WO2021032384A1 - Procede de preparation de fibres de cellulose fonctionnalisees - Google Patents

Procede de preparation de fibres de cellulose fonctionnalisees Download PDF

Info

Publication number
WO2021032384A1
WO2021032384A1 PCT/EP2020/070432 EP2020070432W WO2021032384A1 WO 2021032384 A1 WO2021032384 A1 WO 2021032384A1 EP 2020070432 W EP2020070432 W EP 2020070432W WO 2021032384 A1 WO2021032384 A1 WO 2021032384A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose fibers
composition
hydrophobic
advantageously
agent
Prior art date
Application number
PCT/EP2020/070432
Other languages
English (en)
Inventor
Seema SAINI
Original Assignee
Kadant Lamort
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kadant Lamort filed Critical Kadant Lamort
Publication of WO2021032384A1 publication Critical patent/WO2021032384A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/14Carboxylic acids; Derivatives thereof
    • D21H17/15Polycarboxylic acids, e.g. maleic acid
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/17Ketenes, e.g. ketene dimers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/18Non-macromolecular organic compounds containing elements other than carbon and hydrogen only forming new compounds in situ, e.g. within the pulp or paper, by chemical reaction with itself, or other added substances, e.g. by grafting on the fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/12Coatings without pigments applied as a solution using water as the only solvent, e.g. in the presence of acid or alkaline compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents

