WO2021031932A1 - 一种小区选择的方法、系统及装置 - Google Patents

一种小区选择的方法、系统及装置 Download PDF

Info

Publication number
WO2021031932A1
WO2021031932A1 PCT/CN2020/108441 CN2020108441W WO2021031932A1 WO 2021031932 A1 WO2021031932 A1 WO 2021031932A1 CN 2020108441 W CN2020108441 W CN 2020108441W WO 2021031932 A1 WO2021031932 A1 WO 2021031932A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
cell
information
network device
compensation
Prior art date
Application number
PCT/CN2020/108441
Other languages
English (en)
French (fr)
Inventor
王宏
李秉肇
王学龙
陈磊
许斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021031932A1 publication Critical patent/WO2021031932A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • This application relates to the field of wireless communication, and in particular to a method, system and device for cell selection.
  • UE user equipment
  • S criterion a cell selection criterion
  • the S criterion is that the cell reception level value S rxlev is greater than zero
  • the cell signal quality value S qual is greater than zero.
  • UEs of different power classes can determine the different downlink signal coverage areas in which the UE can communicate according to S rxlev .
  • the power class defines the maximum output power of the UE. The lower the power class of the UE, the The smaller the maximum output power, the smaller the uplink signal coverage. Since cell selection is based on the received power and signal quality of the downlink signal, in order to take into account the uplink signal coverage, the downlink signal coverage determined according to S rxlev will be smaller. That is, the UE that is far away from the network device may not be able to select the cell corresponding to the network device.
  • a UE with a lower maximum output power (or a UE with a lower power level, or a UE with a lower power) will be introduced. Since the network has been deployed, for a UE with a higher maximum output power (or a lower power level) Large UEs, or higher-power UEs), can ensure full coverage of their uplink and downlink signals, but for lower-power UEs, due to their limited maximum output power, the coverage of downlink signals that can reside on will be reduced In some areas between multiple network devices, such UEs cannot communicate normally.
  • the cell selection criterion restricts the cell selection of lower-power UEs. That is, the UE cannot select the cell in the coverage area where downlink communication is possible but not uplink communication. In this way, even if uplink coverage enhancement is introduced Technology, because the UE will not select a cell in the above coverage area, the UE cannot perform normal communication in the above coverage area.
  • This application provides a method, system and device for cell selection.
  • the network equipment can configure the power parameters corresponding to the power levels of UEs of different power levels.
  • UEs of different power levels can have the same cell selection threshold, that is, cell selection can be performed fairly.
  • cell selection threshold that is, cell selection can be performed fairly.
  • the first network device can configure respective power parameters for UEs of different power levels, so that UEs of different power levels have the difficulty of selecting a cell. From the perspective of network resources, this is fair. Because it occupies a lot of resources, the network can control such UEs to make it difficult to select a cell. To reduce excessive consumption of system resources.
  • a method for cell selection includes: a user equipment UE receiving first power information corresponding to a first cell from a first network device, the first power information including M first power parameters, The M first power parameters correspond to N power levels, M is an integer greater than 1, and M is less than or equal to N; the UE determines whether to select the first cell according to the first power information.
  • the first network device can configure the first power parameters corresponding to the power levels for UEs of different power levels.
  • the corresponding first power parameters it is possible to realize that UEs of different power levels can have The same cell selection threshold, that is, the cell selection is performed fairly. There will be no difference in the difficulty of selecting a cell due to the different power levels of different UEs. That is, a higher power UE has a larger signal coverage area. The cell can be selected even if it is close to the network equipment, which can be said to be easier to select the cell, while the signal coverage of the cell of the lower power UE is small, and the cell needs to be close to the network equipment to select the cell. It is not easy to choose this cell.
  • the first network device can configure respective first power parameters for UEs of different power levels, so that UEs of different power levels have the difficulty of selecting cells. From a resource point of view, this is fair, because it occupies a lot of resources, so the network can control such UEs to make it difficult to select a cell to reduce excessive consumption of system resources.
  • the UE determines whether to select the first cell according to the first power information, including: the UE determines whether to select the ith first power parameter among the M first power parameters indicated by the first power information In the first cell, the i-th first power parameter corresponds to the first power level of the N power levels, and the first power level is the power level of the UE.
  • multiple power levels among the N power levels may correspond to a first power parameter, or N power levels may correspond to M first power parameters one-to-one, in this case, M is equal to N.
  • the first network device may configure respective first power parameters for UEs of different power levels, so that UEs of different power levels have difficulty in selecting cells.
  • the i-th first power parameter is the maximum output power P EMAXi allowed by the UE by the first network device corresponding to the first power level, or the i-th first power parameter is corresponding to the first power level
  • the power offset P offseti , i belongs to ⁇ 1, M ⁇ .
  • An optional design where the UE determines whether to select the first cell according to the first power information includes: the UE determines whether the cell selection reception level value S rxlev meets the first criterion according to the first power information to determine whether to select the first cell ; Among them, S rxlev is obtained based on the power compensation value P compensation .
  • the first network device may configure corresponding first power parameters for UEs of different power levels, and may determine whether to select the first cell according to the calculation method in the embodiment of the present application.
  • the UE is a UE with massive machine type communication mMTC, or the UE supports uplink coverage enhancement, or a lower power UE, for example, the P PowerClass of the UE is less than 23 decibel relative to one milliwatt (dBm) .
  • the first network device can configure the first power parameters corresponding to the power levels for UEs of different power levels.
  • the corresponding first power parameters By configuring the corresponding first power parameters, it can be realized that UEs of different power levels can have the same cell. Selection threshold, that is, cell selection is performed fairly, and there will be no difference in the difficulty of selecting a cell due to different power levels of different UEs.
  • the method further includes: the UE receives first information sent from the first network device, where the first information is used to indicate the correspondence between the M first power parameters and the N power levels.
  • a method for cell selection includes: a first network device sends first power information corresponding to a first cell to a UE, where the first power information includes M first power parameters, and M first power parameters.
  • the power parameters correspond to N power levels, M is an integer greater than 1, and M is less than or equal to N.
  • the method further includes: the first network device sends first information to the UE, where the first information is used to indicate the correspondence between the M first power parameters and the N power levels.
  • a communication device in a third aspect, includes: a receiving module configured to receive first power information corresponding to a first cell from a first network device, the first power information including M first powers Parameters: M first power parameters correspond to N power levels, M is an integer greater than 1, and M is less than or equal to N; the processing module, the processing module is used to determine whether to select the first cell according to the first power information.
  • the processing module is configured to determine whether to select the first cell according to the first power information, including: the processing module according to the i-th first power parameter among the M first power parameters indicated by the first power information , Determine whether to select the first cell, the i-th first power parameter corresponds to the first power level among the N power levels, and the first power level is the power level of the UE.
  • the i-th first power parameter is the maximum output power P EMAXi that the first network device corresponding to the first power level allows the UE to use, or the i-th first power parameter is corresponding to the first power
  • the level of power offset P offseti , i belongs to ⁇ 1, M ⁇ .
  • the processing module determines whether to select the first cell according to the first power information, including: the processing module determines whether the cell selection reception level value S rxlev satisfies according to the first power information The first criterion is to determine whether to select the first cell; wherein, S rxlev is obtained based on the power compensation value P compensation .
  • the communication device is a communication device for mass machine type communication mMTC, or the communication device supports uplink coverage enhancement, or a lower power communication device, for example, the P PowerClass of the communication device is less than 23 dBm.
  • the receiving module is further configured to receive first information sent from the first network device, where the first information is used to indicate the correspondence between the M first power parameters and the N power levels.
  • a communication device configured to send first power information corresponding to a first cell to a UE, the first power information including M first power parameters, and M
  • the first power parameter corresponds to N power levels, M is an integer greater than 1, and M is less than or equal to N.
  • the sending module is further configured to send first information to the UE, where the first information is used to indicate the correspondence between the M first power parameters and the N power levels.
  • a network system in a fifth aspect, includes at least one communication device according to the third aspect and at least one communication device according to the fourth aspect.
  • another method for cell selection includes: a UE receives second power information corresponding to a first cell from a first network device, the second power information includes a second power parameter, and the second power parameter the UE may be allowed a maximum output power of the UE determines the power level P PowerClass1 network device or the maximum output power P EMAX1, UE determines whether to select the second power information based on the first cell.
  • An optional design where the UE determines whether to select the first cell according to the first power information includes: the UE determines whether the cell selection reception level value S rxlev meets the first criterion according to the second power information to determine whether to select the first cell ; Among them, S rxlev is obtained based on the power compensation value P compensation .
  • P compensation max (P EMAX- P PowerClass1 , 0), where P EMAX is the maximum output power allowed by the UE by the first network device, and P PowerClass1 may be a positive integer.
  • P compensation max (P EMAX + P PowerClass1 , 0), where P EMAX is the maximum output power allowed by the UE by the first network device, and P PowerClass1 may be a positive integer.
  • P compensation max (P EMAX1- P PowerClass , 0), where P PowerClass is the maximum output power of the UE, and P EMAX1 may be a positive integer.
  • P compensation max (P EMAX1 +P PowerClass ,0), where P PowerClass is the maximum output power of the UE, and P EMAX1 may be a positive integer.
  • the UE is a UE with massive machine type communication mMTC, or the UE supports uplink coverage enhancement, or a lower power UE, for example, the P PowerClass of the UE is less than 23dBm.
  • a method for cell selection includes: a first network device sends second power information corresponding to a first cell to a UE, the second power information includes a second power parameter, and the second power parameter may be the UE is allowed to use the maximum output power of the UE determines the power level P PowerClass1 network device or the maximum output power P EMAX1.
  • a communication device is provided, and the communication device can execute any method in the fifth aspect.
  • a communication device is provided, and the communication device can execute any method in the sixth aspect.
  • another method for cell selection includes: a first network device sends second information to a UE, the second information includes a first random access preamble and/or a first time-frequency resource; The network device receives the first random access preamble from the UE; the first network device sends a first random access response message to the UE; the first network device receives the first message from the UE, and the first message is used to request to establish or restore an RRC connection ; The first network device sends an RRC connection setup message or an RRC connection recovery message to the UE to establish or restore an RRC connection.
  • the first random access preamble and/or the first time-frequency resource are used for mMTC UEs, and/or UEs supporting uplink coverage enhancement, and/or UEs with lower power.
  • the second information may further include a first part bandwidth (Bandwidth Part, BWP), and the first BWP may be used to indicate bandwidth information for the UE to receive the first random access response message.
  • BWP Bandwidth Part
  • another method for cell selection includes: a UE receives second information from a first network device, the second information includes a first random access preamble and/or a first time-frequency resource, and the UE Send the first random access preamble to the first network device; the UE receives the first random access response message from the first network device; the UE sends the first message to the first network device, the first message is used to request to establish or resume RRC Connected; the UE receives an RRC connection setup message or an RRC connection recovery message from the first network device to establish or restore an RRC connection.
  • the first random access preamble and/or the first time-frequency resource are used for mMTC UEs, and/or UEs supporting uplink coverage enhancement, and/or UEs with lower power.
  • the second information may further include the first BWP, and the first BWP may be used to instruct the UE to receive bandwidth information of the first random access response message.
  • a communication device In a twelfth aspect, a communication device is provided, and the communication device can execute any method in the eleventh aspect.
  • a communication device in a thirteenth aspect, is provided, and the communication device can perform any method in the tenth aspect.
  • a communication device in a fourteenth aspect, includes: at least one processor, at least one memory, and a communication interface.
  • the communication interface is used for information exchange between the communication device and other communication devices.
  • the first power information includes M first power parameters, the M first power parameters correspond to N power levels, and M is an integer greater than 1, And M is less than or equal to N; when the program instructions are executed in the at least one processor, the processor may determine whether to select the first cell according to the first power information.
  • a communication device in a fifteenth aspect, includes: at least one processor, at least one memory, and a communication interface.
  • the communication interface is used for information exchange between the communication device and other communication devices.
  • the first power information includes M first power parameters, the M first power parameters correspond to N power levels, M is an integer greater than 1, and M is less than or equal to N;
  • the communication device When executed in the at least one processor, the communication device is caused to execute the above method.
  • a chip comprising: at least one processor and a communication interface, the communication interface is used for the communication device to exchange information with other communication devices, when the program instructions in the at least one processing When executed in the device, the above method is executed.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the methods described in the above aspects.
  • FIG. 1 is a schematic diagram of the architecture of a communication system applicable to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the coverage of UEs of different power levels in the same cell.
  • Figure 3 is a schematic diagram of the coverage of UEs of different power levels.
  • FIG. 4 is a schematic flowchart of a method for cell selection according to an embodiment of the present application.
  • FIG. 5 is a schematic interaction diagram of a method for cell selection provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another cell selection method provided by an embodiment of the present application.
  • Figure 7 is a schematic interaction diagram of a method for cell selection provided by an embodiment of the present application.
  • FIG. 8 is a schematic interaction diagram of a UE establishing a connection with a first cell according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the format of a first random access response message provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Fig. 13 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application.
  • the mobile communication system 100 may include at least one network device 101 and at least one UE 102.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
  • the embodiments of the present application do not limit the number and specific types of network devices and UEs included in the mobile communication system.
  • the UE 102 in the embodiments of the present application may refer to an access terminal, a subscriber unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the user equipment can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, user equipment in 5G networks, or users in the future evolution of public land mobile network (PLMN)
  • PLMN public land mobile network
  • the device, the user equipment in the future 6G network and the user equipment in the 7G network, etc., are not limited in the embodiment of the present application.
