obtained.
  • the surface free energy of the transfer layer 2 on the side facing the temporary support 2 was 60.1 mJ/m 2 .
  • the content of water in the transfer layer 2 was 0.1% by mass based on the total amount of the transfer layer 2.
  • the content of iron atoms in the transfer layer 2 was 0.01 ppm based on the total amount of the transfer layer 2.
  • the content of water in the photosensitive layer was 0.1% by mass based on the total amount of the photosensitive layer.
  • the content of iron atoms in the photosensitive layer was 0.01 ppm based on the total amount of the photosensitive layer.
  • Example 7 to Example 15 A transfer film was obtained in the same manner as in Example 1, except that the transfer layer and temporary support were changed to those listed in Tables 2 and 3.
  • Example 7 the surface free energy of the transfer layer 1 on the side facing the temporary support 6 was 60.1 mJ/m 2 .
  • Example 8 and 12 the surface free energy of the transfer layer 3 on the side facing each temporary support was 60.1 mJ/m 2 .
  • Example 9 and 13 the surface free energy of the transfer layer 4 on the side facing each temporary support was 60.1 mJ/m 2 .
  • Example 10 and 14 the surface free energy of the transfer layer 5 on the side facing each temporary support was 60.1 mJ/m 2 .
  • Examples 11 and 15 the surface free energy of the transfer layer 6 on the side facing each temporary support was 60.1 mJ/m 2 .
  • the content of water in transfer layers 3 to 6 was 0.1% by mass based on the total amount of each of transfer layers 3 to 6.
  • the content of iron atoms in the transfer layers 3 to 6 was 0.01 ppm based on the total amount of each of the transfer layers 3 to 6.
  • the water content in the photosensitive layers of transfer layers 3 to 6 was 0.1% by mass based on the total amount of the photosensitive layers.
  • the content of iron atoms in the photosensitive layers of transfer layers 3 to 6 was 0.01 ppm based on the total amount of the photosensitive layers.
  • the peeled laminate was placed with the surface from which the temporary support was peeled as the top surface, and the amount of deformation of the substrate was measured. The distance in the vertical direction between the center of the board and the end of the board was defined as the amount of deformation of the board.
  • the evaluation criteria are as follows. A: The amount of deformation is 1 cm or less. B: The amount of deformation is more than 1 cm and less than 3 cm. C: The amount of deformation is more than 3 cm and less than 5 cm. D: The amount of deformation is more than 5 cm.
  • ⁇ Reticulation> Similar to the evaluation of substrate deformability, a laminate was obtained in which the temporary support, transfer layer (intermediate layer/photosensitive layer), substrate, transfer layer (photosensitive layer/intermediate layer), and temporary support were laminated in this order. Ta. In the obtained laminate, one temporary support was peeled off under an environment of a temperature of 23 degrees Celsius and a humidity of 50%. The surface of the transfer layer after peeling was visually observed to determine whether reticulation (wrinkles) had occurred. The evaluation criteria are as follows. A: Reticulation has not occurred. B: Reticulation is occurring.
  • the photomask used for exposure had a line-and-space pattern in which the width ratio (duty ratio) of the transmitting area and the light-blocking area was 1:1, and the line width (and space width) was 15 ⁇ m. .
  • shower development was performed for 30 seconds using a 1.0% by mass aqueous sodium carbonate solution at a liquid temperature of 25° C. (development step). After the development process, the formed pattern was observed with an optical microscope to check for defects in the pattern (for example, disconnections, omissions, defects, etc.).
  • the evaluation criteria are as follows. A: There is no pattern defect. B: There is a pattern defect.
  • Examples 1 to 15 include a temporary support and a transfer layer disposed on the temporary support, and the temporary support has a thermal deformation rate of 1. It was found that since it was 0% or less, deformation of the substrate used in the transfer process was suppressed. On the other hand, in Comparative Example 1, the thermal deformation rate of the temporary support was more than 1.0%, indicating that the substrate was deformed.
  • Example 2 since the surface roughness Rmax of the surface of the temporary support on the transfer layer side was 0.5 ⁇ m or less, it was found that the patterning property was excellent compared to Example 3.
  • Example 101 Production of flexible printed wiring board> A copper layer with a thickness of 300 nm was provided on both sides of a polyimide base material (Kapton 100H, manufactured by Toray Industries, Inc.) with a thickness of 25 ⁇ m by a vapor deposition method to prepare a polyimide base material with a copper layer.
  • a polyimide base material Kerpton 100H, manufactured by Toray Industries, Inc.
  • Example 1 The transfer film of Example 1 was laminated on the above-mentioned copper layer-coated polyimide base material under the laminating conditions of a roll temperature of 100°C, a linear pressure of 1.0 MPa, and a linear speed of 1.0 m/min, so that the copper layer and the photosensitive layer were in contact with each other. Both sides were laminated to produce a laminate for evaluation. Next, the temporary supports on both sides were peeled off at an angle of 180°. Next, using a photomask having a pattern with a predetermined line width ( ⁇ m)/space width ( ⁇ m), the intermediate layer was brought into contact with the mask to simultaneously expose both sides.
  • ⁇ m line width
  • ⁇ m space width
  • a high-pressure mercury lamp with i-line (365 nm) as the main exposure wavelength was used.
  • the exposure amount was arbitrarily set so that the top shape of each pattern coincided with the mask opening.
  • shower development was performed on both sides with a 1% by mass aqueous sodium carbonate solution at a liquid temperature of 30° C., followed by washing with water to obtain a laminate in which a predetermined pattern was formed on the copper layers on both sides.
  • the above laminate was subjected to acid degreasing, water washing, and sulfuric acid dipping in this order, and copper plating was performed using a copper sulfate plating solution at 1 A/dm 2 until the plating thickness reached 15 ⁇ m.
  • the resist was removed using a 3.0 mass% sodium hydroxide aqueous solution at 50°C, and the seed layer was removed using an etching solution (containing 0.1 mass% sulfuric acid and 0.1 mass% hydrogen peroxide). It was removed with an aqueous solution (28° C.) and washed with water to produce a flexible printed wiring board. It was confirmed that the manufactured flexible printed wiring board operated normally.
  • ⁇ Exposure method 2> The transfer film of Example 1 was laminated on both sides of a polyimide substrate with a copper layer so that the copper layer and the photosensitive layer were in contact with each other under the laminating conditions of a roll temperature of 100°C, a linear pressure of 1.0 MPa, and a linear speed of 1.0 m/min. A laminate for evaluation was produced. Next, one side of the temporary support was peeled off at an angle of 180°, and the peeled side was exposed to light. Exposure was carried out using a projection exposure machine equipped with a high-pressure mercury lamp, and reduced projection exposure was performed using an i-line (365 nm) through a mask.
  • a mask having a pattern with a predetermined line width ( ⁇ m)/space width ( ⁇ m) was used. Further, the exposure amount was arbitrarily set so that the top shape of each pattern coincided with the mask opening.
  • the temporary support of the transfer film on the side opposite to the exposed side was peeled off at an angle of 180°, and the peeled side was exposed under the same conditions as the first exposed side.
  • shower development was performed on both sides with a 1% by mass aqueous sodium carbonate solution at a liquid temperature of 30° C., followed by washing with water to obtain a laminate in which a predetermined pattern was formed on the copper layers on both sides.
  • the above laminate was subjected to acid degreasing, water washing, and sulfuric acid dipping in this order, and copper plating was performed using a copper sulfate plating solution at 1 A/dm 2 until the plating thickness reached 15 ⁇ m.
  • the resist was removed using a 3.0 mass% sodium hydroxide aqueous solution at 50°C, and the seed layer was removed using an etching solution (containing 0.1 mass% sulfuric acid and 0.1 mass% hydrogen peroxide). It was removed with an aqueous solution (28° C.) and washed with water to produce a flexible printed wiring board. It was confirmed that the manufactured flexible printed wiring board operated normally.
  • Example 102 to 115 Flexible printed wiring boards were produced in the same manner as in Example 101, except that the transfer films of Examples 2 to 15 were used. It was confirmed that the flexible printed wiring boards manufactured by either exposure method 1 or exposure method 2 operated normally.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a transfer film including a temporary support and a transfer layer disposed on the temporary support, the temporary support having a thermal deformation rate of 1.0% or less; and a use for said transfer film.

