WO2021031831A1 - 压电器件在线检测装置及方法 - Google Patents

压电器件在线检测装置及方法 Download PDF

Info

Publication number
WO2021031831A1
WO2021031831A1 PCT/CN2020/106535 CN2020106535W WO2021031831A1 WO 2021031831 A1 WO2021031831 A1 WO 2021031831A1 CN 2020106535 W CN2020106535 W CN 2020106535W WO 2021031831 A1 WO2021031831 A1 WO 2021031831A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
circuit
elastic wave
self
wave sensor
Prior art date
Application number
PCT/CN2020/106535
Other languages
English (en)
French (fr)
Inventor
杜朝亮
王培�
郭洪峰
Original Assignee
北京钛方科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910770203.1A external-priority patent/CN112415292B/zh
Priority claimed from CN201911012641.8A external-priority patent/CN112697187B/zh
Application filed by 北京钛方科技有限责任公司 filed Critical 北京钛方科技有限责任公司
Priority to US17/631,617 priority Critical patent/US11959797B2/en
Publication of WO2021031831A1 publication Critical patent/WO2021031831A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2205Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested
    • G06F11/2221Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested to test input/output devices or peripheral units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the invention relates to the field of electronic technology, in particular to an online detection device and method for piezoelectric devices.
  • the accuracy and type that the touch devices can recognize become Corresponding to one of the major determinants of the usability and convenience of electronic devices; in terms of the recognition type of touch devices, in addition to the traditional touch position recognition, touch pressure has also become more and more electronic devices
  • the embodiments of the present invention provide an online detection device and method for piezoelectric devices, which can realize online detection of elastic wave sensors and overcome the problems of difficulty in disassembly and easy damage to elastic wave sensors in the detection process of traditional elastic wave sensors.
  • the piezoelectric device online detection device includes: an elastic wave sensor, a self-checking circuit, a working circuit, a switch circuit, and a control chip; the switch circuit is connected to the elastic wave sensor and the automatic The detection circuit is connected to the working circuit; the self-check circuit is also connected to the control chip, and is configured to generate a self-check signal when connected to the elastic wave sensor; the working circuit is also connected to the control chip, Is configured to form a touch detection circuit when it is connected to the elastic wave sensor and obtain a detection signal by detecting an external touch through the elastic wave sensor; the control chip is also connected to the switch circuit and is configured to output a control signal to The switch circuit connects the elastic wave sensor to the working circuit or the self-check circuit; and compares the received self-check signal with a reference value, and obtains the self-check of the elastic wave sensor according to the comparison result. Check the result; or obtain the touch pressure generated by the external touch according to the received detection signal.
  • the embodiment of the present invention also provides another online detection device for piezoelectric devices.
  • the device includes a self-check circuit, a switch circuit, and a control chip; the switch circuit is connected to the working circuit of an external electronic device, and is configured to respond to the control signal.
  • the self-check circuit is set to generate a signal based on the connected elastic wave sensor Self-check signal;
  • the control chip is configured to generate a control signal to the switch circuit to connect the elastic wave sensor with the self-check circuit, or disconnect from the self-check circuit; and, will receive The self-check signal is compared with a reference value, and the self-check result of the elastic wave sensor is obtained according to the comparison result.
  • the embodiment of the present invention also provides a piezoelectric device online detection method of a piezoelectric device online detection device.
  • the method includes: connecting an elastic wave sensor with a self-check circuit according to a preset instruction; acquiring the self-check circuit as the The self-check signal generated by the elastic wave sensor is compared with the pre-stored reference value, and the self-check result of the elastic wave sensor is obtained according to the comparison result; the elastic wave sensor is connected with the working circuit according to the preset instruction to form Touch detection circuit; the elastic wave sensor detects external touch to obtain a detection signal, and calculates and obtains the touch pressure generated by the external touch according to the detection signal.
  • the embodiment of the present invention overcomes the technical limitation that the traditional sensor self-check can only be carried out in a static environment.
  • the detection of the elastic wave sensor can be completed quickly.
  • the detection structure And the method and the working circuit of the elastic wave sensor do not affect each other; moreover, based on the piezoelectric device online detection device and method, online self-test can be completed at any time, and the online self-test is used to realize the software based on the physical damage of the sensor. Compensation indirectly increases the life of the sensor and the ability to adapt to the environment.
  • the embodiment of the present invention first checks whether there is a problem with the parallel sensor group, and then polls and detects the sensors in the parallel sensor group, and checks one by one to find the damaged sensor, and automatically locates the damaged sensor.
  • the sensor ensures the normal use of the circuit.
  • FIG. 1 is a schematic structural diagram of an online detection device for piezoelectric devices provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of an environment detection sensor provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the application structure of the piezoelectric device online detection device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the use process of the piezoelectric device online detection device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the compensation process of the piezoelectric device online detection device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the composition structure of an online detection device for piezoelectric devices for realizing parallel sensor measurement provided by an embodiment of the present invention.
  • FIG. 8 is a schematic circuit diagram of an embodiment of switching between the first measurement circuit and the working circuit in the embodiment of the present invention.
  • FIG. 9 is a schematic circuit diagram of an embodiment of the working principle of the second measurement circuit in the embodiment of the present invention.
  • FIG. 10 is a schematic circuit diagram of an embodiment in which the first measurement circuit and the second measurement circuit are RC series circuits in the embodiment of the present invention
  • FIG. 11 is a schematic flowchart of an embodiment of using an RC circuit to implement parallel sensor measurement in an embodiment of the present invention.
  • the piezoelectric device online detection device may include: an elastic wave sensor, a self-check circuit, a working circuit, a switch circuit, and a control chip; the switch circuits are respectively Connected with the elastic wave sensor, the self-check circuit and the working circuit;
  • the self-check circuit is also connected to the control chip, and is configured to generate a self-check signal when connected to the elastic wave sensor;
  • the working circuit is also connected to the control chip, and is configured to form a touch detection circuit when connected to the elastic wave sensor, and detect an external touch through the elastic wave sensor to obtain a detection signal;
  • the control chip is also connected to the switch circuit, and is configured to output a control signal to the switch circuit so that the elastic wave sensor is connected to the working circuit or the self-check circuit; and to transfer the received self
  • the detection signal is compared with a preset reference value, and the self-check result of the elastic wave sensor is obtained according to the comparison result; or the touch pressure generated by an external touch is obtained according to the received detection signal.