  • the network device 101 in the embodiment of the present application may be a device used to communicate with user equipment.
  • the network device may be a global system of mobile communication (GSM) system or code division multiple access (CDMA).
  • the network equipment (basetransceiver station, BTS) in) can also be the network equipment (nodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolution type in the LTE system Network equipment (e-UTRAN nodeB, eNB or eNodeB), it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network equipment can be a relay station, access point, or vehicle-mounted device , Wearable devices and network equipment in the 5G network (new generation nodeB, gNB or gNodeB) or network equipment in the future evolved PLMN network, network equipment in the future 6G network and network equipment in the 7G network, etc.
  • the examples are not limited.
  • the communication method of this application can also be extended to various communication systems, such as GSM system, CDMA system, WCDMA system, general packet radio service (GPRS), LTE system, LTE frequency division duplex ( frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, 5G system or new radio (NR), etc.
  • GSM Global System for Mobile communications
  • CDMA Code Division duplex
  • WCDMA wide area network
  • GPRS general packet radio service
  • LTE system LTE frequency division duplex ( frequency division duplex (FDD) system
  • LTE time division duplex (TDD) LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the UE When the UE selects a cell, it usually applies the S criterion to determine whether a cell is a suitable cell, where the S criterion is:
  • Q rxlevmeas is the measured cell RX level value (RSRP) (measured cell RX level value (RSRP));
  • Q rxlevmin is the required minimum receive level (minimum required RX level in the cell);
  • Q rxlevminoffset is the offset of Q rxlevmin
  • P compensation is max (P EMAX –P PowerClass ,, 0), P EMAX is the maximum TX power level of a UE may use when transmitting on the uplink in the cell, and P PowerClass is the maximum output power (maximum output power) determined according to the power level of the UE, where P PowerClass is the transmission capability of the UE itself, that is, the maximum output power determined by the UE according to the power level, and P EMAX is the network equipment that allows the UE to use Maximum output power;
  • Q offsettemp is a temporary offset (offset temporarily applied to a cell).
  • Q qualmeas is the measured cell quality value (RSRQ) (measured cell quality value (RSRQ));
  • Q qualmin is the minimum required quality level in the cell
  • Q qualminoffset is the offset of Q qualmin.
  • Q rxlevminoffset , P compensation , Q offsettemp , Q qualminoffset , and Q offsettemp are all zero, then S rxlev > 0 and S qual > 0, which is equivalent to Q rxlevmeas > Q rxlevmin and Q qualmeas > Q qualmin , that is, the RSRP value and RSRQ value measured by the terminal must be greater than the required minimum receiving level value and the required minimum signal quality value.
  • P EMAX is a parameter that the network device sends to the UE through a system message. It is the maximum output power the network device allows the UE to use. Its value generally does not change. Different UEs may have different P PowerClass .
  • the downlink coverage determined by Q rxlevmin can be represented by 206 in Figure 2, that is, the coverage of Q rxlevmeas > Q rxlevmin is satisfied, and the P PowerClass of UE202 is smaller than the P of UE203. PowerClass , the uplink coverage of UE202 is smaller than the uplink coverage of UE203.
  • the downlink coverage 204 of UE202 should also be smaller than the downlink coverage 205 of UE203, that is, network equipment 201 has different power levels
  • the UE has different downlink coverage, that is, the UE202 can communicate normally within the range of 204, and the UE203 can communicate normally within the range of 205.
  • each first area 301 in Figure 3 (ie area A, represented by the upper diagonal line) can be regarded as the downlink coverage area of a cell.
  • the UE or a higher power UE determines in the first area 301 that the corresponding cell is suitable for camping on.
  • every A second area 302 ie, area B, represented by the lower diagonal line
  • every A second area 302 can be regarded as a downlink coverage area of a cell suitable for lower power UEs. If a lower power UE is not in any of the second areas 302, then The UE determines that it is not in the service range of the wireless network.
  • the diamond-shaped area in FIG. 3 is the overlapping area of area A and area B. It can be seen from Fig.
  • the areas where the cells are available for selection are continuous (that is, there is no area between the first area 301 in Fig. 3 that is not covered by the first area 301 ), and for lower-power UEs, there are areas between the second areas 302 that are not covered by the first area 302.
  • lower-power UEs have no selectable cells between the second areas 302, that is, they cannot be found.
  • the S criterion can be satisfied, that is, the second area 302 is not continuous. In this way, for lower power UEs, the signal coverage is no longer continuous. In some areas, such UEs cannot communicate normally.
  • the UE can receive the downlink data sent by the network device. If the uplink enhancement technology is introduced Improving the performance of uplink transmission can improve the coverage of lower-power UEs. In this way, a problem that needs to be solved is how to realize that a lower power UE can select a suitable cell at the edge of the cell, such as the area outside the second area 302 in FIG. 3.
  • the present application provides a method for cell selection, so that a lower-power UE can select a cell in a larger range so that it has a connected signal coverage.
  • FIG. 4 is a schematic flowchart of a method for cell selection according to an embodiment of the present application. The method in FIG. 4 may be executed by the UE 102 in FIG. 1.
  • the UE receives first power information corresponding to a first cell from a first network device, where the first power information may include M first power parameters, the M first power parameters correspond to N power levels, and M is greater than 1. An integer of, and M is less than or equal to N.
  • the power level defines the maximum output power of the UE, and the UE can determine the maximum output power according to the power level.
  • the third generation partnership project (3rd generation partnership project, 3GPP) TS 38.101–1–g00 gives the corresponding relationship between the power level and the maximum output power, as shown in Table 1:
  • N power levels may correspond to the M first power parameters one-to-one.
  • M is equal to N.
  • the first power information may carry the correspondence between M first power parameters and N power levels, or the UE may receive the first information sent by the first network device, and the first information may be used to indicate M The corresponding relationship between the first power parameter and the N power levels.
  • the UE may determine whether to select the first cell according to the i-th first power parameter among the M first power parameters indicated by the first power information.
  • the i-th first power parameter in the M first power parameters corresponds to the first power level among the N power levels, and the first power level is the power level of the UE.
  • the corresponding relationship between the i-th first power parameter and the first power level may be indicated by the first power information, or may also be indicated by the first information received by the UE.
  • the i-th first power parameter is the maximum output power P EMAXi that the first network device corresponding to the first power level allows the UE to use, or the i-th first power parameter is the power offset P offseti , i Belongs to ⁇ 1, M ⁇ .
  • the network device has reconfigured the UE with the maximum output power allowed to be used by the UE.
  • the first power information may be included in a system message sent by the first network device.
  • M first power parameters may be included in system information block type 1 (SIB1).
  • the value of the M first power parameters is a positive integer.
  • S402 The UE determines whether to select the first cell according to the first power information.
  • the UE determining whether to select the first cell according to the first power information may include: the UE determining whether S rxlev satisfies a first criterion according to the first power information to determine whether to select the first cell, wherein The S rxlev is based on P compensation .
  • the first criterion may be the S criterion in cell selection
  • S rxlev may be calculated according to the following formula:
  • the UE when it determines whether to select the first cell according to the S criterion, it may also determine S qual , and S qual may be calculated according to the following formula:
  • the UE can select the first cell.
  • the UE may determine P compensation according to the first power information.
  • the first power parameter may be that the first power parameter corresponding to the first power level is P EMAXi or the first power parameter may be that the first power parameter corresponding to the first power level is P offseti .
  • the UE is a massive machine type of communication (mMTC) UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23dBm, and
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the first power information corresponds to the first power level
  • P EMAXi max (P EMAXi +P PowerClass ,0)
  • the first network device can configure P EMAXi for UEs of different power levels, and reconfigure the maximum output power that the network device allows the UE to use for the UE.
  • P EMAXi for UEs of different power levels
  • the first network device can configure P EMAXi for UEs of different power levels, and reconfigure the maximum output power that the network device allows the UE to use for the UE.
  • different power levels can be achieved UEs can have the same cell selection threshold, that is, the cell selection is fair, and there will be no difference in the difficulty of selecting a cell due to the different power levels of different UEs, that is, the higher power UE, the signal coverage of its cell Larger, the cell can be selected without being very close to the network equipment, which can be said to be easier to select the cell, while the signal coverage of the cell of the lower power UE is small, and the cell needs to be closer to the network equipment to select the cell.
  • the cell can be said to be difficult to select.
  • UEs of different power levels have different uplink powers, their uplink transmissions may require different repetition times when sending the same content. For example, UEs with lower power need to retransmit more times. The UE will also use more uplink resources.
  • the first network device can configure its own P EMAXi for UEs of different power levels, so that UEs of different power levels have the difficulty of selecting a cell. From a point of view, this is fair, because it occupies a lot of resources, so the network can control this type of UE to make it difficult to select a cell to reduce excessive consumption of system resources.
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the first power information corresponds to the first power level
  • P compensation max(P EMAX ⁇ (P PowerClass + P offseti ), 0)
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the first power information corresponds to the first power level
  • P compensation max (P EMAX ⁇ P offseti , 0)
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the first power information corresponds to the first power level
  • P compensation max (P EMAX + P offseti , 0)
  • the first network device can configure P offseti corresponding to its power levels for UEs of different power levels.
  • P offseti By configuring the corresponding P offseti , it can be realized that UEs of different power levels can have the same cell selection threshold, that is, perform fairly.
  • Cell selection because of the different power levels of different UEs, there will be no difference between the difficulty of selecting a cell, that is, a higher power UE has a larger signal coverage in the cell, and it can be selected without being close to the network equipment. This cell can be said to be easier to select the cell, and a lower power UE has a smaller signal coverage area and needs to be closer to the network equipment to select the cell, which can be said to be difficult to select.
  • the first network device can configure its own P offseti for UEs of different power levels, so that UEs of different power levels have the difficulty of selecting a cell. From a point of view, this is fair, because it occupies a lot of resources, so the network can control this type of UE to make it difficult to select a cell to reduce excessive consumption of system resources.
  • the UE when the UE is a UE in mMTC, or when the UE is a low-cost and low-complexity UE, the UE may have at least one of the following characteristics:
  • UE supports a maximum bandwidth of 5MHz
  • the UE has a radio frequency channel or a radiating antenna
  • the UE has a reduced peak rate
  • the maximum transport block size transmitted by the UE is 1000 bits
  • the maximum output power of the UE is less than 23dBm
  • UE supports uplink coverage enhancement
  • the highest modulation mode supported by the UE is 16QAM.
  • the UE supports uplink coverage enhancement, which may refer to at least one of the following:
  • the UE supports bundling of uplink transmission
  • the UE supports the bundling of uplink transmission during the random access process
  • the UE supports repetition of uplink transmission.
  • the P PowerClass of the UE is less than 23 dBm, which may refer to at least one of the following:
  • the P PowerClass of the UE can be 20dBm or 17dBm or 14dBm or 11dBm;
  • the P PowerClass of the UE is X1, where X1 can be 20dBm or 17dBm or 14dBm or 11dBm, and the UE can choose to use P PowerClass as X2 to work, where X2 is less than X1.
  • FIG. 5 is a schematic interaction diagram of a method for cell selection according to an embodiment of the present application. The method in FIG. 5 may be executed by the network device 101 and the UE 102 in FIG. 1.
  • the first network device may send first power information corresponding to the first cell to the UE, where the first power information may include M first power parameters, the M first power parameters correspond to N power levels, and M is greater than 1. An integer of, and M is less than or equal to N.
  • the power level defines the maximum output power of the UE, and the UE can determine the maximum output power according to the power level.
  • N power levels may correspond to one first power parameter, or N power levels may correspond to M first power parameters one-to-one.
  • M is equal to N.
  • the first power information may carry the correspondence between M first power parameters and N power levels, or the first network device may send the first information to the UE, and the first information may be used to indicate the M-th Correspondence between a power parameter and N power levels.
  • the UE may determine whether to select the first cell according to the i-th first power parameter among the M first power parameters indicated by the first power information, where the i-th first power parameter Corresponding to the first power level among the N power levels, the first power level is the power level of the UE.
  • the corresponding relationship between the i-th first power parameter and the first power level may be indicated by the first power information, or may also be indicated by the first information received by the UE.
  • the i-th first power parameter is the maximum output power P EMAXi allowed by the UE by the first network device corresponding to the first power level, or the i-th first power parameter is the power offset corresponding to the first power level.
  • the offset P offseti , i belongs to ⁇ 1, M ⁇ .
  • the network device has reconfigured the UE with the maximum output power allowed to be used by the UE.
  • the first power information may be included in a system message sent by the first network device.
  • the M first power parameters may be included in SIB1 in the system message.
  • the values of the M first power parameters are all positive integers.
  • S502 The UE determines whether to select the first cell according to the first power information.
  • the UE determining whether to select the first cell according to the first power information may include: the UE determining whether S rxlev satisfies a first criterion according to the first power information to determine whether to select the first cell, wherein The S rxlev is based on P compensation .
  • the first criterion may be the S criterion during cell selection, and S rxlev may be calculated according to the following formula:
  • the UE when it determines whether to select the first cell according to the S criterion, it may also determine S qual , and S qual may be calculated according to the following formula:
  • the UE can select the first cell.
  • the UE may determine P compensation according to the first power information.
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the first power information corresponds to the first power level
  • P EMAXi max (P EMAXi ⁇ P PowerClass ,0)
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the first power information corresponds to the first power level
  • P EMAXi max (P EMAXi +P PowerClass ,0)
  • the first network device can configure P EMAXi for UEs of different power levels, and reconfigure the maximum output power that the network device allows the UE to use for the UE.