Description

転写フィルム、パターンの形成方法、及び回路配線の製造方法Transfer film, pattern forming method, and circuit wiring manufacturing method
 本開示は、転写フィルム、パターンの形成方法、及び回路配線の製造方法に関する。 The present disclosure relates to a transfer film, a pattern forming method, and a circuit wiring manufacturing method.
 所定のパターンを得るための工程数が少ないことから、転写フィルムを用いて任意の基板上に転写層を配置して、転写層に対してマスクを介して露光した後に現像する方法が広く使用されている。 Since the number of steps required to obtain a predetermined pattern is small, a widely used method is to place a transfer layer on an arbitrary substrate using a transfer film, expose the transfer layer to light through a mask, and then develop it. ing.
 例えば、国際公開第2017/007001号には、支持フィルムと、中間層と、感光層とをこの順で備える感光性エレメントであって、支持フィルムの厚みが20μm以上であり、支持フィルムに含まれる直径5μm以上の粒子の数が30個/mm以下である、感光性エレメントが開示されている。 For example, International Publication No. 2017/007001 discloses a photosensitive element comprising a support film, an intermediate layer, and a photosensitive layer in this order, wherein the support film has a thickness of 20 μm or more, and the support film contains A photosensitive element is disclosed in which the number of particles with a diameter of 5 μm or more is 30 particles/mm 2 or less.
 従来の転写フィルムでは、転写フィルムと基板とを貼り合わせた後に、仮支持体を剥離すると、基板に変形が生じることが分かった。そこで、基板の変形を抑制することが求められている。 It has been found that with conventional transfer films, when the temporary support is peeled off after the transfer film and the substrate are bonded together, the substrate is deformed. Therefore, it is required to suppress deformation of the substrate.
 本発明の一実施形態によれば、転写工程に用いられる基板の変形を抑制することが可能な転写フィルムが提供される。
 また、本発明の他の実施形態によれば、上記転写フィルムを用いたパターンの形成方法、及び、回路基板の製造方法が提供される。
According to one embodiment of the present invention, a transfer film capable of suppressing deformation of a substrate used in a transfer process is provided.
Further, according to other embodiments of the present invention, a method for forming a pattern using the above transfer film and a method for manufacturing a circuit board are provided.
 本開示は、以下の態様を含む。
<1>仮支持体と、仮支持体上に配置される転写層と、を含み、仮支持体は、熱変形率が1.0%以下である、転写フィルム。
<2>転写層は、仮支持体と対向する側の表面自由エネルギーが68.0mJ/m以下である、<1>に記載の転写フィルム。
<3>転写層は仮支持体の表面に接しており、仮支持体の転写層側表面の表面粗さRmaxが0.5μm以下である、<1>又は<2>に記載の転写フィルム。
<4>転写層は、感光性層を含む、<1>~<3>のいずれか1つに記載の転写フィルム。
<5>転写層は、仮支持体と感光性層との間に、中間層を含む、<4>に記載の転写フィルム。
<6>転写層は、仮支持体と中間層との間に、熱可塑性樹脂層を含む、<5>に記載の転写フィルム。
<7>仮支持体は、ヘイズが2.0%より大きい、<1>~<6>のいずれか1つに記載の転写フィルム。
<8>仮支持体に含まれる、直径5μm以上の粒子及び直径5μm以上の凝集物の総数が、30個/mmより多い、<1>~<7>のいずれか1つに記載の転写フィルム。
<9>仮支持体は、落射型レーザー顕微鏡で13.5mmの面積にて観測した際の光学異常領域の合計面積比率が300ppmより大きい領域を含む、<1>~<8>のいずれか1つに記載の転写フィルム。
<10>仮支持体は、厚みが25μm以上である、<1>~<9>のいずれか1つに記載の転写フィルム。
<11>感光性層は、酸価が80mgKOH/g~250mgKOH/gであるアルカリ可溶性樹脂を含む、<4>~<6>のいずれか1つに記載の転写フィルム。
<12>感光性層は、架橋性基を有するアルカリ可溶性樹脂を含む、<4>~<6>のいずれか1つに記載の転写フィルム。
<13>
 感光性層は、スチレン由来の構成単位及びスチレン誘導体由来の構成単位の合計含有量に対する(メタ)アクリル酸エステル由来の構成単位の含有量の質量比率が0.3~2.5であるアルカリ可溶性樹脂を含む、<4>~<6>のいずれか1つに記載の転写フィルム。
<14>転写層は、水の含有量が、転写層の全量に対して0.1質量%以上である、<1>~<13>のいずれか1つに記載の転写フィルム。
<15>感光性層は、水の含有量が、感光性層の全量に対して0.1質量%以上である、<4>~<6>のいずれか1つに記載の転写フィルム。
<16>転写層は、鉄原子の含有量が、転写層の全量に対して質量基準で0.01ppm~10.0ppmである、<1>~<14>のいずれか1つに記載の転写フィルム。
<17>感光性層は、鉄原子の含有量が、感光性層の全量に対して質量基準で0.01ppm~10.0ppmである、<4>~<6>のいずれか1つに記載の転写フィルム。
<18>仮支持体と、仮支持体上に配置された転写層と、を含む転写フィルムを準備する工程と、転写フィルムと基板とを、転写フィルムにおける仮支持体の表面とは反対側の表面が基板と接するように貼り合わせる工程と、仮支持体を剥離して、積層体を得る工程と、積層体に対して、パターン状に露光する工程と、露光後の積層体を現像してパターンを形成する工程と、を含み、仮支持体は、熱変形率が1.0%以下である、パターンの形成方法。
<19>
 仮支持体と、仮支持体上に配置された転写層と、を含む転写フィルムを準備する工程と、転写フィルムと基板とを、転写フィルムにおける仮支持体の表面とは反対側の表面が基板と接するように貼り合わせる工程と、仮支持体を剥離して、積層体を得る工程と、積層体に対して、パターン状に露光する工程と、露光後の積層体を現像してパターンを形成する工程と、基板の、パターンが配置されていない領域にめっき処理する工程と、パターンを剥離する工程と、を含み、仮支持体は、熱変形率が1.0%以下である、回路配線の製造方法。
The present disclosure includes the following aspects.
<1> A transfer film comprising a temporary support and a transfer layer disposed on the temporary support, wherein the temporary support has a thermal deformation rate of 1.0% or less.
<2> The transfer film according to <1>, wherein the transfer layer has a surface free energy of 68.0 mJ/m 2 or less on the side facing the temporary support.
<3> The transfer film according to <1> or <2>, wherein the transfer layer is in contact with the surface of the temporary support, and the surface roughness Rmax of the surface of the temporary support on the transfer layer side is 0.5 μm or less.
<4> The transfer film according to any one of <1> to <3>, wherein the transfer layer includes a photosensitive layer.
<5> The transfer film according to <4>, wherein the transfer layer includes an intermediate layer between the temporary support and the photosensitive layer.
<6> The transfer film according to <5>, wherein the transfer layer includes a thermoplastic resin layer between the temporary support and the intermediate layer.
<7> The transfer film according to any one of <1> to <6>, wherein the temporary support has a haze of greater than 2.0%.
<8> The transfer according to any one of <1> to <7>, wherein the total number of particles with a diameter of 5 μm or more and aggregates with a diameter of 5 μm or more contained in the temporary support is more than 30 pieces/mm 2 film.
<9> The temporary support is any one of <1> to <8>, including a region in which the total area ratio of optically abnormal regions is larger than 300 ppm when observed with an epi-reflection laser microscope in an area of 13.5 mm 2 1. The transfer film according to item 1.
<10> The transfer film according to any one of <1> to <9>, wherein the temporary support has a thickness of 25 μm or more.
<11> The transfer film according to any one of <4> to <6>, wherein the photosensitive layer contains an alkali-soluble resin having an acid value of 80 mgKOH/g to 250 mgKOH/g.
<12> The transfer film according to any one of <4> to <6>, wherein the photosensitive layer contains an alkali-soluble resin having a crosslinkable group.
<13>
The photosensitive layer is an alkali-soluble layer in which the mass ratio of the content of (meth)acrylic acid ester-derived structural units to the total content of styrene-derived structural units and styrene derivative-derived structural units is 0.3 to 2.5. The transfer film according to any one of <4> to <6>, containing a resin.
<14> The transfer film according to any one of <1> to <13>, wherein the transfer layer has a water content of 0.1% by mass or more based on the total amount of the transfer layer.
<15> The transfer film according to any one of <4> to <6>, wherein the photosensitive layer has a water content of 0.1% by mass or more based on the total amount of the photosensitive layer.
<16> The transfer layer according to any one of <1> to <14>, wherein the content of iron atoms is 0.01 ppm to 10.0 ppm on a mass basis with respect to the total amount of the transfer layer. film.
<17> The photosensitive layer has an iron atom content of 0.01 ppm to 10.0 ppm on a mass basis based on the total amount of the photosensitive layer, described in any one of <4> to <6>. transfer film.
<18> A step of preparing a transfer film including a temporary support and a transfer layer disposed on the temporary support, and placing the transfer film and the substrate on the opposite side of the transfer film from the surface of the temporary support. A step of bonding the substrate so that the surface is in contact with the substrate, a step of peeling off the temporary support to obtain a laminate, a step of exposing the laminate to light in a pattern, and a step of developing the laminate after exposure. forming a pattern, wherein the temporary support has a thermal deformation rate of 1.0% or less.
<19>
A step of preparing a transfer film including a temporary support and a transfer layer disposed on the temporary support; a step of attaching the laminate so that it is in contact with the laminate, a step of peeling off the temporary support to obtain a laminate, a step of exposing the laminate to light in a pattern, and a step of developing the laminate after exposure to form a pattern. A step of plating an area of the substrate where no pattern is placed, and a step of peeling off the pattern, and the temporary support is a circuit wiring having a thermal deformation rate of 1.0% or less. manufacturing method.
 本発明の一実施形態によれば、転写工程に用いられる基板の変形を抑制することが可能な転写フィルムが提供される。
 また、本発明の他の実施形態によれば、上記転写フィルムを用いたパターンの形成方法、及び、回路基板の製造方法が提供される。
According to one embodiment of the present invention, a transfer film capable of suppressing deformation of a substrate used in a transfer process is provided.
Further, according to other embodiments of the present invention, a method for forming a pattern using the above transfer film and a method for manufacturing a circuit board are provided.
図1は、本開示に係る転写フィルムの構成の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of the configuration of a transfer film according to the present disclosure.
 以下、本開示について詳細に説明する。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示において、段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
The present disclosure will be described in detail below.
In the present disclosure, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.
In the present disclosure, in numerical ranges described in stages, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described in stages. Moreover, in the numerical ranges described in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the value shown in the Examples.
 本開示において各成分は該当する物質を複数種含んでいてもよい。
 本開示において「層」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
In the present disclosure, each component may contain multiple types of corresponding substances.
In the present disclosure, the term "layer" includes, when observing a region where the layer or film exists, not only the case where the layer or film is formed in the entire region, but also the case where the layer or film is formed only in a part of the region. This also includes cases.
 本開示において、「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。 In the present disclosure, the term "step" is used not only to refer to an independent step, but also to include the term "step" even if it cannot be clearly distinguished from other steps, as long as the intended purpose of the step is achieved.
 本開示において、「透明」とは、波長400nm~700nmの可視光の平均透過率が、80%以上であることを意味し、90%以上であることが好ましい。
 本開示において、透過率は、分光光度計を用いて測定される値であり、例えば、日立製作所(株)製の分光光度計U-3310を用いて測定できる。
In the present disclosure, "transparent" means that the average transmittance of visible light with a wavelength of 400 nm to 700 nm is 80% or more, preferably 90% or more.
In the present disclosure, transmittance is a value measured using a spectrophotometer, and can be measured using, for example, a spectrophotometer U-3310 manufactured by Hitachi, Ltd.
 本開示において、特段の断りのない限り、重量平均分子量(Mw)及び数平均分子量(Mn)は、カラムとして、TSKgel GMHxL、TSKgel G4000HxL、若しくは、TSKgel G2000HxL(いずれも東ソー(株)製の商品名)、溶離液としてTHF(テトラヒドロフラン)、検出器として示差屈折計、及び、標準物質としてポリスチレンを使用し、ゲルパーミエーションクロマトグラフィ(GPC)分析装置により測定した標準物質のポリスチレンを用いて換算した値である。 In the present disclosure, unless otherwise specified, weight average molecular weight (Mw) and number average molecular weight (Mn) refer to columns such as TSKgel GMHxL, TSKgel G4000HxL, or TSKgel G2000HxL (all brand names manufactured by Tosoh Corporation). ), using THF (tetrahydrofuran) as the eluent, a differential refractometer as the detector, and polystyrene as the standard material, and the value calculated using polystyrene as the standard material measured with a gel permeation chromatography (GPC) analyzer. be.
 本開示において、特段の断りがない限り、高分子の構成単位の比は質量比である。
 本開示において、特段の断りがない限り、分子量分布がある化合物の分子量は、重量平均分子量(Mw)である。
In the present disclosure, unless otherwise specified, ratios of constituent units of polymers are mass ratios.
In the present disclosure, unless otherwise specified, the molecular weight of a compound with a molecular weight distribution is the weight average molecular weight (Mw).
 本開示において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念である。「(メタ)アクリロイルオキシ基」は、アクリロイルオキシ基及びメタクリロイルオキシ基の両方を包含する概念である。「(メタ)アクリロイル基」は、アクリロイル基及びメタクリロイル基の両方を包含する概念である。 In the present disclosure, "(meth)acrylic" is a concept that includes both acrylic and methacrylic. "(Meth)acryloyloxy group" is a concept that includes both acryloyloxy group and methacryloyloxy group. "(Meth)acryloyl group" is a concept that includes both acryloyl group and methacryloyl group.
 なお、本開示において、「アルカリ可溶性」とは、22℃において炭酸ナトリウムの1質量%水溶液100gへの溶解度が0.1g以上であることを意味する。 In the present disclosure, "alkali-soluble" means that the solubility in 100 g of a 1% by mass aqueous solution of sodium carbonate at 22° C. is 0.1 g or more.
 本開示において「水溶性」とは、液温が22℃であるpH7.0の水100gへの溶解度が0.1g以上であることを意味する。したがって、例えば、水溶性樹脂とは、上述の溶解度条件を満たす樹脂を意図する。 In the present disclosure, "water-soluble" means that the solubility in 100 g of water with a pH of 7.0 and a liquid temperature of 22° C. is 0.1 g or more. Therefore, for example, water-soluble resin is intended to be a resin that satisfies the above-mentioned solubility conditions.
 本開示において、組成物の「固形分」とは、組成物を用いて形成される組成物層を形成する成分を意味し、組成物が溶剤(有機溶剤、水等)を含む場合、溶剤を除いた全ての成分を意味する。また、組成物層を形成する成分であれば、液体状の成分も固形分とみなす。 In the present disclosure, the "solid content" of the composition refers to the components forming the composition layer formed using the composition, and when the composition contains a solvent (organic solvent, water, etc.), the solvent is means all ingredients except. In addition, liquid components are also considered solid components as long as they form a composition layer.
 本開示において、「厚み」は、SEM(走査型電子顕微鏡:Scanning Electron Microscope)を使用した対象の断面観察により測定した任意の5点の平均値として算出する。 In the present disclosure, "thickness" is calculated as the average value of five arbitrary points measured by cross-sectional observation of a target using a SEM (Scanning Electron Microscope).
[転写フィルム]
 本開示に係る転写フィルムは、仮支持体と、仮支持体上に配置される転写層と、を含み、仮支持体は、熱変形率が1.0%以下である。
[Transfer film]
The transfer film according to the present disclosure includes a temporary support and a transfer layer disposed on the temporary support, and the temporary support has a thermal deformation rate of 1.0% or less.
 本発明者らは、転写工程で基板に貼り合わせる転写フィルム側の仮支持体の熱変形率が1.0%以下であることにより、転写工程における基板に生じる変形が抑制されることを見出した。 The present inventors have discovered that by setting the thermal deformation rate of the temporary support on the side of the transfer film to be bonded to the substrate in the transfer process to be 1.0% or less, deformation occurring in the substrate in the transfer process is suppressed. .
 従来、転写フィルムを基板に貼り付けた後、仮支持体を剥離すると、基板に変形が生じることが分かった。これは、転写フィルムが基板と比較して、熱によって膨張しやすく、転写フィルムが膨張された状態で基板と貼り付けられるためと考えられる。そして、仮支持体を剥離する際に転写層が収縮する。これにより、基板の変形が生じると考えられる。 Conventionally, it has been found that when a temporary support is peeled off after a transfer film is attached to a substrate, the substrate is deformed. This is thought to be because the transfer film is more easily expanded by heat than the substrate, and the transfer film is attached to the substrate in an expanded state. Then, when the temporary support is peeled off, the transfer layer contracts. This is considered to cause deformation of the substrate.
 これに対して、本開示の転写フィルムを用いた場合には、仮支持体の熱変形率が1.0%以下であるため、熱による転写フィルムの膨張及び収縮が起きにくく、転写フィルムに貼り合わせられる基板の変形が抑制される。 On the other hand, when the transfer film of the present disclosure is used, since the thermal deformation rate of the temporary support is 1.0% or less, expansion and contraction of the transfer film due to heat is unlikely to occur, and the transfer film is adhered to the transfer film. Deformation of the substrates to be matched is suppressed.
 以下、本開示に係る転写フィルムについて、詳細に説明する。 Hereinafter, the transfer film according to the present disclosure will be described in detail.
 本開示に係る転写フィルムは、仮支持体と、仮支持体上に配置される転写層と、を含む。 The transfer film according to the present disclosure includes a temporary support and a transfer layer disposed on the temporary support.
 転写フィルムは、仮支持体と転写層とが他の層を介さずに直接積層されていてもよいし、仮支持体と転写層とが他の層を介して積層されていてもよい。また、転写層の仮支持体に対向する面とは反対側の面に他の層が積層されていてもよい。 In the transfer film, the temporary support and the transfer layer may be directly laminated without any other layer, or the temporary support and the transfer layer may be laminated with another layer interposed therebetween. Further, another layer may be laminated on the surface of the transfer layer opposite to the surface facing the temporary support.
 仮支持体及び転写層以外の他の層としては、例えば、保護フィルムが挙げられる。 Examples of layers other than the temporary support and the transfer layer include a protective film.
 保護フィルムは、転写層の仮支持体に対向する面とは反対側の面上に配置されることが好ましい。 The protective film is preferably placed on the surface of the transfer layer opposite to the surface facing the temporary support.
 また、各層は、単層であってもよく、2層以上の複層であってもよい。 Furthermore, each layer may be a single layer or a multilayer of two or more layers.
 本開示に係る転写フィルムの態様の一例を以下に示すが、これに制限されない。
(1)「仮支持体/転写層(感光性層)/保護フィルム」
(2)「仮支持体/転写層(中間層/感光性層)/保護フィルム」
(3)「仮支持体/転写層(熱可塑性樹脂層/中間層/感光性層)/保護フィルム」
 なお、上記各構成において、感光性層は、ネガ型感光性層又はポジ型光性層のいずれでもよいが、ネガ型感光性層であることが好ましい。また、感光性層が着色樹脂層であることも好ましい。
An example of the embodiment of the transfer film according to the present disclosure is shown below, but is not limited thereto.
(1) “Temporary support/transfer layer (photosensitive layer)/protective film”
(2) “Temporary support/transfer layer (intermediate layer/photosensitive layer)/protective film”
(3) “Temporary support/transfer layer (thermoplastic resin layer/intermediate layer/photosensitive layer)/protective film”
In each of the above configurations, the photosensitive layer may be either a negative photosensitive layer or a positive photosensitive layer, but is preferably a negative photosensitive layer. Moreover, it is also preferable that the photosensitive layer is a colored resin layer.
 本開示に係る転写フィルムは、エッチングレジスト用の転写フィルムとして用いられることが好ましい。 The transfer film according to the present disclosure is preferably used as a transfer film for etching resist.
 転写フィルムにおいて、感光性層の仮支持体側とは反対側に他の層をさらに有する構成の場合、感光性層の仮支持体側とは反対側に配置される他の層の合計厚みは、感光性層の厚みに対して、0.1%~30%であることが好ましく、0.1%~20%であることがより好ましい。 In the case of a structure in which the transfer film further has another layer on the side opposite to the temporary support side of the photosensitive layer, the total thickness of the other layers arranged on the side opposite to the temporary support side of the photosensitive layer is the photosensitive layer. The amount is preferably 0.1% to 30%, more preferably 0.1% to 20%, based on the thickness of the sexual layer.
 後述する貼り合わせ工程時における気泡発生抑止の観点から、転写フィルムのうねりの最大幅は、300μm以下であることが好ましく、200μm以下であることがより好ましく、60μm以下であることがさらに好ましい。なお、転写フィルムのうねりの最大幅は、0μm以上であることが好ましく、0.1μm以上であることがより好ましく、1μm以上であることがさらに好ましい。 From the viewpoint of suppressing bubble generation during the bonding process described below, the maximum width of the waviness of the transfer film is preferably 300 μm or less, more preferably 200 μm or less, and even more preferably 60 μm or less. The maximum width of the waviness of the transfer film is preferably 0 μm or more, more preferably 0.1 μm or more, and even more preferably 1 μm or more.
 転写フィルムのうねりの最大幅は、以下の手順により測定される値である。
 まず、転写フィルムを縦20cm×横20cmのサイズとなるように主面に垂直な方向に裁断し、試験サンプルを作製する。なお、転写フィルムが保護フィルムを有する場合には、保護フィルムを剥離する。次いで、表面が平滑で、かつ、水平なステージ上に、上記試験サンプルを仮支持体の表面がステージに対向するように静置する。静置後、試験サンプルの中心10cm角の範囲について、試料サンプルの表面をレーザー顕微鏡(例えば、(株)キーエンス社製 VK-9700SP)で走査して3次元表面画像を取得し、得られた3次元表面画像で観察される最大凸高さから最低凹高さを引き算する。上記操作を10個の試験サンプルについて行い、その算術平均値を「転写フィルムのうねり最大幅」とする。
The maximum width of waviness of the transfer film is a value measured by the following procedure.
First, a test sample is prepared by cutting the transfer film in a direction perpendicular to the main surface to a size of 20 cm in length x 20 cm in width. In addition, when the transfer film has a protective film, the protective film is peeled off. Next, the test sample is placed on a stage with a smooth and horizontal surface so that the surface of the temporary support faces the stage. After standing, the surface of the test sample was scanned with a laser microscope (for example, VK-9700SP manufactured by Keyence Corporation) for a 10 cm square area at the center of the test sample to obtain a three-dimensional surface image. Subtract the minimum concavity height from the maximum convexity height observed in the dimensional surface image. The above operation is performed on 10 test samples, and the arithmetic mean value thereof is defined as the "maximum waviness of the transfer film".
 以下において、具体的な実施形態の一例を挙げて、本開示に係る転写フィルムについて説明する。 Hereinafter, a transfer film according to the present disclosure will be described by citing an example of a specific embodiment.
 図1に示す転写フィルム20は、仮支持体11と、熱可塑性樹脂層13、中間層15、及び、感光性層17を含む転写層12と、保護フィルム19とを、この順に有する。 The transfer film 20 shown in FIG. 1 includes a temporary support 11, a transfer layer 12 including a thermoplastic resin layer 13, an intermediate layer 15, and a photosensitive layer 17, and a protective film 19 in this order.
 なお、図1で示す転写フィルム20は、保護フィルム19を配置した形態であるが、保護フィルム19は、配置されなくてもよい。 Note that although the transfer film 20 shown in FIG. 1 has a protective film 19 disposed therein, the protective film 19 does not need to be disposed.
 また、図1で示す転写フィルム20は熱可塑性樹脂層13及び中間層15を配置した形態であるが、熱可塑性樹脂層13若しくは中間層15、又は、熱可塑性樹脂層13及び中間層15は、配置されていなくてもよい。 Further, the transfer film 20 shown in FIG. 1 has a form in which a thermoplastic resin layer 13 and an intermediate layer 15 are arranged, but the thermoplastic resin layer 13 or the intermediate layer 15, or the thermoplastic resin layer 13 and the intermediate layer 15, It does not have to be placed.
 以下において、本開示に係る転写フィルムを構成する各要素について説明する。 Each element constituting the transfer film according to the present disclosure will be described below.
〔仮支持体〕
 本開示に係る転写フィルムは、仮支持体を備える。
 仮支持体は、転写層を支持し、かつ、剥離可能な支持体である。
[Temporary support]
The transfer film according to the present disclosure includes a temporary support.
The temporary support is a support that supports the transfer layer and is removable.
 仮支持体は1層であってもよく2層以上が積層された積層体であってもよい。
 仮支持体としては、例えば、基材のみからなるもの;基材と、基材の一方の面に配置されている粒子含有層と、を備える積層体;及び、基材と、基材の両面に配置されている粒子含有層と、を備える積層体が挙げられる。
The temporary support may be a single layer or a laminate of two or more layers.
Examples of temporary supports include those consisting only of a base material; a laminate comprising a base material and a particle-containing layer disposed on one side of the base material; and a base material and both sides of the base material. A laminate including a particle-containing layer disposed in a particle-containing layer is mentioned.
 仮支持体を構成する基材としては、例えば、ガラス、樹脂フィルム及び紙が挙げられる。仮支持体を構成する基材は、強度、可撓性及び光透過性の観点から、樹脂フィルムであることが好ましい。 Examples of the base material constituting the temporary support include glass, resin film, and paper. The base material constituting the temporary support is preferably a resin film from the viewpoints of strength, flexibility, and light transmittance.
 樹脂フィルムとしては、ポリエチレンテレフタレート(PET:polyethylene terephthalate)フィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム及びポリカーボネートフィルムが挙げられる。中でも、樹脂フィルムは、PETフィルムであることが好ましく、2軸延伸PETフィルムであることがより好ましい。 Examples of the resin film include polyethylene terephthalate (PET) film, cellulose triacetate film, polystyrene film, and polycarbonate film. Among these, the resin film is preferably a PET film, more preferably a biaxially stretched PET film.
 基材の一方の面又は両面に粒子含有層が配置されている場合には、粒子含有層は1層であってもよく、2層以上であってもよい。 When a particle-containing layer is arranged on one or both surfaces of the base material, the number of particle-containing layers may be one layer, or two or more layers.
 粒子含有層は、例えば、基材上に、粒子含有層用組成物を塗布して乾燥させることにより形成される。また、粒子含有層は樹脂フィルムを製膜する際に共押し出し法により配置することもできる。粒子含有層用組成物は、バインダーポリマー及び粒子を含むことが好ましい。バインダーポリマーの種類は特に限定されず、例えば、目的に応じて適宜選択することができる。バインダーポリマーとしては、例えば、アクリル樹脂、ウレタン樹脂、オレフィン樹脂、スチレンブタジエン系樹脂、エステル樹脂、塩化ビニル樹脂、及び塩化ビニリデン樹脂が挙げられる。共押し出し法により粒子含有層を配置する場合には、バインダーポリマーとしてPETを用いることが好ましい。 The particle-containing layer is formed, for example, by applying a particle-containing layer composition onto a base material and drying it. Moreover, the particle-containing layer can also be arranged by a coextrusion method when forming a resin film. Preferably, the particle-containing layer composition includes a binder polymer and particles. The type of binder polymer is not particularly limited, and can be appropriately selected depending on the purpose, for example. Examples of the binder polymer include acrylic resin, urethane resin, olefin resin, styrene-butadiene resin, ester resin, vinyl chloride resin, and vinylidene chloride resin. When disposing the particle-containing layer by coextrusion, it is preferable to use PET as the binder polymer.
 粒子含有層は、バインダーポリマー及び粒子をそれぞれ1種単独で含有してもよいし、2種以上含有してもよい。 The particle-containing layer may contain one type of binder polymer and particles, or may contain two or more types of particles.
 粒子含有層に含まれる粒子は特に限定されず、目的に応じて適宜選択することができる。粒子含有層における粒子の含有量は、粒子含有層用組成物への粒子の添加量によって適宜調整可能である。本明細書では、粒子含有層に含まれる粒子を「添加粒子」という。 The particles contained in the particle-containing layer are not particularly limited and can be appropriately selected depending on the purpose. The content of particles in the particle-containing layer can be adjusted as appropriate by adjusting the amount of particles added to the composition for particle-containing layer. In this specification, the particles contained in the particle-containing layer are referred to as "additional particles."
 添加粒子は、仮支持体の製造工程中に予期せず混入した不純物、及び、仮支持体の製造工程中に形成される粒子とは区別されるものである。添加粒子は、200℃で溶融しない特性を有する粒子であることが好ましい。 Additive particles are to be distinguished from impurities unexpectedly mixed in during the manufacturing process of the temporary support and particles formed during the manufacturing process of the temporary support. The additive particles are preferably particles that do not melt at 200°C.
 仮支持体において、添加粒子であるか否かについては、例えば、以下の方法で判別することができる。添加粒子は、通常、形状及び分布に均一性があるため、光学顕微鏡で観察することにより判別することができる。 Whether or not the temporary support is an added particle can be determined, for example, by the following method. Since the additive particles usually have uniformity in shape and distribution, they can be identified by observing them with an optical microscope.
 添加粒子としては、例えば、無機粒子及び有機粒子が挙げられる。 Examples of the additive particles include inorganic particles and organic particles.
 無機粒子としては、例えば、酸化ケイ素(シリカ)、酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)、酸化マグネシウム(マグネシア)、酸化アルミニウム(アルミナ)等の無機酸化物の粒子が挙げられる。 Examples of the inorganic particles include particles of inorganic oxides such as silicon oxide (silica), titanium oxide (titania), zirconium oxide (zirconia), magnesium oxide (magnesia), and aluminum oxide (alumina).
 有機粒子としては、例えば、アクリル樹脂、ポリエステル、ポリウレタン、ポリカーボネート、ポリオレフィン、ポリスチレン等のポリマーの粒子が挙げられる。 Examples of organic particles include particles of polymers such as acrylic resin, polyester, polyurethane, polycarbonate, polyolefin, and polystyrene.
 仮支持体が粒子含有層を有する場合には、粒子含有層に含まれる添加粒子は、無機酸化物の粒子であることが好ましい。 When the temporary support has a particle-containing layer, the additive particles contained in the particle-containing layer are preferably particles of an inorganic oxide.
 添加粒子の平均粒径は特に限定されないが、例えば、0.1μm~10μmである。平均粒径は、ウルトラミクロトームで100nmの厚さの切片を切り出し、TEM(透過型電子顕微鏡)を用いて測定される。 The average particle diameter of the additive particles is not particularly limited, but is, for example, 0.1 μm to 10 μm. The average particle size is measured by cutting a section with a thickness of 100 nm using an ultramicrotome and using a TEM (transmission electron microscope).
 本開示に係る転写フィルムでは、仮支持体の熱変形率が1.0%以下であり、0.5%以下であることが好ましい。熱変形率の下限値は特に限定されず、0%であることが好ましい。仮支持体の熱変形率が1.0%以下であることにより、転写フィルムと貼り合わせられる基板の変形が抑制される。 In the transfer film according to the present disclosure, the thermal deformation rate of the temporary support is 1.0% or less, preferably 0.5% or less. The lower limit of the thermal deformation rate is not particularly limited, and is preferably 0%. When the thermal deformation rate of the temporary support is 1.0% or less, deformation of the substrate to be bonded to the transfer film is suppressed.
 本開示において、熱変形率は、以下の方法で測定される。 In the present disclosure, the thermal deformation rate is measured by the following method.
 仮支持体の主面において、対向する2組の辺のうち1組の辺と平行な方向をA方向、A方向と垂直な方向をB方向とする。
 A方向の長さ30mm、B方向の長さ4mmに切り出した試験片と、B方向の長さ30mm、A方向の長さ4mmに切り出した試験片と、を準備する。
 2つの試験片を用いて、以下の測定を行う。
 測定装置として、熱膨張率測定装置(製品名「TMA450EM」、TAインスツルメント社製)を用いる。
 測定条件は以下のとおりである。
 測定モード:引張モード
 つかみ間距離:16mm
 設定荷重:0.05Nから0.48Nまで6.00N/分で変化させる。
 25℃から100℃まで、昇温速度20℃/分で各試験片を加熱し、各試験片の伸び率を5回ずつ測定し、平均値を算出する。
 2つの試験片のうち、伸び率の平均値の大きい方を、熱変形率として採用する。
On the main surface of the temporary support, a direction parallel to one of the two opposing sides is defined as the A direction, and a direction perpendicular to the A direction is defined as the B direction.
A test piece cut out to have a length of 30 mm in the A direction and 4 mm in the B direction, and a test piece cut out to have a length of 30 mm in the B direction and 4 mm in the A direction are prepared.
The following measurements are performed using two test pieces.
As a measuring device, a thermal expansion coefficient measuring device (product name "TMA450EM", manufactured by TA Instruments) is used.
The measurement conditions are as follows.
Measurement mode: Tensile mode Grip distance: 16mm
Set load: Change from 0.05N to 0.48N at 6.00N/min.
Each test piece is heated from 25°C to 100°C at a heating rate of 20°C/min, the elongation rate of each test piece is measured five times, and the average value is calculated.
Of the two test pieces, the one with the larger average elongation rate is adopted as the thermal deformation rate.
 仮支持体の熱変形率を低下させる方法としては、例えば、仮支持体の厚みを厚くする方法、及び、仮支持体に粒子を含有させ、仮支持体に含まれる粒子を増加させる方法が挙げられる。 Examples of methods for reducing the thermal deformation rate of the temporary support include a method of increasing the thickness of the temporary support, and a method of increasing the number of particles contained in the temporary support by making the temporary support contain particles. It will be done.
 本開示に係る転写フィルムでは、転写フィルムと貼り合わせられる基板の変形を抑制する観点から、仮支持体のヘイズは2.0%より大きいことが好ましい。 In the transfer film according to the present disclosure, the haze of the temporary support is preferably greater than 2.0% from the viewpoint of suppressing deformation of the substrate to be bonded to the transfer film.
 仮支持体のヘイズは、上記観点から、2.5%以上であることがより好ましい。ヘイズの上限値は特に限定されず、例えば、10%である。 From the above viewpoint, the haze of the temporary support is more preferably 2.5% or more. The upper limit of haze is not particularly limited, and is, for example, 10%.
 本開示に係る転写フィルムを用いてパターンを形成する場合に、転写フィルムと基板と貼り合わせた後、露光前に、仮支持体を剥離することが好ましい。仮支持体を露光前に剥離すれば、仮支持体のヘイズが高いことによる露光への影響を考慮しなくてよい。 When forming a pattern using the transfer film according to the present disclosure, it is preferable to peel off the temporary support after the transfer film and the substrate are bonded together and before exposure. If the temporary support is peeled off before exposure, there is no need to consider the influence of the high haze of the temporary support on exposure.
 本開示において、ヘイズは、ヘイズメータを用いて、JIS K7136:2000に準じて測定される。ヘイズメータとしては、例えば、日本電色工業社製の製品名「NDH-2000」が用いられる。 In the present disclosure, haze is measured using a haze meter according to JIS K7136:2000. As the haze meter, for example, the product name "NDH-2000" manufactured by Nippon Denshoku Kogyo Co., Ltd. is used.
 また、本開示に係る転写フィルムでは、転写フィルムと貼り合わせられる基板の変形を抑制する観点から、仮支持体に含まれる、直径5μm以上の粒子及び直径5μm以上の凝集物の総数が、30個/mmより多いことが好ましい。 Further, in the transfer film according to the present disclosure, from the viewpoint of suppressing deformation of the substrate to be bonded to the transfer film, the total number of particles with a diameter of 5 μm or more and aggregates with a diameter of 5 μm or more contained in the temporary support is 30. Preferably, it is greater than /mm 2 .
 上記粒子及び凝集物の総数は、上記観点から、40個/mm以上であることがより好ましい。総数の上限値は特に限定されず、例えば、50個/mmである。 From the above viewpoint, the total number of particles and aggregates is more preferably 40 particles/mm 2 or more. The upper limit of the total number is not particularly limited, and is, for example, 50 pieces/mm 2 .
 ここでいう粒子及び凝集物は、仮支持体を偏光顕微鏡で観察した際に、周囲の領域との偏光の違いが観察可能な領域を有するものを意味する。粒子及び凝集物としては、例えば、基材の製造中に形成される樹脂の炭化物、及び、基材の製造に用いられる触媒が挙げられる。また、上記のような粒子含有層を設ける場合に、粒子含有層に含まれる添加粒子も、上記粒子に該当する。 The term "particles" and "agglomerates" as used herein means those having a region in which a difference in polarization from the surrounding region can be observed when the temporary support is observed with a polarizing microscope. Particles and aggregates include, for example, resin carbides formed during the manufacture of the base material and catalysts used in the manufacture of the base material. Further, when providing a particle-containing layer as described above, the additive particles contained in the particle-containing layer also correspond to the above-mentioned particles.
 本開示において、仮支持体に含まれる粒子及び凝集物の総数は、以下の方法で測定される。 In the present disclosure, the total number of particles and aggregates contained in the temporary support is measured by the following method.
 まず、仮支持体を偏光顕微鏡(製品名「BX60」に「U-POT」フィルターと「U-AN360」フィルターを挿入して簡易偏光顕微鏡としたもの、対物レンズ10倍、オリンパス社製)で観察し、偏光の乱れが発生している部分を異物(粒子又は凝集物)として特定する。特定した異物を落射型レーザー顕微鏡(製品名「共焦点レーザー顕微鏡VL2000D」、Lasertec社製)で観察する。また、光学顕微鏡(製品名「BX60」、対物レンズ100倍、オリンパス社製)で異物の直径を測定し、観察領域1mmに含まれる、直径が5μm以上である異物の個数を計測する。なお、異物に空隙が含まれる場合には、空隙を含めて直径を測定する。異物が円形ではない場合には、最も長い径を測定する。 First, the temporary support was observed with a polarizing microscope (product name: "BX60" with "U-POT" filter and "U-AN360" filter inserted to make a simple polarizing microscope, 10x objective lens, manufactured by Olympus). Then, the part where the polarization disturbance occurs is identified as a foreign object (particle or aggregate). The identified foreign matter is observed with an epi-illumination laser microscope (product name: "Confocal Laser Microscope VL2000D", manufactured by Lasertec). Further, the diameter of the foreign object is measured using an optical microscope (product name "BX60", objective lens 100 times, manufactured by Olympus Corporation), and the number of foreign objects with a diameter of 5 μm or more included in the observation area of 1 mm 2 is counted. Note that if the foreign object contains voids, the diameter is measured including the voids. If the foreign object is not circular, measure the longest diameter.
 本開示に係る転写フィルムを用いてパターンを形成する場合に、転写フィルムと基材と貼り合わせた後、露光前に、仮支持体を剥離することが好ましい。仮支持体を露光前に剥離すれば、仮支持体に含まれる粒子及び凝集物が多いことによる露光への影響を考慮しなくてよい。 When forming a pattern using the transfer film according to the present disclosure, it is preferable to peel off the temporary support after bonding the transfer film and the base material and before exposure. If the temporary support is peeled off before exposure, it is not necessary to consider the influence on exposure due to the large number of particles and aggregates contained in the temporary support.
 また、本開示に係る転写フィルムでは、転写フィルムと貼り合わせられる基板の変形を抑制する観点から、仮支持体が、落射型レーザー顕微鏡で13.5mmの面積にて観測した際の光学異常領域の合計面積比率が300ppmより大きい領域を含むことが好ましい。 In addition, in the transfer film according to the present disclosure, from the viewpoint of suppressing deformation of the substrate to be bonded to the transfer film, the temporary support has an optically abnormal area when observed with an epi-illumination laser microscope in an area of 13.5 mm 2 It is preferable to include a region in which the total area ratio of is larger than 300 ppm.
 光学異常領域の合計面積比率は、上記観点から、350ppm以上であることがより好ましい。合計面積比率の上限値は特に限定されず、例えば、500ppmである。 From the above viewpoint, it is more preferable that the total area ratio of the optically abnormal region is 350 ppm or more. The upper limit of the total area ratio is not particularly limited, and is, for example, 500 ppm.
 本開示において、光学異常領域の面積は、仮支持体の厚みの中心位置から厚み方向の一方又は他方へそれぞれ2μmまでの領域で観測される光学異常領域の面積を意味する。 In the present disclosure, the area of the optically abnormal region means the area of the optically abnormal region observed in a region up to 2 μm from the center position of the thickness of the temporary support in one or the other direction of the thickness.
 本開示において、光学異常領域とは、仮支持体の主領域(仮支持体を構成する樹脂)とは光学物性が異なる領域(具体的には、反射率若しくは屈折率が主領域と異なるか、又は、散乱、回折等の光学的現象が主領域よりも強く生じる領域)である。仮支持体が例えば粒子を含有する場合、光学異常領域は、粒子による遮光部分と、粒子以外の光学異常領域(例えば、粒子及び仮支持体の主領域とは異なる屈折率を有する異常屈折率領域)との両者を含み得る。光学異常領域の例は、仮支持体の主領域と配向性及び/又は結晶性が異なる領域、空気の領域、空気以外の気体の領域、気体がほぼ存在しない空洞領域等である。 In the present disclosure, an optically abnormal region is a region having different optical properties from the main region of the temporary support (resin constituting the temporary support) (specifically, whether the reflectance or refractive index is different from the main region, or a region in which optical phenomena such as scattering and diffraction occur more strongly than in the main region). When the temporary support contains particles, for example, the optically abnormal region includes a light-shielding portion by the particles and an optically abnormal region other than the particles (for example, an abnormal refractive index region having a refractive index different from that of the particles and the main region of the temporary support). ). Examples of the optically abnormal region include a region having a different orientation and/or crystallinity from the main region of the temporary support, an air region, a region of a gas other than air, a cavity region where almost no gas exists, and the like.
 本開示において、光学異常領域の合計面積は以下の方法で測定される。 In the present disclosure, the total area of the optically abnormal region is measured by the following method.
 落射型レーザー顕微鏡(Olympus製OLS-4100)の対物レンズの上部に偏光フィルター(OLS4000-QWP)を挿入する。次に、レーザー顕微鏡のステージ上に多孔質吸着板(ユニバーサル技研製65F-HG)及び真空ポンプを用いて30mm×30mmに切断した仮支持体を水平に吸引固定する。吸引固定した仮支持体を、対物レンズ50倍、レーザー光量60(レーザー波長は405nm)の条件にて観測する。この際、仮支持体の厚みの中心位置から厚み方向の一方又は他方へそれぞれ2μmまでの領域を測定領域に定め、測定領域259μm×260μmを測定箇所数200点で計測を行う。したがって、測定領域は合計で0.259mm×0.26mm×200=13.5mmとなる。 A polarizing filter (OLS4000-QWP) is inserted above the objective lens of an epi-reflection laser microscope (OLYMPUS OLS-4100). Next, the temporary support cut into 30 mm x 30 mm is horizontally suctioned and fixed onto the stage of a laser microscope using a porous suction plate (65F-HG manufactured by Universal Giken) and a vacuum pump. The suction-fixed temporary support is observed under the conditions of a 50x objective lens and a laser light intensity of 60 nm (laser wavelength is 405 nm). At this time, a region up to 2 μm in each thickness direction from the center position of the temporary support in the thickness direction is defined as a measurement region, and measurement is performed at 200 measurement points in the measurement region of 259 μm×260 μm. Therefore, the total measurement area is 0.259 mm x 0.26 mm x 200 = 13.5 mm 2 .
 計測された画像内の最大光量のピクセルと最小光量のピクセルとの光量差を4096階調(最大光量の値が4095で、最小光量の値が0になる)に分ける。画像内のピクセルの光量分布をグラフ化したヒストグラム(横軸:光量の階調(最小値0、最大値4095)、縦軸:ピクセルの個数)を作成する。作成したヒストグラムの2つある裾野の値の大きい方の裾野の値から400階調プラスした階調を閾値として、計測された画像を二値化し、閾値よりも光量が大きいピクセルの面積を合計し、その合計面積を光学異常領域の合計面積とする。計測面積に対する光学異常領域の合計面積の比率を算出する。 The light amount difference between the pixel with the maximum light amount and the pixel with the minimum light amount in the measured image is divided into 4096 gradations (the value of the maximum light amount is 4095 and the value of the minimum light amount is 0). A histogram (horizontal axis: gradation of light amount (minimum value 0, maximum value 4095), vertical axis: number of pixels) is created as a graph of the light amount distribution of pixels in the image. The measured image is binarized using the gradation that is 400 gradations plus 400 gradations from the larger of the two base values of the created histogram as the threshold, and the areas of pixels with a larger amount of light than the threshold are summed. , the total area is the total area of the optically abnormal region. The ratio of the total area of the optical abnormality region to the measurement area is calculated.
 仮支持体の厚みは、転写フィルムと貼り合わせられる基板の変形を抑制する観点から、25μm以上であることが好ましく、50μm以上であることがより好ましく、75μm以上であることがさらに好ましい。厚みの上限値は特に限定されず、例えば、200μmである。 The thickness of the temporary support is preferably 25 μm or more, more preferably 50 μm or more, and even more preferably 75 μm or more, from the viewpoint of suppressing deformation of the substrate to be bonded to the transfer film. The upper limit of the thickness is not particularly limited, and is, for example, 200 μm.
 仮支持体は、転写層との密着性を向上させる観点から、転写層と接する側の表面に、紫外線照射、コロナ放電、プラズマ処理等の表面処理が施されていてもよい。紫外線照射によって表面処理を行う場合には、露光量は、10mJ/cm~2000mJ/cmであることが好ましく、50mJ/cm~1000mJ/cmであることがより好ましい。 The surface of the temporary support in contact with the transfer layer may be subjected to surface treatment such as ultraviolet irradiation, corona discharge, plasma treatment, etc., from the viewpoint of improving adhesion with the transfer layer. When surface treatment is performed by irradiating ultraviolet rays, the exposure amount is preferably 10 mJ/cm 2 to 2000 mJ/cm 2 , more preferably 50 mJ/cm 2 to 1000 mJ/cm 2 .
 紫外線照射のための光源としては、例えば、150nm~450nm波長帯域の光を発する光源(例えば、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、無電極放電ランプ、及び発光ダイオード(LED))が挙げられる。出力及び照度は特に制限されない。 Examples of light sources for ultraviolet irradiation include light sources that emit light in the wavelength range of 150 nm to 450 nm (for example, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, electrode discharge lamps, and light emitting diodes (LEDs). The output and illuminance are not particularly limited.
 転写層は仮支持体の表面に接していることが好ましい。転写層に対する仮支持体の凸凹の転写の観点から、仮支持体の転写層側表面の表面粗さRmaxが0.5μm以下であることが好ましく、0.01μm~0.5μmであることがより好ましい。 The transfer layer is preferably in contact with the surface of the temporary support. From the viewpoint of transferring the unevenness of the temporary support to the transfer layer, the surface roughness Rmax of the surface of the temporary support on the transfer layer side is preferably 0.5 μm or less, more preferably 0.01 μm to 0.5 μm. preferable.
 仮支持体の転写層側表面の表面粗さRmaxは、以下の方法で測定される。 The surface roughness Rmax of the surface of the temporary support on the transfer layer side is measured by the following method.
 本開示において、表面粗さRmaxは、3次元光学プロファイラー(New View7300、Zygo社製)を用いて測定される。 In the present disclosure, the surface roughness Rmax is measured using a three-dimensional optical profiler (New View 7300, manufactured by Zygo).
 まず、転写フィルムから、仮支持体を剥離する。仮支持体の転写層側表面の表面プロファイルを得る。測定・解析ソフトウェアとしては、MetroPro ver8.3.2のMicroscope Applicationを用いる。次に、測定・解析ソフトウェアを用いてSurface Map画面を表示し、Surface Map画面中でヒストグラムデータを得る。得られたヒストグラムデータから、表面粗さRmaxを得る。なお、表面粗さRmaxは、基準長さにおける粗さ曲線の最大高さに対応する。 First, the temporary support is peeled off from the transfer film. Obtain the surface profile of the surface of the temporary support on the transfer layer side. Microscope Application of MetroPro ver. 8.3.2 is used as the measurement/analysis software. Next, a Surface Map screen is displayed using the measurement/analysis software, and histogram data is obtained on the Surface Map screen. The surface roughness Rmax is obtained from the obtained histogram data. Note that the surface roughness Rmax corresponds to the maximum height of the roughness curve at the reference length.
 仮支持体は、リサイクル品であってもよい。リサイクル品としては、使用済みフィルム等を洗浄した後、チップ化し、チップを原料としてフィルム化したものが挙げられる。リサイクル品の具体例としては、東レ社のEcouseシリーズが挙げられる。 The temporary support may be a recycled product. Examples of recycled products include those made by cleaning used films and the like, turning them into chips, and using the chips as raw materials to make films. A specific example of a recycled product is Toray's Ecouse series.
〔転写層〕
 本開示に係る転写フィルムは、転写層を備える。
[Transfer layer]
The transfer film according to the present disclosure includes a transfer layer.
 転写層は、仮支持体の剥離しやすさの観点から、仮支持体と対向する側の表面自由エネルギーが68.0mJ/m以下であることが好ましく、50.0mJ/cm~68.0mJ/cmであることがより好ましく、55.0mJ/cm~65.0mJ/cmであることがさらに好ましい。 From the viewpoint of ease of peeling of the temporary support, the surface free energy of the transfer layer on the side facing the temporary support is preferably 68.0 mJ/m 2 or less, and 50.0 mJ/cm 2 to 68. It is more preferably 0 mJ/cm 2 , and even more preferably 55.0 mJ/cm 2 to 65.0 mJ/cm 2 .
 本開示において、転写層の仮支持体と対向する側の表面自由エネルギー(単位:mJ/m)は、以下の方法で算出される。 In the present disclosure, the surface free energy (unit: mJ/m 2 ) of the transfer layer on the side facing the temporary support is calculated by the following method.
 転写層の測定面において、室温25℃相対湿度50%の雰囲気下で、純水及びヨウ化メチレンの2種液体の各接触角を、接触角計CA-A型(協和界面科学(株)社製)により、12μL滴下し、20秒後に、3点測定し、その平均値を接触角とする。得られた2種類の液体の接触角を用いて、Owens-Wendtに基づく幾何平均法により、分散力γ、極性力γ及び分散力と極性力の和である表面エネルギーγ(=γ+γ)を算出する。 On the measurement surface of the transfer layer, the contact angle of two types of liquids, pure water and methylene iodide, was measured using a contact angle meter CA-A model (Kyowa Kaimen Kagaku Co., Ltd.) under an atmosphere of room temperature 25°C and relative humidity 50%. After 20 seconds, 12 µL of the contact angle was dropped using the following method: 12 μL was dropped, and 20 seconds later, measurements were taken at 3 points, and the average value was taken as the contact angle. Using the obtained contact angles of the two types of liquids, the geometric mean method based on Owens-Wendt is used to calculate the dispersion force γ d , the polar force γ p and the surface energy γ (= γ dp ) is calculated.
 具体的な算出方法を示す。各記号の意味について下記に示す。γSLは固体と液体との界面での張力である場合、下記数式(1)が成立する。
γSL:フィルム表面と既知の液体の表面自由エネルギー
γ:フィルム表面の表面自由エネルギー
γ:既知の液体の表面自由エネルギー
γ :フィルム表面の表面自由エネルギーの分散力成分
γ :フィルム表面の表面自由エネルギーの極性力成分
γ :既知の液体の表面自由エネルギーの分散力成分
γ :既知の液体の表面自由エネルギーの極性力成分
  γSL=γ+γ-2(γ ・γ 1/2-2(γ ・γ 1/2・・・式(1)
 また、平滑な固体面と液滴が接触角(θ)で接しているときの状態は次式で表現される(Youngの式)。
  γ=γSL+γcosθ・・・式(2)
 これら数式(1)及び数式(2)を組み合わせると、次式が得られる。
  (γ ・γ 1/2+(γ ・γ 1/2(=γ(1+cosθ)/2・・・式(3)
A specific calculation method is shown. The meaning of each symbol is shown below. When γ SL is the tension at the interface between solid and liquid, the following formula (1) holds true.
γ SL : Surface free energy of film surface and known liquid γ S : Surface free energy of film surface γ L : Known surface free energy of liquid γ S d : Dispersion force component of surface free energy of film surface γ S p : Polar force component of the surface free energy of the film surface γ L d : Dispersion force component of the known surface free energy of the liquid γ L p : Polar force component of the known surface free energy of the liquid γ SL = γ S + γ L −2 ( γ S d・γ L d ) 1/2 −2 (γ S p・γ L p ) 1/2 ...Formula (1)
Further, the state when a smooth solid surface and a droplet are in contact with each other at a contact angle (θ) is expressed by the following equation (Young's equation).
γ S = γ SL + γ L cosθ...Formula (2)
By combining these formulas (1) and (2), the following formula is obtained.
s d・γ L d ) 1/2 + (γ s p・γ L p ) 1/2 (= γ L (1+cos θ)/2...Formula (3)
 実際には、純水及びヨウ化メチレンの2種類の液体の接触角(θ)と、既知の液体の表面エネルギーγ及び、各成分(γ 、γ )を数式(3)に代入し、連立方程式を解く。
 その結果、転写層の測定面における表面自由エネルギー(γ)を算出する。
In reality, the contact angle (θ) of two types of liquids, pure water and methylene iodide, the known surface energy γ L of the liquid, and each component (γ L d , γ L p ) are expressed in equation (3). Substitute and solve the simultaneous equations.
As a result, the surface free energy (γ S ) on the measurement surface of the transfer layer is calculated.
 転写層の仮支持体と対向する側の表面自由エネルギーを上述の範囲に調整する方法としては、特に制限はないが、仮支持体と接触する側に、水溶性樹脂を含む中間層を設ける方法が挙げられる。 There are no particular restrictions on the method for adjusting the surface free energy of the side of the transfer layer facing the temporary support within the above range, but a method is to provide an intermediate layer containing a water-soluble resin on the side that comes into contact with the temporary support. can be mentioned.
 転写層は、感光性層の感度向上の観点から、水の含有量が転写層の全量に対して、0.1質量%以上であることが好ましく、0.15質量%以上であることがより好ましく、0.3質量%以上であることがさらに好ましい。水の含有量の上限値は特に限定されず、例えば、1.0質量%である。
 転写層における水の含有量は、転写層を形成する際の乾燥方法により調節することができる。
From the viewpoint of improving the sensitivity of the photosensitive layer, the transfer layer preferably has a water content of 0.1% by mass or more, more preferably 0.15% by mass or more, based on the total amount of the transfer layer. The content is preferably 0.3% by mass or more, and more preferably 0.3% by mass or more. The upper limit of the water content is not particularly limited, and is, for example, 1.0% by mass.
The water content in the transfer layer can be adjusted by the drying method used when forming the transfer layer.
 本開示において、転写層における水の含有量は、以下の方法で測定される。 In the present disclosure, the water content in the transfer layer is measured by the following method.
 転写フィルムを5mm×30mmの大きさにカットしたものを試料とし、一次トラップ管(PAT)に試料を挿入し、キャップをした。なお、保護フィルムが設けられている場合には、保護フィルムを剥離したものを試料とし、剥離後すぐに挿入した。試料の調製は、23℃45%RHで行った。加熱脱着装置(製品名「JTD-505III」、日本分析