  • the self-check circuit may be a self-excited oscillation circuit or a bridge measurement circuit, and when the elastic wave sensor is connected to the self-check circuit, the elastic wave sensor may change based on the capacitance of the elastic wave sensor.
  • the capacitance of the elastic wave sensor is related to its integrity. Therefore, when the capacitance of the elastic wave sensor changes, it can represent that its integrity has changed. This is based on the measurement of the capacitance The result can correspond to know the integrity of the elastic wave sensor.
  • the elastic wave sensor may be a piezoelectric ceramic sensor, a piezoelectric thin film sensor, a piezoelectric crystal sensor, or other sensors with piezoelectric effect.
  • control chip may be a MCU element such as a single chip microcomputer. Its function is to compare values and output a preset control signal according to external commands. Those skilled in the art can follow It is actually necessary to choose to use related processing chips with the above-mentioned functions, and this application is not limited here;
  • the structure of the above-mentioned piezoelectric device online detection device facilitates users to conduct large-scale inspections of electronic equipment using elastic wave sensors, avoids sensor measurement distortion caused by initial manufacturing differences in production, process, and materials, and also reduces This eliminates the waste of manpower and time in the traditional inspection process.
  • the elastic wave sensor mainly uses a self-excited oscillation circuit composed of a self-test circuit to complete the self-test.
  • the elastic wave sensor's capacitance value can be obtained according to the elastic wave sensor's capacitance value to obtain the elastic wave sensor's damage; of course, from the working principle of the elastic wave sensor itself, the damage of the elastic wave sensor is divided into minor damage And severe damage.
  • the elastic wave sensor is slightly damaged, if the accuracy of the detection data is not considered, the elastic wave sensor can still detect the touch pressure.
  • the above-mentioned self-check circuit is used to obtain the damage of the elastic wave sensor, and then a calibration coefficient is obtained according to the damage, and the calibration coefficient is used to correct the detection result of the elastic wave sensor, thereby effectively
  • the detection accuracy of a slightly damaged elastic wave sensor is improved; as to how to obtain the calibration coefficient according to the damage, it will be described in detail in the subsequent embodiments of the present invention, and will not be described in detail here.
  • the piezoelectric device online detection device of the present application may further include: environmental detection A sensor, the environment detection sensor is set to detect current environment data and output the environment data to the control chip.
  • the environmental detection sensor may include environmental data collection devices such as a temperature sensor, a humidity sensor, a sound collector, and an electromagnetic measurement sensor.
  • environmental data collection devices such as a temperature sensor, a humidity sensor, a sound collector, and an electromagnetic measurement sensor.
  • the accuracy of the current self-check result can be further analyzed according to the environmental data collected by the environmental detection sensor.
  • the temperature is high or low
  • the The self-inspection results of elastic wave sensors can be treated with different standards to prevent misjudgments; among them, environmental data collection equipment such as temperature sensors, humidity sensors, sound collectors and electromagnetic measurement sensors can use sensors in related technologies The equipment is not listed in detail here, and those skilled in the art can choose to use them according to actual needs.
  • the environmental data collected by environmental data collection devices such as the temperature sensor, humidity sensor, sound collector, and electromagnetic measurement sensor will change the detection accuracy of the elastic wave sensor. For this reason, the detection accuracy of the elastic wave sensor can be changed. Compensation detection, detection sensors whose other environmental factors are not related to the detection accuracy of the elastic wave sensor are not included in the scope of the aforementioned environmental detection sensors.
  • control chip may further include a compensation module configured to compare the environmental data with a pre-stored threshold according to The comparison result corrects the touch pressure.
  • the environmental data may include, but is not limited to, a combination of one or more of temperature data, humidity data, noise data, and electromagnetic compatibility data; in this way, a predefined compensation coefficient is obtained according to these environmental data and a preset correspondence table, For example, assuming that the temperature data in the environmental data is A, and the compensation coefficient corresponding to the temperature data A in the corresponding table is B, then the value B can be used as the compensation coefficient to correct the touch pressure; or, when the temperature data A is greater than When the preset threshold value F, the temperature compensation is performed by the value A1, when the value is less than the threshold value F, no compensation is performed; of course, in actual work, the environmental data can include multiple data, and the corresponding compensation coefficients can be obtained at this time. To correct the touch pressure, it is also possible to use a machine learning algorithm to correct the touch pressure, which will not be detailed here.
  • the compensation module is configured to compare the temperature data collected by the temperature sensor with a preset temperature threshold; when the temperature data is greater than or equal to the preset temperature
  • the capacitance of the sensor; t is the ambient temperature; a, b, c, l, m, and n are constants.
  • the compensation function is used to calculate the corrected touch pressure according to the capacitance value, touch pressure, and compensation coefficient of the elastic wave sensor;
  • P is the corrected touch pressure;
  • P1 is the touch pressure obtained by the control chip according to the detection signal;
  • z is the capacitance value of the elastic wave sensor, taking C1(t) or C2(t);
  • x and y are Preset compensation coefficient, constant.
  • the control chip may further include a calibration module configured to obtain a calibration coefficient according to a self-check result, and correct the touch pressure according to the calibration coefficient .
  • the calibration coefficient can be obtained by using a traditional comparison table method. For example, the corresponding relationship between the self-test result and the calibration coefficient is obtained through the previous test, and the comparison table is established according to the corresponding relationship, and then the online test In the link, the corresponding calibration coefficients can be obtained by comparing the self-check results with the preset comparison table; of course, machine learning algorithms can also be used to complete the calibration, which is not further limited here, and those skilled in the art can follow In fact, you need to choose settings flexibly.
  • the self-check result may also be compared with a preset threshold.
