WO2021031882A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2021031882A1
WO2021031882A1 PCT/CN2020/107691 CN2020107691W WO2021031882A1 WO 2021031882 A1 WO2021031882 A1 WO 2021031882A1 CN 2020107691 W CN2020107691 W CN 2020107691W WO 2021031882 A1 WO2021031882 A1 WO 2021031882A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
electronic device
harq process
cells
user equipment
Prior art date
Application number
PCT/CN2020/107691
Other languages
English (en)
French (fr)
Inventor
刘敏
孙晨
Original Assignee
索尼公司
刘敏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 刘敏 filed Critical 索尼公司
Priority to CN202080047192.5A priority Critical patent/CN114041270A/zh
Priority to US17/633,958 priority patent/US20220346049A1/en
Priority to JP2022510131A priority patent/JP7529015B2/ja
Priority to EP20855204.2A priority patent/EP4007192A4/en
Publication of WO2021031882A1 publication Critical patent/WO2021031882A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the embodiments of the present disclosure generally relate to the field of wireless communication, and in particular to electronic devices, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to an electronic device as a network-side device in a wireless communication system, an electronic device as a user equipment in a wireless communication system, and a wireless communication system performed by a network-side device in a wireless communication system.
  • a communication method, a wireless communication method executed by a user equipment in a wireless communication system, and a computer-readable storage medium are examples of a wireless communication method.
  • HARQ Hybrid Automatic Repeat Request, hybrid automatic repeat request
  • the receiving end can send an ACK signal to the sending end; and in the case of decoding failure, the receiving end can save the received data and send a NACK signal to the sending end to request the sending end to retransmit the data, and the receiving end Combine the retransmitted data with the previously received data before decoding. In this way, a certain diversity gain can be formed, the number of retransmissions is reduced, and the delay is reduced.
  • HARQ processes may be defined in the communication system, and each HARQ process has a unique identifier. While waiting for the feedback information of a certain HARQ process, other HARQ processes can be used to transmit data packets.
  • the minimum RTT (Round Trip Time) of HARQ is the completion time of a data packet transmission process, including the start of sending a data packet at the sender, and after receiving and processing the receiving end, the ACK/NACK signal is fed back according to the result, and the sending end resolves After adjusting and processing the ACK/NACK signal, determine the whole process of retransmission or transmission of a new data packet in the next frame.
  • the number of HARQ processes can be determined based on RTT.
  • RTT time sensitive protocol
  • the HARQ process cannot be increased indefinitely.
  • enabling HARQ can increase the reliability of the system, it may reduce the effectiveness of the system, thereby degrading system performance.
  • the purpose of the present disclosure is to provide an electronic device, a wireless communication method, and a computer-readable storage medium to reasonably turn on/off the HARQ process.
  • an electronic device including a processing circuit, configured to receive information related to TAG (Timing Advance Group, timing advance group) from a network side device serving the electronic device; And according to the information related to the TAG, the HARQ process between the electronic device and all the cells in the TAG is turned on or off.
  • TAG Transmission Advance Group, timing advance group
  • an electronic device including a processing circuit configured to: generate information related to a timing advance group TAG of a user equipment served by the electronic device; and send to the user equipment The information instructs the user equipment to turn on or turn off the HARQ process with all cells in the TAG.
  • a wireless communication method executed by an electronic device, including: receiving information related to a timing advance group TAG from a network side device serving the electronic device; and according to the and The TAG-related information enables or disables the HARQ process between the electronic device and all cells in the TAG.
  • a wireless communication method performed by an electronic device, including: generating information related to a timing advance group TAG of a user equipment served by the electronic device; and sending to the user equipment The information instructs the user equipment to turn on or turn off the HARQ process with all cells in the TAG.
  • a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to execute the wireless communication method according to the present disclosure.
  • the electronic device can turn on or turn off the HARQ process between the electronic device and all cells in the TAG according to information related to the TAG. In this way, the electronic device can turn on/off the HARQ process in units of TAGs, thereby making the on and off of the HARQ process more reasonable.
  • FIG. 1 is a block diagram showing an example of the configuration of an electronic device according to an embodiment of the present disclosure
  • FIG. 2 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure
  • FIG. 3 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure
  • FIG. 4 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure
  • FIG. 5 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure
  • Fig. 6 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure
  • FIG. 7 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure.
  • FIG. 8 is a block diagram showing an example of the configuration of an electronic device according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart showing a wireless communication method performed by an electronic device according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart showing a wireless communication method performed by an electronic device according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram showing an application scenario according to an embodiment of the present disclosure.
  • Fig. 12 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B);
  • FIG. 13 is a block diagram showing a second example of the schematic configuration of an eNB
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smart phone.
  • Fig. 15 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough and will fully convey its scope to those skilled in the art. Numerous specific details such as examples of specific components, devices, and methods are described to provide a detailed understanding of the embodiments of the present disclosure. It will be obvious to those skilled in the art that no specific details need to be used, and the example embodiments can be implemented in many different forms, and none of them should be construed as limiting the scope of the present disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • the number of HARQ processes can be determined based on RTT.
  • HARQ is a stop-and-wait protocol, it is very time sensitive.
  • the HARQ process cannot be increased indefinitely.
  • enabling HARQ can increase the reliability of the system, it may reduce the effectiveness of the system, thereby degrading system performance.
  • NTN Non-terrestrial network
  • the network side equipment can be located on the satellite equipment, and the user equipment is located on the ground, so the user equipment and the network side equipment The RTT between is very large. At this time, opening the HARQ process without restriction will greatly reduce the system performance.
  • the main function of the TA (Timing Advance) process is to ensure the uplink synchronization between the user equipment and the network side device, that is, to ensure that the signal sent by the user equipment can reach the network side device at the time specified by the network side device.
  • the greater the distance between the user equipment and the network side device the greater the TA value, that is, the user equipment should initiate transmission earlier; the smaller the distance between the user equipment and the network side device, the smaller the TA value.
  • the one or more serving cells of the user equipment are divided into multiple TAGs. For each serving cell in a specific TAG, the TA value between the serving cell and the user equipment is the same. For example, in the case where the user equipment has three serving cells, assuming that cell 1 and cell 2 belong to TAG1 and cell 3 belongs to TAG2, the TA value between cell 1 and user equipment is equal to the TA value between cell 2 and user equipment .
  • the TA value can indirectly describe the RTT between the user equipment and the network side device. Therefore, this disclosure expects to propose an electronic device in a wireless communication system, a wireless communication method executed by the electronic device in the wireless communication system, and The computer-readable storage medium can enable or disable the HARQ process in units of TAGs, so that the HARQ process is more reasonable.
  • the wireless communication system may include NTN and/or TN (Terrestrial network, terrestrial network).
  • NTN and/or TN Transmissionrestrial network, terrestrial network
  • user equipment can be connected to NTN and/or TN.
  • the network side equipment that manages cells in NTN can be called NTN BS (Base Station, BS), which can be located on satellite equipment or ground equipment, and the network side equipment that manages cells in TN can be called TN BS, which can be Located on the ground equipment.
  • NTN BS Base Station, BS
  • TN BS Network Side Equipment that manages cells in TN
  • the network side device may be any type of TRP (Transmit and Receive Port).
  • the TRP may have sending and receiving functions, for example, it can receive information from user equipment and base station equipment, and can also send information to user equipment and base station equipment.
  • the network-side equipment described in the present disclosure may also be a base station equipment, for example, an eNB, or a gNB (base station in the 5th generation communication system).
  • the user equipment may be a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device) ).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 1 is a block diagram showing an example of the configuration of an electronic device 100 according to an embodiment of the present disclosure.
  • the electronic device 100 here can be used as a user equipment in a wireless communication system.
  • the electronic device 100 may include a communication unit 110 and a determination unit 120.
  • each unit of the electronic device 100 may be included in the processing circuit.
  • the electronic device 100 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • the electronic device 100 may receive TAG-related information from a network side device serving the electronic device through the communication unit 110.
  • the determining unit 120 may turn on or turn off the HARQ process between the electronic device 100 and all cells in the TAG according to the received information related to the TAG.
  • the electronic device 100 can turn on or turn off the HARQ process between the electronic device 100 and all cells in the TAG according to the information related to the TAG.
  • the HARQ process between the electronic device 100 and all the cells in the TAG refers to all the HARQ processes between the electronic device 100 and all the cells in the TAG.
  • the electronic device 100 can turn on/off the HARQ process in units of TAGs.
  • the information related to the TAG may be user-specific (UE-Specific) information, that is, the information related to the TAG is information for the electronic device 100. In this way, the HARQ process of a specific user equipment can be turned on/off based on the information from the network side device.
  • the HARQ process of a specific user equipment can be turned on or off in units of TAGs. Therefore, according to the embodiments of the present disclosure, the opening and closing of the HARQ process can be made more reasonable.
  • the information related to the TAG may include a TAC (Timing Advance Command) related to the TAG.
  • TAC Transmission Advance Command
  • TAC may be a command for all cells in the TAG.
  • the TAC can indicate the identity of the TAG, and this indication includes an explicit indication mode and an implicit indication mode.
  • 8 bits can be used to represent TAC, where the first 2 bits are used to indicate the identity of the TAG, and the last 6 bits are used to indicate the TA value between each cell in the TAG and the user equipment.
  • 11 bits can be used to represent the TAC, and all 11 bits are used to indicate the TA value.
  • the TAG targeted by the TAC is the TAG to which the cell initially accessed by the user equipment belongs.
  • the determining unit 120 may determine the value of TA according to the received TAC.
  • the TA value in the TAC indicates the offset value of the TA
  • the determining unit 120 may determine the new TA value according to the offset value of the TA, that is, determine the new TA value by adding the current value of the TA to the offset value of the TA.
  • N_TA_new represents the new TA value
  • N_TA_old represents the current value of the TA before the TAC is received
  • N_TA_offset represents the offset value of the TA included in the TAC.
  • the determining unit 120 may turn on or turn off the HARQ process between the electronic device 100 and all cells in the TAG according to the determined TA value.
  • the determining unit 120 may determine to turn on or turn off the HARQ process between the electronic device 100 and all cells in the TAG according to the determined relationship between the value of the TA and the predetermined threshold of the TA.
  • the determination unit 120 may determine to turn off the HARQ process between the electronic device 100 and all cells in the TAG. Further, when the value of TA is not greater than the predetermined threshold value of TA, the determining unit 120 may determine to start the HARQ process between the electronic device and all cells in the TAG.
  • the predetermined threshold of TA may be an agreed value agreed in advance between the network side device and the electronic device 100.
  • the predetermined threshold of the TA may also be a predetermined threshold configured by the network-side device for the electronic device 100, so that the electronic device 100 may also receive the predetermined threshold of the TA from the network-side device.
  • the HARQ process when the value of TA is greater than the predetermined threshold of TA, it indicates that the distance between the electronic device 100 and the network side device is relatively large. In this case, enabling the HARQ process may cause system performance degradation. Therefore, according to the embodiments of the present disclosure, the HARQ process can be turned off in this case. Conversely, when the value of TA is not greater than the predetermined threshold of TA, it means that the distance between the electronic device 100 and the network side device is relatively small. In this case, enabling HARQ can increase the effectiveness of the system. It can be seen that, according to the embodiments of the present disclosure, by reasonably setting the predetermined threshold of TA, the HARQ process can be reasonably turned on or off.
  • the TA value between each cell and the electronic device 100 is the same, so the distance between each cell and the electronic device 100 is the same or close. Therefore, according to the embodiments of the present disclosure, the HARQ process can be turned on or off in units of TAGs.
  • the electronic device 100 can determine the TA value of the TAG according to the TAC for the TAG from the network side device, so as to turn on or off all cells in the TAG according to the TA value.
  • the network side device does not need to explicitly instruct the electronic device 100 to turn on or turn off the HARQ process with all cells in a specific TAG, but the electronic device 100 determines by itself according to the value of TA, so it can be regarded as Implicit instructions.
  • Fig. 2 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure.
  • the UE may be implemented by the electronic device 100, and the BS may be a network side device that provides services for the UE.
  • the BS sends a TAC for the TAG to the UE.
  • the UE determines the value of TA according to the received TAC.
  • the UE determines to turn on or turn off the HARQ process with all cells in the TAG targeted by the TAC according to the value of TA.
  • the BS sends downlink data to the UE.
  • step S205 the UE decodes the data.
  • the UE determines to turn off the HARQ process with all cells of the TAG, the UE does not perform feedback; in step S203, the UE determines to turn on the connection with the TAG.
  • the UE feeds back ACK/NACK to the BS according to the decoding result in step S205. Therefore, the UE can turn on or turn off the HARQ process with all cells in the TAG according to the TA value of the TAG.
  • the information related to the TAG may include configuration information of the TAG, and the configuration information of the TAG includes information related to the on or off of the HARQ process.
  • the above-mentioned TAG-related information may be carried by high-level signaling such as RRC (Radio Resource Control, radio resource control) information.
  • RRC Radio Resource Control, radio resource control
  • the configuration information of the TAG may be the "TAG-Config information element" information element in the RRC information.
  • the network-side device can use the existing field in the "TAG-Config information element" information element to instruct to turn on or turn off the HARQ process.
  • the network side device may use the value of the "timeAlignmentTimer" field in the "TAG-Config information element” information to instruct to turn on or turn off the HARQ process between the user equipment and all cells in the TAG.
  • the value of the "timeAlignmentTimer" field in the "TAG-Config information element” information indicates the TA timer, which is used to maintain the TAC received by the electronic device 100, and the value of this field is used to indicate the TA value Effective time.
  • the network side device may set the value of the "timeAlignmentTimer” field to a predetermined value (preferably “ infinity”, infinity); when it is determined that the user equipment and the HARQ process of all cells in the TAG targeted by the "TAG-Config information element” information will be enabled, the network side device can set the value of the "timeAlignmentTimer" field to be non-
  • the predetermined value is the effective time of the TA value.
  • the network-side device may add a field to the "TAG-Config information element" information element to indicate whether to turn on or off the user equipment and the TAG targeted by the "TAG-Config information element” information element.
  • HARQ process between all cells For example, the network side device can add a "HARQ_feedback_enable” field to the "TAG-Config information element” information element.
  • the determining unit 120 may turn on or turn off the HARQ process between the electronic device 100 and all cells in the TAG according to the information related to the on or off of the HARQ process in the configuration information of the TAG. Specifically, the determining unit 120 may turn on or turn off the HARQ process between the electronic device 100 and all cells in the TAG according to the value of the field related to the on or off of the HARQ process in the configuration information of the TAG.
  • the determining unit 120 may Determine the value of the "timeAlignmentTimer" field.
  • the determining unit 120 determines to close the HARQ process between the electronic device 100 and all cells in the TAG; when the "timeAlignmentTimer" field When the value of the "field is not a predetermined value (preferably “infinity"), it is determined to start the HARQ process between the electronic device 100 and all cells in the TAG. For another example, when the network side device uses the value of the "HARQ_feedback_enable” field in the "TAG-Config information element” information to indicate to enable or disable the HARQ process between the electronic device 100 and all cells in the TAG, the determining unit 120 The value of the "HARQ_feedback_enable” field can be determined.
  • the electronic device 100 may determine to turn on or turn off the HARQ process according to the value of the field related to turning on or off the HARQ process in the TAG configuration information. That is, the main body that decides to turn on or turn off the HARQ process is the network side device, and the electronic device 100 can turn on or turn off the HARQ process according to the instructions of the network side device.
  • This kind of indication can be regarded as an explicit indication.
  • Fig. 3 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure.
  • the UE may be implemented by the electronic device 100, and the BS may be a network side device that provides services for the UE.
  • the BS sends TAG configuration information to the UE.
  • the UE determines to enable or disable the HARQ process between all cells in the TAG targeted by the TAG configuration information according to the TAG configuration information.
  • the BS sends downlink data to the UE.
  • step S304 the UE decodes the data.
  • step S302 if the UE determines to close the HARQ process with all cells of the TAG, the UE does not perform feedback; in step S302, the UE determines to open the connection with the TAG.
  • step S305 the UE feeds back ACK/NACK to the BS according to the decoding result in step S304.
  • the UE can turn on or turn off the HARQ process with all cells in the TAG according to the TAG configuration information.
  • the electronic device 100 may further include a feedback unit 130 configured to generate feedback information for downlink data.