Definitions

  • the present invention relates to a process for preparing cellulose fibers functionalized with a hydrophobic agent but also to a process for preparing a film based on these functionalized fibers.
  • the field of use of the present invention relates in particular to the paper or cardboard industry to provide hydrophobic properties and, optionally, barrier properties to sheets of paper or cardboard.
  • the substrate can be subjected to a hydrophobic treatment, in particular by depositing a hydrophobic composition.
  • a hydrophobic treatment in particular by depositing a hydrophobic composition.
  • Document US 5,407,537 describes a papermaking process using a sizing agent.
  • the main objective of this process is to control the size of the sizing agent and to reduce its contact time with water.
  • the sizing agent reacts with the cellulose as the sheet of paper dries.
  • Another option consists in modifying, upstream, the nature of the substrate. This involves, for example, processing cellulose fibers before forming a sheet of paper. For example, it can be the modification of cellulose fibers with an organic compound of AKD type. However, since AKD is not soluble in water, this embodiment requires the use of organic solvents.
  • the present invention overcomes this problem by means of an aqueous process which does not require the use of solvents such as toluene or tetrahydrofuran.
  • the present invention relates to the functionalization of cellulose fibers as well as their use for preparing a hydrophobic film.
  • the present invention can be implemented on cellulose fibers but also on NFCs and / or MFCs.
  • NFC and MFC respectively denote cellulose nanofibrils and cellulose microfibrils.
  • Cellulose fibers include layers of microfibrils (MFCs), typically tens or hundreds of microfibrils (but generally less than 500 microfibrils) arranged in layers linked together by lignin and / or hemicellulose.
  • MFCs microfibrils
  • Microfibrils are generally aggregates of fibrils or nanofibrils (NFCs), often less than 60 fibrils or NFCs.
  • NFCs nanofibrils
  • Nanofibrils or primary fibrils result from the fibrillation of microfibrils. They are made up of cellulose macromolecules which are connected by hydrogen bonds. Documents WO 2010/112519 and WO 2010/115785 illustrate the general knowledge of those skilled in the art and in particular the formation of nanofibrils.
  • fiber properties such as size (length, diameter, thickness) can be obtained using conventional methods and instruments, such as the MorFi Fiber Morphology Analyzer.
  • MFCs have a length of a few nanometers to hundreds of micrometers, preferably from 10 to 200 micrometers, while NFCs have a length which can vary from 50 to 2000 nanometers (see Chamberlain D., Paper Technology Summer 2017 Micro- and Nano-Cellulose Materials - An OverView).
  • the thickness of the NFCs is advantageously between 5 and 50 nanometers.
  • the process for preparing functionalized cellulose fibers according to the invention comprises the following steps: a / preparation of a composition C1 comprising water and cellulose fibers, b / preparation of a composition C2 comprising water , a hydrophobic agent and a dispersing agent, c / preparation of a composition C3 by mixing the compositions C1 and C2 at a temperature T3 greater than or equal to the melting point of the hydrophobic agent, d V functionalization of the functionalized cellulose fibers, by reaction between the cellulose fibers and the hydrophobic agent, in the presence of the dispersing agent, at a temperature T4 greater than or equal to the melting point of the hydrophobic agent.
  • step b / can be carried out before step a /.
  • the percentages are percentages by mass expressed relative to the mass of the composition of the step concerned or relative to the mass of the hydrophobic film (step ee / below).
  • Composition C1 can result from a process for preparing cellulose fibers, for example from NFC and / or MFC. It can also be prepared by adding cellulose fibers, for example NFC and / or MFC, in water.
  • the cellulose fibers are NFCs and / or MFCs.
  • Composition C1 has a percentage by weight of cellulose fibers advantageously between 0.1 and 45, more advantageously between 3 and 20, and even more advantageously between 3 and 10, relative to the weight of composition C1.
  • composition C1 has a dry extract of between 0.1% and 45%, more advantageously between 3% and 20%, and even more advantageously between 3% and 10%, by mass relative to the mass of the Composition Cl.
  • the dry extract corresponds to the percentage of dry matter relative to the mass of composition Cl. It may differ from the percentage by mass of cellulose fibers insofar as composition C1 can comprise additives such as mineral fillers ( see the paragraphs concerning step c /).
  • composition C1 is advantageously carried out at a temperature T1 of between 10 and 99 ° C, more advantageously between 25 and 70 ° C.
  • Tl can optionally be greater than 99 ° C., in particular when composition C1 is prepared in a closed medium, for example in a reactor.
  • Composition C2 is advantageously prepared by adding at least one hydrophobic agent and at least one dispersing agent in water.
  • hydrophobic agent advantageously between 1 and 50, more advantageously between 10 and 30, and even more advantageously between 10 and 15 relative to the weight of composition C2.
  • the hydrophobic agent is a sizing agent. It is advantageously chosen from the group comprising AKD (alkyl ketene dimer, from the English "Alkyl Ketene Dimer”), hydrophobic sizing agents based on fatty acid and their derivatives. It may in particular be a hydrophobic agent chosen from hydrophobic sizing agents based on silanes, succinic alkenyl anhydrides, acyl halides (for example acyl chlorides), fatty isocyanates, carboxylic acids. fatty, fatty thiocyanates and fatty anhydrides.
  • AKD is preferably an alkyl ketene dimer, a compound based on the cyclic compound oxetan-2-one (CAS 57-57-8) having a C12-C16 alkyl group in position 3 and a C13-C17 alkylidene group in position 4 .
  • composition C2 also includes at least one dispersing agent. It has a percentage by weight of dispersing agent advantageously between 0.001 and 10, more advantageously between 0.01 and 3, and even more advantageously between 0.1 and 2.
  • the dispersing agent is advantageously chosen from the group comprising cationic starch, cationic polymers, for example cationic polymers of monomers derived from acrylamide, cationic polymers of diallyldimethylammonium halide (in particular DADMAC, that is to say diallyldimethylammonium chloride) and cationic polymers of polyethylenimine.
  • cationic starch for example cationic polymers of monomers derived from acrylamide, cationic polymers of diallyldimethylammonium halide (in particular DADMAC, that is to say diallyldimethylammonium chloride) and cationic polymers of polyethylenimine.
  • the cationic starch may in particular have the CAS number 56780-
  • the dispersing agent is advantageously soluble in water. In other words, 1 part by mass of dispersing agent can be dissolved in 40 parts by mass of water at 90 ° C.
  • Composition C2 is advantageously prepared at a temperature T2 greater than or equal to the melting point of the hydrophobic agent.
  • T2 is between 10 and 99 ° C, more preferably between 25 and 70 ° C.
  • T2 can optionally be greater than 99 ° C., in particular when composition C2 is prepared in a closed medium, for example in a reactor.
  • Composition C3 is prepared by mixing compositions C1 and C2 at temperature T3. It can also be prepared by adding a hydrophobic agent and a dispersing agent to composition C1. It can also be prepared by adding cellulose fibers (for example NFCs and / or MFCs) to composition C2.
  • Composition C3 therefore comprises (advantageously consists of) water, cellulose fibers, at least one hydrophobic agent and at least one dispersing agent.
  • Composition C3 can be prepared in an open medium or in a closed medium, for example in a reactor.
  • T3 is between 25 and 170 ° C, more preferably between 25 and 90 ° C.
  • the functionalization step d / it is possible for the functionalization step d / to take place, at least partially, during the mixing step c /.
  • high temperatures promote the reaction between AKD and the cellulose of the fibers.
  • This step has a duration advantageously between 0.1 minute (6 seconds) and 120 minutes, more advantageously 0.1 minute to 180 minutes, and even more advantageously between 1 minute and 30 minutes.
  • Composition C3 has a percentage by mass of cellulose fibers (for example NFCs and / or MFCs) advantageously between 0.05 and 20, more advantageously between 1 and 15, and even more advantageously between 2 and 8.
  • cellulose fibers for example NFCs and / or MFCs
  • hydrophobic agent advantageously between 0.1 and 40, more advantageously between 1 and 30, and even more advantageously between 5 and 20.
  • composition C3 can also comprise at least one additive, for example mineral fillers (in particular CaCCh, TiCh, kaolin, etc.), organic fillers, pigments, etc.
  • the additives can be added. in composition C1 and / or in composition C2 and / or in composition C3.
  • the additives can also come from the fibers used during the preparation of composition C1, in particular when the fibers come from the recycling of paper and / or cardboard.
  • cellulose fibers for example NFCs and / or MFCs obtained from recycling channels generally comprise mineral fillers.
  • the amount of additive (s) advantageously represents 1 to 50% by weight of composition C3, more advantageously 3 to 25%.
  • composition C3 has a dry extract of between 1% and 30%, more advantageously between 3% and 8%, by weight relative to the weight of composition C3.
  • the dry extract corresponds to the percentage by mass of dry matter relative to the mass of composition C3.
  • Step d / consists of functionalizing the cellulose fibers, for example NFCs and / or MFCs, by reaction between the cellulose fibers and the hydrophobic agent, in the presence of the dispersing agent, at a temperature T4.
  • the functionalization can be carried out under pressure.
  • This pressure advantageously corresponds to the pressure generated by the increase in temperature in a closed environment.
  • Functionalization can be carried out in the absence of sodium bicarbonate.
  • the fibers can be fully or partially functionalized at the end of step d /.
  • the functionalization conditions can in particular include the duration of step d / and / or the temperature T4 and / or the hydrophobic agent / fibers mass ratio.
  • the functionalization can be of the order of 100%.
  • cellulose fibers and the dispersing agent are generally not linked by covalent bonds.
  • the dispersing agent generally forms ionic / electrostatic interactions with the hydrophobic agent making it possible to form a suspension in water.