工業社製)を用いて加熱し、ガスクロマトグラフ質量分析計(製品名「GCMS-QP2010」、島津製作所製)を用いてアウトガスを測定することにより、水の含有量を測定した。
A transfer film cut into a size of 5 mm x 30 mm was used as a sample, and the sample was inserted into a primary trap tube (PAT) and capped. In addition, when a protective film was provided, the sample was prepared by peeling off the protective film, and the sample was inserted immediately after peeling off. Sample preparation was performed at 23° C. and 45% RH. Heating using a thermal desorption device (product name "JTD-505III", manufactured by Japan Analytical Industry Co., Ltd.) and measuring outgas using a gas chromatograph mass spectrometer (product name "GCMS-QP2010", manufactured by Shimadzu Corporation) The water content was measured.
 現像性が良いと、パターンに残渣が残りにくく、基板との密着性が良いと、より細いパターンを形成できる。現像性と、基板との密着性を向上させる観点から、転写層は、鉄原子の含有量が転写層の全量に対して、質量基準で0.01ppm~10.0ppmであることが好ましく、0.1ppm~10ppmであることがより好ましく、0.2ppm~10ppmであることがさらに好ましい。
 転写層における鉄の含有量は、感光性組成物の組成によって調節することができる。
If the developability is good, there will be less residue on the pattern, and if the adhesion to the substrate is good, a thinner pattern can be formed. From the viewpoint of improving developability and adhesion with the substrate, the transfer layer preferably has an iron atom content of 0.01 ppm to 10.0 ppm on a mass basis with respect to the total amount of the transfer layer. It is more preferably from .1 ppm to 10 ppm, and even more preferably from 0.2 ppm to 10 ppm.
The iron content in the transfer layer can be adjusted by the composition of the photosensitive composition.
 本開示において、転写層における鉄原子の含有量は、以下の方法で測定される。 In the present disclosure, the content of iron atoms in the transfer layer is measured by the following method.
 鉄原子の含有量の測定は、JIS K1200-6に記載の誘導結合プラズマ(ICP)発光分析法により行う。測定装置としては、例えば、誘導結合プラズマ質量分析計(ICP-MS):ICPMS-2030((株)島津製作所製)が用いられる。 The content of iron atoms is measured by inductively coupled plasma (ICP) emission spectrometry described in JIS K1200-6. As the measuring device, for example, an inductively coupled plasma mass spectrometer (ICP-MS): ICPMS-2030 (manufactured by Shimadzu Corporation) is used.
 まず、転写フィルムから転写層1.000gを量り取り、電気炉を用いて、転写層を灰化させる。電気炉から取り出した白金るつぼに硝酸水溶液(富士フイルム和光純薬(株)製;特級硝酸、及び超純水を1:1で混合した水溶液)を5mL添加して、上記灰化物を溶解させる。続いて、超純水15mlを加えて、灰化物の水溶液を得る。得られた水溶液について、JIS K1200-6に記載の誘導結合プラズマ(ICP)発光分析法で測定を行い、転写層中の鉄原子の含有量を算出する。 First, 1.000 g of the transfer layer is weighed out from the transfer film, and the transfer layer is incinerated using an electric furnace. Add 5 mL of a nitric acid aqueous solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.; an aqueous solution containing a 1:1 mixture of special grade nitric acid and ultrapure water) to the platinum crucible taken out of the electric furnace to dissolve the ash. Subsequently, 15 ml of ultrapure water is added to obtain an aqueous solution of the ash. The obtained aqueous solution is measured by inductively coupled plasma (ICP) emission spectrometry described in JIS K1200-6, and the content of iron atoms in the transfer layer is calculated.
 転写層は、パターンを形成するため、感光性層を含むことが好ましい。 The transfer layer preferably includes a photosensitive layer in order to form a pattern.
<<感光性層>>
 静電容量型入力装置等のタッチパネルを備えた表示装置(有機エレクトロルミネッセンス(EL)表示装置及び液晶表示装置等)では、視認部のセンサーに相当する電極パターン、周辺配線部分及び取り出し配線部分の配線等の導電層パターンがタッチパネル内部に設けられている。一般的にパターン化した層の形成には、転写フィルム等を用いて基板上に、例えばネガ型感光性層を設け、その感光性層に対して所望のパターンを有するマスクを介して露光した後、現像する方法が広く採用されている。
<<Photosensitive layer>>
In a display device equipped with a touch panel such as a capacitive input device (organic electroluminescence (EL) display device, liquid crystal display device, etc.), the electrode pattern corresponding to the sensor in the viewing section, the wiring of the peripheral wiring part and the lead-out wiring part A conductive layer pattern such as the above is provided inside the touch panel. Generally, to form a patterned layer, for example, a negative photosensitive layer is provided on a substrate using a transfer film or the like, and the photosensitive layer is exposed to light through a mask having a desired pattern. , developing methods are widely used.
 感光性層は、露光により露光部の現像液に対する溶解性が低下し、非露光部が現像により除去されるネガ型感光性層であることが好ましい。しかし、感光性層はネガ型感光性層に制限されず、露光により露光部の現像液に対する溶解性が向上し、露光部が現像により除去されるポジ型感光性層であってもよい。 The photosensitive layer is preferably a negative photosensitive layer in which the solubility of exposed areas in a developer decreases upon exposure, and the non-exposed areas are removed through development. However, the photosensitive layer is not limited to a negative photosensitive layer, and may be a positive photosensitive layer in which the solubility of the exposed area in a developer is improved by exposure, and the exposed area is removed by development.
 感光性層は、例えば、感光性組成物を塗布し、乾燥させることにより得られる。 The photosensitive layer is obtained, for example, by applying a photosensitive composition and drying it.
 感光性層がネガ型感光性層である場合、感光性層は、樹脂、重合性化合物、及び重合開始剤を含むことが好ましい。また、感光性層がネガ型感光性層である場合、後述の通り、樹脂の一部又は全部としてアルカリ可溶性樹脂(アルカリ可溶性樹脂である重合体A等)が含まれることも好ましい。つまり、一態様において、感光性層は、アルカリ可溶性樹脂を含む樹脂、重合性化合物、及び重合開始剤を含むことが好ましい。 When the photosensitive layer is a negative photosensitive layer, the photosensitive layer preferably contains a resin, a polymerizable compound, and a polymerization initiator. Further, when the photosensitive layer is a negative photosensitive layer, as described below, it is also preferable that an alkali-soluble resin (such as Polymer A which is an alkali-soluble resin) is included as part or all of the resin. That is, in one embodiment, the photosensitive layer preferably contains a resin including an alkali-soluble resin, a polymerizable compound, and a polymerization initiator.
 このような感光性層(ネガ型感光性層)は、感光性層の全質量を基準として、樹脂を10質量%~90質量%、重合性化合物を5質量%~70質量%、重合開始剤を0.01質量%~20質量%含むことが好ましい。
 以下、各成分を順に説明する。
Such a photosensitive layer (negative photosensitive layer) contains 10% to 90% by weight of a resin, 5% to 70% by weight of a polymerizable compound, and a polymerization initiator, based on the total weight of the photosensitive layer. It is preferable to contain 0.01% to 20% by mass.
Each component will be explained in order below.
<重合体A(樹脂)>
 感光性層がネガ型感光性層である場合に、感光性層中に含まれる樹脂を、特に、重合体Aともいう。
<Polymer A (resin)>
When the photosensitive layer is a negative photosensitive layer, the resin contained in the photosensitive layer is also particularly referred to as polymer A.
 重合体Aとしては、例えば、(メタ)アクリル樹脂、スチレン樹脂、エポキシ樹脂、アミド樹脂、アミドエポキシ樹脂、アルキド樹脂、フェノール樹脂、エステル樹脂、ウレタン樹脂、及び、エポキシアクリレート樹脂と酸無水物との反応で得られる酸変性エポキシアクリレート樹脂が挙げられる。これには限定されない。 Examples of the polymer A include (meth)acrylic resins, styrene resins, epoxy resins, amide resins, amide epoxy resins, alkyd resins, phenol resins, ester resins, urethane resins, and combinations of epoxy acrylate resins and acid anhydrides. Examples include acid-modified epoxy acrylate resins obtained by reaction. It is not limited to this.
 重合体Aとしては、(メタ)アクリル樹脂が好ましい。 As the polymer A, (meth)acrylic resin is preferable.
 なお、本開示において、(メタ)アクリル樹脂とは、(メタ)アクリル化合物に由来する構成単位を有する樹脂を意味する。(メタ)アクリル樹脂において、(メタ)アクリル化合物に由来する構成単位の含有量は、(メタ)アクリル樹脂の全質量に対して、30質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましい。 Note that in the present disclosure, (meth)acrylic resin means a resin having a structural unit derived from a (meth)acrylic compound. In the (meth)acrylic resin, the content of structural units derived from the (meth)acrylic compound is preferably 30% by mass or more, more preferably 50% by mass or more, and 60% by mass or more, based on the total mass of the (meth)acrylic resin. More preferably, the amount is % by mass or more.
 重合体Aとしては、(メタ)アクリル化合物に由来する構成単位及びスチレン化合物に由来する構成単位を有する重合体も好ましい。 As the polymer A, a polymer having a structural unit derived from a (meth)acrylic compound and a structural unit derived from a styrene compound is also preferable.
 重合体Aは、アルカリ可溶性樹脂であることが好ましい。 It is preferable that the polymer A is an alkali-soluble resin.
 重合体Aの酸価は、現像液による感光性層の膨潤を抑制することにより、解像性がより優れる観点から、250mgKOH/g以下が好ましく、200mgKOH/g未満がより好ましく、190mgKOH/g未満がさらに好ましい。 The acid value of the polymer A is preferably 250 mgKOH/g or less, more preferably less than 200 mgKOH/g, and less than 190 mgKOH/g from the viewpoint of better resolution by suppressing swelling of the photosensitive layer by the developer. is even more preferable.
 重合体Aの酸価の下限値は特に制限されない。重合体Aの酸価は、現像性がより優れる観点から、60mgKOH/g以上が好ましく、80mgKOH/g以上がより好ましく、120mgKOH/g以上がさらに好ましい。 The lower limit of the acid value of Polymer A is not particularly limited. The acid value of the polymer A is preferably 60 mgKOH/g or more, more preferably 80 mgKOH/g or more, and even more preferably 120 mgKOH/g or more, from the viewpoint of better developability.
 なお、酸価(mgKOH/g)とは、試料1gを中和するのに必要な水酸化カリウムの質量[mg]である。酸価は、例えば、化合物中における酸基の平均含有量から算出できる。 Note that the acid value (mgKOH/g) is the mass [mg] of potassium hydroxide required to neutralize 1 g of sample. The acid value can be calculated, for example, from the average content of acid groups in the compound.
 重合体Aの酸価は、重合体Aを構成する構成単位の種類及び酸基を含む構成単位の含有量により調整すればよい。 The acid value of the polymer A may be adjusted depending on the type of structural units constituting the polymer A and the content of the structural units containing acid groups.
 重合体Aの重量平均分子量は、5,000~500,000が好ましい。重量平均分子量が500,000以下の場合、解像性及び現像性を向上させる観点から好ましい。重量平均分子量は、100,000以下がより好ましく、60,000以下がさらに好ましい。 The weight average molecular weight of Polymer A is preferably 5,000 to 500,000. A weight average molecular weight of 500,000 or less is preferred from the viewpoint of improving resolution and developability. The weight average molecular weight is more preferably 100,000 or less, and even more preferably 60,000 or less.
 一方で、重量平均分子量が5,000以上の場合、現像凝集物の性状、並びに感光性樹脂積層体とした場合のエッジフューズ性及びカットチップ性等の未露光膜の性状を制御する観点から好ましい。重量平均分子量は、10,000以上がより好ましく、20,000以上がさらに好ましく、30,000以上が特に好ましい。エッジフューズ性とは、感光性樹脂積層体としてロール状に巻き取った場合に、ロールの端面からの、感光性層のはみ出し易さの程度をいう。カットチップ性とは、未露光膜をカッターで切断した場合に、チップの飛び易さの程度をいう。このチップが感光性樹脂積層体の上面等に付着すると、後の露光工程等でマスクに転写して、不良品の原因となる。
 なお、感光性樹脂積層体とは、転写フィルムと基材とを貼り合わせて得られる積層体のことである。
On the other hand, when the weight average molecular weight is 5,000 or more, it is preferable from the viewpoint of controlling the properties of the developed aggregate and the properties of the unexposed film such as edge fusing property and cut chip property when formed into a photosensitive resin laminate. . The weight average molecular weight is more preferably 10,000 or more, even more preferably 20,000 or more, and particularly preferably 30,000 or more. Edge fusing property refers to the degree to which the photosensitive layer easily protrudes from the end surface of the roll when the photosensitive resin laminate is wound into a roll. The cut chip property refers to the degree to which chips easily fly when an unexposed film is cut with a cutter. If this chip adheres to the top surface of the photosensitive resin laminate, it will be transferred to a mask in a subsequent exposure step, etc., resulting in defective products.
Note that the photosensitive resin laminate is a laminate obtained by bonding a transfer film and a base material.
 重合体Aの分散度は、1.0~6.0が好ましく、1.0~5.0がより好ましく、1.0~4.0がさらに好ましく、1.0~3.0が特に好ましい。本開示において、分散度は、数平均分子量に対する重量平均分子量の比(重量平均分子量/数平均分子量)である。本開示において、重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィを用いて測定される値である。 The degree of dispersion of polymer A is preferably 1.0 to 6.0, more preferably 1.0 to 5.0, even more preferably 1.0 to 4.0, particularly preferably 1.0 to 3.0. . In this disclosure, dispersity is the ratio of weight average molecular weight to number average molecular weight (weight average molecular weight/number average molecular weight). In the present disclosure, weight average molecular weight and number average molecular weight are values measured using gel permeation chromatography.
 感光性層は、露光時の焦点位置がずれたときの線幅太りや解像度の悪化を抑制する観点から、重合体Aは、芳香族炭化水素基を有する単量体に基づく構成単位を含むことが好ましい。なお、このような芳香族炭化水素基としては、例えば、置換又は非置換のフェニル基、及び置換又は非置換のアラルキル基が挙げられる。重合体Aにおける芳香族炭化水素基を有する単量体に基づく構成単位の含有量は、重合体Aの全質量に対して、20質量%以上が好ましく、30質量%以上がより好ましい。上限としては特に限定されないが、95質量%以下が好ましく、85質量%以下がより好ましい。なお、重合体Aを複数種類含む場合、芳香族炭化水素基を有する単量体に基づく構成単位の含有量の平均値が上記範囲内になることが好ましい。 In the photosensitive layer, from the viewpoint of suppressing thickening of the line width and deterioration of resolution when the focal position shifts during exposure, the polymer A contains a structural unit based on a monomer having an aromatic hydrocarbon group. is preferred. Note that such aromatic hydrocarbon groups include, for example, substituted or unsubstituted phenyl groups and substituted or unsubstituted aralkyl groups. The content of the structural unit based on the monomer having an aromatic hydrocarbon group in the polymer A is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total mass of the polymer A. The upper limit is not particularly limited, but is preferably 95% by mass or less, more preferably 85% by mass or less. In addition, when multiple types of polymers A are included, it is preferable that the average value of the content of structural units based on monomers having aromatic hydrocarbon groups falls within the above range.
 芳香族炭化水素基を有する単量体としては、例えば、アラルキル基を有するモノマー、スチレン、及び重合可能なスチレン誘導体(例えば、メチルスチレン、ビニルトルエン、tert-ブトキシスチレン、アセトキシスチレン、4-ビニル安息香酸、スチレンダイマー、及びスチレントリマー等)が挙げられる。中でも、アラルキル基を有するモノマー、又はスチレンが好ましい。一態様において、重合体Aにおける芳香族炭化水素基を有する単量体成分がスチレンである場合、スチレンに基づく構成単位の含有量は、重合体Aの全質量に対して、20質量%~70質量%が好ましく、25質量%~65質量%がより好ましく、30質量%~60質量%がさらに好ましく、30質量%~55質量%が特に好ましい。なお、感光性層が複数の種類の重合体Aを含む場合、芳香族炭化水素基を有する構成単位の含有率は、重量平均値として求められる。 Monomers having an aromatic hydrocarbon group include, for example, monomers having an aralkyl group, styrene, and polymerizable styrene derivatives (for example, methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoate). acids, styrene dimers, styrene trimers, etc.). Among these, monomers having an aralkyl group or styrene are preferred. In one embodiment, when the monomer component having an aromatic hydrocarbon group in polymer A is styrene, the content of the styrene-based structural unit is 20% by mass to 70% by mass based on the total mass of polymer A. It is preferably 25% to 65% by weight, even more preferably 30% to 60% by weight, and particularly preferably 30% to 55% by weight. In addition, when a photosensitive layer contains several types of polymers A, the content rate of the structural unit which has an aromatic hydrocarbon group is calculated|required as a weight average value.
 アラルキル基としては、置換又は非置換のフェニルアルキル基(ベンジル基を除く)、及び置換又は非置換のベンジル基等が挙げられ、置換又は非置換のベンジル基が好ましい。 Examples of the aralkyl group include a substituted or unsubstituted phenylalkyl group (excluding a benzyl group), a substituted or unsubstituted benzyl group, and a substituted or unsubstituted benzyl group is preferred.
 フェニルアルキル基を有する単量体としては、フェニルエチル(メタ)アクリレート等が挙げられる。 Examples of the monomer having a phenylalkyl group include phenylethyl (meth)acrylate and the like.
 ベンジル基を有する単量体としては、ベンジル基を有する(メタ)アクリレート、例えば、ベンジル(メタ)アクリレート、及びクロロベンジル(メタ)アクリレート等;ベンジル基を有するビニルモノマー、例えば、ビニルベンジルクロライド、及びビニルベンジルアルコール等が挙げられる。中でも、ベンジル(メタ)アクリレートが好ましい。一態様において、重合体Aにおける芳香族炭化水素基を有する単量体成分がベンジル(メタ)アクリレートである場合、ベンジル(メタ)アクリレートに基づく構成単位の含有量は、重合体Aの全質量に対して、50質量%~95質量%が好ましく、60質量%~90質量%がより好ましく、70質量%~90質量%がさらに好ましく、75質量%~90質量%が特に好ましい。 Examples of monomers having a benzyl group include (meth)acrylates having a benzyl group, such as benzyl (meth)acrylate and chlorobenzyl (meth)acrylate; vinyl monomers having a benzyl group, such as vinylbenzyl chloride; Examples include vinylbenzyl alcohol. Among them, benzyl (meth)acrylate is preferred. In one embodiment, when the monomer component having an aromatic hydrocarbon group in polymer A is benzyl (meth)acrylate, the content of the structural unit based on benzyl (meth)acrylate is based on the total mass of polymer A. On the other hand, it is preferably 50% by mass to 95% by mass, more preferably 60% by mass to 90% by mass, even more preferably 70% by mass to 90% by mass, and particularly preferably 75% by mass to 90% by mass.
 芳香族炭化水素基を有する単量体に基づく構成単位を含む重合体Aは、芳香族炭化水素基を有する単量体と、後述する第一の単量体の少なくとも1種及び/又は後述する第二の単量体の少なくとも1種とを重合することにより得られることが好ましい。 Polymer A containing a structural unit based on a monomer having an aromatic hydrocarbon group is a monomer having an aromatic hydrocarbon group and at least one of the first monomers described below and/or the following monomers. It is preferably obtained by polymerizing with at least one second monomer.
 芳香族炭化水素基を有する単量体に基づく構成単位を含まない重合体Aは、後述する第一の単量体の少なくとも1種を重合することにより得られることが好ましく、第一の単量体の少なくとも1種と後述する第二の単量体の少なくとも1種とを共重合することにより得られることがより好ましい。 It is preferable that the polymer A containing no structural unit based on a monomer having an aromatic hydrocarbon group is obtained by polymerizing at least one of the first monomers described below, and the first monomer It is more preferable to obtain the monomer by copolymerizing at least one of the monomers and at least one of the second monomers described below.
 第一の単量体は、分子中にカルボキシル基を有する単量体である。第一の単量体としては、例えば、(メタ)アクリル酸、フマル酸、ケイ皮酸、クロトン酸、イタコン酸、4-ビニル安息香酸、マレイン酸無水物、及びマレイン酸半エステル等が挙げられる。これらの中でも、(メタ)アクリル酸が好ましい。 The first monomer is a monomer having a carboxyl group in the molecule. Examples of the first monomer include (meth)acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, 4-vinylbenzoic acid, maleic anhydride, and maleic acid half ester. . Among these, (meth)acrylic acid is preferred.
 重合体Aにおける第一の単量体に基づく構成単位の含有量は、重合体Aの全質量に対して、5質量%~50質量%が好ましく、10質量%~40質量%がより好ましく、15質量%~30質量%がさらに好ましい。 The content of the structural unit based on the first monomer in polymer A is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 40% by mass, based on the total mass of polymer A. More preferably 15% by mass to 30% by mass.
 上記含有量を5質量%以上にすることは、良好な現像性を発現させる観点、エッジフューズ性を制御する等の観点から好ましい。上記含有量を50質量%以下にすることは、レジストパターンの高解像性及びスソ形状の観点から、さらにはレジストパターンの耐薬品性の観点から好ましい。 It is preferable that the content be 5% by mass or more from the viewpoint of expressing good developability and controlling edge fusing property. It is preferable that the content be 50% by mass or less from the viewpoint of high resolution and groove shape of the resist pattern, and further from the viewpoint of chemical resistance of the resist pattern.
 第二の単量体は、非酸性であり、かつ、分子中に重合性不飽和基を少なくとも1個有する単量体である。第二の単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及び2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリレート類;酢酸ビニル等のビニルアルコールのエステル類;並びに(メタ)アクリロニトリル等が挙げられる。中でも、第二の単量体は、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、又はn-ブチル(メタ)アクリレートが好ましく、メチル(メタ)アクリレートがより好ましい。 The second monomer is a monomer that is non-acidic and has at least one polymerizable unsaturated group in its molecule. Examples of the second monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate. (meth)acrylates such as tert-butyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, cyclohexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate; acetic acid Examples include esters of vinyl alcohol such as vinyl; and (meth)acrylonitrile. Among these, the second monomer is preferably methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, or n-butyl (meth)acrylate, and more preferably methyl (meth)acrylate.
 重合体Aにおける第二の単量体に基づく構成単位の含有量は、重合体Aの全質量に対して、5質量%~60質量%が好ましく、15質量%~50質量%がより好ましく、17質量%~45質量%がさらに好ましい。 The content of the structural unit based on the second monomer in polymer A is preferably 5% by mass to 60% by mass, more preferably 15% by mass to 50% by mass, based on the total mass of polymer A. More preferably 17% by mass to 45% by mass.
 重合体Aがアラルキル基を有する単量体に基づく構成単位及び/又はスチレンを単量体に基づく構成単位を含む場合、露光時の焦点位置がずれたときの線幅太りや解像度の悪化を抑制する観点から好ましい。例えば、メタクリル酸に基づく構成単位とベンジルメタクリレートに基づく構成単位とスチレンに基づく構成単位を含む共重合体、メタクリル酸に基づく構成単位とメチルメタクリレートに基づく構成単位とベンジルメタクリレートに基づく構成単位とスチレンに基づく構成単位を含む共重合体等が好ましい。 When polymer A contains a structural unit based on a monomer having an aralkyl group and/or a structural unit based on a styrene monomer, it suppresses thickening of line width and deterioration of resolution when the focal position shifts during exposure. It is preferable from the viewpoint of For example, a copolymer containing a constitutional unit based on methacrylic acid, a constitutional unit based on benzyl methacrylate, and a constitutional unit based on styrene, a constitutional unit based on methacrylic acid, a constitutional unit based on methyl methacrylate, a constitutional unit based on benzyl methacrylate, and a copolymer containing a constitutional unit based on styrene. Copolymers containing structural units based on the above are preferred.
 一態様において、重合体Aは、芳香族炭化水素基を有する単量体に基づく構成単位を25質量%~55質量%、第一の単量体に基づく構成単位を20質量%~35質量%、第二の単量体に基づく構成単位を15質量%~45質量%含む重合体であることが好ましい。また、別の態様において、芳香族炭化水素基を有する単量体に基づく構成単位を70質量%~90質量%、第一の単量体に基づく構成単位を10質量%~25質量%含む重合体であることが好ましい。 In one embodiment, the polymer A contains 25% to 55% by mass of structural units based on a monomer having an aromatic hydrocarbon group, and 20% to 35% by mass of structural units based on the first monomer. , a polymer containing 15% by mass to 45% by mass of structural units based on the second monomer. In another embodiment, the weight containing 70% by mass to 90% by mass of structural units based on a monomer having an aromatic hydrocarbon group and 10% by mass to 25% by mass of structural units based on the first monomer. Preferably, it is a combination.
 重合体Aは、側鎖に直鎖構造、分岐構造、及び、脂環構造のいずれかを有してもよい。側鎖に分岐構造を有する基を含むモノマー、又は側鎖に脂環構造を有する基を含むモノマーを使用することによって、重合体Aの側鎖に分岐構造や脂環構造を導入することができる。脂環構造を有する基は単環又は多環であってもよい。 Polymer A may have a linear structure, a branched structure, or an alicyclic structure in its side chain. By using a monomer containing a group having a branched structure in the side chain or a monomer containing a group having an alicyclic structure in the side chain, a branched structure or alicyclic structure can be introduced into the side chain of the polymer A. . The group having an alicyclic structure may be monocyclic or polycyclic.
 側鎖に分岐構造を有する基を含むモノマーの具体例としては、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸tert-アミル、(メタ)アクリル酸sec-アミル、(メタ)アクリル酸2-オクチル、(メタ)アクリル酸3-オクチル及び(メタ)アクリル酸tert-オクチル等が挙げられる。これらの中でも、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、メタクリル酸tert-ブチルが好ましく、メタクリル酸イソプロピル又はメタクリル酸tert-ブチルがより好ましい。 Specific examples of monomers containing a group having a branched structure in the side chain include isopropyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, ( Isoamyl meth)acrylate, tert-amyl (meth)acrylate, sec-amyl (meth)acrylate, 2-octyl (meth)acrylate, 3-octyl (meth)acrylate and tert-octyl (meth)acrylate etc. Among these, isopropyl (meth)acrylate, isobutyl (meth)acrylate, and tert-butyl methacrylate are preferred, and isopropyl methacrylate or tert-butyl methacrylate is more preferred.
 側鎖に脂環構造を有する基を含むモノマーの具体例としては、単環の脂肪族炭化水素基を有するモノマー、及び、多環の脂肪族炭化水素基を有するモノマーが挙げられる。また、側鎖に脂環構造を有する基を含むモノマーとしては、炭素原子数5~20個の脂環式炭化水素基を有する(メタ)アクリレートが挙げられる。より具体的な例としては、(メタ)アクリル酸(ビシクロ[2.2.1]ヘプチル-2)、(メタ)アクリル酸-1-アダマンチル、(メタ)アクリル酸-2-アダマンチル、(メタ)アクリル酸-3-メチル-1-アダマンチル、(メタ)アクリル酸-3,5-ジメチル-1-アダマンチル、(メタ)アクリル酸-3-エチルアダマンチル、(メタ)アクリル酸-3-メチル-5-エチル-1-アダマンチル、(メタ)アクリル酸-3,5,8-トリエチル-1-アダマンチル、(メタ)アクリル酸-3,5-ジメチル-8-エチル-1-アダマンチル、(メタ)アクリル酸2-メチル-2-アダマンチル、(メタ)アクリル酸2-エチル-2-アダマンチル、(メタ)アクリル酸3-ヒドロキシ-1-アダマンチル、(メタ)アクリル酸オクタヒドロ-4,7-メンタノインデン-5-イル、(メタ)アクリル酸オクタヒドロ-4,7-メンタノインデン-1-イルメチル、(メタ)アクリル酸-1-メンチル、(メタ)アクリル酸トリシクロデカン、(メタ)アクリル酸-3-ヒドロキシ-2,6,6-トリメチル-ビシクロ〔3.1.1〕ヘプチル、(メタ)アクリル酸-3,7,7-トリメチル-4-ヒドロキシ-ビシクロ〔4.1.0〕ヘプチル、(メタ)アクリル酸(ノル)ボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェンチル、(メタ)アクリル酸-2,2,5-トリメチルシクロヘキシル、及び(メタ)アクリル酸シクロヘキシルが挙げられる。 Specific examples of monomers containing a group having an alicyclic structure in the side chain include monomers having a monocyclic aliphatic hydrocarbon group and monomers having a polycyclic aliphatic hydrocarbon group. Examples of monomers containing a group having an alicyclic structure in the side chain include (meth)acrylates having an alicyclic hydrocarbon group having 5 to 20 carbon atoms. More specific examples include (meth)acrylic acid (bicyclo[2.2.1]heptyl-2), (meth)acrylic acid-1-adamantyl, (meth)acrylic acid-2-adamantyl, (meth)acrylic acid-2-adamantyl; 3-methyl-1-adamantyl acrylate, 3,5-dimethyl-1-adamantyl (meth)acrylate, 3-ethyladamantyl (meth)acrylate, 3-methyl-5-(meth)acrylate Ethyl-1-adamantyl, (meth)acrylic acid-3,5,8-triethyl-1-adamantyl, (meth)acrylic acid-3,5-dimethyl-8-ethyl-1-adamantyl, (meth)acrylic acid 2 -Methyl-2-adamantyl, 2-ethyl-2-adamantyl (meth)acrylate, 3-hydroxy-1-adamantyl (meth)acrylate, octahydro-4,7-menthanoindene-5- (meth)acrylate yl, octahydro-4,7-menthanoinden-1-ylmethyl (meth)acrylate, 1-menthyl (meth)acrylate, tricyclodecane (meth)acrylate, 3-hydroxy-(meth)acrylate 2,6,6-trimethyl-bicyclo[3.1.1]heptyl, (meth)acrylic acid-3,7,7-trimethyl-4-hydroxy-bicyclo[4.1.0]heptyl, (meth)acrylic acid Examples include (nor)bornyl acid, isobornyl (meth)acrylate, fentyl (meth)acrylate, 2,2,5-trimethylcyclohexyl (meth)acrylate, and cyclohexyl (meth)acrylate.
 中でも、側鎖に脂環構造を有する基を含むモノマーは、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸(ノル)ボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸-1-アダマンチル、(メタ)アクリル酸-2-アダマンチル、(メタ)アクリル酸フェンチル、(メタ)アクリル酸1-メンチル、又は(メタ)アクリル酸トリシクロデカンが好ましく、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸(ノル)ボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸-2-アダマンチル、又は(メタ)アクリル酸トリシクロデカンがより好ましい。 Among them, monomers containing a group having an alicyclic structure in the side chain include cyclohexyl (meth)acrylate, (nor)bornyl (meth)acrylate, isobornyl (meth)acrylate, 1-adamantyl (meth)acrylate, 2-adamantyl (meth)acrylate, fentyl (meth)acrylate, 1-menthyl (meth)acrylate, or tricyclodecane (meth)acrylate is preferred, and cyclohexyl (meth)acrylate, (meth)acrylate More preferred are (nor)bornyl, isobornyl (meth)acrylate, 2-adamantyl (meth)acrylate, or tricyclodecane (meth)acrylate.
 感光性層に含まれる重合体Aは、1種であってもよく、2種以上であってもよい。 The number of polymers A contained in the photosensitive layer may be one or two or more.
 重合体Aを2種以上含む場合には、芳香族炭化水素基を有する単量体に基づく構成単位を含む重合体Aを2種類含むこと、又は芳香族炭化水素基を有する単量体に基づく構成単位を含む重合体Aと芳香族炭化水素基を有する単量体に基づく構成単位を含まない重合体Aとを含むことが好ましい。後者の場合、芳香族炭化水素基を有する単量体に基づく構成単位を含む重合体Aの割合は、重合体Aの全質量に対して、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。 When two or more types of polymer A are included, two types of polymer A containing structural units based on monomers having aromatic hydrocarbon groups, or based on monomers having aromatic hydrocarbon groups It is preferable to include a polymer A containing a structural unit and a polymer A not containing a structural unit based on a monomer having an aromatic hydrocarbon group. In the latter case, the proportion of polymer A containing structural units based on monomers having aromatic hydrocarbon groups is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total mass of polymer A. It is preferably at least 80% by mass, more preferably at least 90% by mass.
 また、感光性層は、感度、及び、解像度の観点から、架橋性基を有するアルカリ可溶性樹脂を含むことが好ましい。 Furthermore, from the viewpoint of sensitivity and resolution, the photosensitive layer preferably contains an alkali-soluble resin having a crosslinkable group.
 架橋性基は、現像性、感度、及び、解像度の観点から、重合性基であることが好ましい。 The crosslinkable group is preferably a polymerizable group from the viewpoints of developability, sensitivity, and resolution.
 重合性基としては、重合反応に関与する基であれば特に制限されず、例えば、ビニル基、(メタ)アクリロイル基、スチリル基及びマレイミド基等のエチレン性不飽和基を有する基;並びに、エポキシ基及びオキセタン基等のカチオン性重合性基を有する基が挙げられる。 The polymerizable group is not particularly limited as long as it participates in a polymerization reaction, and includes, for example, a group having an ethylenically unsaturated group such as a vinyl group, (meth)acryloyl group, styryl group, and maleimide group; and epoxy and a group having a cationic polymerizable group such as a group and an oxetane group.
 重合性基としては、エチレン性不飽和基を有する基が好ましく、アクリロイル基又はメタクリロイル基がより好ましい。 As the polymerizable group, a group having an ethylenically unsaturated group is preferable, and an acryloyl group or a methacryloyl group is more preferable.
 架橋性基を有するアルカリ可溶性樹脂は、エチレン性不飽和基を有するアクリル樹脂であることが好ましく、エチレン性不飽和基を有する構成単位を有するアクリル樹脂であることがより好ましい。 The alkali-soluble resin having a crosslinkable group is preferably an acrylic resin having an ethylenically unsaturated group, and more preferably an acrylic resin having a structural unit having an ethylenically unsaturated group.
 重合体Aの合成は、上述された単数又は複数の単量体を、アセトン、メチルエチルケトン、及びイソプロパノール等の溶剤で希釈した溶液に、過酸化ベンゾイル、及びアゾイソブチロニトリル等のラジカル重合開始剤を適量添加し、加熱攪拌することにより行われることが好ましい。混合物の一部を反応液に滴下しながら合成を行う場合もある。反応終了後、さらに溶剤を加えて、所望の濃度に調整する場合もある。合成手段としては、溶液重合以外に、塊状重合、懸濁重合、又は乳化重合を用いてもよい。 Polymer A is synthesized by adding a radical polymerization initiator such as benzoyl peroxide and azoisobutyronitrile to a solution of the monomer or plural monomers mentioned above diluted with a solvent such as acetone, methyl ethyl ketone, and isopropanol. It is preferable to add an appropriate amount of and heat and stir. In some cases, synthesis may be carried out while dropping a portion of the mixture into the reaction solution. After the reaction is completed, a solvent may be further added to adjust the concentration to a desired level. As a synthesis means, in addition to solution polymerization, bulk polymerization, suspension polymerization, or emulsion polymerization may be used.
 重合体Aのガラス転移温度Tgは、30℃~135℃が好ましい。135℃以下のTgを有する重合体Aを使用することによって、露光時の焦点位置がずれたときの線幅太りや解像度の悪化を抑制できる。この観点から、重合体AのTgは、130℃以下より好ましく、120℃以下がさらに好ましく、110℃以下が特に好ましい。また、30℃以上のTgを有する重合体Aを使用することは、耐エッジフューズ性を向上させる観点から好ましい。この観点から、重合体AのTgは、40℃以上がより好ましく、50℃以上がさらに好ましく、60℃以上が特に好ましく、70℃以上が最も好ましい。 The glass transition temperature Tg of polymer A is preferably 30°C to 135°C. By using Polymer A having a Tg of 135° C. or less, it is possible to suppress thickening of line width and deterioration of resolution when the focal position during exposure is shifted. From this viewpoint, the Tg of the polymer A is preferably 130°C or lower, more preferably 120°C or lower, and particularly preferably 110°C or lower. Further, it is preferable to use Polymer A having a Tg of 30° C. or higher from the viewpoint of improving edge fuse resistance. From this viewpoint, the Tg of the polymer A is more preferably 40°C or higher, further preferably 50°C or higher, particularly preferably 60°C or higher, and most preferably 70°C or higher.
 感光性層は、重合体Aとして、上述以外のその他の樹脂を含んでもよい。 The photosensitive layer may contain other resins than those mentioned above as the polymer A.
 その他の樹脂としては、アクリル樹脂、スチレン-アクリル系共重合体、ポリウレタン樹脂、ポリビニルアルコール、ポリビニルホルマール、ポリアミド樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリアセタール樹脂、ポリヒドロキシスチレン樹脂、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリシロキサン樹脂、ポリエチレンイミン、ポリアリルアミン、及びポリアルキレングリコールが挙げられる。 Other resins include acrylic resin, styrene-acrylic copolymer, polyurethane resin, polyvinyl alcohol, polyvinyl formal, polyamide resin, polyester resin, polyamide resin, epoxy resin, polyacetal resin, polyhydroxystyrene resin, polyimide resin, Examples include benzoxazole resins, polysiloxane resins, polyethyleneimines, polyallylamines, and polyalkylene glycols.
 重合体Aとして、後述する熱可塑性樹脂層の欄で述べるアルカリ可溶性樹脂を使用してもよい。 As the polymer A, an alkali-soluble resin described in the section of the thermoplastic resin layer below may be used.
 重合体Aの含有量は、感光性層の全質量に対して、10質量%~90質量%であることが好ましく、30質量%~70質量%であることがより好ましく、40質量%~60質量%であることがさらに好ましい。感光性層の全質量に対する重合体Aの含有量が90質量%以下であると、現像時間を制御することができるため好ましい。一方、感光性層の全質量に対する重合体Aの含有量が10質量%以上であると、耐エッジフューズ性が向上するため好ましい。 The content of polymer A is preferably 10% to 90% by mass, more preferably 30% to 70% by mass, and 40% to 60% by mass, based on the total mass of the photosensitive layer. More preferably, it is expressed in mass %. It is preferable that the content of the polymer A is 90% by mass or less based on the total mass of the photosensitive layer because the development time can be controlled. On the other hand, it is preferable that the content of the polymer A is 10% by mass or more based on the total mass of the photosensitive layer because edge fuse resistance is improved.
<重合性化合物>
 感光性層がネガ型感光性層である場合、感光性層は、重合性基を有する重合性化合物を含むことが好ましい。なお、本開示において「重合性化合物」とは、後述する重合開始剤の作用を受けて重合する化合物であって、上述した重合体Aとは異なる化合物を意味する。
<Polymerizable compound>
When the photosensitive layer is a negative photosensitive layer, it is preferable that the photosensitive layer contains a polymerizable compound having a polymerizable group. In the present disclosure, the term "polymerizable compound" refers to a compound that polymerizes under the action of a polymerization initiator, which will be described later, and which is different from the polymer A described above.
 重合性化合物が有する重合性基としては、重合反応に関与する基であれば特に制限されず、例えば、ビニル基、(メタ)アクリロイル基、スチリル基及びマレイミド基等のエチレン性不飽和基を有する基;並びに、エポキシ基及びオキセタン基等のカチオン性重合性基を有する基が挙げられる。 The polymerizable group possessed by the polymerizable compound is not particularly limited as long as it participates in the polymerization reaction, and includes, for example, ethylenically unsaturated groups such as a vinyl group, (meth)acryloyl group, styryl group, and maleimide group. group; and a group having a cationic polymerizable group such as an epoxy group and an oxetane group.
 重合性基としては、エチレン性不飽和基を有する基が好ましく、(メタ)アクリロイル基がより好ましい。 As the polymerizable group, a group having an ethylenically unsaturated group is preferable, and a (meth)acryloyl group is more preferable.
 重合性化合物としては、感光性層の感光性がより優れる点で、1つ以上のエチレン性不飽和基を有する化合物(エチレン性不飽和化合物)が好ましく、一分子中に2つ以上のエチレン性不飽和基を有する化合物(多官能エチレン性不飽和化合物)がより好ましい。 As the polymerizable compound, a compound having one or more ethylenically unsaturated groups (ethylenically unsaturated compound) is preferable, since the photosensitivity of the photosensitive layer is better. Compounds having unsaturated groups (polyfunctional ethylenically unsaturated compounds) are more preferred.
 また、解像性及び剥離性により優れる点で、エチレン性不飽和化合物が一分子中に有するエチレン性不飽和基の数は、6つ以下が好ましく、3つ以下がより好ましく、2つ以下がさらに好ましい。 In addition, in terms of better resolution and releasability, the number of ethylenically unsaturated groups in one molecule of the ethylenically unsaturated compound is preferably 6 or less, more preferably 3 or less, and 2 or less. More preferred.
 感光性層は、感光性層の感光性と解像性及び剥離性とのバランスがより優れる点で、一分子中に2つ又は3つのエチレン性不飽和基を有する2官能又は3官能エチレン性不飽和化合物を含むことが好ましく、一分子中に2つのエチレン性不飽和基を有する2官能エチレン性不飽和化合物を含むことがより好ましい。 The photosensitive layer is a difunctional or trifunctional ethylenic material having two or three ethylenically unsaturated groups in one molecule, since it has a better balance between the photosensitivity, resolution, and peelability of the photosensitive layer. It is preferable to contain an unsaturated compound, and more preferably to contain a bifunctional ethylenically unsaturated compound having two ethylenically unsaturated groups in one molecule.
 2官能エチレン性不飽和化合物の含有量は、重合性化合物の全質量に対して、剥離性に優れる観点から、20質量%以上が好ましく、40質量%超がより好ましく、55質量%以上がさらに好ましい。2官能エチレン性不飽和化合物の含有量の上限は特に制限されず、100質量%であってもよい。すなわち、重合性化合物が全て2官能エチレン性不飽和化合物であってもよい。 The content of the bifunctional ethylenically unsaturated compound is preferably 20% by mass or more, more preferably more than 40% by mass, and further preferably 55% by mass or more, based on the total mass of the polymerizable compound, from the viewpoint of excellent peelability. preferable. The upper limit of the content of the bifunctional ethylenically unsaturated compound is not particularly limited, and may be 100% by mass. That is, all of the polymerizable compounds may be difunctional ethylenically unsaturated compounds.
 また、エチレン性不飽和化合物としては、重合性基として(メタ)アクリロイル基を有する(メタ)アクリレート化合物が好ましい。 Moreover, as the ethylenically unsaturated compound, a (meth)acrylate compound having a (meth)acryloyl group as a polymerizable group is preferable.
(重合性化合物B1)
 感光性層は、芳香環及び2つのエチレン性不飽和基を有する重合性化合物B1を含むことも好ましい。重合性化合物B1は、上述した重合性化合物のうち、一分子中に1つ以上の芳香環を有する2官能エチレン性不飽和化合物である。
(Polymerizable compound B1)
It is also preferable that the photosensitive layer contains a polymerizable compound B1 having an aromatic ring and two ethylenically unsaturated groups. The polymerizable compound B1 is a bifunctional ethylenically unsaturated compound having one or more aromatic rings in one molecule among the above-mentioned polymerizable compounds.
 感光性層中、重合性化合物の全質量に対する重合性化合物B1の含有量の質量比は、解像性がより優れる観点から、40%以上が好ましく、50質量%以上がより好ましく、55質量%以上がさらに好ましく、60質量%以上が特に好ましい。上限は特に制限されないが、剥離性の観点から、例えば100質量%以下であり、99質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましく、85質量%以下が特に好ましい。 In the photosensitive layer, the mass ratio of the content of polymerizable compound B1 to the total mass of polymerizable compounds is preferably 40% or more, more preferably 50% by mass or more, and 55% by mass from the viewpoint of better resolution. The content is more preferably 60% by mass or more, particularly preferably 60% by mass or more. The upper limit is not particularly limited, but from the viewpoint of releasability, it is, for example, 100% by mass or less, preferably 99% by mass or less, more preferably 95% by mass or less, even more preferably 90% by mass or less, particularly 85% by mass or less. preferable.
 重合性化合物B1が有する芳香環としては、例えば、ベンゼン環、ナフタレン環及びアントラセン環等の芳香族炭化水素環、チオフェン環、フラン環、ピロール環、イミダゾール環、トリアゾール環及びピリジン環等の芳香族複素環、並びに、それらの縮合環が挙げられ、芳香族炭化水素環が好ましく、ベンゼン環がより好ましい。なお、上記芳香環は、置換基を有してもよい。 Examples of the aromatic ring possessed by the polymerizable compound B1 include aromatic hydrocarbon rings such as a benzene ring, naphthalene ring, and anthracene ring; aromatic rings such as a thiophene ring, a furan ring, a pyrrole ring, an imidazole ring, a triazole ring, and a pyridine ring; Examples include heterocycles and fused rings thereof, with aromatic hydrocarbon rings being preferred and benzene rings being more preferred. Note that the aromatic ring may have a substituent.
 重合性化合物B1は、芳香環を1つのみ有してもよく、2つ以上の芳香環を有してもよい。 The polymerizable compound B1 may have only one aromatic ring, or may have two or more aromatic rings.
 重合性化合物B1は、現像液による感光性層の膨潤を抑制することにより、解像性が向上する観点から、ビスフェノール構造を有することが好ましい。 The polymerizable compound B1 preferably has a bisphenol structure from the viewpoint of improving resolution by suppressing swelling of the photosensitive layer by the developer.
 ビスフェノール構造としては、例えば、ビスフェノールA(2,2-ビス(4-ヒドロキシフェニル)プロパン)に由来するビスフェノールA構造、ビスフェノールF(2,2-ビス(4-ヒドロキシフェニル)メタン)に由来するビスフェノールF構造、及びビスフェノールB(2,2-ビス(4-ヒドロキシフェニル)ブタン)に由来するビスフェノールB構造が挙げられ、ビスフェノールA構造が好ましい。 Examples of bisphenol structures include bisphenol A structure derived from bisphenol A (2,2-bis(4-hydroxyphenyl)propane) and bisphenol A structure derived from bisphenol F (2,2-bis(4-hydroxyphenyl)methane). F structure and bisphenol B structure derived from bisphenol B (2,2-bis(4-hydroxyphenyl)butane), and bisphenol A structure is preferred.
 ビスフェノール構造を有する重合性化合物B1としては、例えば、ビスフェノール構造と、そのビスフェノール構造の両端に結合した2つの重合性基(好ましくは(メタ)アクリロイル基)とを有する化合物が挙げられる。 Examples of the polymerizable compound B1 having a bisphenol structure include a compound having a bisphenol structure and two polymerizable groups (preferably (meth)acryloyl groups) bonded to both ends of the bisphenol structure.
 ビスフェノール構造の両端と2つの重合性基とは、直接結合してもよく、1つ以上のアルキレンオキシ基を介して結合してもよい。ビスフェノール構造の両端に付加するアルキレンオキシ基としては、エチレンオキシ基又はプロピレンオキシ基が好ましく、エチレンオキシ基がより好ましい。ビスフェノール構造に付加するアルキレンオキシ基の付加数は特に制限されないが、1分子あたり4個~16個が好ましく、6個~14個がより好ましい。 Both ends of the bisphenol structure and the two polymerizable groups may be bonded directly or via one or more alkyleneoxy groups. The alkyleneoxy group added to both ends of the bisphenol structure is preferably an ethyleneoxy group or a propyleneoxy group, and more preferably an ethyleneoxy group. The number of alkyleneoxy groups added to the bisphenol structure is not particularly limited, but is preferably 4 to 16, more preferably 6 to 14 per molecule.
 ビスフェノール構造を有する重合性化合物B1については、特開2016-224162号公報の段落0072~0080に記載されており、この公報に記載の内容は本明細書に組み込まれる。 The polymerizable compound B1 having a bisphenol structure is described in paragraphs 0072 to 0080 of JP-A-2016-224162, and the contents of this publication are incorporated herein.
 重合性化合物B1としては、ビスフェノールA構造を有する2官能エチレン性不飽和化合物が好ましく、2,2-ビス(4-((メタ)アクリロキシポリアルコキシ)フェニル)プロパンがより好ましい。
 2,2-ビス(4-((メタ)アクリロキシポリアルコキシ)フェニル)プロパンとしては、例えば、2,2-ビス(4-(メタクリロキシジエトキシ)フェニル)プロパン(FA-324M、日立化成社製)、2,2-ビス(4-(メタクリロキシエトキシプロポキシ)フェニル)プロパン、エトキシ化ビスフェノールAジメタクリレート(NKエステルBPE-500、エチレンオキサイド鎖の平均繰り返し数10、新中村化学工業社製)、2,2-ビス(4-(メタクリロキシドデカエトキシテトラプロポキシ)フェニル)プロパン(FA-3200MY、日立化成社製)、エトキシ化ビスフェノールAジメタクリレート(NKエステルBPE-1300N、エチレンオキサイド鎖の平均繰り返し数30、新中村化学工業社製)、エトキシ化ビスフェノールAジメタクリレート(NKエステルBPE-200、エチレンオキサイド鎖の平均繰り返し数4、新中村化学工業社製)、エトキシ化ビスフェノールAジメタクリレート(NKエステルBPE-100、エチレンオキサイド鎖の平均繰り返し数2.6、新中村化学工業社製)、及びエトキシ化ビスフェノールAジアクリレート(NKエステルA-BPE-10、エチレンオキサイド鎖の平均繰り返し数10、新中村化学工業社製)が挙げられる。
As the polymerizable compound B1, a bifunctional ethylenically unsaturated compound having a bisphenol A structure is preferable, and 2,2-bis(4-((meth)acryloxypolyalkoxy)phenyl)propane is more preferable.
As the 2,2-bis(4-((meth)acryloxypolyalkoxy)phenyl)propane, for example, 2,2-bis(4-(methacryloxydiethoxy)phenyl)propane (FA-324M, Hitachi Chemical Co., Ltd. ), 2,2-bis(4-(methacryloxyethoxypropoxy)phenyl)propane, ethoxylated bisphenol A dimethacrylate (NK ester BPE-500, average repeating number of ethylene oxide chains 10, manufactured by Shin Nakamura Chemical Co., Ltd.) , 2,2-bis(4-(methacryloxidedecaethoxytetrapropoxy)phenyl)propane (FA-3200MY, manufactured by Hitachi Chemical Co., Ltd.), ethoxylated bisphenol A dimethacrylate (NK ester BPE-1300N, average repetition of ethylene oxide chains) 30, manufactured by Shin Nakamura Chemical Industries, Ltd.), ethoxylated bisphenol A dimethacrylate (NK ester BPE-200, average repeating number of ethylene oxide chains 4, manufactured by Shin Nakamura Chemical Industries, Ltd.), ethoxylated bisphenol A dimethacrylate (NK ester) BPE-100, average repeating number of ethylene oxide chains 2.6, manufactured by Shin Nakamura Chemical Co., Ltd.), and ethoxylated bisphenol A diacrylate (NK ester A-BPE-10, average repeating number of ethylene oxide chains 10, Shin Nakamura) (manufactured by Kagaku Kogyo Co., Ltd.).
 重合性化合物B1としては、下記一般式(B1)で表される化合物も好ましい。 As the polymerizable compound B1, a compound represented by the following general formula (B1) is also preferable.
 一般式(B1)中、R及びRは、それぞれ独立に、水素原子又はメチル基を表す。AはCを表す。BはCを表す。n1及びn3は各々独立に1~39の整数であり、かつ、n1+n3は2~40の整数である。n2及びn4は各々独立に0~29の整数であり、かつ、n2+n4は0~30の整数である。-(A-O)-及び-(B-O)-の構成単位の配列は、ランダムであってもブロックであってもよい。そして、ブロックの場合、-(A-O)-と-(B-O)-とのいずれがビスフェノール基側でもよい。 In general formula (B1), R 1 and R 2 each independently represent a hydrogen atom or a methyl group. A represents C2H4 . B represents C3H6 . n1 and n3 are each independently an integer of 1 to 39, and n1+n3 is an integer of 2 to 40. n2 and n4 are each independently an integer of 0 to 29, and n2+n4 is an integer of 0 to 30. The arrangement of the constituent units of -(AO)- and -(BO)- may be random or block. In the case of a block, either -(AO)- or -(BO)- may be on the bisphenol group side.
 一態様において、n1+n2+n3+n4は、2~20が好ましく、2~16がより好ましく、4~12がさらに好ましい。また、n2+n4は、0~10が好ましく、0~4がより好ましく、0~2がさらに好ましく、0が特に好ましい。 In one embodiment, n1+n2+n3+n4 is preferably 2 to 20, more preferably 2 to 16, and even more preferably 4 to 12. Further, n2+n4 is preferably 0 to 10, more preferably 0 to 4, even more preferably 0 to 2, and particularly preferably 0.
 感光性層に含まれる重合性化合物B1は、1種であってもよく、2種以上であってもよい。 The number of polymerizable compounds B1 contained in the photosensitive layer may be one, or two or more.
 重合性化合物B1の含有量は、解像性がより優れる観点から、感光性層の全質量に対して、10質量%以上が好ましく、20質量%以上がより好ましい。上限は特に制限されないが、転写性及びエッジフュージョン(転写部材の端部から感光性樹脂が滲み出す現象)の観点から、70質量%以下が好ましく、60質量%以下がより好ましい。 From the viewpoint of better resolution, the content of the polymerizable compound B1 is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total mass of the photosensitive layer. The upper limit is not particularly limited, but from the viewpoint of transferability and edge fusion (a phenomenon in which the photosensitive resin oozes out from the edge of the transfer member), it is preferably 70% by mass or less, and more preferably 60% by mass or less.
 感光性層は、上述した重合性化合物B1以外の重合性化合物を含んでもよい。
 重合性化合物B1以外の重合性化合物は、特に制限されず、公知の化合物の中から適宜選択できる。例えば、一分子中に1つのエチレン性不飽和基を有する化合物(単官能エチレン性不飽和化合物)、芳香環を有さない2官能エチレン性不飽和化合物、及び3官能以上のエチレン性不飽和化合物が挙げられる。
The photosensitive layer may contain a polymerizable compound other than the above-mentioned polymerizable compound B1.
Polymerizable compounds other than polymerizable compound B1 are not particularly limited, and can be appropriately selected from known compounds. For example, compounds that have one ethylenically unsaturated group in one molecule (monofunctional ethylenically unsaturated compounds), bifunctional ethylenically unsaturated compounds that do not have an aromatic ring, and trifunctional or higher functional ethylenically unsaturated compounds. can be mentioned.
 単官能エチレン性不飽和化合物としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルサクシネート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、及びフェノキシエチル(メタ)アクリレートが挙げられる。 Examples of monofunctional ethylenically unsaturated compounds include ethyl (meth)acrylate, ethylhexyl (meth)acrylate, 2-(meth)acryloyloxyethyl succinate, polyethylene glycol mono(meth)acrylate, and polypropylene glycol mono(meth)acrylate. , and phenoxyethyl (meth)acrylate.
 芳香環を有さない2官能エチレン性不飽和化合物としては、例えば、アルキレングリコールジ(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレート、ウレタンジ(メタ)アクリレート、及びトリメチロールプロパンジアクリレートが挙げられる。 Examples of bifunctional ethylenically unsaturated compounds having no aromatic ring include alkylene glycol di(meth)acrylate, polyalkylene glycol di(meth)acrylate, urethane di(meth)acrylate, and trimethylolpropane diacrylate. .
 アルキレングリコールジ(メタ)アクリレートとしては、例えば、トリシクロデカンジメタノールジアクリレート(A-DCP、新中村化学工業社製)、トリシクロデカンジメタノールジメタクリレート(DCP、新中村化学工業社製)、1,9-ノナンジオールジアクリレート(A-NOD-N、新中村化学工業社製)、1,6-ヘキサンジオールジアクリレート(A-HD-N、新中村化学工業社製)、エチレングリコールジメタクリレート、1,10-デカンジオールジアクリレート、及びネオペンチルグリコールジ(メタ)アクリレートが挙げられる。 Examples of the alkylene glycol di(meth)acrylate include tricyclodecane dimethanol diacrylate (A-DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), tricyclodecane dimethanol dimethacrylate (DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), 1,9-nonanediol diacrylate (A-NOD-N, manufactured by Shin Nakamura Chemical Co., Ltd.), 1,6-hexanediol diacrylate (A-HD-N, manufactured by Shin Nakamura Chemical Co., Ltd.), ethylene glycol dimethacrylate , 1,10-decanediol diacrylate, and neopentyl glycol di(meth)acrylate.
 ポリアルキレングリコールジ(メタ)アクリレートとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、及びポリプロピレングリコールジ(メタ)アクリレートが挙げられる。 Examples of the polyalkylene glycol di(meth)acrylate include polyethylene glycol di(meth)acrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, and polypropylene glycol di(meth)acrylate.
 ウレタンジ(メタ)アクリレートとしては、例えば、プロピレンオキサイド変性ウレタンジ(メタ)アクリレート、並びに、エチレンオキサイド及びプロピレンオキサイド変性ウレタンジ(メタ)アクリレートが挙げられる。市販品としては、例えば、8UX-015A(大成ファインケミカル社製)、UA-32P(新中村化学工業社製)、及びUA-1100H(新中村化学工業社製)が挙げられる。 Examples of the urethane di(meth)acrylate include propylene oxide-modified urethane di(meth)acrylate, and ethylene oxide and propylene oxide-modified urethane di(meth)acrylate. Commercially available products include, for example, 8UX-015A (manufactured by Taisei Fine Chemical Co., Ltd.), UA-32P (manufactured by Shin Nakamura Chemical Co., Ltd.), and UA-1100H (manufactured by Shin Nakamura Chemical Co., Ltd.).
 2官能エチレン性不飽和化合物の含有量は、解像性、レジスト剥離性がより優れる観点から、ネガ型感光性層の全質量に対して、20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましい。上限は、転写性及びエッジフュージョン(転写部材の端部から感光性組成物が滲み出す現象)の観点から、70質量%以下が好ましく、60質量%以下がより好ましい。 The content of the bifunctional ethylenically unsaturated compound is preferably 20% by mass or more, more preferably 30% by mass or more based on the total mass of the negative photosensitive layer, from the viewpoint of better resolution and resist removability. It is preferably 40% by mass or more, and more preferably 40% by mass or more. The upper limit is preferably 70% by mass or less, more preferably 60% by mass or less, from the viewpoint of transferability and edge fusion (a phenomenon in which the photosensitive composition oozes out from the edge of the transfer member).
 2官能エチレン性不飽和化合物の含有量は、解像性、レジスト剥離性がより優れる観点から、エチレン性不飽和基を有する重合性化合物の全質量に対して、40質量%以上が好ましく、60質量%以上がより好ましく、80質量%以上がさらに好ましい。上限は、転写性及びエッジフュージョン(転写フィルムの端部から感光性組成物が滲み出す現象)の観点から、100質量%以下が好ましく、90質量%以下がより好ましい。 The content of the bifunctional ethylenically unsaturated compound is preferably 40% by mass or more, based on the total mass of the polymerizable compound having an ethylenically unsaturated group, from the viewpoint of better resolution and resist removability. It is more preferably at least 80% by mass, and even more preferably at least 80% by mass. The upper limit is preferably 100% by mass or less, more preferably 90% by mass or less, from the viewpoints of transferability and edge fusion (a phenomenon in which the photosensitive composition oozes out from the edges of the transfer film).