  • P EMAXi for UEs of different power levels
  • the first network device can configure P EMAXi for UEs of different power levels, and reconfigure the maximum output power that the network device allows the UE to use for the UE.
  • different power levels can be achieved UEs can have the same cell selection threshold, that is, the cell selection is fair, and there will be no difference in the difficulty of selecting a cell due to the different power levels of different UEs, that is, the higher power UE, the signal coverage of its cell Larger, the cell can be selected without being very close to the network equipment, which can be said to be easier to select the cell, while the signal coverage of the cell of the lower power UE is small, and the cell needs to be closer to the network equipment to select the cell.
  • the cell can be said to be difficult to select.
  • UEs of different power levels have different uplink powers, their uplink transmissions may require different repetition times when sending the same content. For example, UEs with lower power need to retransmit more times. The UE will also use more uplink resources.
  • the first network device can configure its own P EMAXi for UEs of different power levels, so that UEs of different power levels have the difficulty of selecting a cell. From a point of view, this is fair, because it occupies a lot of resources, so the network can control this type of UE to make it difficult to select a cell to reduce excessive consumption of system resources.
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the first power information corresponds to the first power level
  • P compensation max(P EMAX ⁇ (P PowerClass + P offseti ), 0)
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the first power information corresponds to the first power level
  • P compensation max (P EMAX ⁇ P offseti , 0)
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the first power information corresponds to the first power level
  • P compensation max (P EMAX + P offseti , 0)
  • the first network device can configure P offseti corresponding to its power levels for UEs of different power levels.
  • P offseti corresponding to its power levels for UEs of different power levels.
  • UEs of different power levels can have the same cell selection threshold, that is, perform fairly. In cell selection, there will be no difference between the difficulty of cell selection due to the different power levels of different UEs.
  • UEs of different power levels have different uplink powers, their uplink transmissions may require different repetition times when sending the same content. For example, UEs with lower power need to retransmit more times. The UE will also use more uplink resources.
  • the first network device can configure its own P offseti for UEs of different power levels, so that UEs of different power levels have the difficulty of selecting a cell. From a point of view, this is fair, because it occupies a lot of resources, so the network can control this type of UE to make it difficult to select a cell to reduce excessive consumption of system resources.
  • the UE may establish a connection with the first cell.
  • the UE when the UE is a UE in mMTC, or when the UE is a low-cost and low-complexity UE, the UE may have at least one of the following characteristics:
  • UE supports a maximum bandwidth of 5MHz
  • the UE has a radio frequency channel or a radiating antenna
  • the UE has a reduced peak rate
  • the maximum transport block size transmitted by the UE is 1000 bits
  • the maximum output power of the UE is less than 23dBm
  • UE supports uplink coverage enhancement
  • the highest modulation mode supported by the UE is 16QAM.
  • the UE supports uplink coverage enhancement, which may refer to at least one of the following:
  • (1) UE supports the bundling of uplink transmission
  • the UE supports the bundling of uplink transmission during the random access process
  • the UE supports repeated transmission of uplink transmission.
  • the P PowerClass of the UE is less than 23 dBm, which may refer to at least one of the following:
  • the P PowerClass of the UE can be 20dBm or 17dBm or 14dBm or 11dBm;
  • the P PowerClass of the UE is X1, where X1 can be 20dBm or 17dBm or 14dBm or 11dBm, and the UE can choose to use P PowerClass as X2 to work, where X2 is less than X1.
  • the UE may select the first cell and establish a communication connection with the first network device.
  • FIG. 6 is a schematic flowchart of another cell selection method provided by an embodiment of the present application. The method in FIG. 6 may be executed by the UE 102 in FIG. 1.
  • the UE receives second power information corresponding to the first cell from the first network device.
  • the second power information may include a second power parameter, and the number of the second power parameter may be one.
  • the second power parameter may be used by the UE to allow the maximum output power of the UE determines the power level P PowerClass1 first network device or the maximum output power P EMAX1.
  • the second power information may be a system message sent by the first network device, or a part of the system message sent by the first network device, and the second power parameter included therein may be located in the SIB1 in the system message. in.
  • the second power parameter may be a positive integer.
  • S602 The UE determines whether to select the first cell according to the second power information.
  • the UE determining whether to select the first cell according to the second power information may include: the UE determining whether S rxlev satisfies the first criterion according to the second power information to determine whether to select the first cell, wherein The S rxlev is based on P compensation .
  • the first criterion can be the S criterion for cell selection
  • S rxlev can be calculated according to the following formula:
  • the UE when it determines whether to select the first cell according to the S criterion, it may also determine S qual , and S qual may be calculated according to the following formula:
  • the UE can select the first cell.
  • the UE may determine P compensation according to the second power information.
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the second power parameter in the second power information is P
  • P compensation max (P EMAX1 ⁇ P PowerClass ,0)
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the second power parameter in the second power information is P
  • P compensation max(P EMAX1 +P PowerClass ,0)
  • the first network device can configure the same power parameters for UEs of different power levels, so that all UEs in the first cell use the same power parameters, so that UEs of different power levels have the same uplink coverage, so that different power levels
  • a UE of a class has fairness when selecting a cell to camp on.
  • the UE when the UE is a UE in mMTC, or when the UE is a low-cost and low-complexity UE, the UE may have at least one of the following characteristics:
  • UE supports a maximum bandwidth of 5MHz
  • the UE has a radio frequency channel or a radiating antenna
  • the UE has a reduced peak rate
  • the maximum transport block size transmitted by the UE is 1000 bits
  • the maximum output power of the UE is less than 23dBm
  • UE supports uplink coverage enhancement
  • the highest modulation mode supported by the UE is 16QAM.
  • the UE supports uplink coverage enhancement, which may refer to at least one of the following:
  • (1) UE supports the bundling of uplink transmission
  • the UE supports the bundling of uplink transmission during the random access process
  • the UE supports repeated transmission of uplink transmission.
  • the P PowerClass of the UE is less than 23 dBm, which may refer to at least one of the following:
  • the P PowerClass of the UE can be 20dBm or 17dBm or 14dBm or 11dBm;
  • the P PowerClass of the UE is X1, where X1 can be 20dBm or 17dBm or 14dBm or 11dBm, and the UE can choose to use P PowerClass as X2 to work, where X2 is less than X1.
  • FIG. 7 is a schematic interaction diagram of a method for cell selection according to an embodiment of the present application. The method in FIG. 7 may be executed by the network device 101 and the UE 102 in FIG. 1.
  • the first network device sends second power information corresponding to the first cell to the UE.
  • the second power information may include a second power parameter, and the number of the second power parameter may be one.
  • the second parameter may be the maximum allowable power output power P EMAX1 UE used in accordance with the maximum output power of the UE determines the power level P PowerClass1 or network device.
  • the second power information may be a system message sent by the first network device, or may be included in a system message sent by the first network device, and the power parameter included therein may be located in SIB1 in the system message.
  • the second power parameter may be a positive integer.
  • S702 The UE determines whether to select the first cell according to the second power information.
  • the UE determining whether to select the first cell according to the second power information may include: the UE determining whether S rxlev satisfies the first criterion according to the second power information to determine whether to select the first cell, wherein The S rxlev is based on P compensation .
  • the first criterion can be the S criterion for cell selection
  • S rxlev can be calculated according to the following formula:
  • the UE when it determines whether to select the first cell according to the S criterion, it may also determine S qual , and S qual may be calculated according to the following formula:
  • the UE can select the first cell.
  • the UE may determine P compensation according to the second power information.
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm, and the second power parameter in the second power information is P
  • P compensation max (P EMAX1 ⁇ P PowerClass ,0)
  • the first network device can configure the same power parameters for UEs of different power levels, so that all UEs in the first cell use the same power parameters, so that UEs of different power levels have the same uplink coverage, so that different power levels
  • a UE of a class has fairness when selecting a cell to camp on.
  • the UE may establish a connection with the first cell.
  • the UE when the UE is a UE in mMTC, or when the UE is a low-cost and low-complexity UE, the UE may have at least one of the following characteristics:
  • UE supports a maximum bandwidth of 5MHz
  • the UE has a radio frequency channel or a radiating antenna
  • the UE has a reduced peak rate
  • the maximum transport block size transmitted by the UE is 1000 bits
  • the maximum output power of the UE is less than 23dBm
  • UE supports uplink coverage enhancement
  • the highest modulation mode supported by the UE is 16QAM.
  • the UE supports uplink coverage enhancement, which may refer to at least one of the following:
  • (1) UE supports the bundling of uplink transmission
  • the UE supports the bundling of uplink transmission during the random access process
  • the UE supports repeated transmission of uplink transmission.
  • the P PowerClass of the UE is less than 23 dBm, which may refer to at least one of the following:
  • the P PowerClass of the UE can be 20dBm or 17dBm or 14dBm or 11dBm;
  • the P PowerClass of the UE is X1, where X1 can be 20dBm or 17dBm or 14dBm or 11dBm, and the UE can choose to use P PowerClass as X2 to work, where X2 is less than X1.
  • FIG. 8 is a schematic interaction diagram of a UE establishing a connection with a first cell according to an embodiment of the present application.
  • S801 The UE determines whether to select the first cell.
  • the UE may determine whether to select the first cell according to the first power information or the second power information.
  • the UE may determine P compensation according to the power parameter in the first power information or the second power information, and then determine S rxlev according to the P compensation .
  • S qual can be determined in the following way:
  • the UE selects the cell and can establish a communication connection with it.
  • the power parameter may be the first power parameter in the first power information, or may be the second power parameter in the second power information.
  • the first network device may send second information to the UE, and the second information may include the first random access preamble and/or the first time-frequency resource.
  • the first random access preamble and/or the first time-frequency resource are used for UEs with massive machine communication mMTC, and/or UEs supporting uplink coverage enhancement, and/or UEs with lower power, such as UEs
  • the P PowerClass is less than 23dBm.
  • the second information may be system information, and the second information may also be part of the system information.
  • the second information may further include the first BWP, and the first BWP may be used to indicate bandwidth information for the UE to receive the first random access response message.
  • S803 The UE sends a first random access preamble to the first network device according to the first time-frequency resource.
  • the UE is a mMTC UE, and/or the UE supports uplink coverage enhancement, and/or a lower power UE, for example, the P PowerClass of the UE is less than 23 dBm.
  • the first network device sends a first random access response message to the UE, where the first random access response message may indicate the number of times the UE sends the first message.
  • the first random access response message may include uplink resource grant information (UL Grant), and its content is shown in Table 2 below.
  • UL Grant uplink resource grant information
  • the X bits in the authorization field of the random access response are used to indicate the number of repetitions of the first message.
  • the X bits may be X-1 bits in the MCS and 1 bit in the CSI request.
  • the X bits may be X bits in the frequency domain resource allocation of the physical uplink shared channel.
  • the number of repetitions may be a fixed Y times, for example, Y may be a positive integer such as 4, 8.
  • the first random access response message includes a second BWP
  • the second BWP is used to indicate a bandwidth for the UE to send the first message.
  • S805 The UE sends the first message to the first network device according to the UL grant, where the UL grant may be used to indicate the number of times the UE sends the first message.
  • the number of times of repeatedly sending the first message may be indicated by X bits in the UL grant, or may be a fixed number of times Y.
  • the first message may be a radio resource control (Radio Resource Control, RRC) connection establishment request message.
  • RRC Radio Resource Control
  • the first network device may send an RRC connection setup message or an RRC connection recovery message to the UE, and then the UE enters the RRC connection state and can perform data transmission with the first network device.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may include a receiving module 1001 and a processing module 1002.
  • the receiving module 1001 may be used to receive first power information corresponding to the first cell from the first network device, the first power information includes M first power parameters, and the M first power parameters correspond to N power levels, M is an integer greater than 1, and M is less than or equal to N.
  • the processing module 1002 may be configured to determine whether to select the first cell according to the first power information.
  • the processing module 1002 is configured to determine whether to select the first cell according to the first power information, including: the processing module 1002 according to the i-th first power parameter of the M first power parameters indicated by the first power information, Determine whether to select the first cell, the i-th first power parameter corresponds to the first power level of the N power levels, and the first power level is the power level of the UE.
  • the i-th first power parameter is P EMAXi corresponding to the first power level or P offseti , and i belongs to ⁇ 1, M ⁇ .
  • the processing module 1002 determines whether to select the first cell according to the first power information, including: the processing module 1002 determines whether S rxlev meets the first criterion according to the first power information to determine whether to select the first cell; wherein, S rxlev It is based on P compensation .
  • P compensation can be determined in the following manner:
  • P compensation max(P EMAXi -P PowerClass ,0), where P PowerClass is the maximum output power of the UE; or,
  • the communication device may be a mMTC communication device, and/or the communication device supports uplink coverage enhancement, and/or a lower power communication device, for example, the P PowerClass of the communication device is less than 23 dBm.
  • the receiving module 1001 is further configured to receive first information sent from the first network device, where the first information is used to indicate the correspondence between the M first and N power levels.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may include a sending module 1101.
  • the sending module 1101 may be used to send first power information corresponding to the first cell, the first power information includes M first power parameters, the M first power parameters correspond to N power levels, and M is an integer greater than 1. , And M is less than or equal to N.
  • the sending module 1101 may also be used to send first information to the UE, where the first information is used to indicate the correspondence between the M first power parameters and the N power levels.
  • a wireless communication device in another implementation manner, and the device can be used to execute the steps of the foregoing method flow.
  • the wireless communication device includes a processor and an interface circuit, and when the processor invokes instructions through the interface circuit, the steps in the above method flow can be executed.
  • the instruction can be stored in a storage medium.