  • the feedback unit 130 may Generate feedback information for the data and feed it back to the network side device that sends the data.
  • the feedback information includes ACK or NACK.
  • the determining unit 120 determines to close the HARQ process between the electronic device 100 and all cells in the TAG
  • the feedback unit 130 does not send the data to the network Feedback information from the side device.
  • the data received from the network side device may include control data and service data.
  • the electronic device 100 may receive updated TAG-related information from the network side device through the communication unit 110, and the determining unit 120 may turn off or turn on the electronic device 100 and the TAG according to the updated TAG-related information.
  • HARQ process between all cells may be performed by the determining unit 120 to turn off or turn on the electronic device 100 and the TAG according to the updated TAG-related information.
  • the electronic device 100 may receive the updated TAC from the network side device through the communication unit 110, and re-determine the TA value, thereby determining whether to turn off or turn on the electronic device according to the re-determined TA value.
  • HARQ process between the device 100 and all cells in the TAG may be received.
  • the electronic device may receive updated TAG configuration information from the network side device through the communication unit 110, and determine to turn off or turn on the electronic device 100 according to the updated TAG configuration information HARQ process with all cells in the TAG.
  • the HARQ process between the electronic device 100 and all cells in the TAG can be turned on or off in units of TAGs.
  • the electronic device 100 may also turn off or turn on the specific HARQ process according to the information related to the specific HARQ process from the network side device.
  • the electronic device 100 may receive information related to a specific HARQ process from the network side device through the communication unit 110.
  • the information related to a specific HARQ process may include identification information of the HARQ process.
  • the information related to a specific HARQ process may also include information indicating whether to turn on or turn off the HARQ process.
  • the determining unit 120 may identify the specific HARQ process according to the received information related to the specific HARQ process. Further, the determining unit 120 may determine to turn off or turn on the specific HARQ process according to the received information related to the specific HARQ process.
  • low-level signaling such as DCI (Downlink Control Information) can be used to carry information related to a specific HARQ process.
  • DCI Downlink Control Information
  • all HARQ processes between the electronic device 100 and all cells in the TAG can be turned on or off according to the information related to the TAG.
  • the specific HARQ process can also be turned on or off according to the information related to the specific HARQ process.
  • Fig. 4 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure.
  • the UE may be implemented by the electronic device 100, and the BS may be a network side device that provides services for the UE.
  • the BS sends a TAC to the UE.
  • the UE determines the value of TA according to TAC.
  • the UE determines to start the HARQ process with all cells in the TAG targeted by the TAC according to the TA value.
  • the BS sends downlink data to the UE.
  • step S405 the UE decodes the data.
  • step S406 the UE feeds back ACK/NACK to the BS according to the decoding result in step S405.
  • step S407 the UE receives information related to a specific HARQ process from the BS, and the information indicates to close the specific HARQ process.
  • step S408 the BS sends data to the UE, and the data belongs to a specific HARQ process.
  • step S409 the UE decodes the data and does not send feedback information to the BS. Therefore, the UE can start the HARQ process with all cells in the TAG according to the TAC, and close the specific HARQ process according to the information related to the specific HARQ process.
  • Fig. 5 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure.
  • the UE may be implemented by the electronic device 100, and the BS may be a network side device that provides services for the UE.
  • the BS sends a TAC to the UE.
  • the UE determines the value of TA according to TAC.
  • the UE determines to close the HARQ process with all cells in the TAG targeted by the TAC according to the TA value.
  • the BS sends downlink data to the UE.
  • the UE decodes the data.
  • the UE does not send feedback information to the BS.
  • the UE receives information related to a specific HARQ process from the BS, and the information indicates to start the specific HARQ process.
  • the BS sends data to the UE, and the data belongs to a specific HARQ process.
  • the UE decodes the data.
  • the UE feeds back ACK/NACK to the BS according to the decoding result in step S508. Therefore, the UE can turn off the HARQ process with all cells in the TAG according to the TAC, and turn on the specific HARQ process according to the information related to the specific HARQ process.
  • FIG. 6 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure.
  • the UE may be implemented by the electronic device 100, and the BS may be a network side device that provides services for the UE.
  • the BS sends TAG configuration information to the UE.
  • the UE determines to start the HARQ process with all cells in the TAG targeted by the TAG configuration information according to the TAG configuration information.
  • the BS sends downlink data to the UE.
  • step S604 the UE decodes the data.
  • the BS belongs to the TAG targeted by the TAG configuration information.
  • step S605 the UE feeds back ACK/NACK to the BS according to the decoding result in step S604.
  • step S606 the UE receives information related to a specific HARQ process from the BS, and the information indicates that the specific HARQ process is closed.
  • step S607 the BS sends data to the UE, and the data belongs to a specific HARQ process.
  • step S608 the UE decodes the data and does not send feedback information to the BS.
  • the UE can start the HARQ process with all cells in the TAG according to the TAG configuration information, and close the specific HARQ process according to the information related to the specific HARQ process.
  • FIG. 7 is a signaling flow chart showing the on/off HARQ process according to an embodiment of the present disclosure.
  • the UE may be implemented by the electronic device 100, and the BS may be a network side device that provides services for the UE.
  • the BS sends TAG configuration information to the UE.
  • the UE determines to close the HARQ process with all cells in the TAG targeted by the TAG configuration information according to the TAG configuration information.
  • the BS sends downlink data to the UE.
  • step S704 the UE decodes the data.
  • the UE does not feed back ACK/NACK to the BS.
  • the UE receives information related to a specific HARQ process from the BS, and the information indicates to start the specific HARQ process.
  • the BS sends data to the UE, and the data belongs to a specific HARQ process.
  • the UE decodes the data.
  • the UE sends feedback information to the BS.
  • the UE can turn off the HARQ process with all cells in the TAG according to the TAG configuration information, and turn on the specific HARQ process according to the information related to the specific HARQ process.
  • the electronic device 100 has one or more serving cells, and the one or more serving cells are divided into one or more TAGs. According to an embodiment of the present disclosure, the electronic device 100 may receive information related to each TAG from the network side device of the main serving cell of the electronic device 100.
  • the network side device of the primary serving cell can configure one or more serving cells for the electronic device 100, and divide the one or more serving cells into multiple TAGs, and then divide the one or more serving cells to which each cell belongs
  • the TAG information is sent to the electronic device 100.
  • the information related to the configuration of the TAG can be carried through the "TAG-Config information element" in the RRC information.
  • the electronic device 100 can receive information related to each TAG of the electronic device 100 from the network side device of the main serving cell, so that for each TAG, the electronic device 100 can be based on the information related to the TAG.
  • the primary serving cell may be SPCell (Special Cell), which includes the primary cell (Primary Cell, PCell) of the electronic device 100, that is, the cell that the electronic device 100 initially accesses, and may also include the primary and secondary cells of the electronic device 100.
  • a cell Primary Secondary Cell, PSCell
  • SCG secondary cell group
  • the electronic device 100 has three serving cells, including a primary cell and two secondary cells (Secondary Cell, SCell), namely: PCell, SCell1, and SCell2. Further, PCell and SCell1 belong to TAG1, and SCell2 belongs to TAG2.
  • the electronic device 100 may receive information related to TAG1 from the network side device of the PCell, so as to determine whether to turn on or turn off the HARQ process with all cells (PCell and SCell1) in TAG1. Further, the electronic device 100 may receive information related to TAG2 from the network side device of the PCell, so as to determine whether to turn on or turn off the HARQ process with all cells (SCell2) in TAG2.
  • the electronic device 100 can turn on or turn off the HARQ process between the electronic device 100 and all cells in the TAG according to the information related to the TAG. In this way, the electronic device 100 can turn on/off the HARQ process in units of TAGs.
  • the information related to the TAG for example, TAC or TAG configuration information
  • UE-Specific user-specific (UE-Specific) information.
  • the HARQ process of a specific user equipment can be turned on/off based on the information from the network side device.
  • the HARQ process of a specific user equipment can be turned on or off in units of TAGs.
  • the network side device can instruct to turn on or turn off the HARQ process in an explicit manner and an implicit manner.
  • the electronic device 100 may re-determine whether to enable or disable the HARQ process according to the updated TAG-related information.
  • the electronic device 100 can also turn on or turn off the specific HARQ process according to the information related to the specific HARQ process from the network side device.
  • the opening and closing of the HARQ process can be made more reasonable.
  • FIG. 8 is a block diagram showing the structure of an electronic device 800 serving as a network side device in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 800 may include a generating unit 810 and a communication unit 820.
  • each unit of the electronic device 800 may be included in the processing circuit.
  • the electronic device 800 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • the generating unit 810 may generate information related to the TAG of the user equipment served by the electronic device 800.
  • the information related to the TAG of the user equipment may be used to instruct the user equipment to turn on or turn off the HARQ process with all cells in the TAG.
  • the electronic device 800 may send TAG-related information to the user equipment through the communication unit 820 to instruct the user equipment to turn on or turn off the HARQ process with all cells in the TAG.
  • the electronic device 800 may generate information related to the TAG of the user equipment to instruct the user equipment to turn on or turn off the HARQ process with all cells in the TAG. This can make the opening and closing of the HARQ process more reasonable.
  • the TAG-related information generated by the generating unit 810 may include a TAC related to the TAG, and the TAC indicates the value of the same TA between the user equipment and all cells in the TAG.
  • the generating unit 810 may include identification information of the TAG and a value for indicating the TA, such as an offset value of the TA, in the TAC. Further, the generating unit 810 may also include only a value for indicating TA in the TAC, and at this time, the TAC corresponds to the TAG where the cell initially accessed by the user equipment is located.
  • the predetermined threshold of TA may be set for each TAG, or a unified predetermined threshold of TA may be set for all TAGs.
  • the electronic device 800 may pre-appoint a predetermined threshold of TA of any TAG with the user equipment. Further, the electronic device 800 may also send the predetermined threshold of TA of any TAG to the user equipment through the communication unit 820. In this way, the user equipment can determine the value of the TA according to the TAC, and use the predetermined threshold of the TA and the value of the TA to determine whether to turn on or turn off the HARQ process with all cells in the TAG.
  • the electronic device 800 may determine the predetermined threshold of TA according to the capabilities of the user equipment. According to an embodiment of the present disclosure, the electronic device 800 may receive the capability information of the user equipment from the user equipment through the communication unit 820.
  • the capabilities of the user equipment may include the user category and the dual connection capability of the user equipment.
  • the electronic device 800 may determine the rate supported by the user equipment according to the user category. Further, according to the embodiments of the present disclosure, when the rate supported by the user equipment is higher, the electronic device 800 may set the predetermined threshold of TA lower, so that the user equipment is more likely to shut down the HARQ process; when the user equipment When the supported rate is low, the electronic device 800 may set the predetermined threshold of TA to be higher, so that the user equipment is less likely to shut down the HARQ process.
  • the electronic device 800 may also determine the predetermined threshold of TA according to the dual connection capability of the user equipment. For example, when the user equipment has dual connectivity capabilities, it can be connected to two cells (for example, a cell in TN and a cell in NTN), and the electronic device 800 can set the predetermined threshold of TA of the TAG where the cell in TN is located. Is higher, so that the user equipment is less likely to close the HARQ process, and the predetermined threshold of the TA of the TAG where the cell in the NTN is located is set lower, so that the user equipment is more likely to close the HARQ process. In this way, for high-reliability services, the reliability can be ensured by enabling HARQ in the cell in the TN to ensure reliability, and turning off the HARQ in the NTN cell can achieve high-rate transmission.
  • the user equipment has dual connectivity capabilities, it can be connected to two cells (for example, a cell in TN and a cell in NTN), and the electronic device 800 can set the predetermined threshold of TA of
  • the electronic device 800 may also determine the predetermined threshold of the TA according to the sensitivity of the user equipment's service to the delay. For example, when the service of the user equipment is sensitive to time delay, the electronic device 800 may set the predetermined threshold of TA to a lower value, so that the user equipment is more likely to shut down the HARQ process; when the service of the user equipment is delayed When it is not sensitive, the electronic device 800 may set the predetermined threshold of the TA higher, so that the user equipment is less likely to shut down the HARQ process.
  • the electronic device 800 may comprehensively consider the user capabilities and the sensitivity of the service to the delay to determine the predetermined threshold of the TA.
  • the electronic device 800 may also consider other parameters to determine the predetermined threshold of TA.
  • the electronic device 800 can indicate the value of TA to the user equipment through the TAC, and can also configure the predetermined threshold of the TA, so that the user equipment can determine whether to turn on or off all the TAG related to the value of the TA and the predetermined threshold of the TA.
  • HARQ process between cells In this way, instructions can be provided to the user equipment in an implicit manner. That is to say, the subject of the decision to turn on or turn off the HARQ process is the user equipment.
  • the electronic device 800 may further include a determining unit 830 for determining whether to enable or disable the HARQ process between the user equipment and all cells in the TAG. Further, the generating unit 810 may generate information related to the TAG according to the result determined by the determining unit 830.
  • the determining unit 820 may determine to turn on or turn off the HARQ process between the user equipment and all cells in the TAG according to the same TA value between the user equipment and all cells in the TAG.
  • the electronic device 800 may receive uplink information from the user equipment, and may determine the value of TA according to parameters such as preamble and SRS (Sounding Reference Signal) included in the uplink information.
  • preamble and SRS Sounding Reference Signal
  • the determining unit 820 may determine to close the HARQ process between the user equipment and all the cells in the TAG . Further, when the value of the same TA between the user equipment and all the cells in the TAG is not greater than the predetermined threshold of the TA, the determining unit 820 may determine to start the HARQ process between the user equipment and all the cells in the TAG.
  • the electronic device 800 may determine the predetermined threshold of TA according to the manner described in the foregoing.
  • the determining unit 830 may determine to enable or disable the HARQ process between the user equipment and all cells in the TAG according to the capabilities of the user equipment.
  • the capabilities of the user equipment may include the user category and the dual connection capability of the user equipment.
  • the determining unit 830 may determine the rate supported by the user equipment according to the user category. Further, according to an embodiment of the present disclosure, for all cells included in a specific TAG, when the rate supported by the user equipment is relatively high, the determining unit 830 may determine to close the HARQ process between the user equipment and all cells included in the TAG; When the rate supported by the device is low, the determining unit 830 may determine to start the HARQ process between the user equipment and all cells included in the TAG.
  • the determining unit 830 may also determine to turn on or turn off the HARQ process between the user equipment and all cells in the TAG according to the dual connectivity capability of the user equipment. For example, when the user equipment has dual connectivity capabilities, it can be connected to two cells (for example, a cell in TN and a cell in NTN), the determining unit 830 can start the HARQ process between the user equipment and the cell in TN, and Shut down the HARQ process between the user equipment and the cell in the NTN. In this way, for high-reliability services, the reliability can be ensured by enabling HARQ in the cell in the TN to ensure reliability, and turning off the HARQ in the NTN cell can achieve high-rate transmission.
  • the determining unit 830 may also determine to enable or disable the HARQ process between the user equipment and all cells in the TAG according to the sensitivity of the user equipment's service to the delay. For example, for all cells in a specific TAG, when the service of the user equipment is sensitive to time delay, the determining unit 830 may determine to close the HARQ process between the user equipment and all cells in the TAG; when the service of the user equipment is matched When the delay is not sensitive, the determining unit 830 may determine to start the HARQ process between the user equipment and all cells in the TAG.
  • the electronic device 800 determines to turn on or off the HARQ process between the user equipment and all cells in the TAG is described in a non-limiting embodiment, and the present disclosure is not limited to this.
  • the electronic device 800 may comprehensively consider the value of TA, user capabilities, and the sensitivity of the service to time delay to determine whether to enable or disable the HARQ process between the user equipment and all cells in the TAG.
  • the electronic device 800 may also consider other parameters to determine whether to turn on or turn off the HARQ process between the user equipment and all cells in the TAG.
  • the TAG-related information generated by the generating unit 810 includes TAG-enabled configuration information
  • the TAG configuration information may include information related to the on or off of the HARQ process.
  • the electronic device 800 may carry information related to the TAG through high-level signaling such as RRC information.
  • TAG configuration information includes TAG-Config information element information.
  • the generating unit 810 may use an existing field in the "TAG-Config information element" information element to instruct to turn on or turn off the HARQ process.
  • the generating unit 810 may use the value of the "timeAlignmentTimer" field in the "TAG-Config information element” information to instruct to turn on or turn off the HARQ process between the user equipment and all cells in the TAG.