  • the threshold When the self-check result is less than the preset threshold, it means that the elastic wave sensor has good detection accuracy and does not need to be re-calibrated; or, when the self-check result is greater than a preset threshold, it means that the elastic wave sensor cannot be used normally through calibration, and it can pass
  • An alarm unit gives an alarm; for example, the self-check results can be divided into three types: 1. The frequency of the self-check signal is greater than or equal to the reference value, and no processing is performed; 2.
  • the frequency of the self-check signal is less than the reference value and greater than the damage value, and compensation ; 3.
  • the frequency of the self-check signal is less than or equal to the damage value, and the alarm is replaced; that is to say, the frequency of the self-check signal can be compared with the damage frequency threshold and the reference frequency threshold in actual work. If it is greater than the damage frequency threshold and If it is less than the reference frequency threshold, the capacitance value of the elastic wave sensor is obtained by the following formula; or, according to the self-test signal, it is confirmed that it belongs to the level that needs calibration, that is, the self-test result, and then the calibration coefficient of the corresponding calibration level is obtained according to the self-test result.
  • the calibration level can be limited to the damage threshold, that is, when the self-check signal is higher than the damage threshold, there is a corresponding calibration coefficient, and then the calibration can be completed according to the calibration coefficient; therefore, in the present invention
  • the control chip may further include an alarm unit configured to generate an alarm signal when the self-check result is greater than a damage threshold, so as to notify the user to replace or repair the elastic wave sensor.
  • the second embodiment of the present invention also provides an online detection device for a piezoelectric device.
  • the device may include: a self-check circuit, a switch circuit, and a control chip; wherein,
  • the switch circuit is connected to a working circuit of an external electronic device, and is configured to connect a predetermined elastic wave sensor in the working circuit with the self-check circuit according to a control signal; or, disconnect the predetermined elastic wave sensor from the self-check circuit. Check the connection of the circuit;
  • the self-check circuit is configured to generate a self-check signal according to the connected elastic wave sensor
  • the control chip is configured to generate a control signal to the switch circuit to connect the elastic wave sensor to the self-check circuit or disconnect the self-check circuit; and to transfer the received self-check circuit
  • the detection signal is compared with the reference value, and the self-check result of the elastic wave sensor is obtained according to the comparison result.
  • the piezoelectric device online detection device serves as a detection mechanism independent of traditional electronic equipment, and can be conveniently used to perform corresponding elastic wave sensor detection on various electronic equipment.
  • the electronic device can perform self-checking through the following steps: connect the elastic wave sensor in the working circuit with the self-checking circuit according to a preset instruction; obtain The self-check circuit compares the self-check signal with a preset signal based on the self-check signal generated by the capacitance value of the elastic wave sensor, and obtains the self-check result of the elastic wave sensor according to the comparison result; The calibration coefficient is obtained as a result of the self-check; the elastic wave sensor is connected with the working circuit according to the preset instruction to form a touch detection circuit; the detection signal is obtained by detecting the external touch by the elastic wave sensor, according to the calibration coefficient and the detection signal Calculate the contact pressure generated by external contact.
  • the device in the second embodiment may further include an environment detection sensor, the environment detection sensor is used to detect current environment data, and output the environment data to the control chip.
  • the environment detection sensor is used to detect current environment data, and output the environment data to the control chip.
  • an embodiment of the present invention also provides an online detection method of a piezoelectric device suitable for the above-mentioned piezoelectric device online detection device, and the method includes:
  • Step 101 Generate a self-check signal according to the elastic wave sensor.
  • this step may include:
  • the self-inspection circuit that is, acquiring the self-inspection signal output by the self-excited oscillation circuit according to the principle of self-excitation and oscillation according to the capacitance value of the elastic wave sensor.
  • the self-check signal includes, for example, the oscillation frequency value of the self-check signal.
  • Step 102 Compare the self-check signal with a reference value, and obtain a self-check result of the elastic wave sensor according to the comparison result.
  • the embodiment of the present invention also provides an online detection method of a piezoelectric device suitable for the above-mentioned piezoelectric device online detection device, including:
  • the detection signal obtained by the touch detected by the elastic wave sensor is calculated to obtain the touch pressure generated by the external touch.
  • the method further includes: obtaining a preset calibration coefficient according to the self-check result; and obtaining the touch pressure generated when an external touch is performed includes: according to the calibration coefficient and the touch The detection signal of the detection is calculated to obtain the touch pressure generated by the external touch.
  • the calculating and obtaining the touch pressure generated by the external touch according to the calibration coefficient and the detection signal for detecting the touch may include:
  • the elastic wave sensor can be connected with the working circuit according to the preset instruction to form a touch detection circuit
  • the elastic wave sensor detects the external touch to obtain a detection signal, and calculates and obtains the touch pressure generated by the external touch according to the calibration coefficient and the detection signal.
  • the principle of calculating the touch pressure generated by the external touch according to the calibration coefficient and the detection signal for detecting the touch is that the capacitance value of the elastic wave sensor decreases correspondingly when physical damage occurs.
  • the method further includes: detecting current environmental data, comparing the environmental data with a pre-stored threshold, and correcting the touch pressure according to the comparison result; wherein, the The environmental data may include one or a combination of temperature data, humidity data, noise data, and electromagnetic flux data.
  • the capacitance value characteristics of the elastic wave sensor and the temperature can be compensated algorithmically according to the temperature according to the different working environment; in an exemplary
  • the environmental data includes temperature data
  • the temperature data is compared with a preset temperature threshold; when the temperature data is greater than or equal to the preset temperature threshold, the elastic wave sensor capacitance value is obtained by the following formula ;
  • This article overcomes the limitation that the traditional sensor self-test can only be performed in a static environment.
  • the elastic wave sensor In the application scenario where the elastic wave sensor is packaged and fixed and cannot be easily disassembled, it can quickly complete the detection of the elastic wave sensor.
  • the detection structure and method provided in this article The working circuit of the elastic wave sensor does not affect each other; furthermore, based on the piezoelectric device online detection device and method, online self-checking can be completed at any time.
  • the online self-checking can be used to make software compensation according to the physical damage of the sensor. Indirectly increases the life of the sensor and the ability to adapt to the environment.