  • the storage medium storing the instructions may be a component of the wireless communication device, or may be located outside the wireless communication device.
  • the wireless communication device may be user equipment, network equipment, or chip device.
  • FIG. 12 shows a schematic structural diagram of a communication device provided by an embodiment of the present application. It is used to implement the operation of the user equipment in the above embodiment.
  • the communication device includes an antenna 810, a radio frequency device 820, and a baseband device 830.
  • the antenna 810 is connected to the radio frequency device 820.
  • the radio frequency device 820 receives the information sent by the network device through the antenna 810, and sends the information sent by the network device to the baseband device 830 for processing.
  • the baseband device 830 processes the information of the communication device and sends it to the radio frequency device 820, and the radio frequency device 820 processes the information of the communication device and sends it to the network device via the antenna 810.
  • the baseband device 830 may include a modem subsystem, which is used to process the various communication protocol layers of data; it may also include a central processing subsystem, which is used to process the terminal operating system and application layer; in addition, it may also include other Subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the communication device camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be an independent chip.
  • the above device for the communication device may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 831, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 832 and an interface circuit 833.
  • the storage element 832 is used to store data and programs, but the program used to execute the method executed by the communication device in the above method may not be stored in the storage element 832, but stored in a memory outside the modem subsystem.
  • the interface circuit 833 is used to communicate with other subsystems.
  • the above device for the communication device may be located in the modem subsystem, and the modem subsystem may be implemented by a chip.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform any of the above communication devices.
  • the interface circuit is used to communicate with other devices.
  • the unit for the communication device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the communication device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method executed by the terminal in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application. Used to implement the operation of the network device in the above embodiment.
  • the communication device includes: an antenna 901, a radio frequency device 902, and a baseband device 903.
  • the antenna 901 is connected to the radio frequency device 902.
  • the radio frequency device 902 receives the information sent by the terminal through the antenna 901, and sends the information sent by the user equipment to the baseband device 903 for processing.
  • the baseband device 903 processes the terminal information and sends it to the radio frequency device 902, and the radio frequency device 902 processes the user equipment information and sends it to the terminal via the antenna 901.
  • the baseband device 903 may include one or more processing elements 9031, for example, a main control CPU and other integrated circuits.
  • the baseband device 903 may also include a storage element 9032 and an interface 9033.
  • the storage element 9032 is used to store programs and data; the interface 9033 is used to exchange information with the radio frequency device 902.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above device for the communication device may be located in the baseband device 903.
  • the above device for the communication device may be a chip on the baseband device 903.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform the above communication For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the communication device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the communication device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method executed by the communication device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种小区选择的方法,应用于无线通信领域,该方法包括:用户设备UE接收来自第一网络设备的对应于第一小区的第一功率信息,第一功率信息包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N;UE根据第一功率信息确定是否选择第一小区。一方面,通过配置相应的功率参数,可以实现不同的功率等级的UE可以具备相同的小区选择门限,即公平地进行小区选择;另一方面,由于不同功率等级的UE,其上行功率不同,在发送相同内容时,其上行发送可能需要不同的重复次数。为此,第一网络设备可以为不同的功率等级的UE配置各自的功率参数,使得不同功率等级的UE有选择小区的难易之分。

Description

一种小区选择的方法、系统及装置
本申请要求于2019年8月20日提交中国专利局、申请号为201910770060.4、申请名称为“一种小区选择的方法、系统及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种小区选择的方法、系统及装置。
背景技术
在蜂窝通信系统中,用户设备(user equipment,UE)在进行小区选择时,需要先对小区进行测量,并根据测量结果来确定一个合适的小区(suitable cell)。现有技术中,UE通过小区选择准则(即S准则)来确定一个小区是否是一个合适小区,其中S准则为小区接收电平值S rxlev大于零,且小区信号质量值S qual大于零。
在S准则中,不同的功率等级(power class)的UE可以根据S rxlev确定UE可以进行通信的不同的下行信号覆盖范围,功率等级定义了UE的最大输出功率,UE的功率等级越低,其最大输出功率越小,进而其上行信号覆盖范围越小,由于小区选择是参考下行信号的接收功率和信号质量,为兼顾上行信号覆盖范围,根据S rxlev确定的下行信号覆盖范围就会越小,即离网络设备距离较远的UE可能不能选择到该网络设备对应的小区。
在蜂窝通信系统中,会引入最大输出功率较小的UE(或功率等级较小的UE,或较低功率的UE),由于网络已经部署,对于最大输出功率较大的UE(或功率等级较大的UE,或较高功率的UE),能够保证其上行信号和下行信号的全覆盖,但对于较低功率的UE,由于其最大输出功率有限,其可驻留的下行信号覆盖范围会缩小,在多个网络设备之间的有些区域,这类UE无法正常通信。对于这类较低功率的UE,其可以正常接收网络设备发送的下行信号,但在进行小区选择时,由于其受到最大输出功率的限制,即上行发射功率受限,其可选择一个小区进行正常通信的覆盖范围会变小。随着上行覆盖增强技术的引入,其可以提高上行传输的性能,进而可以改善较低功率UE的上行覆盖。然而,现有技术中,小区选择准则限制了较低功率的UE的小区选择,即在可以进行下行通信但不能进行上行通信的覆盖范围,UE不能选择该小区,这样,即使引入了上行覆盖增强技术,由于UE在上述覆盖范围不会选择到一个小区,所以导致该UE在上述覆盖范围无法进行正常通信。
发明内容
本申请提供一种小区选择的方法、系统及装置。网络设备可以为不同功率等级的UE配置其功率等级对应的功率参数。一方面,通过配置相应的功率参数,可以实现不同的功率等级的UE可以具备相同的小区选择门限,即公平地进行小区选择。不会因为不同UE 的不同功率等级,而出现选择小区有难易的区别,即较高功率的UE,其小区的信号覆盖范围较大,不需要距离网络设备很近也能选择该小区,可以称为较容易选择该小区,而较低功率的UE,其小区的信号覆盖范围较小,需要距离网络设备较近才能选择该小区,可以称为不容易选择该小区。另一方面,由于不同功率等级的UE,其上行功率不同,在发送相同内容时,其上行发送可能需要不同的重复次数。例如,功率较小的UE需要重复发送的次数多,这样,这类UE其使用的上行资源也会多,为此,第一网络设备可以为不同的功率等级的UE配置各自的功率参数,使得不同功率等级的UE有选择小区的难易之分,从网络资源的角度来看,这是公平的,因为其占用资源多,所以网络可以控制这类UE,使其不容易选择到一个小区,以减少对系统资源的过度消耗。
第一方面,提供了一种小区选择的方法,该方法包括:用户设备UE接收来自第一网络设备的对应于第一小区的第一功率信息,第一功率信息包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N;UE根据第一功率信息确定是否选择第一小区。
根据本申请实施例,第一网络设备可以为不同功率等级的UE配置其功率等级对应的第一功率参数,一方面,通过配置相应的第一功率参数,可以实现不同的功率等级的UE可以具备相同的小区选择门限,即公平地进行小区选择,不会因为不同UE的不同功率等级,而出现选择小区有难易的区别,即较高功率的UE,其小区的信号覆盖范围较大,不需要距离网络设备很近也能选择该小区,可以称为较容易选择该小区,而较低功率的UE,其小区的信号覆盖范围较小,需要距离网络设备较近才能选择该小区,可以称为不容易选择该小区。另一方面,由于不同功率等级的UE,其上行功率不同,在发送相同内容时,其上行发送可能需要不同的重复次数,例如,功率较小的UE需要重复发送的次数多,这样,这类UE其使用的上行资源也会多,为此,第一网络设备可以为不同的功率等级的UE配置各自的第一功率参数,使得不同功率等级的UE有选择小区的难易之分,从网络资源的角度来看,这是公平的,因为其占用资源多,所以网络可以控制这类UE,使其不容易选择到一个小区,以减少对系统资源的过度消耗。
一种可选的设计,UE根据第一功率信息确定是否选择第一小区,包括:UE根据第一功率信息所指示的M个第一功率参数中的第i个第一功率参数,确定是否选择第一小区,第i个第一功率参数对应N个功率等级中的第一功率等级,第一功率等级是UE的功率等级。
根据本申请实施例,N个功率等级中可以有多个功率等级对应于一个第一功率参数,也可以N个功率等级与M个第一功率参数一一对应,这种情况下,M等于N。第一网络设备可以为不同的功率等级的UE配置各自的第一功率参数,使得不同功率等级的UE有选择小区的难易之分。
一种可选的设计,第i个第一功率参数为对应于第一功率等级的第一网络设备允许UE使用的最大输出功率P EMAXi或者第i个第一功率参数为对应于第一功率等级的功率偏移量P offseti,i属于{1,M}。
一种可选的设计,UE根据第一功率信息确定是否选择第一小区,包括:UE根据第一功率信息确定小区选择接收电平值S rxlev是否满足第一准则,以确定是否选择第一小区;其中,S rxlev是基于功率补偿值P compensation得到的。
一种可选的设计,P compensation=max(P EMAXi–P PowerClass,0),其中P PowerClass为UE的最大 输出功率;或者,P compensation=max(P EMAX–(P PowerClass–P offseti),0),或,P compensation=max(P EMAX+P offseti,0),其中P EMAX为第一网络设备允许UE使用的最大输出功率。
根据本申请实施例,第一网络设备可以通过为不同功率等级的UE配置相应的第一功率参数,可以根据本申请实施例中的计算方法确定是否选择第一小区。
一种可选的设计,UE为海量机器类型通信mMTC的UE,或UE支持上行覆盖增强,或较低功率的UE,例如UE的P PowerClass小于23分贝毫瓦(decibel relative to one milliwatt,dBm)。
根据本申请实施例,第一网络设备可以为不同功率等级的UE配置其功率等级对应的第一功率参数,通过配置相应的第一功率参数,可以实现不同的功率等级的UE可以具备相同的小区选择门限,即公平地进行小区选择,不会因为不同UE的不同功率等级,而出现选择小区有难易的区别。
一种可选的设计,方法还包括:UE接收来自第一网络设备发送的第一信息,第一信息用于指示M个第一功率参数与N个功率等级的对应关系。
第二方面,提供了一种小区选择的方法,方法包括:第一网络设备向UE发送对应于第一小区的第一功率信息,第一功率信息包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N。
一种可选的设计,方法还包括:第一网络设备向UE发送第一信息,第一信息用于指示M个第一功率参数与N个功率等级的对应关系。