  • the generating unit 810 may set the value of the "timeAlignmentTimer" field to A predetermined value (preferably “infinity", infinity); when it is determined that the HARQ process of the user equipment and all the cells in the TAG targeted by the "TAG-Config information element” information is turned on, the generating unit 810 can set the "timeAlignmentTimer" The value of the domain is set to a non-predetermined value, that is, the effective time of the TA value.
  • the generating unit 810 may add a field related to the enabling or disabling of the HARQ process in the TAG-Config information element information to indicate the enabling or disabling of the connection between the user equipment and all cells in the TAG. HARQ process.
  • the generating unit 810 may add a "HARQ_feedback_enable” field to the "TAG-Config information element" information element.
  • the value of this field is "ON”, it means that the user equipment is turned on and the "TAG-Config information element” information element is The HARQ process between all cells in the TAG; when the value of this field is "OFF”, it means that the HARQ process between the user equipment and all cells in the TAG targeted by the "TAG-Config information element” information element is turned off.
  • the electronic device 800 may update the information related to the TAG.
  • the generating unit 810 may update the information related to the TAG of the user equipment, that is, regenerate the information related to the TAG.
  • the electronic device 800 may send updated information to the user equipment through the communication unit 810 to instruct the user equipment to turn off or turn on the HARQ process with all cells in the TAG. For example, when the TA value of a certain TAG changes, the generating unit 810 of the electronic device 800 may regenerate the TAC of the TAG to send to the user equipment.
  • the generating unit 810 may regenerate the configuration information of the TAG to send to the user equipment.
  • the determining unit 830 may also determine whether to turn on or turn off a specific HARQ process in the HARQ process between the user equipment and all cells in the TAG, so that the generating unit 810 may also generate information related to the specific HARQ process. Information to instruct the user equipment to turn on or turn off a specific HARQ process. Further, the electronic device 800 may send information related to a specific HARQ process to the user equipment through the communication unit 810 to instruct the user equipment to turn on or turn off the specific HARQ process.
  • the determining unit 830 may send information related to the specific HARQ process to the user equipment to instruct the user equipment to change the on/off state of the specific HARQ process.
  • the electronic device 800 may carry information related to a specific HARQ process through low-layer signaling such as DCI.
  • the user equipment has one or more serving cells, and the one or more serving cells are divided into one or more TAGs.
  • the electronic device 800 is a network side device of the main serving cell of the user equipment. Further, the electronic device 800 may not only send information related to the TAG to which the electronic device 800 belongs to the user equipment, but the electronic device 800 may also send information related to TAGs other than the TAG to which the electronic device 800 belongs to the user equipment.
  • the electronic device 100 according to the embodiment of the present disclosure can be used as a user equipment, and the electronic device 800 can be used as a network-side device, that is, the electronic device 800 can provide services for the electronic device 100. Therefore, all implementations of the electronic device 100 described in the foregoing The examples apply here.
  • FIG. 9 is a flowchart illustrating a wireless communication method performed by the electronic device 100 as a user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • step S910 the information related to the timing advance group TAG is received from the network side device serving the electronic device.
  • step S920 the HARQ process between the electronic device and all cells in the TAG is turned on or off according to the information related to the TAG.
  • the information related to the TAG includes a timing advance command TAC related to the TAG, and turning on or off the HARQ process between the electronic device and all cells in the TAG includes: determining the value of the timing advance TA according to the TAC; and The value of TA is used to enable or disable the HARQ process between the electronic device and all cells in the TAG.
  • turning on or turning off the HARQ process between the electronic device and all cells in the TAG includes: when the value of TA is greater than a predetermined threshold of TA, turning off the HARQ process between the electronic device and all cells in the TAG; and when the TA When the value of is not greater than the predetermined threshold of the TA, the HARQ process between the electronic device and all cells in the TAG is started.
  • the predetermined threshold of the TA is an agreed value between the network side device and the electronic device, or wherein the wireless communication method further includes: receiving the predetermined threshold of the TA from the network side device.
  • the information related to the TAG includes configuration information of the TAG, and enabling or disabling the HARQ process between the electronic device and all cells in the TAG includes: according to the information related to the enabling or disabling of the HARQ process in the configuration information of the TAG To turn on or turn off the HARQ process between the electronic device and all cells in the TAG.
  • the information related to the TAG is carried by high-layer signaling.
  • the high-level signaling includes RRC information
  • the configuration information of the TAG includes TAG-Config information element information.
  • enabling the HARQ process between the electronic device and all cells in the TAG includes: when receiving data from the network side device of the cell in the TAG, feeding back an ACK or NACK to the network side device; and turning off the electronic device and the TAG
  • the HARQ process between all cells in TAG includes: when data is received from the network side device of the cell in the TAG, no ACK or NACK is fed back to the network side device.
  • the data includes control data and business data.
  • the wireless communication method further includes: receiving updated TAG-related information from the network side device after the HARQ process between the electronic device and all cells in the TAG is turned on or off; and according to the updated TAG-related information Turn off or turn on the HARQ process between the electronic device and all cells in the TAG.
  • the wireless communication method further includes: after the HARQ process between the electronic device and all cells in the TAG is turned on or off, receiving information related to the specific HARQ process from the network side device; and according to the information related to the specific HARQ process The information turns off or turns on a specific HARQ process.
  • low-level signaling is used to carry information related to a specific HARQ process.
  • the low-level signaling includes DCI.
  • the electronic device has one or more serving cells, and the one or more serving cells are divided into one or more TAGs, and the wireless communication method further includes: receiving data from the network side device of the main serving cell of the electronic device Information about each TAG.
  • the subject that executes the above-mentioned method may be the electronic device 100 according to the embodiment of the present disclosure, so all the foregoing embodiments regarding the electronic device 100 are applicable to this.
  • FIG. 10 is a flowchart illustrating a wireless communication method performed by an electronic device 800 as a network side device in a wireless communication system according to an embodiment of the present disclosure.
  • step S1010 information related to the timing advance group TAG of the user equipment served by the electronic device is generated.
  • step S1020 TAG-related information is sent to the user equipment to instruct the user equipment to turn on or turn off the HARQ process with all cells in the TAG.
  • the information related to the TAG includes a timing advance command TAC related to the TAG, and the TAC indicates the same value of the timing advance TA between the user equipment and all cells in the TAG.
  • the wireless communication method further includes: determining to enable or disable the HARQ process between the user equipment and all cells in the TAG; and generating information related to the TAG according to the determined result.
  • determining to turn on or turn off the HARQ process between the user equipment and all cells in the TAG includes: determining whether to turn on or turn off the user equipment and the HARQ process according to the same timing advance TA value between the user equipment and all the cells in the TAG. HARQ process between all cells in the TAG.
  • determining to turn on or turn off the HARQ process between the user equipment and all cells in the TAG includes: when the value of TA is greater than a predetermined threshold of TA, determining to turn off the HARQ process between the user equipment and all cells in the TAG; and When the value of TA is not greater than the predetermined threshold of TA, it is determined to start the HARQ process between the user equipment and all the cells in the TAG.
  • the information related to the TAG includes configuration information of the TAG, and the configuration information of the TAG includes information related to the on or off of the HARQ process.
  • the information related to the TAG is carried by high-layer signaling.
  • the high-level signaling includes RRC information
  • the configuration information of the TAG includes TAG-Config information element information.
  • the value of the timeAlignmentTimer field in the TAG-Config information element information is used to instruct to turn on or turn off the HARQ process between the user equipment and all cells in the TAG.
  • a field related to the enabling or disabling of the HARQ process is added to the TAG-Config information element information to indicate the enabling or disabling of the HARQ process between the user equipment and all cells in the TAG.
  • the wireless communication method further includes: updating information related to the TAG of the user equipment; and sending the updated information to the user equipment to instruct the user equipment to close or open the HARQ process with all cells in the TAG.
  • the wireless communication method further includes: determining to enable or disable a specific HARQ process in the HARQ process between the user equipment and all cells in the TAG; and sending information related to the specific HARQ process to the user equipment to instruct the user equipment Turn on or turn off a specific HARQ process.
  • low-level signaling is used to carry information related to a specific HARQ process.
  • the low-level signaling includes DCI.
  • the user equipment has one or more serving cells, the one or more serving cells are divided into one or more TAGs, and the electronic device is a network side device of the main serving cell of the user equipment.
  • the subject that executes the above method may be the electronic device 800 according to the embodiment of the present disclosure, and therefore all the embodiments of the electronic device 800 described above are applicable to this.
  • the technology of the present disclosure can be applied to various scenarios.
  • the user equipment has one or more serving cells, and the one or more serving cells are divided into one or more TAGs.
  • the one or more serving cells are divided into one or more TAGs.
  • Fig. 11 is a schematic diagram showing an application scenario according to an embodiment of the present disclosure.
  • NTN BS can cover area A, area B and area C at the same time
  • TN BS can cover area C
  • UE#1 is located in area A
  • UE#2 is located in area B
  • UE#3 is located in area C.
  • UE#1 is connected to NTN BS
  • UE#2 is connected to NTN BS
  • UE#3 is connected to NTN BS and TN BS at the same time.
  • UE#1 has one serving cell, namely area A under the coverage of NTN BS
  • UE#2 has one serving cell, namely area B under the coverage of NTN BS
  • UE#3 has two serving cells, namely NTN BS.
  • UE#1 has one TAG#1, including area A under the coverage of NTN BS. Since UE#1 is far away from NTN BS and the transmission delay is large, according to an explicit or implicit indication from NTN BS, UE#1 can be configured to turn off HARQ with all cells included in TAG#1 , To provide system efficiency. Furthermore, UE#2 has a TAG#2, including area B under the coverage of NTN BS. It is assumed here that UE#2 is a sensor user, and only periodically reports certain data (such as temperature, humidity, etc.), and is not sensitive to delay.
  • UE#2 can be configured to enable HARQ with all cells included in TAG#2 to provide system reliability. Furthermore, suppose that UE#3 has two TAGs: TAG#3 and TAG#4. TAG#3 includes area C under the coverage of NTN BS, and TAG#4 includes area C under the coverage of TN BS. Area C is the main serving cell. According to an explicit or implicit indication from the TN BS, UE#3 can be configured to turn off HARQ with all cells included in TAG#3, and turn on HARQ with all cells included in TAG#4. That is, UE#3 does not feed back ACK/NACK for downlink data from the NTN cell, but feeds back ACK/NACK for downlink data from the TN cell.
  • the UE may be configured with multiple serving cells. For example, suppose that the UE has the serving cell Scell#1 from the RRH (Remote Radio Head) on the synchronous earth satellite, and the serving cell Pcell and the serving cell Scell#2 from the ground base station. These cells are connected in a CA manner. The UE performs service, assuming that Pcell and Scell#2 belong to one TAG, denoted as TAG#1, and the serving cell Scell#1 belongs to another TAG, denoted as TAG#2.
  • RRH Remote Radio Head
  • the network-side equipment in the serving cell Pcell of the ground base station can explicitly or implicitly indicate to the UE to open the HARQ process with all cells in TAG#1, and instruct the UE to close all the cells in TAG#2.
  • HARQ process between For example, for TAG#1, the value of the field "HARQ_feedback_enable” is "ON”; for TAG#2, the value of the field "HARQ_feedback_enable” is "OFF".
  • the UE can be configured with multiple serving cell groups, and each serving cell group contains multiple serving cells.
  • the UE is simultaneously served by the serving cell PScell and the serving cell Scell#1 from the geostationary earth satellite base station and the serving cell Pcell and the serving cell Scell#2 from the ground base station in a dual-connection manner.
  • PScell and Scell#1 belong to SCG (secondary cell group, secondary cell group)
  • Pcell and Scell#2 belong to MCG (master cell group, primary cell group). It is assumed that Pcell and Scell#2 belong to one TAG, which is denoted as TAG#1, and PScell and Scell#1 belong to another TAG, which is denoted as TAG#2.
  • the serving cell PScell can explicitly or implicitly indicate to the UE to turn off the HARQ process with all cells in TAG#2.
  • the value of the field "HARQ_feedback_enable” for TAG#2 is "OFF”
  • the serving cell Pcell can Explicitly or implicitly indicate to the UE to enable the HARQ process with all cells in TAG#1, for example, the value of the field "HARQ_feedback_enable” for TAG#1 is "ON”.
  • the network side device can be implemented as any type of TRP.
  • the TRP may have sending and receiving functions, for example, it can receive information from user equipment and base station equipment, and can also send information to user equipment and base station equipment.
  • TRP can provide services for user equipment and is controlled by base station equipment.
  • the TRP may have a structure similar to that of the base station device described below, or may only have a structure related to the transmission and reception of information in the base station device.
  • the network side equipment can also be implemented as any type of base station equipment, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB (base station in a 5G system).
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a different place from the main body.
  • RRH remote radio heads
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above-mentioned user equipment.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1200 includes one or more antennas 1210 and a base station device 1220.
  • the base station device 1220 and each antenna 1210 may be connected to each other via an RF cable.
  • Each of the antennas 1210 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used for the base station device 1220 to transmit and receive wireless signals.
  • the eNB 1200 may include multiple antennas 1210.
  • multiple antennas 1210 may be compatible with multiple frequency bands used by eNB 1200.
  • FIG. 12 shows an example in which the eNB 1200 includes multiple antennas 1210, the eNB 1200 may also include a single antenna 1210.
  • the base station device 1220 includes a controller 1221, a memory 1222, a network interface 1223, and a wireless communication interface 1225.
  • the controller 1221 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1220. For example, the controller 1221 generates a data packet based on data in a signal processed by the wireless communication interface 1225, and transmits the generated packet via the network interface 1223. The controller 1221 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet. The controller 1221 may have a logic function for performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1222 includes RAM and ROM, and stores programs executed by the controller 1221 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1223 is a communication interface for connecting the base station device 1220 to the core network 1224.
  • the controller 1221 may communicate with a core network node or another eNB via a network interface 1223.
  • the eNB 1200 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 1223 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1223 is a wireless communication interface, the network interface 1223 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1225.
  • the wireless communication interface 1225 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to terminals located in the cell of the eNB 1200 via the antenna 1210.
  • the wireless communication interface 1225 may generally include, for example, a baseband (BB) processor 1226 and an RF circuit 1227.
  • the BB processor 1226 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 1226 may have part or all of the above-mentioned logical functions.
  • the BB processor 1226 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1226.
  • the module may be a card or a blade inserted into the slot of the base station device 1220. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1227 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1210.
  • the wireless communication interface 1225 may include a plurality of BB processors 1226.
  • multiple BB processors 1226 may be compatible with multiple frequency bands used by the eNB 1200.
  • the wireless communication interface 1225 may include a plurality of RF circuits 1227.
  • multiple RF circuits 1227 may be compatible with multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 1225 includes a plurality of BB processors 1226 and a plurality of RF circuits 1227, the wireless communication interface 1225 may also include a single BB processor 1226 or a single RF circuit 1227.
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1330 includes one or more antennas 1340, base station equipment 1350, and RRH 1360.
  • the RRH 1360 and each antenna 1340 may be connected to each other via an RF cable.
  • the base station device 1350 and the RRH 1360 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 1340 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH 1360 to transmit and receive wireless signals.
  • the eNB 1330 may include multiple antennas 1340.
  • multiple antennas 1340 may be compatible with multiple frequency bands used by the eNB 1330.
  • FIG. 13 shows an example in which the eNB 1330 includes multiple antennas 1340, the eNB 1330 may also include a single antenna 1340.
  • the base station equipment 1350 includes a controller 1351, a memory 1352, a network interface 1353, a wireless communication interface 1355, and a connection interface 1357.
  • the controller 1351, the memory 1352, and the network interface 1353 are the same as the controller 1221, the memory 1222, and the network interface 1223 described with reference to FIG.
  • the wireless communication interface 1355 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1360 via the RRH 1360 and the antenna 1340.
  • the wireless communication interface 1355 may generally include a BB processor 1356, for example.
  • the BB processor 1356 is the same as the BB processor 1226 described with reference to FIG. 12 except that the BB processor 1356 is connected to the RF circuit 1364 of the RRH 1360 via the connection interface 1357.
  • the wireless communication interface 1355 may include a plurality of BB processors 1356.
  • multiple BB processors 1356 may be compatible with multiple frequency bands used by the eNB 1330.