  • the electronic device 600 may further include: a communication module 110, an input unit 120, an audio processing unit 130, a display 160, and a power supply 170. It should be noted that the electronic device 600 does not necessarily include all the components shown in FIG. 6; in addition, the electronic device 600 may also include components not shown in FIG. 6, and the prior art can be referred to.
  • the central processing unit 100 is sometimes called a controller or operating control, and may include a microprocessor or other processor devices and/or logic devices.
  • the central processing unit 100 receives inputs and controls various components of the electronic equipment 600. Operation of components.
  • the memory 140 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices.
  • the above-mentioned information related to the failure can be stored, and the program for executing the related information can also be stored.
  • the central processing unit 100 can execute the program stored in the memory 140 to implement information storage or processing.
  • the input unit 120 provides input to the central processing unit 100.
  • the input unit 120 is, for example, a button or a touch input device.
  • the power supply 170 is used to provide power to the electronic device 600.
  • the display 160 is used for displaying display objects such as images and characters.
  • the display may be, for example, an LCD display, but it is not limited thereto.
  • the memory 140 may be a solid-state memory, for example, read only memory (ROM), random access memory (RAM), SIM card, etc. It may also be a memory that saves information even when the power is off, can be selectively erased and is provided with more data, and an example of this memory is sometimes called EPROM or the like.
  • the memory 140 may also be some other type of device.
  • the memory 140 includes a buffer memory 141 (sometimes referred to as a buffer).
  • the memory 140 may include an application/function storage unit 142, which is used to store application programs and function programs or to execute the operation process of the electronic device 600 through the central processing unit 100.
  • the memory 140 may further include a data storage unit 143 for storing data, such as contacts, digital data, pictures, sounds, and/or any other data used by electronic devices.
  • the driver storage unit 144 of the memory 140 may include various drivers for the communication function of the electronic device and/or for executing other functions of the electronic device (such as a messaging application, an address book application, etc.).
  • the communication module 110 is a transmitter/receiver 110 that transmits and receives signals via the antenna 111.
  • the communication module (transmitter/receiver) 110 is coupled to the central processing unit 100 to provide input signals and receive output signals, which can be the same as that of a conventional mobile communication terminal.
  • multiple communication modules 110 may be provided in the same electronic device, such as a cellular network module, a Bluetooth module, and/or a wireless local area network module.
  • the communication module (transmitter/receiver) 110 is also coupled to the speaker 131 and the microphone 132 via the audio processor 130 to provide audio output via the speaker 131 and receive audio input from the microphone 132, thereby realizing general telecommunication functions.
  • the audio processor 130 may include any suitable buffers, decoders, amplifiers, etc.
  • the audio processor 130 is also coupled to the central processing unit 100, so that the microphone 132 can be used to record on the unit, and the speaker 131 can be used to play the sound stored on the unit.
  • the embodiment of the present invention also provides an online detection device for piezoelectric devices, which is used to implement parallel sensor measurement to automatically locate the damaged sensor and ensure the normal use of the circuit.
  • the elastic wave sensor in Figure 1 is a parallel sensor group of n parallel sensors.
  • the self-check circuit includes a first measurement circuit and a second measurement circuit, and the control chip includes a sampling
  • the control circuit is shown in FIG. 7, which is a schematic diagram of the composition structure of the piezoelectric device online detection device for realizing parallel sensor measurement in the embodiment of the present invention.
  • the piezoelectric device used for realizing the measurement of parallel sensor in the embodiment of the present invention The online detection device at least includes: a first measurement circuit, a second measurement circuit, a sampling control circuit, a parallel sensor group including n parallel elastic wave sensors; wherein,
  • the first measurement circuit is configured to detect the parallel sensor group under the control of the sampling control circuit; in an illustrative example, the first measurement circuit is a resistance-capacitance circuit (RC, Resistance-Capacitance circuit), that is, an RC circuit, including The first resistance and the parallel sensor group as the first capacitance; the first measurement circuit detects the parallel sensor group under the control of the sampling control circuit;
  • RC Resistance-capacitance circuit
  • the second measurement circuit is configured to poll and detect any elastic wave sensor in the parallel sensor group under the control of the sampling control circuit;
  • the second measurement circuit is an RC circuit, including a second resistor, Any one of the elastic wave sensors in the parallel sensor group as the second capacitor and a switch circuit composed of a switch, the switch is set to switch one elastic wave in the parallel sensor group under the control of the sampling control circuit
  • the sensor serves as the second capacitance; the second measuring circuit detects each elastic wave sensor in the parallel sensor group under the control of the sampling control circuit;
  • the sampling control circuit is set to control the first measurement circuit to detect the parallel sensor group when the system of the device to which the sampling control circuit belongs is powered on, or according to a preset period or when a detection instruction is received. Take samples, and determine whether there is a damaged elastic wave sensor in the parallel sensor group according to the first sampling result; when there is a damaged elastic wave sensor in the parallel sensor group, control the second measurement circuit to perform a measurement on a single elastic wave sensor in the parallel sensor group. Detection, sampling the output of the second measuring circuit, and determining the damaged elastic wave sensor in the parallel sensor group according to the second sampling result.
  • elastic wave sensors include but are not limited to piezoelectric sensors, strain sensors, etc.
  • piezoelectric sensors may include piezoelectric ceramic sensors, piezoelectric film sensors, piezoelectric crystal sensors, or other sensors with piezoelectric effect Wait.
  • the sampling control circuit is further configured to control the parallel sensor group to be connected to the working circuit during initialization or when there is no damaged sensor in the parallel sensor group.
  • the capacitance value of elastic wave sensors forming the same parallel sensor group has a lower limit value C L , and hardware replacement or other processing is performed when the capacitance value is less than the lower limit value through conversion of the filter circuit.
  • the piezoelectric device online detection device for realizing the measurement of parallel sensors provided by the embodiment of the application first checks whether there is a problem with the parallel sensor group, and then polls and detects the sensors in the parallel sensor group, and checks one by one to find out the occurrence
  • the damaged sensor automatically locates the damaged sensor, ensuring the normal use of the circuit.
