WO2024002239A1 - 由用户设备执行的方法及用户设备 - Google Patents

由用户设备执行的方法及用户设备 Download PDF

Info

Publication number
WO2024002239A1
WO2024002239A1 PCT/CN2023/103849 CN2023103849W WO2024002239A1 WO 2024002239 A1 WO2024002239 A1 WO 2024002239A1 CN 2023103849 W CN2023103849 W CN 2023103849W WO 2024002239 A1 WO2024002239 A1 WO 2024002239A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
serving cell
trp
tags
clear
Prior art date
Application number
PCT/CN2023/103849
Other languages
English (en)
French (fr)
Inventor
张崇铭
刘仁茂
Original Assignee
夏普株式会社
张崇铭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 张崇铭 filed Critical 夏普株式会社
Publication of WO2024002239A1 publication Critical patent/WO2024002239A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of wireless communication technology, and more specifically, the present invention relates to a method executed by user equipment and the corresponding user equipment.
  • the 3rd Generation Partnership Project (3GPP) plans to study uplink transmission under multiple transmitting and receiving nodes (TRP).
  • TRP transmitting and receiving nodes
  • a serving cell more than one sending and receiving node TRP can be arranged, and each TRP provides services to the same UE, as shown in Figure 1. Due to the different physical distances between different TRPs and the UE, the propagation delays are different, so the values of the timing advance (Timing Advance) used by the UE when sending different TRPs are different.
  • Timing Advance timing advance
  • the UE only interacts with one TRP on a serving cell and maintains one TA value; with the introduction of multiple TRPs, how the UE maintains multiple TA values is a problem that needs to be solved.
  • the present invention provides a user equipment that can effectively maintain multiple TA values to reliably perform uplink transmission under multiple TRPs even when the UE is configured with multiple TRPs on a serving cell.
  • the method of execution and the corresponding user device are described in detail below.
  • a method performed by user equipment which is a method performed by user equipment UE in the process of using one or more transmitting and receiving nodes TRP to perform uplink transmission in a serving cell, wherein each service
  • the cell is divided into a time advance group TAG.
  • the serving cells with the same time advance N TA belong to the same TAG.
  • Each TAG has its own timer, which is used to control the effective time of uplink synchronization of the serving cell belonging to the TAG.
  • the method includes the following steps:
  • the UE When the timer associated with the first TAG times out, the UE performs the following operations:
  • the UE determines whether the serving cell also belongs to other TAGs.
  • the UE does not perform any operation.
  • the UE performs at least one of the following operations:
  • the serving cell is configured with PUCCH, notify the RRC layer of the UE to release the PUCCH;
  • the serving cell is configured with SRS, notify the RRC layer of the UE to release the SRS;
  • the configured PUCCH resources, SRS, downlink assignment, uplink grant or PUSCH resources for semi-static CSI reporting of the serving cell are configured based on TRP.
  • the UE performs at least one of the following operations:
  • the serving cell is configured with a PUCCH
  • the PUCCH is associated with the first TAG or the first TRP
  • the serving cell is configured with an SRS
  • the SRS is associated with the first TAG or the first TRP
  • the UE performs at least one of the following operations:
  • the serving cell is configured with a PUCCH, and the PUCCH is associated with the first TAG or the first TRP, then the UE suspends or suspends using the PUCCH associated with the first TAG or the first TRP;
  • the serving cell is configured with SRS, and the SRS is associated with the first TAG or the first TRP, then the UE suspends or suspends using the SRS associated with the first TAG or the first TRP;
  • the UE suspends or suspends the use of the configured downlink assignment associated with the first TAG or the first TRP and suspends or suspends the use of the configured uplink grant associated with the first TAG or the first TRP;
  • the UE suspends or suspends using the configured PUSCH resources associated with the first TAG or the first TRP for semi-static CSI reporting.
  • the TAG is the main timing advance group PTAG, where the special cell is the main serving cell of the main cell group MCG or the main serving cell of the secondary cell group SCG.
  • TAGs are all PTAGs.
  • the UE When the timer associated with the first PTAG times out, the UE performs the following operations:
  • the UE determines whether there are multiple PTAGs,
  • the UE performs at least one of the following operations for all serving cells:
  • the first PTAG is the above-mentioned first TAG.
  • TAGs are PTAG, and the other TAGs are auxiliary time advance group PSTAG.
  • the UE performs at least one of the following operations for all serving cells:
  • the PSTAG is the first TAG mentioned above.
  • TAGs are PTAG, and the other TAGs are auxiliary time advance group PSTAG.
  • the UE performs the following operations:
  • the UE determines whether there is a PSTAG
  • the UE further determines whether the timer associated with PSTAG is still running.
  • PTAG is the first TAG mentioned above;
  • the UE performs at least one of the following operations for all serving cells:
  • the UE performs the following operations:
  • the UE further determines whether the timer associated with the PTAG is still running
  • PSTAG is the first TAG mentioned above;
  • the UE performs at least one of the following operations for all serving cells:
  • a user equipment including:
  • the above instructions execute the method described above when executed by the above processor.
  • Figure 1 is a schematic diagram showing uplink transmission under TRP of multiple sending and receiving nodes.
  • FIG. 2 is a schematic diagram showing the timing advance amount.
  • Figure 3 is a flow chart showing a four-step random access process.
  • Figure 4 is a flow chart showing a two-step random access process.
  • FIG. 5 is a flowchart showing a method executed by user equipment according to an embodiment of the present invention.
  • Figure 6 is a schematic structural block diagram of the user equipment involved in the present invention.
  • UE User Equipment, user equipment
  • NR New Radio, a new generation of wireless technology
  • LTE Long Term Evolution, long-term evolution technology
  • eLTE Enhanced Long Term Evolution, enhanced long-term evolution technology
  • RRC Radio Resource Control, radio resource control (layer);
  • MAC Medium Access Control, media access control (layer);
  • MAC CE MAC Control Element, MAC control element
  • PHY physical layer, physical layer
  • RB radio bearer, wireless bearer
  • DRB Data Radio Bearer, data wireless bearer
  • SRB Signalling Radio Bearer, signaling wireless bearer
  • TCI Transmission Configuration Indicator, transmission configuration indication
  • RSRP Reference Signal Received Power, reference signal received power
  • PRACH Physical Random Access Channel, physical random access channel
  • RA Random Access, random access
  • RAR Random Access Response, random access response
  • TRP Transmit/Receive Point, sending and receiving node
  • SS Synchronization Signal, synchronization signal
  • PBCH Physical Broadcast Channel, physical broadcast channel
  • SSB SS/PBCH block, synchronous broadcast block
  • CSI-RS Channel State Information-Reference Signal, channel state information reference signal
  • HARQ Hybrid Automatic Repeat Request, hybrid automatic request retransmission
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • SRS Sounding Reference Signal, detection reference signal
  • CSI Channel-State Information, channel state information
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel.
  • the random access process includes a four-step random access process and a two-step random access process.
  • the four-step random access process in the prior art will first be described.
  • the UE performs the 4-step random access process it generally includes the following steps.
  • Step 0 The UE selects random access resources for random access. in this process
  • the UE selects the preamble sequence (preamble) for transmission, and sets the sequence number corresponding to the selected preamble to the value of the parameter PREAMBLE_INDEX;
  • Step 1 The UE sends the selected preamble on the determined PRACH opportunity.
  • Step 2 The UE receives the Random Access Response (RAR) sent from the base station.
  • RAR Random Access Response
  • this RAR carries the sequence number (preamble index id) corresponding to the preamble sent by the UE in step 1, then the UE can determine that the RAR is sent to itself.
  • Such a RAR will carry an uplink grant (UL grant) and a timing advance command (Timing Advance Command).
  • UL grant uplink grant
  • Timing Advance Command timing advance command
  • the UL grant indicates the PUSCH resources used to transmit message 3.
  • the Timing Advance Command indicates the index value T A used to control the amount of timing adjustment.
  • the UE After receiving the above RAR, the UE will apply the Timing Advance Command to obtain a valid TA value. If this random access process is a random access process based on non-contention conflict, for example, a dedicated preamble is provided in the PDCCH order, then at this step, the random access process is considered to be successfully completed. If not, the UE will continue to perform the following steps, including processing the UL grant carried in the RAR and indicating it to the lower layer. if this is The UE successfully receives the above RAR for the first time, then the UE obtains the MAC PDU for transmission from the multiplexing and assembly entity (Multiplexing and assembly entity) and saves it in the buffer area of message 3 (MSG3buffer) middle.
  • MSG3buffer buffer area of message 3
  • Step 3 The UE sends message 3 on the PUSCH resource indicated by the UL grant.
  • the UE will carry identification information used for contention conflict resolution.
  • Step 4 The UE receives message 4 sent from the base station.
  • message 4 carries the identification information carried by the UE in message 3, then the UE considers that the contention conflict is resolved and the random access process is successfully completed.
  • the “two-step random access process” in the present invention generally includes the following steps.
  • Step 0 The UE selects random access resources for random access. in this process
  • the UE selects the preamble sequence (preamble) for transmission, and sets the sequence number corresponding to the selected preamble to the value of the parameter PREAMBLE_INDEX;
  • Step 1 The UE sends message A (MSG A) to the base station.
  • message A contains the preamble and the payload of message A;
  • the preamble is sent on PRACH, and the payload of message A is sent on PUSCH.
  • the payload of message A is packaged into MAC PDU and transmitted on PUSCH.
  • the payload of message A can carry RRC messages, such as RRC connection establishment request messages, and can also carry user data packets.
  • Step 2 UE receives message B (MSG B) sent by the base station.
  • MSG B message B
  • message B carries information for contention conflict resolution.
  • the UE first sends MSGA, which includes sending the preamble and the payload of message A; then the UE receives message B sent by the base station.
  • Message B is the network
  • the side/base station responds to the MSG A sent by the UE.
  • MSG B can carry the Absolute Timing Advance Command MAC CE, which is used to obtain the timing advance.
  • the UE determines the transmission opportunity that can be used for message A, the UE obtains the MAC PDU for transmission from the multiplexing and assembly entity (Multiplexing and assembly entity), and saves the obtained MAC PDU in the buffer area.
  • Multiplexing and assembly entity Multiplexing and assembly entity
  • message A contains the preamble sequence transmitted on PRACH and the load information of message A transmitted on PUSCH
  • the following situations can be used as the transmission opportunities for message A, including: UE determines A PUSCH opportunity that can be used to transmit the payload of message A is determined; or the UE determines the next available PRACH opportunity, which is used to transmit the above-mentioned preamble sequence; or the UE selects a preamble sequence and the selected preamble sequence It is used for this random access process; or the preamble sequence selected by the UE is associated with PUSCH or associated with PUSCH timing.
  • the timing advance N TA can be used to calculate the timing advance between downlink and uplink (Timing advance between downlink and uplink).