  • FIG. 13 shows an example in which the wireless communication interface 1355 includes a plurality of BB processors 1356, the wireless communication interface 1355 may also include a single BB processor 1356.
  • connection interface 1357 is an interface for connecting the base station device 1350 (wireless communication interface 1355) to the RRH 1360.
  • the connection interface 1357 may also be a communication module for connecting the base station device 1350 (wireless communication interface 1355) to the communication in the above-mentioned high-speed line of the RRH 1360.
  • the RRH 1360 includes a connection interface 1361 and a wireless communication interface 1363.
  • connection interface 1361 is an interface for connecting the RRH 1360 (wireless communication interface 1363) to the base station device 1350.
  • the connection interface 1361 may also be a communication module used for communication in the aforementioned high-speed line.
  • the wireless communication interface 1363 transmits and receives wireless signals via the antenna 1340.
  • the wireless communication interface 1363 may generally include, for example, an RF circuit 1364.
  • the RF circuit 1364 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1340.
  • the wireless communication interface 1363 may include a plurality of RF circuits 1364.
  • multiple RF circuits 1364 may support multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 1363 includes a plurality of RF circuits 1364, the wireless communication interface 1363 may also include a single RF circuit 1364.
  • the generating unit 810 and the determining unit 830 described in FIG. 8 can be implemented by the controller 1221 and/or the controller 1351. At least part of the functions may also be implemented by the controller 1221 and the controller 1351.
  • the controller 1221 and/or the controller 1351 may execute the function of generating information related to the TAG and determining to turn on or turn off the HARQ process of the user equipment and all cells in the TAG by executing instructions stored in the corresponding memory.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smart phone 1400 to which the technology of the present disclosure can be applied.
  • the smart phone 1400 includes a processor 1401, a memory 1402, a storage device 1403, an external connection interface 1404, a camera device 1406, a sensor 1407, a microphone 1408, an input device 1409, a display device 1410, a speaker 1411, a wireless communication interface 1412, one or more An antenna switch 1415, one or more antennas 1416, a bus 1417, a battery 1418, and an auxiliary controller 1419.
  • the processor 1401 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 1400.
  • the memory 1402 includes RAM and ROM, and stores data and programs executed by the processor 1401.
  • the storage device 1403 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1404 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smart phone 1400.
  • USB universal serial bus
  • the image pickup device 1406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1407 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1408 converts the sound input to the smart phone 1400 into an audio signal.
  • the input device 1409 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1410, and receives an operation or information input from the user.
  • the display device 1410 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1400.
  • the speaker 1411 converts the audio signal output from the smart phone 1400 into sound.
  • the wireless communication interface 1412 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1412 may generally include, for example, a BB processor 1413 and an RF circuit 1414.
  • the BB processor 1413 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1414 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1416.
  • the wireless communication interface 1412 may be a chip module on which the BB processor 1413 and the RF circuit 1414 are integrated. As shown in FIG.
  • the wireless communication interface 1412 may include multiple BB processors 1413 and multiple RF circuits 1414.
  • FIG. 14 shows an example in which the wireless communication interface 1412 includes a plurality of BB processors 1413 and a plurality of RF circuits 1414, the wireless communication interface 1412 may also include a single BB processor 1413 or a single RF circuit 1414.
  • the wireless communication interface 1412 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1412 may include a BB processor 1413 and an RF circuit 1414 for each wireless communication scheme.
  • Each of the antenna switches 1415 switches the connection destination of the antenna 1416 among a plurality of circuits included in the wireless communication interface 1412 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 1416 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1412 to transmit and receive wireless signals.
  • the smart phone 1400 may include multiple antennas 1416.
  • FIG. 14 shows an example in which the smart phone 1400 includes a plurality of antennas 1416, the smart phone 1400 may also include a single antenna 1416.
  • the smart phone 1400 may include an antenna 1416 for each wireless communication scheme.
  • the antenna switch 1415 may be omitted from the configuration of the smart phone 1400.
  • the bus 1417 connects the processor 1401, the memory 1402, the storage device 1403, the external connection interface 1404, the camera device 1406, the sensor 1407, the microphone 1408, the input device 1409, the display device 1410, the speaker 1411, the wireless communication interface 1412, and the auxiliary controller 1419 to each other. connection.
  • the battery 1418 supplies power to the various blocks of the smart phone 1400 shown in FIG. 14 via a feeder line, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 1419 operates the minimum necessary functions of the smartphone 1400 in the sleep mode, for example.
  • the determination unit 120 and the feedback unit 130 described in FIG. 1 may be implemented by the processor 1401 or the auxiliary controller 1419 by using the determination unit 120 and the feedback unit 130 described in FIG. 1. At least part of the function may also be implemented by the processor 1401 or the auxiliary controller 1419.
  • the processor 1401 or the auxiliary controller 1419 may execute the function of determining whether to turn on or off the HARQ process with all cells in the TAG and feedback ACK/NACK for downlink data by executing instructions stored in the memory 1402 or the storage device 1403 .
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device 1520 to which the technology of the present disclosure can be applied.
  • the car navigation device 1520 includes a processor 1521, a memory 1522, a global positioning system (GPS) module 1524, a sensor 1525, a data interface 1526, a content player 1527, a storage medium interface 1528, an input device 1529, a display device 1530, a speaker 1531, a wireless A communication interface 1533, one or more antenna switches 1536, one or more antennas 1537, and a battery 1538.
  • GPS global positioning system
  • the processor 1521 may be, for example, a CPU or SoC, and controls the navigation function and other functions of the car navigation device 1520.
  • the memory 1522 includes RAM and ROM, and stores data and programs executed by the processor 1521.
  • the GPS module 1524 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 1520.
  • the sensor 1525 may include a group of sensors, such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1526 is connected to, for example, an in-vehicle network 1541 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1527 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 1528.
  • the input device 1529 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1530, and receives an operation or information input from the user.
  • the display device 1530 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1531 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1533 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1533 may generally include, for example, a BB processor 1534 and an RF circuit 1535.
  • the BB processor 1534 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1535 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1537.
  • the wireless communication interface 1533 may also be a chip module on which the BB processor 1534 and the RF circuit 1535 are integrated. As shown in FIG.
  • the wireless communication interface 1533 may include multiple BB processors 1534 and multiple RF circuits 1535.
  • FIG. 15 shows an example in which the wireless communication interface 1533 includes a plurality of BB processors 1534 and a plurality of RF circuits 1535, the wireless communication interface 1533 may also include a single BB processor 1534 or a single RF circuit 1535.
  • the wireless communication interface 1533 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1533 may include a BB processor 1534 and an RF circuit 1535 for each wireless communication scheme.
  • Each of the antenna switches 1536 switches the connection destination of the antenna 1537 among a plurality of circuits included in the wireless communication interface 1533, such as circuits for different wireless communication schemes.
  • Each of the antennas 1537 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1533 to transmit and receive wireless signals.
  • the car navigation device 1520 may include multiple antennas 1537.
  • FIG. 15 shows an example in which the car navigation device 1520 includes a plurality of antennas 1537, the car navigation device 1520 may also include a single antenna 1537.
  • the car navigation device 1520 may include an antenna 1537 for each wireless communication scheme.
  • the antenna switch 1536 may be omitted from the configuration of the car navigation device 1520.
  • the battery 1538 supplies power to each block of the car navigation device 1520 shown in FIG. 15 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 1538 accumulates power supplied from the vehicle.
  • the determination unit 120 and the feedback unit 130 described in FIG. 1 may be implemented by the processor 1521. At least part of the functions may also be implemented by the processor 1521.
  • the processor 1521 may execute the functions of determining whether to turn on or off the HARQ process with all cells in the TAG and feeding back ACK/NACK for downlink data by executing instructions stored in the memory 1522.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1540 including one or more blocks in a car navigation device 1520, an in-vehicle network 1541, and a vehicle module 1542.