 3官能以上のエチレン性不飽和化合物としては、例えば、ジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート、ペンタエリスリトール(トリ/テトラ)(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、及びこれらのアルキレンオキサイド変性物が挙げられる。 Examples of trifunctional or more ethylenically unsaturated compounds include dipentaerythritol (tri/tetra/penta/hexa) (meth)acrylate, pentaerythritol (tri/tetra)(meth)acrylate, trimethylolpropane tri(meth) Examples include acrylate, ditrimethylolpropane tetra(meth)acrylate, trimethylolethane tri(meth)acrylate, isocyanuric acid tri(meth)acrylate, glycerin tri(meth)acrylate, and alkylene oxide modified products thereof.
 ここで、「(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート」は、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、及びヘキサ(メタ)アクリレートを包含する概念であり、「(トリ/テトラ)(メタ)アクリレート」は、トリ(メタ)アクリレート及びテトラ(メタ)アクリレートを包含する概念である。 Here, "(tri/tetra/penta/hexa)(meth)acrylate" is a concept that includes tri(meth)acrylate, tetra(meth)acrylate, penta(meth)acrylate, and hexa(meth)acrylate. , "(tri/tetra)(meth)acrylate" is a concept that includes tri(meth)acrylate and tetra(meth)acrylate.
 一態様において、感光性層は、上述した重合性化合物B1及び3官能以上のエチレン性不飽和化合物を含むことも好ましく、上述した重合性化合物B1及び2種以上の3官能以上のエチレン性不飽和化合物を含むことがより好ましい。この場合、重合性化合物B1と3官能以上のエチレン性不飽和化合物の質量比は、(重合性化合物B1の合計質量):(3官能以上のエチレン性不飽和化合物の合計質量)=1:1~5:1が好ましく、1.2:1~4:1がより好ましく、1.5:1~3:1がさらに好ましい。 In one embodiment, the photosensitive layer preferably contains the above-mentioned polymerizable compound B1 and a trifunctional or higher functional ethylenically unsaturated compound, and the above-mentioned polymerizable compound B1 and two or more trifunctional or higher functional ethylenically unsaturated compounds It is more preferable to include a compound. In this case, the mass ratio of the polymerizable compound B1 and the trifunctional or higher functional ethylenically unsaturated compound is (total mass of the polymerizable compound B1):(total mass of the trifunctional or higher functional ethylenically unsaturated compound) = 1:1 ~5:1 is preferred, 1.2:1 ~ 4:1 is more preferred, and 1.5:1 ~ 3:1 is even more preferred.
 また、一態様において、感光性層は、上述した重合性化合物B1及び2種以上の3官能のエチレン性不飽和化合物を含むことが好ましい。 Furthermore, in one embodiment, the photosensitive layer preferably contains the above-mentioned polymerizable compound B1 and two or more trifunctional ethylenically unsaturated compounds.
 3官能以上のエチレン性不飽和化合物のアルキレンオキサイド変性物としては、例えば、カプロラクトン変性(メタ)アクリレート化合物(日本化薬社製KAYARAD(登録商標)DPCA-20、新中村化学工業社製A-9300-1CL等)、アルキレンオキサイド変性(メタ)アクリレート化合物(日本化薬社製KAYARAD RP-1040、新中村化学工業社製ATM-35E及びA-9300、ダイセル・オルネクス社製EBECRYL(登録商標) 135等)、エトキシル化グリセリントリアクリレート(新中村化学工業社製A-GLY-9E等)、アロニックス(登録商標)TO-2349(東亞合成社製)、アロニックスM-520(東亞合成社製)、及びアロニックスM-510(東亞合成社製)が挙げられる。 Examples of alkylene oxide-modified compounds of trifunctional or higher-functional ethylenically unsaturated compounds include caprolactone-modified (meth)acrylate compounds (KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku Co., Ltd., A-9300 manufactured by Shin Nakamura Chemical Co., Ltd. -1CL, etc.), alkylene oxide-modified (meth)acrylate compounds (KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E and A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd., EBECRYL (registered trademark) 135 manufactured by Daicel Allnex Co., Ltd., etc.) ), ethoxylated glycerin triacrylate (A-GLY-9E, etc. manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix M-520 (manufactured by Toagosei Co., Ltd.), and Aronix M-510 (manufactured by Toagosei Co., Ltd.) is mentioned.
 また、重合性化合物として、酸基(カルボキシ基等)を有する重合性化合物を使用してもよい。上記酸基は酸無水物基を形成していてもよい。酸基を有する重合性化合物としては、アロニックス(登録商標)TO-2349(東亞合成社製)、アロニックス(登録商標)M-520(東亞合成社製)、及びアロニックス(登録商標)M-510(東亞合成社製)が挙げられる。 Furthermore, as the polymerizable compound, a polymerizable compound having an acid group (carboxy group, etc.) may be used. The above acid group may form an acid anhydride group. Examples of the polymerizable compound having an acid group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix (registered trademark) M-520 (manufactured by Toagosei Co., Ltd.), and Aronix (registered trademark) M-510 (manufactured by Toagosei Co., Ltd.). manufactured by Toagosei Co., Ltd.).
 酸基を有する重合性化合物として、例えば、特開2004-239942号公報の段落0025~0030に記載の酸基を有する重合性化合物を用いてもよい。 As the polymerizable compound having an acid group, for example, the polymerizable compounds having an acid group described in paragraphs 0025 to 0030 of JP-A No. 2004-239942 may be used.
 感光性層に含まれる重合性化合物は、1種であってもよく、2種以上であってもよい。 The number of polymerizable compounds contained in the photosensitive layer may be one, or two or more.
 重合性化合物の含有量は、感光性層の全質量に対し、10質量%~70質量%が好ましく、15質量%~70質量%がより好ましく、20質量%~70質量%がさらに好ましい。 The content of the polymerizable compound is preferably 10% by mass to 70% by mass, more preferably 15% by mass to 70% by mass, and even more preferably 20% by mass to 70% by mass, based on the total mass of the photosensitive layer.
 重合性化合物(重合性化合物B1を含む)の分子量(分子量分布を有する場合は重量平均分子量)としては、200~3,000が好ましく、280~2,200がより好ましく、300~2,200がさらに好ましい。 The molecular weight (weight average molecular weight if it has a molecular weight distribution) of the polymerizable compound (including polymerizable compound B1) is preferably 200 to 3,000, more preferably 280 to 2,200, and 300 to 2,200. More preferred.
<重合開始剤>
 感光性層がネガ型感光性層である場合、感光性層は、重合開始剤を含むことも好ましい。
<Polymerization initiator>
When the photosensitive layer is a negative photosensitive layer, it is also preferable that the photosensitive layer contains a polymerization initiator.
 重合開始剤は重合反応の形式に応じて選択され、例えば、熱重合開始剤、及び光重合開始剤が挙げられる。
 重合開始剤は、ラジカル重合開始剤でもカチオン重合開始剤でもよい。
The polymerization initiator is selected depending on the type of polymerization reaction, and includes, for example, a thermal polymerization initiator and a photopolymerization initiator.
The polymerization initiator may be a radical polymerization initiator or a cationic polymerization initiator.
 感光性層は、光重合開始剤を含むことが好ましい。
 光重合開始剤は、紫外線、可視光線及びX線等の活性光線を受けて、重合性化合物の重合を開始する化合物である。光重合開始剤としては、特に制限されず、公知の光重合開始剤を使用できる。
It is preferable that the photosensitive layer contains a photopolymerization initiator.
A photopolymerization initiator is a compound that initiates polymerization of a polymerizable compound upon receiving actinic rays such as ultraviolet rays, visible rays, and X-rays. The photopolymerization initiator is not particularly limited, and any known photopolymerization initiator can be used.
 光重合開始剤としては、例えば、光ラジカル重合開始剤及び光カチオン重合開始剤が挙げられ、光ラジカル重合開始剤が好ましい。 Examples of the photopolymerization initiator include radical photopolymerization initiators and cationic photopolymerization initiators, with radical photopolymerization initiators being preferred.
 光ラジカル重合開始剤としては、例えば、オキシムエステル構造を有する光重合開始剤、α-アミノアルキルフェノン構造を有する光重合開始剤、α-ヒドロキシアルキルフェノン構造を有する光重合開始剤、アシルフォスフィンオキサイド構造を有する光重合開始剤、及びN-フェニルグリシン構造を有する光重合開始剤が挙げられる。 Examples of the radical photopolymerization initiator include a photopolymerization initiator having an oxime ester structure, a photopolymerization initiator having an α-aminoalkylphenone structure, a photopolymerization initiator having an α-hydroxyalkylphenone structure, and acylphosphine oxide. Examples include a photopolymerization initiator having a structure and a photopolymerization initiator having an N-phenylglycine structure.
 また、感光性層は、感光性、露光部及び非露光部の視認性、及び解像性の観点から、光ラジカル重合開始剤として、2,4,5-トリアリールイミダゾール二量体及びその誘導体からなる群より選択される少なくとも1種を含むことが好ましい。なお、2,4,5-トリアリールイミダゾール二量体及びその誘導体における2つの2,4,5-トリアリールイミダゾール構造は、同一であっても異なっていてもよい。 In addition, from the viewpoint of photosensitivity, visibility of exposed areas and non-exposed areas, and resolution, the photosensitive layer uses 2,4,5-triarylimidazole dimer and its derivatives as a photoradical polymerization initiator. It is preferable to include at least one selected from the group consisting of: Note that the two 2,4,5-triarylimidazole structures in the 2,4,5-triarylimidazole dimer and its derivatives may be the same or different.
 2,4,5-トリアリールイミダゾール二量体の誘導体としては、例えば、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、及び2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体が挙げられる。 Examples of derivatives of 2,4,5-triarylimidazole dimer include 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer and 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer. (methoxyphenyl)imidazole dimer, 2-(o-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(o-methoxyphenyl)-4,5-diphenylimidazole dimer, and 2- (p-methoxyphenyl)-4,5-diphenylimidazole dimer.
 光ラジカル重合開始剤としては、例えば、特開2011-95716号公報の段落0031~0042、特開2015-14783号公報の段落0064~0081に記載された重合開始剤を用いてもよい。 As the photoradical polymerization initiator, for example, the polymerization initiators described in paragraphs 0031 to 0042 of JP-A No. 2011-95716 and paragraphs 0064 to 0081 of JP-A No. 2015-14783 may be used.
 光ラジカル重合開始剤としては、例えば、ジメチルアミノ安息香酸エチル(DBE、CAS No.10287-53-3)、ベンゾインメチルエーテル、アニシル(p,p’-ジメトキシベンジル)、TAZ-110(商品名:みどり化学社製)、ベンゾフェノン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン、TAZ-111(商品名:みどり化学社製)、IrgacureOXE01、OXE02、OXE03、OXE04(BASF社製)、Omnirad651及び369(商品名:IGM Resins B.V.社製)、及び2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール(東京化成工業社製)が挙げられる。 Examples of photoradical polymerization initiators include ethyl dimethylaminobenzoate (DBE, CAS No. 10287-53-3), benzoin methyl ether, anisyl (p,p'-dimethoxybenzyl), and TAZ-110 (trade name: Midori Kagaku Co., Ltd.), benzophenone, 4,4'-bis(diethylamino)benzophenone, TAZ-111 (product name: Midori Kagaku Co., Ltd.), Irgacure OXE01, OXE02, OXE03, OXE04 (BASF Co., Ltd.), Omnirad651 and 369 (product name: Midori Kagaku Co., Ltd.) Name: IGM Resins manufactured by B.V.), and 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole (Tokyo Chemical Industry Co., Ltd.) ).
 光ラジカル重合開始剤の市販品としては、例えば、1-[4-(フェニルチオ)]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)(商品名:IRGACURE(登録商標) OXE-01、BASF社製)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)(商品名:IRGACURE OXE-02、BASF社製)、IRGACURE OXE-03(BASF社製)、IRGACURE OXE-04(BASF社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタノン(商品名:Omnirad 379EG、IGM Resins B.V.製)、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(商品名:Omnirad 907、IGM Resins B.V.製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン(商品名:Omnirad 127、IGM Resins B.V.製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1(商品名:Omnirad 369、IGM Resins B.V.製)、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名:Omnirad 1173、IGM Resins B.V.製)、1-ヒドロキシシクロヘキシルフェニルケトン(商品名:Omnirad 184、IGM Resins B.V.製)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名:Omnirad 651、IGM Resins B.V.製)、2,4,6-トリメチルベンゾリル-ジフェニルフォスフィンオキサイド(商品名:Omnirad TPO H、IGM Resins B.V.製)、ビス(2,4,6-トリメチルベンゾリル)フェニルフォスフィンオキサイド(商品名:Omnirad 819、IGM Resins B.V.製)、オキシムエステル系の光重合開始剤(商品名:Lunar 6、DKSHジャパン社製)、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビスイミダゾール(2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール二量体)(商品名:B-CIM、Hampford社製)、及び2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体(商品名:BCTB、東京化成工業社製)、1-[4-(フェニルチオ)フェニル]-3-シクロペンチルプロパン-1,2-ジオン-2-(O-ベンゾイルオキシム)(商品名:TR-PBG-305、常州強力電子新材料社製)、1,2-プロパンジオン,3-シクロヘキシル-1-[9-エチル-6-(2-フラニルカルボニル)-9H-カルバゾール-3-イル]-,2-(O-アセチルオキシム)(商品名:TR-PBG-326、常州強力電子新材料社製)、及び3-シクロヘキシル-1-(6-(2-(ベンゾイルオキシイミノ)ヘキサノイル)-9-エチル-9H-カルバゾール-3-イル)-プロパン-1,2-ジオン-2-(O-ベンゾイルオキシム)(商品名:TR-PBG-391、常州強力電子新材料社製)が挙げられる。 As a commercially available photoradical polymerization initiator, for example, 1-[4-(phenylthio)]-1,2-octanedione-2-(O-benzoyloxime) (trade name: IRGACURE (registered trademark) OXE-01 , manufactured by BASF), 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone-1-(O-acetyloxime) (product name: IRGACURE OXE-02, BASF ), IRGACURE OXE-03 (manufactured by BASF), IRGACURE OXE-04 (manufactured by BASF), 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4 -morpholinyl)phenyl]-1-butanone (trade name: Omnirad 379EG, manufactured by IGM Resins B.V.), 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (trade name) : Omnirad 907, manufactured by IGM Resins B.V.), 2-hydroxy-1-{4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl}-2-methylpropan-1-one (product Name: Omnirad 127, manufactured by IGM Resins B.V.), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone-1 (Product name: Omnirad 369, manufactured by IGM Resins B.V.) , 2-hydroxy-2-methyl-1-phenylpropan-1-one (trade name: Omnirad 1173, manufactured by IGM Resins B.V.), 1-hydroxycyclohexylphenyl ketone (trade name: Omnirad 184, manufactured by IGM Resins B.V.). (manufactured by B.V.), 2,2-dimethoxy-1,2-diphenylethan-1-one (product name: Omnirad 651, IGM Resins manufactured by B.V.), 2,4,6-trimethylbenzolyl-diphenylphosphine oxide (product name: Omnirad TPO H, manufactured by IGM Resins B.V.), bis(2,4,6-trimethylbenzolyl) phenylphosphine oxide (product name: Omnirad 819, manufactured by IGM Resins B.V.), Oxime ester photopolymerization initiator (product name: Lunar 6, manufactured by DKSH Japan), 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenylbisimidazole (2- (2-chlorophenyl)-4,5-diphenylimidazole dimer) (trade name: B-CIM, manufactured by Hampford), and 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer (trade name: : BCTB, manufactured by Tokyo Kasei Kogyo Co., Ltd.), 1-[4-(phenylthio)phenyl]-3-cyclopentylpropane-1,2-dione-2-(O-benzoyloxime) (trade name: TR-PBG-305, (manufactured by Changzhou Strong Electronics New Materials Co., Ltd.), 1,2-propanedione, 3-cyclohexyl-1-[9-ethyl-6-(2-furanylcarbonyl)-9H-carbazol-3-yl]-,2-( O-acetyloxime) (trade name: TR-PBG-326, manufactured by Changzhou Strong Electronics New Materials Co., Ltd.), and 3-cyclohexyl-1-(6-(2-(benzoyloxyimino)hexanoyl)-9-ethyl-9H -carbazol-3-yl)-propane-1,2-dione-2-(O-benzoyloxime) (trade name: TR-PBG-391, manufactured by Changzhou Strong Electronics New Materials Co., Ltd.).
 光カチオン重合開始剤(光酸発生剤)は、活性光線を受けて酸を発生する化合物である。光カチオン重合開始剤としては、波長300nm以上、好ましくは波長300~450nmの活性光線に感応し、酸を発生する化合物が好ましいが、その化学構造は制限されない。また、波長300nm以上の活性光線に直接感応しない光カチオン重合開始剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生する化合物であれば、増感剤と組み合わせて好ましく使用できる。 A photocationic polymerization initiator (photoacid generator) is a compound that generates acid upon receiving actinic rays. The photocationic polymerization initiator is preferably a compound that is sensitive to actinic rays with a wavelength of 300 nm or more, preferably 300 to 450 nm, and generates an acid, but its chemical structure is not limited. In addition, even for photocationic polymerization initiators that are not directly sensitive to actinic rays with a wavelength of 300 nm or more, if the compound is sensitive to actinic rays with a wavelength of 300 nm or more and generates acid when used in combination with a sensitizer, the sensitizer can be used as a sensitizer. It can be preferably used in combination with
 光カチオン重合開始剤としては、pKaが4以下の酸を発生する光カチオン重合開始剤が好ましく、pKaが3以下の酸を発生する光カチオン重合開始剤がより好ましく、pKaが2以下の酸を発生する光カチオン重合開始剤が特に好ましい。pKaの下限値は特に定めないが、例えば、-10.0以上が好ましい。 As the photocationic polymerization initiator, a photocationic polymerization initiator that generates an acid with a pKa of 4 or less is preferable, a photocationic polymerization initiator that generates an acid with a pKa of 3 or less is more preferable, and a photocationic polymerization initiator that generates an acid with a pKa of 2 or less is preferable. Particularly preferred are photocationic polymerization initiators that are generated. Although the lower limit of pKa is not particularly determined, it is preferably -10.0 or more, for example.
 光カチオン重合開始剤としては、イオン性光カチオン重合開始剤及び非イオン性光カチオン重合開始剤が挙げられる。 Examples of the cationic photopolymerization initiator include ionic cationic photopolymerization initiators and nonionic cationic photopolymerization initiators.
 イオン性光カチオン重合開始剤として、例えば、ジアリールヨードニウム塩類及びトリアリールスルホニウム塩類等のオニウム塩化合物、並びに、第4級アンモニウム塩類が挙げられる。 Examples of the ionic photocationic polymerization initiator include onium salt compounds such as diaryliodonium salts and triarylsulfonium salts, and quaternary ammonium salts.
 イオン性光カチオン重合開始剤としては、特開2014-085643号公報の段落0114~0133に記載のイオン性光カチオン重合開始剤を用いてもよい。 As the ionic photocationic polymerization initiator, the ionic photocationic polymerization initiator described in paragraphs 0114 to 0133 of JP 2014-085643A may be used.
 非イオン性光カチオン重合開始剤としては、例えば、トリクロロメチル-s-トリアジン類、ジアゾメタン化合物、イミドスルホネート化合物、及びオキシムスルホネート化合物が挙げられる。トリクロロメチル-s-トリアジン類、ジアゾメタン化合物及びイミドスルホネート化合物としては、特開2011-221494号公報の段落0083~0088に記載の化合物を用いてもよい。また、オキシムスルホネート化合物としては、国際公開第2018/179640号の段落0084~0088に記載された化合物を用いてもよい。 Examples of the nonionic photocationic polymerization initiator include trichloromethyl-s-triazines, diazomethane compounds, imidosulfonate compounds, and oxime sulfonate compounds. As the trichloromethyl-s-triazines, diazomethane compounds, and imidosulfonate compounds, compounds described in paragraphs 0083 to 0088 of JP-A No. 2011-221494 may be used. Furthermore, as the oxime sulfonate compound, compounds described in paragraphs 0084 to 0088 of International Publication No. 2018/179640 may be used.
 感光性層は、光ラジカル重合開始剤を含むことが好ましく、2,4,5-トリアリールイミダゾール二量体及びその誘導体からなる群より選択される少なくとも1種を含むことがより好ましい。 The photosensitive layer preferably contains a photoradical polymerization initiator, and more preferably contains at least one selected from the group consisting of 2,4,5-triarylimidazole dimers and derivatives thereof.
 感光性層に含まれる重合開始剤は、1種であってもよく、2種以上であってもよい。 The number of polymerization initiators contained in the photosensitive layer may be one, or two or more.
 重合開始剤(好ましくは光重合開始剤)の含有量は、特に制限されないが、感光性層の全質量に対し、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましい。上限は特に制限されないが、ネガ型感光性層の全質量に対し、20質量%以下が好ましく、15質量%以下がさらに好ましく、10質量%以下がより好ましい。 The content of the polymerization initiator (preferably photopolymerization initiator) is not particularly limited, but is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and 1% by mass or more based on the total mass of the photosensitive layer. More preferably, the content is .0% by mass or more. The upper limit is not particularly limited, but is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less, based on the total mass of the negative photosensitive layer.
<色素>
 感光性層は、露光部及び非露光部の視認性、現像後のパターン視認性、及び解像性の観点から、発色時の波長範囲400nm~780nmにおける最大吸収波長が450nm以上であり、かつ、酸、塩基、又はラジカルにより最大吸収波長が変化する色素(「色素N」ともいう)を含むことも好ましい。色素Nを含むと、詳細なメカニズムは不明であるが、隣接する層(例えば、中間層)との密着性が向上し、解像性により優れる。
<Pigment>
The photosensitive layer has a maximum absorption wavelength of 450 nm or more in a wavelength range of 400 nm to 780 nm during color development, from the viewpoint of visibility of exposed areas and unexposed areas, pattern visibility after development, and resolution, and, It is also preferable to include a dye (also referred to as "dye N") whose maximum absorption wavelength changes depending on the acid, base, or radical. When dye N is included, although the detailed mechanism is unknown, adhesion with adjacent layers (for example, intermediate layer) is improved, resulting in better resolution.
 本開示において、色素が「酸、塩基、又はラジカルにより極大吸収波長が変化する」とは、発色状態にある色素が酸、塩基、又はラジカルにより消色する態様、消色状態にある色素が酸、塩基、又はラジカルにより発色する態様、及び発色状態にある色素が他の色相の発色状態に変化する態様のいずれの態様を意味してもよい。 In this disclosure, the phrase "the maximum absorption wavelength of a dye changes due to an acid, a base, or a radical" refers to a state in which a dye in a colored state is decolored by an acid, a base, or a radical, and a state in which a dye in a decolored state is decolored by an acid, a base, or a radical. , a base, or a radical, and an aspect in which a dye in a coloring state changes to a coloring state of another hue.
 具体的には、色素Nは、露光により消色状態から変化して発色する化合物であってもよいし、露光により発色状態から変化して消色する化合物であってもよい。この場合、露光により酸、塩基、又はラジカルが感光性層内において発生し作用することにより、発色又は消色の状態が変化する色素でもよく、酸、塩基、又はラジカルにより感光性層内の状態(例えばpH)が変化することで発色又は消色の状態が変化する色素でもよい。また、露光を介さずに、酸、塩基、又はラジカルを刺激として直接受けて発色又は消色の状態が変化する色素でもよい。 Specifically, the dye N may be a compound that changes from a decolorized state and develops color upon exposure to light, or may be a compound that changes from a color developed state and decolorizes upon exposure. In this case, it may be a dye that changes its coloring or decoloring state when acids, bases, or radicals are generated and act within the photosensitive layer upon exposure; It may also be a dye whose coloring or decoloring state changes as the pH changes (for example, pH). It may also be a dye that changes its coloring or decoloring state when directly stimulated by an acid, base, or radical without being exposed to light.
 中でも、露光部及び非露光部の視認性並びに解像性の観点から、色素Nは、酸又はラジカルにより最大吸収波長が変化する色素が好ましく、ラジカルにより最大吸収波長が変化する色素がより好ましい。 Among these, from the viewpoint of visibility and resolution of exposed and non-exposed areas, the dye N is preferably a dye whose maximum absorption wavelength changes with acid or radicals, and more preferably a dye whose maximum absorption wavelength changes with radicals.
 感光性層がネガ型感光性層である場合は、感光性層は、露光部及び非露光部の視認性並びに解像性の観点から、色素Nとしてラジカルにより最大吸収波長が変化する色素、及び光ラジカル重合開始剤の両者を含むことが好ましい。 When the photosensitive layer is a negative type photosensitive layer, from the viewpoint of visibility and resolution of exposed and non-exposed areas, the photosensitive layer contains a dye whose maximum absorption wavelength changes with radicals as the dye N, and It is preferable to include both a photoradical polymerization initiator and a photoradical polymerization initiator.
 また、露光部及び非露光部の視認性の観点から、色素Nは、酸、塩基、又はラジカルにより発色する色素であることが好ましい。 Furthermore, from the viewpoint of visibility of exposed and unexposed areas, it is preferable that the dye N is a dye that develops color with an acid, a base, or a radical.
 色素Nの発色機構の例としては、感光性層に光ラジカル重合開始剤、光カチオン重合開始剤(光酸発生剤)、又は光塩基発生剤を添加して、露光後に光ラジカル重合開始剤、光カチオン重合開始剤、又は光塩基発生剤から発生するラジカル、酸、又は塩基によって、ラジカル反応性色素、酸反応性色素、又は塩基反応性色素(例えばロイコ色素)が発色する態様が挙げられる。 As an example of the coloring mechanism of dye N, a photoradical polymerization initiator, a photocationic polymerization initiator (photoacid generator), or a photobase generator is added to the photosensitive layer, and after exposure, the photoradical polymerization initiator, Examples include embodiments in which radical-reactive dyes, acid-reactive dyes, or base-reactive dyes (for example, leuco dyes) develop color due to radicals, acids, or bases generated from a photocationic polymerization initiator or a photobase generator.
 色素Nは、露光部及び非露光部の視認性の観点から、発色時の波長範囲400nm~780nmにおける極大吸収波長が、550nm以上であることが好ましく、550nm~700nmであることがより好ましく、550nm~650nmであることがさらに好ましい。 From the viewpoint of visibility of the exposed and non-exposed areas, the dye N preferably has a maximum absorption wavelength of 550 nm or more in the wavelength range of 400 nm to 780 nm during color development, more preferably 550 nm to 700 nm, and 550 nm or more. More preferably, the wavelength is 650 nm.
 また、色素Nは、発色時の波長範囲400nm~780nmにおける極大吸収波長を1つのみ有していてもよく、2つ以上有していてもよい。色素Nが発色時の波長範囲400nm~780nmにおける極大吸収波長を2つ以上有する場合は、2つ以上の極大吸収波長のうち吸光度が最も高い極大吸収波長が450nm以上であればよい。 Further, the dye N may have only one maximum absorption wavelength in the wavelength range of 400 nm to 780 nm during color development, or may have two or more. When the dye N has two or more maximum absorption wavelengths in the wavelength range of 400 nm to 780 nm during color development, it is sufficient that the maximum absorption wavelength with the highest absorbance among the two or more maximum absorption wavelengths is 450 nm or more.
 色素Nの極大吸収波長は、大気雰囲気下で、分光光度計:UV3100((株)島津製作所製)を用いて、400~780nmの範囲で色素Nを含む溶液(液温25℃)の透過スペクトルを測定し、光の強度が極小となる波長(極大吸収波長)を検出することにより、得られる。 The maximum absorption wavelength of dye N is determined by the transmission spectrum of a solution containing dye N (liquid temperature 25°C) in the range of 400 to 780 nm under atmospheric conditions using a spectrophotometer: UV3100 (manufactured by Shimadzu Corporation). It can be obtained by measuring the wavelength and detecting the wavelength at which the light intensity is minimum (maximum absorption wavelength).
 露光により発色又は消色する色素としては、例えば、ロイコ化合物が挙げられる。 An example of a dye that develops or discolors upon exposure to light is a leuco compound.
 露光により消色する色素としては、例えば、ロイコ化合物、ジアリールメタン系色素、オキザジン系色素、キサンテン系色素、イミノナフトキノン系色素、アゾメチン系色素、及びアントラキノン系色素が挙げられる。 Examples of dyes that disappear upon exposure to light include leuco compounds, diarylmethane dyes, oxazine dyes, xanthene dyes, iminonaphthoquinone dyes, azomethine dyes, and anthraquinone dyes.
 色素Nとしては、露光部及び非露光部の視認性の観点から、ロイコ化合物が好ましい。 As the dye N, a leuco compound is preferable from the viewpoint of visibility of exposed areas and non-exposed areas.
 ロイコ化合物としては、例えば、トリアリールメタン骨格を有するロイコ化合物(トリアリールメタン系色素)、スピロピラン骨格を有するロイコ化合物(スピロピラン系色素)、フルオラン骨格を有するロイコ化合物(フルオラン系色素)、ジアリールメタン骨格を有するロイコ化合物(ジアリールメタン系色素)、ローダミンラクタム骨格を有するロイコ化合物(ローダミンラクタム系色素)、インドリルフタリド骨格を有するロイコ化合物(インドリルフタリド系色素)、及びロイコオーラミン骨格を有するロイコ化合物(ロイコオーラミン系色素)が挙げられる。 Examples of leuco compounds include leuco compounds having a triarylmethane skeleton (triarylmethane dyes), leuco compounds having a spiropyran skeleton (spiropyran dyes), leuco compounds having a fluorane skeleton (fluoran dyes), and diarylmethane skeletons. A leuco compound (diarylmethane dye) having a rhodamine lactam skeleton (a rhodamine lactam dye), a leuco compound having an indolylphthalide skeleton (indolylphthalide dye), and a leuco auramine skeleton Examples include leuco compounds (leuco auramine pigments).
 中でも、色素Nは、トリアリールメタン系色素又はフルオラン系色素が好ましく、トリフェニルメタン骨格を有するロイコ化合物(トリフェニルメタン系色素)又はフルオラン系色素がより好ましい。 Among these, the dye N is preferably a triarylmethane dye or a fluoran dye, and more preferably a leuco compound having a triphenylmethane skeleton (triphenylmethane dye) or a fluoran dye.
 ロイコ化合物としては、露光部及び非露光部の視認性の観点から、ラクトン環、スルチン環、又はスルトン環を有することが好ましい。これにより、ロイコ化合物が有するラクトン環、スルチン環、又はスルトン環を、光ラジカル重合開始剤から発生するラジカル又は光カチオン重合開始剤から発生する酸と反応させて、ロイコ化合物を閉環状態に変化させて消色させるか、又はロイコ化合物を開環状態に変化させて発色させることができる。ロイコ化合物としては、ラクトン環、スルチン環、又はスルトン環を有し、ラジカル、又は酸によりラクトン環、スルチン環又はスルトン環が開環して発色する化合物が好ましく、ラクトン環を有し、ラジカル又は酸によりラクトン環が開環して発色する化合物がより好ましい。 The leuco compound preferably has a lactone ring, a sultine ring, or a sultone ring from the viewpoint of visibility of exposed and non-exposed areas. As a result, the lactone ring, sultine ring, or sultone ring of the leuco compound is reacted with the radical generated from the photoradical polymerization initiator or the acid generated from the photocationic polymerization initiator, and the leuco compound is changed into a ring-closed state. The color can be removed by changing the leuco compound to an open ring state, or the color can be developed by changing the leuco compound to an open ring state. The leuco compound is preferably a compound that has a lactone ring, a sultine ring, or a sultone ring, and develops color when the lactone ring, sultine ring, or sultone ring opens with a radical or an acid. More preferred are compounds that develop color when the lactone ring opens with an acid.
 色素Nとしては、例えば、以下の染料及びロイコ化合物が挙げられる。
 色素Nのうち染料の具体例としては、ブリリアントグリーン、エチルバイオレット、メチルグリーン、クリスタルバイオレット、ベイシックフクシン、メチルバイオレット2B、キナルジンレッド、ローズベンガル、メタニルイエロー、チモールスルホフタレイン、キシレノールブルー、メチルオレンジ、パラメチルレッド、コンゴーレッド、ベンゾプルプリン4B、α-ナフチルレッド、ナイルブルー2B、ナイルブルーA、メチルバイオレット、マラカイトグリーン、パラフクシン、ビクトリアピュアブルー-ナフタレンスルホン酸塩、ビクトリアピュアブルーBOH(保土谷化学工業社製)、オイルブルー#603(オリヱント化学工業社製)、オイルピンク#312(オリヱント化学工業社製)、オイルレッド5B(オリヱント化学工業社製)、オイルスカーレット#308(オリヱント化学工業社製)、オイルレッドOG(オリヱント化学工業社製)、オイルレッドRR(オリヱント化学工業社製)、オイルグリーン#502(オリヱント化学工業社製)、スピロンレッドBEHスペシャル(保土谷化学工業社製)、m-クレゾールパープル、クレゾールレッド、ローダミンB、ローダミン6G、スルホローダミンB、オーラミン、4-p-ジエチルアミノフェニルイミノナフトキノン、2-カルボキシアニリノ-4-p-ジエチルアミノフェニルイミノナフトキノン、2-カルボキシステアリルアミノ-4-p-N,N-ビス(ヒドロキシエチル)アミノ-フェニルイミノナフトキノン、1-フェニル-3-メチル-4-p-ジエチルアミノフェニルイミノ-5-ピラゾロン、及び1-β-ナフチル-4-p-ジエチルアミノフェニルイミノ-5-ピラゾロンが挙げられる。
Examples of the dye N include the following dyes and leuco compounds.
Specific examples of dyes among the dyes N include brilliant green, ethyl violet, methyl green, crystal violet, basic fuchsin, methyl violet 2B, quinaldine red, rose bengal, methanil yellow, thymol sulfophthalein, xylenol blue, and methyl. Orange, paramethyl red, Congo red, benzopurpurin 4B, α-naphthyl red, Nile blue 2B, Nile blue A, methyl violet, malachite green, parafuchsin, Victoria pure blue-naphthalene sulfonate, Victoria pure blue BOH (preserved) Tsuchiya Chemical Co., Ltd.), Oil Blue #603 (Orient Chemical Co., Ltd.), Oil Pink #312 (Orient Chemical Co., Ltd.), Oil Red 5B (Orient Chemical Co., Ltd.), Oil Scarlet #308 (Orient Chemical Co., Ltd.) ), Oil Red OG (manufactured by Orient Chemical Industry Co., Ltd.), Oil Red RR (manufactured by Orient Chemical Industry Co., Ltd.), Oil Green #502 (manufactured by Orient Chemical Industry Co., Ltd.), Spiron Red BEH Special (manufactured by Hodogaya Chemical Industry Co., Ltd.), m-cresol purple, cresol red, rhodamine B, rhodamine 6G, sulforhodamine B, auramine, 4-p-diethylaminophenylimino naphthoquinone, 2-carboxyanilino-4-p-diethylaminophenylimino naphthoquinone, 2-carboxystearylamino- 4-p-N,N-bis(hydroxyethyl)amino-phenylimino naphthoquinone, 1-phenyl-3-methyl-4-p-diethylaminophenylimino-5-pyrazolone, and 1-β-naphthyl-4-p- Diethylaminophenylimino-5-pyrazolone is mentioned.
 色素Nのうちロイコ化合物の具体例としては、p,p’,p”-ヘキサメチルトリアミノトリフェニルメタン(ロイコクリスタルバイオレット)、Pergascript Blue SRB(チバガイギー社製)、クリスタルバイオレットラクトン、マラカイトグリーンラクトン、ベンゾイルロイコメチレンブルー、2-(N-フェニル-N-メチルアミノ)-6-(N-p-トリル-N-エチル)アミノフルオラン、2-アニリノ-3-メチル-6-(N-エチル-p-トルイジノ)フルオラン、3,6-ジメトキシフルオラン、3-(N,N-ジエチルアミノ)-5-メチル-7-(N,N-ジベンジルアミノ)フルオラン、3-(N-シクロヘキシル-N-メチルアミノ)-6-メチル-7-アニリノフルオラン、3-(N,N-ジエチルアミノ)-6-メチル-7-アニリノフルオラン、3-(N,N-ジエチルアミノ)-6-メチル-7-キシリジノフルオラン、3-(N,N-ジエチルアミノ)-6-メチル-7-クロロフルオラン、3-(N,N-ジエチルアミノ)-6-メトキシ-7-アミノフルオラン、3-(N,N-ジエチルアミノ)-7-(4-クロロアニリノ)フルオラン、3-(N,N-ジエチルアミノ)-7-クロロフルオラン、3-(N,N-ジエチルアミノ)-7-ベンジルアミノフルオラン、3-(N,N-ジエチルアミノ)-7,8-ベンゾフロオラン、3-(N,N-ジブチルアミノ)-6-メチル-7-アニリノフルオラン、3-(N,N-ジブチルアミノ)-6-メチル-7-キシリジノフルオラン、3-ピペリジノ-6-メチル-7-アニリノフルオラン、3-ピロリジノ-6-メチル-7-アニリノフルオラン、3,3-ビス(1-エチル-2-メチルインドール-3-イル)フタリド、3,3-ビス(1-n-ブチル-2-メチルインドール-3-イル)フタリド、3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-フタリド、3-(4-ジエチルアミノフェニル)-3-(1-エチル-2-メチルインドール-3-イル)フタリド、及び3’,6’-ビス(ジフェニルアミノ)スピロイソベンゾフラン-1(3H),9’-[9H]キサンテン-3-オンが挙げられる。 Specific examples of leuco compounds among the dyes N include p, p', p''-hexamethyltriaminotriphenylmethane (leuco crystal violet), Pergascript Blue SRB (manufactured by Ciba Geigy), crystal violet lactone, malachite green lactone, Benzoylleucomethylene blue, 2-(N-phenyl-N-methylamino)-6-(N-p-tolyl-N-ethyl)aminofluorane, 2-anilino-3-methyl-6-(N-ethyl-p -Toluidino)fluorane, 3,6-dimethoxyfluorane, 3-(N,N-diethylamino)-5-methyl-7-(N,N-dibenzylamino)fluorane, 3-(N-cyclohexyl-N-methyl Amino)-6-methyl-7-anilinofluorane, 3-(N,N-diethylamino)-6-methyl-7-anilinofluorane, 3-(N,N-diethylamino)-6-methyl-7 -xylidinofluorane, 3-(N,N-diethylamino)-6-methyl-7-chlorofluorane, 3-(N,N-diethylamino)-6-methoxy-7-aminofluorane, 3-(N-diethylamino)-6-methoxy-7-aminofluorane , N-diethylamino)-7-(4-chloroanilino)fluorane, 3-(N,N-diethylamino)-7-chlorofluorane, 3-(N,N-diethylamino)-7-benzylaminofluorane, 3- (N,N-diethylamino)-7,8-benzofluorane, 3-(N,N-dibutylamino)-6-methyl-7-anilinofluorane, 3-(N,N-dibutylamino)-6 -Methyl-7-xylidinofluorane, 3-piperidino-6-methyl-7-anilinofluorane, 3-pyrrolidino-6-methyl-7-anilinofluorane, 3,3-bis(1-ethyl- 2-Methylindol-3-yl) phthalide, 3,3-bis(1-n-butyl-2-methylindol-3-yl) phthalide, 3,3-bis(p-dimethylaminophenyl)-6-dimethyl Aminophthalide, 3-(4-diethylamino-2-ethoxyphenyl)-3-(1-ethyl-2-methylindol-3-yl)-4-phthalide, 3-(4-diethylaminophenyl)-3-( 1-ethyl-2-methylindol-3-yl) phthalide, and 3',6'-bis(diphenylamino)spiroisobenzofuran-1(3H),9'-[9H]xanthene-3-one. .
 色素Nは、露光部及び非露光部の視認性、現像後のパターン視認性、及び解像性の観点から、ラジカルにより最大吸収波長が変化する色素であることが好ましく、ラジカルにより発色する色素であることがより好ましい。 The dye N is preferably a dye whose maximum absorption wavelength changes with radicals, from the viewpoint of visibility of exposed areas and non-exposed areas, pattern visibility after development, and resolution, and is preferably a dye that develops color due to radicals. It is more preferable that there be.
 色素Nとしては、ロイコクリスタルバイオレット、クリスタルバイオレットラクトン、ブリリアントグリーン、又はビクトリアピュアブルー-ナフタレンスルホン酸塩が好ましい。 As the dye N, leuco crystal violet, crystal violet lactone, brilliant green, or Victoria Pure Blue-naphthalene sulfonate is preferable.
 感光性層に含まれる色素Nは、1種であってもよく、2種以上であってもよい。 The number of dyes N contained in the photosensitive layer may be one, or two or more.
 色素Nの含有量は、露光部及び非露光部の視認性、現像後のパターン視認性、及び解像性の観点から、感光性層の全質量に対して、0.1質量%以上が好ましく、0.1質量%~10質量%がより好ましく、0.1質量%~5質量%がさらに好ましく、0.1質量%~1質量%が特に好ましい。 The content of the dye N is preferably 0.1% by mass or more based on the total mass of the photosensitive layer from the viewpoint of visibility of exposed areas and non-exposed areas, pattern visibility after development, and resolution. , more preferably 0.1% by mass to 10% by mass, even more preferably 0.1% by mass to 5% by mass, particularly preferably 0.1% by mass to 1% by mass.
 色素Nの含有量は、感光性層の全質量中に含まれる色素Nの全てを発色状態にした場合の色素の含有量を意味する。以下に、ラジカルにより発色する色素を例に、色素Nの含有量の定量方法を説明する。
 メチルエチルケトン100mLに、色素0.001g及び0.01gを溶かした溶液を調製する。得られた各溶液に、光ラジカル重合開始剤Irgacure OXE01(商品名:BASFジャパン株式会社)を加え、365nmの光を照射することによりラジカルを発生させ、全ての色素を発色状態にする。その後、大気雰囲気下で、分光光度計(UV3100、(株)島津製作所製)を用いて、液温が25℃である各溶液の吸光度を測定し、検量線を作成する。
 次に、色素に代えて感光性層3gをメチルエチルケトンに溶かすこと以外は上記と同様の方法で、色素を全て発色させた溶液の吸光度を測定する。得られた感光性層を含む溶液の吸光度から、検量線に基づいて感光性層に含まれる色素の含有量を算出する。
 なお、感光性層3gとは、感光性組成物中の全固形分の3gと同様である。
The content of the dye N means the content of the dye when all the dye N contained in the total mass of the photosensitive layer is brought into a colored state. Below, a method for quantifying the content of the dye N will be explained using a dye that develops color due to radicals as an example.
A solution is prepared by dissolving 0.001 g and 0.01 g of the dye in 100 mL of methyl ethyl ketone. A photoradical polymerization initiator, Irgacure OXE01 (trade name: BASF Japan Ltd.), is added to each of the obtained solutions, and irradiation with 365 nm light generates radicals, causing all the dyes to become colored. Thereafter, the absorbance of each solution at a liquid temperature of 25° C. is measured using a spectrophotometer (UV3100, manufactured by Shimadzu Corporation) under atmospheric conditions, and a calibration curve is created.
Next, the absorbance of the solution in which all the dyes are colored is measured in the same manner as above except that 3 g of the photosensitive layer is dissolved in methyl ethyl ketone instead of the dye. From the absorbance of the obtained solution containing the photosensitive layer, the content of the dye contained in the photosensitive layer is calculated based on a calibration curve.
Note that 3 g of the photosensitive layer is the same as 3 g of the total solid content in the photosensitive composition.
<熱架橋性化合物>
 感光性層がネガ型感光性層である場合、得られる硬化膜の強度、及び得られる未硬化膜の粘着性の観点から、感光性層は、熱架橋性化合物を含むことが好ましい。なお、本開示においては、後述するエチレン性不飽和基を有する熱架橋性化合物は、重合性化合物としては扱わず、熱架橋性化合物として扱うものとする。
<Thermal crosslinkable compound>
When the photosensitive layer is a negative photosensitive layer, the photosensitive layer preferably contains a thermally crosslinkable compound from the viewpoint of the strength of the resulting cured film and the tackiness of the resulting uncured film. In addition, in this disclosure, the thermally crosslinkable compound having an ethylenically unsaturated group, which will be described later, is not treated as a polymerizable compound, but as a thermally crosslinkable compound.
 熱架橋性化合物としては、エポキシ化合物、オキセタン化合物、メチロール化合物、及びブロックイソシアネート化合物が挙げられる。中でも、得られる硬化膜の強度、及び得られる未硬化膜の粘着性の観点から、ブロックイソシアネート化合物が好ましい。 Examples of thermally crosslinkable compounds include epoxy compounds, oxetane compounds, methylol compounds, and blocked isocyanate compounds. Among these, blocked isocyanate compounds are preferred from the viewpoint of the strength of the resulting cured film and the tackiness of the resulting uncured film.
 ブロックイソシアネート化合物は、ヒドロキシ基及びカルボキシ基と反応するため、例えば、樹脂及び/又は重合性化合物等が、ヒドロキシ基及びカルボキシ基の少なくとも一方を有する場合には、形成される膜の親水性が下がり、ネガ型感光性層を硬化した膜を保護膜として使用する場合の機能が強化される傾向がある。 Blocked isocyanate compounds react with hydroxy groups and carboxy groups, so if the resin and/or polymerizable compound has at least one of a hydroxy group and a carboxy group, the hydrophilicity of the formed film decreases. There is a tendency for the function to be enhanced when a film obtained by hardening a negative photosensitive layer is used as a protective film.
 なお、ブロックイソシアネート化合物とは、「イソシアネートのイソシアネート基をブロック剤で保護(いわゆる、マスク)した構造を有する化合物」を指す。 Note that the blocked isocyanate compound refers to "a compound having a structure in which the isocyanate group of isocyanate is protected (so-called masked) with a blocking agent."
 ブロックイソシアネート化合物の解離温度は、特に制限されないが、100℃~160℃が好ましく、130~150℃がより好ましい。 The dissociation temperature of the blocked isocyanate compound is not particularly limited, but is preferably 100°C to 160°C, more preferably 130°C to 150°C.
 ブロックイソシアネートの解離温度とは、「示差走査熱量計を用いて、DSC(Differential scanning calorimetry)分析にて測定した場合における、ブロックイソシアネートの脱保護反応に伴う吸熱ピークの温度」を意味する。 The dissociation temperature of blocked isocyanate means "the temperature of the endothermic peak associated with the deprotection reaction of blocked isocyanate when measured by DSC (differential scanning calorimetry) analysis using a differential scanning calorimeter."
 示差走査熱量計としては、例えば、セイコーインスツルメンツ社製の示差走査熱量計(型式:DSC6200)を好適に使用できる。但し、示差走査熱量計は、これに限定されない。 As the differential scanning calorimeter, for example, a differential scanning calorimeter (model: DSC6200) manufactured by Seiko Instruments Inc. can be suitably used. However, the differential scanning calorimeter is not limited to this.
 解離温度が100~160℃であるブロック剤としては、活性メチレン化合物〔マロン酸ジエステル(マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-ブチル、マロン酸ジ2-エチルヘキシル等)〕、オキシム化合物(ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、及びシクロヘキサノンオキシム等の分子内に-C(=N-OH)-で表される構造を有する化合物)が挙げられる。 Blocking agents with a dissociation temperature of 100 to 160°C include active methylene compounds [malonate diesters (dimethyl malonate, diethyl malonate, di-n-butyl malonate, di-2-ethylhexyl malonate, etc.)], oxime compounds ( Examples include compounds having a structure represented by -C(=N-OH)- in the molecule, such as formaldoxime, acetaldoxime, acetoxime, methyl ethyl ketoxime, and cyclohexanone oxime.
 中でも、解離温度が100~160℃であるブロック剤としては、例えば、保存安定性の観点から、オキシム化合物から選ばれる少なくとも1種が好ましい。 Among these, as a blocking agent having a dissociation temperature of 100 to 160°C, for example, from the viewpoint of storage stability, at least one kind selected from oxime compounds is preferable.
 ブロックイソシアネート化合物は、例えば、膜の脆性改良、被転写体との密着力向上等の観点から、イソシアヌレート構造を有することが好ましい。 The blocked isocyanate compound preferably has an isocyanurate structure, for example, from the viewpoint of improving the brittleness of the film and improving the adhesion to the transfer target.
 イソシアヌレート構造を有するブロックイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネートをイソシアヌレート化して保護することにより得られる。 A blocked isocyanate compound having an isocyanurate structure can be obtained, for example, by converting hexamethylene diisocyanate into isocyanurate and protecting it.
 イソシアヌレート構造を有するブロックイソシアネート化合物の中でも、オキシム化合物をブロック剤として用いたオキシム構造を有する化合物が、オキシム構造を有さない化合物よりも解離温度を好ましい範囲にしやすく、かつ、現像残渣を少なくしやすいという観点から好ましい。 Among blocked isocyanate compounds having an isocyanurate structure, a compound having an oxime structure using an oxime compound as a blocking agent is easier to maintain the dissociation temperature in a preferable range than a compound without an oxime structure, and produces less development residue. This is preferable from the viewpoint of ease of use.
 ブロックイソシアネート化合物は、重合性基を有していてもよい。 The blocked isocyanate compound may have a polymerizable group.
 重合性基としては、特に制限はなく、公知の重合性基を用いることができ、ラジカル重合性基が好ましい。 The polymerizable group is not particularly limited, and any known polymerizable group can be used, with radically polymerizable groups being preferred.
 重合性基としては、(メタ)アクリロイル基、(メタ)アクリルアミド基、及びスチリル基等のエチレン性不飽和基、並びに、グリシジル基等のエポキシ基を有する基が挙げられる。 Examples of the polymerizable group include ethylenically unsaturated groups such as (meth)acryloyl group, (meth)acrylamide group, and styryl group, and groups having epoxy groups such as glycidyl group.
 中でも、重合性基としては、エチレン性不飽和基が好ましく、(メタ)アクリロイル基がより好ましく、アクリロイル基がさらに好ましい。 Among these, as the polymerizable group, an ethylenically unsaturated group is preferable, a (meth)acryloyl group is more preferable, and an acryloyl group is even more preferable.
 ブロックイソシアネート化合物としては、市販品を使用できる。 Commercially available products can be used as the blocked isocyanate compound.
 ブロックイソシアネート化合物の市販品の例としては、カレンズ(登録商標) AOI-BM、カレンズ(登録商標) MOI-BM、カレンズ(登録商標) MOI-BP等(以上、昭和電工社製)、ブロック型のデュラネートシリーズ(例えば、デュラネート(登録商標) TPA-B80E、デュラネート(登録商標) WT32-B75P等、旭化成ケミカルズ社製)が挙げられる。 Examples of commercially available block isocyanate compounds include Karenz (registered trademark) AOI-BM, Karenz (registered trademark) MOI-BM, Karenz (registered trademark) MOI-BP (all manufactured by Showa Denko), block type Examples include the Duranate series (eg, Duranate (registered trademark) TPA-B80E, Duranate (registered trademark) WT32-B75P, manufactured by Asahi Kasei Chemicals).
 また、ブロックイソシアネート化合物として、下記の構造の化合物を用いることもできる。 Additionally, a compound having the following structure can also be used as the blocked isocyanate compound.
 感光性層に含まれる熱架橋性化合物は、1種であってもよく、2種以上であってもよい。
 感光性層が熱架橋性化合物を含む場合、熱架橋性化合物の含有量は、感光性層の全質量に対して、1質量%~50質量%が好ましく、5質量%~30質量%がより好ましい。
The number of thermally crosslinkable compounds contained in the photosensitive layer may be one, or two or more.
When the photosensitive layer contains a thermally crosslinkable compound, the content of the thermally crosslinkable compound is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass, based on the total mass of the photosensitive layer. preferable.
<界面活性剤>
 感光性層は、厚さ均一性の観点から、界面活性剤を含有することが好ましい。
<Surfactant>
The photosensitive layer preferably contains a surfactant from the viewpoint of thickness uniformity.
 界面活性剤としては、例えば、特許第4502784号公報の段落[0017]、及び、特開2009-237362号公報の段落[0060]~[0071]に記載の界面活性剤が挙げられる。 Examples of the surfactant include the surfactants described in paragraph [0017] of Japanese Patent No. 4502784 and paragraphs [0060] to [0071] of JP-A-2009-237362.
 界面活性剤としては、炭化水素系界面活性剤、フッ素系界面活性剤又はシリコーン系界面活性剤を挙げることができる。環境適性向上の観点から、界面活性剤はフッ素原子を含まないことが好ましい。界面活性剤としては、炭化水素系界面活性剤又はシリコーン系界面活性剤が好ましい。 Examples of the surfactant include hydrocarbon surfactants, fluorine surfactants, and silicone surfactants. From the viewpoint of improving environmental suitability, the surfactant preferably does not contain fluorine atoms. As the surfactant, hydrocarbon surfactants or silicone surfactants are preferred.
 フッ素系界面活性剤の市販品としては、例えば、メガファック F-171、F-172、F-173、F-176、F-177、F-141、F-142、F-143、F-144、F-437、F-475、F-477、F-479、F-482、F-551-A、F-552、F-554、F-555-A、F-556、F-557、F-558、F-559、F-560、F-561、F-565、F-563、F-568、F-575、F-780、EXP.MFS-330、EXP.MFS-578、EXP.MFS-578-2、EXP.MFS-579、EXP.MFS-586、EXP.MFS-587、EXP.MFS-628、EXP.MFS-631、EXP.MFS-603、R-41、R-41-LM、R-01、R-40、R-40-LM、RS-43、TF-1956、RS-90、R-94、RS-72-K、DS-21(以上、DIC株式会社製)、フロラード FC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、AGC(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)、フタージェント 710FL、710FM、610FM、601AD、601ADH2、602A、215M、245F、251、212M、250、209F、222F、208G、710LA、710FS、730LM、650AC、681、683(以上、(株)NEOS製)、U-120E(ユニケム株式会社)等が挙げられる。 Commercially available fluorosurfactants include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144. , F-437, F-475, F-477, F-479, F-482, F-551-A, F-552, F-554, F-555-A, F-556, F-557, F -558, F-559, F-560, F-561, F-565, F-563, F-568, F-575, F-780, EXP.MFS-330, EXP. MFS-578, EXP. MFS-578-2, EXP. MFS-579, EXP. MFS-586, EXP. MFS-587, EXP. MFS-628, EXP. MFS-631, EXP. MFS-603, R-41, R-41-LM, R-01, R-40, R-40-LM, RS-43, TF-1956, RS-90, R-94, RS-72-K, DS-21 (manufactured by DIC Corporation), Florado FC430, FC431, FC171 (manufactured by Sumitomo 3M Corporation), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC-1068, SC-381, SC-383, S-393, KH-40 (manufactured by AGC Corporation), PolyFox PF636, PF656, PF6320, PF6520, PF7002 (manufactured by OMNOVA), Ftergent 710FL , 710FM, 610FM, 601AD, 601ADH2, 602A, 215M, 245F, 251, 212M, 250, 209F, 222F, 208G, 710LA, 710FS, 730LM, 650AC, 681, 683 (manufactured by NEOS Co., Ltd.), U- 120E (Unichem Co., Ltd.) and the like.
 また、フッ素系界面活性剤としては、フッ素原子を含有する官能基を持つ分子構造を有し、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC(株)製のメガファック DSシリーズ(化学工業日報(2016年2月22日)、日経産業新聞(2016年2月23日))、例えばメガファック DS-21が挙げられる。 In addition, fluorine-based surfactants include acrylic compounds that have a molecular structure with a functional group containing a fluorine atom, and when heat is applied, the functional group containing the fluorine atom is severed and the fluorine atom evaporates. can also be suitably used. Examples of such fluorine-based surfactants include the Megafac DS series manufactured by DIC Corporation (Kagaku Kogyo Nippo (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)), An example is DS-21.
 また、フッ素系界面活性剤としては、フッ素化アルキル基又はフッ素化アルキレンエーテル基を有するフッ素原子含有ビニルエーテル化合物と、親水性のビニルエーテル化合物との重合体を用いることも好ましい。 Furthermore, as the fluorine-based surfactant, it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound.
 また、フッ素系界面活性剤としては、ブロックポリマーも使用できる。 Additionally, block polymers can also be used as the fluorosurfactant.
 また、フッ素系界面活性剤としては、フッ素原子を有する(メタ)アクリレート化合物に由来する構成単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する構成単位と、を含む含フッ素高分子化合物も好ましく使用できる。 In addition, the fluorine-based surfactant has a structural unit derived from a (meth)acrylate compound having a fluorine atom and two or more (preferably five or more) alkyleneoxy groups (preferably ethyleneoxy groups, propyleneoxy groups). A fluorine-containing polymer compound containing a structural unit derived from a (meth)acrylate compound can also be preferably used.
 また、フッ素系界面活性剤としては、エチレン性不飽和結合含有基を側鎖に有する含フッ素重合体も使用できる。メガファック RS-101、RS-102、RS-718K、RS-72-K(以上、DIC株式会社製)等が挙げられる。 Furthermore, as the fluorine-based surfactant, a fluorine-containing polymer having an ethylenically unsaturated bond-containing group in its side chain can also be used. Examples include Megafac RS-101, RS-102, RS-718K, and RS-72-K (manufactured by DIC Corporation).
 フッ素系界面活性剤としては、環境適性向上の観点から、パーフルオロオクタン酸(PFOA)及びパーフルオロオクタンスルホン酸(PFOS)等の炭素数が7以上の直鎖状パーフルオロアルキル基を有する化合物の代替材料に由来する界面活性剤であることが好ましい。 As fluorosurfactants, from the viewpoint of improving environmental suitability, compounds having a linear perfluoroalkyl group having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), are used. Surfactants derived from alternative materials are preferred.
 炭化水素系界面活性剤としては、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセロールエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル、等が挙げられる。 Examples of hydrocarbon surfactants include glycerol, trimethylolpropane, trimethylolethane, and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether , polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, and the like.
 炭化水素系界面活性剤の具体例としては、プルロニック(登録商標) L10、L31、L61、L62、10R5、17R2、25R2、テトロニック 304、701、704、901、904、150R1、HYDROPALAT WE 3323(以上、BASF社製)、ソルスパース 20000(以上、日本ルーブリゾール(株)製)、NCW-101、NCW-1001、NCW-1002(以上、富士フイルム和光純薬(株)製)、パイオニン D-1105、D-6112、D-6112-W、D-6315(以上、竹本油脂(株)製)、オルフィンE1010、サーフィノール104、400、440(以上、日信化学工業(株)製)等が挙げられる。 Specific examples of hydrocarbon surfactants include Pluronic (registered trademark) L10, L31, L61, L62, 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 901, 904, 150R1, HYDROPALAT WE 3323 (and above). , manufactured by BASF), Solsperse 20000 (manufactured by Japan Lubrizol Co., Ltd.), NCW-101, NCW-1001, NCW-1002 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), Pionin D-1105, Examples include D-6112, D-6112-W, D-6315 (all manufactured by Takemoto Yushi Co., Ltd.), Olfin E1010, Surfynol 104, 400, 440 (all manufactured by Nissin Chemical Industry Co., Ltd.), etc. .
 シリコーン系界面活性剤としては、シロキサン結合からなる直鎖状ポリマー、及び、側鎖や末端に有機基を導入した変性シロキサンポリマー、側鎖に親水性基を有する構成単位及び側鎖にシロキサン結合含有基を有する構成単位を有するポリマーが挙げられる。 Silicone surfactants include linear polymers consisting of siloxane bonds, modified siloxane polymers with organic groups introduced into the side chains and terminals, and structural units with hydrophilic groups in the side chains and siloxane bonds in the side chains. Polymers having structural units having groups can be mentioned.
 中でも、シリコーン系界面活性剤は、側鎖に親水性基を有する構成単位及び側鎖にシロキサン結合含有基を有する構成単位を有するポリマーが好ましい。ポリマーはランダム共重合体であってもブロック共重合体であってもよい。 Among these, the silicone surfactant is preferably a polymer having a constitutional unit having a hydrophilic group in the side chain and a constitutional unit having a siloxane bond-containing group in the side chain. The polymer may be a random copolymer or a block copolymer.
 側鎖に親水性基を有する構成単位としては、以下の単量体に基づく構成単位が挙げられる。 Examples of the structural unit having a hydrophilic group in the side chain include structural units based on the following monomers.