  • the UE in order to maintain uplink synchronization, the UE needs to start transmitting the i-th uplink frame (Uplink Frame i) some time before the starting position of the i-th downlink frame (Downlink Frame i).
  • Timing advance command and Absolute Timing Advance Command MAC CE contain an index value (index value), which is recorded as T A and is used to calculate N TA .
  • index value index value
  • the UE can calculate the value of N TA based on the TA in it. In other words, T A indirectly indicates the value of N TA .
  • the time advance amount N TA can be used to determine the time advance value T TA , so the two terms in this article can be replaced by each other, and the time advance value T TA can be referred to as the TA value.
  • TAG Timing Advance Group
  • each serving cell in order to maintain consistent uplink time (UL time alignment), each serving cell is divided into a TAG, and serving cells with the same time advance belong to the same TAG.
  • each TAG can have its own timer timeAlignmentTimer, which is used to control the effective time of uplink synchronization of the serving cells (Serving Cells) belonging to the TAG.
  • the timeAlignmentTimer of the corresponding TAG will be started or restarted; when the timeAlignmentTimer of a TAG times out, it means that the uplink of the serving cell belonging to the TAG is no longer synchronized.
  • one serving cell may contain more than one TRP, and each TRP has its own corresponding timing advance. Then an implementation method may be that one serving cell may belong to more than one TAG, for example There are two TAGs, each TAG corresponds to a TRP, or each TRP has its own associated TAG. Similarly, each TAG can have its own timeAlignmentTimer.
  • a serving cell belongs to a TAG, but this TAG has more than one TA value.
  • a TAG can have at least two TA values, and each TA value is associated with or associated with a TRP.
  • each TA can have its own timeAlignmentTimer, so the TAG can have multiple timeAlignmentTimers.
  • any of the above methods can be used to manage TA.
  • the base station When the NR system operates in a high frequency band, the base station often cannot send multiple beams covering the entire cell at the same time. Therefore, beam scanning technology is introduced in the NR system to solve the cell coverage problem.
  • the so-called beam scanning means that the base station only sends one or several beam directions at a certain time, and sends different beams at multiple times to cover all directions required for the entire cell.
  • the synchronization broadcast block set is designed for beam scanning and is used to send the primary synchronization signal, secondary synchronization signal and physical broadcast channel required by the UE to search for the cell in each beam direction, and these signals form a synchronization broadcast block (SSB). ).
  • SSB synchronization broadcast block
  • a synchronous broadcast block set is a collection of multiple synchronous broadcast blocks within a certain time period. In the same period, each synchronous broadcast block corresponds to a beam direction, and the beam direction of each synchronous broadcast block in a synchronous broadcast block set covers the entire cell.
  • one TRP corresponds to some SSBs in the synchronous broadcast block set
  • another TRP corresponds to some SSBs in the set.
  • the SSBs corresponding to the two constitute the complete set of synchronous broadcast block sets, that is, coverage The entire community. Therefore, during the random access process, when selecting random access resources, the UE needs to first determine the beam direction of the random access, that is, determine the SSB.
  • a primary TRP (primary TP) that corresponds to all SSBs in the synchronized broadcast block set, achieving coverage of the entire cell.
  • secondary TRP (Secondary TRP) at the same time, and their corresponding
  • the beam direction can be a partial SSB, or it can be more subdivided and can be characterized by CSI-RS, that is, the beam direction corresponding to the CSI-RS.
  • TRP and SSB or CSI-RS have a corresponding relationship or are related to each other.
  • This correspondence can be directly reflected in the RRC configuration information. For example, if a set of SSB serial numbers are configured for a TRP, then these SSBs are associated with the TRP; for example, if a set of CSI-RS is configured for a TRP, then these The CSI-RS is associated with this TRP.
  • Such correspondence can also be characterized in an indirect way, such as by TCI states.
  • the UE detects PDCCH on the configured search space. This process is called monitoring PDCCH (monitor PDCCH).
  • the configuration information of each search space includes information about the control resource set (ControlResourceSet, CORESET) used by the search space.
  • the control resource set provides resource blocks in frequency domain and time domain.
  • Each control resource set is associated with a series of TCI states. Each TCI state contains at least one SSB or CSI-RS information.
  • the control resource set used in the same search space can be indicated by coresetPoolIndex.
  • the value of coresetPoolIndex is the number of the control resource set.
  • the control resource set with the number value 0 can correspond to the first TRP, and the control resource set with the number value 1 can correspond to the first TRP.
  • the control resource set corresponds to the second TRP, and so on. Therefore, the configuration of the TCI state of the resource set can correspond to the TRP corresponding to the resource set, thereby forming a corresponding relationship between the TRP and SSB or CSI-RS.
  • the access process includes the following steps:
  • Step S300 The UE selects random access resources for random access. in this process
  • the UE selects the preamble sequence (preamble) for transmission, and sets the sequence number corresponding to the selected preamble to the value of the parameter PREAMBLE_INDEX;
  • Step S301 The UE sends the selected preamble on the determined PRACH opportunity.
  • Step S302 The UE receives a random access response (Random Access Response, RAR) sent from the base station.
  • RAR Random Access Response
  • this RAR carries the sequence number (preamble index id) corresponding to the preamble sent by the UE in step S301, then the UE can determine that the RAR is sent to itself.
  • the UL grant will be carried to indicate the PUSCH resources used to transmit message 3.
  • the RAR also carries the Timing Advance Command , which contains the index value T A used to control the amount of timing adjustment, which is used to control the amount of timing adjustment. Based on the index or corresponding to a valid upstream synchronization time advance TA. When the UE receives such a Timing Advance Command, it will apply the timing advance indicated therein for the subsequent uplink transmission.
  • the UE After receiving the above RAR, the UE will apply the Timing Advance Command to obtain a valid TA value. If this random access process is a random access process based on non-contention conflict, for example, a dedicated preamble is provided in the PDCCH order, then at this step, the random access process is considered to be successfully completed. If not, the UE will continue to perform the following steps.
  • the UE After receiving the above RAR, the UE will process the UL grant carried in the RAR and indicate it to the lower layer. If this is the first time that the UE successfully receives the above RAR, then the UE obtains the MAC PDU for transmission from the multiplexing and assembly entity (Multiplexing and assembly entity) and saves it in the cache of message 3 (MSG3buffer).
  • the variable PREAMBLE_TRANSMISSION_COUNTER is used to record the number of times the preamble is sent, and the parameter preambleTransMax is a preconfigured value, whose value indicates the maximum number of times the preamble is allowed to be sent.
  • Step S303 The UE sends a message on the PUSCH resource indicated by the UL grant.
  • the UE will carry identification information used for contention conflict resolution.
  • Step S304 The UE receives message 4 sent from the base station.
  • message 4 carries the identification information carried by the UE in message 3, then the UE considers that the contention conflict is resolved and the random access process is successfully completed.
  • the above four-step random access process can also be called the first type of layer 1 random access (Type-1 layer 1 Random Access Procedure, type 1 L1 RA).
  • Type-1 layer 1 Random Access Procedure type 1 L1 RA
  • the type 1 L1 RA process at least includes the transmission of the random access preamble sequence (or message one transmission) on the PRACH, and the random access response Transmission/reception of message (Random Access Response Message).
  • the transmission of this random access response message is scheduled by PDCCH and is transmitted on PDSCH; in addition, the random access response can also be included in the type 1 L1 RA process.
  • Step S400 The UE selects random access resources for random access. in this process
  • the UE selects the preamble sequence (preamble) for transmission, and sets the sequence number corresponding to the selected preamble to the value of the parameter PREAMBLE_INDEX;
  • Step S401 The UE sends message A (MSGA) to the base station.
  • message A contains the preamble and the payload of message A.
  • the preamble is sent on PRACH, and the payload of message A is sent on PUSCH.
  • the payload of message A is packaged into MAC PDU and transmitted on PUSCH.
  • Step S402 The UE receives message B (MSG B) sent by the base station.
  • Message B carries information for contention conflict resolution.
  • the variable PREAMBLE_TRANSMISSION_COUNTER is used to record the number of times the preamble is sent, and the parameter preambleTransMax is a preconfigured value, whose value indicates the maximum number of times the preamble is allowed to be sent.
  • the network can be a long-term evolution LTE network, a new radio access technology (New RAT, NR) network, an enhanced long-term evolution eLTE network, or a subsequent evolved version of 3GPP. other networks defined in .
  • New RAT new radio access technology
  • eLTE enhanced long-term evolution eLTE network
  • This embodiment provides a method performed by the user equipment, which is a method performed by the UE in the process of using one or more TRPs for uplink transmission in the serving cell, where each serving cell is divided into a TAG.
  • the basis may be that serving cells with the same N TA belong to the same TAG.
  • Each TAG has its own timer, which is used to control the effective time of uplink synchronization of the serving cell belonging to the TAG.
  • the method includes follows these steps:
  • the UE When the first timer associated with the first TAG times out, the UE performs the following operations:
  • the UE determines whether the serving cell also belongs to other TAGs.
  • the UE does not perform any operation.
  • the UE performs corresponding operations.
  • the UE when the timer times out, the UE can perform the following operations:
  • the UE saves the N TA value of this TAG-1;
  • the UE determines whether the serving cell is configured with multiple TAGs (for example, TAG-1 and TAG-2 are configured at the same time) or the serving cell also belongs to other TAG, such as TAG-2:
  • the serving cell still belongs to TAG-2, and the timer timeAlignmentTimer-2 associated with TAG-2 is still running (running), then the UE does not perform any operation;
  • the serving cell still belongs to TAG-2, and the timer timeAlignmentTimer-2 associated with TAG-2 has stopped running;
  • the serving cell only belongs to TAG-1, or is configured with only one TAG.
  • the UE performs one or more of the following operations:
  • the serving cell is configured with PUCCH, notify the RRC layer of the UE to release the PUCCH;
  • the serving cell is configured with SRS, notify the RRC layer of the UE to release the SRS;
  • Embodiment 1 The difference from Embodiment 1 is that the PUCCH resources, SRS, downlink assignment, uplink authorization or PUSCH resources for semi-static CSI reporting configured in the serving cell are configured based on TRP.
  • the configured uplink authorization resources are taken as an example. That is, when the serving cell is configured with multiple TRPs, multiple TAGs can be configured. Each TRP can have a corresponding TAG associated with it. The TA value for each TRP can therefore be determined.