  • the dispersing agent forms ionic bonds, for example of the van der Waals type or hydrogen bonds. Functionalization therefore does not correspond to a modification of the fibers. This is because the modification of fibers corresponds to the presence of interactions between the fibers and the modifying agent, without the fibers and the modifying agent being linked by covalent bonds.
  • T4 is greater than or equal to the melting point of the hydrophobic agent. It can be equal to or greater than T3.
  • T4 is between 60 ° C and 200 ° C, more advantageously between 100 ° C and 200 ° C, and even more advantageously between 120 and 170 ° C.
  • T4 can in particular be between 125 and 170 ° C.
  • the temperatures T3 and T4 are adjusted so as to be greater than or equal to the melting point of the mixture of hydrophobic agents.
  • the functionalization reaction has a duration advantageously between 0.1 minute (6 seconds) and 60 minutes, more advantageously between 0.5 minute (30 seconds) and 5 minutes.
  • Steps c / and d / are advantageously carried out simultaneously, in particular when T3 and T4 are equal.
  • steps a / to d / do not use an organic solvent.
  • water is the only fluid used in this process.
  • the absence of organic solvent makes it possible to limit the modification of the internal structure of the fibers.
  • the fibers swell, which causes the individualization of the primary fibrils and therefore internal modifications.
  • this phenomenon is limited, or even eliminated (FIG. 1), which makes it possible to preserve, at least partially, the crystallinity of the fibers.
  • the functionalized cellulose fibers can be concentrated or isolated by partial or total elimination of the water present at the end of step d /.
  • the present invention further relates to a process for preparing a hydrophobic film from functionalized cellulose fibers.
  • This process comprises the following steps: aa / preparation of a composition C1 comprising water and cellulose fibers, bb / preparation of a composition C2 comprising water, a hydrophobic agent and a dispersing agent, cc / preparation of a composition C3 by mixing compositions C1 and C2 at a temperature T3 greater than or equal to the melting point of the hydrophobic agent, dd / functionalization of the cellulose fibers by reaction between the cellulose fibers and the hydrophobic agent, in the presence of the dispersing agent, at a temperature T4 greater than or equal to the melting point of the hydrophobic agent, ee / formation, on a substrate, of a hydrophobic film based on cellulose fibers previously functionalized.
  • Steps aa / to dd / are identical to steps a / to d / described above. In fact, only step ee / distinguishes the preparation of the hydrophobic film on a substrate from the process for preparing functionalized cellulose fibers. Step ee /
  • This step consists in depositing the functionalized cellulose fibers on a substrate so as to form a hydrophobic film.
  • the functionalization can be partial.
  • the film in step ee /, can also comprise non-functionalized cellulose fibers. These can result from the partial functionalization of the cellulose fibers or from the additional supply of cellulose fibers not resulting from step dd /.
  • the formation of the hydrophobic film can be carried out by a technique chosen from coating, in particular bar coating, curtain coating, size-press coating, spraying, by deposition on a canvas.
  • the functionalization reaction (step dd /) is carried out prior to the formation of the film (step ee /).
  • the functionalization reaction (step dd /) and the formation of the film (step ee /) can be carried out simultaneously, for example by spraying the composition C3 on a substrate.
  • This embodiment is also suitable for spraying composition C4 when the functionalization is partial.
  • Functionalization can also be carried out during a step of drying the substrate on which the functionalized cellulose fibers have been deposited. This may in particular be the case when the formation of the hydrophobic film is carried out on a sheet of paper or cardboard being formed.
  • the hydrophobic film is advantageously formed directly on a substrate capable of forming bonds with the functionalized cellulose fibers.
  • This substrate is advantageously chosen from a sheet of paper, a sheet of cardboard, plastic films (for example polycaprolactone or polylactic acid or thermoplastic starch films, etc.) and protein-based films. It can also be a substrate of plant or composite origin, advantageously a panel of wood particles (chipboard).
  • the substrate can be dry, damp or wet.
  • the hydrophobic film can be formed on a paper, or a cardboard, already formed or in the process of being formed, for example at the level of the wet end of a paper machine.
  • the term “wet substrate” denotes a substrate comprising 85% or less, by mass, of water, preferably at least 50%.
  • the method comprises a drying step following the deposition of the functionalized cellulose fibers.
  • the hydrophobic film can be formed on a substrate made of glass or of silicone or of polyethylene fluoride (Teflon®). Thus, the film can be recovered and handled independently of the substrate.
  • Step ee / is advantageously carried out at a temperature T5 of between 105 ° C and 180 ° C, more advantageously between 105 ° C and 150 ° C. This temperature allows the drying of the deposited cellulose fibers and, where appropriate, the drying of the substrate on which the deposit is made.
  • the temperatures T1 to T5 can be identical.
  • the process can be carried out continuously.
  • composition of the hydrophobic film is identical to composition C3, except for the presence of water.
  • steps aa / to ee / do not use an organic solvent.
  • water is the only fluid used in this process.
  • This hydrophobic film therefore comprises cellulose fibers functionalized with a hydrophobic agent and with a dispersing agent, the cellulose fibers being advantageously in the form of NFC and / or MFC.
  • the hydrophobicity of this film can be measured by the angle formed by a drop of static water deposited on the film.
  • This contact angle is advantageously between 70 ° and 150 °, more advantageously between 90 ° and 120 °.
  • this drop of water advantageously has a rolling angle of less than 20 °. This rolling angle corresponds to the angle of inclination of the film necessary for the drop to roll.
  • the contact angle and the rolling angle are measured in a conventional manner, typically by depositing a 50 ⁇ L drop of deionized water on the hydrophobic film according to the invention, at 25 ° C.
  • Figure 2 illustrates the contact angle being measured.
  • the hydrophobic film obtained according to the invention has a homogeneous composition, the film not exhibiting a gradient in terms of functionalization.
  • the hydrophobic film has a percentage by weight of hydrophobic agent advantageously between 0.01 and 25, more preferably between 0.01 and 15, relative to the mass of cellulose fibers of the hydrophobic film. This percentage can be between 0.01 and 0.8, in particular between 0.1 and 0.5. In other words, per 100 grams of cellulose fibers, the film advantageously comprises between 0.01 and 25 grams of hydrophobic agent.
  • the hydrophobic film has a percentage by weight of dispersing agent advantageously between 0.1 and 50, more preferably between 0.1 and 25, relative to the mass of hydrophobic agent of the hydrophobic film. In other words, per 100 grams of hydrophobic agent, the film advantageously comprises between 0.1 and 50 grams of hydrophobic agent.
  • the hydrophobic film has a basis weight advantageously between 1 and 10 g / m 2 , more advantageously between 1 and 5 g / m 2 .
  • the hydrophobic film can also comprise at least one additive, for example mineral fillers (in particular CaCCh, TiCh, kaolin, etc.), organic fillers, pigments, etc.
  • mineral fillers in particular CaCCh, TiCh, kaolin, etc.
  • organic fillers organic fillers, pigments, etc.
  • the hydrophobic film can be formed by depositing the composition C4 of functionalized cellulose fibers on a substrate. This deposit is advantageously followed by a drying step. Step dd / is then carried out before depositing the cellulose fibers on the substrate.
  • the hydrophobic film can also be formed by depositing composition C3 on a substrate. In this case, the composition C3 can be deposited at the temperature T4 (for example by spraying) during the deposition and / or it can be deposited on a substrate being at the temperature T4. Step dd / is then carried out before and / or after the deposition of the cellulose fibers on the substrate.
  • the hydrophobic film can also be formed by depositing composition C3 on a substrate. This deposit is then heated to temperature T4. Step dd / is then carried out after depositing the cellulose fibers on the substrate.
  • the hydrophobic film can also be formed, then associated with a substrate, for example a sheet of paper or cardboard. This is particularly the case when the hydrophobic film is formed on a canvas or on a support made of glass, silicone or polyethylene fluoride.
  • the drying carried out after the deposition of the cellulose fibers (C3 or C4) is advantageously carried out at a temperature between 100 ° C and 200 ° C, more advantageously between 120 ° C and 170 ° C.
  • the hydrophobic film according to the invention can be used in many fields. For example, it can be used to form a water barrier layer against oils, gases including oxygen, and VOCs (volatile organic compounds).
  • FIG. 1 illustrates the functionalization of cellulose fibers in an organic medium and, according to the invention, in an aqueous medium.
  • FIG. 2 illustrates the contact angle between a drop of water and the substrate on which it is deposited.
  • a hydrophobic film of 1 g / m 2 was prepared and deposited on a substrate according to the following steps: aa / preparation of a composition C1 comprising 97 mL of water and 3 grams of cellulose fibers in the form of MFC, bb / preparation of a composition C2 comprising 2.9 mL of water, 0.3 gram of AKD and 0.1 gram of cationic starch, cc / preparation of a composition C3 by mixing compositions C1 and C2 to 70 ° C, dd / functionalization of cellulose fibers by reaction between cellulose fibers and AKD, in the presence of cationic starch, at 70 ° C, ee / formation, by spraying, of a hydrophobic film on a sheet of dry paper.
  • the film thus obtained has a contact angle with water of the order of 80 °.
  • this film makes it possible to reduce the Cobb water absorption value from 38 g / m 2 to 10 g / m 2, confirming the hydrophobic properties of the film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Paper (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