第三方面,提供了一种通信装置,通信装置包括:接收模块,接收模块用于接收来自第一网络设备的对应于第一小区的第一功率信息,第一功率信息包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N;处理模块,处理模块用于根据第一功率信息确定是否选择第一小区。
一种可选的设计,处理模块用于根据第一功率信息确定是否选择第一小区,包括:处理模块根据第一功率信息所指示的M个第一功率参数中的第i个第一功率参数,确定是否选择第一小区,第i个第一功率参数对应N个功率等级中的第一功率等级,第一功率等级是UE的功率等级。
一种可选的设计,第i个第一功率参数为对应于第一功率等级的第一网络设备允许UE使用的最大输出功率P EMAXi,或者第i个第一功率参数为对应于第一功率等级的功率偏移量P offseti,i属于{1,M}。
结合第三方面,在第三方面的某些实现方式中,处理模块根据第一功率信息确定是否选择第一小区,包括:处理模块根据第一功率信息确定小区选择接收电平值S rxlev是否满足第一准则,以确定是否选择第一小区;其中,S rxlev是基于功率补偿值P compensation得到的。
一种可选的设计,P compensation=max(P EMAXi–P PowerClass,0),其中P PowerClass为UE的最大输出功率;或者,P compensation=max(P EMAX–(P PowerClass–P offseti),0),或,P compensation=max(P EMAX+P offseti,0),其中P EMAX为第一网络设备允许UE使用的最大输出功率。
一种可选的设计,通信装置为海量机器类型通信mMTC的通信装置,或通信装置支持上行覆盖增强,或较低功率的通信装置,例如通信装置的P PowerClass小于23dBm。
一种可选的设计,接收模块还用于接收自第一网络设备发送的第一信息,第一信息用于指示M个第一功率参数与N个功率等级的对应关系。
第四方面,提供了一种通信装置,通信装置包括:发送模块,发送模块用于向UE发 送对应于第一小区的第一功率信息,第一功率信息包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N。
一种可选的设计,发送模块还用于向UE发送第一信息,第一信息用于指示M个第一功率参数与N个功率等级的对应关系。
第五方面,提供了一种网络系统,网络系统包括至少一个第三方面所述的通信装置和至少一个第四方面所述的通信装置。
第六方面,提供了另一种小区选择的方法,方法包括:UE接收来自第一网络设备的对应于第一小区的第二功率信息,第二功率信息包括第二功率参数,第二功率参数可以是根据UE的功率等级确定的最大输出功率P PowerClass1或网络设备允许UE使用的最大输出功率P EMAX1,UE根据第二功率信息确定是否选择第一小区。
一种可选的设计,UE根据第一功率信息确定是否选择第一小区,包括:UE根据第二功率信息确定小区选择接收电平值S rxlev是否满足第一准则,以确定是否选择第一小区;其中,S rxlev是基于功率补偿值P compensation得到的。
一种可选的设计,P compensation=max(P EMAX–P PowerClass1,0),其中P EMAX为第一网络设备允许UE使用的最大输出功率,P PowerClass1可以是正整数。
一种可选的设计,P compensation=max(P EMAX+P PowerClass1,0),其中P EMAX为第一网络设备允许UE使用的最大输出功率,P PowerClass1可以是正整数。
一种可选的设计,P compensation=max(P EMAX1–P PowerClass,0),其中P PowerClass为UE的最大输出功率,P EMAX1可以是正整数。
一种可选的设计,P compensation=max(P EMAX1+P PowerClass,0),其中P PowerClass为UE的最大输出功率,P EMAX1可以是正整数。
一种可选的设计,UE为海量机器类型通信mMTC的UE,或UE支持上行覆盖增强,或较低功率的UE,例如UE的P PowerClass小于23dBm。
第七方面,提供了一种小区选择的方法,方法包括:第一网络设备向UE发送对应于第一小区的第二功率信息,第二功率信息包括第二功率参数,第二功率参数可以是根据UE的功率等级确定的最大输出功率P PowerClass1或网络设备允许UE使用的最大输出功率P EMAX1
第八方面,提供了一种通信装置,所述通信装置可以执行上述第五方面中的任一种方法。
第九方面,提供了一种通信装置,所述通信装置可以执行上述第六方面中的任一种方法。
第十方面,提供了又一种小区选择的方法,方法包括:第一网络设备向UE发送第二信息,第二信息包括第一随机接入前导码和/或第一时频资源;第一网络设备从UE接收第一随机接入前导码;第一网络设备向UE发送第一随机接入响应消息;第一网络设备从UE接收第一消息,第一消息用于请求建立或恢复RRC连接;第一网络设备向UE发送RRC连接设置消息或RRC连接恢复消息,以用于建立或恢复RRC连接。
一种可选的设计,第一随机接入前导码和/或第一时频资源用于mMTC的UE,和/或支持上行覆盖增强的UE,和/或较低功率的UE。
一种可选的设计,第二信息还可以包括第一部分带宽(Bandwidth Part,BWP),第一BWP可以用于指示UE接收第一随机接入响应消息的带宽信息。
一种可选的设计,第一随机接入响应消息包含R比特,且当R=1时,第一随机接入响应消息用于指示UE发送第一消息的重复次数。
第十一方面,提供了又一种小区选择的方法,方法包括:UE从第一网络设备接收第二信息,第二信息包括第一随机接入前导码和/或第一时频资源,UE向第一网络设备发送第一随机接入前导码;UE从第一网络设备接收第一随机接入响应消息;UE向第一网络设备发送第一消息,第一消息用于请求建立或恢复RRC连接;UE从第一网络设备接收RRC连接设置消息或RRC连接恢复消息,以用于建立或恢复RRC连接。
一种可选的设计,第一随机接入前导码和/或第一时频资源用于mMTC的UE,和/或支持上行覆盖增强的UE,和/或较低功率的UE。
一种可选的设计,第二信息还可以包括第一BWP,第一BWP可以用于指示UE接收第一随机接入响应消息的带宽信息。
一种可选的设计,第一随机接入响应消息包含R比特,且当R=1时,第一随机接入响应消息用于指示UE发送第一消息的重复次数。
第十二方面,提供了一种通信装置,所述通信装置可以执行上述第十一方面中的任一种方法。
第十三方面,提供了一种通信装置,所述通信装置可以执行上述第十方面中的任一种方法。
第十四方面,提供了一种通信装置,通信装置包括:至少一个处理器,至少一个存储器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,所述存储器用于存储来自第一网络设备的对应于第一小区的第一功率信息,第一功率信息包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N;当程序指令在所述至少一个处理器中执行时,处理器可以根据第一功率信息确定是否选择第一小区。
第十五方面,提供了一种通信装置,通信装置包括:至少一个处理器,至少一个存储器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,所述存储器用于存储第一功率信息,第一功率信息包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N;当程序指令在所述至少一个处理器中执行时,使得所述通信装置执行上文中的方法。
第十六方面,提供一种芯片,所述芯片包括:至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得上文中的方法被执行。
第十七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1是适用于本申请实施例的通信系统的架构示意图。
图2是同一小区内不同功率等级的UE的覆盖范围的示意图。
图3是不同功率等级的UE的覆盖范围的示意图。
图4是本申请实施例提供的一种小区选择的方法的示意性流程图。
图5是本申请实施例提供的一种小区选择的方法的示意性交互图。
图6是本申请实施例提供的另一种小区选择的方法的示意性流程图。
图7是本申请实施例提供的一种小区选择的方法的示意性交互图.
图8是本申请实施例提供的一种UE与第一小区建立连接的示意性交互图。
图9是本申请实施例提供的第一随机接入响应消息的格式的示意图。
图10是本申请实施例的一种通信装置的示意性结构图。
图11是本申请实施例的一种通信装置的示意性结构图。
图12是本申请实施例提供的通信装置的示意图。
图13是本申请实施例提供的通信装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是适用于本申请实施例的移动通信系统的架构示意图。
如图1所示,该移动通信系统100可以包括至少一个网络设备101和至少一个UE102。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的网络设备和UE的数量和具体类型不做限定。
本申请实施例中的UE102可以指接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。用户设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助手(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的用户设备以及未来6G网络中的用户设备和7G网络中的用户设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备101可以是用于与用户设备通信的设备,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的网络设备(nodeB,NB),还可以是LTE系统中的演进型网络设备(e–UTRAN nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备(new generation nodeB,gNB或gNodeB)或者未来演进的PLMN网络中的网络设备以及未来6G网络中的网络设备和7G网络中的网络设备等,本申请实施例并不限定。
可选地,本申请的通信方法也可以拓展到各种通信系统中,GSM系统、CDMA系统、WCDMA系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G系统或新无线(new radio,NR)等。
UE在选择小区时,通常会应用S准则来确定一个小区是否是一个合适小区,其中S准则为:
S rxlev>0,且S qual>0,
其中,
S rxlev=Q rxlevmeas–(Q rxlevmin+Q rxlevminoffset)–P compensation–Q offsettemp
S qual=Q qualmeas–(Q qualmin+Q qualminoffset)–Q offsettemp
其中,
Q rxlevmeas为测量的小区接收电平值(参考信号接收功率)(measured cell RX level value(RSRP));
Q rxlevmin为所需最小接收电平(minimum required RX level in the cell);
Q rxlevminoffset为Q rxlevmin的偏移量;
P compensation为max(P EMAX–P PowerClass,,0),P EMAX为网络设备允许的UE可能使用的最大输出功率(maximum TX power level of a UE may use when transmitting on the uplink in the cell),P PowerClass为根据UE的功率等级确定的最大输出功率(maximum output power),其中,P PowerClass为UE本身具备的发射能力,即UE根据功率等级确定的最大输出功率,P EMAX为网络设备允许UE使用的最大输出功率;
Q offsettemp为临时偏移量(offset temporarily applied to a cell);
Q qualmeas为测量的小区信号质量值(参考信号接收质量)(measured cell quality value(RSRQ));
Q qualmin为所需最小信号质量值(minimum required quality level in the cell);
Q qualminoffset为Q qualmin的偏移量。
在一种最简单的情况下,例如,Q rxlevminoffset、P compensation、Q offsettemp、Q qualminoffset、Q offsettemp均为零,则S rxlev>0且S qual>0,等价于Q rxlevmeas>Q rxlevmin且Q qualmeas>Q qualmin,即终端测量的RSRP值和RSRQ值要大于所需的最小接收电平值和所需的最小信号质量值。
当前通信系统支持不同的功率等级的UE,即不同UE可能有不同的最大输出功率,例如23dBm,26dBm。从UE的角度来看,不同的功率等级对应不同的上行覆盖范围,换句话说,在网络设备能够接收/解码UE发送的上行数据的前提下,输出功率越大的UE可以离网络设备越远。因此,在S rxlev的公式中,引入了P compensation参数,当网络设备指示的UE可以使用的最大输出功率P EMAX大于P PowerClass时,P compensation=P EMAX–P PowerClass,先不考虑Q rxlevminoffset、Q offsettemp,则S rxlev=Q rxlevmeas–Q rxlevmin–P compensation,由于P compensation大于0,所以需要Q rxlevmeas更大,即UE需要离网络设备更近。P EMAX是网络设备通过系统消息发送给UE的参数,是网络设备允许UE使用的最大输出功率,其取值一般不会改变,不同的UE可能具有不同的P PowerClass,P PowerClass越小,P compensation就越大,若需要S rxlev大于0,就需要Q rxlevmeas越大,即UE需要离网络设备越近,可以理解为,UE的下行覆盖范围变小。离网络设备越远,Q rxlevmeas越小,无法满足Srxlev大于0,UE就不能选择到该小区。
如图2所示,在同一网络设备201的覆盖下,由Q rxlevmin所确定的下行覆盖范围可以由图2中206表示,即满足Q rxlevmeas>Q rxlevmin覆盖范围,UE202的P PowerClass小于UE203的P PowerClass,则UE202的上行覆盖范围小于UE203的上行覆盖范围,为了使得UE202能够与网络设备201正常通信,则UE202的下行覆盖204也应该小于UE203的下行覆盖205,即网络设备201对于不同的功率等级的UE有着不同的下行覆盖,即UE202可以在204以内的范围正常通信, UE203可以在205以内的范围正常通信。
在未来的通信系统中,会引入较低功率的UE,由于网络设备已经部署,对于较高功率的UE能够保证其信号的全覆盖,但对于低功率的UE,由于其上行功率受限,其可驻留的覆盖范围会缩小,如图3所示,图3中的每个第一区域301(即区域A,用上对角线表示)可以看成一个小区的下行覆盖区域,现有的UE或较高功率的UE在第一区域301内确定对应的小区是适合驻留的小区,如果一个UE不在任何一个第一区域301内,则UE确定不在无线网络的服务范围;相应地,每个第二区域302(即区域B,用下对角线表示)可以看成适用于较低功率UE的一个小区的下行覆盖区域,如果一个较低功率UE不在任何一个第二区域302内,则UE确定不在无线网络的服务范围。需要说明的是,图3中菱形区域为区域A和区域B的重叠区域。由图3可知,对于现有的UE或较高功率的UE,其有小区可供选择的区域是连续的(即图3中的第一区域301之间没有不被第一区域301覆盖的区域),而对于较低功率的UE,第二区域302之间存在不被第一区域302覆盖的区域,这样,较低功率的UE在第二区域302之间没有可以选择的小区,即找不到一个小区可以满足S准则,即第二区域302不是连续的,这样,对于较低功率的UE,其信号覆盖范围不再是连续的,在有些区域,这类UE无法正常通信。
对于这类较低功率的UE,考虑到其在进行小区选择时,受到上行发射功率的影响,而非下行接收功率的影响,即UE可以接收网络设备发送的下行数据,若引入上行增强技术来提高上行传输的性能,则可以改善较低功率UE的覆盖范围。这样,需要解决的一个问题即如何实现较低功率的UE能够在小区边缘,如图3中的第二区域302以外的区域选择到一个合适的小区。
本申请提供了一种小区选择的方法,使较低功率的UE能够在较大的范围选择一个小区,使其具备连接的信号覆盖范围。
图4是本申请实施例提供的一种小区选择的方法的示意性流程图,图4的方法可以由图1的UE102执行。
S401,UE接收来自第一网络设备的对应于第一小区的第一功率信息,第一功率信息可以包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N。
其中,功率等级定义了UE的最大输出功率,UE可以根据功率等级确定最大输出功率。
例如,第三代合作伙伴计划(3rd generation partnershipproject,3GPP)TS 38.101–1–g00中给出功率等级与最大输出功率的对应关系,如表1所示:
表1
Figure PCTCN2020108441-appb-000001
Figure PCTCN2020108441-appb-000002
应理解,N个功率等级中可以存在多个功率等级对应于相同的第一功率参数,也可以N个功率等级与M个第一功率参数一一对应,这种情况下,M等于N。
可选地,第一功率信息中可以携带M个第一功率参数与N个功率等级的对应关系,或者,UE可以接收第一网络设备发送的第一信息,第一信息可以用于指示M个第一功率参数与N个功率等级的对应关系。