 Rは、水素原子又はメチル基であり、
 Rは水素原子又はメチル基であり、
 nは1~4の整数であり、
 mは1~100の整数である。

R 4 is a hydrogen atom or a methyl group,
R 5 is a hydrogen atom or a methyl group,
n is an integer from 1 to 4,
m is an integer from 1 to 100.
 側鎖にシロキサン結合含有基を有する構成単位としては、以下の単量体に基づく構成単位が挙げられる。 Examples of the structural unit having a siloxane bond-containing group in the side chain include structural units based on the following monomers.

 Rはそれぞれ独立に炭素原子数1~3のアルキル基であり、
 Rは、水素原子又はメチル基であり、
 Lは2価の有機基又は単結合である。

R is each independently an alkyl group having 1 to 3 carbon atoms,
R 1 is a hydrogen atom or a methyl group,
L 1 is a divalent organic group or a single bond.
 側鎖にシロキサン結合含有基を有する構成単位としては、以下の単量体に基づく構成単位が挙げられる。 Examples of the structural unit having a siloxane bond-containing group in the side chain include structural units based on the following monomers.

 
 
 Rは、水素原子又はメチル基であり、
 Rは、炭素数1から10のアルキレン基であり、
 Rは炭素数1から4のアルキル基であり、
 nは5~50の整数である。



R 1 is a hydrogen atom or a methyl group,
R 2 is an alkylene group having 1 to 10 carbon atoms,
R 3 is an alkyl group having 1 to 4 carbon atoms,
n is an integer from 5 to 50.
 シリコーン系界面活性剤の具体例としては、
 EXP.S-309-2、EXP.S-315、EXP.S-503-2、EXP.S-505-2(以上、DIC株式会社製)、
DOWSIL 8032 ADDITIVE、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、トーレシリコーンSH8400(以上、東レ・ダウコーニング(株)製)、
X-22-4952、X-22-4272、X-22-6266、KF-351A、K354L、KF-355A、KF-945、KF-640、KF-642、KF-643、X-22-6191、X-22-4515、KF-6004、KF-6001、KF-6002、KP-101KP-103、KP-104、KP-105、KP-106、KP-109、KP-109、KP-112、KP-120、KP-121、KP-124、KP-125、KP-301、KP-306、KP-310、KP-322、KP-323、KP-327、KP-341、KP-368、KP-369、KP-611、KP-620、KP-621、KP-626、KP-652(以上、信越シリコーン株式会社製)、
F-4440、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、
BYK300、BYK306、BYK307、BYK310、BYK320、BYK323、BYK325、BYK330、BYK313、BYK315N、BYK331、BYK333、BYK345、BYK347、BYK348、BYK349、BYK370、BYK377、BYK378、BYK323(以上、ビックケミー社製)
等が挙げられる。
Specific examples of silicone surfactants include:
EXP. S-309-2, EXP. S-315, EXP. S-503-2, EXP. S-505-2 (manufactured by DIC Corporation),
DOWSIL 8032 ADDITIVE, Toray Silicone DC3PA, Toray Silicone SH7PA, Toray Silicone DC11PA, Toray Silicone SH21PA, Toray Silicone SH28PA, Toray Silicone SH29PA, Toray Silicone SH30PA, Toray Silicone SH8400 (the above, Toray Silicone SH8400) Co., Ltd.),
X-22-4952, X-22-4272, X-22-6266, KF-351A, K354L, KF-355A, KF-945, KF-640, KF-642, KF-643, X-22-4515, KF-6004, KF-6001, KF-6002, KP-101KP-103, KP-104, KP-105, KP-106, KP-109, KP-109, KP-112, KP- 120, KP-121, KP-124, KP-125, KP-301, KP-306, KP-310, KP-322, KP-323, KP-327, KP-341, KP-368, KP-369, KP-611, KP-620, KP-621, KP-626, KP-652 (manufactured by Shin-Etsu Silicone Co., Ltd.),
F-4440, TSF-4300, TSF-4445, TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials),
BYK300, BYK306, BYK307, BYK310, BYK320, BYK323, BYK325, BYK330, BYK313, BYK315N, BYK331, BYK333, BYK345, BYK347, BYK348, BYK349, BYK370, BYK 377, BYK378, BYK323 (manufactured by BYK Chemie)
etc.
 また、界面活性剤としては、ノニオン系界面活性剤が好ましい。 Furthermore, as the surfactant, nonionic surfactants are preferred.
 感光性層に含まれる界面活性剤は、1種であってもよく、2種以上であってもよい。 The number of surfactants contained in the photosensitive layer may be one type or two or more types.
 感光性層が界面活性剤を含む場合、界面活性剤の含有量は、感光性層の全質量に対して、0.01質量%~3.0質量%が好ましく、0.01質量%~1.0質量%がより好ましく、0.05質量%~0.80質量%がさらに好ましい。 When the photosensitive layer contains a surfactant, the content of the surfactant is preferably 0.01% by mass to 3.0% by mass, and 0.01% by mass to 1% by mass, based on the total mass of the photosensitive layer. 0.0% by weight is more preferable, and 0.05% by weight to 0.80% by weight is even more preferable.
<その他の添加剤>
 感光性層は、上記成分以外に、必要に応じて公知の添加剤を含んでもよい。
 添加剤としては、例えば、ラジカル重合禁止剤、連鎖移動剤、増感剤、可塑剤、ヘテロ環状化合物(トリアゾール等)、ベンゾトリアゾール類、カルボキシベンゾトリアゾール類、ピリジン類(イソニコチンアミド等)、及びプリン塩基(アデニン等)が挙げられる。
<Other additives>
In addition to the above-mentioned components, the photosensitive layer may contain known additives as necessary.
Examples of additives include radical polymerization inhibitors, chain transfer agents, sensitizers, plasticizers, heterocyclic compounds (triazole, etc.), benzotriazoles, carboxybenzotriazoles, pyridines (isonicotinamide, etc.), and Examples include purine bases (adenine, etc.).
 感光性層に含まれる各添加剤は、1種であってもよく、2種以上であってもよい。 Each additive contained in the photosensitive layer may be one type or two or more types.
 感光性層は、ラジカル重合禁止剤を含んでもよい。 The photosensitive layer may contain a radical polymerization inhibitor.
 ラジカル重合禁止剤としては、例えば、特許第4502784号公報の段落0018に記載された熱重合防止剤が挙げられる。中でも、フェノチアジン、フェノキサジン、又は4-メトキシフェノールが好ましい。その他のラジカル重合禁止剤としては、ナフチルアミン、塩化第一銅、ニトロソフェニルヒドロキシアミンアルミニウム塩、及びジフェニルニトロソアミン等が挙げられる。感光性層の感度を損なわないために、ニトロソフェニルヒドロキシアミンアルミニウム塩が好ましい。 Examples of radical polymerization inhibitors include thermal polymerization inhibitors described in paragraph 0018 of Japanese Patent No. 4502784. Among these, phenothiazine, phenoxazine, or 4-methoxyphenol is preferred. Other radical polymerization inhibitors include naphthylamine, cuprous chloride, nitrosophenylhydroxyamine aluminum salt, diphenylnitrosamine, and the like. Nitrosophenylhydroxyamine aluminum salt is preferred in order not to impair the sensitivity of the photosensitive layer.
 感光性層が重合禁止剤を含む場合、重合禁止剤の含有量は、感光性層の全質量に対して、0.001質量%~5.0質量%が好ましく、0.01質量%~3.0質量%がより好ましく、0.02質量%~2.0質量%がさらに好ましい。重合禁止剤の含有量は、重合性化合物全質量に対しては、0.005質量%~5.0質量%が好ましく、0.01質量%~3.0質量%がより好ましく、0.01質量%~1.0質量%がさらに好ましい。 When the photosensitive layer contains a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.001% by mass to 5.0% by mass, and 0.01% by mass to 3% by mass, based on the total mass of the photosensitive layer. 0.0% by weight is more preferable, and 0.02% by weight to 2.0% by weight is even more preferable. The content of the polymerization inhibitor is preferably 0.005% by mass to 5.0% by mass, more preferably 0.01% by mass to 3.0% by mass, and 0.01% by mass, based on the total mass of the polymerizable compound. More preferably, the amount is from % by mass to 1.0% by mass.
 ベンゾトリアゾール類としては、例えば、1,2,3-ベンゾトリアゾール、1-クロロ-1,2,3-ベンゾトリアゾール、ビス(N-2-エチルヘキシル)アミノメチレン-1,2,3-ベンゾトリアゾール、ビス(N-2-エチルヘキシル)アミノメチレン-1,2,3-トリルトリアゾール、及びビス(N-2-ヒドロキシエチル)アミノメチレン-1,2,3-ベンゾトリアゾール等が挙げられる。 Examples of benzotriazoles include 1,2,3-benzotriazole, 1-chloro-1,2,3-benzotriazole, bis(N-2-ethylhexyl)aminomethylene-1,2,3-benzotriazole, Bis(N-2-ethylhexyl)aminomethylene-1,2,3-tolyltriazole, bis(N-2-hydroxyethyl)aminomethylene-1,2,3-benzotriazole, and the like can be mentioned.
 カルボキシベンゾトリアゾール類としては、例えば、4-カルボキシ-1,2,3-ベンゾトリアゾール、5-カルボキシ-1,2,3-ベンゾトリアゾール、N-(N,N-ジ-2-エチルヘキシル)アミノメチレンカルボキシベンゾトリアゾール、N-(N,N-ジ-2-ヒドロキシエチル)アミノメチレンカルボキシベンゾトリアゾール、及びN-(N,N-ジ-2-エチルヘキシル)アミノエチレンカルボキシベンゾトリアゾール等が挙げられる。カルボキシベンゾトリアゾール類としては、例えば、CBT-1(商品名:城北化学工業株式会社)等の市販品を使用できる。 Examples of carboxybenzotriazoles include 4-carboxy-1,2,3-benzotriazole, 5-carboxy-1,2,3-benzotriazole, and N-(N,N-di-2-ethylhexyl)aminomethylene. Examples include carboxybenzotriazole, N-(N,N-di-2-hydroxyethyl)aminomethylenecarboxybenzotriazole, and N-(N,N-di-2-ethylhexyl)aminoethylenecarboxybenzotriazole. As the carboxybenzotriazole, for example, commercially available products such as CBT-1 (trade name: Johoku Kagaku Kogyo Co., Ltd.) can be used.
 ベンゾトリアゾ-ル類、及びカルボキシベンゾトリアゾ-ル類の合計含有量は、感光性層の全質量に対して、0.01質量%~3質量%が好ましく、0.05質量%~1質量%がより好ましい。含有量が0.01質量%以上の場合、感光性層の保存安定性がより優れる。一方、含有量が3質量%以下である場合、感度の維持及び染料の脱色の抑制がより優れる。 The total content of benzotriazoles and carboxybenzotriazoles is preferably 0.01% by mass to 3% by mass, and 0.05% by mass to 1% by mass, based on the total mass of the photosensitive layer. is more preferable. When the content is 0.01% by mass or more, the storage stability of the photosensitive layer is better. On the other hand, when the content is 3% by mass or less, sensitivity can be maintained and dye decolorization can be suppressed more effectively.
 感光性層は、増感剤を含んでもよい。 The photosensitive layer may contain a sensitizer.
 増感剤は、特に制限されず、公知の増感剤、染料及び顔料を使用できる。増感剤としては、例えば、ジアルキルアミノベンゾフェノン化合物、ピラゾリン化合物、アントラセン化合物、クマリン化合物、キサントン化合物、チオキサントン化合物、アクリドン化合物、オキサゾール化合物、ベンゾオキサゾール化合物、チアゾール化合物、ベンゾチアゾール化合物、トリアゾール化合物(例えば、1,2,4-トリアゾール)、スチルベン化合物、トリアジン化合物、チオフェン化合物、ナフタルイミド化合物、トリアリールアミン化合物、及びアミノアクリジン化合物が挙げられる。 The sensitizer is not particularly limited, and known sensitizers, dyes, and pigments can be used. Examples of the sensitizer include dialkylaminobenzophenone compounds, pyrazoline compounds, anthracene compounds, coumarin compounds, xanthone compounds, thioxanthone compounds, acridone compounds, oxazole compounds, benzoxazole compounds, thiazole compounds, benzothiazole compounds, triazole compounds (for example, 1,2,4-triazole), stilbene compounds, triazine compounds, thiophene compounds, naphthalimide compounds, triarylamine compounds, and aminoacridine compounds.
 感光性層に含まれる増感剤は、1種であってもよく、2種以上であってもよい。 The number of sensitizers contained in the photosensitive layer may be one, or two or more.
 感光性層が増感剤を含む場合、増感剤の含有量は、目的により適宜選択できるが、光源に対する感度の向上、及び重合速度と連鎖移動のバランスによる硬化速度の向上の観点から、感光性層の全質量に対して、0.01質量%~5質量%が好ましく、0.05質量%~1質量%がより好ましい。 When the photosensitive layer contains a sensitizer, the content of the sensitizer can be selected as appropriate depending on the purpose. It is preferably 0.01% by mass to 5% by mass, more preferably 0.05% by mass to 1% by mass, based on the total mass of the sexual layer.
 感光性層は、可塑剤及びヘテロ環状化合物からなる群より選択される少なくとも1種を含んでもよい。 The photosensitive layer may contain at least one selected from the group consisting of a plasticizer and a heterocyclic compound.
 可塑剤及びヘテロ環状化合物としては、国際公開第2018/179640号の段落0097~0103及び0111~0118に記載された化合物が挙げられる。 Examples of the plasticizer and heterocyclic compound include compounds described in paragraphs 0097 to 0103 and 0111 to 0118 of International Publication No. 2018/179640.
 また、感光性層は、金属酸化物粒子、酸化防止剤、分散剤、酸増殖剤、現像促進剤、導電性繊維、紫外線吸収剤、増粘剤、架橋剤、及び有機又は無機の沈殿防止剤等の公知の添加剤をさらに含んでもよい。 The photosensitive layer also contains metal oxide particles, antioxidants, dispersants, acid multiplying agents, development accelerators, conductive fibers, ultraviolet absorbers, thickeners, crosslinking agents, and organic or inorganic suspending agents. It may further contain known additives such as.
 感光性層に含まれる添加剤については特開2014-085643号公報の段落0165~0184に記載されており、この公報の内容は本明細書に組み込まれる。 The additives contained in the photosensitive layer are described in paragraphs 0165 to 0184 of JP-A No. 2014-085643, and the contents of this publication are incorporated herein.
 感光性層の厚みは、一般的には0.1μm~300μmであり、0.2μm~100μmが好ましく、0.5μm~50μmがより好ましく、0.5μm~15μmがさらに好ましく、0.5μm~10μmが特に好ましく、0.5μm~8μmが最も好ましい。これにより、感光性層の現像性が向上し、解像性を向上させることができる。 The thickness of the photosensitive layer is generally 0.1 μm to 300 μm, preferably 0.2 μm to 100 μm, more preferably 0.5 μm to 50 μm, even more preferably 0.5 μm to 15 μm, and 0.5 μm to 10 μm. is particularly preferred, and 0.5 μm to 8 μm is most preferred. This improves the developability of the photosensitive layer and improves the resolution.
 また、一態様において、0.5μm~5μmが好ましく、0.5μm~4μmがより好ましく、0.5μm~3μmがさらに好ましい。 In one embodiment, the thickness is preferably 0.5 μm to 5 μm, more preferably 0.5 μm to 4 μm, and even more preferably 0.5 μm to 3 μm.
 また、密着性により優れる観点から、感光性層の波長365nmの光の透過率は、10%以上が好ましく、30%以上がより好ましく、50%以上がさらに好ましい。上限は特に制限されないが、99.9%以下が好ましい。 In addition, from the viewpoint of better adhesion, the transmittance of the photosensitive layer for light at a wavelength of 365 nm is preferably 10% or more, more preferably 30% or more, and even more preferably 50% or more. The upper limit is not particularly limited, but is preferably 99.9% or less.
<不純物等>
 感光性層は、所定量の不純物を含んでいてもよい。
<Impurities etc.>
The photosensitive layer may contain a predetermined amount of impurities.
 不純物の具体例としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、マンガン、銅、アルミニウム、チタン、クロム、コバルト、ニッケル、亜鉛、スズ、ハロゲン及びこれらのイオンが挙げられる。中でも、ハロゲン化物イオン、ナトリウムイオン、及びカリウムイオンは不純物として混入し易いため、下記の含有量にすることが好ましい。 Specific examples of impurities include sodium, potassium, magnesium, calcium, iron, manganese, copper, aluminum, titanium, chromium, cobalt, nickel, zinc, tin, halogen, and ions thereof. Among them, halide ions, sodium ions, and potassium ions are likely to be mixed in as impurities, so it is preferable to have the following content.
 感光性層における不純物の含有量は、質量基準で、80ppm以下が好ましく、10ppm以下がより好ましく、2ppm以下がさらに好ましい。不純物の含有量は、質量基準で、1ppb以上とすることができ、0.1ppm以上としてもよい。 The content of impurities in the photosensitive layer is preferably 80 ppm or less, more preferably 10 ppm or less, and even more preferably 2 ppm or less, based on mass. The content of impurities can be 1 ppb or more, and may be 0.1 ppm or more, based on mass.
 不純物を上記範囲にする方法としては、組成物の原料として不純物の含有量が少ないものを選択すること、感光性層の作製時に不純物の混入を防ぐこと、及び洗浄して除去することが挙げられる。このような方法により、不純物量を上記範囲内とすることができる。 Methods for keeping impurities within the above range include selecting materials with a low content of impurities as raw materials for the composition, preventing contamination of impurities during the preparation of the photosensitive layer, and removing them by washing. . By such a method, the amount of impurities can be kept within the above range.
 不純物は、例えば、ICP(Inductively Coupled Plasma)発光分光分析法、原子吸光分光法、及びイオンクロマトグラフィー法等の公知の方法で定量できる。 Impurities can be quantified by known methods such as ICP (Inductively Coupled Plasma) emission spectroscopy, atomic absorption spectroscopy, and ion chromatography.
 感光性層における、ベンゼン、ホルムアルデヒド、トリクロロエチレン、1,3-ブタジエン、四塩化炭素、クロロホルム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びヘキサン等の化合物の含有量は、少ないことが好ましい。これら化合物の感光性層の全質量に対する含有量としては、質量基準で、100ppm以下が好ましく、20ppm以下がより好ましく、4ppm以下がさらに好ましい。 The content of compounds such as benzene, formaldehyde, trichloroethylene, 1,3-butadiene, carbon tetrachloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, and hexane in the photosensitive layer may be small. preferable. The content of these compounds relative to the total mass of the photosensitive layer is preferably 100 ppm or less, more preferably 20 ppm or less, and even more preferably 4 ppm or less, based on mass.
 含有量の下限値は、質量基準で、感光性層の全質量に対して、10ppbが好ましく、100ppbがより好ましい。これら化合物は、上記の金属の不純物と同様の方法で含有量を抑制できる。また、公知の測定法により定量できる。 The lower limit of the content is preferably 10 ppb, more preferably 100 ppb, based on the total mass of the photosensitive layer. The content of these compounds can be suppressed in the same manner as the above-mentioned metal impurities. Moreover, it can be quantified by a known measuring method.
 感光性層は、感光性層の感度向上の観点から、水の含有量が感光性層の全量に対して、0.1質量%以上であることが好ましく、0.15質量%以上であることがより好ましく、0.3質量%以上であることがさらに好ましい。水の含有量の上限値は特に限定されず、例えば、1.0質量%である。 From the viewpoint of improving the sensitivity of the photosensitive layer, the water content of the photosensitive layer is preferably 0.1% by mass or more, and preferably 0.15% by mass or more, based on the total amount of the photosensitive layer. is more preferable, and even more preferably 0.3% by mass or more. The upper limit of the water content is not particularly limited, and is, for example, 1.0% by mass.
 感光性層における水の含有量は、転写層における水の含有量と同様の方法で測定される。 The water content in the photosensitive layer is measured in the same manner as the water content in the transfer layer.
 感光性層は、現像性が良いと、パターンに残渣が残りにくく、基板との密着性が良いと、より細いパターンを形成できる。現像性と、基板との密着性を向上させる観点から、転写層は鉄原子の含有量が感光性層の全量に対して、質量基準で0.01ppm~10.0ppmであることが好ましく、0.1ppm~10ppmであることがより好ましく、0.2ppm~10ppmであることがさらに好ましい。 If the photosensitive layer has good developability, it will hardly leave residue on the pattern, and if it has good adhesion to the substrate, it will be possible to form a thinner pattern. From the viewpoint of improving developability and adhesion with the substrate, the content of iron atoms in the transfer layer is preferably 0.01 ppm to 10.0 ppm on a mass basis with respect to the total amount of the photosensitive layer. It is more preferably from .1 ppm to 10 ppm, and even more preferably from 0.2 ppm to 10 ppm.
 感光性層における鉄原子の含有量は、転写層における鉄原子の含有量と同様の方法で測定される。 The content of iron atoms in the photosensitive layer is measured in the same manner as the content of iron atoms in the transfer layer.
<顔料>
 感光性層は、顔料を含む着色樹脂層であってもよい。
<Pigment>
The photosensitive layer may be a colored resin layer containing a pigment.
 近年の電子機器が有する液晶表示窓には、液晶表示窓を保護するために、透明なガラス基板等の裏面周縁部に黒色の枠状遮光層が形成されたカバーガラスが取り付けられている場合がある。このような遮光層を形成するために着色樹脂層が使用され得る。 In order to protect the liquid crystal display window of recent electronic devices, a cover glass with a black frame-shaped light-shielding layer formed on the periphery of the back surface of a transparent glass substrate, etc., is sometimes attached to the liquid crystal display window of recent electronic devices. be. A colored resin layer may be used to form such a light-blocking layer.
 顔料としては、所望とする色相に合わせて適宜選択すればよく、黒色顔料、白色顔料、黒色及び白色以外の有彩色の顔料の中から選択できる。中でも、黒色系のパターンを形成する場合には、顔料として黒色顔料が好適に選択される。 The pigment may be appropriately selected according to the desired hue, and can be selected from black pigments, white pigments, and chromatic pigments other than black and white. Among these, when forming a black pattern, a black pigment is preferably selected as the pigment.
 黒色顔料としては、本開示の効果を損なわない範囲であれば、公知の黒色顔料(有機顔料又は無機顔料等)を適宜選択することができる。中でも、光学濃度の観点から、黒色顔料としては、例えば、カーボンブラック、酸化チタン、チタンカーバイド、酸化鉄、及び黒鉛が好適に挙げられ、特にカーボンブラックは好ましい。カーボンブラックとしては、表面抵抗の観点から、表面の少なくとも一部が樹脂で被覆されたカーボンブラックが好ましい。 As the black pigment, any known black pigment (such as an organic pigment or an inorganic pigment) can be appropriately selected as long as it does not impair the effects of the present disclosure. Among them, from the viewpoint of optical density, preferred examples of the black pigment include carbon black, titanium oxide, titanium carbide, iron oxide, and graphite, with carbon black being particularly preferred. From the viewpoint of surface resistance, carbon black whose surface is at least partially coated with resin is preferable as carbon black.
 黒色顔料の粒子径は、分散安定性の観点から、数平均粒径で0.001μm~0.1μmが好ましく、0.01μm~0.08μmがより好ましい。 From the viewpoint of dispersion stability, the number average particle size of the black pigment is preferably 0.001 μm to 0.1 μm, more preferably 0.01 μm to 0.08 μm.
 ここで、粒径とは、電子顕微鏡で撮影した顔料粒子の写真像から顔料粒子の面積を求め、顔料粒子の面積と同面積の円を考えた場合の円の直径を指し、数平均粒径は、任意の100個の粒子について上記の粒径を求め、求められた100個の粒径を平均して得られる平均値である。 Here, the particle size refers to the diameter of a circle when the area of the pigment particle is determined from a photographic image of the pigment particle taken with an electron microscope and the area is the same as the area of the pigment particle, and the number average particle size is the average value obtained by determining the above particle size for 100 arbitrary particles and averaging the 100 determined particle sizes.
 黒色顔料以外の顔料として、白色顔料については、特開2005-007765号公報の段落0015及び0114に記載の白色顔料を使用できる。具体的には、白色顔料のうち、無機顔料としては、酸化チタン、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム、又は硫酸バリウムが好ましく、酸化チタン又は酸化亜鉛がより好ましく、酸化チタンがさらに好ましい。無機顔料としては、ルチル型又はアナターゼ型の酸化チタンがさらに好ましく、ルチル型の酸化チタンが特に好ましい。 As for the white pigment other than the black pigment, the white pigment described in paragraphs 0015 and 0114 of JP-A No. 2005-007765 can be used. Specifically, among white pigments, titanium oxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, or barium sulfate are preferable as inorganic pigments, and titanium oxide or zinc oxide is more preferable. Preferably, titanium oxide is more preferable. As the inorganic pigment, rutile-type or anatase-type titanium oxide is more preferable, and rutile-type titanium oxide is particularly preferable.
 また、酸化チタンの表面は、シリカ処理、アルミナ処理、チタニア処理、ジルコニア処理、又は有機物処理が施されていてもよく、二つ以上の処理が施されてもよい。これにより、酸化チタンの触媒活性が抑制され、耐熱性及び褪光性等が改善される。 Furthermore, the surface of titanium oxide may be subjected to silica treatment, alumina treatment, titania treatment, zirconia treatment, or organic substance treatment, or two or more treatments may be performed. This suppresses the catalytic activity of titanium oxide and improves heat resistance, fading resistance, and the like.
 加熱後の感光性層の厚みを薄くする観点から、酸化チタンの表面への表面処理としては、アルミナ処理及びジルコニア処理の少なくとも一方が好ましく、アルミナ処理及びジルコニア処理の両方が特に好ましい。 From the viewpoint of reducing the thickness of the photosensitive layer after heating, the surface treatment of the titanium oxide surface is preferably at least one of alumina treatment and zirconia treatment, and both alumina treatment and zirconia treatment are particularly preferred.
 また、感光性層が着色樹脂層である場合、転写性の観点から、感光性層は、黒色顔料及び白色顔料以外の有彩色の顔料をさらに含んでいることも好ましい。有彩色の顔料を含む場合、有彩色の顔料の粒径としては、分散性がより優れる点で、0.1μm以下が好ましく、0.08μm以下がより好ましい。 Furthermore, when the photosensitive layer is a colored resin layer, from the viewpoint of transferability, it is also preferable that the photosensitive layer further contains a chromatic pigment other than the black pigment and the white pigment. When a chromatic pigment is included, the particle size of the chromatic pigment is preferably 0.1 μm or less, more preferably 0.08 μm or less, in terms of better dispersibility.
 有彩色の顔料としては、例えば、ビクトリア・ピュアーブルーBO(Color Index(以下C.I.)42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメント・エロー12)、パーマネント・エローGR(C.I.ピグメント・エロー17)、パーマネント・エローHR(C.I.ピグメント・エロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)、ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)、モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)及びカーボン、C.I.ピグメント・レッド97、C.I.ピグメント・レッド122、C.I.ピグメント・レッド149、C.I.ピグメント・レッド168、C.I.ピグメント・レッド177、C.I.ピグメント・レッド180、C.I.ピグメント・レッド192、C.I.ピグメント・レッド215、C.I.ピグメント・グリーン7、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:4、C.I.ピグメント・ブルー22、C.I.ピグメント・ブルー60、C.I.ピグメント・ブルー64、及びC.I.ピグメント・バイオレット23等が挙げられる。中でも、C.I.ピグメント・レッド177が好ましい。 Examples of chromatic pigments include Victoria Pure Blue BO (Color Index (hereinafter referred to as C.I.) 42595), Auramine (C.I. 41000), Fat Black HB (C.I. 26150), and Monolight. - Yellow GT (C.I. Pigment Yellow 12), Permanent Yellow GR (C.I. Pigment Yellow 17), Permanent Yellow HR (C.I. Pigment Yellow 83), Permanent Carmine FBB (C Pigment Red 146), Hoster Balm Red ESB (C.I. Pigment Violet 19), Permanent Ruby FBH (C.I. Pigment Red 11), Fastel Pink B Splatter (C.I. Pigment・Red 81), Monastral Fast Blue (C.I. Pigment Blue 15), Monolite Fast Black B (C.I. Pigment Black 1) and Carbon, C.I. I. Pigment Red 97, C. I. Pigment Red 122, C. I. Pigment Red 149, C. I. Pigment Red 168, C. I. Pigment Red 177, C. I. Pigment Red 180, C. I. Pigment Red 192, C. I. Pigment Red 215, C. I. Pigment Green 7, C. I. Pigment Blue 15:1, C. I. Pigment Blue 15:4, C. I. Pigment Blue 22, C. I. Pigment Blue 60, C. I. Pigment Blue 64, and C.I. I. Pigment Violet 23 and the like. Among them, C. I. Pigment Red 177 is preferred.
 感光性層が顔料を含む場合、顔料の含有量としては、感光性層の全質量に対して、3質量%超40質量%以下が好ましく、3質量%超35質量%以下がより好ましく、5質量%超35質量%以下がさらに好ましく、10質量%以上35質量%以下が特に好ましい。 When the photosensitive layer contains a pigment, the content of the pigment is preferably more than 3% by mass and not more than 40% by mass, more preferably more than 3% by mass and not more than 35% by mass, based on the total mass of the photosensitive layer. It is more preferably more than 35% by mass, and particularly preferably 10% by mass or more and 35% by mass or less.
 感光性層が黒色顔料以外の顔料(白色顔料及び有彩色の顔料)を含む場合、黒色顔料以外の顔料の含有量は、黒色顔料に対して、30質量%以下が好ましく、1質量%~20質量%がより好ましく、3質量%~15質量%がさらに好ましい。 When the photosensitive layer contains pigments other than black pigments (white pigments and chromatic pigments), the content of pigments other than black pigments is preferably 30% by mass or less, and 1% by mass to 20% by mass based on the black pigment. It is more preferably 3% by mass to 15% by mass.
 なお、感光性層が黒色顔料を含み、かつ、感光性層が感光性組成物で形成される場合、黒色顔料(好ましくはカーボンブラック)は、顔料分散液の形態で感光性組成物に導入されることが好ましい。 Note that when the photosensitive layer contains a black pigment and is formed from a photosensitive composition, the black pigment (preferably carbon black) is introduced into the photosensitive composition in the form of a pigment dispersion. It is preferable that
 分散液は、黒色顔料と顔料分散剤とをあらかじめ混合して得られる混合物を、有機溶剤(又はビヒクル)に加えて分散機で分散させることによって調製されるものでもよい。顔料分散剤は、顔料及び溶剤に応じて選択すればよく、例えば市販の分散剤を使用することができる。なお、ビヒクルとは、顔料分散液とした場合に顔料を分散させている媒質の部分を指し、液状であり、黒色顔料を分散状態で保持するバインダー成分と、バインダー成分を溶解及び希釈する溶剤成分(有機溶剤)と、を含む。 The dispersion liquid may be prepared by adding a mixture obtained by pre-mixing a black pigment and a pigment dispersant to an organic solvent (or vehicle) and dispersing the mixture using a dispersion machine. The pigment dispersant may be selected depending on the pigment and the solvent, and for example, commercially available dispersants can be used. Note that the vehicle refers to the part of the medium in which the pigment is dispersed when it is made into a pigment dispersion, and is liquid, and includes a binder component that holds the black pigment in a dispersed state and a solvent component that dissolves and dilutes the binder component. (organic solvent).
 分散剤としては、例えば、ポリウレタン等のウレタン系分散剤、ポリアクリレート等のポリカルボン酸エステル、不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩、水酸基含有ポリカルボン酸エステル、これらの変性物、ポリ(低級アルキレンイミン)と遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミド及びその塩等の油性分散剤、(メタ)アクリル酸-スチレン共重合体、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、スチレン-マレイン酸共重合体、ポリビニルアルコ-ル、ポリビニルピロリドン等の水溶性樹脂や水溶性高分子化合物、ポリエステル系、変性ポリアクリレート系、エチレンオキサイド/プロピレンオキサイド付加化合物、リン酸エステル系等が挙げられる。分散剤の態様は、特開2021-012355号公報の段落[0021]~[0065]に記載された事項から選択されてもよい。 Examples of dispersants include urethane dispersants such as polyurethane, polycarboxylic acid esters such as polyacrylate, unsaturated polyamides, polycarboxylic acids, polycarboxylic acid (partial) amine salts, polycarboxylic acid ammonium salts, and polycarboxylic acids. Alkylamine salts, polysiloxanes, long-chain polyaminoamide phosphates, hydroxyl group-containing polycarboxylic acid esters, modified products thereof, amides formed by the reaction of poly(lower alkylene imine) with polyesters having free carboxyl groups, and Oil-based dispersants such as their salts, (meth)acrylic acid-styrene copolymers, (meth)acrylic acid-(meth)acrylic acid ester copolymers, styrene-maleic acid copolymers, polyvinyl alcohol, polyvinylpyrrolidone Examples include water-soluble resins such as water-soluble polymer compounds, polyester systems, modified polyacrylate systems, ethylene oxide/propylene oxide adducts, phosphate ester systems, and the like. The aspect of the dispersant may be selected from the items described in paragraphs [0021] to [0065] of JP-A-2021-012355.
 好ましい分散剤としては、例えば、塩基性重合体型分散剤が挙げられる。塩基性重合体型分散剤としては、例えば、窒素原子を含む重合体が挙げられる。窒素原子は、重合体の主鎖に含まれていてもよい。窒素原子は、重合体の側鎖に含まれていてもよい。窒素原子は、重合体の主鎖及び側鎖に含まれていてもよい。塩基性重合体型分散剤は、側鎖に窒素原子を含む重合体であることが好ましい。カーボンブラックの表面は一般に酸性であるため、顔料としてカーボンブラックが用いられる場合、分散剤としては、塩基性重合体型分散剤が特に好ましい。 Preferred dispersants include, for example, basic polymer type dispersants. Examples of the basic polymer type dispersant include a polymer containing a nitrogen atom. Nitrogen atoms may be included in the main chain of the polymer. Nitrogen atoms may be included in the side chains of the polymer. Nitrogen atoms may be included in the main chain and side chains of the polymer. The basic polymer type dispersant is preferably a polymer containing a nitrogen atom in a side chain. Since the surface of carbon black is generally acidic, when carbon black is used as a pigment, a basic polymer type dispersant is particularly preferred as the dispersant.
 窒素原子を含む重合体(好ましくは側鎖に窒素原子を含む重合体)としては、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム塩基及び含窒素複素環基からなる群より選択される少なくとも1種の原子団を含む重合体が挙げられる。例えば、第4級アンモニウム塩基を含む重合体が好ましい。原子団は、重合体の側鎖に導入されていることが好ましい。例えば、側鎖に第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム塩基及び含窒素複素環基からなる群より選択される少なくとも1種の原子団を含む重合体が好ましく、側鎖に第4級アンモニウム塩基を含む重合体がより好ましい。第4級アンモニウム塩基における第4級アンモニウムカチオンの対イオンとしては、例えば、カルボン酸イオンが挙げられる。カルボン酸イオンとしては、例えば、脂肪族カルボン酸イオン及び芳香族カルボン酸イオンが挙げられる。 Examples of the polymer containing a nitrogen atom (preferably a polymer containing a nitrogen atom in a side chain) include a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium base, and a nitrogen-containing polymer. Examples include polymers containing at least one atomic group selected from the group consisting of heterocyclic groups. For example, a polymer containing a quaternary ammonium base is preferred. The atomic group is preferably introduced into the side chain of the polymer. For example, a polymer containing at least one atomic group selected from the group consisting of a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium base, and a nitrogen-containing heterocyclic group in its side chain. Coalescence is preferred, and polymers containing a quaternary ammonium base in the side chain are more preferred. Examples of the counter ion of the quaternary ammonium cation in the quaternary ammonium base include carboxylic acid ions. Examples of carboxylic acid ions include aliphatic carboxylic acid ions and aromatic carboxylic acid ions.
 窒素原子を含む重合体(好ましくは側鎖に窒素原子を含む重合体)は、スチレンに由来の構成単位と、マレイミド誘導体に由来の構成単位と、を含む重合体であることが好ましく、スチレンとマレイミド誘導体との共重合体であることがより好ましい。マレイミド誘導体は、マレイミドの少なくとも1つの水素原子が置換基により置換された構造を有する。マレイミド誘導体としては、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム塩基及び含窒素複素環基からなる群より選択される少なくとも1種の原子団を含むマレイミド誘導体が挙げられる。マレイミド誘導体は、第4級アンモニウム塩基を含むマレイミド誘導体が好ましい。 The polymer containing a nitrogen atom (preferably a polymer containing a nitrogen atom in a side chain) is preferably a polymer containing a structural unit derived from styrene and a structural unit derived from a maleimide derivative. More preferably, it is a copolymer with a maleimide derivative. A maleimide derivative has a structure in which at least one hydrogen atom of maleimide is substituted with a substituent. As a maleimide derivative, for example, at least one atomic group selected from the group consisting of a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium base, and a nitrogen-containing heterocyclic group is used. Examples include maleimide derivatives containing. The maleimide derivative is preferably a maleimide derivative containing a quaternary ammonium base.
 分散剤は、市販の分散剤であってもよく、例えば、BYK-2012(ビックケミー・
ジャパン株式会社)が挙げられる。
The dispersant may be a commercially available dispersant, such as BYK-2012 (BYK-2012).
Japan Co., Ltd.).
 感光性層は、顔料に加えて分散助剤(顔料分散助剤ともいう。)を含んでいてもよい。分散助剤は、公知の分散助剤から選択されてもよい。 The photosensitive layer may contain a dispersion aid (also referred to as a pigment dispersion aid) in addition to the pigment. The dispersion aid may be selected from known dispersion aids.
 分散助剤としては、例えば、有機色素残基を有する化合物が挙げられる。有機色素としては、例えば、フタロシアニン系顔料、ジケトピロロピロール系顔料、アントラキノン系顔料、キナクリドン系顔料、ジオキサジン系顔料、ペリノン系顔料、ペリレン系顔料、チアジンインジゴ系顔料、トリアジン系顔料、ベンズイミダゾロン系顔料、ベンゾイソインドール等のインドール系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、ナフトール系顔料、スレン系顔料、金属錯体系顔料、アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料等が挙げられる。有機色素残基を有する化合物は、酸性置換基、塩基性置換基又は中性置換基を有していてもよい。酸性置換基としては、例えば、スルホ基、カルボキシ基及びリン酸基が挙げられる。塩基性置換基としては、例えば、スルホンアミド基及びアミノ基が挙げられる。中性置換基としては、例えば、フェニル基及びフタルイミドアルキル基が挙げられる。分散助剤の態様は、特開2021-012355号公報の段落[0067]~[0084]に記載された事項から選択されてもよい。 Examples of the dispersion aid include compounds having organic dye residues. Examples of organic pigments include phthalocyanine pigments, diketopyrrolopyrrole pigments, anthraquinone pigments, quinacridone pigments, dioxazine pigments, perinone pigments, perylene pigments, thiazine indigo pigments, triazine pigments, and benzimidazo pigments. Ron pigments, indole pigments such as benzoisoindole, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, naphthol pigments, threne pigments, metal complex pigments, azo pigments such as azo, disazo, polyazo, etc. Examples include pigments. The compound having an organic dye residue may have an acidic substituent, a basic substituent, or a neutral substituent. Examples of acidic substituents include sulfo groups, carboxy groups, and phosphoric acid groups. Examples of the basic substituent include a sulfonamide group and an amino group. Examples of neutral substituents include phenyl groups and phthalimidoalkyl groups. The aspect of the dispersion aid may be selected from the items described in paragraphs [0067] to [0084] of JP-A-2021-012355.
 好ましい分散助剤としては、例えば、フタロシアニン残基を有する化合物が挙げられる。具体的に、分散助剤は、酸性置換基を有するフタロシアニン系顔料誘導体又はその塩であることが好ましく、スルホ基、カルボキシ基及びリン酸基からなる群より選択される少なくとも1種の酸性置換基を有するフタロシアニン系顔料誘導体又はその塩であることがより好ましく、スルホ基を有するフタロシアニン系顔料誘導体又はその塩であることがさらに好ましい。フタロシアニン系顔料誘導体は、例えば、特開2007-226161号公報、国際公開第2016/163351号、特開2017-165820号公報及び特許第5753266号公報に記載されている。これらの公報は、参照により本明細書に取り込まれる。 Preferred dispersion aids include, for example, compounds having phthalocyanine residues. Specifically, the dispersion aid is preferably a phthalocyanine pigment derivative or a salt thereof having an acidic substituent, and at least one acidic substituent selected from the group consisting of a sulfo group, a carboxy group, and a phosphoric acid group. A phthalocyanine pigment derivative having a sulfo group or a salt thereof is more preferable, and a phthalocyanine pigment derivative having a sulfo group or a salt thereof is even more preferable. Phthalocyanine pigment derivatives are described, for example, in JP 2007-226161A, WO 2016/163351, JP 2017-165820, and Patent No. 5753266. These publications are incorporated herein by reference.
 分散機としては、特に制限はなく、例えば、ニーダー、ロールミル、アトライター、スーパーミル、ディゾルバ、ホモミキサー、及びサンドミル等の公知の分散機が挙げられる。さらに、機械的摩砕により摩擦力を利用して微粉砕してもよい。分散機及び微粉砕については、「顔料の事典」(朝倉邦造著、第一版、朝倉書店、2000年、438頁、310頁)の記載を参照することができる。 The dispersing machine is not particularly limited, and examples thereof include known dispersing machines such as a kneader, roll mill, attritor, super mill, dissolver, homomixer, and sand mill. Furthermore, it may be finely pulverized by mechanical grinding using frictional force. Regarding the dispersing machine and fine pulverization, reference can be made to the description in "Encyclopedia of Pigments" (written by Kunizo Asakura, 1st edition, Asakura Shoten, 2000, pages 438 and 310).
<<中間層>>
 転写層は、仮支持体と感光性層との間に、中間層を含むことが好ましい。
<<Middle layer>>
The transfer layer preferably includes an intermediate layer between the temporary support and the photosensitive layer.
 中間層を配置することにより、複数の層形成用組成物を塗布する際及び塗布後の保存の際における成分の混合を抑制できる。 By arranging the intermediate layer, it is possible to suppress mixing of components during coating of a plurality of layer-forming compositions and during storage after coating.
 中間層としては、水溶性樹脂を含む水溶性樹脂層であることが好ましい。
 また、中間層としては、特開平5-072724号公報に「分離層」として記載されている、酸素遮断機能のある酸素遮断層も使用できる。中間層が酸素遮断層であると、露光時の感度が向上し、露光機の時間負荷が低減し、生産性が向上するため、好ましい。
The intermediate layer is preferably a water-soluble resin layer containing a water-soluble resin.
Further, as the intermediate layer, an oxygen barrier layer having an oxygen barrier function, which is described as a "separation layer" in JP-A-5-072724, can also be used. It is preferable that the intermediate layer is an oxygen barrier layer because sensitivity during exposure is improved, time load on the exposure machine is reduced, and productivity is improved.
 中間層として用いられる酸素遮断層は、上記公報等に記載された公知の層から適宜選択すればよい。中でも、低い酸素透過性を示し、水又はアルカリ水溶液(22℃の炭酸ナトリウムの1質量%水溶液)に分散又は溶解する酸素遮断層が好ましい。 The oxygen barrier layer used as the intermediate layer may be appropriately selected from the known layers described in the above-mentioned publications. Among these, an oxygen barrier layer that exhibits low oxygen permeability and is dispersed or dissolved in water or an alkaline aqueous solution (a 1% by mass aqueous solution of sodium carbonate at 22° C.) is preferred.
 以下、中間層が含み得る各成分について説明する。 Hereinafter, each component that the intermediate layer may contain will be explained.
 中間層は、樹脂を含むことが好ましい。 It is preferable that the intermediate layer contains resin.
 上記樹脂は、その一部又は全部として、水溶性樹脂を含むことが好ましい。 It is preferable that the above resin contains a water-soluble resin as part or all of it.
 水溶性樹脂として使用可能な樹脂としては、例えば、ポリビニルアルコール系樹脂、ポリビニルピロリドン系樹脂、セルロース系樹脂、アクリルアミド系樹脂、ポリエチレンオキサイド系樹脂、ゼラチン、ビニルエーテル系樹脂、ポリアミド樹脂、及びこれらの共重合体等の樹脂が挙げられる。 Examples of resins that can be used as water-soluble resins include polyvinyl alcohol resins, polyvinylpyrrolidone resins, cellulose resins, acrylamide resins, polyethylene oxide resins, gelatin, vinyl ether resins, polyamide resins, and copolymers thereof. Examples include resins such as coalescence.
 また、水溶性樹脂としては、(メタ)アクリル酸/ビニル化合物の共重合体等も使用できる。(メタ)アクリル酸/ビニル化合物の共重合体としては、(メタ)アクリル酸/(メタ)アクリル酸アリルの共重合体が好ましく、メタクリル酸/メタクリル酸アリルの共重合体がより好ましい。 Furthermore, as the water-soluble resin, a copolymer of (meth)acrylic acid/vinyl compound, etc. can also be used. As the (meth)acrylic acid/vinyl compound copolymer, a (meth)acrylic acid/allyl (meth)acrylate copolymer is preferred, and a methacrylic acid/allyl methacrylate copolymer is more preferred.
 水溶性樹脂が(メタ)アクリル酸/ビニル化合物の共重合体である場合、各組成比(モル%)としては、例えば、90/10~20/80が好ましく、80/20~30/70がより好ましい。 When the water-soluble resin is a copolymer of (meth)acrylic acid/vinyl compound, each composition ratio (mol%) is preferably 90/10 to 20/80, and 80/20 to 30/70, for example. More preferred.
 水溶性樹脂の重量平均分子量の下限値としては、5,000以上が好ましく、7,000以上がより好ましく、10,000以上がさらに好ましい。また、その上限値としては、200,000以下が好ましく、100,000以下がより好ましく、50,000以下がさらに好ましい。
 水溶性樹脂の分散度(Mw/Mn)は、1~10が好ましく、1~5がより好ましい。
The lower limit of the weight average molecular weight of the water-soluble resin is preferably 5,000 or more, more preferably 7,000 or more, and even more preferably 10,000 or more. Further, the upper limit thereof is preferably 200,000 or less, more preferably 100,000 or less, and even more preferably 50,000 or less.
The degree of dispersion (Mw/Mn) of the water-soluble resin is preferably 1 to 10, more preferably 1 to 5.
 なお、中間層の層間混合抑制能をより向上させる点で、中間層に含まれる樹脂は、中間層の一方の面側に配置される層に含まれる樹脂及び他方の面側に配置される層に含まれる樹脂とは異なる樹脂であることが好ましい。例えば、感光性層中に重合体Aが含まれ、熱可塑性樹脂層中に熱可塑性樹脂(アルカリ可溶性樹脂)が含まれる場合、中間層に含まれる樹脂は、重合体A及び熱可塑性樹脂(アルカリ可溶性樹脂)とは異なる樹脂であることが好ましい。 In addition, in order to further improve the interlayer mixing suppressing ability of the intermediate layer, the resin contained in the intermediate layer is the same as the resin contained in the layer disposed on one side of the intermediate layer and the resin contained in the layer disposed on the other side of the intermediate layer. It is preferable that the resin is different from the resin contained in the. For example, if the photosensitive layer contains polymer A and the thermoplastic resin layer contains thermoplastic resin (alkali-soluble resin), the intermediate layer contains polymer A and thermoplastic resin (alkali-soluble resin). It is preferable that the resin is different from the soluble resin.
 水溶性樹脂は、酸素遮断性、並びに、層間混合抑制能をより向上させる点で、ポリビニルアルコールを含むことが好ましく、ポリビニルアルコール及びポリビニルピロリドンの両者を含むことがより好ましい。 The water-soluble resin preferably contains polyvinyl alcohol, and more preferably contains both polyvinyl alcohol and polyvinylpyrrolidone, from the viewpoint of further improving oxygen barrier properties and interlayer mixing suppression ability.
 中間層に含まれる水溶性樹脂は、1種であってもよく、2種以上であってもよい。 The number of water-soluble resins contained in the intermediate layer may be one type, or two or more types.
 水溶性樹脂の含有量は特に制限されないが、酸素遮断性、並びに、層間混合抑制能をより向上させる点で、水溶性樹脂層(中間層)の全質量に対して、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。なお、その上限値としては特に制限されないが、例えば、99.9質量%以下が好ましく、99.8質量%以下がさらに好ましい。 The content of the water-soluble resin is not particularly limited, but is preferably 50% by mass or more based on the total mass of the water-soluble resin layer (intermediate layer) in order to further improve oxygen barrier properties and ability to suppress interlayer mixing. , more preferably 70% by mass or more, further preferably 80% by mass or more, particularly preferably 90% by mass or more. The upper limit is not particularly limited, but is preferably 99.9% by mass or less, more preferably 99.8% by mass or less.
 中間層は、必要に応じて界面活性剤等の公知の添加剤を含んでいてもよい。 The intermediate layer may contain known additives such as surfactants, if necessary.
 中間層に含まれる界面活性剤は、1種であってもよく、2種以上であってもよい。
 界面活性剤は、ノニオン系界面活性剤、フッ素系界面活性剤、及びシリコーン系界面活性剤からなる群より選ばれる少なくとも1種を含むことが好ましい。
The number of surfactants contained in the intermediate layer may be one, or two or more.
The surfactant preferably includes at least one selected from the group consisting of nonionic surfactants, fluorine surfactants, and silicone surfactants.
 仮支持体の剥離性、解像性、酸素遮断能、欠陥抑制性等の観点から、界面活性剤は、シリコーン系界面活性剤を含むことが好ましい。 It is preferable that the surfactant contains a silicone surfactant from the viewpoint of the releasability, resolution, oxygen blocking ability, defect suppression property, etc. of the temporary support.
 また、中間層と隣接する層(感光性層、熱可塑性樹脂等)との密着性(以下、「層間密着性」ともいう。)向上の観点からもシリコーン系界面活性剤が好ましい。
 仮支持体の剥離性、解像性、酸素遮断能、欠陥抑制性、層間密着性等の観点から、シリコーン系界面活性剤の含有量は、界面活性剤の全質量に対して、60質量%以上であることが好ましく、80質量%以上であることが好ましく、95質量%以上であることが好ましく、100質量%であってもよい。
 シリコーン系界面活性剤としては、シロキサン結合からなる直鎖状ポリマー、側鎖及び末端の少なくとも一方に有機基を導入した変性シロキサンポリマー等が挙げられる。
Also, silicone surfactants are preferred from the viewpoint of improving the adhesion between the intermediate layer and adjacent layers (photosensitive layer, thermoplastic resin, etc.) (hereinafter also referred to as "interlayer adhesion").
From the viewpoint of releasability, resolution, oxygen blocking ability, defect suppression ability, interlayer adhesion, etc. of the temporary support, the content of the silicone surfactant is 60% by mass based on the total mass of the surfactant. It is preferably at least 80% by mass, preferably at least 95% by mass, and may be 100% by mass.
Examples of silicone surfactants include linear polymers consisting of siloxane bonds, modified siloxane polymers having an organic group introduced into at least one of a side chain and a terminal.
 仮支持体の剥離性、解像性、酸素遮断能、欠陥抑制性、層間密着性等の観点から、界面活性剤の含有量は、中間層の全質量に対して、0.1質量%~10質量%であることが好ましく、0.5質量%~7質量%であることがより好ましく、1質量%~5質量%であることがさらに好ましい。 From the viewpoint of releasability, resolution, oxygen blocking ability, defect suppression ability, interlayer adhesion, etc. of the temporary support, the content of the surfactant is 0.1% by mass to 0.1% by mass based on the total mass of the intermediate layer. It is preferably 10% by weight, more preferably 0.5% to 7% by weight, and even more preferably 1% to 5% by weight.
 中間層の厚みは、特に制限されないが、0.1μm~5μmが好ましく、0.5~3μmがより好ましい。水溶性樹脂層(中間層)の厚みが上記の範囲内であると、酸素遮断性を低下させることがなく、層間混合抑制能が優れる。また、さらに、現像時の中間層の除去時間の増大も抑制できる。 The thickness of the intermediate layer is not particularly limited, but is preferably 0.1 μm to 5 μm, more preferably 0.5 μm to 3 μm. When the thickness of the water-soluble resin layer (intermediate layer) is within the above range, the oxygen barrier property is not reduced and the ability to suppress interlayer mixing is excellent. Furthermore, it is also possible to suppress an increase in the time required to remove the intermediate layer during development.
<<熱可塑性樹脂層>>
 転写層は、仮支持体と中間層との間に、熱可塑性樹脂層を含むことが好ましい。転写フィルムが熱可塑性樹脂層を備えることで、転写フィルムと基板との貼り合わせ工程における基板への追従性が向上して、基板と転写フィルムとの間の気泡の混入を抑制できる。この結果として、熱可塑性樹脂層に隣接する層(例えば、仮支持体)との密着性を担保できる。
<<Thermoplastic resin layer>>
The transfer layer preferably includes a thermoplastic resin layer between the temporary support and the intermediate layer. By including the thermoplastic resin layer in the transfer film, the followability to the substrate in the step of bonding the transfer film and the substrate is improved, and it is possible to suppress the inclusion of air bubbles between the substrate and the transfer film. As a result, adhesion between the thermoplastic resin layer and the layer adjacent to it (eg, temporary support) can be ensured.
 熱可塑性樹脂層は、樹脂を含む。上記樹脂は、その一部又は全部として、熱可塑性樹脂を含む。つまり、一態様において、熱可塑性樹脂層は、樹脂が熱可塑性樹脂であることも好ましい。 The thermoplastic resin layer contains resin. The resin includes a thermoplastic resin as part or all of the resin. That is, in one embodiment, it is also preferable that the resin in the thermoplastic resin layer is a thermoplastic resin.
<アルカリ可溶性樹脂(熱可塑性樹脂)>
 熱可塑性樹脂は、アルカリ可溶性樹脂であることが好ましい。
<Alkali-soluble resin (thermoplastic resin)>
The thermoplastic resin is preferably an alkali-soluble resin.
 アルカリ可溶性樹脂としては、例えば、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル系共重合体、ポリウレタン樹脂、ポリビニルアルコール、ポリビニルホルマール、ポリアミド樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリアセタール樹脂、ポリヒドロキシスチレン樹脂、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリシロキサン樹脂、ポリエチレンイミン、ポリアリルアミン、及びポリアルキレングリコールが挙げられる。 Examples of alkali-soluble resins include acrylic resin, polystyrene resin, styrene-acrylic copolymer, polyurethane resin, polyvinyl alcohol, polyvinyl formal, polyamide resin, polyester resin, polyamide resin, epoxy resin, polyacetal resin, and polyhydroxystyrene resin. , polyimide resin, polybenzoxazole resin, polysiloxane resin, polyethyleneimine, polyallylamine, and polyalkylene glycol.
 アルカリ可溶性樹脂としては、現像性及び隣接する層との密着性の観点から、アクリル樹脂が好ましい。 As the alkali-soluble resin, acrylic resin is preferred from the viewpoint of developability and adhesion with adjacent layers.
 ここで、アクリル樹脂は、(メタ)アクリル酸に由来する構成単位、(メタ)アクリル酸エステルに由来する構成単位、及び(メタ)アクリル酸アミドに由来する構成単位からなる群から選ばれた少なくとも1種の構成単位を有する樹脂を意味する。 Here, the acrylic resin is at least one selected from the group consisting of structural units derived from (meth)acrylic acid, structural units derived from (meth)acrylic esters, and structural units derived from (meth)acrylic acid amide. It means a resin having one type of structural unit.
 アクリル樹脂としては、(メタ)アクリル酸に由来する構成単位、(メタ)アクリル酸エステルに由来する構成単位、及び(メタ)アクリル酸アミドに由来する構成単位の合計含有量が、アクリル樹脂の全質量に対して50質量%以上であることが好ましい。 As for acrylic resin, the total content of structural units derived from (meth)acrylic acid, structural units derived from (meth)acrylic acid ester, and structural units derived from (meth)acrylic amide is the total content of the acrylic resin. It is preferable that the amount is 50% by mass or more based on the mass.
 中でも、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の合計含有量が、アクリル樹脂の全質量に対して、30質量%~100質量%が好ましく、50質量%~100質量%がより好ましい。 Among them, the total content of structural units derived from (meth)acrylic acid and structural units derived from (meth)acrylic acid ester is preferably 30% by mass to 100% by mass, and 50% by mass based on the total mass of the acrylic resin. More preferably from % by mass to 100% by mass.
 また、アルカリ可溶性樹脂は、スチレン由来の構成単位及びスチレン誘導体由来の構成単位からなる群より選択される少なくとも1種を含むことが好ましい。スチレン誘導体の具体例としては、例えば、ビニルトルエン、p-メチルスチレン、及びp-クロロスチレンが挙げられる。 Moreover, it is preferable that the alkali-soluble resin contains at least one selected from the group consisting of structural units derived from styrene and structural units derived from styrene derivatives. Specific examples of styrene derivatives include vinyltoluene, p-methylstyrene, and p-chlorostyrene.
 上記アルカリ可溶性樹脂における、スチレン由来の構成単位及びスチレン誘導体由来の構成単位の合計含有量は、アルカリ可溶性樹脂の全質量に対して、5質量%~60質量%が好ましく、10質量%~50質量%がより好ましく、15質量%~40質量%がさらに好ましい。 The total content of structural units derived from styrene and structural units derived from styrene derivatives in the alkali-soluble resin is preferably 5% by mass to 60% by mass, and 10% by mass to 50% by mass, based on the total mass of the alkali-soluble resin. % is more preferable, and 15% to 40% by weight is even more preferable.
 また、アルカリ可溶性樹脂は、スチレン由来の構成単位及びスチレン誘導体由来の構成単位の合計含有量に対する、(メタ)アクリル酸エステル由来の構成単位の含有量の質量比率が0.3~2.5であることが好ましく、0.5~2.05であることがより好ましく、0.7~1.75であることがさらに好ましい。 In addition, the alkali-soluble resin has a mass ratio of the content of structural units derived from (meth)acrylic acid ester to the total content of structural units derived from styrene and styrene derivatives from 0.3 to 2.5. It is preferably from 0.5 to 2.05, even more preferably from 0.7 to 1.75.
 また、アルカリ可溶性樹脂は、酸基を有する重合体であることが好ましい。 Furthermore, the alkali-soluble resin is preferably a polymer having acid groups.
 酸基としては、カルボキシ基、スルホ基、リン酸基、及びホスホン酸基が挙げられ、カルボキシ基が好ましい。 Examples of the acid group include a carboxyl group, a sulfo group, a phosphoric acid group, and a phosphonic acid group, with a carboxy group being preferred.
 アルカリ可溶性樹脂は、現像性の観点から、酸価60mgKOH/g以上のアルカリ可溶性樹脂がより好ましく、酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂がさらに好ましい。 From the viewpoint of developability, the alkali-soluble resin is more preferably an alkali-soluble resin with an acid value of 60 mgKOH/g or more, and even more preferably a carboxyl group-containing acrylic resin with an acid value of 60 mgKOH/g or more.
 アルカリ可溶性樹脂の酸価の上限は、特に制限されないが、300mgKOH/g以下が好ましく、250mgKOH/g以下がより好ましく、200mgKOH/g以下がさらに好ましく、150mgKOH/g以下が特に好ましい。 The upper limit of the acid value of the alkali-soluble resin is not particularly limited, but is preferably 300 mgKOH/g or less, more preferably 250 mgKOH/g or less, even more preferably 200 mgKOH/g or less, and particularly preferably 150 mgKOH/g or less.
 酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂としては、特に制限されず、公知の樹脂から適宜選択して使用できる。 The carboxy group-containing acrylic resin having an acid value of 60 mgKOH/g or more is not particularly limited, and can be appropriately selected from known resins.
 例えば、特開2011-095716号公報の段落0025に記載のポリマーのうち酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂であるアルカリ可溶性樹脂、特開2010-237589号公報の段落0033~0052に記載のポリマーのうちの酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂、及び特開2016-224162号公報の段落0053~0068に記載のバインダーポリマーのうちの酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂が挙げられる。 For example, among the polymers described in paragraph 0025 of JP-A-2011-095716, an alkali-soluble resin that is a carboxyl group-containing acrylic resin with an acid value of 60 mgKOH/g or more, and the alkali-soluble resin described in paragraphs 0033 to 0052 of JP-A-2010-237589. A carboxyl group-containing acrylic resin with an acid value of 60 mgKOH/g or more among the polymers of Examples include resin.
 上記カルボキシ基含有アクリル樹脂におけるカルボキシ基を有する構成単位の共重合比は、アクリル樹脂の全質量に対して、5質量%~50質量%が好ましく、10質量%~40質量%がより好ましく、12質量%~30質量%がさらに好ましい。 The copolymerization ratio of structural units having a carboxyl group in the above carboxy group-containing acrylic resin is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 40% by mass, and 12% by mass, more preferably 10% by mass to 40% by mass, based on the total mass of the acrylic resin. More preferably, the amount is from % by mass to 30% by mass.
 アルカリ可溶性樹脂としては、現像性及び隣接する層との密着性の観点から、(メタ)アクリル酸に由来する構成単位を有するアクリル樹脂が特に好ましい。 As the alkali-soluble resin, an acrylic resin having a structural unit derived from (meth)acrylic acid is particularly preferable from the viewpoint of developability and adhesion with an adjacent layer.
 アルカリ可溶性樹脂は、反応性基を有していてもよい。反応性基としては、付加重合可能な基であればよく、エチレン性不飽和基;ヒドロキシ基及びカルボキシ基等の重縮合性基;エポキシ基、(ブロック)イソシアネート基等の重付加反応性基が挙げられる。 The alkali-soluble resin may have a reactive group. The reactive group may be any group that is capable of addition polymerization, and includes ethylenically unsaturated groups; polycondensable groups such as hydroxy groups and carboxy groups; and polyaddition reactive groups such as epoxy groups and (block) isocyanate groups. Can be mentioned.
 アルカリ可溶性樹脂の重量平均分子量(Mw)は、1,000以上が好ましく、1万~10万がより好ましく、2万~5万がさらに好ましい。 The weight average molecular weight (Mw) of the alkali-soluble resin is preferably 1,000 or more, more preferably 10,000 to 100,000, and even more preferably 20,000 to 50,000.
 熱可塑性樹脂層に含まれるアルカリ可溶性樹脂は、1種であってもよく、2種以上であってもよい。 The number of alkali-soluble resins contained in the thermoplastic resin layer may be one type or two or more types.
 アルカリ可溶性樹脂の含有量は、現像性及び隣接する層との密着性の観点から、熱可塑性樹脂層の全質量に対して、10~99質量%が好ましく、20質量%~90質量%がより好ましく、40~80質量%がさらに好ましく、50質量%~75質量%が特に好ましい。 From the viewpoint of developability and adhesion with adjacent layers, the content of the alkali-soluble resin is preferably 10 to 99% by mass, more preferably 20 to 90% by mass, based on the total mass of the thermoplastic resin layer. It is preferably 40 to 80% by weight, more preferably 50 to 75% by weight.
<色素>
 熱可塑性樹脂層は、発色時の波長範囲400~780nmにおける最大吸収波長が450nm以上であり、酸、塩基、又はラジカルにより最大吸収波長が変化する色素(単に「色素B」ともいう。)を含むことが好ましい。
<Pigment>
The thermoplastic resin layer contains a dye (also simply referred to as "dye B") whose maximum absorption wavelength is 450 nm or more in the wavelength range of 400 to 780 nm during color development, and whose maximum absorption wavelength changes with acid, base, or radical. It is preferable.
 色素Bの好ましい態様は、後述する点以外は、上述した色素Nの好ましい態様と同様である。 The preferred embodiments of dye B are the same as the preferred embodiments of dye N described above, except for the points described below.