  • the uplink authorization resources configured on the serving cell may also be associated with the corresponding TRP. It can be a direct association, for example, uplink authorization resource-1 is used for/corresponds to TRP-1, and uplink authorization resource-2 is used for/corresponds to TRP-2; it can also be an indirect association, such as the TCI used by uplink authorization resource-1.
  • the state belongs to/corresponds to TRP-1, and the TCI state used by uplink authorization resource-2 belongs to/corresponds to TRP-2. There are other ways to associate the uplink authorization resource with TRP. As a result, the uplink authorization resources are indirectly related to the TAG.
  • the uplink authorization resources are directly related to the TAG.
  • the network side explicitly combines the identification number (identity) of the uplink authorization resource configured on the serving cell with the TAG sequence number (index). Associated together, for example, uplink authorization resource-1 belongs to/corresponds to TAG-1, and uplink authorization resource-2 belongs to/corresponds to TAG-2.
  • Embodiment 1 The specific implementation may be:
  • the UE can perform the following operations
  • the UE saves the N TA value of this TAG-1;
  • the UE determines whether the serving cell is configured with multiple TAGs (for example, TAG-1 and TAG-2 are configured at the same time) or the serving cell also belongs to other TAG, such as TAG-2:
  • the serving cell still belongs to TAG-2, and the timer timeAlignmentTimer-2 associated with TAG-2 is still running (running), then the UE can perform the following operations:
  • the serving cell is configured with PUCCH, and the PUCCH is associated with TAG-1 or TRP-1, then notify the RRC layer of the UE to release the PUCCH associated with TAG-1 or TRP-1;
  • the serving cell is configured with SRS, and the SRS is associated with TAG-1 or TRP-1, then notify the RRC layer of the UE to release the SRS associated with TAG-1 or TRP-1;
  • the UE does not need to flush all HARQ buffers of the serving cell.
  • case 2 the serving cell still belongs to TAG-2, and the timer timeAlignmentTimer-2 associated with TAG-2 has stopped running;
  • the serving cell only belongs to TAG-1, or is only configured with one TAG.
  • the UE performs one or more of the following operations:
  • the serving cell is configured with PUCCH, notify the RRC layer of the UE to release the PUCCH;
  • the serving cell is configured with SRS, notify the RRC layer of the UE to release the SRS;
  • Embodiment 2 The difference from Embodiment 2 is that situation 1 is handled differently.
  • the specific method may be:
  • the serving cell still belongs to TAG-2, and the timer timeAlignmentTimer-2 associated with TAG-2 is still running (running), then the UE can perform the following operations:
  • the serving cell is configured with PUCCH, and the PUCCH is associated with TAG-1 or TRP-1, then the UE suspends or suspends using the PUCCH associated with TAG-1 or TRP-1;
  • the serving cell is configured with SRS, and the SRS is associated with TAG-1 or TRP-1, then the UE suspends or suspends using the SRS associated with TAG-1 or TRP-1;
  • the UE suspends or suspends using the configured downlink assignments associated with TAG-1 or TRP-1 and suspends or suspends using the configured downlink assignments associated with TAG-1 or TRP-1. It is the uplink grant associated with TRP-1;
  • the UE suspends or suspends using the configured PUSCH resources associated with TAG-1 or TRP-1 for semi-persistent CSI reporting;
  • the UE does not need to flush all HARQ buffers of the serving cell.
  • the primary serving cell of MCG (Primary cell, Pcell) and the primary serving cell of SCG (Primary SCG Cell, Pscell) can be called special cells (Special Cell, Spcell).
  • MCG is a service cell group controlled by the master control node (Master Node, MN), called the master cell group (Master Cell Group, MCG)
  • SCG is a service cell group controlled by the secondary control node (Secondary Node, SN). , called Secondary Cell Group (SCG).
  • a Spcell exists in the serving cell associated with a TAG, then such a TAG can be called a primary time advance group (Primary TAG, PTAG).
  • Primary TAG Primary TAG
  • TAGs are all PTAGs, that is, there are multiple PTAGs.
  • the UE can perform the following operations:
  • the UE can determine whether there are multiple PTAGs or whether Spcell belongs to multiple TAGs.
  • the UE is not configured with multiple PTAGs (that is, Spcell only belongs to one TAG), or
  • the UE is configured with multiple PTAGs, but the timeAlignmentTimer associated with other PTAGs has stopped running.
  • the UE performs one or more of the following operations for all serving cells:
  • the UE is configured with multiple PTAGs, but at least one timeAlignmentTimer associated with other PTAGs is still running.
  • the UE only needs to save its N TA value for this PTAG, and optionally, perform the operations in Embodiment 1-3.
  • the PTAG can be considered to be TAG-1.
  • Embodiment 4 The difference from Embodiment 4 is that if Spcell is configured with multiple TAGs, then only one of these TAGs can be considered to be a PTAG, and the other TAGs can be called auxiliary timing advance group PSTAGs.
  • the UE can perform one or more of the following operations for all serving cells:
  • the UE If the timeAlignmentTimer running timeout is associated with the PSTAG, then the UE considers the PSTAG to be TAG-1 in Embodiment 1-3, and performs the operation in Embodiment 1-3.
  • a TAG whose TAG identity value is a specific value is a PTAG.
  • a TAG whose TAG identity value is 0 is a PTAG.
  • the network layer configures TAG only the attributes of a certain TAG are displayed, such as PTAG.
  • the TAG can be considered as PSTAG.
  • Embodiment 4 The difference from Embodiment 4 is that if Spcell is configured with multiple TAGs, then only one of these TAGs can be considered to be a PTAG, and the other TAGs can be called PSTAGs.
  • the UE can perform the following operations:
  • the UE determines whether Spcell is configured with multiple TAGs (or determines whether there is a PSTAG),
  • Spcell is configured with multiple TAGs (that is, there are PSTAGs), then the UE further determines whether the timeAlignmentTimer associated with other PSTAGs is running.
  • the UE can perform the operations in Embodiment 1-3.
  • the PTAG can be considered to be TAG-1 in Embodiment 1-3.
  • Spcell is configured with multiple TAGs (PSTAG exists), and the timer timeAlignmentTimer associated with other PSTAGs has stopped running.
  • the UE can perform one or more of the following operations for all serving cells:
  • the UE can perform the following operations:
  • the UE further determines whether the timer timeAlignmentTimer associated with the PTAG is running.
  • the UE can perform the operations in Embodiment 1-3.
  • the PSTAG can be considered to be the TAG-TAG in Embodiment 1-3. 1.
  • the UE can perform one or more of the following operations for all serving cells:
  • the UE's MAC layer receives an indication from the UE's upper layer (such as the RRC layer) to activate SCG (indicate the activation of SCG)
  • the UE determines whether the timeAlignmentTimer associated with the PTAG is still running, and If Spcell is configured with multiple TAGs, you can further determine whether the timeAlignmentTimer associated with other TAGs to which Spcell belongs is running. If the timeAlignmentTimer associated with the PTAG to which Spcell belongs and other TAGs have stopped running, then the UE indicates to the upper layer that a random access procedure (Random Access procedure) is needed for SCG activation.
  • Spcell here refers to Pscell.
  • the UE when the UE receives the Timing Advance Command in the RAR, it will use the Timing Advance Command for the corresponding TAG.
  • the serving cell where the UE initiates random access is configured with multiple TAGs, the UE needs to determine which TAG the Timing Advance Command is used for.
  • the serving cell where the UE initiates random access means that the UE initiates random access on the random access resources of the serving cell.
  • a feasible way is for the UE to first determine whether the corresponding serving cell is configured with multiple TAGs. If multiple TAGs are configured, then the UE determines the corresponding TRP based on the SSB or CSI-RS selected during the random access process. Then determine the TAG corresponding to the TRP, and then use the Timing Advance Command for the determined TAG.
  • the UE can receive the Absolute Timing Advance Command in MSG B. Then when applying the Absolute Timing Advance Command, the UE first determines whether the corresponding serving cell is configured with multiple TAGs. If it is configured If multiple TAGs are selected, the UE determines the corresponding TRP based on the SSB or CSI-RS selected during the random access process, and then determines the TAG corresponding or associated with the TRP, and then uses the Absolute Timing Advance Command for the determined TAG.
  • the UE can determine the TAG of the serving cell when receiving the Timing Advance Command or the Absolute Timing Advance Command, or it can select the SSB or CSI when initiating the random access process.
  • -RS the TAG to which the serving cell belongs is determined at the same time.
  • the essence of "determining the TAG to which the serving cell belongs" here is to determine the TAG associated with the serving cell during this random access process:
  • the serving cell is only associated with or belongs to one TAG, then the determined TAG is the only TAG;
  • the UE can determine the corresponding TRP based on the selected SSB or CSI-RS, and then determine the TAG corresponding to or associated with the TRP. This TAG is the determined association of the serving cell. TAG.
  • the UE when the UE initiates the random access process and selects the SSB or CSI-RS, it also determines the corresponding TRP based on the selected SSB or CSI-RS, and then determines the TAG corresponding or associated with the TRP. .
  • the UE application when it receives the Timing Advance Command or Absolute Timing Advance Command, it can apply the Timing Advance Command or Absolute Timing Advance Command to the above-determined TAG.
  • the determined timing has no substantial impact on the beneficial effects of the program.
  • Figure 6 is a schematic structural block diagram of the user equipment involved in the present invention.
  • the user equipment 600 at least includes a processor 601 and a memory 602 .
  • the processor 601 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 602 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • Memory 602 stores program instructions. When this instruction is executed by the processor 601, it may execute one or several steps in the UE processing method of the present disclosure.
  • the user equipment shown above may include more modules, for example, it may also include modules that may be developed or developed in the future and may be used for base stations, MMEs, or UEs, and so on.
  • the various identifications shown above are only illustrative and not restrictive, and the present disclosure is not limited to these Specific elements for examples of these identifiers. Many changes and modifications may be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • various components inside the base station and user equipment in the above embodiments can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • the program running on the device according to the present invention may be a program that causes the computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • Programs for realizing the functions of each embodiment of the present invention can be recorded on a computer-readable recording medium.
  • Corresponding functions can be realized by causing the computer system to read programs recorded on the recording medium and execute these programs.
  • the so-called “computer system” here may be a computer system embedded in the device, which may include an operating system or hardware (such as peripheral devices).
  • the "computer-readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a short-term dynamic storage program recording medium, or any other recording medium readable by a computer.
  • circuits eg, single-chip or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification may include a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor can be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit.
  • the present invention is not limited to the above-described embodiment. Although various examples of the embodiments have been described, the invention is not limited thereto.
  • Fixed or non-mobile electronic equipment installed indoors or outdoors can be used as terminal equipment or communication equipment, such as AV equipment, kitchen equipment, cleaning equipment, air conditioners, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