La présente invention concerne un procédé de préparation de fibres de cellulose fonctionnalisées, le procédé comprenant les étapes suivantes : a/ préparation d'une composition C1 comprenant de l'eau et des fibres de cellulose, b/ préparation d'une composition C2 comprenant de l'eau, un agent hydrophobe et un agent dispersant, c/ préparation d'une composition C3 en mélangeant les compositions C1 et C2 à une température T3 supérieure ou égale au point de fusion de l'agent hydrophobe, d/ fonctionnalisation des fibres de celluloses, par réaction entre les fibres de celluloses et l'agent hydrophobe, en présence de l'agent dispersant, à une température T4 supérieure ou égale au point de fusion de l'agent hydrophobe. La présente invention concerne également un procédé de préparation d'un film hydrophobe à partir de ces fibres de cellulose fonctionnalisées.

Description

PROCEDE DE PREPARATION DE FIBRES DE CELLULOSE FONCTIONNALISEES
DOMAINE DE L’INVENTION
La présente invention concerne un procédé de préparation de fibres de cellulose fonctionnalisées avec un agent hydrophobe mais aussi un procédé de préparation d’un film à base de ces fibres fonctionnalisées.
Le domaine d’utilisation de la présente invention concerne notamment l’industrie du papier ou du carton pour apporter des propriétés hydrophobes et, éventuellement, des propriétés barrière aux feuilles de papier ou de carton.
ETAT ANTERIEUR DE LA TECHNIQUE
De nombreuses applications nécessitent de modifier les propriétés d’un substrat, par exemple en le rendant hydrophobe.
Pour cela, le substrat peut être soumis à un traitement hydrophobe, notamment par dépôt d’une composition hydrophobe. Ce mode opératoire peut ainsi permettre de déposer un polymère hydrophobe ou des agents hydrophobes spécifiques.
Le document US 5,407,537 décrit un procédé de fabrication du papier mettant en œuvre un agent d’encollage. Ce procédé a notamment pour objectif de contrôler la taille de l’agent d’encollage et de diminuer son temps de contact avec l’eau. L’agent d’encollage réagit avec la cellulose lors du séchage de la feuille de papier.
La publication de Lepetit et al. (Cellulose, 2017, 24, pages 4303-4312) décrit un procédé d’acylation de microfibrilles de cellulose, la réaction étant initiée par évaporation de l’eau et en l’absence d’additif de type agent dispersant. Le document CN 103302708 décrit un procédé permettant de rendre le bois hydrophobe par injection d’une composition au sein du bois préalablement placé sous vide.
Une autre option consiste à modifier, en amont, la nature du substrat. Il s’agit, par exemple, de traiter des fibres de cellulose avant la formation d’une feuille de papier. A titre d’exemple, il peut s’agir de la modification de fibres de cellulose avec un composé organique de type AKD. Cependant, l’AKD n’étant pas soluble dans l’eau, ce mode de réalisation requiert l’utilisation de solvants organiques.
Or, l’utilisation d’un solvant organique à l’échelle industrielle est problématique, notamment dans l’industrie du papier, notamment en raison de leur toxicité.
La présente invention permet de remédier à ce problème grâce à un procédé en voie aqueuse ne nécessitant pas l’utilisation de solvants tels que le toluène ou le tétrahy drofurane .
EXPOSE DE L’INVENTION
La présente invention concerne la fonctionnalisation de fibres de cellulose ainsi que leur utilisation pour préparer un film hydrophobe.
La présente invention peut être mise en œuvre sur des fibres de cellulose mais également sur des NFC et/ou des MFC.
De manière générale, les termes NFC et MFC désignent respectivement des nanofibrilles de cellulose et des microfibrilles de cellulose.
Les fibres de cellulose comprennent des couches de microfibrilles (MFC), en général des dizaines ou des centaines de microfibrilles (mais généralement moins de 500 microfibrilles) agencées en couches liées entre elles par la lignine et/ou l’hémicellulose. Les microfibrilles sont généralement des agrégats de fibrilles ou nanofibrilles (NFC), souvent moins de 60 fibrilles ou NFC. Les documents WO 2014/091212 et WO 2010/131016 illustrent les connaissances générales de l’homme du métier et notamment la formation de microfibrilles.
Les nanofibrilles ou fibrilles primaires résultent de la fibrillation des microfibrilles. Elles sont composées de macromolécules de cellulose qui sont connectées par des liaisons hydrogène. Les documents WO 2010/112519 et WO 2010/115785 illustrent les connaissances générales de l’homme du métier et notamment la formation de nanofibrilles.
Typiquement, les propriétés des fibres (NFC ou MFC) comme la taille (longueur, diamètre, épaisseur) peuvent être obtenues selon les méthodes et les instruments conventionnels, par exemple l’analyseur de morphologie des fibres MorFi.
En général, les MFC présentent une longueur de quelques nanomètres à des centaines de micromètres, avantageusement de 10 à 200 micromètres alors que les NFC présentent une longueur pouvant varier de 50 à 2000 nanomètres (voir Chamberlain D., Paper Technology Summer 2017 Micro- and Nano-Cellulose Materials - An OverView). L’épaisseur des NFC est avantageusement comprise entre 5 et 50 nanomètres.
Préparation de fibres de cellulose fonctionnalisées
Le procédé de préparation de fibres de cellulose fonctionnalisées selon l’invention comprend les étapes suivantes : a/ préparation d’une composition Cl comprenant de l’eau et des fibres de cellulose, b/ préparation d’une composition C2 comprenant de l’eau, un agent hydrophobe et un agent dispersant, c/ préparation d’une composition C3 en mélangeant les compositions Cl et C2 à une température T3 supérieure ou égale au point de fusion de l’agent hydrophobe, d V fonctionnalisation des fibres de cellulose fonctionnalisées, par réaction entre les fibres de celluloses et l’agent hydrophobe, en présence de l’agent dispersant, à une température T4 supérieure ou égale au point de fusion de l’agent hydrophobe. Bien entendu, l’étape b/ peut être réalisée avant l’étape a/.
Sauf indication contraire, les pourcentages sont des pourcentages massiques exprimés par rapport à la masse de la composition de l’étape concernée ou par rapport à la masse du film hydrophobe (étape ee/ ci-après).
Etaye a/
La composition Cl peut résulter d’un procédé de préparation fibres de cellulose, par exemple de NFC et/ou de MFC. Elle peut également être préparée par addition de fibres de cellulose, par exemple des NFC et/ou de MFC, dans de l’eau.
De manière avantageuse, les fibres de cellulose sont des NFC et/ou des MFC.
La composition Cl présente un pourcentage massique en fibres de cellulose avantageusement compris entre 0,1 et 45, plus avantageusement entre 3 et 20, et encore plus avantageusement entre 3 et 10, par rapport à la masse de la composition Cl.
De manière avantageuse, la composition Cl présente un extrait sec compris entre 0,1 % et 45 %, plus avantageusement entre 3 % et 20 %, et encore plus avantageusement entre 3 % et 10 %, en masse par rapport à la masse de la composition Cl. L’extrait sec correspond au pourcentage de matière sèche par rapport à la masse de la composition Cl. Il peut différer du pourcentage massique de fibres de cellulose dans la mesure où la composition Cl peut comprendre des additifs tels que des charges minérales (voir les paragraphes concernant l’étape c/).
La préparation de la composition Cl est avantageusement réalisée à une température Tl comprise entre 10 et 99°C, plus avantageusement entre 25 et 70°C. Tl peut éventuellement être supérieure à 99°C, notamment lorsque la composition Cl est préparée en milieu fermé, par exemple dans un réacteur. Etape b/
La composition C2 est avantageusement préparée par addition d’au moins un agent hydrophobe et d’au moins un agent dispersant dans de l’eau.
Elle présente un pourcentage massique en agent hydrophobe avantageusement compris entre 1 et 50, plus avantageusement entre 10 et 30, et encore plus avantageusement entre 10 et 15 par rapport à la masse de la composition C2.
De manière avantageuse, l’agent hydrophobe est un agent de collage. Il est avantageusement choisi dans le groupe comprenant l’AKD (dimère d’alkylcétène, de l’anglais « Alkyl Ketene Dimer »), les agents de collage hydrophobes à base d’acide gras et leurs dérivés. Il peut notamment s’agir d’un agent hydrophobe choisi parmi les agents de collage hydrophobes à base de silanes, les alcényles succiniques anhydrides, les halogénures d’acyle (par exemple les chlorures d’acyle), les isocyanates gras, les acides carboxyliques gras, les thiocyanates gras et les anhydrides gras.
L’AKD est préférentiellement un dimère d’alkylcétène un composé basé sur le composé cyclique oxétan-2-one (CAS 57-57-8) ayant un groupement alkyle C12-C16 en position 3 et un groupement alkylidène C13-C17 en position 4.