 色素Bは、露光部及び非露光部の視認性並びに解像性の観点から、酸又はラジカルにより最大吸収波長が変化する色素が好ましく、酸により最大吸収波長が変化する色素であることがより好ましい。 From the viewpoint of visibility and resolution of exposed and non-exposed areas, dye B is preferably a dye whose maximum absorption wavelength changes with acid or radicals, and more preferably a dye whose maximum absorption wavelength changes with acid. .
 熱可塑性樹脂層は、露光部及び非露光部の視認性並びに解像性の観点から、色素Bとしての酸により最大吸収波長が変化する色素、及び後述する光により酸を発生する化合物の両者を含むことが好ましい。 From the viewpoint of visibility and resolution in exposed and non-exposed areas, the thermoplastic resin layer contains both a dye as dye B whose maximum absorption wavelength changes depending on an acid, and a compound that generates an acid when exposed to light, which will be described later. It is preferable to include.
 熱可塑性樹脂層に含まれる色素Bは、1種であってもよく、2種以上であってもよい。 The number of dyes B contained in the thermoplastic resin layer may be one, or two or more.
 色素Bの含有量は、露光部及び非露光部の視認性の観点から、熱可塑性樹脂層の全質量に対して、0.2質量%以上が好ましく、0.2質量%~6質量%がより好ましく、0.2質量%~5質量%がさらに好ましく、0.25質量%~3.0質量%が特に好ましい。 The content of dye B is preferably 0.2% by mass or more, and 0.2% by mass to 6% by mass, based on the total mass of the thermoplastic resin layer, from the viewpoint of visibility of exposed areas and non-exposed areas. It is more preferably 0.2% by mass to 5% by mass, and particularly preferably 0.25% by mass to 3.0% by mass.
 ここで、色素Bの含有量は、熱可塑性樹脂層に含まれる色素Bの全てを発色状態にした場合の色素の含有量を意味する。以下に、ラジカルにより発色する色素を例に、色素Bの含有量の定量方法を説明する。
 メチルエチルケトン100mLに、色素0.001g及び0.01gを溶かした溶液を調製する。得られた各溶液に、光ラジカル重合開始剤Irgacure OXE01(商品名、BASFジャパン株式会社)を加え、365nmの光を照射することによりラジカルを発生させ、全ての色素を発色状態にする。その後、大気雰囲気下で、分光光度計(UV3100、(株)島津製作所製)を用いて、液温が25℃である各溶液の吸光度を測定し、検量線を作成する。
 次に、色素に代えて熱可塑性樹脂層0.1gをメチルエチルケトンに溶かすこと以外は上記と同様の方法で、色素を全て発色させた溶液の吸光度を測定する。得られた熱可塑性樹脂層を含む溶液の吸光度から、検量線に基づいて熱可塑性樹脂層に含まれる色素の量を算出する。
 なお、熱可塑性樹脂層3gとは、熱可塑性樹脂層形成用組成物の固形分の3gと同様である。
Here, the content of the dye B means the content of the dye when all of the dye B contained in the thermoplastic resin layer is brought into a colored state. Below, a method for quantifying the content of dye B will be explained using a dye that develops color due to radicals as an example.
A solution is prepared by dissolving 0.001 g and 0.01 g of the dye in 100 mL of methyl ethyl ketone. A photoradical polymerization initiator, Irgacure OXE01 (trade name, BASF Japan Ltd.), is added to each of the obtained solutions, and irradiation with 365 nm light generates radicals to bring all the dyes into a colored state. Thereafter, the absorbance of each solution at a liquid temperature of 25° C. is measured using a spectrophotometer (UV3100, manufactured by Shimadzu Corporation) under atmospheric conditions, and a calibration curve is created.
Next, the absorbance of the solution in which all the dyes are colored is measured in the same manner as above except that 0.1 g of the thermoplastic resin layer is dissolved in methyl ethyl ketone instead of the dye. From the absorbance of the obtained solution containing the thermoplastic resin layer, the amount of dye contained in the thermoplastic resin layer is calculated based on a calibration curve.
Note that 3 g of the thermoplastic resin layer is the same as 3 g of the solid content of the composition for forming a thermoplastic resin layer.
<光により酸、塩基、又はラジカルを発生する化合物>
 熱可塑性樹脂層は、光により酸、塩基、又はラジカルを発生する化合物(単に「化合物C」ともいう。)を含んでもよい。
<Compounds that generate acids, bases, or radicals when exposed to light>
The thermoplastic resin layer may contain a compound (also simply referred to as "compound C") that generates an acid, a base, or a radical when exposed to light.
 化合物Cとしては、紫外線及び可視光線等の活性光線を受けて、酸、塩基、又はラジカルを発生する化合物が好ましい。 The compound C is preferably a compound that generates an acid, a base, or a radical upon receiving actinic rays such as ultraviolet rays and visible rays.
 化合物Cとしては、公知の光酸発生剤、光塩基発生剤、及び光ラジカル重合開始剤(光ラジカル発生剤)を使用できる。 As compound C, known photoacid generators, photobase generators, and photoradical polymerization initiators (photoradical generators) can be used.
(光酸発生剤)
 熱可塑性樹脂層は、解像性の観点から、光酸発生剤を含んでもよい。
(Photoacid generator)
The thermoplastic resin layer may contain a photoacid generator from the viewpoint of resolution.
 光酸発生剤としては、上述した感光性層が含んでもよい光カチオン重合開始剤が挙げられ、後述する点以外は好ましい態様も同じである。 Examples of the photoacid generator include the photocationic polymerization initiators that may be included in the photosensitive layer described above, and the preferred embodiments are the same except for the points described below.
 光酸発生剤としては、感度及び解像性の観点から、オニウム塩化合物、及びオキシムスルホネート化合物からなる群から選ばれた少なくとも1種の化合物を含むことが好ましく、感度、解像性、及び密着性の観点から、オキシムスルホネート化合物を含むことがより好ましい。
 また、光酸発生剤としては、以下の構造を有する光酸発生剤も好ましい。
From the viewpoint of sensitivity and resolution, the photoacid generator preferably contains at least one compound selected from the group consisting of onium salt compounds and oxime sulfonate compounds. From the viewpoint of properties, it is more preferable to include an oxime sulfonate compound.
Further, as the photoacid generator, a photoacid generator having the following structure is also preferable.
(光ラジカル重合開始剤)
 熱可塑性樹脂層は、光ラジカル重合開始剤を含んでもよい。
(Photoradical polymerization initiator)
The thermoplastic resin layer may contain a photoradical polymerization initiator.
 光ラジカル重合開始剤としては、上述した感光性層が含んでもよい光ラジカル重合開始剤が挙げられ、好ましい態様も同じである。 Examples of the radical photopolymerization initiator include the radical photopolymerization initiator that the above-mentioned photosensitive layer may contain, and the preferred embodiments are also the same.
(光塩基発生剤)
 熱可塑性樹脂組成物は、光塩基発生剤を含んでもよい。
(Photobase generator)
The thermoplastic resin composition may also include a photobase generator.
 光塩基発生剤としては、公知の光塩基発生剤であれば特に制限されず、例えば、2-ニトロベンジルシクロヘキシルカルバメート、トリフェニルメタノール、O-カルバモイルヒドロキシルアミド、O-カルバモイルオキシム、[[(2,6-ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ヘキサン1,6-ジアミン、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン、N-(2-ニトロベンジルオキシカルボニル)ピロリジン、ヘキサアンミンコバルト(III)トリス(トリフェニルメチルボレート)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、2,6-ジメチル-3,5-ジアセチル-4-(2-ニトロフェニル)-1,4-ジヒドロピリジン、及び2,6-ジメチル-3,5-ジアセチル-4-(2,4-ジニトロフェニル)-1,4-ジヒドロピリジンが挙げられる。 The photobase generator is not particularly limited as long as it is a known photobase generator, and examples thereof include 2-nitrobenzylcyclohexylcarbamate, triphenylmethanol, O-carbamoylhydroxylamide, O-carbamoyloxime, [[(2, 6-dinitrobenzyl)oxy]carbonyl]cyclohexylamine, bis[[(2-nitrobenzyl)oxy]carbonyl]hexane 1,6-diamine, 4-(methylthiobenzoyl)-1-methyl-1-morpholinoethane, (4 -morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane, N-(2-nitrobenzyloxycarbonyl)pyrrolidine, hexaamminecobalt(III) tris(triphenylmethylborate), 2-benzyl-2-dimethylamino- 1-(4-morpholinophenyl)-butanone, 2,6-dimethyl-3,5-diacetyl-4-(2-nitrophenyl)-1,4-dihydropyridine, and 2,6-dimethyl-3,5-diacetyl -4-(2,4-dinitrophenyl)-1,4-dihydropyridine.
 熱可塑性樹脂層に含まれる化合物Cは、1種であってもよく、2種以上であってもよい。 The number of compounds C contained in the thermoplastic resin layer may be one type, or two or more types.
 化合物Cの含有量は、露光部及び非露光部の視認性並びに解像性の観点から、熱可塑性樹脂層の全質量に対して、0.1質量%~10質量%が好ましく、0.5質量%~5質量%がより好ましい。 The content of compound C is preferably 0.1% by mass to 10% by mass, and 0.5% by mass based on the total mass of the thermoplastic resin layer, from the viewpoint of visibility and resolution of exposed areas and non-exposed areas. More preferably, the amount is from % by mass to 5% by mass.
<可塑剤>
 熱可塑性樹脂層は、解像性、隣接する層との密着性、及び現像性の観点から、可塑剤を含むことが好ましい。
<Plasticizer>
The thermoplastic resin layer preferably contains a plasticizer from the viewpoints of resolution, adhesion with adjacent layers, and developability.
 可塑剤は、アルカリ可溶性樹脂よりも分子量(オリゴマー又はポリマーであり分子量分布を有する場合は重量平均分子量)が小さいことが好ましい。可塑剤の分子量(重量平均分子量)は、200~2,000が好ましい。 The plasticizer preferably has a smaller molecular weight (weight average molecular weight if it is an oligomer or polymer and has a molecular weight distribution) than the alkali-soluble resin. The molecular weight (weight average molecular weight) of the plasticizer is preferably 200 to 2,000.
 可塑剤は、アルカリ可溶性樹脂と相溶して可塑性を発現する化合物であれば特に制限されないが、可塑性付与の観点から、可塑剤は、分子中にアルキレンオキシ基を有することが好ましく、ポリアルキレングリコール化合物がより好ましい。可塑剤に含まれるアルキレンオキシ基は、ポリエチレンオキシ構造又はポリプロピレンオキシ構造を有することがより好ましい。 The plasticizer is not particularly limited as long as it is a compound that exhibits plasticity by being compatible with the alkali-soluble resin, but from the viewpoint of imparting plasticity, the plasticizer preferably has an alkyleneoxy group in the molecule, and polyalkylene glycol Compounds are more preferred. It is more preferable that the alkyleneoxy group contained in the plasticizer has a polyethyleneoxy structure or a polypropyleneoxy structure.
 また、可塑剤は、解像性及び保存安定性の観点から、(メタ)アクリレート化合物を含むことが好ましい。相溶性、解像性、及び隣接する層との密着性の観点から、アルカリ可溶性樹脂がアクリル樹脂であり、かつ、可塑剤が(メタ)アクリレート化合物を含むことがより好ましい。 Moreover, it is preferable that the plasticizer contains a (meth)acrylate compound from the viewpoint of resolution and storage stability. From the viewpoint of compatibility, resolution, and adhesion with adjacent layers, it is more preferable that the alkali-soluble resin is an acrylic resin and that the plasticizer contains a (meth)acrylate compound.
 可塑剤として用いられる(メタ)アクリレート化合物としては、上述した感光性層に含まれる重合性化合物として記載した(メタ)アクリレート化合物が挙げられる。 Examples of the (meth)acrylate compound used as a plasticizer include the (meth)acrylate compound described above as a polymerizable compound contained in the photosensitive layer.
 転写フィルムにおいて、熱可塑性樹脂層と感光性層とが直接接触して積層される場合、熱可塑性樹脂層及びネガ型感光性層がいずれも同じ(メタ)アクリレート化合物を含むことが好ましい。同じ(メタ)アクリレート化合物を熱可塑性樹脂層及び感光性層がそれぞれ含むことで、層間の成分拡散が抑制され、保存安定性が向上するためである。 In the transfer film, when the thermoplastic resin layer and the photosensitive layer are laminated in direct contact, it is preferable that both the thermoplastic resin layer and the negative photosensitive layer contain the same (meth)acrylate compound. This is because the thermoplastic resin layer and the photosensitive layer each contain the same (meth)acrylate compound, thereby suppressing component diffusion between the layers and improving storage stability.
 熱可塑性樹脂層が可塑剤として(メタ)アクリレート化合物を含む場合、熱可塑性樹脂層と隣接する層との密着性の観点から、露光後の露光部においても(メタ)アクリレート化合物が重合しないことが好ましい。 When the thermoplastic resin layer contains a (meth)acrylate compound as a plasticizer, from the viewpoint of adhesion between the thermoplastic resin layer and an adjacent layer, it is important that the (meth)acrylate compound does not polymerize even in the exposed area after exposure. preferable.
 また、可塑剤として用いられる(メタ)アクリレート化合物としては、熱可塑性樹脂層の解像性、隣接する層との密着性、及び現像性の観点から、一分子中に2つ以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート化合物が好ましい。 In addition, from the viewpoints of resolution of the thermoplastic resin layer, adhesion with adjacent layers, and developability, the (meth)acrylate compound used as a plasticizer should contain two or more (meth) A polyfunctional (meth)acrylate compound having an acryloyl group is preferred.
 さらに、可塑剤として用いられる(メタ)アクリレート化合物としては、酸基を有する(メタ)アクリレート化合物又はウレタン(メタ)アクリレート化合物も好ましい。 Further, as the (meth)acrylate compound used as a plasticizer, a (meth)acrylate compound or a urethane (meth)acrylate compound having an acid group is also preferable.
 熱可塑性樹脂層に含まれる可塑剤は、1種であってもよく、2種以上であってもよい。 The number of plasticizers contained in the thermoplastic resin layer may be one type, or two or more types.
 可塑剤の含有量は、熱可塑性樹脂層の解像性、隣接する層との密着性、及び現像性の観点から、熱可塑性樹脂層の全質量に対して、1質量%~70質量%が好ましく、10質量%~60質量%がより好ましく、20質量%~50質量%がさらに好ましい。 The content of the plasticizer is 1% by mass to 70% by mass based on the total mass of the thermoplastic resin layer, from the viewpoint of resolution of the thermoplastic resin layer, adhesion with adjacent layers, and developability. It is preferably 10% by mass to 60% by mass, more preferably 20% by mass to 50% by mass.
<増感剤>
 熱可塑性樹脂層は、増感剤を含んでもよい。
<Sensitizer>
The thermoplastic resin layer may contain a sensitizer.
 増感剤としては、特に制限されず、上述したネガ型感光性層が含んでもよい増感剤が挙げられる。 The sensitizer is not particularly limited, and includes the sensitizers that may be included in the above-mentioned negative photosensitive layer.
 熱可塑性樹脂層に含まれる増感剤は、1種であってもよく、2種以上であってもよい。 The number of sensitizers contained in the thermoplastic resin layer may be one type or two or more types.
 増感剤の含有量は、目的により適宜選択できるが、光源に対する感度の向上、並びに、露光部及び非露光部の視認性の観点から、熱可塑性樹脂層の全質量に対して、0.01質量%~5質量%が好ましく、0.05質量%~1質量%がより好ましい。 The content of the sensitizer can be selected as appropriate depending on the purpose, but from the viewpoint of improving sensitivity to light sources and visibility of exposed and non-exposed areas, the content of the sensitizer should be 0.01% based on the total mass of the thermoplastic resin layer. It is preferably from 0.05% to 1% by weight, more preferably from 0.05% to 1% by weight.
<添加剤等>
 熱可塑性樹脂層は、上記成分以外に、必要に応じて界面活性剤等の公知の添加剤を含んでもよい。
<Additives, etc.>
In addition to the above-mentioned components, the thermoplastic resin layer may also contain known additives such as surfactants, if necessary.
 また、熱可塑性樹脂層については、特開2014-085643号公報の段落0189~0193に記載されており、この公報に記載の内容は本明細書に組み込まれる。 Furthermore, the thermoplastic resin layer is described in paragraphs 0189 to 0193 of JP-A No. 2014-085643, and the contents of this publication are incorporated herein.
 熱可塑性樹脂層の厚みは、特に制限されないが、隣接する層との密着性の観点から、1μm以上が好ましく、2μm以上がより好ましい。上限は特に制限されないが、現像性及び解像性の観点から、20μm以下が好ましく、10μm以下がより好ましく、8μm以下がさらに好ましい。 The thickness of the thermoplastic resin layer is not particularly limited, but from the viewpoint of adhesion with adjacent layers, it is preferably 1 μm or more, more preferably 2 μm or more. The upper limit is not particularly limited, but from the viewpoint of developability and resolution, it is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 8 μm or less.
<<保護フィルム>>
 転写フィルムは、保護フィルムを有していてもよい。
<<Protective film>>
The transfer film may have a protective film.
 保護フィルムとしては、耐熱性及び耐溶剤性を有する樹脂フィルムを用いることができ、例えば、ポリプロピレンフィルム及びポリエチレンフィルム等のポリオレフィンフィルム、ポリエチレンテレフタレートフィルム等のポリエステルフィルム、ポリカーボネートフィルム、並びに、ポリスチレンフィルムが挙げられる。 As the protective film, a resin film having heat resistance and solvent resistance can be used, and examples thereof include polyolefin films such as polypropylene films and polyethylene films, polyester films such as polyethylene terephthalate films, polycarbonate films, and polystyrene films. It will be done.
 また、保護フィルムとして上述の仮支持体と同じ材料で構成された樹脂フィルムを用いてもよい。 Furthermore, a resin film made of the same material as the above-mentioned temporary support may be used as the protective film.
 中でも、保護フィルムとしては、ポリオレフィンフィルムが好ましく、ポリプロピレンフィルム又はポリエチレンフィルムがより好ましく、ポリエチレンフィルムがさらに好ましい。 Among these, as the protective film, a polyolefin film is preferable, a polypropylene film or a polyethylene film is more preferable, and a polyethylene film is even more preferable.
 保護フィルムの厚みは、1μm~100μmが好ましく、5μm~50μmがより好ましく、5μm~40μmがさらに好ましく、15μm~30μmが特に好ましい。 The thickness of the protective film is preferably 1 μm to 100 μm, more preferably 5 μm to 50 μm, even more preferably 5 μm to 40 μm, and particularly preferably 15 μm to 30 μm.
 保護フィルムの厚みは、機械的強度に優れる点で、1μm以上が好ましく、比較的安価となる点で、100μm以下が好ましい。 The thickness of the protective film is preferably 1 μm or more in terms of excellent mechanical strength, and preferably 100 μm or less in terms of being relatively inexpensive.
 また、保護フィルムにおいては、保護フィルム中に含まれる直径80μm以上のフィッシュアイ数が、5個/m以下であることが好ましい。 Further, in the protective film, it is preferable that the number of fish eyes with a diameter of 80 μm or more contained in the protective film is 5 or less/m 2 .
 なお、「フィッシュアイ」とは、材料を熱溶融し、混練、押し出し、2軸延伸及びキャスティング法等の方法によりフィルムを製造する際に、材料の異物、未溶解物、及び、酸化劣化物等がフィルム中に取り込まれたものである。 In addition, "fish eyes" refers to foreign matter, undissolved matter, oxidized deterioration products, etc. of materials when manufacturing films by methods such as heat-melting, kneading, extrusion, biaxial stretching, and casting methods. was captured in the film.
 保護フィルムに含まれる直径3μm以上の粒子の数は、30個/mm以下が好ましく、10個/mm以下がより好ましく、5個/mm以下がさらに好ましい。 The number of particles with a diameter of 3 μm or more contained in the protective film is preferably 30 particles/mm 2 or less, more preferably 10 particles/mm 2 or less, and even more preferably 5 particles/mm 2 or less.
 これにより、保護フィルムに含まれる粒子に起因する凹凸が感光性層又は導電層に転写されることにより生じる欠陥を抑制することができる。 Thereby, defects caused by the transfer of unevenness caused by particles contained in the protective film to the photosensitive layer or the conductive layer can be suppressed.
 巻き取り性を付与する点から、保護フィルムの組成物層と接する面とは反対側の表面の算術平均粗さRaは、0.01μm以上が好ましく、0.02μm以上がより好ましく、0.03μm以上がさらに好ましい。一方で、0.50μm未満が好ましく、0.40μm以下がより好ましく、0.30μm以下がさらに好ましい。 From the viewpoint of imparting windability, the arithmetic mean roughness Ra of the surface of the protective film opposite to the surface in contact with the composition layer is preferably 0.01 μm or more, more preferably 0.02 μm or more, and 0.03 μm. The above is more preferable. On the other hand, it is preferably less than 0.50 μm, more preferably 0.40 μm or less, and even more preferably 0.30 μm or less.
 保護フィルムは、リサイクル品であってもよい。リサイクル品としては、使用済みフィルム等を洗浄、チップ化し、これを材料にフィルム化したものが挙げられる。リサイクル品の具体例としては、東レ社のEcouseシリーズが挙げられる。 The protective film may be a recycled product. Examples of recycled products include those that have been washed and made into chips from used films, and made into films using these as materials. A specific example of recycled products is Toray Industries' Ecouse series.
 転写時の欠陥抑制の点から、保護フィルムの組成物層と接する面の算術平均粗さRaは、0.01μm以上が好ましく、0.02μm以上がより好ましく、0.03μm以上がさらに好ましい。一方で、0.50μm未満が好ましく、0.40μm以下がより好ましく、0.30μm以下がさらに好ましい。 From the viewpoint of suppressing defects during transfer, the arithmetic mean roughness Ra of the surface of the protective film in contact with the composition layer is preferably 0.01 μm or more, more preferably 0.02 μm or more, and even more preferably 0.03 μm or more. On the other hand, it is preferably less than 0.50 μm, more preferably 0.40 μm or less, and even more preferably 0.30 μm or less.
<<転写フィルムの製造方法>>
 本開示に係る転写フィルムの製造方法は特に制限されず、公知の方法を使用できる。
 上記の転写フィルム20の製造方法としては、例えば、仮支持体11の表面に熱可塑性樹脂層形成用組成物を塗布して塗膜を形成し、さらにこの塗膜を乾燥して熱可塑性樹脂層13を形成する工程と、熱可塑性樹脂層13の表面に中間層形成用組成物を塗布して塗膜を形成し、更にこの塗膜を乾燥して中間層15を形成する工程と、中間層15の表面に感光性組成物を塗布して塗膜を形成し、さらにこの塗膜を乾燥して感光性層17を形成する工程と、を含む方法が挙げられる。
<<Transfer film manufacturing method>>
The method for producing the transfer film according to the present disclosure is not particularly limited, and any known method can be used.
As a method for manufacturing the above-mentioned transfer film 20, for example, a composition for forming a thermoplastic resin layer is applied to the surface of the temporary support 11 to form a coating film, and this coating film is further dried to form a thermoplastic resin layer. a step of forming an intermediate layer 15 by applying an intermediate layer forming composition to the surface of the thermoplastic resin layer 13 to form a coating film, and further drying this coating film to form an intermediate layer 15; The method includes the steps of applying a photosensitive composition to the surface of the photosensitive layer 15 to form a coating film, and further drying the coating film to form the photosensitive layer 17.
 上述の製造方法により製造された積層体の感光性層17上に、保護フィルム19を圧着させることにより、転写フィルム20が製造される。 The transfer film 20 is manufactured by pressing the protective film 19 onto the photosensitive layer 17 of the laminate manufactured by the above manufacturing method.
 本開示に係る転写フィルムの製造方法としては、感光性層17の仮支持体11を有する側とは反対側の面に接するように保護フィルム19を設ける工程を含むことにより、仮支持体11、熱可塑性樹脂層13、中間層15、感光性層17、及び保護フィルム19を備える転写フィルム20を製造することが好ましい。熱可塑性樹脂層13、中間層15、及び感光性層17は、転写層12に相当する。 The method for manufacturing a transfer film according to the present disclosure includes the step of providing a protective film 19 in contact with the surface of the photosensitive layer 17 opposite to the side on which the temporary support 11 is provided. It is preferable to produce a transfer film 20 comprising a thermoplastic resin layer 13, an intermediate layer 15, a photosensitive layer 17, and a protective film 19. The thermoplastic resin layer 13, the intermediate layer 15, and the photosensitive layer 17 correspond to the transfer layer 12.
 上記の製造方法により転写フィルム20を製造した後、転写フィルム20を巻き取ることにより、ロール形態の転写フィルムを作製及び保管してもよい。ロール形態の転写フィルムは、後述するロールツーロール方式での基板との貼り合わせ工程にそのままの形態で提供できる。 After manufacturing the transfer film 20 using the above manufacturing method, the transfer film 20 may be wound up to create and store a roll-shaped transfer film. The transfer film in the form of a roll can be provided as it is for the step of bonding it to a substrate using a roll-to-roll method, which will be described later.
 また、上記の転写フィルム20の製造方法としては、保護フィルム19上に、感光性層17及び中間層15を形成した後、中間層15の表面に熱可塑性樹脂層13を形成する方法であってもよい。 The method for manufacturing the transfer film 20 described above is a method in which the photosensitive layer 17 and the intermediate layer 15 are formed on the protective film 19, and then the thermoplastic resin layer 13 is formed on the surface of the intermediate layer 15. Good too.
<熱可塑性樹脂層の形成方法>
 仮支持体上に熱可塑性樹脂層を形成する方法としては特に制限されず、公知の方法が使用できる。例えば、仮支持体上に熱可塑性樹脂層形成用組成物を塗布し、そして、必要に応じて乾燥させることにより形成できる。
<Method for forming thermoplastic resin layer>
The method for forming the thermoplastic resin layer on the temporary support is not particularly limited, and any known method can be used. For example, it can be formed by applying a composition for forming a thermoplastic resin layer onto a temporary support and drying it if necessary.
 熱可塑性樹脂層形成用組成物としては、上述した熱可塑性樹脂層を形成する各種成分と溶剤とを含むことが好ましい。なお、熱可塑性樹脂層形成用組成物において、組成物の全固形分に対する各成分の含有量の好適範囲は、上述した熱可塑性樹脂層の全質量に対する各成分の含有量の好適範囲と同じである。 The composition for forming a thermoplastic resin layer preferably contains the various components that form the thermoplastic resin layer described above and a solvent. In addition, in the composition for forming a thermoplastic resin layer, the preferred range of the content of each component relative to the total solid content of the composition is the same as the preferred range of the content of each component relative to the total mass of the thermoplastic resin layer described above. be.
 溶剤としては、溶剤以外の各成分を溶解又は分散可能であれば特に制限されず、公知の溶剤を使用できる。溶剤としては、後述する感光性組成物が含む溶剤と同様のものが挙げられ、好適態様も同じである。 The solvent is not particularly limited as long as it can dissolve or disperse components other than the solvent, and any known solvent can be used. Examples of the solvent include those similar to those contained in the photosensitive composition described below, and preferred embodiments are also the same.
 溶剤の含有量は、熱可塑性樹脂層形成用組成物の全固形分100質量部に対して、50質量部~1,900質量部が好ましく、100質量部~900質量部がより好ましい。 The content of the solvent is preferably 50 parts by mass to 1,900 parts by mass, more preferably 100 parts by mass to 900 parts by mass, based on 100 parts by mass of the total solid content of the composition for forming a thermoplastic resin layer.
 熱可塑性樹脂層の形成方法は、上記の成分を含む層を形成可能な方法であれば特に制限されず、例えば、公知の塗布方法(スリット塗布、スピン塗布、カーテン塗布、及びインクジェット塗布等)が挙げられる。 The method for forming the thermoplastic resin layer is not particularly limited as long as it can form a layer containing the above components, and for example, known coating methods (slit coating, spin coating, curtain coating, inkjet coating, etc.) may be used. Can be mentioned.
<中間層の形成方法>
 中間層形成用組成物としては、上述した中間層を形成する各種成分と溶剤とを含むことが好ましい。なお、中間層形成用組成物において、中間層形成用組成物の全固形分に対する各成分の含有量の好適範囲は、上述した中間層の全質量に対する各成分の含有量の好適範囲と同じである。
<Method for forming intermediate layer>
The composition for forming an intermediate layer preferably contains the various components for forming the intermediate layer described above and a solvent. In addition, in the intermediate layer forming composition, the preferred range of the content of each component relative to the total solid content of the intermediate layer forming composition is the same as the preferred range of the content of each component relative to the total mass of the intermediate layer described above. be.
 溶剤としては、水溶性樹脂を溶解又は分散可能であれば特に制限されず、水及び水混和性の有機溶剤からなる群より選択される少なくとも1種が好ましく、水又は水と水混和性の有機溶剤との混合溶剤がより好ましい。 The solvent is not particularly limited as long as it is capable of dissolving or dispersing the water-soluble resin, and is preferably at least one selected from the group consisting of water and water-miscible organic solvents; A mixed solvent with a solvent is more preferable.
 水混和性の有機溶剤としては、例えば、炭素数1~3のアルコール、アセトン、エチレングリコール、及びグリセリンが挙げられ、炭素数1~3のアルコールが好ましく、メタノール又はエタノールがより好ましい。 Examples of water-miscible organic solvents include alcohols having 1 to 3 carbon atoms, acetone, ethylene glycol, and glycerin, with alcohols having 1 to 3 carbon atoms being preferred, and methanol or ethanol being more preferred.
 中間層形成用組成物に含まれる溶剤は、1種であってもよく、2種以上であってもよい。 The number of solvents contained in the intermediate layer forming composition may be one, or two or more.
 溶剤の含有量は、中間層形成用組成物の全固形分100質量部に対して、50質量部~2,500質量部が好ましく、50質量部~1,900質量部がより好ましく、100質量部~900質量部がさらに好ましい。 The content of the solvent is preferably 50 parts by mass to 2,500 parts by mass, more preferably 50 parts by mass to 1,900 parts by mass, and 100 parts by mass based on 100 parts by mass of the total solid content of the intermediate layer forming composition. Parts to 900 parts by mass are more preferred.
 中間層の形成方法は、上記の成分を含む層を形成可能な方法であれば特に制限されず、例えば、公知の塗布方法(スリット塗布、スピン塗布、カーテン塗布、及びインクジェット塗布等)が挙げられる。 The method for forming the intermediate layer is not particularly limited as long as it is a method that can form a layer containing the above components, and examples thereof include known coating methods (slit coating, spin coating, curtain coating, inkjet coating, etc.). .
<感光性層の形成方法>
 生産性に優れる点で、上述した感光性層を構成する成分(例えば、重合体A、重合性化合物、及び、重合開始剤等)、及び、溶剤を含む感光性組成物を使用して塗布法により形成されることが望ましい。
<Method for forming photosensitive layer>
A coating method using a photosensitive composition containing the components constituting the photosensitive layer (e.g., polymer A, a polymerizable compound, a polymerization initiator, etc.) and a solvent is advantageous in terms of productivity. It is desirable that the
 本開示に係る転写フィルムの製造方法としては、具体的には、中間層上に感光性組成物を塗布して塗膜を形成し、この塗膜に所定温度にて乾燥処理を施して感光性層を形成する方法であることが好ましい。なお、塗膜の乾燥処理によって残存溶剤量が調整される。 Specifically, the method for producing a transfer film according to the present disclosure includes coating a photosensitive composition on an intermediate layer to form a coating film, and drying the coating film at a predetermined temperature to make it photosensitive. A method of forming layers is preferred. Note that the amount of remaining solvent is adjusted by drying the coating film.
 感光性組成物としては、上述した感光性層を形成する各種成分と溶剤とを含むことが好ましい。なお、感光性組成物において、感光性組成物の全固形分に対する各成分の含有量の好適範囲は、上述した感光性層の全質量に対する各成分の含有量の好適範囲と同じである。 The photosensitive composition preferably contains the various components that form the photosensitive layer described above and a solvent. In the photosensitive composition, the preferred range of the content of each component relative to the total solid content of the photosensitive composition is the same as the preferred range of the content of each component relative to the total mass of the photosensitive layer described above.
 溶剤としては、溶剤以外の各成分を溶解又は分散可能であれば特に制限されず、公知の溶剤を使用できる。具体的には、例えば、アルキレングリコールエーテル溶剤、アルキレングリコールエーテルアセテート溶剤、アルコール溶剤(メタノール及びエタノール等)、ケトン溶剤(アセトン及びメチルエチルケトン等)、芳香族炭化水素溶剤(トルエン等)、非プロトン性極性溶剤(N,N-ジメチルホルムアミド等)、環状エーテル溶剤(テトラヒドロフラン等)、エステル溶剤(酢酸nプロピル等)、アミド溶剤、ラクトン溶剤、並びにこれらの2種以上を含む混合溶剤が挙げられる。 The solvent is not particularly limited as long as it can dissolve or disperse components other than the solvent, and any known solvent can be used. Specifically, for example, alkylene glycol ether solvents, alkylene glycol ether acetate solvents, alcohol solvents (methanol, ethanol, etc.), ketone solvents (acetone, methyl ethyl ketone, etc.), aromatic hydrocarbon solvents (toluene, etc.), aprotic polar Examples include solvents (N,N-dimethylformamide, etc.), cyclic ether solvents (tetrahydrofuran, etc.), ester solvents (n-propyl acetate, etc.), amide solvents, lactone solvents, and mixed solvents containing two or more of these.
 溶剤としては、アルキレングリコールエーテル溶剤及びアルキレングリコールエーテルアセテート溶剤からなる群より選択される少なくとも1種を含むことが好ましい。中でも、アルキレングリコールエーテル溶剤及びアルキレングリコールエーテルアセテート溶剤からなる群より選択される少なくとも1種と、ケトン溶剤及び環状エーテル溶剤からなる群より選択される少なくとも1種とを含む混合溶剤がより好ましく、アルキレングリコールエーテル溶剤及びアルキレングリコールエーテルアセテート溶剤からなる群より選択される少なくとも1種、ケトン溶剤、並びに、環状エーテル溶剤の3種を少なくとも含む混合溶剤がさらに好ましい。 The solvent preferably contains at least one selected from the group consisting of alkylene glycol ether solvents and alkylene glycol ether acetate solvents. Among these, a mixed solvent containing at least one selected from the group consisting of alkylene glycol ether solvents and alkylene glycol ether acetate solvents and at least one selected from the group consisting of ketone solvents and cyclic ether solvents is more preferable. A mixed solvent containing at least one selected from the group consisting of glycol ether solvents and alkylene glycol ether acetate solvents, a ketone solvent, and a cyclic ether solvent is more preferred.
 アルキレングリコールエーテル溶剤としては、例えば、エチレングリコールモノアルキルエーテル、エチレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル(プロピレングリコールモノメチルエーテルアセテート等)、プロピレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールモノアルキルエーテル、及びジプロピレングリコールジアルキルエーテルが挙げられる。 Examples of the alkylene glycol ether solvent include ethylene glycol monoalkyl ether, ethylene glycol dialkyl ether, propylene glycol monoalkyl ether (propylene glycol monomethyl ether acetate, etc.), propylene glycol dialkyl ether, diethylene glycol dialkyl ether, dipropylene glycol monoalkyl ether, and dipropylene glycol dialkyl ether.
 アルキレングリコールエーテルアセテート溶剤としては、例えば、エチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート、ジエチレングリコールモノアルキルエーテルアセテート、及びジプロピレングリコールモノアルキルエーテルアセテートが挙げられる。 Examples of the alkylene glycol ether acetate solvent include ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, diethylene glycol monoalkyl ether acetate, and dipropylene glycol monoalkyl ether acetate.
 溶剤としては、国際公開第2018/179640号の段落0092~0094に記載された溶剤、及び特開2018-177889公報の段落0014に記載された溶剤を用いてもよく、これらの内容は本明細書に組み込まれる。 As the solvent, the solvents described in paragraphs 0092 to 0094 of International Publication No. 2018/179640 and the solvents described in paragraph 0014 of JP2018-177889 may be used, and the contents of these are herein incorporated by reference. be incorporated into.
 感光性組成物に含まれる溶剤は、1種単であってもよく、2種以上であってもよい。 The number of solvents contained in the photosensitive composition may be one, or two or more.
 溶剤の含有量は、組成物の全固形分100質量部に対し、50質量部~1,900質量部が好ましく、100質量部~1200質量部がさらに好ましく、100質量部~900質量部がさらに好ましい。 The content of the solvent is preferably 50 parts by mass to 1,900 parts by mass, more preferably 100 parts by mass to 1200 parts by mass, and further preferably 100 parts by mass to 900 parts by mass, based on 100 parts by mass of the total solid content of the composition. preferable.
 感光性組成物の塗布方法としては、例えば、印刷法、スプレー法、ロールコート法、バーコート法、カーテンコート法、スピンコート法、及び、ダイコート法(すなわち、スリットコート法)が挙げられる。 Examples of methods for applying the photosensitive composition include printing, spraying, roll coating, bar coating, curtain coating, spin coating, and die coating (ie, slit coating).
 感光性組成物の塗膜の乾燥方法としては、加熱乾燥及び減圧乾燥が好ましい。 As a method for drying the coating film of the photosensitive composition, heat drying and reduced pressure drying are preferred.
 乾燥温度は、80℃以上が好ましく、90℃以上がより好ましい。また、その上限値としては130℃以下が好ましく、120℃以下がより好ましい。温度を連続的に変化させて乾燥させることもできる。 The drying temperature is preferably 80°C or higher, more preferably 90°C or higher. Further, the upper limit thereof is preferably 130°C or less, more preferably 120°C or less. Drying can also be carried out by continuously changing the temperature.
 また、乾燥時間は、20秒以上が好ましく、40秒以上がより好ましく、60秒以上がさらに好ましい。また、その上限値としては特に制限されないが、600秒以下が好ましく、300秒以下がより好ましい。 Moreover, the drying time is preferably 20 seconds or more, more preferably 40 seconds or more, and even more preferably 60 seconds or more. Further, the upper limit thereof is not particularly limited, but is preferably 600 seconds or less, and more preferably 300 seconds or less.
 さらに、保護フィルムを感光性層に貼り合わせることにより、本開示に係る転写フィルムを製造できる。 Furthermore, the transfer film according to the present disclosure can be manufactured by laminating a protective film to the photosensitive layer.
 保護フィルムを感光性層に貼り合わせる方法は特に制限されず、公知の方法が挙げられる。 The method of bonding the protective film to the photosensitive layer is not particularly limited, and known methods may be used.
 保護フィルムを感光性層に貼り合わせる装置としては、真空ラミネーター、及び、オートカットラミネーター等の公知のラミネーターが挙げられる。 Examples of the device for laminating the protective film to the photosensitive layer include known laminators such as a vacuum laminator and an auto-cut laminator.
 ラミネーターはゴムローラー等の任意の加熱可能なローラーを備え、加圧及び加熱ができるものであることが好ましい。 The laminator is preferably equipped with any heatable roller such as a rubber roller, and is capable of applying pressure and heating.
 本開示に係る転写フィルムは、種々の用途に適用できる。
 本開示に係る転写フィルムは、例えば、電極保護膜、絶縁膜、平坦化膜、オーバーコート膜、ハードコート膜、パッシベーション膜、隔壁、スペーサ、マイクロレンズ、光学フィルター、反射防止膜、エッチングレジスト、及びめっき部材に適用できる。
The transfer film according to the present disclosure can be applied to various uses.
The transfer film according to the present disclosure can be used, for example, as an electrode protective film, an insulating film, a flattening film, an overcoat film, a hard coat film, a passivation film, a partition wall, a spacer, a microlens, an optical filter, an antireflection film, an etching resist, and Applicable to plated parts.
 より具体的に、本開示に係る転写フィルムは、タッチパネル電極の保護膜又は絶縁膜、プリント配線板の保護膜又は絶縁膜、TFT基板の保護膜又は絶縁膜、カラーフィルター、カラーフィルター用オーバーコート膜、配線形成のためのエッチングレジスト、配線形成のためのめっきレジスト、及びフレキシブルプリント配線板形成のためのめっきレジストに適用できる。 More specifically, the transfer film according to the present disclosure can be used as a protective film or insulating film for touch panel electrodes, a protective film or insulating film for printed wiring boards, a protective film or insulating film for TFT substrates, a color filter, and an overcoat film for color filters. It can be applied to etching resists for forming wiring, plating resists for forming wiring, and plating resists for forming flexible printed wiring boards.
[パターンの形成方法]
 本開示に係るパターンの形成方法は、
 仮支持体と、仮支持体上に配置された転写層と、を含む転写フィルムを準備する工程(準備工程)と、
 転写フィルムと基板とを、転写フィルムにおける仮支持体の表面とは反対側の表面が基板と接するように貼り合わせる工程(貼り合わせ工程)と、
 仮支持体を剥離して、積層体を得る工程(仮支持体剥離工程)と、
 積層体に対して、パターン状に露光する工程(露光工程)と、
 露光後の積層体を現像してパターンを形成する工程と、を含み、
 仮支持体は、熱変形率が1.0%以下であることが好ましい。
[Pattern formation method]
The pattern forming method according to the present disclosure includes:
A step of preparing a transfer film including a temporary support and a transfer layer disposed on the temporary support (preparation step);
A step of bonding the transfer film and the substrate so that the surface of the transfer film opposite to the surface of the temporary support is in contact with the substrate (bonding step);
a step of peeling off the temporary support to obtain a laminate (temporary support peeling step);
A step of exposing the laminate to light in a pattern (exposure step);
A step of developing the exposed laminate to form a pattern,
The temporary support preferably has a thermal deformation rate of 1.0% or less.
 以下、各工程について説明する。 Each step will be explained below.
〔準備工程〕
 準備工程では、仮支持体と、仮支持体上に配置された転写層と、を含む転写フィルムを準備する。転写フィルムの好ましい態様は、上記のとおりである。
[Preparation process]
In the preparation step, a transfer film including a temporary support and a transfer layer disposed on the temporary support is prepared. A preferred embodiment of the transfer film is as described above.
〔貼り合わせ工程〕
 貼り合わせ工程では、転写フィルムと基板とを、転写フィルムにおける仮支持体の表面とは反対側の表面が基板と接するように貼り合わせる。
 なお、転写フィルムが保護フィルムを備える場合には、保護フィルムを剥離してから、基板と貼り合わせる。
[Lamination process]
In the bonding step, the transfer film and the substrate are bonded together such that the surface of the transfer film opposite to the surface of the temporary support is in contact with the substrate.
Note that when the transfer film includes a protective film, the protective film is peeled off before being bonded to the substrate.
 転写フィルムの基板への貼り合わせは、転写層に基板を重ね、ロール等の手段を用いて加圧及び加熱を施すことにより行われることが好ましい。貼り合わせには、ラミネーター、真空ラミネーター、及び、より生産性を高めることができるオートカットラミネーター等の公知のラミネーターが使用できる。 The transfer film is preferably bonded to the substrate by stacking the transfer layer on the substrate and applying pressure and heat using means such as a roll. For bonding, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further improve productivity can be used.
 ラミネート温度は、70℃~130℃が好ましい。 The lamination temperature is preferably 70°C to 130°C.
<基板>
 本開示に係るパターンの形成に用いる基板としては、公知の基板を用いることができる。基板は、導電層を有する基板であってもよく、基材の表面に導電層を有する基板であってもよい。
<Substrate>
As a substrate used for forming a pattern according to the present disclosure, a known substrate can be used. The substrate may be a substrate having a conductive layer, or may be a substrate having a conductive layer on the surface of the base material.
 基板は、必要に応じて導電層以外の任意の層を有してもよい。 The substrate may have any layer other than the conductive layer as necessary.
 基板を構成する基材としては、例えば、ガラス、シリコン及び樹脂フィルムが挙げられる。 Examples of the base material constituting the substrate include glass, silicon, and resin film.
 基材としてガラスを用いる場合は、基材は透明であることが好ましい。また、基材の屈折率は、1.50~1.52であることが好ましい。 When using glass as the base material, the base material is preferably transparent. Further, the refractive index of the base material is preferably 1.50 to 1.52.
 透明なガラス基材としては、コーニング社のゴリラガラスに代表される強化ガラスが挙げられる。また、透明なガラス基材としては、特開2010-86684号公報、特開2010-152809号公報及び特開2010-257492号公報に記載の材料を用いてもよい。 Examples of transparent glass substrates include tempered glass represented by Corning's Gorilla Glass. Furthermore, as the transparent glass substrate, materials described in JP-A No. 2010-86684, JP-A No. 2010-152809, and JP-A No. 2010-257492 may be used.
 基材として樹脂フィルムを用いる場合は、基材は、光学的に歪みが小さく、及び/又は、透明度が高い樹脂フィルムであることが好ましい。そのような樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレートフィルム、ポリカーボネートフィルム、トリアセチルセルロースフィルム及びシクロオレフィンポリマーフィルムが挙げられる。 When using a resin film as the base material, the base material is preferably a resin film with low optical distortion and/or high transparency. Such resin films include, for example, polyethylene terephthalate (PET) films, polyethylene naphthalate films, polycarbonate films, triacetylcellulose films, and cycloolefin polymer films.
 ロールツーロール方式で製造する場合、基材は、樹脂フィルムであることが好ましい。また、ロールツーロール方式によりタッチパネル用の回路配線を製造する場合、基材は、樹脂シートであることが好ましい。 When manufacturing using a roll-to-roll method, the base material is preferably a resin film. Moreover, when manufacturing circuit wiring for a touch panel by a roll-to-roll method, it is preferable that the base material is a resin sheet.
 基材の厚みは、5μm~200μmが好ましく、10μm~100μmがより好ましい。 The thickness of the base material is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm.
 導電層としては、導電性及び細線形成性の点から、金属層、導電性金属酸化物層、グラフェン層、カーボンナノチューブ層、及び、導電ポリマー層からなる群から選択される少なくとも1種の層であることが好ましい。 The conductive layer is at least one layer selected from the group consisting of a metal layer, a conductive metal oxide layer, a graphene layer, a carbon nanotube layer, and a conductive polymer layer in terms of conductivity and fine line formation. It is preferable that there be.
 また、基材上には導電層を1層のみ配置してもよいし、2層以上配置してもよい。導電層を2層以上配置する場合は、異なる材質の導電層を有することが好ましい。 Furthermore, only one conductive layer or two or more conductive layers may be disposed on the base material. When two or more conductive layers are arranged, it is preferable to have conductive layers made of different materials.
 導電層の好ましい態様としては、例えば、国際公開第2018/155193号の段落[0141]に記載があり、この内容は本明細書に組み込まれる。 A preferred embodiment of the conductive layer is described, for example, in paragraph [0141] of International Publication No. 2018/155193, the content of which is incorporated herein.
 導電層は、金属層であることが好ましい。 The conductive layer is preferably a metal layer.
 金属層は、金属を含む層であり、金属としては特に制限されず、公知の金属を使用できる。金属層は、導電性の層であることが好ましい。 The metal layer is a layer containing metal, and the metal is not particularly limited, and any known metal can be used. Preferably, the metal layer is a conductive layer.
 金属層の主成分(いわゆる、主金属)としては、例えば、銅、クロム、鉛、ニッケル、金、銀、すず及び亜鉛が挙げられる。なお、「主金属」とは、金属層中に含まれる金属のうち、最も含有量が大きい金属を意味する。 Examples of the main components (so-called main metals) of the metal layer include copper, chromium, lead, nickel, gold, silver, tin, and zinc. Note that the term "main metal" refers to the metal with the largest content among the metals contained in the metal layer.
 導電層の厚みは特に制限されず、50nm以上が好ましく、100nm以上がより好ましい。上限は、2μm以下が好ましい。 The thickness of the conductive layer is not particularly limited, and is preferably 50 nm or more, more preferably 100 nm or more. The upper limit is preferably 2 μm or less.
 導電層の形成方法としては特に制限されず、例えば、金属微粒子を分散した分散液を塗布して、塗膜を焼結する方法、スパッタリング法及び蒸着法等の公知の方法が挙げられる。 The method of forming the conductive layer is not particularly limited, and examples thereof include known methods such as a method of applying a dispersion in which fine metal particles are dispersed and sintering a coating film, a sputtering method, and a vapor deposition method.
〔仮支持体剥離工程〕
 仮支持体剥離工程では、仮支持体を剥離して、積層体を得る。本開示に係るパターンの形成方法では、あらかじめ仮支持体を剥離しておくため、仮支持体に含まれる異物等は露光工程における露光に影響を与えない。
[Temporary support peeling process]
In the temporary support peeling step, the temporary support is peeled off to obtain a laminate. In the pattern forming method according to the present disclosure, since the temporary support is peeled off in advance, foreign matter contained in the temporary support does not affect the exposure in the exposure step.
 剥離方法は特に制限されず、特開2010-072589号公報の段落[0161]~[0162]に記載されたカバーフィルム剥離機構と同様の機構を使用できる。
〔露光工程〕
 露光工程では、剥離工程で得られた積層体に対して、パターン状に露光する。
The peeling method is not particularly limited, and a mechanism similar to the cover film peeling mechanism described in paragraphs [0161] to [0162] of JP-A-2010-072589 can be used.
[Exposure process]
In the exposure step, the laminate obtained in the peeling step is exposed in a pattern.
 パターン露光におけるパターンの詳細な配置及び具体的なサイズは特に制限されない。パターンの少なくとも一部(好ましくはタッチパネルの電極パターン及び/又は取り出し配線の部分)は幅が20μm以下の細線を含むことが好ましく、幅が10μm以下の細線を含むことがより好ましい。回路配線の製造方法により製造される回路配線を有する入力装置を備えた表示装置(例えば、タッチパネル)の表示品質を高め、かつ、取り出し配線の占める面積を小さくすることができる。 The detailed arrangement and specific size of the pattern in pattern exposure are not particularly limited. It is preferable that at least a part of the pattern (preferably the electrode pattern of the touch panel and/or the lead-out wiring part) includes a thin line with a width of 20 μm or less, and more preferably a thin line with a width of 10 μm or less. The display quality of a display device (for example, a touch panel) equipped with an input device having circuit wiring manufactured by the circuit wiring manufacturing method can be improved, and the area occupied by the lead wiring can be reduced.
 露光に使用する光源は、感光性層を露光可能な波長の光(例えば、365nm又は405nm)を照射する光源であれば特に制限されず、適宜選定して用いることができる。光源としては、超高圧水銀灯、高圧水銀灯、メタルハライドランプ及びLED(Light Emitting Diode)が挙げられる。 The light source used for exposure is not particularly limited as long as it irradiates light with a wavelength that can expose the photosensitive layer (for example, 365 nm or 405 nm), and can be appropriately selected and used. Examples of the light source include an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, and an LED (Light Emitting Diode).
 露光量は、5mJ/cm~200mJ/cmであることが好ましく、10mJ/cm~100mJ/cmであることがより好ましい。 The exposure amount is preferably 5 mJ/cm 2 to 200 mJ/cm 2 , more preferably 10 mJ/cm 2 to 100 mJ/cm 2 .
 露光工程においては、マスクと感光性層とを接触させて露光してもよく、マスクと感光性層とを接触させずに近接させて露光してもよい。 In the exposure step, the mask and the photosensitive layer may be brought into contact with each other for exposure, or the mask and the photosensitive layer may be brought into close proximity without contacting each other for exposure.
 なお、露光方式は、接触露光の場合は、コンタクト露光方式、非接触露光方式の場合は、プロキシミティ露光方式、レンズ系もしくはミラー系のプロジェクション露光方式、又は、露光レーザー等を用いたダイレクト露光方式を適宜選択して用いることができる。レンズ系又はミラー系のプロジェクション露光方式の場合、必要な解像力及び焦点深度に応じて、適当なレンズの開口数(NA)を有する露光機を用いることができる。ダイレクト露光方式の場合は、感光性層に直接露光してもよく、レンズを介して感光性層に縮小投影露光をしてもよい。また、露光は大気下で行うだけでなく、減圧下、又は真空下で行ってもよい。また、光源と感光性層との間に水等の液体を介在させて露光してもよい。 The exposure method is contact exposure method in case of contact exposure method, proximity exposure method in case of non-contact exposure method, projection exposure method using lens system or mirror system, or direct exposure method using exposure laser etc. can be selected and used as appropriate. In the case of a lens-based or mirror-based projection exposure method, an exposure machine having an appropriate lens numerical aperture (NA) can be used depending on the required resolving power and depth of focus. In the case of a direct exposure method, the photosensitive layer may be directly exposed to light, or the photosensitive layer may be subjected to reduction projection exposure through a lens. Moreover, exposure may be performed not only under the atmosphere but also under reduced pressure or vacuum. Alternatively, exposure may be performed with a liquid such as water interposed between the light source and the photosensitive layer.
 マスクとしては、例えば、石英マスク、ソーダライムガラスマスク、及びフィルムマスクが挙げられる。中でも、石英マスクは寸法精度に優れる点が好ましく、フィルムマスクは大サイズ化が容易である点で好ましい。フィルムマスクの基材としては、ポリエステルフィルムが好ましく、ポリエチレンテレフタレートフィルムがより好ましい。
フィルムマスクの基材の具体例としては、XPR-7S SG(富士フイルムグローバルグラフィックシステムズ(株)製)が挙げられる。
Examples of masks include quartz masks, soda lime glass masks, and film masks. Among these, quartz masks are preferred because they have excellent dimensional accuracy, and film masks are preferred because they can be easily made large. As the base material for the film mask, a polyester film is preferred, and a polyethylene terephthalate film is more preferred.
A specific example of the base material of the film mask is XPR-7S SG (manufactured by Fujifilm Global Graphic Systems Co., Ltd.).
 露光に使用する光源、露光量及び露光方法の好ましい態様としては、例えば、国際公開第2018/155193号の段落[0146]~[0147]に記載があり、これらの内容は本明細書に組み込まれる。 Preferred aspects of the light source, exposure amount, and exposure method used for exposure are described, for example, in paragraphs [0146] to [0147] of International Publication No. 2018/155193, the contents of which are incorporated herein. .
〔現像工程〕
 現像工程では、露光後の積層体に対して、現像してパターンを形成する。
[Development process]
In the development step, the exposed laminate is developed to form a pattern.
 現像は、現像液を用いて行うことができる。 Development can be performed using a developer.
 現像液は、アルカリ性水溶液であることが好ましい。アルカリ性水溶液に含まれ得るアルカリ性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、及び、コリン(2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド)が挙げられる。 The developing solution is preferably an alkaline aqueous solution. Examples of alkaline compounds that can be contained in the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrapropylammonium hydroxy. and choline (2-hydroxyethyltrimethylammonium hydroxide).
 現像の方式としては、例えば、パドル現像、シャワー現像、スピン現像、及び、ディップ現像等の方式が挙げられる。 Examples of development methods include paddle development, shower development, spin development, and dip development.
 好適な現像液としては、例えば、国際公開第2015/093271号の段落[0194]に記載の現像液が挙げられ、好適に用いられる現像方式としては、例えば、国際公開第2015/093271号の段落[0195]に記載の現像方式が挙げられる。 Suitable developers include, for example, the developer described in paragraph [0194] of WO 2015/093271, and examples of development methods that are suitably used include, for example, the developer described in paragraph [0194] of WO 2015/093271. Examples include the development method described in [0195].
〔ポスト露光工程及びポストベーク工程〕
 本開示に係るパターンの形成方法は、現像工程によって得られたパターンを、露光する工程(ポスト露光工程)、及び/又は、加熱する工程(ポストベーク工程)を有していてもよい。
[Post-exposure process and post-bake process]
The pattern forming method according to the present disclosure may include a step of exposing the pattern obtained by the developing step (post-exposure step) and/or a step of heating (post-bake step).
 ポスト露光工程及びポストベーク工程の両方を含む場合、ポスト露光の後、ポストベークを実施することが好ましい。 When both a post-exposure step and a post-bake step are included, it is preferable to perform post-bake after post-exposure.
 ポスト露光の露光量は、100mJ/cm~5000mJ/cmが好ましく、200mJ/cm~3000mJ/cmがより好ましい。 The exposure amount of post-exposure is preferably 100 mJ/cm 2 to 5000 mJ/cm 2 , more preferably 200 mJ/cm 2 to 3000 mJ/cm 2 .
 ポストベークの温度は、80℃~250℃が好ましく、90℃~160℃がより好ましい。 The post-bake temperature is preferably 80°C to 250°C, more preferably 90°C to 160°C.
ポストベークの時間は、1分~180分が好ましく、10分~60分がより好ましい。 The post-bake time is preferably 1 minute to 180 minutes, more preferably 10 minutes to 60 minutes.
[回路配線の製造方法]
 本開示に係る回路配線の製造方法の第1態様では、
 仮支持体と、仮支持体上に配置された転写層と、を含む転写フィルムを準備する工程(準備工程)と、
 転写フィルムと基板とを、転写フィルムにおける仮支持体の表面とは反対側の表面が基板と接するように貼り合わせる工程(貼り合わせ工程)と、
 仮支持体を剥離して、積層体を得る工程(仮支持体剥離工程)と、
 積層体に対して、パターン状に露光する工程(露光工程)と、
 露光後の積層体を現像してパターンを形成する工程(現像工程)と、
 基板の、パターンが配置されていない領域にめっき処理する工程(めっき工程)と、
 パターンを剥離する工程(パターン剥離工程)と、を含み、
 仮支持体は、熱変形率が1.0%以下であることが好ましい。
 準備工程、貼り合わせ工程、仮支持体剥離工程、及び露光工程については、既述のパターンの形成方法と同様であるので、説明を省略する。
[Circuit wiring manufacturing method]
In the first aspect of the method for manufacturing circuit wiring according to the present disclosure,
A step of preparing a transfer film including a temporary support and a transfer layer disposed on the temporary support (preparation step);
A step of bonding the transfer film and the substrate so that the surface of the transfer film opposite to the surface of the temporary support is in contact with the substrate (bonding step);
a step of peeling off the temporary support to obtain a laminate (temporary support peeling step);
A step of exposing the laminate to light in a pattern (exposure step);
A step of developing the exposed laminate to form a pattern (developing step);
A process of plating an area of the substrate where no pattern is placed (plating process);
A step of peeling off the pattern (pattern peeling step),
The temporary support preferably has a thermal deformation rate of 1.0% or less.
The preparation process, the bonding process, the temporary support peeling process, and the exposure process are the same as the pattern forming method described above, so their explanation will be omitted.
 パターンが配置されていない領域に対してめっきを行うと、導体パターンが形成される。一般に、セミアディティブ法と言われる。 A conductor pattern is formed when plating is performed on an area where no pattern is placed. Generally, it is called a semi-additive method.
〔めっき工程〕
 めっき工程では、基板の、パターンが配置されていない領域にめっき処理する。
[Plating process]
In the plating process, plating is performed on areas of the substrate where no pattern is placed.
 めっきの方法としては、公知の方法を適用でき、例えば、電気めっき及び無電解めっきが挙げられる。めっきは、電気めっきであることが好ましい。 As the plating method, known methods can be applied, such as electroplating and electroless plating. Preferably, the plating is electroplating.
 めっきに含まれる金属としては、例えば、公知の金属が挙げられる。
 具体的には、銅、クロム、鉛、ニッケル、金、銀、すず及び亜鉛等の金属、並びに、これらの金属の合金が挙げられる。
 中でも、めっきは、導電パターンの導電性がより優れる点から、銅又はその合金を含むことが好ましい。また、導電パターンの導電性がより優れる点から、めっき層は、主成分として銅を含むことが好ましい。
Examples of the metal included in the plating include known metals.
Specific examples include metals such as copper, chromium, lead, nickel, gold, silver, tin, and zinc, and alloys of these metals.
Among these, it is preferable that the plating contains copper or an alloy thereof, since the conductivity of the conductive pattern is more excellent. Further, from the viewpoint of improving the conductivity of the conductive pattern, it is preferable that the plating layer contains copper as a main component.
 電気めっきにおいて使用されるめっき液の成分としては、例えば、水溶性銅塩が挙げられる。水溶性銅塩としては、めっき液の成分として通常使用される水溶性銅塩を用いることができる。水溶性銅塩としては、例えば、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、及び有機酸銅塩よりなる群から選択される少なくとも1種であることが好ましい。無機銅塩としては、例えば、硫酸銅、酸化銅、塩化銅、及び炭酸銅が挙げられる。アルカンスルホン酸銅塩としては、例えば、メタンスルホン酸銅、及びプロパンスルホン酸銅が挙げられる。アルカノールスルホン酸銅塩としては、例えば、イセチオン酸銅、及びプロパノールスルホン酸銅が挙げられる。有機酸銅塩としては、例えば、酢酸銅、クエン酸銅、及び酒石酸銅が挙げられる。 Components of the plating solution used in electroplating include, for example, water-soluble copper salts. As the water-soluble copper salt, water-soluble copper salts commonly used as components of plating solutions can be used. The water-soluble copper salt is preferably at least one selected from the group consisting of, for example, an inorganic copper salt, an alkanesulfonic acid copper salt, an alkanolsulfonic acid copper salt, and an organic acid copper salt. Examples of inorganic copper salts include copper sulfate, copper oxide, copper chloride, and copper carbonate. Examples of copper alkanesulfonate include copper methanesulfonate and copper propanesulfonate. Examples of copper alkanolsulfonate salts include copper isethionate and copper propanolsulfonate. Examples of organic acid copper salts include copper acetate, copper citrate, and copper tartrate.