本发明提供一种由用户设备执行的方法及用户设备,该方法包括如下步骤:当与第一TAG相关联的定时器运行超时时,保存第一TAG的NTA值;对于属于第一TAG的一个或者多个服务小区,UE判断该服务小区是否同时还属于其他TAG,如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器还在运行,那么UE不进行任何操作,如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器已经停止运行,或者是,该服务小区仅属于第一TAG,那么UE执行相应操作。

Description

由用户设备执行的方法及用户设备 技术领域
本发明涉及无线通信技术领域,更具体地,本发明涉及由用户设备执行的方法以及相应的用户设备。
背景技术
为了进一步增强NR技术中上行发送和接收的性能,第三代合作伙伴计划(3GPP)拟研究多个发送接收节点(TRP)下的上行传输。在一个服务小区中,可以布置多于一个的发送和接收节点TRP,由每个TRP向同一个UE提供服务,如图1所示。由于不同TRP和UE的物理距离不同,导致传播时延不同,从而使得UE在针对不同TRP发送时采用的时间提前量(Timing Advance)的取值是不同的。在现有技术中,UE在一个服务小区上仅和一个TRP进行交互,维护一个TA值;随着多个TRP的引入,UE如何维护多个TA值是需要解决的问题。
发明内容
为了解决上述问题,本发明提供一种即使UE在一个服务小区上被配置了多个TRP的情况下也能够有效地维护多个TA值从而可靠地进行多个TRP下的上行传输的由用户设备执行的方法以及相应的用户设备。
根据本发明的一个方面,提供了一种由用户设备执行的方法,是用户设备UE在服务小区中利用一个或多个发送接收节点TRP进行上行传输的过程中执行的方法,其中,每个服务小区被划分到一个时间提前量分组TAG,时间提前量NTA相同的服务小区属于同一个TAG,每一个TAG有自己的定时器,用于控制属于该TAG的服务小区的上行同步的有效时间,该方法包括如下步骤:
当与第一TAG相关联的定时器运行超时时,UE执行如下操作:
保存第一TAG的NTA值;
对于属于第一TAG的一个或者多个服务小区,UE判断该服务小区是否同时还属于其他TAG,
如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器还在运行,那么UE不进行任何操作,
如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器已经停止运行,或者是,该服务小区仅属于第一TAG,那么UE执行下述操作中的至少一个:
清空该服务小区的所有HARQ缓存;
如果该服务小区被配置了PUCCH,那么通知UE的RRC层释放PUCCH;
如果该服务小区被配置了SRS,那么通知UE的RRC层释放SRS;
清除被配置的下行指派和被配置的上行授权;
清除用于半静态CSI报告的PUSCH资源。
在上述的由用户设备执行的方法中,优选地,
服务小区被配置的PUCCH资源、SRS、下行指派、上行授权或者用于半静态CSI报告的PUSCH资源是基于TRP配置的。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器还在运行,那么UE执行下述操作中的至少一个:
如果该服务小区被配置了PUCCH,且该PUCCH与第一TAG或者第一TRP相关联,那么通知UE的RRC层释放与第一TAG或者第一TRP相关联的PUCCH;
如果该服务小区被配置了SRS,且该SRS与第一TAG或者第一TRP相关联,那么通知UE的RRC层释放与第一TAG或者第一TRP相关联的SRS;
清除被配置的与第一TAG或者第一TRP相关联的下行指派以及清除被配置的与第一TAG或者第一TRP相关联的上行授权;
清除被配置的与第一TAG或者第一TRP相关联的用于半静态CSI报告的PUSCH资源。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器还在运行,那么UE执行下述操作中的至少一个:
如果该服务小区被配置了PUCCH,且该PUCCH与第一TAG或者第一TRP相关联,那么UE挂起或者暂停使用与第一TAG或者第一TRP相关联的PUCCH;
如果该服务小区被配置了SRS,且该SRS与第一TAG或者第一TRP相关联,那么UE挂起或者暂停使用与第一TAG或者第一TRP相关联的SRS;
UE挂起或者暂停使用被配置的与第一TAG或者第一TRP相关联的下行指派以及挂起或者暂停使用被配置的与第一TAG或者第一TRP相关联的上行授权;
UE挂起或者暂停使用被配置的与第一TAG或者第一TRP相关联的用于半静态CSI报告的PUSCH资源。
在上述的由用户设备执行的方法中,优选地,
如果一个TAG所关联的服务小区中存在特殊小区,那么该TAG是主要时间提前量分组PTAG,其中,特殊小区是主小区组MCG的主服务小区或者是辅小区组SCG的主服务小区。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
如果特殊小区被配置了多个TAG,那么这些TAG都是PTAG,
当与第一PTAG相关联的定时器运行超时时,UE执行如下操作:
UE判断是否存在多个PTAG,
如果UE没有被配置多个PTAG,或者是,UE被配置了多个PTAG,但是与其他PTAG相关联的定时器已经停止运行,那么UE针对所有服务小区执行下述操作中的至少一个:
清空所有服务小区的HARQ缓存;
通知UE的RRC层释放所有服务小区的被配置的PUCCH;
通知UE的RRC层释放所有服务小区的被配置的SRS;
清除被配置的下行指派和被配置的上行授权;
清除用于半静态CSI报告的PUSCH资源,
如果UE被配置了多个PTAG,但是与其他PTAG相关联的定时器至少有一个还在运行,那么第一PTAG为上述第一TAG。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
如果特殊小区被配置了多个TAG,那么这些TAG只有一个是PTAG,其他TAG是辅助时间提前量分组PSTAG,
如果运行超时的定时器与PTAG相关联,那么UE针对所有服务小区执行下述操作中的至少一个:
清空所有服务小区的HARQ缓存;
通知UE的RRC层释放所有服务小区的被配置的PUCCH;
通知UE的RRC层释放所有服务小区的被配置的SRS;
清除被配置的下行指派和被配置的上行授权;
清除用于半静态CSI报告的PUSCH资源,
如果运行超时的定时器与PSTAG相关联,那么PSTAG为上述第一TAG。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
如果特殊小区被配置了多个TAG,那么这些TAG只有一个是PTAG,其他TAG是辅助时间提前量分组PSTAG,
如果运行超时的定时器与PTAG相关联,那么UE执行下述操作:
UE判断是否存在PSTAG,
如果存在PSTAG,那么UE进一步判断与PSTAG相关联的定时器是否还在运行,
如果与PSTAG相关联的定时器还在运行,那么PTAG为上述第一TAG;
如果不存在PSTAG,或者是,虽然存在PSTAG但是与PSTAG相关联的定时器已经停止运行,那么UE针对所有服务小区执行下述操作中的至少一个:
清空所有服务小区的HARQ缓存;
通知UE的RRC层释放所有服务小区的被配置的PUCCH;
通知UE的RRC层释放所有服务小区的被配置的SRS;
清除被配置的下行指派和被配置的上行授权;
清除用于半静态CSI报告的PUSCH资源。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
如果运行超时的定时器与PSTAG相关联,那么UE执行下述操作:
UE进一步判断与PTAG相关联的定时器是否还在运行,
如果与PTAG相关联的定时器还在运行,那么PSTAG为上述第一TAG;
如果与PTAG相关联的定时器已经停止运行,那么UE针对所有服务小区执行下述操作中的至少一个:
清空所有服务小区的HARQ缓存;
通知UE的RRC层释放所有服务小区的被配置的PUCCH;
通知UE的RRC层释放所有服务小区的被配置的SRS;
清除被配置的下行指派和被配置的上行授权;
清除用于半静态CSI报告的PUSCH资源。
根据本发明的另一个方面,提供了一种用户设备,包括:
处理器;以及
存储器,存储有指令,
其中,上述指令在由上述处理器运行时执行上文所描述的方法。
根据本发明所涉及的由用户设备执行的方法以及相应的用户设备,即使UE在一个服务小区上被配置了多个TRP的情况下,也能够有效地维护多个TA值,从而能够可靠地进行多个TRP下的上行传输。
附图说明
图1是表示多个发送接收节点TRP下的上行传输的示意图。
图2是表示时间提前量的示意图。
图3是表示四步随机接入过程的流程图。
图4是表示两步随机接入过程的流程图。
图5是表示本发明的一个实施例涉及的由用户设备执行的方法的流程图。
图6是本发明所涉及的用户设备的简要结构框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
在具体描述之前,先对本发明中提到的若干术语做如下说明。除非另有指出,本发明中涉及的术语都具有下文的含义。
UE:User Equipment,用户设备;
NR:New Radio,新一代无线技术;
LTE:Long Term Evolution,长期演进技术;
eLTE:Enhaced Long Term Evolution,增强的长期演进技术;
RRC:Radio Resource Control,无线资源控制(层);
MAC:Medium Access Control,媒体接入控制(层);
MAC CE:MAC Control Element,MAC控制元素;
PHY:physical layer,物理层;
RB:radio bearer,无线承载;
DRB:Data Radio Bearer,数据无线承载;
SRB:Signalling Radio Bearer,信令无线承载;
TCI:Transmission Configuration Indicator,传输配置指示;
RSRP:Reference Signal Received Power,参考信号接收功率;
PRACH:Physical Random Access Channel,物理随机接入信道;
RA:Random Access,随机接入;
RAR:Random Access Response,随机接入响应;
TRP:Transmit/Receive Point,发送接收节点;
SS:Synchronization Signal,同步信号;
PBCH:Physical Broadcast Channel,物理广播信道;
SSB:SS/PBCH block,同步广播块;
CSI-RS:Channel State Information-Reference Signal,信道状态信息参考信号;
HARQ:Hybrid Automatic Repeat Request,混合自动请求重传;
PUCCH:Physical Uplink Control Channel,物理上行控制信道;
SRS:Sounding Reference Signal,探测参考信号;
CSI:Channel-State Information,信道状态信息;
PUSCH:Physical Uplink Shared Channel,物理上行共享信道。
以下,对本发明的相关技术给出说明。
随机接入过程Random Access procedure
随机接入过程包含四步随机接入过程和两步随机接入过程。
四步随机接入过程
以下,首先对现有技术中的四步随机接入过程进行说明。UE在执行4步随机接入过程时,一般包含下述步骤。
步骤0:UE选定用于随机接入的随机接入资源。在这一过程中
-UE选定了用于发送的前导序列(preamble),将选定的preamble对应的序号设置为参数PREAMBLE_INDEX的值;以及
-在多个PRACH时机(PRACH occasions)中确定下一个可以用于传输的PRACH时机(determine the next available PRACH occasion from the PRACH occasions)。
步骤1:UE在确定的PRACH时机上发送选定的preamble。
步骤2:UE接收基站侧发来的随机接入响应(Random Access Response,RAR)。
如果在这个RAR中携带了UE在步骤1中发送的preamble对应的序号(preamble index id),那么UE可以确定该RAR是发送给自己的。
在这样的RAR中会携带上行授权(UL grant)以及时间提前量命令(Timing Advance Command)。
其中,该UL grant指示了用于传输消息3的PUSCH资源。Timing Advance Command中指示了用于控制时间调整量的TA值的序号值(the index value TA used to control the amount of timing adjustment)
当接收到上述的RAR之后,UE会应用该Timing Advance Command,获得有效的TA值。如果这个随机接入过程是基于非竞争冲突的随机接入过程,例如在PDCCH order中提供专有的preamble,那么到这一步,随机接入过程就认为成功完成了。如果不是,那么UE会继续执行下述步骤,包含处理RAR中携带的UL grant,并将它指示给下层。如果这是 UE第一次成功的接收到上述RAR,那么UE从复用和组装实体(Multiplexing and assembly entity)中获取(obtain)用于发送的MAC PDU,并将它保存在消息3的缓存区(MSG3buffer)中。
步骤3:UE在UL grant指示的PUSCH资源上发送消息3。
在这个消息3中,UE会携带用于竞争冲突解决的标识信息。
步骤4:UE接收基站侧发送来的消息4。
在消息4中如果携带了UE在消息3中携带的标识信息,那么UE认为竞争冲突解决,随机接入过程成功完成。