Outre de l’eau et un agent hydrophobe, la composition C2 comprend également au moins un agent dispersant. Elle présente un pourcentage massique en agent dispersant avantageusement compris entre 0,001 et 10, plus avantageusement entre 0,01 et 3, et encore plus avantageusement entre 0,1 et 2.
L’agent dispersant est avantageusement choisi dans le groupe comprenant l’amidon cationique, les polymères cationiques par exemples les polymères cationiques de monomères dérivés d’acrylamide, les polymères cationiques d’halogénure de diallyldiméthylammonium (notamment le DADMAC c’est-à-dire le chlorure de diallyldiméthylammonium) et les polymères cationiques de polyéthylènimine.
A titre d’exemple, l’amidon cationique peut notamment avoir le numéros CAS 56780- L’agent dispersant est avantageusement soluble dans l’eau. En d’autres termes, 1 part en masse d’agent dispersant peut être dissous dans 40 parts en masse d’eau à 90°C.
La composition C2 est avantageusement préparée à une température T2 supérieure ou égale au point de fusion de l’agent hydrophobe.
De manière avantageuse, T2 est comprise entre 10 et 99°C, plus avantageusement entre 25 et 70°C. L’homme du métier saura ajuster la température T2 en fonction de la nature et, éventuellement de la quantité, de l’agent hydrophobe. T2 peut éventuellement être supérieure à 99°C, notamment lorsque la composition C2 est préparée en milieu fermé, par exemple dans un réacteur.
Etape c/
La composition C3 est préparée en mélangeant les compositions Cl et C2 à la température T3. Elle peut également être préparée par addition d’un agent hydrophobe et d’un agent dispersant dans la composition Cl. Elle peut aussi être préparée par addition des fibres de cellulose (par exemples des NFC et/ou des MFC) dans la composition C2.
La composition C3 comprend (est avantageusement constituée de) donc de l’eau, des fibres de cellulose, au moins un agent hydrophobe et au moins un agent dispersant.
La composition C3 peut être préparée en milieu ouvert ou en milieu fermé, par exemple dans un réacteur.
De manière avantageuse, T3 est comprise entre 25 et 170°C, plus avantageusement entre 25 et 90°C. En fonction de la température T3, il est possible que l’étape d / de fonctionnalisation ait lieu, au moins partiellement, lors de l’étape c/ de mélange. En effet, les températures élevées favorisent la réaction entre l’AKD et la cellulose des fibres. Cette étape présente une durée avantageusement comprise entre 0,1 minute (6 secondes) et 120 minutes, plus avantageusement 0,1 minute à 180 minutes, et encore plus avantageusement entre 1 minute et 30 minutes.
La composition C3 présente un pourcentage massique en fibres de cellulose (par exemple des NFC et/ou des MFC) avantageusement compris entre 0,05 et 20, plus avantageusement entre 1 et 15, et encore plus avantageusement entre 2 et 8.
Elle présente un pourcentage massique en agent hydrophobe avantageusement compris entre 0,1 et 40, plus avantageusement entre 1 et 30, et encore plus avantageusement entre 5 et 20.
Elle présente un pourcentage massique en agent dispersant avantageusement compris entre 0,0005 et 5, plus avantageusement entre 0,05 et 5, et encore plus avantageusement entre 0,3 et 1,5.
Selon un mode de réalisation particulier, la composition C3 peut également comprendre au moins un additif, par exemple des charges minérales (en particulier CaCCh, TiCh, kaolin...), des charges organiques, des pigments... Les additifs peuvent être ajoutés dans la composition Cl et/ou dans la composition C2 et/ou dans la composition C3.
Les additifs peuvent également provenir des fibres utilisées lors de la préparation de la composition Cl, notamment lorsque les fibres sont issues du recyclage du papier et/ou du carton. En effet, les fibres de cellulose (par exemple les NFC et/ou les MFC) issues des filières de recyclage comprennent généralement des charges minérales.
La quantité d’additif(s) représente avantageusement 1 à 50 % en masse de la composition C3, plus avantageusement 3 à 25 %.
De manière avantageuse, la composition C3 présente un extrait sec compris entre 1 % et 30 %, plus avantageusement entre 3 % et 8 %, en masse par rapport à la masse de la composition C3. L’extrait sec correspond au pourcentage massique de matière sèche par rapport à la masse de la composition C3. Etape d
L’étape d / consiste à fonctionnaliser les fibres de cellulose, par exemple des NFC et/ou des MFC, par réaction entre les fibres de celluloses et l’agent hydrophobe, en présence de l’agent dispersant, à une température T4.
Elle peut être réalisée en milieu ouvert ou en milieu fermé, par exemple dans un réacteur, ce qui permet de ne pas évaporer l’eau présente. Elle peut donc être réalisée en l’absence d’évaporation de l’eau. Ainsi, la fonctionnalisation peut être réalisée sous pression. Cette pression correspond avantageusement à la pression générée par l’augmentation de la température en milieu clos.
La fonctionnalisation peut être réalisée en l’absence de bicarbonate de sodium.
En fonction des conditions de fonctionnalisation, les fibres peuvent être totalement ou partiellement fonctionnalisées à l’issue de l’étape d/. Les conditions de fonctionnalisation peuvent notamment inclure la durée de l’étape d / et/ou la température T4 et/ou le rapport massique agent hydrophobe / fibres.
Ainsi, selon un mode de réalisation particulier, à l’issue de l’étape d/, la fonctionnalisation peut être de l’ordre de 100 %.
La fonctionnalisation correspond à la formation de liaisons covalentes entre les fibres de cellulose et l’agent hydrophobe. Ces liaisons covalentes sont avantageusement des liaisons ester (-C(=0)0-).
En revanche, les fibres de cellulose et l’agent dispersant ne sont généralement pas liées par des liaisons covalentes. L’agent dispersant forme généralement des interactions ioniques/électrostatiques avec l’agent hydrophobe permettant de former une suspension dans l’eau. Ainsi, l’agent dispersant forme des liaisons ioniques, par exemple de type van der Waals ou des liaisons hydrogène. La fonctionnalisation ne correspond donc pas à une modification des fibres. En effet, la modification de fibres correspond à la présence d’interactions entre les fibres et l’agent modifiant, sans que les fibres et l’agent modifiant ne soient liés par des liaisons covalentes.
Comme déjà indiqué, T4 est supérieure ou égale à la température de fusion de l’agent hydrophobe. Elle peut être égale ou supérieure à T3. De manière avantageuse, T4 est comprise entre 60°C et 200°C, plus avantageusement entre 100°C et 200°C, et encore plus avantageusement entre 120 et 170°C. T4 peut notamment être comprise entre 125 et 170°C.
Lorsque plusieurs agents hydrophobes sont utilisés, les températures T3 et T4 sont ajustées de manière à être supérieures ou égales à la température de fusion du mélange d’agents hydrophobes.
La réaction de fonctionnalisation présente une durée avantageusement comprise entre 0,1 minute (6 secondes) et 60 minutes, plus avantageusement entre 0,5 minute (30 secondes) et 5 minutes.
Les étapes c/ et d / sont avantageusement réalisées simultanément, notamment lorsque T3 et T4 sont égales.
De manière avantageuse, les étapes a / à d / ne mettent pas en œuvre de solvant organique. Préférentiellement, l’eau est le seul fluide utilisé lors de ce procédé.
L’absence de solvant organique permet de limiter la modification de la structure interne des fibres. En effet, lorsqu’elles sont mises en contact avec un solvant organique, les fibres gonflent ce qui engendre l’individualisation des fibrilles primaires et donc des modifications internes. Au contraire, dans la présente invention, ce phénomène est limité, voire supprimé (figure 1), ce qui permet de conserver, au moins partiellement, la cristallinité des fibres. Les fibres de cellulose fonctionnalisées peuvent être concentrées ou isolées par élimination partielle ou totale de l’eau présente à l’issue de l’étape d/.
Préparation d’un film hydrophobe
La présente invention concerne en outre un procédé de préparation d’un film hydrophobe à partir des fibres de cellulose fonctionnalisées. Ce procédé comprend les étapes suivantes : aa/ préparation d’une composition Cl comprenant de l’eau et des fibres de cellulose, bb/ préparation d’une composition C2 comprenant de l’eau, un agent hydrophobe et un agent dispersant, cc/ préparation d’une composition C3 en mélangeant les compositions Cl et C2 à une température T3 supérieure ou égale au point de fusion de l’agent hydrophobe, dd/ fonctionnalisation des fibres de cellulose par réaction entre les fibres de celluloses et l’agent hydrophobe, en présence de l’agent dispersant, à une température T4 supérieure ou égale au point de fusion de l’agent hydrophobe, ee/ formation, sur un substrat, d’un film hydrophobe à base des fibres de cellulose préalablement fonctionnalisées. Etayes aa à dd
Les étapes aa/ à dd/ sont identiques aux étapes a / à d / décrites ci-dessus. En effet, seule l’étape ee/ distingue la préparation du film hydrophobe sur un substrat du procédé de préparation des fibres de cellulose fonctionnalisées. Etape ee/