 めっき液は、硫酸を含んでもよい。めっき液が硫酸を含むことで、めっき液のpH、及び硫酸イオン濃度を調整することができる。 The plating solution may contain sulfuric acid. By including sulfuric acid in the plating solution, the pH and sulfate ion concentration of the plating solution can be adjusted.
 電気めっきの方法、及び条件は、制限されない。例えば、めっき液を加えためっき槽に現像工程後の積層体を供給することで、導体パターンを形成することができる。電気めっきにおいては、例えば、電流密度、及び透明基材の搬送速度を制御することで、導体パターンを形成することができる。 The electroplating method and conditions are not limited. For example, a conductor pattern can be formed by supplying the laminate after the development process to a plating tank in which a plating solution is added. In electroplating, a conductor pattern can be formed by, for example, controlling the current density and the transport speed of the transparent base material.
 電気めっきに使用されるめっき液の温度は、70℃以下であることが好ましく、10℃~40℃であることがより好ましい。電気めっきにおける電流密度は、0.1A/dm~100A/dmであることが好ましく、0.5A/dm~20A/dmであることがより好ましい。電流密度を高くすることで導体パターンの生産性を向上させることができる。電流密度を低くすることで導体パターンの厚さの均一性を向上させることができる。 The temperature of the plating solution used for electroplating is preferably 70°C or lower, more preferably 10°C to 40°C. The current density in electroplating is preferably 0.1 A/dm 2 to 100 A/dm 2 , more preferably 0.5 A/dm 2 to 20 A/dm 2 . The productivity of conductor patterns can be improved by increasing the current density. By lowering the current density, the uniformity of the thickness of the conductor pattern can be improved.
〔パターン剥離工程〕
 パターン剥離工程は、パターンを剥離する工程である。
 残存するパターンを剥離する方法としては、例えば、薬品処理により除去する方法が挙げられ、剥離液を用いて除去する方法が好ましい。
 残存するパターンを除去する方法としては、例えば、剥離液を用いて、スプレー法、シャワー法及びパドル法等の公知の方法により除去する方法が挙げられる。
[Pattern peeling process]
The pattern peeling process is a process of peeling off the pattern.
Examples of methods for removing the remaining pattern include a method of removing it by chemical treatment, and a method of removing it using a stripping liquid is preferable.
As a method for removing the remaining pattern, for example, a known method such as a spray method, a shower method, and a paddle method using a stripping solution may be used.
 剥離液としては、例えば、アルカリ性化合物を、水、ジメチルスルホキシド及びN-メチルピロリドンからなる群から選択される少なくとも1つに溶解させた剥離液が挙げられる。 Examples of the stripping solution include a stripping solution in which an alkaline compound is dissolved in at least one selected from the group consisting of water, dimethyl sulfoxide, and N-methylpyrrolidone.
 アルカリ性化合物(水に溶解してアルカリ性を示す化合物)としては、例えば、水酸化ナトリウム及び水酸化カリウム等のアルカリ性無機化合物、並びに、第1級アミン化合物、第2級アミン化合物、第3級アミン化合物及び第4級アンモニウム塩化合物等のアルカリ性有機化合物が挙げられる。アルカリ性有機化合物としては、テトラメチルアンモニウムヒドロキシド又はアルカノールアミン化合物が好ましい。 Examples of alkaline compounds (compounds that exhibit alkalinity when dissolved in water) include alkaline inorganic compounds such as sodium hydroxide and potassium hydroxide, as well as primary amine compounds, secondary amine compounds, and tertiary amine compounds. and alkaline organic compounds such as quaternary ammonium salt compounds. As the alkaline organic compound, tetramethylammonium hydroxide or an alkanolamine compound is preferred.
 パターンの剥離方法としては、液温が30℃~80℃(好ましくは50℃~80℃)である撹拌中の剥離液に、残存するレジストパターンを有する基板を、1分間~30分間浸漬する方法が挙げられる。
 剥離液は、導電層を溶解しないことも好ましい。
A method for removing the pattern is to immerse the substrate with the remaining resist pattern in a stirring stripping solution at a temperature of 30°C to 80°C (preferably 50°C to 80°C) for 1 minute to 30 minutes. can be mentioned.
It is also preferable that the stripping liquid does not dissolve the conductive layer.
 剥離処理する際の剥離液のpHは、11以上が好ましく、12以上がより好ましく、13以上が更に好ましい。上限は、14以下が好ましく、13.8以下がより好ましい。pHは、公知のpHメーターを用いて、JIS Z8802-1984に準拠した方法により測定できる。pHの測定温度は、25℃とする。 The pH of the stripping solution during the stripping treatment is preferably 11 or higher, more preferably 12 or higher, and even more preferably 13 or higher. The upper limit is preferably 14 or less, more preferably 13.8 or less. The pH can be measured using a known pH meter according to JIS Z8802-1984. The pH measurement temperature is 25°C.
 剥離処理する際の剥離液の液温は、現像処理する際の現像液の液温よりも高いことが好ましい。具体的には、上記剥離液の液温から上記現像液の液温を引いた値(上記剥離液の液温-上記現像液の液温)は、10℃以上が好ましく、20℃以上がより好ましい。上限は、100℃以下が好ましく、80℃以下がより好ましい。 The temperature of the stripping solution during the stripping process is preferably higher than the temperature of the developer during the development process. Specifically, the value obtained by subtracting the temperature of the developer from the temperature of the stripping solution (temperature of the stripping solution - temperature of the developer) is preferably 10°C or higher, more preferably 20°C or higher. preferable. The upper limit is preferably 100°C or less, more preferably 80°C or less.
 剥離処理する際の剥離液のpHは、現像処理する際の現像液のpHよりも高いことが好ましい。具体的には、上記剥離液のpHから上記現像液のpHを引いた値(上記剥離液のpH-上記現像液のpH)は、1以上が好ましく、1.5以上がより好ましい。上限は、5以下が好ましく、4以下がより好ましい。 It is preferable that the pH of the stripping solution used in the stripping process is higher than the pH of the developer used in the development process. Specifically, the value obtained by subtracting the pH of the developer from the pH of the stripping solution (pH of the stripping solution - pH of the developer) is preferably 1 or more, more preferably 1.5 or more. The upper limit is preferably 5 or less, more preferably 4 or less.
 剥離液によりパターンを剥離した後、基板上に残存する剥離液を除去するリンス処理を実施するのも好ましい。リンス処理には、水等を使用できる。
 剥離液によるパターンの剥離及び/又はリンス処理の後、余分な液を基板上から除去する乾燥処理を行ってもよい。
After removing the pattern with a remover, it is also preferable to perform a rinsing process to remove the remover remaining on the substrate. Water or the like can be used for rinsing.
After stripping and/or rinsing the pattern using a stripping liquid, a drying process may be performed to remove excess liquid from the substrate.
 本開示に係る回路配線の製造方法の第2態様では、上記貼り合わせ工程と、上記剥離工程と、上記露光工程と、パターンが配置されていない領域における基板をエッチング処理する工程(エッチング工程)と、パターンを剥離する工程(パターン剥離工程)と、を含むことが好ましい。 In a second aspect of the method for manufacturing circuit wiring according to the present disclosure, the bonding step, the peeling step, the exposure step, and the step of etching the substrate in a region where a pattern is not arranged (etching step) are provided. , and a step of peeling off the pattern (pattern peeling step).
〔エッチング工程〕
 エッチング工程では、感光性層から形成されたパターンを、エッチングレジストとして使用し、基板のエッチング処理を行う。
[Etching process]
In the etching process, the pattern formed from the photosensitive layer is used as an etching resist to perform etching on the substrate.
 エッチング処理の方法としては、公知の方法を適用でき、例えば、特開2017-120435号公報の段落0209~段落0210に記載の方法、特開2010-152155号公報の段落0048~段落0054に記載の方法、エッチング液に浸漬するウェットエッチング法、及び、プラズマエッチング等のドライエッチングによる方法が挙げられる。 As the etching treatment method, known methods can be applied, such as the method described in paragraphs 0209 to 0210 of JP2017-120435A, and the method described in paragraphs 0048 to 0054 of JP2010-152155A. Examples include a wet etching method using immersion in an etching solution, and a dry etching method such as plasma etching.
 ウェットエッチングに用いられるエッチング液は、エッチングの対象に合わせて酸性又はアルカリ性のエッチング液を適宜選択すればよい。  As the etching solution used for wet etching, an acidic or alkaline etching solution may be appropriately selected depending on the object to be etched.​
 酸性のエッチング液としては、例えば、塩酸、硫酸、硝酸、酢酸、フッ酸、シュウ酸及びリン酸から選択される酸性成分単独の水溶液、並びに、酸性成分と、塩化第2鉄、フッ化アンモニウム及び過マンガン酸カリウムから選択される塩との混合水溶液が挙げられる。酸性成分は、複数の酸性成分を組み合わせた成分であってもよい。  Examples of the acidic etching solution include an aqueous solution of an acidic component alone selected from hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrofluoric acid, oxalic acid, and phosphoric acid, and an aqueous solution of an acidic component selected from hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrofluoric acid, oxalic acid, and phosphoric acid; Mention may be made of mixed aqueous solutions with salts selected from potassium permanganate. The acidic component may be a combination of multiple acidic components.​
 アルカリ性のエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、及び、有機アミンの塩(テトラメチルアンモニウムハイドロオキサイド等)から選択されるアルカリ成分単独の水溶液、並びに、アルカリ成分と塩(例えば、過マンガン酸カリウム)との混合水溶液が挙げられる。アルカリ成分は、複数のアルカリ成分を組み合わせた成分であってもよい。 Examples of the alkaline etching solution include an aqueous solution of an alkaline component alone selected from sodium hydroxide, potassium hydroxide, ammonia, organic amines, and salts of organic amines (such as tetramethylammonium hydroxide), and alkaline components and salts. (for example, potassium permanganate). The alkaline component may be a combination of a plurality of alkaline components.
 エッチング処理後、次の工程に移行する前に、基板上に残存するエッチング液を除去するリンス処理を実施するのも好ましい。リンス処理には、水等を使用できる。
 エッチング処理及び/又はリンス処理の後、余分な液を基板上から除去する乾燥処理を行ってもよい。
After the etching process, it is also preferable to perform a rinsing process to remove the etching solution remaining on the substrate before proceeding to the next step. Water or the like can be used for rinsing.
After the etching process and/or the rinsing process, a drying process may be performed to remove excess liquid from the substrate.
〔パターン剥離工程〕
 第2態様におけるパターン剥離工程は、第1態様におけるパターン剥離工程と同様の方法で行うことができる。
[Pattern peeling process]
The pattern peeling process in the second aspect can be performed in the same manner as the pattern peeling process in the first aspect.
〔その他の工程〕
 本開示に係る回路配線の製造方法は、上述した工程以外の任意の工程(その他の工程)を含んでもよい。例えば、以下の工程が挙げられるが、これらの工程に制限されない。
[Other processes]
The method for manufacturing circuit wiring according to the present disclosure may include any steps (other steps) other than the steps described above. Examples include, but are not limited to, the following steps.
 また、回路配線の製造方法に適用可能な露光工程、現像工程、及びその他の工程としては、特開2006-23696号公報の段落0035~0051に記載の工程が挙げられる。 In addition, examples of the exposure step, development step, and other steps applicable to the method for manufacturing circuit wiring include the steps described in paragraphs 0035 to 0051 of JP-A No. 2006-23696.
<可視光線反射率を低下させる工程>
 回路配線の製造方法は、基板が備える導電層の一部又は全ての可視光線反射率を低下させる処理を行う工程を含んでいてもよい。
<Step of reducing visible light reflectance>
The method for manufacturing circuit wiring may include the step of performing a process of reducing the visible light reflectance of part or all of the conductive layer included in the substrate.
 可視光線反射率を低下させる処理としては、酸化処理が挙げられる。基板が銅を含有する導電層を備える場合、銅を酸化処理して酸化銅とし、導電層を黒化することにより、導電層の可視光線反射率を低下させることができる。 An example of the treatment for reducing visible light reflectance is oxidation treatment. When the substrate includes a conductive layer containing copper, the visible light reflectance of the conductive layer can be reduced by oxidizing the copper to form copper oxide and blackening the conductive layer.
 可視光線反射率を低下させる処理については、特開2014-150118号公報の段落0017~0025、並びに、特開2013-206315号公報の段落0041、段落0042、段落0048及び段落0058に記載されており、これらの公報に記載の内容は本明細書に組み込まれる。 The treatment for reducing visible light reflectance is described in paragraphs 0017 to 0025 of JP 2014-150118, and paragraphs 0041, 0042, 0048, and 0058 of JP 2013-206315. , the contents of these publications are incorporated herein.
<絶縁膜を形成する工程、絶縁膜の表面に新たな導電層を形成する工程>
 回路配線の製造方法は、回路配線の表面に絶縁膜を形成する工程と、絶縁膜の表面に新たな導電層を形成する工程と、を含むことも好ましい。上記の工程により、第一の電極パターンと絶縁した第二の電極パターンを形成することができる。
<Process of forming an insulating film, process of forming a new conductive layer on the surface of the insulating film>
It is also preferable that the method for manufacturing the circuit wiring includes the steps of forming an insulating film on the surface of the circuit wiring and forming a new conductive layer on the surface of the insulating film. Through the above steps, it is possible to form a second electrode pattern that is insulated from the first electrode pattern.
 絶縁膜を形成する工程としては、特に制限されず、公知の永久膜を形成する方法が挙げられる。また、絶縁性を有する感光性材料を用いて、フォトリソグラフィにより所望のパターンの絶縁膜を形成してもよい。 The step of forming the insulating film is not particularly limited, and includes known methods for forming a permanent film. Alternatively, an insulating film having a desired pattern may be formed by photolithography using a photosensitive material having insulating properties.
 絶縁膜上に新たな導電層を形成する工程は、特に制限されず、例えば、導電性を有する感光性材料を用いて、フォトリソグラフィにより所望のパターンの新たな導電層を形成してもよい。 The step of forming a new conductive layer on the insulating film is not particularly limited, and for example, a new conductive layer with a desired pattern may be formed by photolithography using a conductive photosensitive material.
 回路配線の製造方法は、基材の両方の表面にそれぞれ複数の導電層を備える基板を用い、基材の両方の表面に形成された導電層に対して逐次又は同時に回路形成することも好ましい。このような構成により、基材の一方の表面に第一の導電パターン、もう一方の表面に第二の導電パターンを形成したタッチパネル用回路配線を形成できる。また、このような構成のタッチパネル用回路配線を、ロールツーロールで基材の両面から形成することも好ましい。 In the method for manufacturing circuit wiring, it is also preferable to use a substrate having a plurality of conductive layers on both surfaces of the base material, and to form circuits on the conductive layers formed on both surfaces of the base material sequentially or simultaneously. With such a configuration, it is possible to form circuit wiring for a touch panel in which the first conductive pattern is formed on one surface of the base material and the second conductive pattern is formed on the other surface. Moreover, it is also preferable to form the circuit wiring for a touch panel having such a configuration from both sides of the base material by roll-to-roll.
〔回路配線の用途〕
 回路配線の製造方法により製造される回路配線は、種々の装置に適用することができる。上記の製造方法により製造される回路配線を備えた装置としては、例えば、入力装置が挙げられ、タッチパネルが好ましく、静電容量型タッチパネルがより好ましい。また、上記入力装置は、有機EL表示装置及び液晶表示装置等の表示装置に適用できる。
[Applications of circuit wiring]
The circuit wiring manufactured by the circuit wiring manufacturing method can be applied to various devices. Examples of the device including circuit wiring manufactured by the above manufacturing method include an input device, preferably a touch panel, and more preferably a capacitive touch panel. Furthermore, the input device can be applied to display devices such as organic EL display devices and liquid crystal display devices.
[プリント配線板の製造方法]
 本開示の転写フィルムは、プリント配線板の製造に用いることができる。プリント配線板の製造方法は、上記レジストパターンを有する基板に対して、エッチング処理及びめっき処理からなる群より選ばれる少なくとも1種を施す工程を備える。ここで、基板のエッチング処理又はめっき処理は、現像されたレジストパターンをマスクとして用いて、基板の表面に対して公知の方法によりエッチング処理又はめっき処理を行うことができる。
 また、エッチング処理又はめっき処理の前に、過マンガン酸カリウム等を含む薬液による樹脂エッチング、プラズマによる樹脂アッシング等を用いた残膜の除去工程を行っても良い。
[Manufacturing method of printed wiring board]
The transfer film of the present disclosure can be used for manufacturing printed wiring boards. The method for manufacturing a printed wiring board includes the step of subjecting the substrate having the resist pattern to at least one selected from the group consisting of etching treatment and plating treatment. Here, the etching treatment or plating treatment of the substrate can be performed on the surface of the substrate by a known method using a developed resist pattern as a mask.
Further, before the etching treatment or the plating treatment, a residual film removal process may be performed using resin etching using a chemical solution containing potassium permanganate or the like, resin ashing using plasma, or the like.
 エッチング処理に用いられるエッチング液としては、例えば、塩化第二銅溶液、塩化第二鉄溶液、及び、アルカリエッチング溶液が挙げられる。めっきとしては、例えば、銅めっき、はんだめっき、ニッケルめっき、及び、金めっきが挙げられる。  Examples of the etching solution used in the etching process include a cupric chloride solution, a ferric chloride solution, and an alkaline etching solution. Examples of plating include copper plating, solder plating, nickel plating, and gold plating.​
 エッチング処理又はめっき処理を行った後、レジストパターンは、例えば、現像に用いたアルカリ性水溶液より更に強アルカリ性の水溶液で剥離することができる。この強アルカリ性の水溶液としては、例えば、1質量%~10質量%水酸化ナトリウム水溶液、及び、1質量%~10質量%水酸化カリウム水溶液が用いられる。また、剥離方法としては、例えば、浸漬方式及びスプレー方式が挙げられる。なお、レジストパターンが形成されたプリント配線板は、多層プリント配線板であってもよく、小径スルーホールを有していてもよい。 After performing the etching treatment or the plating treatment, the resist pattern can be peeled off using an aqueous solution that is more strongly alkaline than the alkaline aqueous solution used for development, for example. As this strong alkaline aqueous solution, for example, a 1% to 10% by mass aqueous sodium hydroxide solution and a 1% to 10% by mass potassium hydroxide aqueous solution are used. Furthermore, examples of the peeling method include a dipping method and a spray method. Note that the printed wiring board on which the resist pattern is formed may be a multilayer printed wiring board, and may have small-diameter through holes.
 絶縁層と、絶縁層上に形成された導体層と、を備えた基板に対してめっきが行われる場合には、レジストパターン以外の導体層を除去する必要がある。この除去方法としては、例えば、レジストパターンを剥離した後に軽くエッチングする方法;めっきに続いてはんだめっき等を行った後にレジストパターンを剥離することで配線部分をはんだでマスクし、次いで、はんだでマスクされていない部分の導体層のみをエッチング可能なエッチング液を用いて処理する方法が挙げられる。 When plating is performed on a substrate that includes an insulating layer and a conductor layer formed on the insulating layer, it is necessary to remove the conductor layer other than the resist pattern. This removal method includes, for example, a method in which the resist pattern is peeled off and then lightly etched; plating is followed by solder plating, and then the resist pattern is peeled off to mask the wiring part with solder, and then the wiring part is masked with solder. One example is a method of processing using an etching solution that can etch only the portions of the conductor layer that are not etched.
 以下に実施例を挙げて本発明の実施形態をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順は、本発明の実施形態の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本発明の実施形態の範囲は以下に示す具体例に制限されない。 Embodiments of the present invention will be described in more detail with reference to Examples below. The materials, amounts used, proportions, processing details, and processing procedures shown in the following examples can be changed as appropriate without departing from the spirit of the embodiments of the present invention. Therefore, the scope of the embodiments of the present invention is not limited to the specific examples shown below.
<感光性組成物の調製>
 感光性組成物を調製するために用いた各成分は以下のとおりである。
〔重合体A〕
・架橋性基を有するアルカリ可溶性樹脂1:スチレン(St)/メタクリル酸メチル(MMA)/メタクリル酸(MAA)/メタクリル酸-メタクリル酸グリシジル(GMA-MAA)=47.7/1.3/19/32(質量比)、Mw:20,000、酸価:124mgKOH/g、ガラス転移温度:76℃、固形分:30質量%、重量平均分子量:20,000
・架橋性基を有するアルカリ可溶性樹脂2:スチレン(St)/メタクリル酸メチル(MMA)/メタクリル酸(MAA)/メタクリル酸-メタクリル酸グリシジル(GMA-MAA)=34/15/19/32(質量比)、Mw:20,000、酸価:124mgKOH/g、ガラス転移温度:77℃、固形分:30質量%、重量平均分子量:20,000
・架橋性基を有するアルカリ可溶性樹脂3:スチレン(St)/メタクリル酸メチル(MMA)/メタクリル酸(MAA)/メタクリル酸-メタクリル酸グリシジル(GMA-MAA)=22/27/19/32(質量比)、Mw:20,000、酸価:124mgKOH/g、ガラス転移温度:78℃、固形分:30質量%、重量平均分子量:20,000
 なお、「メタクリル酸-メタクリル酸グリシジル」は、メタクリル酸由来の構成単位のカルボキシ基にメタクリル酸グリシジルのエポキシ基を反応させてなる構成単位を表す。
<Preparation of photosensitive composition>
The components used to prepare the photosensitive composition are as follows.
[Polymer A]
- Alkali-soluble resin with crosslinkable group 1: Styrene (St)/methyl methacrylate (MMA)/methacrylic acid (MAA)/methacrylic acid-glycidyl methacrylate (GMA-MAA) = 47.7/1.3/19 /32 (mass ratio), Mw: 20,000, acid value: 124 mgKOH/g, glass transition temperature: 76°C, solid content: 30% by mass, weight average molecular weight: 20,000
・Alkali-soluble resin 2 having a crosslinkable group: styrene (St)/methyl methacrylate (MMA)/methacrylic acid (MAA)/methacrylic acid-glycidyl methacrylate (GMA-MAA) = 34/15/19/32 (mass) ratio), Mw: 20,000, acid value: 124 mgKOH/g, glass transition temperature: 77°C, solid content: 30% by mass, weight average molecular weight: 20,000
・Alkali-soluble resin 3 having a crosslinkable group: styrene (St)/methyl methacrylate (MMA)/methacrylic acid (MAA)/methacrylic acid-glycidyl methacrylate (GMA-MAA) = 22/27/19/32 (mass) ratio), Mw: 20,000, acid value: 124 mgKOH/g, glass transition temperature: 78°C, solid content: 30% by mass, weight average molecular weight: 20,000
Note that "methacrylic acid-glycidyl methacrylate" refers to a structural unit obtained by reacting the carboxy group of a structural unit derived from methacrylic acid with the epoxy group of glycidyl methacrylate.
〔重合性化合物〕
・BPE-500:製品名「NKエステルBPE-500」、エトキシ化ビスフェノール
Aジメタクリレート、エチレンオキサイド鎖の平均繰り返し数10、新中村化学工業社製・BPE-100:製品名「NKエステルBPE-100」、エトキシ化ビスフェノールAジメタクリレート、エチレンオキサイド鎖の平均繰り返し数2.6、新中村化学工業社製
・M-270:製品名「アロニックスM-270」、ポリプロピレングリコールジアクリレート、東亞合成社製
 なお、上記BPE-500及びBPE-100は、重合性化合物B1に該当する。
[Polymerizable compound]
・BPE-500: Product name "NK Ester BPE-500", ethoxylated bisphenol A dimethacrylate, average repeating number of ethylene oxide chains 10, manufactured by Shin-Nakamura Chemical Industry Co., Ltd. ・BPE-100: Product name "NK Ester BPE-100" ”, Ethoxylated bisphenol A dimethacrylate, average repeating number of ethylene oxide chains 2.6, manufactured by Shin-Nakamura Chemical Co., Ltd. M-270: Product name “Aronix M-270”, polypropylene glycol diacrylate, manufactured by Toagosei Co., Ltd. , the above BPE-500 and BPE-100 correspond to polymerizable compound B1.
〔重合開始剤〕
・B-CIM:製品名「B-CIM」(2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、黒金化成社製
[Polymerization initiator]
・B-CIM: Product name “B-CIM” (2-(2-chlorophenyl)-4,5-diphenylimidazole dimer, manufactured by Kurogane Kasei Co., Ltd.)
〔増感剤〕
・EAB-F:製品名「EAB-F」、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、三洋貿易(株)社製
[Sensitizer]
・EAB-F: Product name "EAB-F", 4,4'-bis(diethylamino)benzophenone, manufactured by Sanyo Boeki Co., Ltd.
〔重合禁止剤〕
・フェノチアジン(富士フイルム和光純薬社製)
[Polymerization inhibitor]
・Phenothiazine (manufactured by Fujifilm Wako Pure Chemical Industries)
〔酸化防止剤〕
・フェニドン1%MEK溶液:1質量%のフェニドンを含むメチルエチルケトン溶液、東京化成工業社製
〔Antioxidant〕
・Phenidone 1% MEK solution: Methyl ethyl ketone solution containing 1% by mass of phenidone, manufactured by Tokyo Kasei Kogyo Co., Ltd.
〔連鎖移動剤〕
・化合物A:N-フェニルカルバモイルメチル-N-カルボキシメチルアニリン、富士フイルム和光純薬社製
[Chain transfer agent]
・Compound A: N-phenylcarbamoylmethyl-N-carboxymethylaniline, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
〔色素〕
・LCV:ロイコクリスタルバイオレット、東京化成工業社製、ラジカルにより発色する色素
・マラカイトグリーン:マラカイトグリーンしゅう酸塩(富士フイルム和光純薬社製)
[Pigment]
・LCV: Leuco crystal violet, manufactured by Tokyo Kasei Kogyo Co., Ltd., a pigment that develops color due to radicals ・Malachite green: Malachite green oxalate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
〔防錆剤〕
・CBT-1:製品名「CBT-1」、カルボキシベンゾトリアゾール、城北化学工業社製
〔anti-rust〕
・CBT-1: Product name “CBT-1”, carboxybenzotriazole, manufactured by Johoku Kagaku Kogyo Co., Ltd.
〔界面活性剤〕
・F-552:製品名「メガファックF-552」、DIC社製
[Surfactant]
・F-552: Product name "Megafac F-552", manufactured by DIC Corporation
〔溶剤〕
・MMPGAc:1-メトキシ-2-プロピルアセテート
・MEK:メチルエチルケトン
・MFG:プロピレングリコールモノメチルエーテル
〔solvent〕
・MMPGAc: 1-methoxy-2-propyl acetate ・MEK: Methyl ethyl ketone ・MFG: Propylene glycol monomethyl ether
 上記成分を、表1に記載の含有量(質量部)で混合し、感光性組成物を調製した。 The above components were mixed in the amounts (parts by mass) listed in Table 1 to prepare a photosensitive composition.
<中間層形成用組成物の調製>
 中間層形成用組成物を調製するために用いた各成分は以下のとおりである。
<Preparation of composition for forming intermediate layer>
The components used to prepare the intermediate layer forming composition are as follows.
〔水溶性樹脂〕
・PVA:ポリビニルアルコール
・PVP:ポリビニルピロリドン
・HPMC:ヒドロキシプロピルメチルセルロース
[Water-soluble resin]
・PVA: Polyvinyl alcohol ・PVP: Polyvinylpyrrolidone ・HPMC: Hydroxypropyl methylcellulose
〔界面活性剤〕
・F-444:製品名「メガファックF-444」、DIC社製
[Surfactant]
・F-444: Product name "Megafac F-444", manufactured by DIC Corporation
〔溶剤〕
・メタノール
・純水
〔solvent〕
・Methanol・Pure water
 上記成分を、表1に記載の含有量(質量部)で混合し、中間層形成用組成物を調製した。 The above components were mixed in the amounts (parts by mass) listed in Table 1 to prepare a composition for forming an intermediate layer.
<熱可塑性樹脂層形成用組成物の調製>
 熱可塑性樹脂層形成用組成物を調製するために用いた各成分は以下のとおりである。
<Preparation of composition for forming thermoplastic resin layer>
The components used to prepare the composition for forming a thermoplastic resin layer are as follows.
〔熱可塑性樹脂〕
・アルカリ可溶性樹脂B1:メタクリル酸ベンジル(BzMA)/メタクリル酸(MAA)/アクリル酸(AA)=78/14.5/7.5(質量比)、Mw:12,500、酸価:187mgKOH/g、ガラス転移温度:75℃、固形分:30質量%
〔Thermoplastic resin〕
- Alkali-soluble resin B1: benzyl methacrylate (BzMA)/methacrylic acid (MAA)/acrylic acid (AA) = 78/14.5/7.5 (mass ratio), Mw: 12,500, acid value: 187 mgKOH/ g, glass transition temperature: 75°C, solid content: 30% by mass
〔重合性化合物〕
・A-DCP:製品名「NKエステルA-DCP」、トリシクロデカンジメタノールジアクリレート、新中村化学工業(株)製
・8UX-015A:製品名「8UX-015A」、UV硬化型ウレタンアクリレート、大成ファインケミカル(株)製
・TO-2349:製品名「アロニックスTO-2349」、東亞合成(株)製
[Polymerizable compound]
・A-DCP: Product name "NK ester A-DCP", tricyclodecane dimethanol diacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd. ・8UX-015A: Product name "8UX-015A", UV-curable urethane acrylate, TO-2349 manufactured by Taisei Fine Chemical Co., Ltd.: Product name "Aronix TO-2349" manufactured by Toagosei Co., Ltd.
〔重合禁止剤〕
・フェノチアジン(富士フイルム和光純薬社製)
[Polymerization inhibitor]
・Phenothiazine (manufactured by Fujifilm Wako Pure Chemical Industries)
〔防錆剤〕
・CBT-1:製品名「CBT-1」、カルボキシベンゾトリアゾール、城北化学工業社製
〔anti-rust〕
・CBT-1: Product name “CBT-1”, carboxybenzotriazole, manufactured by Johoku Kagaku Kogyo Co., Ltd.
〔界面活性剤〕
・F-552:製品名「メガファックF-552」、DIC社製
[Surfactant]
・F-552: Product name "Megafac F-552", manufactured by DIC Corporation
〔溶剤〕
・MEK:メチルエチルケトン
〔solvent〕
・MEK: Methyl ethyl ketone
 表1中、「B/A」は、重合体Aの全質量に対する重合性化合物B1の全質量の比率を意味する。 In Table 1, "B/A" means the ratio of the total mass of polymerizable compound B1 to the total mass of polymer A.
<仮支持体の準備>
 表2に示す2軸延伸PETフィルムである仮支持体1~6を準備した。
<Preparation of temporary support>
Temporary supports 1 to 6, which are biaxially stretched PET films shown in Table 2, were prepared.
 各仮支持体について、厚み、熱変形率、ヘイズ、表面エネルギー、表面粗さRmax、直径5μm以上の粒子及び直径5μm以上の凝集物の総数、並びに、光学異常領域の合計面積比率を測定した。測定方法は以下のとおりである。 For each temporary support, the thickness, thermal deformation rate, haze, surface energy, surface roughness Rmax, the total number of particles with a diameter of 5 μm or more and aggregates with a diameter of 5 μm or more, and the total area ratio of the optically abnormal region were measured. The measurement method is as follows.
(厚み)
 SEMの断面観察により測定した任意の5点の平均値として算出した。
(thickness)
It was calculated as the average value of five arbitrary points measured by SEM cross-sectional observation.
(熱変形率)
 仮支持体の主面において、対向する2組の辺のうち1組の辺と平行な方向をA方向、A方向と垂直な方向をB方向とした。
 A方向の長さ30mm、B方向の長さ4mmに切り出した試験片と、B方向の長さ30mm、A方向の長さ4mmに切り出した試験片と、を準備した。
 2つの試験片を用いて、以下の測定を行った。
 測定装置として、熱膨張率測定装置(製品名「TMA450EM」、TAインスツルメント社製)を用いた。
 測定条件は以下のとおりである。
 測定モード:引張モード
 つかみ間距離:16mm
 設定荷重:0.05Nから0.48Nまで6.00N/分で変化させた。
 25℃から100℃まで、昇温速度20℃/分で各試験片を加熱し、各試験片の伸び率を5回ずつ測定し、平均値を算出した。
 2つの試験片のうち、伸び率の平均値の大きい方を、熱変形率として採用した。
(thermal deformation rate)
On the main surface of the temporary support, a direction parallel to one of the two opposing sides was defined as the A direction, and a direction perpendicular to the A direction was defined as the B direction.
A test piece cut out to have a length of 30 mm in the A direction and 4 mm in the B direction, and a test piece cut out to have a length of 30 mm in the B direction and 4 mm in the A direction were prepared.
The following measurements were performed using two test pieces.
As a measuring device, a thermal expansion coefficient measuring device (product name "TMA450EM", manufactured by TA Instruments) was used.
The measurement conditions are as follows.
Measurement mode: Tensile mode Grip distance: 16mm
Set load: Changed from 0.05N to 0.48N at 6.00N/min.
Each test piece was heated from 25°C to 100°C at a heating rate of 20°C/min, and the elongation rate of each test piece was measured five times, and the average value was calculated.
Of the two test pieces, the one with the larger average elongation rate was adopted as the thermal deformation rate.
(ヘイズ)
 ヘイズメータを用いて、JIS K7136:2000に準じて測定した。
(Haze)
It was measured using a haze meter according to JIS K7136:2000.
(表面粗さRmax)
 転写フィルムから、仮支持体を剥離した。仮支持体の転写層側表面の表面プロファイルを得る。測定・解析ソフトウェアとしては、MetroPro ver8.3.2のMicroscope Applicationを用いた。次に、測定・解析ソフトウェアを用いてSurface Map画面を表示し、Surface Map画面中でヒストグラムデータを得た。得られたヒストグラムデータから、表面粗さRmaxを得た。
(Surface roughness Rmax)
The temporary support was peeled off from the transfer film. Obtain the surface profile of the surface of the temporary support on the transfer layer side. Microscope Application of MetroPro ver. 8.3.2 was used as the measurement/analysis software. Next, a Surface Map screen was displayed using the measurement/analysis software, and histogram data was obtained on the Surface Map screen. The surface roughness Rmax was obtained from the obtained histogram data.
(直径5μm以上の粒子及び直径5μm以上の凝集物の総数)
 仮支持体を偏光顕微鏡(製品名「BX60」に「U-POT」フィルターと「U-AN360」フィルターを挿入して簡易偏光顕微鏡としたもの、対物レンズ10倍、オリンパス社製)で観察し、偏光の乱れが発生している部分を異物(粒子又は凝集物)として特定した。特定した異物を落射型レーザー顕微鏡(製品名「共焦点レーザー顕微鏡VL2000D」、Lasertec社製)で観察し、後述する光学異常領域の合計面積比率を測定した。また、光学顕微鏡(製品名「BX60」、対物レンズ100倍、オリンパス社製)で異物の直径を測定し、観察領域1mmに含まれる、直径が5μm以上である異物の個数を計測した。
(Total number of particles with a diameter of 5 μm or more and aggregates with a diameter of 5 μm or more)
Observe the temporary support with a polarizing microscope (product name: "BX60" with "U-POT" filter and "U-AN360" filter inserted to make a simple polarizing microscope, 10x objective lens, manufactured by Olympus), The portion where the polarization disturbance occurred was identified as a foreign object (particle or aggregate). The identified foreign matter was observed with an epi-illumination laser microscope (product name: "Confocal Laser Microscope VL2000D", manufactured by Lasertec), and the total area ratio of the optically abnormal region, which will be described later, was measured. In addition, the diameter of foreign particles was measured using an optical microscope (product name "BX60", objective lens 100 times, manufactured by Olympus Corporation), and the number of foreign particles with a diameter of 5 μm or more included in an observation area of 1 mm 2 was counted.
(光学異常領域の合計面積比率)
 落射型レーザー顕微鏡(Olympus製OLS-4100)の対物レンズの上部に偏光フィルター(OLS4000-QWP)を挿入した。次に、レーザー顕微鏡のステージ上に多孔質吸着板(ユニバーサル技研製65F-HG)及び真空ポンプを用いて30mm×30mmに切断した仮支持体を水平に吸引固定した。吸引固定した仮支持体を、対物レンズ50倍のレーザー光量60(レーザー波長は405nm)にて観測した。この際、仮支持体の厚み方向の中心2μmの領域を測定領域に定め、測定領域259μm×260μmを測定箇所数200点で計測を行った。
(Total area ratio of optical abnormal area)
A polarizing filter (OLS4000-QWP) was inserted above the objective lens of an epi-reflection laser microscope (OLS-4100 manufactured by Olympus). Next, the temporary support cut into 30 mm x 30 mm was horizontally suctioned and fixed on the stage of a laser microscope using a porous suction plate (65F-HG manufactured by Universal Giken) and a vacuum pump. The suction-fixed temporary support was observed at a laser beam intensity of 60 (laser wavelength: 405 nm) with a 50-fold objective lens. At this time, a region of 2 μm in the center of the temporary support in the thickness direction was set as the measurement region, and measurements were performed at 200 measurement points in the measurement region of 259 μm×260 μm.
 計測された画像内の最大光量のピクセルと最小光量のピクセルとの光量差を4096階調(最大光量の値が4095で、最小光量の値が0になる)に分ける。画像内のピクセルの光量分布をグラフ化したヒストグラム(横軸:光量の階調(最小値0、最大値4095)、縦軸:ピクセルの個数)を作成した。作成したヒストグラムの2つある裾野の値の大きい方の裾野の値から400階調プラスした階調を閾値として、計測された画像を二値化し、閾値よりも光量が大きいピクセルの面積を合計し、その合計面積を光学異常領域の合計面積とした。計測面積に対する光学異常領域の合計面積の比率を算出した。 The light amount difference between the pixel with the maximum light amount and the pixel with the minimum light amount in the measured image is divided into 4096 gradations (the value of the maximum light amount is 4095 and the value of the minimum light amount is 0). A histogram (horizontal axis: gradation of light amount (minimum value 0, maximum value 4095), vertical axis: number of pixels) was created, which is a graph of the light amount distribution of pixels in the image. The measured image is binarized using the gradation that is 400 gradations plus 400 gradations from the larger of the two base values of the created histogram as the threshold, and the areas of pixels with a larger amount of light than the threshold are summed. , the total area was taken as the total area of the optically abnormal region. The ratio of the total area of the optically abnormal region to the measured area was calculated.
<転写フィルムの作製>
[実施例1]
 仮支持体1上に、スリット状ノズルを用いて、乾燥後の厚みが表1に記載の中間層の厚みとなるように中間層形成用組成物を塗布した。中間層形成用組成物の塗膜を90℃で120秒間かけて乾燥し、中間層を形成した。中間層上に、スリット状ノズルを用いて、乾燥後の厚みが表1に記載の感光性層の厚みとなるように感光性組成物を塗布した。感光性組成物の塗膜を80℃で120秒間かけて乾燥し、感光性層を形成した。すなわち、仮支持体1上に転写層1として中間層及び感光層を形成した。これにより、仮支持体1、中間層、及び感光性層をこの順に有する転写フィルムを得た。
<Preparation of transfer film>
[Example 1]
The composition for forming an intermediate layer was applied onto the temporary support 1 using a slit-shaped nozzle so that the thickness after drying would be the thickness of the intermediate layer shown in Table 1. The coating film of the composition for forming an intermediate layer was dried at 90° C. for 120 seconds to form an intermediate layer. A photosensitive composition was applied onto the intermediate layer using a slit-shaped nozzle so that the thickness after drying would be the thickness of the photosensitive layer shown in Table 1. The coating film of the photosensitive composition was dried at 80° C. for 120 seconds to form a photosensitive layer. That is, an intermediate layer and a photosensitive layer were formed as a transfer layer 1 on a temporary support 1. Thereby, a transfer film having the temporary support 1, the intermediate layer, and the photosensitive layer in this order was obtained.
 転写層1の、仮支持体1と対向する側の表面自由エネルギーは、60.1mJ/mであった。
 転写層1における水の含有量は、転写層1の全量に対して、0.1質量%であった。
 転写層1における鉄原子の含有量は、転写層1の全量に対して、0.01ppmであった。
 感光性層における水の含有量は、感光性層の全量に対して、0.1質量%であった。
 感光性層における鉄原子の含有量は、感光性層の全量に対して、0.01ppmであった。
The surface free energy of the transfer layer 1 on the side facing the temporary support 1 was 60.1 mJ/m 2 .
The content of water in the transfer layer 1 was 0.1% by mass based on the total amount of the transfer layer 1.
The content of iron atoms in the transfer layer 1 was 0.01 ppm based on the total amount of the transfer layer 1.
The content of water in the photosensitive layer was 0.1% by mass based on the total amount of the photosensitive layer.
The content of iron atoms in the photosensitive layer was 0.01 ppm based on the total amount of the photosensitive layer.
[実施例2~実施例5、比較例1]
 仮支持体1を、仮支持体2~仮支持体6に変更したこと以外は、実施例1と同様の方法で転写フィルムを得た。
[Example 2 to Example 5, Comparative Example 1]
A transfer film was obtained in the same manner as in Example 1, except that Temporary Support 1 was changed to Temporary Supports 2 to 6.
 転写層1の、仮支持体2~仮支持体6のそれぞれと対向する側の表面自由エネルギーはいずれも、60.1mJ/mであった。 The surface free energy of the transfer layer 1 on the side facing each of the temporary supports 2 to 6 was 60.1 mJ/m 2 .
[実施例6]
 仮支持体2上に、スリット状ノズルを用いて、乾燥後の厚みが表1に記載の中間層の厚みとなるように中間層形成用組成物を塗布した。中間層形成用組成物の塗膜を90℃で120秒間かけて乾燥し、中間層を形成した。中間層上に、スリット状ノズルを用いて、乾燥後の厚みが表1に記載の熱可塑性樹脂層の厚みとなるように熱可塑性樹脂層用組成物を塗布した。熱可塑性樹脂層用組成物の塗膜を100℃で120秒間かけて乾燥し、熱可塑性樹脂層を形成した。熱可塑性樹脂層上に、スリット状ノズルを用いて、乾燥後の厚みが表1に記載の感光性層の厚みとなるように感光性組成物を塗布した。感光性組成物の塗膜を80℃で120秒間かけて乾燥し、感光性層を形成した。すなわち、仮支持体2上に転写層2として熱可塑性樹脂層、中間層及び感光層を形成した。これにより、仮支持体2、熱可塑性樹脂層、中間層、及び感光性層をこの順に有する転写フィルムを得た。
[Example 6]
The composition for forming an intermediate layer was applied onto the temporary support 2 using a slit-shaped nozzle so that the thickness after drying would be the thickness of the intermediate layer shown in Table 1. The coating film of the composition for forming an intermediate layer was dried at 90° C. for 120 seconds to form an intermediate layer. A composition for a thermoplastic resin layer was applied onto the intermediate layer using a slit-shaped nozzle so that the thickness after drying would be the thickness of the thermoplastic resin layer shown in Table 1. The coating film of the composition for a thermoplastic resin layer was dried at 100° C. for 120 seconds to form a thermoplastic resin layer. A photosensitive composition was applied onto the thermoplastic resin layer using a slit-shaped nozzle so that the thickness after drying would be the thickness of the photosensitive layer shown in Table 1. The coating film of the photosensitive composition was dried at 80° C. for 120 seconds to form a photosensitive layer. That is, a thermoplastic resin layer, an intermediate layer, and a photosensitive layer were formed as a transfer layer 2 on a temporary support 2. Thereby, a transfer film having the temporary support 2, the thermoplastic resin layer, the intermediate layer, and the photosensitive layer in this order was obtained.
 転写層2の、仮支持体2と対向する側の表面自由エネルギーは、60.1mJ/mであった。
 転写層2における水の含有量は、転写層2の全量に対して、0.1質量%であった。
 転写層2における鉄原子の含有量は、転写層2の全量に対して、0.01ppmであった。
 感光性層における水の含有量は、感光性層の全量に対して、0.1質量%であった。
 感光性層における鉄原子の含有量は、感光性層の全量に対して、0.01ppmであった。
The surface free energy of the transfer layer 2 on the side facing the temporary support 2 was 60.1 mJ/m 2 .
The content of water in the transfer layer 2 was 0.1% by mass based on the total amount of the transfer layer 2.
The content of iron atoms in the transfer layer 2 was 0.01 ppm based on the total amount of the transfer layer 2.
The content of water in the photosensitive layer was 0.1% by mass based on the total amount of the photosensitive layer.
The content of iron atoms in the photosensitive layer was 0.01 ppm based on the total amount of the photosensitive layer.
 実施例及び比較例で得られた転写フィルムを用いて、基板変形性、レチキュレーション、及びパターニング性の評価を行った。評価結果を表2及び表3に示す。 Using the transfer films obtained in Examples and Comparative Examples, substrate deformability, reticulation, and patterning properties were evaluated. The evaluation results are shown in Tables 2 and 3.
[実施例7~実施例15]
 転写層、仮支持体を表2及び表3に記載のものに変更したこと以外は、実施例1と同様の方法で転写フィルムを得た。
[Example 7 to Example 15]
A transfer film was obtained in the same manner as in Example 1, except that the transfer layer and temporary support were changed to those listed in Tables 2 and 3.
 実施例7において、転写層1の、仮支持体6と対向する側の表面自由エネルギーは、60.1mJ/mであった。
 実施例8、12において、転写層3の、それぞれの仮支持体と対向する側の表面自由エネルギーは、60.1mJ/mであった。
 実施例9、13において、転写層4の、それぞれの仮支持体と対向する側の表面自由エネルギーは、60.1mJ/mであった。
 実施例10、14において、転写層5の、それぞれの仮支持体と対向する側の表面自由エネルギーは、60.1mJ/mであった。
 実施例11、15において、転写層6の、それぞれの仮支持体と対向する側の表面自由エネルギーは、60.1mJ/mであった。
In Example 7, the surface free energy of the transfer layer 1 on the side facing the temporary support 6 was 60.1 mJ/m 2 .
In Examples 8 and 12, the surface free energy of the transfer layer 3 on the side facing each temporary support was 60.1 mJ/m 2 .
In Examples 9 and 13, the surface free energy of the transfer layer 4 on the side facing each temporary support was 60.1 mJ/m 2 .
In Examples 10 and 14, the surface free energy of the transfer layer 5 on the side facing each temporary support was 60.1 mJ/m 2 .
In Examples 11 and 15, the surface free energy of the transfer layer 6 on the side facing each temporary support was 60.1 mJ/m 2 .
 転写層3~6における水の含有量は、転写層3~6それぞれの全量に対して、0.1質量%であった。
 転写層3~6における鉄原子の含有量は、転写層3~6それぞれの全量に対して、0.01ppmであった。
 転写層3~6の感光性層における水の含有量は、感光性層の全量に対して、0.1質量%であった。
 転写層3~6の感光性層における鉄原子の含有量は、感光性層の全量に対して、0.01ppmであった。
The content of water in transfer layers 3 to 6 was 0.1% by mass based on the total amount of each of transfer layers 3 to 6.
The content of iron atoms in the transfer layers 3 to 6 was 0.01 ppm based on the total amount of each of the transfer layers 3 to 6.
The water content in the photosensitive layers of transfer layers 3 to 6 was 0.1% by mass based on the total amount of the photosensitive layers.
The content of iron atoms in the photosensitive layers of transfer layers 3 to 6 was 0.01 ppm based on the total amount of the photosensitive layers.
<基板変形性>
 真空ラミネーター(製品名「MVR-250T」、株式会社エム・シー・ケー製)を用いて、転写フィルムと基板(製品名「メタロイヤル」、Toray Advanced Materials Korea社製)とを、転写フィルムの感光性層が基板と接するように、貼り合わせた。なお、転写フィルムは、基板の両面に貼り合わせた。貼り合わせ工程は、搬送速度1m/分、真空度50Pa、ラミネート温度100℃の条件で行った。仮支持体、転写層(中間層/感光性層)、基板、転写層(感光性層/中間層)、及び仮支持体の順に積層された積層体を得た。
 得られた積層体において、一方の仮支持体を剥離した。仮支持体を剥離した面を上面として、剥離後の積層体を置き、基板の変形量を測定した。
 基板の中心部と、基板の末端との、鉛直方向での距離を、基板の変形量とした。評価基準は以下のとおりである。
 A:変形量が1cm以下である。
 B:変形量が1cm超3cm以下である。
 C:変形量が3cm超5cm以下である。
 D:変形量が5cm超である。
<Substrate deformability>
Using a vacuum laminator (product name "MVR-250T", manufactured by MC Co., Ltd.), the transfer film and the substrate (product name "Metal Royal", manufactured by Toray Advanced Materials Korea) are exposed to light. They were bonded together so that the sexual layer was in contact with the substrate. Note that the transfer film was attached to both sides of the substrate. The bonding process was carried out under the conditions of a conveyance speed of 1 m/min, a degree of vacuum of 50 Pa, and a lamination temperature of 100°C. A laminate was obtained in which the temporary support, the transfer layer (intermediate layer/photosensitive layer), the substrate, the transfer layer (photosensitive layer/intermediate layer), and the temporary support were laminated in this order.
In the obtained laminate, one temporary support was peeled off. The peeled laminate was placed with the surface from which the temporary support was peeled as the top surface, and the amount of deformation of the substrate was measured.
The distance in the vertical direction between the center of the board and the end of the board was defined as the amount of deformation of the board. The evaluation criteria are as follows.
A: The amount of deformation is 1 cm or less.
B: The amount of deformation is more than 1 cm and less than 3 cm.
C: The amount of deformation is more than 3 cm and less than 5 cm.
D: The amount of deformation is more than 5 cm.
<レチキュレーション>
 基板変形性の評価と同様に、仮支持体、転写層(中間層/感光性層)、基板、転写層(感光性層/中間層)、及び仮支持体の順に積層された積層体を得た。
 得られた積層体において、温度23度、湿度50%の環境下で、一方の仮支持体を剥離した。剥離された後の転写層の表面を目視で観察し、レチキュレーション(しわ)が発生しているか否かを確認した。評価基準は以下のとおりである。
 A:レチキュレーションが発生していない。
 B:レチキュレーションが発生している。
<Reticulation>
Similar to the evaluation of substrate deformability, a laminate was obtained in which the temporary support, transfer layer (intermediate layer/photosensitive layer), substrate, transfer layer (photosensitive layer/intermediate layer), and temporary support were laminated in this order. Ta.
In the obtained laminate, one temporary support was peeled off under an environment of a temperature of 23 degrees Celsius and a humidity of 50%. The surface of the transfer layer after peeling was visually observed to determine whether reticulation (wrinkles) had occurred. The evaluation criteria are as follows.
A: Reticulation has not occurred.
B: Reticulation is occurring.
<パターニング性>
 真空ラミネーター(製品名「MVR-250T」、株式会社エム・シー・ケー製)を用いて、転写フィルムと基板(製品名「メタロイヤル」、Toray Advanced Materials Korea社製))とを、転写フィルムの感光性層が基板と接するように、貼り合わせた。なお、転写フィルムは、基板の一方の面に貼り合わせた。貼り合わせ工程は、搬送速度1m/分、真空度50Pa、ラミネート温度100℃の条件で行った。仮支持体、転写層(中間層/感光性層)、基板の順に積層された積層体を得た。
 得られた積層体において、仮支持体を剥離した(剥離工程)。剥離工程の後に、転写層側から、フォトマスクを介して露光量50mJ/cmで紫外線を照射した(露光工程)。露光に使用したフォトマスクは、透過領域と遮光領域の幅の比(Duty比)が1:1であり、かつ、ライン幅(及びスペース幅)が15μmであるラインアンドスペースパターンを有していた。露光工程の後、液温25℃の1.0質量%炭酸ナトリウム水溶液を用いて30秒間のシャワー現像を行った(現像工程)。現像工程の後、形成されたパターンを、光学顕微鏡で観察し、パターンの欠陥(例えば、断線、抜け、欠損等)の有無を確認した。評価基準は以下のとおりである。
 A:パターンの欠陥がない。
 B:パターンの欠陥がある。
<Patternability>
Using a vacuum laminator (product name "MVR-250T", manufactured by MC Co., Ltd.), the transfer film and the substrate (product name "Metal Royal", manufactured by Toray Advanced Materials Korea)) are They were bonded together so that the photosensitive layer was in contact with the substrate. Note that the transfer film was attached to one side of the substrate. The bonding process was carried out under the conditions of a conveyance speed of 1 m/min, a degree of vacuum of 50 Pa, and a lamination temperature of 100°C. A laminate was obtained in which the temporary support, the transfer layer (intermediate layer/photosensitive layer), and the substrate were laminated in this order.
In the obtained laminate, the temporary support was peeled off (peeling step). After the peeling step, ultraviolet rays were irradiated from the transfer layer side through a photomask at an exposure dose of 50 mJ/cm 2 (exposure step). The photomask used for exposure had a line-and-space pattern in which the width ratio (duty ratio) of the transmitting area and the light-blocking area was 1:1, and the line width (and space width) was 15 μm. . After the exposure step, shower development was performed for 30 seconds using a 1.0% by mass aqueous sodium carbonate solution at a liquid temperature of 25° C. (development step). After the development process, the formed pattern was observed with an optical microscope to check for defects in the pattern (for example, disconnections, omissions, defects, etc.). The evaluation criteria are as follows.
A: There is no pattern defect.
B: There is a pattern defect.
 評価結果を表2及び表3に示す。 The evaluation results are shown in Tables 2 and 3.
 表2及び表3に示すように、実施例1~実施例15では、仮支持体と、仮支持体上に配置される転写層と、を含み、仮支持体は、熱変形率が1.0%以下であるため、転写工程に用いられる基板の変形が抑制されることが分かった。
 一方、比較例1では、仮支持体の熱変形率が1.0%超であり、基板の変形が生じることが分かった。
As shown in Tables 2 and 3, Examples 1 to 15 include a temporary support and a transfer layer disposed on the temporary support, and the temporary support has a thermal deformation rate of 1. It was found that since it was 0% or less, deformation of the substrate used in the transfer process was suppressed.
On the other hand, in Comparative Example 1, the thermal deformation rate of the temporary support was more than 1.0%, indicating that the substrate was deformed.
 実施例2では、仮支持体の転写層側表面の表面粗さRmaxが0.5μm以下であるため、実施例3と比較して、パターニング性に優れることが分かった。 In Example 2, since the surface roughness Rmax of the surface of the temporary support on the transfer layer side was 0.5 μm or less, it was found that the patterning property was excellent compared to Example 3.
<実施例101:フレキシブルプリント配線板の製造> 
 厚み25μmのポリイミド基材(カプトン100H、東レ(株)製)の両面に、蒸着法にて厚み300nmの銅層を設け、銅層付きポリイミド基材を用意した。
<Example 101: Production of flexible printed wiring board>
A copper layer with a thickness of 300 nm was provided on both sides of a polyimide base material (Kapton 100H, manufactured by Toray Industries, Inc.) with a thickness of 25 μm by a vapor deposition method to prepare a polyimide base material with a copper layer.
<露光方法1> 
 実施例1の転写フィルムを、ロール温度100℃、線圧1.0MPa、線速度1.0m/minのラミネート条件で、銅層と感光性層とが接するように上記銅層付きポリイミド基材の両面にラミネートし、評価用積層体を作製した。
 次に、両面の仮支持体を180°の向きで剥離した。
 次に、所定のライン幅(μm)/スペース幅(μm)のパターンを有するフォトマスクを使用し、中間層をマスクと接触させて両面同時に露光を行った。露光にはi線(365nm)を露光主波長とする高圧水銀灯を用いた。露光量は各パターンのtop形状がマスク開口部と一致するようそれぞれ任意に設定した。両面を液温30℃の1質量%炭酸ソーダ水溶液で両面にシャワー現像を行い、水洗を実施し、両面の銅層上に所定のパターンを形成した積層体を得た。
 上記積層体に対して、酸脱脂、水洗、及び硫酸ディップをこの順に実施し、硫酸銅めっき液を用いて1A/dmの条件でめっき厚みが15μmになるまで銅めっき処理を行った。水洗、乾燥後、3.0質量%水酸化ナトリウム水溶液、50℃を用いてレジストを剥離した後、シード層を、エッチング液(0.1質量%硫酸及び0.1質量%過酸化水素を含む水溶液、28℃)により除去し、水洗してフレキシブルプリント配線板を作製した。製造したフレキシブルプリント配線板は、正常に動作することが確認された。
<Exposure method 1>
The transfer film of Example 1 was laminated on the above-mentioned copper layer-coated polyimide base material under the laminating conditions of a roll temperature of 100°C, a linear pressure of 1.0 MPa, and a linear speed of 1.0 m/min, so that the copper layer and the photosensitive layer were in contact with each other. Both sides were laminated to produce a laminate for evaluation.
Next, the temporary supports on both sides were peeled off at an angle of 180°.
Next, using a photomask having a pattern with a predetermined line width (μm)/space width (μm), the intermediate layer was brought into contact with the mask to simultaneously expose both sides. For exposure, a high-pressure mercury lamp with i-line (365 nm) as the main exposure wavelength was used. The exposure amount was arbitrarily set so that the top shape of each pattern coincided with the mask opening. Shower development was performed on both sides with a 1% by mass aqueous sodium carbonate solution at a liquid temperature of 30° C., followed by washing with water to obtain a laminate in which a predetermined pattern was formed on the copper layers on both sides.
The above laminate was subjected to acid degreasing, water washing, and sulfuric acid dipping in this order, and copper plating was performed using a copper sulfate plating solution at 1 A/dm 2 until the plating thickness reached 15 μm. After washing with water and drying, the resist was removed using a 3.0 mass% sodium hydroxide aqueous solution at 50°C, and the seed layer was removed using an etching solution (containing 0.1 mass% sulfuric acid and 0.1 mass% hydrogen peroxide). It was removed with an aqueous solution (28° C.) and washed with water to produce a flexible printed wiring board. It was confirmed that the manufactured flexible printed wiring board operated normally.
<露光方法2> 
 実施例1の転写フィルムを、ロール温度100℃、線圧1.0MPa、線速度1.0m/minのラミネート条件で、銅層と感光性層とが接するように銅層付きポリイミド基材の両面にラミネートし、評価用積層体を作製した。
 次に、片面の仮支持体を180°の向きで剥離し、剥離した面を露光した。
 露光は、高圧水銀灯を有する投影露光機を用いてi線(365nm)で、マスクを介して、縮小投影露光を行った。マスクとしては、所定のライン幅(μm)/スペース幅(μm)のパターンを有するものを用いた。また、露光量は、各パターンのtop形状がマスク開口部と一致するようそれぞれ任意に設定した。
 次に、露光した面と反対側の転写フィルムの仮支持体を180°の向きで剥離し、剥離した面を最初に露光した面と同様の条件で露光した。
両面を液温30℃の1質量%炭酸ソーダ水溶液で両面にシャワー現像を行い、水洗を実施し、両面の銅層上に所定のパターンを形成した積層体を得た。
 上記積層体に対して、酸脱脂、水洗、及び硫酸ディップをこの順に実施し、硫酸銅めっき液を用いて1A/dmの条件でめっき厚みが15μmになるまで銅めっき処理を行った。水洗、乾燥後、3.0質量%水酸化ナトリウム水溶液、50℃を用いてレジストを剥離した後、シード層を、エッチング液(0.1質量%硫酸及び0.1質量%過酸化水素を含む水溶液、28℃)により除去し、水洗してフレキシブルプリント配線板を作製した。製造したフレキシブルプリント配線板は、正常に動作することが確認された。
<Exposure method 2>
The transfer film of Example 1 was laminated on both sides of a polyimide substrate with a copper layer so that the copper layer and the photosensitive layer were in contact with each other under the laminating conditions of a roll temperature of 100°C, a linear pressure of 1.0 MPa, and a linear speed of 1.0 m/min. A laminate for evaluation was produced.
Next, one side of the temporary support was peeled off at an angle of 180°, and the peeled side was exposed to light.
Exposure was carried out using a projection exposure machine equipped with a high-pressure mercury lamp, and reduced projection exposure was performed using an i-line (365 nm) through a mask. A mask having a pattern with a predetermined line width (μm)/space width (μm) was used. Further, the exposure amount was arbitrarily set so that the top shape of each pattern coincided with the mask opening.
Next, the temporary support of the transfer film on the side opposite to the exposed side was peeled off at an angle of 180°, and the peeled side was exposed under the same conditions as the first exposed side.
Shower development was performed on both sides with a 1% by mass aqueous sodium carbonate solution at a liquid temperature of 30° C., followed by washing with water to obtain a laminate in which a predetermined pattern was formed on the copper layers on both sides.
The above laminate was subjected to acid degreasing, water washing, and sulfuric acid dipping in this order, and copper plating was performed using a copper sulfate plating solution at 1 A/dm 2 until the plating thickness reached 15 μm. After washing with water and drying, the resist was removed using a 3.0 mass% sodium hydroxide aqueous solution at 50°C, and the seed layer was removed using an etching solution (containing 0.1 mass% sulfuric acid and 0.1 mass% hydrogen peroxide). It was removed with an aqueous solution (28° C.) and washed with water to produce a flexible printed wiring board. It was confirmed that the manufactured flexible printed wiring board operated normally.
[実施例102~115]
 実施例2~実施例15の転写フィルムを用いたこと以外は、実施例101と同様にフレキシブルプリント配線板を作製した。露光方法1、露光方法2のいずれの方法で製造したフレキシブルプリント配線板も、正常に動作することが確認された。
[Examples 102 to 115]
Flexible printed wiring boards were produced in the same manner as in Example 101, except that the transfer films of Examples 2 to 15 were used. It was confirmed that the flexible printed wiring boards manufactured by either exposure method 1 or exposure method 2 operated normally.
 なお、2022年6月30日に出願された日本国特許出願2022-106641号、及び、2023年1月5日に出願された日本国特許出願2023-000740号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosures of Japanese Patent Application No. 2022-106641 filed on June 30, 2022 and Japanese Patent Application No. 2023-000740 filed on January 5, 2023 are incorporated by reference in their entirety. Incorporated herein. In addition, all documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard were specifically and individually indicated to be incorporated by reference. , incorporated herein by reference.