由于在上述随机接入过程中UE经历了步骤1-4的消息传递过程,因此被称为“四步随机接入”(4-step RA)过程。
两步随机接入过程
其次,对本发明所涉及的“两步随机接入过程”进行详细说明。本发明中的“两步随机接入过程”一般包含如下步骤。
步骤0:UE选定用于随机接入的随机接入资源。在这一过程中
-UE选定了用于发送的前导序列(preamble),将选定的preamble对应的序号设置为参数PREAMBLE_INDEX的值;
-在多个PRACH时机(PRACH occassions)中确定下一个可以用于传输的PRACH时机(determine the next available PRACH occasion from the PRACH occasions);以及
-确定对应于该前导序列的PUSCH资源。
步骤1:UE向基站发送消息A(MSG A)。
其中,消息A包含preamble和消息A的负载(payload);
其中,preamble在PRACH上发送,消息A的payload在PUSCH上发送。消息A的payload是被包装成MAC PDU在PUSCH上传输。消息A的payload中可以携带RRC消息,例如RRC连接建立请求消息,还可以携带用户数据包。
步骤2:UE接收基站发送的消息B(MSG B)。
其中,消息B携带了用于竞争冲突解决的信息。
从时间顺序上来看,UE首先发送MSGA,包含发送preamble以及发送消息A的负载;然后UE接收到基站发送的消息B。消息B是网络 侧/基站对UE发送的MSG A的响应信息。MSG B中可以携带Absolute Timing Advance Command MAC CE,用于获取时间提前量。
此外,在UE确定了能用于消息A的传输时机时,UE从复用和组装实体(Multiplexing and assembly entity)中获取用于发送的MAC PDU,并将获取的MAC PDU保存在缓存区。
由于消息A中包含了在PRACH传输的前导序列,以及在PUSCH上传输的消息A的负载信息,因此作为可用于消息A的传输时机,例如可以将如下的情况作为上述传输时机,包括:UE确定了能用于传输消息A的负载的PUSCH时机;或者UE确定了下一个能用的PRACH时机,该PRACH时机用于传输上述前导序列;或者UE选定了一个前导序列并且所选定的前导序列是用于本次随机接入过程;或者UE选定的前导序列关联着PUSCH或关联着PUSCH时机。
时间提前量NTA
时间提前量NTA可以用于计算上行和下行之间的时间提前值(Timing advance between downlink and uplink)。
如图2所示,为了保持上行同步,UE需要在第i个下行帧(Downlink Frame i)的起始位置之前的一段时间开始第i个上行帧(Uplink Frame i)传输。这段时间可以由时间提前值TTA表征,TTA=(NTA+NTA,offset)*Tc,其中Tc是与载波频率相关的时间参数。
Timing advance command以及Absolute Timing Advance Command MAC CE中包含着一个索引值(index value),这个索引值被记为TA,用于计算NTA。在接收到包含在随机接入响应的Timing advance command时或者是接收到MSG B中携带的Absolute Timing Advance Command MAC CE,UE可以根据其中的TA来计算NTA的取值。或者说是TA间接指示了NTA的值。
由上述公式可知时间提前量NTA可以用来确定时间提前值TTA,因此在文中两者说法可以互相替代,其中时间提前值TTA可以简称为TA值。
时间提前量分组(Timing Advance Group,TAG)
在现有技术中为了维护上行时间一致(UL time alignment),每个服务小区都会划分到一个TAG,时间提前量相同的服务小区属于同一个TAG。为了管理TA值的有效性,每一个TAG可以有自己的定时器timeAlignmentTimer,用于控制属于该TAG的服务小区(Serving Cells)的上行同步的有效时间。当TA值被更新时,对应的TAG的timeAlignmentTimer会被启动或者重启;当一个TAG的timeAlignmentTimer运行超时,表示属于该TAG的服务小区的上行不再同步。
在多TRP的场景下,一个服务小区可以包含多于一个的TRP,而每个TRP有自己对应的时间提前量,那么一种实施方式可以是一个服务小区可以属于多于一个的TAG,例如可以有两个TAG,每个TAG对应于一个TRP,或者说每个TRP有自己关联的TAG。类似的,每个TAG可以有自己的timeAlignmentTimer。
还有一种实施方式是一个服务小区属于一个TAG,但是这个TAG有多于一个的TA值,例如一个TAG可以有至少两个TA值,每个TA值对于与或者关联一个TRP。类似的,每个TA可以有自己的timeAlignmentTimer,那么该TAG可以有多个timeAlignmentTimer。
在本文中,对于TA的管理可以采用上述的任一方式。
同步广播块SSB
当NR系统工作在高频段时,基站往往不能同时发送多个覆盖整个小区的波束,因此NR系统中引入了波束扫描技术来解决小区覆盖的问题。
所谓波束扫描是指基站在某一个时刻只发送一个或几个波束方向,通过多个时刻发送不同波束覆盖整个小区所需要的所有方向。同步广播块集合就是针对波束扫描而设计的,用于在各个波束方向上发送UE搜索小区所需要的主同步信号、辅同步信号以及物理广播信道,而这些信号就组成了一个同步广播块(SSB)。同步广播块集合是一定时间周期内多个同步广播块的集合,在同一周期内每个同步广播块对应一个波束方向,且一个同步广播块集合的各个同步广播块的波束方向覆盖了整个小区。
在多个TRP场景下,可以认为一个TRP对应了同步广播块集合中的部分SSB,而另外一个TRP对应了集合中的部分SSB,两者对应的SSB构成了同步广播块集合的全集,即覆盖了整个小区。所以在随机接入过程中,UE在选择随机接入资源时,需要首先确定随机接入的波束方向,即确定SSB。
在多个TRP场景下,还可以是一个主TRP(primary TP)对应了同步广播块集合的所有SSB,实现了整个小区的覆盖,同时存在一个或多个辅TRP(Secondary TRP),它们对应的波束方向可以是部分的SSB,或者是更为细分,可以通过CSI-RS来表征,即对应于CSI-RS的波束方向。
所以可以认为TRP和SSB或者CSI-RS存在的对应关系,或者是相互关联的。
这种对应关系在RRC配置信息中可以直接体现,例如为一个TRP配置了一组SSB的序号,那么这些SSB就是与该TRP关联的;又例如为一个TRP配置了一组CSI-RS,那么这些CSI-RS就是与该TRP相关联的。这样的对应关系还可以通过间接的方式来表征,例如通过TCI状态(TCI states)来表征。
UE在配置的搜索空间(search space)上检测PDCCH,这一过程称为监听PDCCH(monitor PDCCH)。每个搜索空间的配置信息中包含了该搜索空间所使用的控制资源集合(ControlResourceSet,CORESET)的信息。控制资源集合提供了频域和时域的资源块。每个控制资源集合关联着一系列的TCI state。在每个TCI state至少包含了一个SSB或者CSI-RS的信息。用于同一搜索空间的控制资源集合可以由coresetPoolIndex来指示,coresetPoolIndex的取值为该控制资源集合的编号,其中编号取值为0的控制资源集合可以对应着第一TRP,编号取值为1的控制资源集合对应着第二TRP,以此类推。因此通过资源集合的TCI state的配置就可以与该资源集合对应的TRP相对应,进而使得TRP和SSB或者CSI-RS形成的对应关系。
四步随机接入过程(4 step Random Access procedure,4-step RA)
下面参照附图进行说明,具体地,如图3所示,UE执行4步随机 接入过程包含下述步骤:
步骤S300:UE选定用于随机接入的随机接入资源。在这一过程中
-UE选定了用于发送的前导序列(preamble),将选定的preamble对应的序号设置为参数PREAMBLE_INDEX的值;以及
-在多个PRACH时机(PRACH occassions)中确定下一个可以用于传输的PRACH时机(determine the next available PRACH occasion from the PRACH occasions)。
步骤S301:UE在确定的PRACH时机上发送选定的preamble。
步骤S302:UE接收基站侧发来的随机接入响应(Random Access Response,RAR)。
如果在这个RAR中携带了UE在步骤S301中发送的preamble对应的序号(preamble index id),那么UE可以确定该RAR是发送给自己的。
在这样的RAR中会携带UL grant指示了用于传输消息3的PUSCH资源。
在RAR中还会携带Timing Advance Command(时间提前量调整指示),包含了用于控制时间调整量的TA值的序号值(the index value TA used to control the amount of timing adjustment),该值用于索引或者对应一个有效的上行同步时间提前量TA。UE在接收到这样的Timing Advance Command时,会应用里面指示的时间提前量,用于接下来的上行传输。
当接收到上述的RAR之后,UE会应用该Timing Advance Command,获得有效的TA值。如果这个随机接入过程是基于非竞争冲突的随机接入过程,例如在PDCCH order中提供了专有的preamble,那么到这一步,随机接入过程就认为成功完成了。如果不是,那么UE会继续执行下述步骤。
当接收到上述的RAR之后,UE会处理RAR中携带的UL grant,并将它指示给下层。如果这是UE第一次成功的接收到上述RAR,那么UE从复用和组装实体(Multiplexing and assembly entity)中获取(obtain)用于发送的MAC PDU,并将它保存在消息3的缓存区(MSG3buffer)中。
如果UE在预定时间内没有接收到上述RAR,那么UE会将变量 PREAMBLE_TRANSMISSION_COUNTER的值增加1,该变量的初始值为0。如果PREAMBLE_TRANSMISSION_COUNTER=preambleTransMax+1,那么UE认为随机接入过程没有成功完成,可以向上层指示随机接入问题。其中变量PREAMBLE_TRANSMISSION_COUNTER用于记录preamble的发送次数,参数preambleTransMax为预配置的值,其取值表示preamble最多允许发送的次数。
步骤S303:UE在UL grant指示的PUSCH资源上发送消息。
在这个消息3中,UE会携带用于竞争冲突解决的标识信息。
步骤S304:UE接收基站侧发送来的消息4。
在消息4中如果携带了UE在消息3中携带的标识信息,那么UE认为竞争冲突解决,随机接入过程成功完成。
如果UE在预定时间内没有接收到上述消息4,那么UE会将变量PREAMBLE_TRANSMISSION_COUNTER的值增加1,该变量的初始值为0。如果PREAMBLE_TRANSMISSION_COUNTER=preambleTransMax+1,那么UE认为随机接入过程没有成功完成,可以向上层指示随机接入问题。
由于在上述随机接入过程中UE经历了步骤S301~S304的消息传递过程,因此被称为“四步随机接入”(4-step RA)过程。
上述四步随机接入过程还可以被称为是第一类型的层1随机接入(Type-1 layer 1 Random Access Procedure,type 1 L1 RA)。从物理层(又称为层1,layer 1)的角度来看,type 1 L1 RA过程至少包含了在PRACH上传输随机接入前导序列(或者称为消息一的传输),以及随机接入响应消息(Random Access Response Message)的传输/接收,这个随机接入响应消息的传输是由PDCCH调度的,并且是在PDSCH上传输的;此外,在type 1 L1 RA过程中还可以包含随机接入响应中携带的上行授权所调度的PUSCH,以及随之而来的用于竞争冲突解决(contention resolution)的PDSCH。
两步随机接入过程(2 step Random Access procedure,2-step RA)
下面参照附图进行说明,具体地,如图4所示,两步随机接入过程 包含下述步骤:
步骤S400:UE选定用于随机接入的随机接入资源。在这一过程中
-UE选定了用于发送的前导序列(preamble),将选定的preamble对应的序号设置为参数PREAMBLE_INDEX的值;
-在多个PRACH时机(PRACH occassions)中确定下一个可以用于传输的PRACH时机(determine the next available PRACH occasion from the PRACH occasions);以及
-确定对应于该前导序列的PUSCH资源。
步骤S401:UE向基站发送消息A(MSGA)。
其中,消息A包含preamble和消息A的负载(payload)。
其中,preamble在PRACH上发送,消息A的payload在PUSCH上发送。消息A的payload是被包装成MAC PDU在PUSCH上传输。当UE确定了用于发送消息A的时机时,如果这是UE第一次发送MSG A,那么UE从复用和组装实体(Multiplexing and assembly entity)中获取(obtain)用于发送的MAC PDU,并将它保存在消息A的缓存区(MSGA buffer)中。
步骤S402:UE接收基站发送的消息B(MSG B)。
其中消息B携带了用于竞争冲突解决的信息。