  • the sampling control circuit can realize the selection of the first measurement circuit, the second measurement circuit, and the working circuit through a switching circuit such as a switch.
  • the detection of different parallel sensor groups can use a switching circuit to implement polling, that is, the sampling control circuit uses a switching circuit to switch each parallel sensor one by one.
  • the group is connected to the first measurement circuit to separately detect whether there is sensor damage in each parallel sensor group.
  • Fig. 8 is a schematic circuit diagram of an embodiment of switching between the first measurement circuit and the working circuit in the embodiment of the present invention.
  • the parallel sensor group is connected to the working circuit or the first measuring circuit by controlling the switch .
  • the switch through the control of the switch, if the parallel sensor group is connected to the working circuit, then the port A of the parallel sensor group is connected to one end of the working circuit (Work_+), and the port B of the parallel sensor group is connected Connect to the other end of the working circuit (Work_-); through the control of the switch, if the parallel sensor group is connected to the first measurement circuit, then the port A of the parallel sensor group is used as one end of the first capacitor in the first measurement circuit (Check1_+), the port B of the parallel sensor group is used as the other end (Check_-) of the first capacitor in the first measurement circuit.
  • Figure 9 is a schematic circuit diagram of an embodiment of the working principle of the second measurement circuit in the embodiment of the present invention.
  • the parallel sensor group includes n elastic wave sensors
  • the switch includes n Independently controlled switch
  • the switch shown in Figure 9 can be an internal switch of the parallel sensor group.
  • an elastic wave sensor in the parallel sensor group is connected to the second measurement circuit.
  • the port A of the parallel sensor group is used as one end of the second capacitor in the second measurement circuit (Check2_+)
  • the port B of the parallel sensor group is used as the other end (Check_-) of the second capacitor in the second measurement circuit.
  • the parallel sensor group under the control of the acquisition control circuit, the parallel sensor group is connected as a capacitor and becomes the first measurement circuit or the second measurement circuit.
  • the parallel sensor group due to the presence of capacitors that cannot flow DC current, both resistance and capacitance have an obstructive effect on the current.
  • the total impedance is determined by the resistance and capacitive reactance, and the total impedance changes with frequency.
  • the turning frequency f 01 1/(2 ⁇ R1 ⁇ C1), where the value of the resistance R1 is a given value, And the error accuracy is required to be less than 1%, and the capacitance C1 is the sum of the capacitances of the elastic wave sensors in the parallel sensor group.
  • the signal amplitude obtained by the sampling control circuit after passing through the first measurement circuit is certain (assuming the signal amplitude threshold A th1 ), If an elastic wave sensor in the parallel sensor group is damaged, the total capacitance of the parallel sensor group will decrease, that is, C1 will decrease, which means that the corner frequency f 01 becomes larger. Then, the sampling control circuit will pass the first measurement circuit After that, the output signal amplitude will decrease (assuming the first measurement signal amplitude A 11 ), the sampling control circuit records the signal amplitude threshold A th1 and the first measurement signal amplitude A 11 , and calculates the signal amplitude difference between the two The value H.
  • the signal amplitude threshold A th1 may be a value or a range.
  • the turning frequency f 02 1/(2 ⁇ R2 ⁇ C2), where the value of the resistance R2 is a given value and The error accuracy requirement is less than 1%, and the capacitance C2 is the capacitance value of the elastic wave sensor currently connected to the second measurement circuit in the parallel sensor group.
  • the sampling control circuit obtains the pass
  • the output signal amplitude after the second measurement circuit is certain (assuming the signal amplitude threshold A th2 ).
  • the elastic wave sensor If the elastic wave sensor is damaged, its capacitance will decrease, that is, C 2q will decrease, which means the turning frequency f 02 becomes larger, then the signal amplitude obtained by the sampling control circuit after passing through the second measurement circuit will be reduced (assuming the second measurement signal amplitude A 2q ), the sampling control circuit corresponds to the recording signal amplitude threshold A th2 and The second measurement signal amplitude A 2q , and calculate the signal amplitude difference H 2q between the two, if H 2q is equal to H, stop using the polling detection of the second measurement circuit, and determine the damage in the parallel sensor group
  • the sensor is sensor q;
  • H 2q is less than H, then continue to poll the elastic wave sensors in the parallel sensor group. If an elastic wave sensor p in the parallel sensor group currently switched to (assuming its capacitance value is C 2p ) works normally, Then, the signal amplitude obtained by the sampling control circuit after passing through the second measuring circuit is certain (assuming the signal amplitude threshold A th2 ). If the elastic wave sensor is damaged, its capacitance will decrease, that is, C 2p will decrease. Smaller means that the turning frequency f 02 becomes larger.
  • the signal amplitude obtained by the sampling control circuit after passing through the second measurement circuit will decrease (assuming the second measurement signal amplitude A 2p ), and the sampling control circuit corresponds to Record the signal amplitude threshold A th2 and the second measurement signal amplitude A 2p , and calculate the signal amplitude difference H 2p between the two, if (H 2p +H 2q ) is equal to H, stop using the second measurement circuit round Inquiry detection, and determine that the elastic wave sensors damaged in the parallel sensor group are elastic wave sensor q and elastic wave sensor p; here, the signal amplitude threshold A th2 can be a value or a range.
  • a given excitation signal means that the excitation signal remains unchanged during the entire measurement process.
  • the embodiment of the present invention also provides an online detection method of a piezoelectric device for realizing parallel sensor measurement, including:
  • control the second measurement circuit When there is a damaged elastic wave sensor in the parallel sensor group, control the second measurement circuit to detect a single sensor in the parallel sensor group, sample the output of the second measurement circuit, and determine the parallel sensor group according to the second sampling result Damaged elastic wave sensor.
  • the first measurement circuit is a first resistance-capacitance RC circuit
  • the second measurement circuit is a second resistance-capacitance RC circuit
  • Controlling the first measurement circuit to detect the parallel sensor group includes: using the parallel sensor group as the first capacitor in the first RC circuit, sampling the output of the first RC circuit, and detecting the parallel sensor group according to the first sampling result Whether there is a damaged elastic wave sensor;
  • Controlling the second measurement circuit to detect a single sensor in the parallel sensor group includes: using the sensors in the parallel sensor group as the second capacitance in the second RC circuit to poll the elastic wave sensors in the parallel sensor group, respectively The output of the second RC circuit is sampled, and the damaged elastic wave sensor is determined according to the second sampling result.