  • vehicle module 1542 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the vehicle network 1541.
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be changed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及电子设备、无线通信方法和计算机可读存储介质。根据本申请的电子设备包括处理电路,被配置为:从为所述电子设备服务的网络侧设备接收与定时提前量组TAG相关的信息;以及根据所述与TAG相关的信息开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程。使用根据本申请的电子设备、无线通信方法和计算机可读存储介质,可以以TAG为单位合理地开启/关闭HARQ进程。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2019年8月16日提交中国专利局、申请号为201910758886.9、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信系统中的网络侧设备的电子设备、一种作为无线通信系统中的用户设备的电子设备、一种由无线通信系统中的网络侧设备执行的无线通信方法、一种由无线通信系统中的用户设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)技术是一种将前向纠错编码技术和自动重传请求技术相结合而形成的技术。接收端在解码成功的情况下,可以向发送端发送ACK信号;而接收端在解码失败的情况下,可以保存接收到的数据并向发送端发送NACK信号从而要求发送端重传数据,接收端将重传的数据和先前接收到的数据进行合并后再解码。这样一来,可以形成一定的分集增益,减少了重传次数,进而减少了时延。
为了提高系统效率,可以在通信系统中定义多个HARQ进程(HARQ process),每个HARQ进程具有唯一的标识。在等待某个HARQ进程的反馈信息的过程中,可以使用其他的HARQ进程传输数据包。HARQ的最小RTT(Round Trip Time,往返时间)为一次数据包传输过程的完成时间,包括从一个数据包在发送端开始发送,接收端接收处理后,根据结果反馈ACK/NACK信号,发送端解调处理ACK/NACK信号后,确定下一帧进行重传或传送新数据包的全过程。一般来说,可以基于RTT来确定HARQ进程的个数。但是,由于HARQ是停止等待协议,因此对时间很敏感。当发送端和接收端之间的RTT非常大时,HARQ的进程不能无限制的增加, 此时开启HARQ虽然能够增加系统的可靠性,却可能降低系统的有效性,从而使得系统性能下降。
因此,有必要提出一种技术方案,以合理地开启/关闭HARQ进程。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以合理地开启/关闭HARQ进程。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:从为所述电子设备服务的网络侧设备接收与TAG(Timing Advance Group,定时提前量组)相关的信息;以及根据所述与TAG相关的信息开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程。
根据本公开的另一方面,提供了一种电子设备,包括处理电路,被配置为:生成与所述电子设备服务的用户设备的定时提前量组TAG相关的信息;以及向所述用户设备发送所述信息以指示所述用户设备开启或关闭与所述TAG中的所有小区之间的HARQ进程。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:从为所述电子设备服务的网络侧设备接收与定时提前量组TAG相关的信息;以及根据所述与TAG相关的信息开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:生成与所述电子设备服务的用户设备的定时提前量组TAG相关的信息;以及向所述用户设备发送所述信息以指示所述用户设备开启或关闭与所述TAG中的所有小区之间的HARQ进程。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,电子设备可以根据与TAG相关的信息来开启或关闭电子设备与TAG中的所有小区之间的HARQ进程。这样一来,电子设备可以以TAG为单位开 启/关闭HARQ进程,从而可以使得HARQ进程的开启和关闭更加合理。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的电子设备的配置的示例的框图;
图2是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图;
图3是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图;
图4是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图;
图5是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图;
图6是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图;
图7是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图;
图8是示出根据本公开的实施例的电子设备的配置的示例的框图;
图9是示出根据本公开的实施例的由电子设备执行的无线通信方法的流程图;
图10是示出根据本公开的另一个实施例的由电子设备执行的无线通信方法的流程图;
图11是示出根据本公开的实施例的应用场景的示意图;
图12是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图13是示出eNB的示意性配置的第二示例的框图;
图14是示出智能电话的示意性配置的示例的框图;以及
图15是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.问题的描述;
2.用户设备的配置示例;
3.网络侧设备的配置示例;
4.方法实施例;
5.应用示例。
<1.问题的描述>
前文中提到,可以基于RTT来确定HARQ进程的个数。但是,由于HARQ是停止等待协议,因此对时间很敏感。当发送端和接收端之间的RTT非常大时,HARQ的进程不能无限制的增加,此时开启HARQ虽然能够增加系统的可靠性,却可能降低系统的有效性,从而使得系统性能 下降。
这个问题在包括NTN(Non-terrestrial network,非地面网络)的无线通信系统中尤为明显,在NTN中,网络侧设备可以位于卫星设备上,而用户设备位于地面,因此用户设备和网络侧设备之间的RTT非常大。此时无限制地开启HARQ进程会使得系统性能大幅下降。
TA(Timing Advance,时间提前量)流程的主要功能是保证用户设备和网络侧设备的上行链路同步,即保证用户设备发送的信号能够按照网络侧设备指定的时间到达网络侧设备。一般来说,用户设备和网络侧设备之间的距离越大,TA值越大,即用户设备应该更早的发起传输;用户设备和网络侧设备之间的距离越小,TA值越小。在用户设备有一个或多个服务小区的情况下,用户设备的一个或多个服务小区被划分为多个TAG。对于一个特定的TAG中的每个服务小区,该服务小区与用户设备之间的TA值相同。例如,在用户设备有三个服务小区的情况下,假定小区1和小区2属于TAG1,而小区3属于TAG2,则小区1与用户设备之间的TA值等于小区2与用户设备之间的TA值。
由此可见,TA值可以间接地描述用户设备和网络侧设备之间的RTT,因此本公开期望提出一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以能够以TAG为单位对HARQ进程进行开启或关闭,从而使得HARQ进程的开启和关闭过程更加合理。
根据本公开的无线通信系统可以包括NTN和/或TN(Terrestrial network,地面网络)。在包括NTN和TN的无线通信系统中,用户设备可以连接至NTN和/或TN。管理NTN中的小区的网络侧设备可以被称为NTN BS(Base Station,BS)其可以位于卫星设备或者地面设备上,而管理TN中的小区的网络侧设备可以被称为TN BS,其可以位于地面设备上。
根据本公开的网络侧设备可以是任何类型的TRP(Transmit and Receive Port,发送和接收端口)。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。此外,在本公开中所述的网络侧设备也可以是基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路 由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.用户设备的配置示例>
图1是示出根据本公开的实施例的电子设备100的配置的示例的框图。这里的电子设备100可以作为无线通信系统中的用户设备。
如图1所示,电子设备100可以包括通信单元110和确定单元120。
这里,电子设备100的各个单元都可以包括在处理电路中。需要说明的是,电子设备100既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,电子设备100可以通过通信单元110从为电子设备服务的网络侧设备接收与TAG相关的信息。
根据本公开的实施例,确定单元120可以根据接收到的与TAG相关的信息开启或关闭电子设备100与该TAG中的所有小区之间的HARQ进程。
由此可见,根据本公开的实施例,电子设备100可以根据与TAG相关的信息来开启或关闭电子设备100与TAG中的所有小区之间的HARQ进程。电子设备100与TAG中的所有小区之间的HARQ进程指的是电子设备100与TAG中的所有小区之间的所有HARQ进程。这样一来,电子设备100可以以TAG为单位开启/关闭HARQ进程。进一步,与TAG相关的信息可以是用户特定(UE-Specific)的信息,即与TAG相关的信息是针对电子设备100的信息。这样一来,通过来自网络侧设备的信息可以开启/关闭特定用户设备的HARQ进程。综上,根据本公开的实施例,可以以TAG为单位开启或关闭特定用户设备的HARQ进程。因此,根据本公开的实施例,可以使得HARQ进程的开启和关闭更加合理。
根据本公开的实施例,与TAG相关的信息可以包括与TAG相关的TAC(Timing Advance Command,定时提前量命令)。
这里,TAC可以是针对TAG中的所有小区的命令。TAC可以指示TAG的标识,这种指示包括显性的指示方式和隐性的指示方式。例如,可 以用8个比特来表示TAC,其中,前2个比特用来指示TAG的标识,后6个比特用来指示该TAG中的各个小区与用户设备之间的TA值。再如,可以用11个比特来表示TAC,这11个比特全部用来指示TA值。在这种情况下,TAC针对的TAG是用户设备初始接入的小区属于的TAG。
根据本公开的实施例,确定单元120可以根据接收到的TAC确定TA的值。例如,TAC中的TA值指示TA的偏移值,确定单元120可以根据TA的偏移值来确定新的TA值,即通过将TA的当前值与TA的偏移值相加来确定新的TA值。即,N_TA_new=N_TA_old+N_TA_offset。这里,N_TA_new表示新的TA值,N_TA_old表示在收到该TAC之前的TA的当前值,N_TA_offset表示该TAC中包括的TA的偏移值。
根据本公开的实施例,确定单元120可以根据确定出的TA的值来开启或关闭电子设备100与TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,确定单元120可以根据确定出的TA的值与TA的预定阈值之间的关系来确定开启或关闭电子设备100与TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,当TA的值大于TA的预定阈值时,确定单元120可以确定关闭电子设备100与TAG中的所有小区之间的HARQ进程。进一步,当TA的值不大于TA的预定阈值时,确定单元120可以确定开启电子设备与TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,TA的预定阈值可以是网络侧设备和电子设备100之间事先约定好的约定值。可选地,TA的预定阈值也可以是网络侧设备针对电子设备100配置的预定阈值,从而电子设备100也可以从网络侧设备接收TA的预定阈值。
根据本公开的实施例,当TA的值大于TA的预定阈值时,说明电子设备100与网络侧设备之间的距离较大。在这种情况下,开启HARQ进程可能会导致系统性能下降。因此根据本公开的实施例,在这种情况下可以关闭HARQ进程。反之,当TA的值不大于TA的预定阈值时,说明电子设备100与网络侧设备之间的距离较小。在这种情况下,开启HARQ可以增加系统的有效性。由此可见,根据本公开的实施例,通过合理地设定TA的预定阈值,可以合理地开启或关闭HARQ进程。
针对一个TAG中的各个小区与电子设备100之间的TA值相同,因此各个小区与电子设备100之间的距离相同或相近。因此,根据本公开的 实施例,可以以TAG为单位开启或关闭HARQ进程。
如上所述,根据本公开的实施例,电子设备100可以根据来自网络侧设备的针对TAG的TAC来确定该TAG的TA的值,从而根据TA的值来开启或关闭与该TAG中的所有小区的HARQ进程。这样一来,网络侧设备无需显性地向电子设备100指示开启或关闭与特定的TAG中的所有小区的HARQ进程,而是由电子设备100根据TA的值自行确定,因此可以被看做是隐性的指示方式。
图2是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图。在图2中,UE可以由电子设备100来实现,而BS可以是为UE提供服务的网络侧设备。如图2所示,在步骤S201中,BS向UE发送针对TAG的TAC。接下来,在步骤S202中,UE根据接收到的TAC确定TA的值。接下来,在步骤S203中,UE根据TA的值确定开启或关闭与TAC针对的TAG中的所有小区之间的HARQ进程。接下来,在步骤S204中,BS向UE发送下行数据。接下来,在步骤S205中,UE对数据进行解码。这里,假定BS属于该TAC针对的TAG,则在步骤S203中UE确定关闭与该TAG的所有小区之间的HARQ进程的情况下,UE不进行反馈;在步骤S203中UE确定开启与该TAG的所有小区之间的HARQ进程的情况下,在步骤S206中,UE根据在步骤S205中的解码结果向BS反馈ACK/NACK。由此,UE可以根据TAG的TA的值开启或关闭与该TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,与TAG相关的信息可以包括TAG的配置信息,该TAG的配置信息中包括与HARQ进程的开启或关闭相关的信息。进一步,可以通过例如RRC(Radio Resource Control,无线资源控制)信息的高层信令来携带上述与TAG相关的信息。例如,TAG的配置信息可以是RRC信息中的“TAG-Config information element”信息元素。
根据本公开的实施例,网络侧设备可以利用“TAG-Config information element”信息元素中已有的域来指示开启或关闭HARQ进程。例如,网络侧设备可以利用“TAG-Config information element”信息中的“timeAlignmentTimer”域的值来指示开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程。根据本公开的实施例,“TAG-Config information element”信息中的“timeAlignmentTimer”域的值指示TA定时器,该定时器用于维护电子设备100接收到的TAC,该域的值用于指示TA值的有效时间。在确定关闭用户设备与该“TAG-Config  information element”信息针对的TAG中的所有小区的HARQ进程的情况下,网络侧设备可以将“timeAlignmentTimer”域的值设定成预定值(优选地为“infinity”,无穷大);在确定开启用户设备与该“TAG-Config information element”信息针对的TAG中的所有小区的HARQ进程的情况下,网络侧设备可以将“timeAlignmentTimer”域的值设定成非预定值,即TA值的有效时间。
根据本公开的实施例,网络侧设备可以在“TAG-Config information element”信息元素中增加一个域,以用于指示开启或关闭用户设备与“TAG-Config information element”信息元素针对的TAG中的所有小区之间的HARQ进程。例如,网络侧设备可以在“TAG-Config information element”信息元素中增加一个“HARQ_feedback_enable”域,当该域的值为“ON”时,表示开启用户设备与“TAG-Config information element”信息元素针对的TAG中的所有小区之间的HARQ进程;当该域的值为“OFF”时,表示关闭用户设备与“TAG-Config information element”信息元素针对的TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,确定单元120可以根据TAG的配置信息中的与HARQ进程的开启或关闭相关的信息来开启或关闭电子设备100与TAG中的所有小区之间的HARQ进程。具体地,确定单元120可以根据TAG的配置信息中的与HARQ进程的开启或关闭相关的域的值来开启或关闭电子设备100与TAG中的所有小区之间的HARQ进程
例如,在网络侧设备利用“TAG-Config information element”信息中的“timeAlignmentTimer”域的值来指示开启或关闭电子设备100与TAG中的所有小区之间的HARQ进程的情况下,确定单元120可以确定“timeAlignmentTimer”域的值,当“timeAlignmentTimer”域的值是预定值(优选地为“infinity”,无穷大)时,确定关闭电子设备100与TAG中的所有小区之间的HARQ进程;当“timeAlignmentTimer”域的值不是预定值(优选地为“infinity”,无穷大)时,确定开启电子设备100与TAG中的所有小区之间的HARQ进程。再如,在网络侧设备利用“TAG-Config information element”信息中的“HARQ_feedback_enable”域的值来指示开启或关闭电子设备100与TAG中的所有小区之间的HARQ进程的情况下,确定单元120可以确定“HARQ_feedback_enable”域的值,当“HARQ_feedback_enable”域的值是“ON”时,确定开启电子设备100与TAG中的所有小区之间的HARQ进程;当“HARQ_feedback_enable” 域的值是“OFF”时,确定关闭电子设备100与TAG中的所有小区之间的HARQ进程。
如上所述,根据本公开的实施例,电子设备100可以根据TAG配置信息中的与HARQ进程的开启或关闭相关的域的值来确定开启或关闭HARQ进程。也就是说,决策开启或关闭HARQ进程的主体是网络侧设备,电子设备100可以根据网络侧设备的指示来开启或关闭HARQ进程。这种指示方式可以看做是显性指示方式。
图3是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图。在图3中,UE可以由电子设备100来实现,而BS可以是为UE提供服务的网络侧设备。如图3所示,在步骤S301中,BS向UE发送TAG的配置信息。接下来,在步骤S302中,UE根据TAG配置信息确定开启或关闭与TAG配置信息针对的TAG中的所有小区之间的HARQ进程。接下来,在步骤S303中,BS向UE发送下行数据。接下来,在步骤S304中,UE对数据进行解码。这里,假定BS属于TAG配置信息针对的TAG,则在步骤S302中UE确定关闭与该TAG的所有小区之间的HARQ进程的情况下,UE不进行反馈;在步骤S302中UE确定开启与该TAG的所有小区之间的HARQ进程的情况下,在步骤S305中,UE根据在步骤S304中的解码结果向BS反馈ACK/NACK。由此,UE可以根据TAG配置信息开启或关闭与该TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,如图1所示,电子设备100还可以包括反馈单元130,用于生成针对下行数据的反馈信息。
根据本公开的实施例,在确定单元120确定开启电子设备100与TAG中的所有小区之间的HARQ进程的情况下,当从TAG中的小区的网络侧设备接收到数据时,反馈单元130可以针对该数据生成反馈信息并向发送数据的网络侧设备反馈。反馈信息包括ACK或NACK。进一步,在确定单元120确定关闭电子设备100与TAG中的所有小区之间的HARQ进程的情况下,当从TAG中的小区的网络侧设备接收到数据时,反馈单元130不向发送数据的网络侧设备反馈反馈信息。这里,从网络侧设备接收到的数据可以包括控制数据和业务数据。
根据本公开的实施例,电子设备100可以通过通信单元110从网络侧设备接收更新的与TAG相关的信息,并且确定单元120可以根据更新的与TAG相关的信息关闭或开启电子设备100与TAG中的所有小区之间的HARQ进程。
例如,在与TAG相关的信息是TAC的情况下,电子设备100可以通过通信单元110从网络侧设备接收更新的TAC,并重新确定TA值,从而根据重新确定的TA值来确定关闭或开启电子设备100与TAG中的所有小区之间的HARQ进程。再如,在与TAG相关的信息是TAG配置信息的情况下,电子设备可以通过通信单元110从网络侧设备接收更新的TAG配置信息,并根据更新的TAG配置信息来确定关闭或开启电子设备100与TAG中的所有小区之间的HARQ进程。
如上所述,根据本公开的实施例,可以针对特定的电子设备100,以TAG为单位开启或关闭电子设备100与该TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,电子设备100还可以根据来自网络侧设备的与特定的HARQ进程相关的信息来关闭或开启特定的HARQ进程。
根据本公开的实施例,电子设备100可以通过通信单元110从网络侧设备接收与特定的HARQ进程相关的信息。这里,与特定的HARQ进程相关的信息可以包括HARQ进程的识别信息。进一步,与特定的HARQ进程相关的信息还可以包括指示开启或关闭该HARQ进程的信息。进一步,根据本公开的实施例,确定单元120可以根据接收到的与特定的HARQ进程相关的信息识别该特定的HARQ进程。进一步,确定单元120可以根据接收到的与特定的HARQ进程相关的信息确定关闭或开启该特定的HARQ进程。
根据本公开的实施例,可以用例如DCI(Downlink Control Information,下行控制信息)的低层信令来承载与特定的HARQ进程相关的信息。
如上所述,根据本公开的实施例,可以根据与TAG相关的信息来开启或关闭电子设备100与TAG中的所有小区之间的所有HARQ进程。进一步,还可以根据与特定的HARQ进程相关的信息开开启或关闭特定的HARQ进程。
图4是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图。在图4中,UE可以由电子设备100来实现,而BS可以是为UE提供服务的网络侧设备。如图4所示,在步骤S401中,BS向UE发送TAC。接下来,在步骤S402中,UE根据TAC确定TA的值。接下来,在步骤S403中,UE根据TA值确定开启与TAC针对的TAG中的所有小区之间 的HARQ进程。接下来,在步骤S404中,BS向UE发送下行数据。接下来,在步骤S405中,UE对数据进行解码。这里,假定BS属于TAC针对的TAG,在步骤S406中,UE根据在步骤S405中的解码结果向BS反馈ACK/NACK。接下来,在步骤S407中,UE从BS接收与特定的HARQ进程相关的信息,该信息指示关闭特定的HARQ进程。在步骤S408中,BS向UE发送数据,该数据属于特定的HARQ进程。在步骤S409中,UE对数据进行解码,并且不向BS发送反馈信息。由此,UE可以根据TAC开启与TAG中的所有小区之间的HARQ进程,并根据与特定的HARQ进程相关的信息关闭特定的HARQ进程。