Claims (19)

  1.  仮支持体と、前記仮支持体上に配置される転写層と、を含み、
     前記仮支持体は、熱変形率が1.0%以下である、転写フィルム。
    comprising a temporary support and a transfer layer disposed on the temporary support,
    The temporary support is a transfer film having a thermal deformation rate of 1.0% or less.
  2.  前記転写層は、前記仮支持体と対向する側の表面自由エネルギーが68.0mJ/m以下である、請求項1に記載の転写フィルム。 The transfer film according to claim 1, wherein the transfer layer has a surface free energy of 68.0 mJ/m 2 or less on the side facing the temporary support.
  3.  前記転写層は前記仮支持体の表面に接しており、
     前記仮支持体の転写層側表面の表面粗さRmaxが0.5μm以下である、請求項1又は請求項2に記載の転写フィルム。
    The transfer layer is in contact with the surface of the temporary support,
    The transfer film according to claim 1 or 2, wherein the surface roughness Rmax of the transfer layer side surface of the temporary support is 0.5 μm or less.
  4.  前記転写層は、感光性層を含む、請求項1又は請求項2に記載の転写フィルム。 The transfer film according to claim 1 or 2, wherein the transfer layer includes a photosensitive layer.
  5.  前記転写層は、前記仮支持体と前記感光性層との間に、中間層を含む、請求項4に記載の転写フィルム。 The transfer film according to claim 4, wherein the transfer layer includes an intermediate layer between the temporary support and the photosensitive layer.
  6.  前記転写層は、前記仮支持体と前記中間層との間に、熱可塑性樹脂層を含む、請求項5に記載の転写フィルム。 The transfer film according to claim 5, wherein the transfer layer includes a thermoplastic resin layer between the temporary support and the intermediate layer.
  7.  前記仮支持体は、ヘイズが2.0%より大きい、請求項1又は請求項2に記載の転写フィルム。 The transfer film according to claim 1 or 2, wherein the temporary support has a haze of greater than 2.0%.
  8.  前記仮支持体に含まれる、直径5μm以上の粒子及び直径5μm以上の凝集物の総数が、30個/mmより多い、請求項1又は請求項2に記載の転写フィルム。 The transfer film according to claim 1 or 2, wherein the total number of particles with a diameter of 5 μm or more and aggregates with a diameter of 5 μm or more contained in the temporary support is more than 30 pieces/mm 2 .
  9.  前記仮支持体は、落射型レーザー顕微鏡で13.5mmの面積にて観測した際の光学異常領域の合計面積比率が300ppmより大きい領域を含む、請求項1又は請求項2に記載の転写フィルム。 The transfer film according to claim 1 or 2, wherein the temporary support includes an area where the total area ratio of the optically abnormal area is larger than 300 ppm when observed in an area of 13.5 mm 2 with an epi-reflection laser microscope. .
  10.  前記仮支持体は、厚みが25μm以上である、請求項1又は請求項2に記載の転写フィルム。 The transfer film according to claim 1 or 2, wherein the temporary support has a thickness of 25 μm or more.
  11.  前記感光性層は、酸価が80mgKOH/g~250mgKOH/gであるアルカリ可溶性樹脂を含む、請求項4に記載の転写フィルム。 The transfer film according to claim 4, wherein the photosensitive layer contains an alkali-soluble resin having an acid value of 80 mgKOH/g to 250 mgKOH/g.
  12.  前記感光性層は、架橋性基を有するアルカリ可溶性樹脂を含む、請求項4に記載の転写フィルム。 The transfer film according to claim 4, wherein the photosensitive layer contains an alkali-soluble resin having a crosslinkable group.
  13.  前記感光性層は、スチレン由来の構成単位及びスチレン誘導体由来の構成単位の合計含有量に対する(メタ)アクリル酸エステル由来の構成単位の含有量の質量比率が0.3~2.5であるアルカリ可溶性樹脂を含む、請求項4に記載の転写フィルム。 The photosensitive layer is made of an alkali whose mass ratio of the content of (meth)acrylic acid ester-derived structural units to the total content of styrene-derived structural units and styrene derivative-derived structural units is 0.3 to 2.5. The transfer film according to claim 4, comprising a soluble resin.
  14.  前記転写層は、水の含有量が、前記転写層の全量に対して0.1質量%以上である、請求項1又は請求項2に記載の転写フィルム。 The transfer film according to claim 1 or 2, wherein the transfer layer has a water content of 0.1% by mass or more based on the total amount of the transfer layer.
  15.  前記感光性層は、水の含有量が、前記感光性層の全量に対して0.1質量%以上である、請求項4に記載の転写フィルム。 The transfer film according to claim 4, wherein the photosensitive layer has a water content of 0.1% by mass or more based on the total amount of the photosensitive layer.
  16.  前記転写層は、鉄原子の含有量が、前記転写層の全量に対して質量基準で0.01ppm~10.0ppmである、請求項1又は請求項2に記載の転写フィルム。 The transfer film according to claim 1 or 2, wherein the transfer layer has an iron atom content of 0.01 ppm to 10.0 ppm on a mass basis based on the total amount of the transfer layer.
  17.  前記感光性層は、鉄原子の含有量が、前記感光性層の全量に対して質量基準で0.01ppm~10.0ppmである、請求項4に記載の転写フィルム。 The transfer film according to claim 4, wherein the photosensitive layer has an iron atom content of 0.01 ppm to 10.0 ppm on a mass basis based on the total amount of the photosensitive layer.
  18.  仮支持体と、前記仮支持体上に配置された転写層と、を含む転写フィルムを準備する工程と、
     前記転写フィルムと基板とを、前記転写フィルムにおける前記仮支持体の表面とは反対側の表面が前記基板と接するように貼り合わせる工程と、
     前記仮支持体を剥離して、積層体を得る工程と、
     前記積層体に対して、パターン状に露光する工程と、
     前記露光後の積層体を現像してパターンを形成する工程と、を含み、
     前記仮支持体は、熱変形率が1.0%以下である、パターンの形成方法。
    preparing a transfer film including a temporary support and a transfer layer disposed on the temporary support;
    bonding the transfer film and the substrate so that the surface of the transfer film opposite to the surface of the temporary support is in contact with the substrate;
    Peeling off the temporary support to obtain a laminate;
    a step of exposing the laminate to light in a pattern;
    Developing the exposed laminate to form a pattern,
    The method for forming a pattern, wherein the temporary support has a thermal deformation rate of 1.0% or less.
  19.  仮支持体と、前記仮支持体上に配置された転写層と、を含む転写フィルムを準備する工程と、
     前記転写フィルムと基板とを、前記転写フィルムにおける前記仮支持体の表面とは反対側の表面が前記基板と接するように貼り合わせる工程と、
     前記仮支持体を剥離して、積層体を得る工程と、
     前記積層体に対して、パターン状に露光する工程と、
     前記露光後の積層体を現像してパターンを形成する工程と、
     前記基板の、前記パターンが配置されていない領域にめっき処理する工程と、
     前記パターンを剥離する工程と、を含み、
     前記仮支持体は、熱変形率が1.0%以下である、回路配線の製造方法。
    preparing a transfer film including a temporary support and a transfer layer disposed on the temporary support;
    bonding the transfer film and the substrate so that the surface of the transfer film opposite to the surface of the temporary support is in contact with the substrate;
    Peeling off the temporary support to obtain a laminate;
    a step of exposing the laminate to light in a pattern;
    Developing the exposed laminate to form a pattern;
    plating an area of the substrate where the pattern is not arranged;
    peeling off the pattern;
    The method for manufacturing circuit wiring, wherein the temporary support has a thermal deformation rate of 1.0% or less.
PCT/JP2023/018834 2022-06-30 2023-05-19 Transfer film, pattern forming method, and circuit wiring manufacturing method WO2024004430A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-106641 2022-06-30
JP2022106641 2022-06-30
JP2023-000740 2023-01-05
JP2023000740 2023-01-05

Publications (1)

Publication Number Publication Date
WO2024004430A1 true WO2024004430A1 (en) 2024-01-04

Family

ID=89381989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018834 WO2024004430A1 (en) 2022-06-30 2023-05-19 Transfer film, pattern forming method, and circuit wiring manufacturing method

Country Status (2)

Country Link
TW (1) TW202402530A (en)
WO (1) WO2024004430A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207425A (en) * 2002-12-25 2004-07-22 Panac Co Ltd Conductive layer transfer sheet for printed wiring excellent in heat-resistant shrinkage characteristics
WO2019074112A1 (en) * 2017-10-13 2019-04-18 富士フイルム株式会社 Method for producing circuit wiring line, method for producing touch panel, and method for producing substrate having pattern
KR102127757B1 (en) * 2020-01-28 2020-06-29 와이엠티 주식회사 Multi-layer structure for manufacturing circuit board and manufacturing method of circuit board
WO2020194948A1 (en) * 2019-03-28 2020-10-01 富士フイルム株式会社 Conductive transfer material, method for producing conductive pattern, multilayer body, touch panel and liquid crystal display device
WO2021065317A1 (en) * 2019-09-30 2021-04-08 富士フイルム株式会社 Transfer film, method for producing laminate, laminate, touch panel sensor, and touch panel
WO2022092160A1 (en) * 2020-10-30 2022-05-05 富士フイルム株式会社 Method for manufacturing laminate, method for manufacturing circuit wiring substrate, and transfer film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207425A (en) * 2002-12-25 2004-07-22 Panac Co Ltd Conductive layer transfer sheet for printed wiring excellent in heat-resistant shrinkage characteristics
WO2019074112A1 (en) * 2017-10-13 2019-04-18 富士フイルム株式会社 Method for producing circuit wiring line, method for producing touch panel, and method for producing substrate having pattern
WO2020194948A1 (en) * 2019-03-28 2020-10-01 富士フイルム株式会社 Conductive transfer material, method for producing conductive pattern, multilayer body, touch panel and liquid crystal display device
WO2021065317A1 (en) * 2019-09-30 2021-04-08 富士フイルム株式会社 Transfer film, method for producing laminate, laminate, touch panel sensor, and touch panel
KR102127757B1 (en) * 2020-01-28 2020-06-29 와이엠티 주식회사 Multi-layer structure for manufacturing circuit board and manufacturing method of circuit board
WO2022092160A1 (en) * 2020-10-30 2022-05-05 富士フイルム株式会社 Method for manufacturing laminate, method for manufacturing circuit wiring substrate, and transfer film

Also Published As

Publication number Publication date
TW202402530A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP7342246B2 (en) Photosensitive transfer material, resin pattern manufacturing method, circuit wiring manufacturing method, and touch panel manufacturing method
JP7455954B2 (en) Photosensitive transfer material and method for manufacturing circuit wiring
WO2021199542A1 (en) Light-sensitive transfer material, method for manufacturing resin pattern, and method for manufacturing circuit wiring
WO2024004430A1 (en) Transfer film, pattern forming method, and circuit wiring manufacturing method
WO2023182092A1 (en) Transfer film, laminate, method for producing laminate having resist pattern, and method for producing laminate having conductor pattern
WO2022181485A1 (en) Method for manufacturing laminate and method for manufacturing circuit wiring
WO2022138154A1 (en) Method for manufacturing laminate, method for manufacturing circuit wiring, and transfer film
WO2021220980A1 (en) Photosensitive transfer material, method for producing resin pattern, method for producing circuit wiring, and method for producing touch panel
WO2022138493A1 (en) Method for manufacturing laminate, method for manufacturing circuit wiring, and transfer film
JP7321388B2 (en) Information giving method, resin pattern manufacturing method, circuit wiring manufacturing method, and touch panel manufacturing method
WO2022181611A1 (en) Production method for laminate having conductor pattern
WO2022181455A1 (en) Transfer film, and method for manufacturing conductor pattern
WO2023145156A1 (en) Transfer film and method for forming conductor pattern
WO2022181456A1 (en) Transfer film and method for manufacturing conductor pattern
WO2023100553A1 (en) Transfer film, laminate having conductor pattern, method for producing laminate having conductor pattern, and method for producing transfer film
WO2022138468A1 (en) Transfer material and method for producing laminated body
WO2023119998A1 (en) Method for producing laminate having conductor pattern, photosensitive composition, and transfer film
WO2022181539A1 (en) Method for manufacturing laminate having conductor pattern
WO2022138576A1 (en) Photosensitive transfer material, method for producing resin pattern, method for producing circuit wiring line, method for producing electronic device, and method for producing multilayer body
TW202311871A (en) Method for producing laminate having a conductive pattern, transfer film
TW202311049A (en) Transfer film, method for producing laminate having conductor pattern
TW202311872A (en) Method for producing laminate having conductor pattern, transfer film
TW202307026A (en) Transfer film, method for manufacturing laminate having a conductive pattern
JP2023035807A (en) Method for producing laminate having conductive pattern and transfer film
JP2023020993A (en) Method for manufacturing laminate including transparent conductive pattern, and, method for manufacturing touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830882

Country of ref document: EP

Kind code of ref document: A1