  • FIG. 11 is a schematic flowchart of an embodiment of implementing parallel sensor measurement by using an RC circuit in an embodiment of the present invention. As shown in FIG. 11, in this embodiment, it includes:
  • Step 1100 Use the parallel sensor group as the first capacitor in the first RC circuit, sample the output of the first measurement circuit, and detect whether there is a damaged elastic wave sensor in the parallel sensor group according to the first sampling result.
  • detecting whether there is a damaged elastic wave sensor in the parallel sensor group in this step includes:
  • the first measurement signal amplitude A 11 displayed by the first sampling result decreases, that is, the first measurement signal amplitude A 11 is less than the signal amplitude threshold A th1 , then a damaged elastic wave sensor in the parallel sensor group is detected; record the signal amplitude threshold A th1 and the first measured signal amplitude A 11 , and calculate the signal amplitude difference H between the two; here, the signal amplitude
  • the value threshold A th1 can be a value or a range
  • the first measurement signal amplitude A 11 displayed by the first sampling result is certain, that is, the signal amplitude threshold A th1 .
  • Step 1101 When there is a damaged elastic wave sensor in the parallel sensor group, use the elastic wave sensor in the parallel sensor group as the second capacitor in the second RC circuit to poll and detect the elastic wave sensor in the parallel sensor group, respectively The output of the second measurement circuit is sampled, and the damaged elastic wave sensor is determined according to the second sampling result.
  • determining the damaged elastic wave sensor includes:
  • the elastic wave sensors in the parallel sensor group are detected one by one until the sum of the amplitude difference detected each time is equal to the signal amplitude difference H, and the corresponding signal amplitude difference is determined to be detected.
  • the sensor is a damaged elastic wave sensor.
  • determining that the elastic wave sensor corresponding to the detected signal amplitude difference is the damaged elastic wave sensor includes:
  • the elastic wave sensor q When the excitation signal is given, the elastic wave sensor q is detected. Relative to the signal amplitude threshold A th2 , the second measurement signal amplitude A 2q displayed by the second sampling result decreases, that is, if the second sampling result shows The second measurement signal amplitude A 2q is less than the signal amplitude threshold A th2 , then it is detected that the elastic wave sensor q is a damaged elastic wave sensor, and the sampling control circuit records the signal amplitude threshold A th2 and the second measurement signal amplitude A 2q , And calculate the signal amplitude difference H 2q between the two. If H 2q is equal to H, it is determined that the damaged elastic wave sensor in the parallel sensor group is elastic wave sensor q; here, the signal amplitude threshold A th1 can be a Value or a range;
  • H 2q is less than H
  • the second measurement signal amplitude displayed by the second sampling result The value A 2p decreases, that is, if the second measurement signal amplitude A 2p displayed by the second sampling result is less than the signal amplitude threshold A th2 , then the elastic wave sensor p is detected as a damaged elastic wave sensor, and the sampling control circuit Record the signal amplitude threshold A th2 and the second measured signal amplitude A 2p , and calculate the signal amplitude difference H 2p between the two, if (H 2p +H 2q ) is equal to H, it is determined that the parallel sensor group is damaged
  • the elastic wave sensors of are elastic wave sensor q and elastic wave sensor p;
  • the second measurement signal amplitude A 2i displayed by the second sampling result is constant, which is the signal amplitude threshold A th2 .
  • i is 1 to n
  • n is the number of elastic wave sensors in the parallel sensor group
  • p and q are any of n elastic wave sensors.
  • the parallel sensor group is controlled to be connected to the working circuit.
  • the parallel sensor group includes two or more than two groups, according to the method of step 1100 to step 1101, polling detection is performed on different parallel sensor groups, that is, each parallel sensor group is connected one by one
  • the first RC circuit detects whether the elastic wave sensor is damaged or not for each parallel sensor group.
  • An embodiment of the present invention also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute any one of the foregoing piezoelectric device online detection methods.
  • An embodiment of the present invention also provides an electronic device, including a memory, a piezoelectric device online detection device, a processor, and a computer program stored in the memory and running on the processor, wherein the processor executes the computer program when the computer program is executed. Realize any of the above-mentioned methods for online detection of piezoelectric devices.