图5是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图。在图5中,UE可以由电子设备100来实现,而BS可以是为UE提供服务的网络侧设备。如图5所示,在步骤S501中,BS向UE发送TAC。接下来,在步骤S502中,UE根据TAC确定TA的值。接下来,在步骤S503中,UE根据TA值确定关闭与TAC针对的TAG中的所有小区之间的HARQ进程。接下来,在步骤S504中,BS向UE发送下行数据。接下来,在步骤S505中,UE对数据进行解码。这里,假定BS属于TAC针对的TAG,则UE不向BS发送反馈信息。接下来,在步骤S506中,UE从BS接收与特定的HARQ进程相关的信息,该信息指示开启特定的HARQ进程。在步骤S507中,BS向UE发送数据,该数据属于特定HARQ进程。在步骤S508中,UE对数据进行解码。接下来,在步骤S509中,UE根据在步骤S508中的解码结果向BS反馈ACK/NACK。由此,UE可以根据TAC关闭与TAG中的所有小区之间的HARQ进程,并根据与特定的HARQ进程相关的信息开启特定的HARQ进程。
图6是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图。在图6中,UE可以由电子设备100来实现,而BS可以是为UE提供服务的网络侧设备。如图6所示,在步骤S601中,BS向UE发送TAG配置信息。接下来,在步骤S602中,UE根据TAG配置信息确定开启与TAG配置信息针对的TAG中的所有小区之间的HARQ进程。接下来,在步骤S603中,BS向UE发送下行数据。接下来,在步骤S604中,UE对数据进行解码。这里,假定BS属于TAG配置信息针对的TAG,在步骤S605中,UE根据在步骤S604中的解码结果向BS反馈ACK/NACK。接下来,在步骤S606中,UE从BS接收与特定的HARQ进程相关的信息,该信息指示关闭特定的HARQ进程。在步骤S607中,BS向UE发送数据,该数据属于特定的HARQ进程。在步骤S608中,UE对数据进行解码, 并且不向BS发送反馈信息。由此,UE可以根据TAG配置信息开启与TAG中的所有小区之间的HARQ进程,并根据与特定的HARQ进程相关的信息关闭特定的HARQ进程。
图7是示出根据本公开的实施例的开启/关闭HARQ进程的信令流程图。在图7中,UE可以由电子设备100来实现,而BS可以是为UE提供服务的网络侧设备。如图7所示,在步骤S701中,BS向UE发送TAG配置信息。接下来,在步骤S702中,UE根据TAG配置信息确定关闭与TAG配置信息针对的TAG中的所有小区之间的HARQ进程。接下来,在步骤S703中,BS向UE发送下行数据。接下来,在步骤S704中,UE对数据进行解码。这里,假定BS属于TAG配置信息针对的TAG,则UE不向BS反馈ACK/NACK。接下来,在步骤S705中,UE从BS接收与特定的HARQ进程相关的信息,该信息指示开启特定的HARQ进程。在步骤S706中,BS向UE发送数据,该数据属于特定的HARQ进程。在步骤S707中,UE对数据进行解码。接下来,在步骤S708中,UE向BS发送反馈信息。由此,UE可以根据TAG配置信息关闭与TAG中的所有小区之间的HARQ进程,并根据与特定的HARQ进程相关的信息开启特定的HARQ进程。
根据本公开的实施例,电子设备100有一个或多个服务小区,这一个或多个服务小区被划分为一个或多个TAG。根据本公开的实施例,电子设备100可以从电子设备100的主服务小区的网络侧设备接收与各个TAG相关的信息。
根据本公开的实施例,例如主服务小区的网络侧设备可以为电子设备100配置一个或多个服务小区,并且将这一个或多个服务小区划分为多个TAG,然后将每个小区所属的TAG信息发送至电子设备100。这些与TAG的配置相关的信息可以通过RRC信息中的“TAG-Config information element”来承载。
换句话说,根据本公开的实施例,电子设备100可以从主服务小区的网络侧设备接收与电子设备100的各个TAG相关的信息,从而针对每个TAG,电子设备100可以根据与该TAG相关的信息来开启或关闭与该TAG中的所有小区之间的HARQ进程。这里,主服务小区可以是SPCell(Special Cell,特殊小区),其包括电子设备100的主小区(Primary Cell,PCell),即电子设备100初始接入的小区,还可以包括电子设备100的主辅小区(Primary Secondary Cell,PSCell),即辅小区组(secondary cell group, SCG)中的主要小区。
例如,假定电子设备100具备三个服务小区,包括一个主小区和两个辅小区(Secondary Cell,SCell),分别是:PCell、SCell1和SCell2。进一步,PCell和SCell1属于TAG1,而SCell2属于TAG2。在这种情况下,电子设备100可以从PCell的网络侧设备接收与TAG1相关的信息,从而确定开启或关闭与TAG1中的所有小区(PCell和SCell1)之间的HARQ进程。进一步,电子设备100可以从PCell的网络侧设备接收与TAG2相关的信息,从而确定开启或关闭与TAG2中的所有小区(SCell2)之间的HARQ进程。
由此可见,根据本公开的实施例,电子设备100可以根据与TAG相关的信息来开启或关闭电子设备100与TAG中的所有小区之间的HARQ进程。这样一来,电子设备100可以以TAG为单位开启/关闭HARQ进程。进一步,与TAG相关的信息(例如TAC或者TAG配置信息)是用户特定(UE-Specific)的信息。这样一来,通过来自网络侧设备的信息可以开启/关闭特定用户设备的HARQ进程。综上,根据本公开的实施例,可以以TAG为单位开启或关闭特定用户设备的HARQ进程。进一步,根据本公开的实施例,网络侧设备可以通过显性的方式和隐性的方式来指示开启或关闭HARQ进程。此外,电子设备100可以根据更新的与TAG相关的信息来重新确定开启或关闭HARQ进程。进一步,电子设备100还可以根据来自网络侧设备的与特定的HARQ进程相关的信息来开启或关闭特定的HARQ进程。综上,根据本公开的实施例,可以使得HARQ进程的开启和关闭更加合理。
<3.网络侧设备的配置示例>
图8是示出根据本公开的实施例的无线通信系统中的用作网络侧设备的电子设备800的结构的框图。
如图8所示,电子设备800可以包括生成单元810和通信单元820。
这里,电子设备800的各个单元都可以包括在处理电路中。需要说明的是,电子设备800既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,生成单元810可以生成与电子设备800服务 的用户设备的TAG相关的信息。这里,与用户设备的TAG相关的信息可以用于指示用户设备开启或关闭与TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,电子设备800可以通过通信单元820向用户设备发送与TAG相关的信息以指示用户设备开启或关闭与TAG中的所有小区之间的HARQ进程。
如上所述,根据本公开的实施例,电子设备800可以生成与用户设备的TAG相关的信息,以指示用户设备开启或关闭与TAG中的所有小区之间的HARQ进程。这样可以使得HARQ进程的开启和关闭更加合理。
根据本公开的实施例,生成单元810生成的与TAG相关的信息可以包括与TAG相关的TAC,并且TAC指示用户设备与TAG中的所有小区之间的相同的TA的值。
根据本公开的实施例,生成单元810可以在TAC中包括TAG的标识信息和用于指示TA的值,例如TA的偏移值。进一步,生成单元810也可以在TAC中仅包括用于指示TA的值,此时该TAC对应于用户设备初始接入的小区所在的TAG。
根据本公开的实施例,可以针对每个TAG设定TA的预定阈值,也可以针对所有TAG设定统一的TA的预定阈值。这里,电子设备800可以与用户设备之间事先约定任意一个TAG的TA的预定阈值。进一步,电子设备800还可以通过通信单元820向用户设备发送任意一个TAG的TA的预定阈值。这样一来,用户设备可以根据TAC确定TA的值,并利用TA的预定阈值和TA的值来确定开启或关闭与该TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,电子设备800可以根据用户设备的能力来确定TA的预定阈值。根据本公开的实施例,电子设备800可以通过通信单元820从用户设备接收用户设备的能力信息。这里,用户设备的能力可以包括用户类别和用户设备的双连接能力。
根据本公开的实施例,电子设备800可以根据用户类别确定用户设备支持的速率。进一步,根据本公开的实施例,当用户设备支持的速率较高时,电子设备800可以将TA的预定阈值设定的较低,以使得用户设备关闭HARQ进程的可能性大一些;当用户设备支持的速率较低时,电子设备800可以将TA的预定阈值设定的较高,以使得用户设备关闭HARQ 进程的可能性小一些。
根据本公开的实施例,电子设备800还可以根据用户设备的双连接能力来确定TA的预定阈值。例如,当用户设备具备双连接能力时,其可以连接至两个小区(例如TN中的小区和NTN中的小区),电子设备800可以将TN中的小区所在的TAG的TA的预定阈值设定的较高,以使得用户设备关闭HARQ进程的可能性小一些,而将NTN中的小区所在的TAG的TA的预定阈值设定的较低,以使得用户设备关闭HARQ进程的可能性大一些。这样一来,对于高可靠性业务,可以通过开启HARQ的TN中的小区来传输从而保证可靠性,而关闭NTN中的小区的HARQ可以实现高速率传输。
此外,根据本公开的实施例,电子设备800还可以根据用户设备的业务对时延的敏感程度来确定TA的预定阈值。例如,当用户设备的业务对时延比较敏感时,电子设备800可以将TA的预定阈值设定的较低,以使得用户设备关闭HARQ进程的可能性大一些;当用户设备的业务对时延不敏感时,电子设备800可以将TA的预定阈值设定的较高,以使得用户设备关闭HARQ进程的可能性小一些。
如上所述,以非限制性的实施例说明了电子设备800设定TA的预定阈值的实施例,本公开并不限于此。电子设备800可以综合考虑用户能力和业务对时延的敏感程度来确定TA的预定阈值。当然,电子设备800还可以考虑其他参数来确定TA的预定阈值。
如上所述,电子设备800可以通过TAC向用户设备指示TA的值,还可以配置TA的预定阈值,从而使得用户设备可以根据TA的值和TA的预定阈值来确定开启或关闭与TAG相关的所有小区之间的HARQ进程。如此一来,可以以隐性的方式来向用户设备提供指示。也就是说,决策开启或关闭HARQ进程的主体是用户设备。
根据本公开的实施例,如图8所示,电子设备800还可以包括确定单元830,用于确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程。进一步,生成单元810可以根据确定单元830确定的结果来生成与TAG相关的信息。
根据本公开的实施例,确定单元820可以根据用户设备与TAG中的所有小区之间的相同的TA的值来确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程。
这里,电子设备800可以从用户设备接收上行信息,并可以根据上行信息中包括的前导码(preamble)和SRS(Sounding Reference Signal,探测参考信号)等参数来确定TA的值。
根据本公开的实施例,当用户设备与TAG中的所有小区之间的相同的TA的值大于TA的预定阈值时,确定单元820可以确定关闭用户设备与TAG中的所有小区之间的HARQ进程。进一步,当用户设备与TAG中的所有小区之间的相同的TA的值不大于TA的预定阈值时,确定单元820可以确定开启用户设备与TAG中的所有小区之间的HARQ进程。这里,电子设备800可以根据前文中所述的方式来确定TA的预定阈值。
根据本公开的实施例,确定单元830可以根据用户设备的能力来确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程。这里,用户设备的能力可以包括用户类别和用户设备的双连接能力。
根据本公开的实施例,确定单元830可以根据用户类别确定用户设备支持的速率。进一步,根据本公开的实施例,针对特定的TAG包括的所有小区,当用户设备支持的速率较高时,确定单元830可以确定关闭用户设备与TAG包括的所有小区之间的HARQ进程;当用户设备支持的速率较低时,确定单元830可以确定开启用户设备与TAG包括的所有小区之间的HARQ进程。
根据本公开的实施例,确定单元830还可以根据用户设备的双连接能力来确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程。例如,当用户设备具备双连接能力时,其可以连接至两个小区(例如TN中的小区和NTN中的小区),确定单元830可以开启用户设备与TN中的小区之间的HARQ进程,而关闭用户设备与NTN中的小区之间的HARQ进程。这样一来,对于高可靠性业务,可以通过开启HARQ的TN中的小区来传输从而保证可靠性,而关闭NTN中的小区的HARQ可以实现高速率传输。
此外,根据本公开的实施例,确定单元830还可以根据用户设备的业务对时延的敏感程度来确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程。例如,针对特定的TAG中的所有小区,当用户设备的业务对时延比较敏感时,确定单元830可以确定关闭用户设备与TAG中的所有小区之间的HARQ进程;当用户设备的业务对时延不敏感时,确定单元830可以确定开启用户设备与TAG中的所有小区之间的HARQ进程。
如上所述,以非限制性的实施例说明了电子设备800确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程的实施例,本公开并不限于此。电子设备800可以综合考虑TA的值、用户能力和业务对时延的敏感程度来确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程。当然,电子设备800还可以考虑其他参数来确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,生成单元810生成的与TAG相关的信息包括可以TAG的配置信息,并且TAG的配置信息可以包括与HARQ进程的开启或关闭相关的信息。
这里,电子设备800可以通过例如RRC信息的高层信令来承载与TAG相关的信息。TAG的配置信息包括TAG-Config information element信息。
根据本公开的实施例,生成单元810可以利用“TAG-Config information element”信息元素中已有的域来指示开启或关闭HARQ进程。例如,生成单元810可以利用“TAG-Config information element”信息中的“timeAlignmentTimer”域的值来指示开启或关闭用户设备与TAG中的所有小区之间的HARQ进程。根据本公开的实施例,在确定关闭用户设备与该“TAG-Config information element”信息针对的TAG中的所有小区的HARQ进程的情况下,生成单元810可以将“timeAlignmentTimer”域的值设定成预定值(优选地为“infinity”,无穷大);在确定开启用户设备与该“TAG-Config information element”信息针对的TAG中的所有小区的HARQ进程的情况下,生成单元810可以将“timeAlignmentTimer”域的值设定成非预定值,即TA值的有效时间。
根据本公开的实施例,生成单元810可以在TAG-Config information element信息中增加与HARQ进程的开启或关闭相关的域,以用于指示开启或关闭用户设备与所述TAG中的所有小区之间的HARQ进程。
例如,生成单元810可以在“TAG-Config information element”信息元素中增加一个“HARQ_feedback_enable”域,当该域的值为“ON”时,表示开启用户设备与“TAG-Config information element”信息元素针对的TAG中的所有小区之间的HARQ进程;当该域的值为“OFF”时,表示关闭用户设备与“TAG-Config information element”信息元素针对的TAG中的所有小区之间的HARQ进程。
根据本公开的实施例,电子设备800可以对与TAG相关的信息进行更新。例如,生成单元810可以更新与用户设备的所述TAG相关的信息,即重新生成与TAG相关的信息。进一步,电子设备800可以通过通信单元810向用户设备发送更新的信息以指示用户设备关闭或开启与TAG中的所有小区之间的HARQ进程。例如,当某个TAG的TA值发生了改变时,电子设备800的生成单元810可以重新生成该TAG的TAC以向用户设备发送。又如,当电子设备800确定需要关闭原本开启的用户设备与某个TAG中的所有小区之间的HARQ进程,或者需要开启原本关闭的用户设备与某个TAG中的所有小区之间的HARQ进程时,生成单元810可以重新生成TAG的配置信息以向用户设备发送。
根据本公开的实施例,确定单元830还可以确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程中的特定的HARQ进程,从而生成单元810还可以生成与特定的HARQ进程相关的信息以指示用户设备开启或关闭特定的HARQ进程。进一步,电子设备800可以通过通信单元810向用户设备发送与特定的HARQ进程相关的信息以指示用户设备开启或关闭所述特定的HARQ进程。例如,当确定单元830确定特定的HARQ进程的开启/关闭状态需要改变时,可以向用户设备发送与特定的HARQ进程相关的信息,以指示用户设备改变该特定的HARQ进程的开启/关闭状态。
根据本公开的实施例,电子设备800可以通过例如DCI的低层信令来承载与特定的HARQ进程相关的信息。
根据本公开的实施例,用户设备有一个或多个服务小区,一个或多个服务小区被划分为一个或多个TAG。电子设备800是用户设备的主服务小区的网络侧设备。进一步,电子设备800不仅可以向用户设备发送与电子设备800所属的TAG相关的信息,电子设备800还可以向用户设备发送与除电子设备800所属的TAG以外的其他TAG相关的信息。
根据本公开的实施例的电子设备100可以作为用户设备,电子设备800可以作为用网络侧设备,即电子设备800可以为电子设备100提供服务,因此在前文中描述的关于电子设备100的全部实施例都适用于此。
<4.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为用户设备的电子设备100执行的无线通信方法。
图9是示出根据本公开的实施例的由无线通信系统中的作为用户设备的电子设备100执行的无线通信方法的流程图。
如图9所示,在步骤S910中,从为电子设备服务的网络侧设备接收与定时提前量组TAG相关的信息。
接下来,在步骤S920中,根据与TAG相关的信息开启或关闭电子设备与TAG中的所有小区之间的HARQ进程。
优选地,与TAG相关的信息包括与TAG相关的定时提前量命令TAC,并且开启或关闭电子设备与TAG中的所有小区之间的HARQ进程包括:根据TAC确定定时提前量TA的值;以及根据TA的值来开启或关闭电子设备与TAG中的所有小区之间的HARQ进程。
优选地,开启或关闭电子设备与TAG中的所有小区之间的HARQ进程包括:当TA的值大于TA的预定阈值时,关闭电子设备与TAG中的所有小区之间的HARQ进程;以及当TA的值不大于TA的预定阈值时,开启电子设备与TAG中的所有小区之间的HARQ进程。
优选地,TA的预定阈值是网络侧设备和电子设备之间的约定值,或者其中,所述无线通信方法还包括:从网络侧设备接收TA的预定阈值。
优选地,与TAG相关的信息包括TAG的配置信息,并且开启或关闭电子设备与TAG中的所有小区之间的HARQ进程包括:根据TAG的配置信息中的与HARQ进程的开启或关闭相关的信息来开启或关闭电子设备与所述TAG中的所有小区之间的HARQ进程。
优选地,通过高层信令来承载与TAG相关的信息。
优选地,高层信令包括RRC信息,并且TAG的配置信息包括TAG-Config information element信息。
优选地,开启电子设备与TAG中的所有小区之间的HARQ进程包括:当从TAG中的小区的网络侧设备接收到数据时,向网络侧设备反馈ACK或NACK;并且关闭电子设备与TAG中的所有小区之间的HARQ进程包括:当从TAG中的小区的网络侧设备接收到数据时,不向网络侧设备反馈ACK或NACK。
优选地,数据包括控制数据和业务数据。
优选地,无线通信方法还包括:在开启或关闭电子设备与TAG中的所有小区之间的HARQ进程之后,从网络侧设备接收更新的与TAG相关 的信息;以及根据更新的与TAG相关的信息关闭或开启电子设备与TAG中的所有小区之间的HARQ进程。
优选地,无线通信方法还包括:在开启或关闭电子设备与TAG中的所有小区之间的HARQ进程之后,从网络侧设备接收与特定的HARQ进程相关的信息;以及根据与特定的HARQ进程相关的信息关闭或开启特定的HARQ进程。
优选地,通过低层信令来承载与特定的HARQ进程相关的信息。
优选地,低层信令包括DCI。
优选地,电子设备有一个或多个服务小区,一个或多个服务小区被划分为一个或多个TAG,并且其中,无线通信方法还包括:从电子设备的主服务小区的网络侧设备接收与各个TAG相关的信息。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备100,因此前文中关于电子设备100的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的作为网络侧设备的电子设备800执行的无线通信方法。
图10是示出根据本公开的实施例的由无线通信系统中的作为网络侧设备的电子设备800执行的无线通信方法的流程图。
如图10所示,在步骤S1010中,生成与电子设备服务的用户设备的定时提前量组TAG相关的信息。
接下来,在步骤S1020中,向用户设备发送与TAG相关的信息以指示用户设备开启或关闭与TAG中的所有小区之间的HARQ进程。
优选地,与TAG相关的信息包括与TAG相关的定时提前量命令TAC,并且TAC指示用户设备与TAG中的所有小区之间的相同的定时提前量TA的值。
优选地,无线通信方法还包括:确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程;以及根据确定的结果来生成与TAG相关的信息。
优选地,确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程包括:根据用户设备与TAG中的所有小区之间的相同的定时提前量TA的值来确定开启或关闭用户设备与TAG中的所有小区之间的 HARQ进程。
优选地,确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程包括:当TA的值大于TA的预定阈值时,确定关闭用户设备与TAG中的所有小区之间的HARQ进程;以及当TA的值不大于TA的预定阈值时,确定开启用户设备与TAG中的所有小区之间的HARQ进程。
优选地,与TAG相关的信息包括TAG的配置信息,并且TAG的配置信息包括与HARQ进程的开启或关闭相关的信息。
优选地,通过高层信令来承载与TAG相关的信息。
优选地,高层信令包括RRC信息,并且TAG的配置信息包括TAG-Config information element信息。
优选地,利用TAG-Config information element信息中的timeAlignmentTimer域的值来指示开启或关闭用户设备与TAG中的所有小区之间的HARQ进程。
优选地,在TAG-Config information element信息中增加与HARQ进程的开启或关闭相关的域,以用于指示开启或关闭用户设备与TAG中的所有小区之间的HARQ进程。
优选地,无线通信方法还包括:更新与用户设备的TAG相关的信息;以及向用户设备发送更新的信息以指示用户设备关闭或开启与TAG中的所有小区之间的HARQ进程。
优选地,无线通信方法还包括:确定开启或关闭用户设备与TAG中的所有小区之间的HARQ进程中的特定的HARQ进程;以及向用户设备发送与特定的HARQ进程相关的信息以指示用户设备开启或关闭特定的HARQ进程。
优选地,通过低层信令来承载与特定的HARQ进程相关的信息。
优选地,低层信令包括DCI。
优选地,用户设备有一个或多个服务小区,一个或多个服务小区被划分为一个或多个TAG,并且电子设备是用户设备的主服务小区的网络侧设备。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备800,因此前文中关于电子设备800的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种场景。具体地,在每个场景中,用户设备有一个或多个服务小区,这一个或多个服务小区被划分为一个或多个TAG。下面以非限制性的方式说明几个实施例。