可选地,UE可以根据所述第一功率信息所指示的M个第一功率参数中的第i个第一功率参数,确定是否选择所述第一小区。其中,所述M个第一功率参数中的第i个第一功率参数对应N个功率等级中的第一功率等级,第一功率等级是UE的功率等级。
可选地,第i个第一功率参数与第一功率等级等对应关系可以是第一功率信息所指示 的,或者也可以是UE接收的第一信息指示的。
可选地,第i个第一功率参数为对应于第一功率等级的第一网络设备允许UE使用的最大输出功率P EMAXi,或者第i个第一功率参数为功率偏移量P offseti,i属于{1,M}。
应理解,当第一功率参数为P EMAXi时,则可以理解为网络设备重新为UE配置了允许UE使用的最大输出功率。
可选地,第一功率信息可以包括于第一网络设备发送的系统消息,例如M个第一功率参数可以包括于系统信息块1(system information block type1,SIB1)中。
可选地,M个第一功率参数的取值为正整数。
S402,UE根据第一功率信息确定是否选择第一小区。
可选地,UE根据第一功率信息确定是否选择所述第一小区,可以包括:UE根据第一功率信息确定S rxlev是否满足第一准则,以确定是否选择所述第一小区,其中,所述S rxlev是基于P compensation得到的。其中,第一准则可以是小区选择时的S准则,S rxlev可以根据以下公式进行计算:
S rxlev=Q rxlevmeas–(Q rxlevmin+Q rxlevminoffset)–P compensation–Q offsettemp
可选地,UE根据S准则确定是否选择第一小区时,还可以确定S qual,S qual可以根据以下公式进行计算:
S qual=Q qualmeas–(Q qualmin+Q qualminoffset)–Q offsettemp
当S rxlev>0,且S qual>0,则UE可以选择第一小区。
可选地,UE可以根据第一功率信息确定P compensation
可选地,第一功率参数可以是对应于第一功率等级的第一功率参数为P EMAXi或第一功率参数可以是对应于第一功率等级的第一功率参数为P offseti
可选地,如果UE为海量机器类型通信(massive machine type of communication,mMTC)的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P EMAXi时,则P compensation=max(P EMAXi–P PowerClass,0),P EMAXi可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P EMAXi时,则P compensation=max(P EMAXi+P PowerClass,0),P EMAXi可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P offseti时,则P compensation=max(P EMAX–(P PowerClass–P offseti),0),P offseti可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
第一网络设备可以为不同功率等级的UE配置其功率等级对应的P EMAXi,重新为UE配置网络设备允许UE使用的最大输出功率,一方面,通过配置相应的P EMAXi,可以实现不同的功率等级的UE可以具备相同的小区选择门限,即公平地进行小区选择,不会因为不同UE的不同功率等级,而出现选择小区有难易的区别,即较高功率的UE,其小区的信号覆盖范围较大,不需要距离网络设备很近也能选择该小区,可以称为较容易选择该小区,而较低功率的UE,其小区的信号覆盖范围较小,需要距离网络设备较近才能选择该 小区,可以称为不容易选择该小区。另一方面,由于不同功率等级的UE,其上行功率不同,在发送相同内容时,其上行发送可能需要不同的重复次数,例如,功率较小的UE需要重复发送的次数多,这样,这类UE其使用的上行资源也会多,为此,第一网络设备可以为不同的功率等级的UE配置各自的P EMAXi,使得不同功率等级的UE有选择小区的难易之分,从网络资源的角度来看,这是公平的,因为其占用资源多,所以网络可以控制这类UE,使其不容易选择到一个小区,以减少对系统资源的过度消耗。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P offseti时,则P compensation=max(P EMAX–(P PowerClass+P offseti),0),P offseti可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P offseti时,则P compensation=max(P EMAX–P offseti,0),P offseti可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P offseti时,则P compensation=max(P EMAX+P offseti,0),P offseti可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
第一网络设备可以为不同功率等级的UE配置其功率等级对应的P offseti,一方面,通过配置相应的P offseti,可以实现不同的功率等级的UE可以具备相同的小区选择门限,即公平地进行小区选择,不会因为不同的UE的不同功率等级,而出现选择小区有难易的区别,即较高功率的UE,其小区的信号覆盖范围较大,不需要距离网络设备很近也能选择该小区,可以称为较容易选择该小区,而较低功率的UE,其小区的信号覆盖范围较小,需要距离网络设备较近才能选择该小区,可以称为不容易选择该小区。另一方面,由于不同功率等级的UE,其上行功率不同,在发送相同内容时,其上行发送可能需要不同的重复次数,例如,功率较小的UE需要重复发送的次数多,这样,这类UE其使用的上行资源也会多,为此,第一网络设备可以为不同的功率等级的UE配置各自的P offseti,使得不同功率等级的UE有选择小区的难易之分,从网络资源的角度来看,这是公平的,因为其占用资源多,所以网络可以控制这类UE,使其不容易选择到一个小区,以减少对系统资源的过度消耗。
可选地,UE为mMTC中的UE时,或者UE为低成本、低复杂度的UE时,UE可以具有以下至少一种特征:
(1)UE支持最大带宽为5MHz;
(2)UE具有一个射频通道或一个辐射天线;
(3)UE具有降低的峰值速率;
(4)UE支持半双工FDD;
(5)UE传输的最大传输块尺寸为1000bits;
(6)UE的最大输出功率较小于23dBm;
(7)UE支持上行覆盖增强;
(8)UE支持最高调制方式为16QAM。
可选地,UE支持上行覆盖增强,可以指的是如下至少一种:
(1)UE支持上行发送的捆绑(bundling);
(2)UE在随机接入过程支持上行发送的捆绑;
(3)UE支持上行传输的重复发送(repetition)。
可选地,UE的P PowerClass小于23dBm,可以指的是如下至少一种:
(1)UE的P PowerClass可以为20dBm或17dBm或14dBm或11dBm;
(2)UE的P PowerClass为X1,其中X1可以为20dBm或17dBm或14dBm或11dBm,UE可以选择使用P PowerClass为X2来工作,其中X2小于X1。
图5是本申请实施例提供的一种小区选择的方法的示意性交互图,图5的方法可以由图1的网络设备101和UE102执行。
S501,第一网络设备可以向UE发送对应于第一小区的第一功率信息,第一功率信息可以包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N。
其中,功率等级定义了UE的最大输出功率,UE可以根据功率等级确定最大输出功率。
应理解,N个功率等级中可以有多个功率等级对应于一个第一功率参数,也可以N个功率等级与M个第一功率参数一一对应,这种情况下,M等于N。
可选地,第一功率信息中可以携带M个第一功率参数与N个功率等级的对应关系,或者,第一网络设备可以向UE发送第一信息,第一信息可以用于指示M个第一功率参数与N个功率等级的对应关系。
可选地,UE可以根据所述第一功率信息所指示的M个第一功率参数中的第i个第一功率参数,确定是否选择所述第一小区,其中,第i个第一功率参数对应N个功率等级中的第一功率等级,第一功率等级是UE的功率等级。
可选地,第i个第一功率参数与第一功率等级等对应关系可以是第一功率信息所指示的,或者也可以是UE接收的第一信息指示的。
可选地,第i个第一功率参数为对应于第一功率等级的第一网络设备允许UE使用的最大输出功率P EMAXi或者第i个第一功率参数为对应于第一功率等级的功率偏移量P offseti,i属于{1,M}。
应理解,当第一功率参数为P EMAXi时,则可以理解为网络设备重新为UE配置了允许UE使用的最大输出功率。
可选地,第一功率信息可以包括于第一网络设备发送的系统消息,例如,M个第一功率参数可以包括于系统消息中的SIB1中。
可选地,M个第一功率参数的取值均为正整数。
S502,UE根据第一功率信息确定是否选择第一小区。
可选地,UE根据第一功率信息确定是否选择所述第一小区,可以包括:UE根据第一功率信息确定S rxlev是否满足第一准则,以确定是否选择所述第一小区,其中,所述S rxlev是基于P compensation得到的。其中,第一准则可以是小区选择时的S准则,而S rxlev则可以根据以下公式进行计算:
S rxlev=Q rxlevmeas–(Q rxlevmin+Q rxlevminoffset)–P compensation–Q offsettemp
可选地,UE根据S准则确定是否选择第一小区时,还可以确定S qual,而S qual可以根 据以下公式进行计算:
S qual=Q qualmeas–(Q qualmin+Q qualminoffset)–Q offsettemp
当S rxlev>0,且S qual>0,则UE可以选择第一小区。
可选地,UE可以根据第一功率信息确定P compensation
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P EMAXi时,则P compensation=max(P EMAXi–P PowerClass,0),P EMAXi可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P EMAXi时,则P compensation=max(P EMAXi+P PowerClass,0),P EMAXi可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
第一网络设备可以为不同功率等级的UE配置其功率等级对应的P EMAXi,重新为UE配置网络设备允许UE使用的最大输出功率,一方面,通过配置相应的P EMAXi,可以实现不同的功率等级的UE可以具备相同的小区选择门限,即公平地进行小区选择,不会因为不同UE的不同功率等级,而出现选择小区有难易的区别,即较高功率的UE,其小区的信号覆盖范围较大,不需要距离网络设备很近也能选择该小区,可以称为较容易选择该小区,而较低功率的UE,其小区的信号覆盖范围较小,需要距离网络设备较近才能选择该小区,可以称为不容易选择该小区。另一方面,由于不同功率等级的UE,其上行功率不同,在发送相同内容时,其上行发送可能需要不同的重复次数,例如,功率较小的UE需要重复发送的次数多,这样,这类UE其使用的上行资源也会多,为此,第一网络设备可以为不同的功率等级的UE配置各自的P EMAXi,使得不同功率等级的UE有选择小区的难易之分,从网络资源的角度来看,这是公平的,因为其占用资源多,所以网络可以控制这类UE,使其不容易选择到一个小区,以减少对系统资源的过度消耗。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P offseti时,则P compensation=max(P EMAX–(P PowerClass–P offseti),0),P offseti可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P offseti时,则P compensation=max(P EMAX–(P PowerClass+P offseti),0),P offseti可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P offseti时,则P compensation=max(P EMAX–P offseti,0),P offseti可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第一功率信息中对应于第一功率等级的第一功率参数为P offseti时,则P compensation=max(P EMAX+P offseti,0),P offseti可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
第一网络设备可以为不同功率等级的UE配置其功率等级对应的P offseti,一方面,通过配置相应的P offseti,可以实现不同的功率等级的UE可以具备相同的小区选择门限,即公平地进行小区选择,不会因为不同的UE的不同功率等级,而出现选择小区有难易的区别。另一方面,由于不同功率等级的UE,其上行功率不同,在发送相同内容时,其上行发送可能需要不同的重复次数,例如,功率较小的UE需要重复发送的次数多,这样,这类UE其使用的上行资源也会多,为此,第一网络设备可以为不同的功率等级的UE配置各自的P offseti,使得不同功率等级的UE有选择小区的难易之分,从网络资源的角度来看,这是公平的,因为其占用资源多,所以网络可以控制这类UE,使其不容易选择到一个小区,以减少对系统资源的过度消耗。
S503,UE可以与第一小区建立连接。
可选地,UE为mMTC中的UE时,或者UE为低成本、低复杂度的UE时,UE可以具有以下至少一种特征:
(1)UE支持最大带宽为5MHz;
(2)UE具有一个射频通道或一个辐射天线;
(3)UE具有降低的峰值速率;
(4)UE支持半双工FDD;
(5)UE传输的最大传输块尺寸为1000bits;
(6)UE的最大输出功率较小于23dBm;
(7)UE支持上行覆盖增强;
(8)UE支持最高调制方式为16QAM。
可选地,UE支持上行覆盖增强,可以指的是如下至少一种:
(1)UE支持上行发送的捆绑;
(2)UE在随机接入过程支持上行发送的捆绑;
(3)UE支持上行传输的重复发送。
可选地,UE的P PowerClass小于23dBm,可以指的是如下至少一种:
(1)UE的P PowerClass可以为20dBm或17dBm或14dBm或11dBm;
(2)UE的P PowerClass为X1,其中X1可以为20dBm或17dBm或14dBm或11dBm,UE可以选择使用P PowerClass为X2来工作,其中X2小于X1。
可选地,当S rxlev>0,且S qual>0,则UE可以选择第一小区,与第一网络设备建立通信连接。
图6是本申请实施例提供的另一种小区选择的方法的示意性流程图,图6的方法可以由图1的UE102执行。
S601,UE接收来自第一网络设备的对应于第一小区的第二功率信息,第二功率信息可以包括第二功率参数,第二功率参数的个数可以为一个。
可选地,第二功率参数可以是根据UE的功率等级确定的最大输出功率P PowerClass1或第一网络设备允许UE使用的最大输出功率P EMAX1
可选地,第二功率信息可以是第一网络设备发送的系统消息,也可以是包括于第一网络设备发送的系统消息的一部分,则其中包括的第二功率参数可以位于系统消息中的SIB1中。
可选地,第二功率参数可以为正整数。
S602,UE根据第二功率信息确定是否选择第一小区。
可选地,UE根据第二功率信息确定是否选择所述第一小区,可以包括:UE根据第二功率信息确定S rxlev是否满足第一准则,以确定是否选择所述第一小区,其中,所述S rxlev是基于P compensation得到的。其中,第一准则可以是小区选择时的S准则,S rxlev则可以根据以下公式进行计算:
S rxlev=Q rxlevmeas–(Q rxlevmin+Q rxlevminoffset)–P compensation–Q offsettemp
可选地,UE根据S准则确定是否选择第一小区时,还可以确定S qual,S qual可以根据以下公式进行计算:
S qual=Q qualmeas–(Q qualmin+Q qualminoffset)–Q offsettemp
当S rxlev>0,且S qual>0,则UE可以选择第一小区。
可选地,UE可以根据第二功率信息确定P compensation
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第二功率信息中的第二功率参数为P PowerClass1时,则P compensation=max(P EMAX–P PowerClass1,0),P PowerClass1可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第二功率信息中的第二功率参数为P PowerClass1时,则P compensation=max(P EMAX+P PowerClass1,0),P PowerClass1可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第二功率信息中的第二功率参数为P EMAX1时,则P compensation=max(P EMAX1–P PowerClass,0),P EMAX1可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX1–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第二功率信息中的第二功率参数为P EMAX1时,则P compensation=max(P EMAX1+P PowerClass,0),P EMAX1可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