  • the embodiments of the present invention can be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Electronic Switches (AREA)

Abstract

一种压电器件在线检测装置及方法,装置包含弹性波传感器、自检电路、工作电路、切换开关电路和控制芯片;切换开关电路与弹性波传感器、自检电路和工作电路连接;自检电路与控制芯片相连,用于在与弹性波传感器相连时,根据弹性波传感器的电容生成自检信号;工作电路与控制芯片相连,用于在与弹性波传感器相连时构成触碰检测电路并通过弹性波传感器检测外部触碰获得检测信号;控制芯片与切换开关电路相连,用于输出控制信号至切换开关电路使弹性波传感器连接工作电路或自检电路;将接收到的自检信号与基准值进行比较,根据比较结果获得弹性波传感器的自检结果;或根据接收到的检测信号获得外部触碰产生的触碰压力。

Description

压电器件在线检测装置及方法 技术领域
本发明涉及电子技术领域,尤指一种压电器件在线检测装置及方法。
背景技术
随着电子通讯技术的发展,设备的小型化和设备的密封性成为大多电子设备的考量指标之一。为了使设备小型化,部分电子设备将其操作构件整体或部分通过触控界面予以集成,例如:手机、平板、智能家电等,在这些技术环境下,触控设备所能识别的精度及类型成为对应电子设备的使用性和便利性的一大决定因素之一;针对触控设备的识别类型来讲,除了传统的触碰位置识别之外,触碰压力也成为了越来越多的电子设备商需要考虑的控制方式;在进行触碰压力的检测过程中,弹性波传感器成为一种性价比较高的选择方案;基于此,在设备的密封性及整体牢固性考虑的角度上,现有电子设备在使用弹性波传感器时,大多是将其封装在电子设备内部结构中,以此防止该传感器在使用过程中不必要的伤损;但是,因弹性波传感器在安装过程中往往容易因安装的不规范或其他情况导致其使用时无法达到预期效果,此时又因电子设备已然完成封装等工序,使得弹性波传感器的替换或修复等工作会对相关工作人员带来极大的困扰。
针对该情况,业内亟需一种能够在不拆卸弹性波传感器的基础上获知这些弹性波传感器的性能的检测方案及应对手段。
发明概述
本发明实施例在于提供一种压电器件在线检测装置及方法,能够实现弹性波传感器的在线检测,克服传统弹性波传感器检测过程中拆卸困难及容易损伤弹性波传感器的问题。
本发明实施例所提供的压电器件在线检测装置,包括:弹性波传感器、自检电路、工作电路、切换开关电路和控制芯片;所述切换开关电路分别与所述弹性波传感器、所述自检电路和所述工作电路连接;所述自检电路还与 所述控制芯片相连,设置为在与所述弹性波传感器相连时生成自检信号;所述工作电路还与所述控制芯片相连,设置为在与所述弹性波传感器相连时构成触碰检测电路并通过所述弹性波传感器检测外部触碰获得检测信号;所述控制芯片还与所述切换开关电路相连,设置为输出控制信号至所述切换开关电路使所述弹性波传感器连接所述工作电路或所述自检电路;以及将接收到的所述自检信号与基准值进行比较,根据比较结果获得所述弹性波传感器的自检结果;或根据接收到的所述检测信号获得外部触碰产生的触碰压力。
本发明实施例还提供另一种压电器件在线检测装置,所述装置包括自检电路、切换开关电路和控制芯片;所述切换开关电路与外接电子设备的工作电路相连,设置为根据控制信号将所述工作电路中的预定弹性波传感器与所述自检电路相连;或,断开预定弹性波传感器与所述自检电路的连接;所述自检电路设置为根据相连的弹性波传感器生成自检信号;所述控制芯片设置为生成控制信号至所述切换开关电路使所述弹性波传感器与所述自检电路连接,或断开与所述自检电路的连接;以及,将接收到的所述自检信号与基准值进行比较,根据比较结果获得所述弹性波传感器的自检结果。
本发明实施例还提供一种压电器件在线检测装置的压电器件在线检测方法,所述方法包括:根据预设指令将弹性波传感器与自检电路连通;获取所述自检电路为所述弹性波传感器生成的自检信号,比较所述自检信号与预存基准值,根据比较结果获得所述弹性波传感器的自检结果;根据预设指令将所述弹性波传感器与工作电路连通,构成触碰检测电路;通过所述弹性波传感器检测外部触碰获得检测信号,根据所述检测信号计算获得外部触碰时产生的触碰压力。
本发明实施例克服了传统传感器自检仅能在静态环境下进行这一技术限制,在弹性波传感器处于封装固定不易拆卸的应用场景下,可快速完成弹性波传感器的检测,同时,该检测结构及方法与弹性波传感器的工作电路互不影响;再者,基于该压电器件在线检测装置及方法可随时完成在线自检,利用该在线自检实现了根据传感器的物理损坏程度做软件上的补偿,间接的增加了传感器寿命和适应环境的能力。
在一种示例性实例中,本发明实施例先排查并联传感器组是否有问题, 然后再对并联传感器组中的传感器轮询检测,逐一排查以找出发生损坏的传感器,自动定位出了损坏的传感器,保证了电路的正常使用。
附图概述
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1为本发明一实施例所提供的压电器件在线检测装置的结构示意图;
图2为本发明一实施例所提供的环境检测传感器的结构示意图;
图3为本发明一实施例所提供的压电器件在线检测装置的应用结构示意图;
图4为本发明一实施例所提供的压电器件在线检测装置的使用流程示意图;
图5为本发明一实施例所提供的压电器件在线检测装置的补偿流程示意图;
图6为本发明一实施例所提供的电子设备的结构示意图;
图7为本发明一实施例所提供的用于实现并联传感器测量的压电器件在线检测装置的组成结构示意图;
图8为本发明实施例中第一测量电路与工作电路间切换的实施例的电路示意图;
图9为本发明实施例中第二测量电路工作原理的实施例的电路示意图;
图10为本发明实施例中第一测量电路和第二测量电路为RC串联电路的实施例的电路示意图;
图11为本发明实施例中利用RC电路实现并联传感器测量的实施例的流程示意图。
详述
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明 如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
另外,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
请参考图1所示,本发明第一实施例所提供的压电器件在线检测装置,可包括:弹性波传感器、自检电路、工作电路、切换开关电路和控制芯片;所述切换开关电路分别与所述弹性波传感器、所述自检电路和所述工作电路连接;