图11是示出根据本公开的实施例的应用场景的示意图。如图11所示,NTN BS可以同时覆盖区域A、区域B和区域C,TN BS可以覆盖区域C,UE#1位于区域A,UE#2位于区域B,UE#3位于区域C。在图11所示的场景中,UE#1连接至NTN BS,UE#2连接至NTN BS,UE#3同时连接至NTN BS和TN BS。也就是说,UE#1具有一个服务小区,即NTN BS覆盖下的区域A,UE#2具有一个服务小区,即NTN BS覆盖下的区域B,UE#3具有两个服务小区,即NTN BS覆盖下的区域C和TN BS覆盖下的区域C。
根据本公开的实施例,UE#1具有一个TAG#1,包括NTN BS覆盖下的区域A。由于UE#1距离NTN BS很远,传输时延大,因此根据来自NTN BS的显性或隐性的指示,UE#1可以被配置为关闭与TAG#1中包括的所有小区之间的HARQ,以提供系统效率。进一步,UE#2具有一个TAG#2,包括NTN BS覆盖下的区域B。这里假定UE#2是传感器用户,仅周期性上报某种数据(比如温度、湿度等),对时延不敏感。因此根据来自NTN BS的显性或隐性的指示,UE#2可以被配置为开启与TAG#2中包括的所有小区之间的HARQ,以提供系统的可靠性。进一步,假定UE#3具有两个TAG:TAG#3和TAG#4,TAG#3包括NTN BS覆盖下的区域C,TAG#4包括TN BS覆盖下的区域C,其中,TN BS覆盖下的区域C是主服务小区。根据来自TN BS的显性或隐性的指示,UE#3可以被配置为关闭与TAG#3中包括的所有小区之间的HARQ,开启与TAG#4中包括的所有小区之间的HARQ。也就是说,UE#3不反馈针对来自NTN小区的下行数据的ACK/NACK,反馈针对来自TN小区的下行数据的ACK/NACK。
如上所述,在包括NTN和TN的无线通信系统中,可以使得用户设备以TAG为单位合理地开启或关闭HARQ进程。
在UE支持CA(Carrier aggregation,载波聚合)的场景中,UE可以被配置多个服务小区。例如,假定UE具有来自同步地球卫星上的RRH(Remote Radio Head,远端射频头)的服务小区Scell#1以及来自地面基站的服务小区Pcell和服务小区Scell#2,这些小区以CA的方式对UE进行服务,假定Pcell和Scell#2属于一个TAG,记为TAG#1,服务小区Scell#1 属于另外一个TAG,记为TAG#2。地面基站的服务小区Pcell中的网络侧设备可以显性或隐性地向UE指示开启与TAG#1中的所有小区之间的HARQ进程,并向UE指示关闭与TAG#2中的所有小区之间的HARQ进程。例如,对于TAG#1,域“HARQ_feedback_enable”的值为“ON”;对于TAG#2,域“HARQ_feedback_enable”的值为“OFF”。
在UE支持双连接的场景中,UE可以被配置多个服务小区组,每个服务小区组里包含多个服务小区。例如,UE同时被来自同步地球卫星基站的服务小区PScell和服务小区Scell#1以及来自地面基站的服务小区Pcell和服务小区Scell#2以双连接的方式进行服务,其中,PScell和Scell#1属于SCG(secondary cell group,辅小区组),Pcell和Scell#2属于MCG(master cell group,主小区组)。这里假定Pcell和Scell#2属于一个TAG,记为TAG#1,PScell和Scell#1属于另外一个TAG,记为TAG#2。服务小区PScell可以显性或隐性地向UE指示关闭与TAG#2中的所有小区之间的HARQ进程,例如针对TAG#2的域“HARQ_feedback_enable”的值为“OFF”,而服务小区Pcell可以显性或隐性地向UE指示开启与TAG#1中的所有小区之间的HARQ进程,例如针对TAG#1的域“HARQ_feedback_enable”的值为“ON”。
如上以非限制性的方式描述了本公开应用的场景。本领域技术人员应当认识到,本公开能够应用于用户设备的服务小区被划分为一个或多个TAG的所有场景。
网络侧设备可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与如下所述的基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
网络侧设备也可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机 (PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图12是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1200包括一个或多个天线1210以及基站设备1220。基站设备1220和每个天线1210可以经由RF线缆彼此连接。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1220发送和接收无线信号。如图12所示,eNB 1200可以包括多个天线1210。例如,多个天线1210可以与eNB 1200使用的多个频带兼容。虽然图12示出其中eNB 1200包括多个天线1210的示例,但是eNB 1200也可以包括单个天线1210。
基站设备1220包括控制器1221、存储器1222、网络接口1223以及无线通信接口1225。
控制器1221可以为例如CPU或DSP,并且操作基站设备1220的较高层的各种功能。例如,控制器1221根据由无线通信接口1225处理的信号中的数据来生成数据分组,并经由网络接口1223来传递所生成的分组。控制器1221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1222包括RAM和ROM,并且存储由控制器1221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1223为用于将基站设备1220连接至核心网1224的通信接口。控制器1221可以经由网络接口1223而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1200与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1223 为无线通信接口,则与由无线通信接口1225使用的频带相比,网络接口1223可以使用较高频带用于无线通信。
无线通信接口1225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1210来提供到位于eNB 1200的小区中的终端的无线连接。无线通信接口1225通常可以包括例如基带(BB)处理器1226和RF电路1227。BB处理器1226可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1221,BB处理器1226可以具有上述逻辑功能的一部分或全部。BB处理器1226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1226的功能改变。该模块可以为插入到基站设备1220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1227可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。
如图12所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与eNB 1200使用的多个频带兼容。如图12所示,无线通信接口1225可以包括多个RF电路1227。例如,多个RF电路1227可以与多个天线元件兼容。虽然图12示出其中无线通信接口1225包括多个BB处理器1226和多个RF电路1227的示例,但是无线通信接口1225也可以包括单个BB处理器1226或单个RF电路1227。
(第二应用示例)
图13是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1330包括一个或多个天线1340、基站设备1350和RRH 1360。RRH 1360和每个天线1340可以经由RF线缆而彼此连接。基站设备1350和RRH 1360可以经由诸如光纤线缆的高速线路而彼此连接。
天线1340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1360发送和接收无线信号。如图13所示,eNB 1330可以包括多个天线1340。例如,多个天线1340可以与eNB 1330使用的多个频带兼容。虽然图13示出其中eNB 1330包括多个天线1340的示例,但是eNB 1330也可以包括单个天线1340。
基站设备1350包括控制器1351、存储器1352、网络接口1353、无 线通信接口1355以及连接接口1357。控制器1351、存储器1352和网络接口1353与参照图12描述的控制器1221、存储器1222和网络接口1223相同。
无线通信接口1355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1360和天线1340来提供到位于与RRH 1360对应的扇区中的终端的无线通信。无线通信接口1355通常可以包括例如BB处理器1356。除了BB处理器1356经由连接接口1357连接到RRH 1360的RF电路1364之外,BB处理器1356与参照图12描述的BB处理器1226相同。如图13所示,无线通信接口1355可以包括多个BB处理器1356。例如,多个BB处理器1356可以与eNB 1330使用的多个频带兼容。虽然图13示出其中无线通信接口1355包括多个BB处理器1356的示例,但是无线通信接口1355也可以包括单个BB处理器1356。
连接接口1357为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的接口。连接接口1357还可以为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的上述高速线路中的通信的通信模块。
RRH 1360包括连接接口1361和无线通信接口1363。
连接接口1361为用于将RRH 1360(无线通信接口1363)连接至基站设备1350的接口。连接接口1361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1363经由天线1340来传送和接收无线信号。无线通信接口1363通常可以包括例如RF电路1364。RF电路1364可以包括例如混频器、滤波器和放大器,并且经由天线1340来传送和接收无线信号。如图13所示,无线通信接口1363可以包括多个RF电路1364。例如,多个RF电路1364可以支持多个天线元件。虽然图13示出其中无线通信接口1363包括多个RF电路1364的示例,但是无线通信接口1363也可以包括单个RF电路1364。
在图12和图13所示的eNB 1200和eNB 1330中,通过使用图8所描述的生成单元810和确定单元830可以由控制器1221和/或控制器1351实现。功能的至少一部分也可以由控制器1221和控制器1351实现。例如,控制器1221和/或控制器1351可以通过执行相应的存储器中存储的指令而执行生成与TAG相关的信息以及确定开启或者关闭用户设备与TAG中的所有小区的HARQ进程的功能。
<关于终端设备的应用示例>
(第一应用示例)
图14是示出可以应用本公开内容的技术的智能电话1400的示意性配置的示例的框图。智能电话1400包括处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412、一个或多个天线开关1415、一个或多个天线1416、总线1417、电池1418以及辅助控制器1419。
处理器1401可以为例如CPU或片上系统(SoC),并且控制智能电话1400的应用层和另外层的功能。存储器1402包括RAM和ROM,并且存储数据和由处理器1401执行的程序。存储装置1403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1400的接口。
摄像装置1406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1408将输入到智能电话1400的声音转换为音频信号。输入装置1409包括例如被配置为检测显示装置1410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1400的输出图像。扬声器1411将从智能电话1400输出的音频信号转换为声音。
无线通信接口1412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1412通常可以包括例如BB处理器1413和RF电路1414。BB处理器1413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1414可以包括例如混频器、滤波器和放大器,并且经由天线1416来传送和接收无线信号。无线通信接口1412可以为其上集成有BB处理器1413和RF电路1414的一个芯片模块。如图14所示,无线通信接口1412可以包括多个BB处理器1413和多个RF电路1414。虽然图14示出其中无线通信接口1412包括多个BB处理器1413和多个RF电路1414的示例,但是无线通信接口1412也可以包括单个BB处理器1413或单个RF电路1414。
此外,除了蜂窝通信方案之外,无线通信接口1412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1412可以包括针对每种无线通信方案的BB处理器1413和RF电路1414。
天线开关1415中的每一个在包括在无线通信接口1412中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1416的连接目的地。
天线1416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1412传送和接收无线信号。如图14所示,智能电话1400可以包括多个天线1416。虽然图14示出其中智能电话1400包括多个天线1416的示例,但是智能电话1400也可以包括单个天线1416。
此外,智能电话1400可以包括针对每种无线通信方案的天线1416。在此情况下,天线开关1415可以从智能电话1400的配置中省略。
总线1417将处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412以及辅助控制器1419彼此连接。电池1418经由馈线向图14所示的智能电话1400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1419例如在睡眠模式下操作智能电话1400的最小必需功能。
在图14所示的智能电话1400中,通过使用图1所描述的确定单元120和反馈单元130可以由由处理器1401或辅助控制器1419实现。功能的至少一部分也可以由处理器1401或辅助控制器1419实现。例如,处理器1401或辅助控制器1419可以通过执行存储器1402或存储装置1403中存储的指令而执行确定开启或关闭与TAG中的所有小区之间的HARQ进程以及针对下行数据反馈ACK/NACK的功能。
(第二应用示例)
图15是示出可以应用本公开内容的技术的汽车导航设备1520的示意性配置的示例的框图。汽车导航设备1520包括处理器1521、存储器1522、全球定位系统(GPS)模块1524、传感器1525、数据接口1526、内容播放器1527、存储介质接口1528、输入装置1529、显示装置1530、扬声器1531、无线通信接口1533、一个或多个天线开关1536、一个或多 个天线1537以及电池1538。
处理器1521可以为例如CPU或SoC,并且控制汽车导航设备1520的导航功能和另外的功能。存储器1522包括RAM和ROM,并且存储数据和由处理器1521执行的程序。
GPS模块1524使用从GPS卫星接收的GPS信号来测量汽车导航设备1520的位置(诸如纬度、经度和高度)。传感器1525可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1526经由未示出的终端而连接到例如车载网络1541,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1527再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1528中。输入装置1529包括例如被配置为检测显示装置1530的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1530包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1531输出导航功能的声音或再现的内容。
无线通信接口1533支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1533通常可以包括例如BB处理器1534和RF电路1535。BB处理器1534可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1535可以包括例如混频器、滤波器和放大器,并且经由天线1537来传送和接收无线信号。无线通信接口1533还可以为其上集成有BB处理器1534和RF电路1535的一个芯片模块。如图15所示,无线通信接口1533可以包括多个BB处理器1534和多个RF电路1535。虽然图15示出其中无线通信接口1533包括多个BB处理器1534和多个RF电路1535的示例,但是无线通信接口1533也可以包括单个BB处理器1534或单个RF电路1535。
此外,除了蜂窝通信方案之外,无线通信接口1533可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1533可以包括BB处理器1534和RF电路1535。
天线开关1536中的每一个在包括在无线通信接口1533中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1537的连接目 的地。
天线1537中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1533传送和接收无线信号。如图15所示,汽车导航设备1520可以包括多个天线1537。虽然图15示出其中汽车导航设备1520包括多个天线1537的示例,但是汽车导航设备1520也可以包括单个天线1537。
此外,汽车导航设备1520可以包括针对每种无线通信方案的天线1537。在此情况下,天线开关1536可以从汽车导航设备1520的配置中省略。
电池1538经由馈线向图15所示的汽车导航设备1520的各个块提供电力,馈线在图中被部分地示为虚线。电池1538累积从车辆提供的电力。
在图15示出的汽车导航设备1520中,通过使用图1所描述的确定单元120和反馈单元130可以由处理器1521实现。功能的至少一部分也可以由处理器1521实现。例如,处理器1521可以通过执行存储器1522中存储的指令而执行确定开启或关闭与TAG中的所有小区之间的HARQ进程以及针对下行数据反馈ACK/NACK的功能。
本公开内容的技术也可以被实现为包括汽车导航设备1520、车载网络1541以及车辆模块1542中的一个或多个块的车载系统(或车辆)1540。车辆模块1542生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1541。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的 处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (57)

  1. 一种电子设备,包括处理电路,被配置为:
    从为所述电子设备服务的网络侧设备接收与定时提前量组TAG相关的信息;以及
    根据所述与TAG相关的信息开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程。
  2. 根据权利要求1所述的电子设备,其中,所述与TAG相关的信息包括与所述TAG相关的定时提前量命令TAC,并且所述处理电路还被配置为:
    根据所述TAC确定定时提前量TA的值;以及
    根据所述TA的值来开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    当所述TA的值大于TA的预定阈值时,关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程;以及
    当所述TA的值不大于所述TA的预定阈值时,开启所述电子设备与所述TAG中的所有小区之间的HARQ进程。
  4. 根据权利要求3所述的电子设备,其中,所述TA的预定阈值是所述网络侧设备和所述电子设备之间的约定值,或者
    其中,所述处理电路还被配置为:从所述网络侧设备接收所述TA的预定阈值。
  5. 根据权利要求1所述的电子设备,其中,所述与TAG相关的信息包括所述TAG的配置信息,并且所述处理电路还被配置为:
    根据所述TAG的配置信息中的与HARQ进程的开启或关闭相关的信息来开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程。
  6. 根据权利要求5所述的电子设备,其中,通过高层信令来承载所述与TAG相关的信息,所述高层信令包括RRC信息,并且所述TAG的 配置信息包括TAG-Config information element信息。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在开启所述电子设备与所述TAG中的所有小区之间的HARQ进程的情况下,当从所述TAG中的小区的网络侧设备接收到数据时,向所述网络侧设备反馈ACK或NACK;以及
    在关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程的情况下,当从所述TAG中的小区的网络侧设备接收到数据时,不向所述网络侧设备反馈ACK或NACK。
  8. 根据权利要求7所述的电子设备,其中,所述数据包括控制数据和业务数据。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程之后,从所述网络侧设备接收更新的与所述TAG相关的信息;以及
    根据所述更新的与所述TAG相关的信息关闭或开启所述电子设备与所述TAG中的所有小区之间的HARQ进程。
  10. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程之后,从所述网络侧设备接收与特定的HARQ进程相关的信息;以及
    根据所述与特定的HARQ进程相关的信息关闭或开启所述特定的HARQ进程。
  11. 根据权利要求10所述的电子设备,其中,通过低层信令来承载所述与特定的HARQ进程相关的信息。
  12. 根据权利要求11所述的电子设备,其中,所述低层信令包括DCI。
  13. 根据权利要求1所述的电子设备,其中,所述电子设备有一个或多个服务小区,所述一个或多个服务小区被划分为一个或多个TAG,并且
    其中,所述处理电路还被配置为:从所述电子设备的主服务小区的网 络侧设备接收与各个TAG相关的信息。
  14. 一种电子设备,包括处理电路,被配置为:
    生成与所述电子设备服务的用户设备的定时提前量组TAG相关的信息;以及
    向所述用户设备发送所述与TAG相关的信息以指示所述用户设备开启或关闭与所述TAG中的所有小区之间的HARQ进程。
  15. 根据权利要求14所述的电子设备,其中,所述与TAG相关的信息包括与所述TAG相关的定时提前量命令TAC,并且所述TAC指示所述用户设备与所述TAG中的所有小区之间的相同的定时提前量TA的值。
  16. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    确定开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程;以及
    根据所述确定的结果来生成所述信息。
  17. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为:
    根据所述用户设备与所述TAG中的所有小区之间的相同的定时提前量TA的值来确定开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程。
  18. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    当所述TA的值大于TA的预定阈值时,确定关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程;以及