和四步随机接入过程类似,如果UE在预定时间内没有接收到上述MSG B,那么UE会将变量PREAMBLE_TRANSMISSION_COUNTER的值增加1,该变量的初始值为0。如果PREAMBLE_TRANSMISSION_COUNTER=preambleTransMax+1,那么UE认为随机接入过程没有成功完成,可以向上层指示随机接入问题。其中变量PREAMBLE_TRANSMISSION_COUNTER用于记录preamble的发送次数,参数preambleTransMax为预配置的值,其取值表示preamble最多允许发送的次数。
本发明中,网络、基站和RAN可互换使用,所述网络可以是长期演进LTE网络、新无线访问技术(New RAT,NR)网络、增强的长期演进eLTE网络,也可以是3GPP后续演进版本中定义的其他网络。
以下将列举出具体的实施例来说明本发明的处理方法。
实施例1
该实施例给出了一种由用户设备执行的方法,是UE在服务小区中利用一个或多个TRP进行上行传输的过程中执行的方法,其中,每个服务小区被划分到一个TAG,划分的依据可以是具有相同NTA的服务小区属于同一个TAG,每一个TAG有自己的定时器,用于控制属于该TAG的服务小区的上行同步的有效时间,如图5所示,该方法包括如下步骤:
当与第一TAG相关联的第一定时器运行超时时,UE执行如下操作:
保存第一TAG的NTA值;
对于属于第一TAG的一个或者多个服务小区,UE判断该服务小区是否同时还属于其他TAG,
如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器还在运行,那么UE不进行任何操作,
如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器已经停止运行,或者是,该服务小区仅属于第一TAG,那么UE执行相应操作。
具体地,对于一个和TAG(记为TAG-1)相关联的定时器timeAlignmentTimer-1,当该定时器运行超时时,UE可以执行下述操作
1、UE保存这个TAG-1的NTA值;
2、对于属于TAG-1的一个或者多个服务小区,UE判断该服务小区是否被配置了多个TAG(例如同时被配置了TAG-1和TAG-2)或者该服务小区同时还属于其他的TAG,例如TAG-2:
在一种情况下,该服务小区还属于TAG-2,并且和TAG-2相关联的定时器timeAlignmentTimer-2还在运行(running),那么UE不进行任何操作;
在一种情况下,该服务小区还属于TAG-2,并且和TAG-2相关联的定时器timeAlignmentTimer-2已经停止运行;
或者是
在一种情况下,该服务小区仅属于TAG-1,或者说是仅被配置了一个TAG,
那么UE执行下述操作之一或者多:
清空该服务小区的所有HARQ缓存flush all HARQ buffers;
如果该服务小区被配置了PUCCH,那么通知UE的RRC层释放PUCCH;
如果该服务小区被配置了SRS,那么通知UE的RRC层释放SRS;
清除(clear)被配置的下行指派(downlink assignments)和被配置的上行授权(uplink grants);
清除(clear)用于半静态CSI报告(semi-persistent CSI reporting)的PUSCH资源。
实施例2
和实施例1的区别在于,服务小区被配置的PUCCH资源、SRS、下行指派、上行授权或者是用于半静态CSI报告的PUSCH资源等是基于TRP配置的。
这里以配置的上行授权资源为例,即,该服务小区在被配置多个TRP的情况下,可以被配置多个TAGs。每个TRP可以有对应的TAG与之相关联。因此可以确定针对每个TRP的TA值。
在该服务小区上配置的上行授权资源也可以是和对应的TRP相关联的。可以是直接关联,例如上行授权资源-1用于/对应于TRP-1,而上行授权资源-2用于/对应于TRP-2;还可以是间接关联,例如上行授权资源-1采用的TCI state属于/对应于TRP-1,而上行授权资源-2采用的TCI state属于/对应于TRP-2,这里还可以通过其他的方式使得上行授权资源和TRP相关联。从而使得上行授权资源与TAG形成了间接关联。
还可以是上行授权资源与TAG存在直接关联,网络侧在对UE进行服务小区的配置时,把该服务小区上配置的上行授权资源的标识号(identity)显式地与TAG的序号(index)关联在一起,例如上行授权资源-1属于/对应于TAG-1,上行授权资源-2属于/对应于TAG-2。
在上述情况下,实施例1中的将会有一些不同,具体的实施方式可以是:
对于一个和TAG(记为TAG-1)相关联的定时器timeAlignmentTimer-1,当该定时器运行超时时,UE可以执行下述操作
1、UE保存这个TAG-1的NTA值;
2、对于属于TAG-1的一个或者多个服务小区,UE判断该服务小区是否被配置了多个TAG(例如同时被配置了TAG-1和TAG-2)或者该服务小区同时还属于其他的TAG,例如TAG-2:
在一种情况下(情况一),该服务小区还属于TAG-2,并且和TAG-2相关联的定时器timeAlignmentTimer-2还在运行(running),那么UE可以执行下述操作:
如果该服务小区被配置了PUCCH,且该PUCCH和TAG-1或者是和TRP-1相关联,那么通知UE的RRC层释放和TAG-1或者是TRP-1相关联的PUCCH;
如果该服务小区被配置了SRS,且该SRS和TAG-1或者是和TRP-1相关联,那么通知UE的RRC层释放和TAG-1或者是和TRP-1相关联的SRS;
清除(clear)被配置的、和TAG-1或者是和TRP-1相关联的下行指派(downlink assignments)以及清除被配置的、和TAG-1或者是和TRP-1相关联的上行授权(uplink grants);
清除(clear)被配置的、和TAG-1或者是和TRP-1相关联的、用于半静态CSI报告(semi-persistent CSI reporting)的PUSCH资源;
以及,在这种情况下,UE不需要清空该服务小区的所有HARQ缓存flush all HARQ buffers。
在一种情况下(情况二),该服务小区还属于TAG-2,并且和TAG-2相关联的定时器timeAlignmentTimer-2已经停止运行;
或者是
在一种情况下(情况三),该服务小区仅属于TAG-1,或者说是仅被配置了一个TAG,
那么UE执行下述操作之一或者多:
清空该服务小区的所有HARQ缓存flush all HARQ buffers;
如果该服务小区被配置了PUCCH,那么通知UE的RRC层释放PUCCH;
如果该服务小区被配置了SRS,那么通知UE的RRC层释放SRS;
清除(clear)被配置的下行指派(downlink assignments)和被配置的上行授权(uplink grants);
清除(clear)用于半静态CSI报告(semi-persistent CSI reporting)的PUSCH资源。
在执行上述操作中,如果该服务小区被配置了多个TAGs,那么在和TAG-2相关联的定时器timeAlignmentTimer-2已经停止运行的情况下(情况二),UE在释放PUCCH时,其实质释放的是和TAG-1或者是和TRP-1相关联的PUCCH,因为和TAG-2或者是和TRP-2相关联的PUCCH可以在之前定时器timeAlignmentTimer-2运行超时的时候就已经被释放了。类似的,对于服务小区被配置的其他资源例如SRS、下行指派、上行授权或者是用于半静态CSI报告的PUSCH资源等都可以存在这种情况。
实施例3
和实施例2的区别在于对于情况一的处理有所不同,具体的方式可以是:
在一种情况下(情况一),该服务小区还属于TAG-2,并且和TAG-2相关联的定时器timeAlignmentTimer-2还在运行(running),那么UE可以执行下述操作:
如果该服务小区被配置了PUCCH,且该PUCCH和TAG-1或者是和TRP-1相关联,那么UE挂起或者暂停(suspend)使用和TAG-1或者是TRP-1相关联的PUCCH;
如果该服务小区被配置了SRS,且该SRS和TAG-1或者是和TRP-1相关联,那么UE挂起或者暂停(suspend)使用和TAG-1或者是和TRP-1相关联的SRS;
UE挂起或者暂停(suspend)使用被配置的、和TAG-1或者是和TRP-1相关联的下行指派(downlink assignments)以及挂起或者暂停(suspend)使用被配置的、和TAG-1或者是和TRP-1相关联的上行授权(uplink grants);
UE挂起或者暂停(suspend)使用被配置的、和TAG-1或者是和TRP-1相关联的、用于半静态CSI报告(semi-persistent CSI reporting)的PUSCH资源;
以及,在这种情况下,UE不需要清空该服务小区的所有HARQ缓存flush all HARQ buffers。
在其他情况下,可以执行和实施例1或者2相同的操作。
实施例4
服务小区中,MCG的主服务小区(Primary cell,Pcell)和SCG的主服务小区(Primary SCG Cell,Pscell),这两种服务小区可以被称为特殊的小区(Special Cell,Spcell)。其中,MCG是由主控制节点(Master Node,MN)控制的服务小区组,称为主小区组(Master Cell Group,MCG),SCG是由辅助控制节点(Secondary Node,SN)控制的服务小区组,称为辅小区组(Secondary Cell Group,SCG)。
如果一个TAG所关联的服务小区中存在Spcell,那么这样的TAG可以被称为是主要时间提前量分组(Primary TAG,PTAG)。
如果Spcell被配置了多个TAG,那么可以认为这些TAG都是PTAG,即存在多个PTAG。
对于一个和PTAG相关联的定时器timeAlignmentTimer,当该定时器运行超时时,UE可以执行下述操作:
UE可以判断是否存在多个PTAG,或者Spcell是否属于多个TAGs,
在一种情况下,如果UE没有被配置多个PTAG(即Spcell只属于一个TAG),或者是
在一种情况下,UE被配置了多个PTAG,但是和其他PTAG相关联的定时器timeAlignmentTimer已经停止运行,
那么UE针对所有的服务小区执行下述操作之一或者多:
清空所有服务小区的HARQ缓存flush all HARQ buffers;
通知UE的RRC层释放所有服务小区的被配置的PUCCH;
通知UE的RRC层释放所有服务小区的被配置的SRS;
清除(clear)被配置的下行指派(downlink assignments)和被配置的上行授权(uplink grants);
清除(clear)用于半静态CSI报告(semi-persistent CSI reporting)的PUSCH资源。
以及
认为所有运行的定时器timeAlignmentTimer运行超时,
为所有的TAG保存它们的NTA值。
在一种情况下,UE被配置了多个PTAG,但是和其他PTAG相关联的定时器timeAlignmentTimer至少有一个还在运行,
那么UE仅需要为该PTAG保存它的NTA值,以及可选的,执行实施例1-3中的操作,在这种情况下,可以认为PTAG为其中的TAG-1。
实施例5
和实施例4的区别在于如果Spcell被配置了多个TAG,那么可以认为这些TAG只有一个是PTAG,而其他的TAG可以被称为辅助时间提前量分组PSTAG。
如果运行超时的定时器timeAlignmentTimer和PTAG相关联,那么UE可以针对所有的服务小区执行下述操作之一或者多:
清空所有服务小区的HARQ缓存flush all HARQ buffers;
通知UE的RRC层释放所有服务小区的被配置的PUCCH;
通知UE的RRC层释放所有服务小区的被配置的SRS;
清除(clear)被配置的下行指派(downlink assignments)和被配置的上行授权(uplink grants);
清除(clear)用于半静态CSI报告(semi-persistent CSI reporting)的PUSCH资源。
以及
认为所有运行的定时器timeAlignmentTimer运行超时,
为所有的TAG保存它们的NTA值。
如果运行超时的定时器timeAlignmentTimer和PSTAG相关联,那么UE认为PSTAG为实施例1-3中的TAG-1,并且执行实施例1-3中的操作。
这里还需要解决的问题是如何标识PTAG。可以认为TAG标识(TAG identity)取值为特定值的TAG为PTAG,例如TAG identity取值为0的TAG为PTAG。或者是网络层在配置TAG时,显示的只是某个TAG的属性为PTAG等。而对于其他的TAG,如果里面包含了Spcell,那么可以认为该TAG是PSTAG。
实施例6
和实施例4的区别在于如果Spcell被配置了多个TAG,那么可以认为这些TAG只有一个是PTAG,而其他的TAG可以被称为PSTAG。
如果运行超时的定时器timeAlignmentTimer和PTAG相关联,UE可以执行下述操作:
UE判断Spcell是否被配置了多个TAG(或者判断是否存在PSTAG),
在一种情况下,Spcell被配置了多个TAG(即存在PSTAG),那么UE进一步判断和其他PSTAG相关联的定时器timeAlignmentTimer是否在运行。
如果和其他PSTAG相关联的定时器timeAlignmentTimer正在运行,那么UE可以执行实施例1-3中的操作,这种情况下,可以认为PTAG为实施例1-3中的TAG-1。
在另外一种情况下,如果Spcell没有被配置多个TAG(即PSTAG不存在),或者是
Spcell被配置了多个TAG(存在PSTAG),并且和其他PSTAG相关联的定时器timeAlignmentTimer已经停止运行,UE可以针对所有的服务小区执行下述操作之一或者多:
清空所有服务小区的HARQ缓存flush all HARQ buffers;
通知UE的RRC层释放所有服务小区的被配置的PUCCH;
通知UE的RRC层释放所有服务小区的被配置的SRS;
清除(clear)被配置的下行指派(downlink assignments)和被配置的上行授权(uplink grants);
清除(clear)用于半静态CSI报告(semi-persistent CSI reporting)的PUSCH资源。