Cette étape consiste à déposer les fibres fonctionnalisées de cellulose sur un substrat de manière à former un film hydrophobe.
Comme déjà indiqué pour l’étape d/, la fonctionnalisation peut être partielle. Ainsi, dans l’étape ee/, le film peut également comprendre des fibres de cellulose non fonctionnalisées. Celles-ci peuvent résulter de la fonctionnalisation partielle des fibres de cellulose ou de l’apport additionnel de fibres de cellulose ne résultant pas de l’étape dd/. La formation du film hydrophobe peut être réalisée par une technique choisie parmi le couchage, notamment le couchage à la barre, le couchage rideau, le couchage size-press, la pulvérisation, par dépôt sur une toile.
La réaction de fonctionnalisation (étape dd/) est réalisée préalablement à la formation du film (étape ee/). Toutefois, selon un mode de réalisation particulier, la réaction de fonctionnalisation (étape dd/) et la formation du film (étape ee/) peuvent être réalisés simultanément, par exemple par pulvérisation de la composition C3 sur un substrat. Ce mode de réalisation est également adapté à la pulvérisation de la composition C4 lorsque la fonctionnalisation est partielle.
La fonctionnalisation peut également être réalisée lors d’une étape de séchage du substrat sur lequel ont été déposées les fibres de cellulose fonctionnalisées. Cela peut notamment être le cas lorsque la formation du film hydrophobe est réalisé sur une feuille de papier ou de carton en cours de formation.
Le film hydrophobe est avantageusement formé directement sur un substrat pouvant former des liaisons avec les fibres de cellulose fonctionnalisées. Ce substrat est avantageusement choisi parmi une feuille de papier, une feuille de carton, les films plastiques (par exemple les films de polycaprolactone ou d’acide polylactique ou d’amidon thermoplastique...) et les films à base de protéines. Il peut également s’agir d’un substrat d’origine végétale ou composite, avantageusement un panneau de particules de bois (aggloméré).
Le substrat peut être sec, humide ou mouillé. Ainsi, le film hydrophobe peut être formé sur un papier, ou un carton, déjà formé ou en cours de formation, par exemple au niveau de la partie humide (wet end) d’une machine à papier. Par substrat humide, on désigne un substrat comprenant 85 % ou moins, en masse, d’eau, préférentiellement au moins 50%. Lorsque le substrat est humide ou mouillé, le procédé comprend une étape de séchage suivant le dépôt des fibres de cellulose fonctionnalisées. Selon un autre mode de réalisation, le film hydrophobe peut être formé sur un substrat en verre ou en silicone ou en polyfluorure d’éthylène (téflon®). Ainsi, le film peut être récupéré et manipulé indépendamment du substrat.
L’étape ee/ est avantageusement réalisée à une température T5 comprise entre 105°C et 180°C, plus avantageusement entre 105°C et 150°C. Cette température permet le séchage des fibres de cellulose déposées et, le cas échéant, le séchage du substrat sur lequel le dépôt est réalisé.
Selon un mode de réalisation particulier, les températures Tl à T5 peuvent être identiques. Ainsi, le procédé peut être réalisé en continu.
La composition du film hydrophobe est identique à la composition C3, à l’exception de la présence d’eau.
De manière avantageuse, les étapes aa / à ee/ ne mettent pas en œuvre de solvant organique. Préférentiellement, l’eau est le seul fluide utilisé lors de ce procédé.
Ce film hydrophobe comprend donc des fibres de cellulose fonctionnalisées avec un agent hydrophobe et avec un agent dispersant, les fibres de cellulose étant avantageusement sous la forme de NFC et/ou de MFC.
L’hydrophobicité de ce film peut être mesurée grâce à l’angle formé par une goutte d’eau statique déposée sur le film. Cet angle de contact est avantageusement compris entre 70° et 150°, plus avantageusement entre 90° et 120°. En outre, cette goutte d’eau présente avantageusement un angle de roulement de moins de 20°. Cet angle de roulement correspond à l’angle d’inclinaison nécessaire du film pour que la goutte roule.
L’angle de contact et l’angle de roulement sont mesurés de manière conventionnelle, typiquement en déposant une goutte d’eau déionisée de 50 pL sur le film hydrophobe selon l’invention, à 25°C. La figure 2 illustre l’angle de contact étant mesuré. Le film hydrophobe obtenu selon l’invention présente une composition homogène, le film ne présentant pas de gradient en termes de fonctionnalisation.
Le film hydrophobe présente un pourcentage massique d’agent hydrophobe avantageusement compris entre 0,01 et 25, plus avantageusement entre 0,01 et 15, par rapport à la masse de fibres de cellulose du film hydrophobe. Ce pourcentage peut être compris entre 0,01 et 0,8, notamment entre 0,1 et 0,5. En d’autres termes, pour 100 grammes de fibres de cellulose, le film comprend avantageusement entre 0,01 et 25 grammes d’agent hydrophobe.
Le film hydrophobe présente un pourcentage massique d’agent dispersant avantageusement compris entre 0,1 et 50, plus avantageusement entre 0,1 et 25, par rapport à la masse d’agent hydrophobe du film hydrophobe. En d’autres termes, pour 100 grammes d’agent hydrophobe, le film comprend avantageusement entre 0,1 et 50 grammes d’agent hydrophobe.
L’homme du métier saura ajuster la quantité d’agent hydrophobe nécessaire pour obtenir le degré d’hydrophobicité désiré.
Le film hydrophobe présente un grammage avantageusement compris entre 1 et 10 g/m2, plus avantageusement entre 1 et 5 g/m2.
Selon un mode de réalisation particulier, le film hydrophobe peut également comprendre au moins un additif, par exemple des charges minérales (en particulier CaCCh, TiCh, kaolin...), des charges organiques, des pigments... Ce mode de réalisation particulier est mentionné dans la description des étapes a / et c/.
En résumé, le film hydrophobe peut être formé par dépôt de la composition C4 de fibres de cellulose fonctionnalisées sur un substrat. Ce dépôt est avantageusement suivi d’une étape de séchage. L’étape dd/ est alors réalisée avant le dépôt des fibres de cellulose sur le substrat. Le film hydrophobe peut également être formé par dépôt de la composition C3 sur un substrat. Dans ce cas, la composition C3 peut être déposée à la température T4 (par exemple par pulvérisation) lors du dépôt et/ou elle peut être déposée sur un substrat étant à la température T4. L’étape dd/ est alors réalisée avant et/ou après le dépôt des fibres de cellulose sur le substrat.
Le film hydrophobe peut également être formé par dépôt de la composition C3 sur un substrat. Ce dépôt est ensuite chauffé à la température T4. L’étape dd/ est alors réalisée après le dépôt des fibres de cellulose sur le substrat.
Le film hydrophobe peut également être formé, puis associé à un substrat, par exemple une feuille de papier ou de carton. C’est notamment le cas lorsque le film hydrophobe est formé sur une toile ou sur un support en verre, en silicone ou en en polyfluorure d’éthylène.
De manière générale, le séchage réalisé après le dépôt des fibres de cellulose (C3 ou C4) est avantageusement réalisé à une température comprise entre 100°C et 200°C, plus avantageusement entre 120°C et 170°C.
Utilisation du film hydrophobe
Le film hydrophobe selon l’invention peut être utilisé dans de nombreux domaines. Par exemple, il peut être utilisé pour former une couche barrière à l’eau aux huiles aux gaz dont l’oxygène, et les COV (composés organiques volatils).
L’invention et les avantages qui en découlent ressortiront mieux des figures et exemples suivants donnés afin d’illustrer l’invention et non de manière limitative.
DESCRIPTION DES FIGURES
La figure 1 illustre la fonctionnalisation de fibres de cellulose en milieu organique et, selon l’invention, en milieu aqueux. La figure 2 illustre l’angle de contact entre une goutte d’eau et le substrat sur lequel elle est déposée.
EXEMPLES DE RÉALISATION DE L’INVENTION
Un film hydrophobe de 1 g/m2 a été préparé et déposé sur un substrat selon les étapes suivantes : aa/ préparation d’une composition Cl comprenant 97 mL d’eau et 3 grammes de fibres de cellulose sous la forme de MFC, bb/ préparation d’une composition C2 comprenant 2,9 mL d’eau, 0,3 gramme d’AKD et 0,1 gramme d’amidon cationique, cc/ préparation d’une composition C3 en mélangeant les compositions Cl et C2 à 70°C, dd/ fonctionnalisation des fibres de cellulose par réaction entre les fibres de celluloses et l’AKD, en présence de l’amidon cationique, à 70°C, ee/ formation, par pulvérisation, d’un film hydrophobe sur une feuille de papier sèche.
Le film ainsi obtenu présente un angle de contact avec l’eau de l’ordre de 80°. En outre, ce film permet de diminuer la valeur Cobb d’absorption d’eau de 38 g/m2 à 10 g/m2 confirmant les propriétés hydrophobes du film.