    当所述TA的值不大于所述TA的预定阈值时,确定开启所述用户设备与所述TAG中的所有小区之间的HARQ进程。
  19. 根据权利要求14所述的电子设备,其中,所述与TAG相关的信息包括所述TAG的配置信息,并且所述TAG的配置信息包括与HARQ进程的开启或关闭相关的信息。
  20. 根据权利要求19所述的电子设备,其中,所述处理电路还被配置为:
    通过高层信令来承载所述与TAG相关的信息。
  21. 根据权利要求20所述的电子设备,其中,所述高层信令包括RRC信息,并且所述TAG的配置信息包括TAG-Config information element信息。
  22. 根据权利要求21所述的电子设备,其中,利用所述TAG-Config information element信息中的timeAlignmentTimer域来指示开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程。
  23. 根据权利要求21所述的电子设备,其中,在所述TAG-Config information element信息中增加与HARQ进程的开启或关闭相关的域,以用于指示开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程。
  24. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    更新与所述用户设备的所述TAG相关的信息;以及
    向所述用户设备发送更新的信息以指示所述用户设备关闭或开启与所述TAG中的所有小区之间的HARQ进程。
  25. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    确定开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程中的特定的HARQ进程;以及
    向所述用户设备发送与所述特定的HARQ进程相关的信息以指示所述用户设备开启或关闭所述特定的HARQ进程。
  26. 根据权利要求25所述的电子设备,其中,所述处理电路还被配置为:
    通过低层信令来承载所述与特定的HARQ进程相关的信息。
  27. 根据权利要求26所述的电子设备,其中,所述低层信令包括DCI。
  28. 根据权利要求14所述的电子设备,其中,所述用户设备有一个或多个服务小区,所述一个或多个服务小区被划分为一个或多个TAG,并且所述电子设备是所述用户设备的主服务小区的网络侧设备。
  29. 一种由电子设备执行的无线通信方法,包括:
    从为所述电子设备服务的网络侧设备接收与定时提前量组TAG相关的信息;以及
    根据所述与TAG相关的信息开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程。
  30. 根据权利要求29所述的无线通信方法,其中,所述与TAG相关的信息包括与所述TAG相关的定时提前量命令TAC,并且开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程包括:
    根据所述TAC确定定时提前量TA的值;以及
    根据所述TA的值来开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程。
  31. 根据权利要求30所述的无线通信方法,其中,开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程包括:
    当所述TA的值大于TA的预定阈值时,关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程;以及
    当所述TA的值不大于所述TA的预定阈值时,开启所述电子设备与所述TAG中的所有小区之间的HARQ进程。
  32. 根据权利要求31所述的无线通信方法,其中,所述TA的预定阈值是所述网络侧设备和所述电子设备之间的约定值,或者
    其中,所述无线通信方法还包括:从所述网络侧设备接收所述TA的预定阈值。
  33. 根据权利要求29所述的无线通信方法,其中,所述与TAG相关的信息包括所述TAG的配置信息,并且开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程包括:
    根据所述TAG的配置信息中的与HARQ进程的开启或关闭相关的信息来开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程。
  34. 根据权利要求33所述的无线通信方法,其中,通过高层信令来承载所述与TAG相关的信息,所述高层信令包括RRC信息,并且所述TAG的配置信息包括TAG-Config information element信息。
  35. 根据权利要求29所述的无线通信方法,其中,
    开启所述电子设备与所述TAG中的所有小区之间的HARQ进程包括:当从所述TAG中的小区的网络侧设备接收到数据时,向所述网络侧设备反馈ACK或NACK;并且
    关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程包括:当从所述TAG中的小区的网络侧设备接收到数据时,不向所述网络侧设备反馈ACK或NACK。
  36. 根据权利要求35所述的无线通信方法,其中,所述数据包括控制数据和业务数据。
  37. 根据权利要求29所述的无线通信方法,其中,所述无线通信方法还包括:
    在开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程之后,从所述网络侧设备接收更新的与所述TAG相关的信息;以及
    根据所述更新的与所述TAG相关的信息关闭或开启所述电子设备与所述TAG中的所有小区之间的HARQ进程。
  38. 根据权利要求29所述的无线通信方法,其中,所述无线通信方法还包括:
    在开启或关闭所述电子设备与所述TAG中的所有小区之间的HARQ进程之后,从所述网络侧设备接收与特定的HARQ进程相关的信息;以及
    根据所述与特定的HARQ进程相关的信息关闭或开启所述特定的HARQ进程。
  39. 根据权利要求38所述的无线通信方法,其中,通过低层信令来承载所述与特定的HARQ进程相关的信息。
  40. 根据权利要求39所述的无线通信方法,其中,所述低层信令包括DCI。
  41. 根据权利要求29所述的无线通信方法,其中,所述电子设备有一个或多个服务小区,所述一个或多个服务小区被划分为一个或多个TAG,并且
    其中,所述无线通信方法还包括:从所述电子设备的主服务小区的网络侧设备接收与各个TAG相关的信息。
  42. 一种由电子设备执行的无线通信方法,包括:
    生成与所述电子设备服务的用户设备的定时提前量组TAG相关的信息;以及
    向所述用户设备发送所述与TAG相关的信息以指示所述用户设备开启或关闭与所述TAG中的所有小区之间的HARQ进程。
  43. 根据权利要求42所述的无线通信方法,其中,所述与TAG相关的信息包括与所述TAG相关的定时提前量命令TAC,并且所述TAC指示所述用户设备与所述TAG中的所有小区之间的相同的定时提前量TA的值。
  44. 根据权利要求42所述的无线通信方法,其中,所述无线通信方法还包括:
    确定开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程;以及
    根据所述确定的结果来生成所述与TAG相关的信息。
  45. 根据权利要求44所述的无线通信方法,其中,确定开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程包括:
    根据所述用户设备与所述TAG中的所有小区之间的相同的定时提前量TA的值来确定开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程。
  46. 根据权利要求45所述的无线通信方法,其中,确定开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程包括:
    当所述TA的值大于TA的预定阈值时,确定关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程;以及
    当所述TA的值不大于所述TA的预定阈值时,确定开启所述用户设备与所述TAG中的所有小区之间的HARQ进程。
  47. 根据权利要求42所述的无线通信方法,其中,所述与TAG相关的信息包括所述TAG的配置信息,并且所述TAG的配置信息包括与HARQ进程的开启或关闭相关的信息。
  48. 根据权利要求47所述的无线通信方法,其中,通过高层信令来承载所述与TAG相关的信息。
  49. 根据权利要求48所述的无线通信方法,其中,所述高层信令包括RRC信息,并且所述TAG的配置信息包括TAG-Config information element信息。
  50. 根据权利要求49所述的无线通信方法,其中,利用所述TAG-Config information element信息中的timeAlignmentTimer域来指示开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程。
  51. 根据权利要求49所述的无线通信方法,其中,在所述TAG-Config information element信息中增加与HARQ进程的开启或关闭相关的域,以用于指示开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程。
  52. 根据权利要求42所述的无线通信方法,其中,所述无线通信方法还包括:
    更新与所述用户设备的所述TAG相关的信息;以及
    向所述用户设备发送更新的信息以指示所述用户设备关闭或开启与所述TAG中的所有小区之间的HARQ进程。
  53. 根据权利要求42所述的无线通信方法,其中,所述无线通信方法还包括:
    确定开启或关闭所述用户设备与所述TAG中的所有小区之间的HARQ进程中的特定的HARQ进程;以及
    向所述用户设备发送与所述特定的HARQ进程相关的信息以指示所述用户设备开启或关闭所述特定的HARQ进程。
  54. 根据权利要求53所述的无线通信方法,其中,通过低层信令来承载所述与特定的HARQ进程相关的信息。
  55. 根据权利要求54所述的无线通信方法,其中,所述低层信令包括DCI。
  56. 根据权利要求42所述的无线通信方法,其中,所述用户设备有一个或多个服务小区,所述一个或多个服务小区被划分为一个或多个TAG,并且所述电子设备是所述用户设备的主服务小区的网络侧设备。
  57. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求29-56中任一项所述的无线通信方法。
PCT/CN2020/107691 2019-08-16 2020-08-07 电子设备、无线通信方法和计算机可读存储介质 WO2021031882A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080047192.5A CN114041270A (zh) 2019-08-16 2020-08-07 电子设备、无线通信方法和计算机可读存储介质
US17/633,958 US20220346049A1 (en) 2019-08-16 2020-08-07 Electronic device, wireless communication method, and computer-readable storage medium
JP2022510131A JP7529015B2 (ja) 2019-08-16 2020-08-07 電子機器及び無線通信方法
EP20855204.2A EP4007192A4 (en) 2019-08-16 2020-08-07 ELECTRONIC DEVICE, WIRELESS COMMUNICATIONS METHOD AND COMPUTER READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910758886.9A CN112398595A (zh) 2019-08-16 2019-08-16 电子设备、无线通信方法和计算机可读存储介质
CN201910758886.9 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021031882A1 true WO2021031882A1 (zh) 2021-02-25

Family

ID=74602065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107691 WO2021031882A1 (zh) 2019-08-16 2020-08-07 电子设备、无线通信方法和计算机可读存储介质

Country Status (5)

Country Link
US (1) US20220346049A1 (zh)
EP (1) EP4007192A4 (zh)
JP (1) JP7529015B2 (zh)
CN (2) CN112398595A (zh)
WO (1) WO2021031882A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024002239A1 (zh) * 2022-06-30 2024-01-04 夏普株式会社 由用户设备执行的方法及用户设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115915188A (zh) * 2021-08-17 2023-04-04 展讯半导体(南京)有限公司 一种数据传输方法及相关装置
US11864017B2 (en) * 2022-03-08 2024-01-02 T-Mobile Innovations Llc Selective retransmission method for uplink overhead reduction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013097212A1 (zh) * 2011-12-31 2013-07-04 富士通株式会社 避免时间提前量组重配后上行干扰的方法及装置
CN106160973A (zh) * 2015-04-07 2016-11-23 上海贝尔股份有限公司 用于控制辅助小区的数据传输的方法及装置
US20180167172A1 (en) * 2016-12-14 2018-06-14 Qualcomm Incorporated Asymmetric downlink-uplink transmission time interval configurations for low latency operation
CN109845377A (zh) * 2016-07-22 2019-06-04 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
CN110024457A (zh) * 2016-11-29 2019-07-16 华为技术有限公司 用于小数据传输的上行同步的系统及方案

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2676475B1 (en) * 2011-02-15 2022-04-06 Samsung Electronics Co., Ltd. Power headroom report
US9668167B2 (en) 2012-03-16 2017-05-30 Qualcomm Incorporated Transport block size limitation for enhanced control channel operation in LTE
CN104221453B (zh) * 2012-05-14 2018-03-20 富士通株式会社 一种时间提前量组重配的方法和装置
CN110460414A (zh) 2014-03-28 2019-11-15 交互数字专利控股公司 用于处理子帧的方法及hd-so-wtru
US10271371B2 (en) * 2015-03-09 2019-04-23 Ofinno Technologies, Llc Control channel of a secondary cell in a timing advance group
US9871572B2 (en) 2015-03-09 2018-01-16 Ofinno Technologies, Llc Uplink control channel in a wireless network
CN106304328B (zh) * 2015-06-01 2020-10-16 索尼公司 无线通信系统中的电子设备和无线通信方法
CN106452705B (zh) * 2015-08-13 2021-03-02 索尼公司 无线通信系统中的电子设备和无线通信方法
US11477790B2 (en) 2016-08-10 2022-10-18 Interdigital Patent Holdings Timing advance and processing capabilities in a reduced latency system
CN109391372B (zh) * 2017-08-11 2021-08-13 华为技术有限公司 通信方法与设备
CN109964514B (zh) * 2017-11-01 2021-06-01 北京小米移动软件有限公司 定时提前组标识的设置、配置方法及装置和用户设备
US20210391952A1 (en) * 2018-11-01 2021-12-16 Telefonaktiebolaget Lm Ericsson (Publ) Harq bundling procedure for non-terrestrial networks
JPWO2021029296A1 (zh) * 2019-08-14 2021-02-18

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013097212A1 (zh) * 2011-12-31 2013-07-04 富士通株式会社 避免时间提前量组重配后上行干扰的方法及装置
CN106160973A (zh) * 2015-04-07 2016-11-23 上海贝尔股份有限公司 用于控制辅助小区的数据传输的方法及装置
CN109845377A (zh) * 2016-07-22 2019-06-04 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
CN110024457A (zh) * 2016-11-29 2019-07-16 华为技术有限公司 用于小数据传输的上行同步的系统及方案
US20180167172A1 (en) * 2016-12-14 2018-06-14 Qualcomm Incorporated Asymmetric downlink-uplink transmission time interval configurations for low latency operation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Guard period for low complexity UE in half-duplex FDD", 3GPP DRAFT; R1-142373 GUARD PERIOD FOR LOW COMPLEXITY UE IN HALF-DUPLEX FDD, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Seoul, Korea; 20140519 - 20140523, 18 May 2014 (2014-05-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050787967 *
See also references of EP4007192A4
ZTE CORPORATION, SANECHIPS: "Impact of HARQ on Random Access procedure", 3GPP DRAFT; R2-1906116-IMPACT OF HARQ ON RANDOM ACCESS PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729593 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024002239A1 (zh) * 2022-06-30 2024-01-04 夏普株式会社 由用户设备执行的方法及用户设备

Also Published As

Publication number Publication date
EP4007192A1 (en) 2022-06-01
JP7529015B2 (ja) 2024-08-06
CN114041270A (zh) 2022-02-11
US20220346049A1 (en) 2022-10-27
EP4007192A4 (en) 2022-09-14
JP2022543908A (ja) 2022-10-14
CN112398595A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
US11757510B2 (en) Electronic devices and communication methods
US11102705B2 (en) Communication device, communication method, and program
WO2021031882A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US11405146B2 (en) User equipment, electronic device, wireless communication method, and storage medium
WO2021093699A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US12095696B2 (en) Device, method and medium for performing processing based on control information
CN112237027B (zh) 用于无线通信系统的电子设备、方法和存储介质
JP6265139B2 (ja) 通信制御装置、通信制御方法及び端末装置
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
EP4266792A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2022083525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230284146A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
EP4007341B1 (en) Beam failure management using mac-ce
US10880893B2 (en) Transmission of discovery signal in small cells while in off state
WO2022083535A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023134717A1 (zh) 用于波束失败恢复的设备、方法和介质
US20230262700A1 (en) Electronic device, wireless communication method, and computer readable storage medium
US20230180308A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2021068880A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020855204

Country of ref document: EP

Effective date: 20220223