以及
认为所有运行的定时器timeAlignmentTimer运行超时,
为所有的TAG保存它们的NTA值。
实施例7
在实施例6的基础上,如果运行超时的定时器timeAlignmentTimer和PSTAG相关联,UE可以执行下述操作:
UE进一步判断和PTAG相关联的定时器timeAlignmentTimer是否在运行。
在一种情况下,如果和PTAG相关联的定时器timeAlignmentTimer还在运行,那么UE可以执行实施例1-3中的操作,这种情况下,可以认为PSTAG为实施例1-3中的TAG-1。
在一种情况下,如果和PTAG相关联的定时器timeAlignmentTimer已经停止运行,UE可以针对所有的服务小区执行下述操作之一或者多:
清空所有服务小区的HARQ缓存flush all HARQ buffers;
通知UE的RRC层释放所有服务小区的被配置的PUCCH;
通知UE的RRC层释放所有服务小区的被配置的SRS;
清除(clear)被配置的下行指派(downlink assignments)和被配置的上行授权(uplink grants);
清除(clear)用于半静态CSI报告(semi-persistent CSI reporting)的PUSCH资源。
以及
认为所有运行的定时器timeAlignmentTimer运行超时,
为所有的TAG保存它们的NTA值。
实施例8
在前述实施例的基础上,当UE的MAC层接收到UE的上层(例如RRC层)指示激活SCG(indicate the activation of SCG)时,UE判断和PTAG关联的定时器timeAlignmentTimer是否还在运行,以及如果Spcell被配置了多个TAG,还可以进一步判断与Spcell所属的其他TAG相关联的定时器timeAlignmentTimer是否在运行。如果与Spcell所属的PTAG以及其他TAG相关联的定时器timeAlignmentTimer都停止运行了,那么UE向上层指示需要(need)一个随机接入过程(Random Access procedure)用于SCG激活。优选的,这里的Spcell是指Pscell。
实施例9
在四步随机接入过程中,当UE在RAR中接收到Timing Advance Command时,会将该Timing Advance Command用于对应的TAG。
如果UE发起随机接入的服务小区被配置了多个TAG,那么UE需要确定将Timing Advance Command用于哪一个TAG。UE发起随机接入的服务小区是指UE在该服务小区的随机接入资源上发起随机接入。
一种可行的方式是UE先判断对应的服务小区是否被配置了多个TAG,如果被配置了多个TAG,那么UE根据在随机接入过程中选择的SSB或者CSI-RS确定对应的TRP,进而确定该TRP对应的TAG,然后将Timing Advance Command用于确定的TAG。
在两步随机接入过程中,UE可以在MSG B中接收到Absolute Timing Advance Command,那么在应用该Absolute Timing Advance Command时,UE先判断对应的服务小区是否被配置了多个TAG,如果被配置了多个TAG,那么UE根据在随机接入过程中选择的SSB或者CSI-RS确定对应的TRP,进而确定该TRP对应的或者关联的TAG,然后将Absolute Timing Advance Command用于确定的TAG。
在上述方案中,UE可以在接收到Timing Advance Command或者是Absolute Timing Advance Command的时候再确定该服务小区的所属TAG,还可以是在发起随机接入过程的时候,在选定了SSB或者是CSI-RS的时候,同时确定该服务小区所属的TAG。
这里“确定该服务小区所属的TAG”的实质是确定在本次随机接入过程中该服务小区所关联的TAG:
如果该服务小区仅关联或者属于一个TAG,那么确定的TAG就是这个唯一的TAG;
如果该服务小区关联或者属于多于一个TAG,那么UE可以根据选定的SSB或者CSI-RS确定对应的TRP,进而确定该TRP对应的或者关联的TAG,这个TAG就是所确定的该服务小区关联的TAG。
又或者UE在发起随机接入过程的时候,在选定了SSB或者是CSI-RS的时候,同时根据选定的SSB或者CSI-RS确定对应的TRP,进而确定该TRP对应的或者关联的TAG。
然后,在接下来UE应用接收到Timing Advance Command或者是Absolute Timing Advance Command的时候,就可以将Timing Advance Command或者是Absolute Timing Advance Command应用到上述确定的TAG上。确定的时间先后对方案的有益效果没有实质的影响。
图6是本发明所涉及的用户设备的简要结构框图。
如图6所示,该用户设备600至少包括处理器601和存储器602。处理器601例如可以包括微处理器、微控制器、嵌入式处理器等。存储器602例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统等。存储器602上存储有程序指令。该指令在由处理器601运行时,可以执行本公开的UE的处理方法中的一个或几个步骤。
上文已经结合优选实施例对本公开的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。
上面示出的用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本公开并不局限于作为这 些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本公开的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
此外,运行在根据本发明的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种由用户设备执行的方法,是用户设备UE在服务小区中利用一个或多个发送接收节点TRP进行上行传输的过程中执行的方法,其中,每个服务小区被划分到一个时间提前量分组TAG,时间提前量NTA相同的服务小区属于同一个TAG,每一个TAG有自己的定时器,用于控制属于该TAG的服务小区的上行同步的有效时间,该方法包括如下步骤:
    当与第一TAG相关联的定时器运行超时时,UE执行如下操作:
    保存第一TAG的NTA值;
    对于属于第一TAG的一个或者多个服务小区,UE判断该服务小区是否同时还属于其他TAG,
    如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器还在运行,那么UE不进行任何操作,
    如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器已经停止运行,或者是,该服务小区仅属于第一TAG,那么UE执行下述操作中的至少一个:
    清空该服务小区的所有HARQ缓存;
    如果该服务小区被配置了PUCCH,那么通知UE的RRC层释放PUCCH;
    如果该服务小区被配置了SRS,那么通知UE的RRC层释放SRS;
    清除被配置的下行指派和被配置的上行授权;
    清除用于半静态CSI报告的PUSCH资源。
  2. 根据权利要求1所述的由用户设备执行的方法,其中,
    服务小区被配置的PUCCH资源、SRS、下行指派、上行授权或者用于半静态CSI报告的PUSCH资源是基于TRP配置的。
  3. 根据权利要求2所述的由用户设备执行的方法,其中,还包括如下步骤:
    如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器还在运行,那么UE执行下述操作中的至少一个:
    如果该服务小区被配置了PUCCH,且该PUCCH与第一TAG或者第一TRP相关联,那么通知UE的RRC层释放与第一TAG或者第一TRP相关联的PUCCH;
    如果该服务小区被配置了SRS,且该SRS与第一TAG或者第一TRP相关联,那么通知UE的RRC层释放与第一TAG或者第一TRP相关联的SRS;
    清除被配置的与第一TAG或者第一TRP相关联的下行指派以及清除被配置的与第一TAG或者第一TRP相关联的上行授权;
    清除被配置的与第一TAG或者第一TRP相关联的用于半静态CSI报告的PUSCH资源。
  4. 根据权利要求2所述的由用户设备执行的方法,其中,还包括如下步骤:
    如果该服务小区还属于其他TAG,并且与其他TAG相关联的定时器还在运行,那么UE执行下述操作中的至少一个:
    如果该服务小区被配置了PUCCH,且该PUCCH与第一TAG或者第一TRP相关联,那么UE挂起或者暂停使用与第一TAG或者第一TRP相关联的PUCCH;
    如果该服务小区被配置了SRS,且该SRS与第一TAG或者第一TRP相关联,那么UE挂起或者暂停使用与第一TAG或者第一TRP相关联的SRS;
    UE挂起或者暂停使用被配置的与第一TAG或者第一TRP相关联的下行指派以及挂起或者暂停使用被配置的与第一TAG或者第一TRP相关联的上行授权;
    UE挂起或者暂停使用被配置的与第一TAG或者第一TRP相关联的用于半静态CSI报告的PUSCH资源。
  5. 根据权利要求1至4中任一项所述的由用户设备执行的方法,其中,
    如果一个TAG所关联的服务小区中存在特殊小区,那么该TAG是主要时间提前量分组PTAG,其中,特殊小区是主小区组MCG的主服务小区或者是辅小区组SCG的主服务小区。
  6. 根据权利要求5所述的由用户设备执行的方法,其中,还包括如下步骤:
    如果特殊小区被配置了多个TAG,那么这些TAG都是PTAG,
    当与第一PTAG相关联的定时器运行超时时,UE执行如下操作:
    UE判断是否存在多个PTAG,
    如果UE没有被配置多个PTAG,或者是,UE被配置了多个PTAG,但是与其他PTAG相关联的定时器已经停止运行,那么UE针对所有服务小区执行下述操作中的至少一个:
    清空所有服务小区的HARQ缓存;
    通知UE的RRC层释放所有服务小区的被配置的PUCCH;
    通知UE的RRC层释放所有服务小区的被配置的SRS;
    清除被配置的下行指派和被配置的上行授权;
    清除用于半静态CSI报告的PUSCH资源,
    如果UE被配置了多个PTAG,但是与其他PTAG相关联的定时器至少有一个还在运行,那么第一PTAG为上述第一TAG。
  7. 根据权利要求5所述的由用户设备执行的方法,其中,还包括如下步骤:
    如果特殊小区被配置了多个TAG,那么这些TAG只有一个是PTAG,其他TAG是辅助时间提前量分组PSTAG,
    如果运行超时的定时器与PTAG相关联,那么UE针对所有服务小区执行下述操作中的至少一个:
    清空所有服务小区的HARQ缓存;
    通知UE的RRC层释放所有服务小区的被配置的PUCCH;
    通知UE的RRC层释放所有服务小区的被配置的SRS;
    清除被配置的下行指派和被配置的上行授权;
    清除用于半静态CSI报告的PUSCH资源,
    如果运行超时的定时器与PSTAG相关联,那么PSTAG为上述第一TAG。
  8. 根据权利要求5所述的由用户设备执行的方法,其中,还包括如下步骤:
    如果特殊小区被配置了多个TAG,那么这些TAG只有一个是PTAG,其他TAG是辅助时间提前量分组PSTAG,
    如果运行超时的定时器与PTAG相关联,那么UE执行下述操作:
    UE判断是否存在PSTAG,
    如果存在PSTAG,那么UE进一步判断与PSTAG相关联的定时器是否还在运行,
    如果与PSTAG相关联的定时器还在运行,那么PTAG为上述第一TAG;
    如果不存在PSTAG,或者是,虽然存在PSTAG但是与PSTAG相关联的定时器已经停止运行,那么UE针对所有服务小区执行下述操作中的至少一个:
    清空所有服务小区的HARQ缓存;
    通知UE的RRC层释放所有服务小区的被配置的PUCCH;
    通知UE的RRC层释放所有服务小区的被配置的SRS;
    清除被配置的下行指派和被配置的上行授权;
    清除用于半静态CSI报告的PUSCH资源。
  9. 根据权利要求8所述的由用户设备执行的方法,其中,还包括如下步骤:
    如果运行超时的定时器与PSTAG相关联,那么UE执行下述操作:
    UE进一步判断与PTAG相关联的定时器是否还在运行,
    如果与PTAG相关联的定时器还在运行,那么PSTAG为上述第一TAG;
    如果与PTAG相关联的定时器已经停止运行,那么UE针对所有服务小区执行下述操作中的至少一个:
    清空所有服务小区的HARQ缓存;
    通知UE的RRC层释放所有服务小区的被配置的PUCCH;
    通知UE的RRC层释放所有服务小区的被配置的SRS;
    清除被配置的下行指派和被配置的上行授权;
    清除用于半静态CSI报告的PUSCH资源。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,上述指令在由上述处理器运行时执行根据权利要求1至9中任一项所述的方法。
PCT/CN2023/103849 2022-06-30 2023-06-29 由用户设备执行的方法及用户设备 WO2024002239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210776542.2A CN117395766A (zh) 2022-06-30 2022-06-30 由用户设备执行的方法及用户设备
CN202210776542.2 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024002239A1 true WO2024002239A1 (zh) 2024-01-04