Claims

REVENDICATIONS
1. Procédé de préparation de fibres de cellulose fonctionnalisées, le procédé comprenant les étapes suivantes : a/ préparation d’une composition Cl comprenant de l’eau et des fibres de cellulose, b/ préparation d’une composition C2 comprenant de l’eau, un agent hydrophobe et un agent dispersant, c/ préparation d’une composition C3 en mélangeant les compositions Cl et C2 à une température T3 supérieure ou égale au point de fusion de l’agent hydrophobe, d V fonctionnalisation des fibres de cellulose, par réaction entre les fibres de celluloses et l’agent hydrophobe, en présence de l’agent dispersant, à une température T4 supérieure ou égale au point de fusion de l’agent hydrophobe.
2. Procédé selon la revendication 1 , caractérisé en ce que la composition C 1 présente un pourcentage massique en fibres de cellulose compris entre 0,1 et 45, avantageusement entre 3 et 20.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la composition C2 présente un pourcentage massique en agent hydrophobe compris entre 1 et 50, avantageusement entre 10 et 15.
4. Procédé selon l’une des revendications 1 à 3, caractérisé en ce que l’agent hydrophobe est choisi dans le groupe comprenant l’AKD, les agents de collage hydrophobes à base d’acide gras, les agents de collage hydrophobes à base de silanes, les alcényles succiniques anhydrides, les halogénures d’acyle, les isocyanates gras, les acides carboxyliques gras, les thiocyanates gras et les anhydrides gras.
5. Procédé selon l’une des revendications 1 à 4, caractérisé en ce que la composition C2 présente un pourcentage massique en agent dispersant compris entre 0,01 et 3, avantageusement entre 0, 1 et 1.
6. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que l’agent dispersant est choisi dans le groupe comprenant l’amidon cationique, les polymères cationiques dérivés d’acrylamide, les polymères cationiques d’halogénure de diallyldiméthylammonium, et les polymères cationiques de polyéthylènimine.
7. Procédé selon l’une des revendications 1 à 6, caractérisé en ce que la température T4 est comprise entre 100°C et 200°C, avantageusement entre 120°C et 170°C.
8. Procédé de formation d’un film hydrophobe sur un substrat, selon les étapes suivantes : aa/ préparation d’une composition Cl comprenant de l’eau et des fibres de cellulose, bb/ préparation d’une composition C2 comprenant de l’eau, un agent hydrophobe et un agent dispersant, cc/ préparation d’une composition C3 en mélangeant les compositions Cl et C2 à une température T3 supérieure ou égale au point de fusion de l’agent hydrophobe, dd/ fonctionnalisation des fibres de cellulose, par réaction entre les fibres de celluloses et l’agent hydrophobe, en présence de l’agent dispersant, à une température T4 supérieure ou égale au point de fusion de l’agent hydrophobe, ee/ formation, sur un substrat, d’un film hydrophobe à base des fibres de cellulose préalablement fonctionnalisées.
9. Procédé selon la revendication 8, caractérisé en ce que le substrat est choisi parmi une feuille de papier, une feuille de carton, les films plastiques, les films à base de protéines et les panneaux de particules de bois.
10. Procédé selon la revendication 8 ou 9, caractérisé en ce que le film hydrophobe présente un grammage compris entre 1 et 10 g/m2, avantageusement entre 1 et 5 g/m2.
11. Procédé selon l’une des revendications 1 à 10, caractérisé en ce que les fibres de cellulose sont sous la forme de NFC et/ou de MFC.
12. Procédé selon l’une des revendications 1 à 11, caractérisé en ce que la composition C3 présente, par rapport à la masse de la composition C3 : - un pourcentage massique en fibres de cellulose compris entre 0,05 et 20, un pourcentage massique en agent hydrophobe compris entre 0, 1 et 40, un pourcentage massique en agent dispersant compris entre 0,0005 et 5.
13. Procédé selon l’une des revendications 1 à 12, caractérisé en ce que les étapes a/ à d/ ou aa / à ee/ ne mettent pas en œuvre de solvant organique.
14. Procédé selon l’une des revendications 1 à 13, caractérisé en ce que l’étape c/ ou cc/ présente une durée comprise entre 6 secondes et 180 minutes, avantageusement entre 1 minute et 30 minutes.
15. Procédé selon l’une des revendications 1 à 14, caractérisé en ce que l’étape d / ou dd/ présente une durée comprise entre 6 secondes et 60 minutes, avantageusement entre 30 secondes et 5 minutes.
PCT/EP2020/070432 2019-08-21 2020-07-20 Procede de preparation de fibres de cellulose fonctionnalisees WO2021032384A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1909311 2019-08-21
FR1909311A FR3100038B1 (fr) 2019-08-21 2019-08-21 Procede de preparation de fibres de cellulose fonctionnalisees