第一网络设备可以通过为不同功率等级的UE配置相同的功率参数,使第一小区内的所有UE都使用相同的功率参数,可以使得不同功率等级的UE具有相同的上行覆盖范围,使得不同功率等级的UE在选择小区进行驻留时具备公平性。
可选地,UE为mMTC中的UE时,或者UE为低成本、低复杂度的UE时,UE可以具有以下至少一种特征:
(1)UE支持最大带宽为5MHz;
(2)UE具有一个射频通道或一个辐射天线;
(3)UE具有降低的峰值速率;
(4)UE支持半双工FDD;
(5)UE传输的最大传输块尺寸为1000bits;
(6)UE的最大输出功率较小于23dBm;
(7)UE支持上行覆盖增强;
(8)UE支持最高调制方式为16QAM。
可选地,UE支持上行覆盖增强,可以指的是如下至少一种:
(1)UE支持上行发送的捆绑;
(2)UE在随机接入过程支持上行发送的捆绑;
(3)UE支持上行传输的重复发送。
可选地,UE的P PowerClass小于23dBm,可以指的是如下至少一种:
(1)UE的P PowerClass可以为20dBm或17dBm或14dBm或11dBm;
(2)UE的P PowerClass为X1,其中X1可以为20dBm或17dBm或14dBm或11dBm,UE可以选择使用P PowerClass为X2来工作,其中X2小于X1。
图7是本申请实施例提供的一种小区选择的方法的示意性交互图,图7的方法可以由图1的网络设备101和UE102执行。
S701,第一网络设备向UE发送对应于第一小区的第二功率信息,第二功率信息可以包括第二功率参数,第二功率参数的个数可以为一个。
可选地,第二功率参数可以是根据UE的功率等级确定的最大输出功率P PowerClass1或网络设备允许UE使用的最大输出功率P EMAX1
可选地,第二功率信息可以是第一网络设备发送的系统消息,也可以是包括于第一网络设备发送的系统消息,则其中包括的功率参数可以位于系统消息中的SIB1中。
可选地,第二功率参数可以为正整数。
S702,UE根据第二功率信息确定是否选择第一小区。
可选地,UE根据第二功率信息确定是否选择所述第一小区,可以包括:UE根据第二功率信息确定S rxlev是否满足第一准则,以确定是否选择所述第一小区,其中,所述S rxlev是基于P compensation得到的。其中,第一准则可以是小区选择时的S准则,S rxlev则可以根据以下公式进行计算:
S rxlev=Q rxlevmeas–(Q rxlevmin+Q rxlevminoffset)–P compensation–Q offsettemp
可选地,UE根据S准则确定是否选择第一小区时,还可以确定S qual,S qual可以根据以下公式进行计算:
S qual=Q qualmeas–(Q qualmin+Q qualminoffset)–Q offsettemp
当S rxlev>0,且S qual>0,则UE可以选择第一小区。
可选地,UE可以根据第二功率信息确定P compensation
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第二功率信息中的第二功率参数为P PowerClass1时,则P compensation=max(P EMAX–P PowerClass1,0),P PowerClass1可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第二功率信息中的第二功率参数为P PowerClass1时,则P compensation=max(P EMAX+P PowerClass1,0),P PowerClass1可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第二功率信息中的第二功率参数为P EMAX1时,则P compensation=max(P EMAX1–P PowerClass,0),P EMAX1可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX1–P PowerClass,0)。
可选地,如果UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm,且第二功率信息中的第二功率参数为P EMAX1时,则P compensation=max(P EMAX1+P PowerClass,0),P EMAXi可以是正整数。如果不满足上述条件,则P compensation=max(P EMAX–P PowerClass,0)。
第一网络设备可以通过为不同功率等级的UE配置相同的功率参数,使第一小区内的所有UE都使用相同的功率参数,可以使得不同功率等级的UE具有相同的上行覆盖范围,使得不同功率等级的UE在选择小区进行驻留时具备公平性。
S703,UE可以与第一小区建立连接。
可选地,UE为mMTC中的UE时,或者UE为低成本、低复杂度的UE时,UE可以具有以下至少一种特征:
(1)UE支持最大带宽为5MHz;
(2)UE具有一个射频通道或一个辐射天线;
(3)UE具有降低的峰值速率;
(4)UE支持半双工FDD;
(5)UE传输的最大传输块尺寸为1000bits;
(6)UE的最大输出功率较小于23dBm;
(7)UE支持上行覆盖增强;
(8)UE支持最高调制方式为16QAM。
可选地,UE支持上行覆盖增强,可以指的是如下至少一种:
(1)UE支持上行发送的捆绑;
(2)UE在随机接入过程支持上行发送的捆绑;
(3)UE支持上行传输的重复发送。
可选地,UE的P PowerClass小于23dBm,可以指的是如下至少一种:
(1)UE的P PowerClass可以为20dBm或17dBm或14dBm或11dBm;
(2)UE的P PowerClass为X1,其中X1可以为20dBm或17dBm或14dBm或11dBm,UE可以选择使用P PowerClass为X2来工作,其中X2小于X1。
图8是本申请实施例提供的一种UE与第一小区建立连接的示意性交互图。
应理解,这只是一种UE与小区之间建立连接,进行通信的方法,本申请对此并不作限定。
S801,UE确定是否选择第一小区。
UE可以根据第一功率信息或第二功率信息确定是否选择第一小区,UE可以根据第一功率信息或第二功率信息中的功率参数确定P compensation,再根据P compensation确定S rxlev,同时,也可确定S qual,其确定方式如下:
S rxlev=Q rxlevmeas–(Q rxlevmin+Q rxlevminoffset)–P compensation–Q offsettemp
S qual=Q qualmeas–(Q qualmin+Q qualminoffset)–Q offsettemp
若S rxlev>0且S qual>0,则UE选择该小区,可以与其建立通信连接。
其中,功率参数可以是第一功率信息中的第一功率参数,也可以是第二功率信息中的第二功率参数。
S802,第一网络设备可以向UE发送第二信息,第二信息可以包括第一随机接入前导码和/或第一时频资源。
可选地,第一随机接入前导码和/或第一时频资源用于海量机器类通信mMTC的UE,和/或支持上行覆盖增强的UE,和/或较低功率的UE,例如UE的P PowerClass小于23dBm。
可选地,第二信息可以是系统信息,第二信息也可以是包括在系统信息中的一部分。
可选地,第二信息还可以包括第一BWP,第一BWP可以用于指示UE接收第一随机接入响应消息的带宽信息。
S803,UE根据第一时频资源向第一网络设备发送第一随机接入前导码。
可选地,UE为mMTC的UE,和/或UE支持上行覆盖增强,和/或较低功率的UE,例如UE的P PowerClass小于23dBm。
S804,第一网络设备向UE发送第一随机接入响应消息,第一随机接入响应消息可以指示UE发送第一消息的次数。
其中,第一随机接入响应消息的格式如图9所示,其中包括R比特,若R=1,则第一随机接入响应消息可以用于指示UE发送第一消息的次数。
可选地,第一随机接入响应消息可以包括上行资源授权信息(UL Grant),其内容如下表2所示。
表2
Figure PCTCN2020108441-appb-000003
若R=1,则随机接入响应授权字段中的X个比特用于指示第一消息的重复次数。
可选地,X个比特可以是MCS中的X–1比特和CSI请求中的1个比特。
可选地,X个比特可以是物理上行共享信道频域资源分配中的X比特。
可选地,若R=1,则指示第一消息的重复传输,其重复次数可以是固定的Y次,例如Y可以是4,8等正整数。
可选地,第一随机接入响应消息包括第二BWP,该第二BWP用于指示UE发送第一消息的带宽。
S805,UE根据UL grant向第一网络设备发送第一消息,其中,UL grant可以用于指示UE发送第一消息的次数。
可选地,重复发送第一消息的次数可以由UL grant中的X个比特指示,也可以为固定的次数Y。
可选地,第一消息可以是无线资源控制(radio resource control,RRC)连接建立请求消息。
S806,第一网络设备可以向UE发送RRC连接设置消息或RRC连接恢复消息,之后UE进入到RRC连接态,可以与第一网络设备进行数据传输。
图10是本申请实施例的一种通信装置的示意性结构图。
如图10所示,通信装置可以包括接收模块1001和处理模块1002。
其中,接收模块1001可以用于收来自第一网络设备的对应于第一小区的第一功率信息,第一功率信息包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N。
处理模块1002可以用于根据第一功率信息确定是否选择第一小区。
可选地,处理模块1002用于根据第一功率信息确定是否选择第一小区,包括:处理模块1002根据第一功率信息所指示的M个第一功率参数中的第i个第一功率参数,确定是否选择第一小区,第i个第一功率参数对应N个功率等级中的第一功率等级,第一功率等级是UE的功率等级。
可选地,第i个第一功率参数为对应于第一功率等级的P EMAXi或者为P offseti,i属于{1,M}。
可选地,处理模块1002根据第一功率信息确定是否选择第一小区,包括:处理模块1002根据第一功率信息确定S rxlev是否满足第一准则,以确定是否选择第一小区;其中,S rxlev是基于P compensation得到的。
可选地,P compensation可以根据以下方式确定:
P compensation=max(P EMAXi–P PowerClass,0),其中P PowerClass为UE的最大输出功率;或者,
P compensation=max(P EMAX–(P PowerClass–P offseti),0),或,P compensation=max(P EMAX+P offseti,0),其中P EMAX为第一网络设备允许UE使用的最大输出功率。
可选地,通信装置可以是为mMTC的通信装置,和/或通信装置支持上行覆盖增强,和/或较低功率的通信装置,例如通信装置的P PowerClass小于23dBm。
可选地,接收模块1001还用于接收自第一网络设备发送的第一信息,第一信息用于指示M个第一与N个功率等级的对应关系。
图11是本申请实施例的一种通信装置的示意性结构图。
如图11所示,通信装置可以包括发送模块1101。
其中,发送模块1101可以用于发送对应于第一小区的第一功率信息,第一功率信息包括M个第一功率参数,M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N。
可选地,发送模块1101还可以用于向UE发送第一信息,第一信息用于指示M个第一功率参数与N个功率等级的对应关系。
另一种实现方式中,提供一种无线通信装置,该装置可以用于执行上述方法流程的步骤。该无线通信装置包括处理器和接口电路,当处理器通过接口电路调用指令时,能够执行上述方法流程中的步骤。该指令可以存储在存储介质中。存储指令的存储介质可以为该无线通信装置的部件,也可以位于无线通信装置之外。该无线通信装置可以为用户设备或者网络设备,或者芯片装置。
图12示出了本申请实施例提供的一种通信装置的结构示意图。用于实现以上实施例中用户设备的操作。
如图12所示,该通信装置包括:天线810、射频装置820、基带装置830。天线810 与射频装置820连接。在下行方向上,射频装置820通过天线810接收网络设备发送的信息,将网络设备发送的信息发送给基带装置830进行处理。在上行方向上,基带装置830对通信装置的信息进行处理,并发送给射频装置820,射频装置820对通信装置的信息进行处理后经过天线810发送给网络设备。
基带装置830可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对通信装置相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为一个独立的芯片。可选的,以上用于通信装置的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件831,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件832和接口电路833。存储元件832用于存储数据和程序,但用于执行以上方法中通信装置所执行的方法的程序可能不存储于该存储元件832中,而是存储于调制解调子系统之外的存储器中。接口电路833用于与其它子系统通信。以上用于通信装置的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上通信装置执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,通信装置实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于通信装置的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
图13是本申请实施例提供的一种通信装置的结构示意图。用于实现以上实施例中网络设备的操作。
如图13所示,该通信装置包括:天线901、射频装置902、基带装置903。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收终端发送的信息,将用户设备发送的信息发送给基带装置903进行处理。在下行方向上,基带装置903对终端的信息进行处理,并发送给射频装置902,射频装置902对用户设备的信息进行处理后经过天线901发送给终端。
基带装置903可以包括一个或多个处理元件9031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置903还可以包括存储元件9032和接口9033,存储元件9032用于存储程序和数据;接口9033用于与射频装置902交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于通信装置的装置可以位于基带装置903,例如,以上用于通信装置的装置可以为基带装置903上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上通信装置执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,通信装置实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于通信装置的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中通信装置执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以 硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地生成按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种小区选择的方法,其特征在于,所述方法包括:
    接收来自第一网络设备的对应于第一小区的第一功率信息,所述第一功率信息包括M个第一功率参数,所述M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N;
    根据所述第一功率信息确定是否选择所述第一小区。
  2. 根据权利要求1所述的方法,其特征在于,根据所述第一功率信息确定是否选择所述第一小区,包括:
    根据所述第一功率信息所指示的所述M个第一功率参数中的第i个第一功率参数,确定是否选择所述第一小区,所述第i个第一功率参数对应所述N个功率等级中的第一功率等级,所述第一功率等级是用户设备UE的功率等级。
  3. 根据权利要求2所述的方法,其特征在于,所述第i个第一功率参数为对应于所述第一功率等级的所述第一网络设备允许所述UE使用的最大输出功率P EMAXi或者所述第i个第一功率参数为对应于所述第一功率等级的功率偏移量P offseti,i属于{1,M}。
  4. 根据权利要求3所述的方法,其特征在于,根据所述第一功率信息确定是否选择所述第一小区,包括:
    根据所述第一功率信息确定小区选择接收电平值S rxlev是否满足第一准则,以确定是否选择所述第一小区;
    其中,所述S rxlev是基于功率补偿值P compensation得到的。
  5. 根据权利要求4所述的方法,其特征在于,
    所述P compensation=max(P EMAXi–P PowerClass,0),其中P PowerClass为所述UE的最大输出功率;或者,
    所述P compensation=max(P EMAX–(P PowerClass–P offseti),0),或,所述P compensation=max(P EMAX+P offseti,0),其中P EMAX为所述第一网络设备允许所述UE使用的最大输出功率。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述UE为海量机器类通信mMTC的UE,或所述UE支持上行覆盖增强,或所述UE的P PowerClass小于23分贝毫瓦dBm。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一网络设备发送的第一信息,所述第一信息用于指示所述M个第一功率参数与所述N个功率等级的对应关系。