Family

ID=89383288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103849 WO2024002239A1 (zh) 2022-06-30 2023-06-29 由用户设备执行的方法及用户设备

Country Status (2)

Country Link
CN (1) CN117395766A (zh)
WO (1) WO2024002239A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021031882A1 (zh) * 2019-08-16 2021-02-25 索尼公司 电子设备、无线通信方法和计算机可读存储介质
WO2021243675A1 (en) * 2020-06-05 2021-12-09 Qualcomm Incorporated Timer-based operations for a user equipment that includes multiple antenna panels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021031882A1 (zh) * 2019-08-16 2021-02-25 索尼公司 电子设备、无线通信方法和计算机可读存储介质
WO2021243675A1 (en) * 2020-06-05 2021-12-09 Qualcomm Incorporated Timer-based operations for a user equipment that includes multiple antenna panels

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FEI DONG, ZTE CORPORATION,SANECHIPS: "Intial Discussion On 2TA for unified TCI state based mPDCCH mTRP", 3GPP TSG-RAN WG2 EMEETING#121BIS, R2-2304131, 7 April 2023 (2023-04-07), XP052290521 *
HUAWEI, HISILICON: "Maintenance of Uplink Time Alignment in NR", 3GPP TSG-RAN WG2 #99BIS MEETING, R2-1711438, 8 October 2017 (2017-10-08), XP051343423 *
YOUN HYOUNG HEO, INTEL CORPORATION: "Discussion on multi-DCI multi-TRP with two TAs", 3GPP TSG-RAN WG2 MEETING #121BIS, R2-2302692, 7 April 2023 (2023-04-07), XP052289100 *

Also Published As

Publication number Publication date
CN117395766A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
US11864041B2 (en) Multi-beam random access procedure in handover execution
US11166317B2 (en) System and method of handling bandwidth part inactivity timer
US10498519B2 (en) Methods for dynamic TDD uplink/downlink configuration
US10277366B2 (en) Method and apparatus for transmitting signal using unlicensed band in cellular system
US20200329503A1 (en) Multi-beam random access procedure in handover execution
US9894627B2 (en) Method for transmitting information for synchronization of user equipment by base station in wireless communication system and apparatus for same
JP2020528711A (ja) ランダムアクセス手続きを実行する方法及びその装置
EP3439380B1 (en) Terminal device, base station device, communication method, and control method
WO2019134506A1 (zh) 一种波束失败恢复方法、装置及设备
US20220132578A1 (en) RACH Report with Beam Selection Information
US20140112308A1 (en) Apparatus and method for performing uplink synchronization in multi-component carrier system
JP2014513504A (ja) ランダムアクセス応答のためのクロススケジューリング
KR20140005310A (ko) 반송파 결합 시스템에서의 업링크 전송 방법 및 장치
JP6938777B2 (ja) Rrc接続モードでのランダムアクセスのための帯域幅部分操作
US20160242092A1 (en) Methods and Apparatus for Small Cell Change
EP4221422A2 (en) Methods providing information messages including rach reports and related wireless devices
US20220393794A1 (en) Timer handling in multiple active grant configurations
WO2021129567A1 (zh) 由用户设备执行的随机接入报告方法和用户设备
KR20160094877A (ko) 비면허 대역을 이용한 셀룰러 시스템의 신호 송신 방법 및 장치
US20220295480A1 (en) Uplink resource configuration method, network device, and user equipment
WO2024002239A1 (zh) 由用户设备执行的方法及用户设备
WO2023246765A1 (zh) 由用户设备执行的方法及用户设备
WO2021129568A1 (zh) 由用户设备执行的随机接入报告方法和用户设备
KR20170020699A (ko) 비면허 대역을 통해 데이터를 송수신하는 수신 장치 및 송신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830407

Country of ref document: EP

Kind code of ref document: A1