Publications (1)

Publication Number Publication Date
WO2021032384A1 true WO2021032384A1 (fr) 2021-02-25

Family

ID=68343112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/070432 WO2021032384A1 (fr) 2019-08-21 2020-07-20 Procede de preparation de fibres de cellulose fonctionnalisees

Country Status (2)

Country Link
FR (1) FR3100038B1 (fr)
WO (1) WO2021032384A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606773A (en) * 1984-12-10 1986-08-19 Nalco Chemical Company Emulsification of alkenyl succinic anhydride sizing agents
US5407537A (en) 1990-01-22 1995-04-18 Exxon Chemical Patents Inc Process for sizing paper and similar products
WO2010112519A1 (fr) 2009-03-30 2010-10-07 Omya Development Ag Procédé de production de suspensions de cellulose nano-fibrillaire
WO2010115785A1 (fr) 2009-03-30 2010-10-14 Omya Development Ag Procédé de production de gels de cellulose à structure nanofibrillaire
WO2010131016A2 (fr) 2009-05-15 2010-11-18 Imerys Minerals Limited Composition de matière de charge pour papier
CN103302708A (zh) 2013-05-08 2013-09-18 广东省宜华木业股份有限公司 一种新型疏水性木材的制备方法
WO2014091212A1 (fr) 2012-12-11 2014-06-19 Imerys Minerals Limited Compositions issues de cellulose
US20160168696A1 (en) * 2013-07-26 2016-06-16 Institut Polytechnique De Grenoble Method for forming a hydrophobic layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606773A (en) * 1984-12-10 1986-08-19 Nalco Chemical Company Emulsification of alkenyl succinic anhydride sizing agents
US5407537A (en) 1990-01-22 1995-04-18 Exxon Chemical Patents Inc Process for sizing paper and similar products
WO2010112519A1 (fr) 2009-03-30 2010-10-07 Omya Development Ag Procédé de production de suspensions de cellulose nano-fibrillaire
WO2010115785A1 (fr) 2009-03-30 2010-10-14 Omya Development Ag Procédé de production de gels de cellulose à structure nanofibrillaire
WO2010131016A2 (fr) 2009-05-15 2010-11-18 Imerys Minerals Limited Composition de matière de charge pour papier
WO2014091212A1 (fr) 2012-12-11 2014-06-19 Imerys Minerals Limited Compositions issues de cellulose
CN103302708A (zh) 2013-05-08 2013-09-18 广东省宜华木业股份有限公司 一种新型疏水性木材的制备方法
CN103302708B (zh) * 2013-05-08 2015-04-22 广东省宜华木业股份有限公司 一种新型疏水性木材的制备方法
US20160168696A1 (en) * 2013-07-26 2016-06-16 Institut Polytechnique De Grenoble Method for forming a hydrophobic layer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEPETIT AMAURY ET AL: "Microfibrillated cellulose with sizing for reinforcing composites with LDPE", CELLULOSE, SPRINGER NETHERLANDS, NETHERLANDS, vol. 24, no. 10, 5 August 2017 (2017-08-05), pages 4303 - 4312, XP036319848, ISSN: 0969-0239, [retrieved on 20170805], DOI: 10.1007/S10570-017-1429-0 *
LEPETIT ET AL., CELLULOSE, vol. 24, 2017, pages 4303 - 4312

Also Published As

Publication number Publication date
FR3100038A1 (fr) 2021-02-26
FR3100038B1 (fr) 2022-01-28

Similar Documents

Publication Publication Date Title
RU2676987C2 (ru) Способ получения суспензии микрофибриллированной целлюлозы, микрофибриллированная целлюлоза и ее применение
EP0964956B1 (fr) Feuille papetiere decorative a capacite d'absorption en resine reduite et stratifie la comportant
JP2013510222A (ja) 被覆基材、被覆基材の製造方法、パッケージおよび分散液コーティング
EP0031832B1 (fr) Produits en feuille et leur procede de preparation
EP3024978B1 (fr) Procede de formation d'une couche hydrophobe
Kisonen et al. Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging
EP1685201A1 (fr) Utilisation d'une dispersion aqueuse d'au moins un polymere biodegradable contenant au moins un agent stabilisant pour la preparation d'une composition filmogene aqueuse
FR2925910A1 (fr) Film aux proprietes barriere a l'eau, aux graisses, au gaz et a la vapeur d'eau
CN115516168B (zh) 适合于金属化的涂覆的纸基材
JP2018527483A (ja) ミクロフィブリル化セルロースおよび両性ポリマーを含むフィルムを製造する方法
Xie et al. Facile synthesis of fluorine-free cellulosic paper with excellent oil and grease resistance
FR3059345A1 (fr) Composition liante a base de fibres vegetales et de charges minerales, sa preparation et son utilisation
JP2019501255A (ja) 高コンシステンシーの酵素フィブリル化ナノセルロースからフィルムを製造する方法
Du et al. The fluorine-free coating has excellent hydrophobic and oleophobic properties for porous cellulose-based materials
EP3189189B1 (fr) Support papier, son procédé de fabrication et document de sécurité fabriqué avec celui-ci
Obradovic et al. Preparation and characterisation of cellulose-shellac biocomposites
JP2014196580A (ja) 耐水耐油紙およびその製造方法
WO2021032384A1 (fr) Procede de preparation de fibres de cellulose fonctionnalisees
EP3326466B1 (fr) Materiau cellulosique antimicrobien
US20160053438A1 (en) Method of making a paper and paperboard and the paper and paperboard thereof
Päärnilä Lignin films–production and characterization
WO2023180630A1 (fr) Matériau composite stabilisé par des nanoparticules de lignine
WO1999018290A1 (fr) Procede pour impermeabiliser aux graisses des substrats cellulosiques
FR2993274A1 (fr) Composition thermoplastique a base d'amidon comprenant un polypropylene fonctionnalise de fluidite selectionnee

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20742258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20742258

Country of ref document: EP

Kind code of ref document: A1