  8. 一种小区选择的方法,其特征在于,所述方法包括:
    向用户设备UE发送对应于第一小区的第一功率信息,所述第一功率信息包括M个第一功率参数,所述M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述UE发送第一信息,所述第一信息用于指示所述M个第一功率参数与所述N个功率等级的对应关系。
  10. 一种通信装置,其特征在于,所述通信装置包括:
    接收模块,所述接收模块用于接收来自第一网络设备的对应于第一小区的第一功率信息,所述第一功率信息包括M个第一功率参数,所述M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N;
    处理模块,所述处理模块用于根据所述第一功率信息确定是否选择所述第一小区。
  11. 根据权利要求10所述的通信装置,其特征在于,所述处理模块用于根据所述第一功率信息确定是否选择所述第一小区,包括:
    所述处理模块根据所述第一功率信息所指示的所述M个第一功率参数中的第i个第一功率参数,确定是否选择所述第一小区,所述第i个第一功率参数对应所述N个功率等级中的第一功率等级,所述第一功率等级是所述UE的功率等级。
  12. 根据权利要求11所述的通信装置,其特征在于,所述第i个第一功率参数为对应于所述第一功率等级的所述第一网络设备允许所述UE使用的最大输出功率P EMAXi或者所述第i个第一功率参数为对应于所述第一功率等级的功率偏移量P offseti,i属于{1,M}。
  13. 根据权利要求12所述的通信装置,其特征在于,所述处理模块根据所述第一功率信息确定是否选择所述第一小区,包括:
    所述处理模块根据所述第一功率信息确定小区选择接收电平值S rxlev是否满足第一准则,以确定是否选择所述第一小区;
    其中,所述S rxlev是基于功率补偿值P compensation得到的。
  14. 根据权利要求13所述的通信装置,其特征在于,
    所述P compensation=max(P EMAXi–P PowerClass,0),其中P PowerClass为所述UE的最大输出功率;或者,
    所述P compensation=max(P EMAX–(P PowerClass–P offseti),0),或,所述P compensation=max(P EMAX+P offseti,0),其中P EMAX为所述第一网络设备允许所述UE使用的最大输出功率。
  15. 根据权利要求10至14中任一项所述的通信装置,其特征在于,所述通信装置为海量机器类通信mMTC的通信装置,或所述通信装置支持上行覆盖增强,或所述通信装置的P PowerClass小于23dBm。
  16. 根据权利要求10至15中任一项所述的通信装置,其特征在于,所述接收模块还用于接收自所述第一网络设备发送的第一信息,所述第一信息用于指示所述M个第一功率参数与所述N个功率等级的对应关系。
  17. 一种通信装置,其特征在于,包括:
    发送模块,所述发送模块用于UE发送对应于第一小区的第一功率信息,所述第一功率信息包括M个第一功率参数,所述M个第一功率参数对应N个功率等级,M为大于1的整数,且M小于或等于N。
  18. 根据权利要求17所述的通信装置,其特征在于,所述发送模块还用于向所述UE发送第一信息,所述第一信息用于指示所述M个第一功率参数与所述N个功率等级的对应关系。
  19. 一种小区选择的方法,其特征在于,所述方法包括:
    UE接收来自第一网络设备的对应于第一小区的第二功率信息,所述第二功率信息包括第二功率参数,所述第二功率参数是根据所述UE的功率等级确定的最大输出功率P PowerClass1或网络设备允许所述UE使用的最大输出功率P EMAX1
    所述UE根据第二功率信息确定是否选择第一小区。
  20. 根据权利要求19所述的方法,其特征在于,所述UE根据第一功率信息确定是否选择第一小区,包括:
    所述UE根据所述第二功率信息确定小区选择接收电平值S rxlev是否满足第一准则,以确定是否选择所述第一小区;
    其中,S rxlev是基于功率补偿值P compensation得到的。
  21. 根据权利要求19所述的方法,其特征在于,P compensation=max(P EMAX–P PowerClass1,0),其中P EMAX为第一网络设备允许UE使用的最大输出功率,P PowerClass1可以是正整数。
  22. 根据权利要求19所述的方法,其特征在于,P compensation=max(P EMAX+P PowerClass1,0),其中P EMAX为第一网络设备允许UE使用的最大输出功率,P PowerClass1可以是正整数。
  23. 根据权利要求19所述的方法,其特征在于,P compensation=max(P EMAX1–P PowerClass,0),其中P PowerClass为UE的最大输出功率,P EMAX1可以是正整数。
  24. 根据权利要求19所述的方法,其特征在于,P compensation=max(P EMAX1+P PowerClass,0),其中P PowerClass为UE的最大输出功率,P EMAX1可以是正整数。
  25. 根据权利要求19至24中任意一项所述的方法,其特征在于,所述UE为海量机器类型通信mMTC的UE,或所述UE支持上行覆盖增强,或所述UE为较低功率的UE。
  26. 一种小区选择的方法,其特征在于,所述方法包括:
    第一网络设备向UE发送对应于第一小区的第二功率信息,所述第二功率信息包括第二功率参数,所述第二功率参数可以是根据所述UE的功率等级确定的最大输出功率P PowerClass1或网络设备允许所述UE使用的最大输出功率P EMAX1
  27. 一种小区选择的方法,其特征在于,所述方法包括:
    第一网络设备向UE发送第二信息,所述第二信息包括第一随机接入前导码和/或第一时频资源;
    所述第一网络设备从所述UE接收所述第一随机接入前导码;
    所述第一网络设备向UE发送第一随机接入响应消息;
    所述第一网络设备从UE接收第一消息,所述第一消息用于请求建立或恢复RRC连接;
    所述第一网络设备向UE发送RRC连接设置消息或RRC连接恢复消息,以用于建立或恢复RRC连接。
  28. 根据权利要求27所述的方法,其特征在于,所述第一随机接入前导码和/或第一时频资源用于mMTC的UE,和/或支持上行覆盖增强的UE,和/或较低功率的UE。
  29. 根据权利要求27所述的方法,其特征在于,所述第二信息还包括第一部分带宽BWP,所述第一BWP用于指示所述UE接收第一随机接入响应消息的带宽信息。
  30. [根据细则91更正 24.08.2020] 
    根据权利要求27所述的方法,其特征在于,所述第一随机接入响应消息包含R比特,且当R=1时,所述第一随机接入响应消息用于指示所述UE发送所述第一消息的重复次数。
  31. [根据细则91更正 24.08.2020]
    一种小区选择的方法,其特征在于,所述方法包括:
    UE从第一网络设备接收第二信息,所述第二信息包括第一随机接入前导码和/或第一时频资源;
    所述UE向所述第一网络设备发送所述第一随机接入前导码;
    所述UE从所述第一网络设备接收第一随机接入响应消息;
    所述UE向所述第一网络设备发送第一消息,所述第一消息用于请求建立或恢复RRC连接;
    所述UE从所述第一网络设备接收RRC连接设置消息或RRC连接恢复消息,以用于建立或恢复RRC连接。
  32. [根据细则91更正 24.08.2020] 
    根据权利要求31所述的方法,其特征在于,所述第一随机接入前导码和/或第一时频资源用于mMTC的UE,和/或支持上行覆盖增强的UE,和/或较低功率的UE。
  33. [根据细则91更正 24.08.2020] 
    根据权利要求31所述的方法,其特征在于,所述第二信息还包括第一BWP,所述第一BWP可以用于指示所述UE接收所述第一随机接入响应消息的带宽信息。
  34. [根据细则91更正 24.08.2020] 
    根据权利要求31所述的方法,其特征在于,所述第一随机接入响应消息包含R比特,且当R=1时,所述第一随机接入响应消息用于指示所述UE发送第一消息的重复次数。
  35. [根据细则91更正 24.08.2020] 
    一种网络系统,其特征在于,所述网络系统包括终端设备和网络设备,所述终端设备用于执行如权利要求1至7任一项所述的方法,所述网络设备用于执行如权利要求8至9任一项所述的方法。
  36. [根据细则91更正 24.08.2020] 
    一种计算机存储介质,其特征在于,所述计算机存储介质用于存储计算机可执行指令,所述计算机可执行指令在被计算机执行时实现权利要求1至7中的任一项所述的方法,或者权利要求8至9中的任一项所述的方法,或者权利要求19至25中的任一项所述的方法,或者权利要求26所述的方法,或者权利要求27至30中的任一项所述的方法,或者权利要求31至34中的任一项所述的方法。。
  37. [根据细则91更正 24.08.2020] 
    一种芯片,其特征在于,包括至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,所述至少一个处理器执行如权利要求1至7中的任一项所述的方法,或者权利要求8至9中的任一项所述的方法,或者权利要求19至25中的任一项所述的方法,或者权利要求26所述的方法,或者权利要求27至30中的任一项所述的方法,或者权利要求31至34中的任一项所述的方法。
  38. [根据细则91更正 24.08.2020] 
    一种通信系统,其特征在于,包括权利要求10至16任意一项所述的通信装置、以及包括权利要求17至18任意一项所述的通信装置。
PCT/CN2020/108441 2019-08-20 2020-08-11 一种小区选择的方法、系统及装置 WO2021031932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910770060.4A CN112423371B (zh) 2019-08-20 2019-08-20 一种小区选择的方法、系统及装置
CN201910770060.4 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021031932A1 true WO2021031932A1 (zh) 2021-02-25

Family

ID=74659652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108441 WO2021031932A1 (zh) 2019-08-20 2020-08-11 一种小区选择的方法、系统及装置

Country Status (2)

Country Link
CN (1) CN112423371B (zh)
WO (1) WO2021031932A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117561746A (zh) * 2021-09-17 2024-02-13 Oppo广东移动通信有限公司 无线通信方法、终端设备以及网络设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209459A (zh) * 2012-01-11 2013-07-17 华为技术有限公司 数据的传输方法及装置
CN103458462A (zh) * 2012-06-04 2013-12-18 电信科学技术研究院 一种小区选择方法和设备
CN107950059A (zh) * 2015-08-27 2018-04-20 株式会社Ntt都科摩 用户装置、移动通信系统、和小区选择方法
CN108307335A (zh) * 2017-01-13 2018-07-20 中兴通讯股份有限公司 一种数据传输方法、装置及系统
CN108738141A (zh) * 2017-04-21 2018-11-02 中国移动通信有限公司研究院 一种物理随机接入信道参数的配置方法、网络侧设备及终端
CN109845343A (zh) * 2016-09-30 2019-06-04 瑞典爱立信有限公司 用于无线通信网络中的小区选择的方法和节点

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2810756T3 (es) * 2015-10-27 2021-03-09 Samsung Electronics Co Ltd Procedimiento de realización de selección y reselección de célula usando parámetros PMAX y sistema adaptado al mismo
CN116249181A (zh) * 2016-08-12 2023-06-09 中兴通讯股份有限公司 一种无线资源配置方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209459A (zh) * 2012-01-11 2013-07-17 华为技术有限公司 数据的传输方法及装置
CN103458462A (zh) * 2012-06-04 2013-12-18 电信科学技术研究院 一种小区选择方法和设备
CN107950059A (zh) * 2015-08-27 2018-04-20 株式会社Ntt都科摩 用户装置、移动通信系统、和小区选择方法
CN109845343A (zh) * 2016-09-30 2019-06-04 瑞典爱立信有限公司 用于无线通信网络中的小区选择的方法和节点
CN108307335A (zh) * 2017-01-13 2018-07-20 中兴通讯股份有限公司 一种数据传输方法、装置及系统
CN108738141A (zh) * 2017-04-21 2018-11-02 中国移动通信有限公司研究院 一种物理随机接入信道参数的配置方法、网络侧设备及终端

Also Published As

Publication number Publication date
CN112423371A (zh) 2021-02-26
CN112423371B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
US11122523B2 (en) Information transmission method and apparatus
US20230354454A1 (en) Re-Establishment of Component Carriers in a Wireless Communication System
US9603068B2 (en) Methods and devices for adjusting resource management procedures in heterogeneous communication networks
JP5641630B2 (ja) 測定情報を報告するための方法及び装置
AU2013297032B2 (en) User equipment assistance information signaling in a wireless network
WO2019062998A1 (zh) 功率控制方法及装置
WO2011119249A1 (en) Uplink power control for channel aggregation in a communication network
WO2016072382A1 (ja) 単位シフトレジスタ回路、シフトレジスタ回路、単位シフトレジスタ回路の制御方法及び表示装置
CN111356223A (zh) 用于上行链路发射功率分配和功率余量报告的方法和装置
KR20130108254A (ko) 무선 통신 시스템에서 측정 결과 보고 방법 및 장치
WO2013108114A1 (en) Transmission power control mechanism for discovery signal transmission
WO2018028325A1 (zh) 一种数据通信方法及装置
WO2021087678A1 (zh) 一种小区状态管理方法及装置、终端设备、网络设备
WO2014101895A1 (zh) 功率控制的方法和基站
WO2018126448A1 (zh) 基于动态时分双工的传输装置、方法以及通信系统
WO2021031932A1 (zh) 一种小区选择的方法、系统及装置
WO2018177549A1 (en) Method, apparatus and computer program for use in power headroom reporting
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
US20220007425A1 (en) Method and apparatus for transmitting a system information request and system
CN108702691B (zh) 一种发送通信消息的方法和装置
WO2022236681A1 (zh) 通信方法及装置
US20220386155A1 (en) Apparatus, Method and Computer Program
WO2020056777A1 (zh) 无线通信的方法、发送节点和接收节点
EP3675459B1 (en) Communication method, network device and terminal
WO2023077313A1 (zh) 基于增强上行覆盖的传输方法、门限的配置方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855380

Country of ref document: EP

Kind code of ref document: A1