所述自检电路还与所述控制芯片相连,设置为在与所述弹性波传感器相连时生成自检信号;
所述工作电路还与所述控制芯片相连,设置为在与所述弹性波传感器相连时构成触碰检测电路并通过所述弹性波传感器检测外部触碰获得检测信号;
所述控制芯片还与所述切换开关电路相连,设置为输出控制信号至所述切换开关电路使所述弹性波传感器连接所述工作电路或所述自检电路;以及将接收到的所述自检信号与预设基准值进行比较,根据比较结果获得所述弹性波传感器的自检结果;或根据接收到的所述检测信号获得外部触碰产生的触碰压力。
在一种示例性实例中,所述自检电路可以为自激振荡电路或电桥测量电路,所述弹性波传感器与所述自检电路相连时,可以基于所述弹性波传感器的容值变化生成自检信号;在该实施例中,弹性波传感器的容值与其完整度相关,为此弹性波传感器的容值发生变化时则可以代表其完整度发生变化,以此基于该容值的测量结果即可对应获知弹性波传感器的完整度情况。
在一种示例性实例中,所述弹性波传感器可以为压电陶瓷传感器、压电薄膜传感器、压电晶体传感器或者其它具有压电效应的传感器。
在一种示例性实例中,所述控制芯片可以为单片微型计算机(Single Chip  Microcomputer)等MCU元件,其作用在于数值比对和根据外部指令输出预设控制信号,本领域相关技术人员可以根据实际需要选择使用具备上述功能的相关处理芯片,本申请在此并不做限制;
通过上述压电器件在线检测装置的结构方便了用户对采用弹性波传感器的电子设备进行大规模查验,避免了因生产、工艺、材料等初始制造性差异所导致的传感器测量失真等问题,也降低了传统查验过程的人力与时间上的浪费。
在上述实施例中,所述弹性波传感器主要利用与自检电路所构成的自激震荡电路完成自检,当所述弹性波传感器因安装失误或其他行为导致物理损坏时,其容值会对应减小,此刻自激震荡电路输出的自检信号势必产生变化,又因自激震荡电路输出的方波周期与弹性波传感器的容值成线性关系,即T=KC+B,其中,T表示自检电路的方波周期;K、B为线性常数;C表示传感器的容值;为此通过自检电路输出的方波周期与提前测试获得的线性常数K、线性常数B即可确认所述弹性波传感器的容值,又根据所述弹性波传感器的容值即可获得所述弹性波传感器的损坏情况;当然,由弹性波传感器自身的工作原理可知,弹性波传感器的损坏分为轻微损伤和重度损伤,当弹性波传感器处于轻微损伤时,如不考虑检测数据的精准度,所述弹性波传感器依然可进行触碰压力等检测,为此,为了提高所述弹性波传感器在轻微损伤时的检测精度,本发明实施例采用上述自检电路获得该弹性波传感器的损坏情况,其后根据该损坏情况获得校准系数,利用该校准系数来修正所述弹性波传感器输出的检测结果,从而有效提高了轻微损伤的弹性波传感器的检测精度;至于如何根据该损坏情况获得校准系数,将在后续本发明实施例中详细说明,在此就不再详述。
请参考图2所示,鉴于弹性波传感器在实际使用过程中会因外部环境的改变而导致检测精度浮动,在本发明一实施例中,本申请压电器件在线检测装置还可以包括:环境检测传感器,所述环境检测传感器设置为检测当前环境数据,将所述环境数据输出至所述控制芯片。
在一种示例性实例中,所述环境检测传感器可以包括温度传感器、湿度传感器、声音采集器和电磁测量传感器等环境数据采集设备。以此,当用户 使用所述压电器件在线检测装置时,可进一步根据环境检测传感器所采集到的环境数据分析当前自检结果的准确性,比如,在温度较高或较低时,所述弹性波传感器的自检结果可以采用不同标准对待,以防止误判等情况发生;其中,所述温度传感器、湿度传感器、声音采集器和电磁测量传感器等环境数据采集设备可以采用相关技术中的传感器设备,这里不再一一详举,本领域相关技术人员可以根据实际需要选择使用。值得说明的是,因上述温度传感器、湿度传感器、声音采集器和电磁测量传感器等环境数据采集设备所采集到的环境数据均会改变弹性波传感器的检测精度,为此可以通过这些环境检测传感器进行补偿检测,其他环境因素与所述弹性波传感器检测精度无关的检测传感器并不包含于上述环境检测传感器的范围之内。
进一步的,基于上述环境检测传感器所采集到的环境数据,在本发明一实施例中,所述控制芯片还可以包括补偿模块,所述补偿模块设置为将所述环境数据与预存阈值比较,根据比较结果修正所述触碰压力。其中,所述环境数据可以包括但不限于温度数据、湿度数据、噪声数据、电磁兼容数据中一个或多个数据的组合;这样,根据这些环境数据与预设对应表获得预先定义的补偿系数,例如,假设环境数据中温度数据为A,对应表中温度数据A对应的补偿系数是B,那么,可以将数值B作为补偿系数对所述触碰压力进行修正;又或者,当温度数据A大于预设的阈值F时,则通过如数值A1进行温度补偿,当小于阈值F时,则不进行补偿;当然实际工作中,环境数据可以包括多个数据,此时可分别获得对应的补偿系数来修正触碰压力,也可以采用机器学习算法等方式修正所述触碰压力,在此就不再一一详述。
在上述实施例中,当所述环境检测传感器包括温度传感器,所述补偿模块设置为将所述温度传感器采集到的温度数据与预设温度阈值比较;当所述温度数据大于或等于所述预设温度阈值时,通过以下公式获得弹性波传感器的容值:C1(t)=a×t 2+b×t+c(t≥t0);当所述温度数据小于所述预设温度阈值时,通过以下公式获得弹性波传感器的容值:C2(t)=l×t 2+m×t+n(t<t0);在上式中,C1(t)和C2(t)为弹性波传感器的容值;t为环境温度;a、b、c、l、m、n为常数。其后,再通过以下补偿函数,根据所述弹性波传感器的容值、触碰压力、补偿系数计算获得修正后的触碰压力;所述补偿函数 可以包括:P=P1+x-y×z;在上式中,P为修正后的触碰压力;P1为控制芯片根据检测信号获得的触碰压力;z为弹性波传感器的容值,取C1(t)或C2(t);x和y为预设补偿系数,常数。
请参考图3所示,在本发明一实施例中,所述控制芯片还可以包括校准模块,所述校准模块设置为根据自检结果获得校准系数,根据所述校准系数修正所述触碰压力。在一种示例性实例中,可以采用传统的对照表的方式来获得校准系数,例如通过前次检测获得自检结果与校准系数的对应关系,根据该对应关系建立对照表,其后在在线检测环节中,将所述自检结果与预设对照表进行比较即可获得对应的校准系数;当然也可采用机器学习算法来完成校准,在此并不做进一步限制,本领域相关技术人员可以根据实际需要灵活选择设置。在一种示例性实例中,为了避免不必要的计算资源浪费,在根据自检结果获得校准系数之前,还可以将所述自检结果与预设阈值比较,当所述自检结果小于预设阈值时,代表该弹性波传感器检测精度较好,无需再次校准;又或者,当所述自检结果大于一预设阈值时,代表该弹性波传感器无法通过校准予以正常使用,此时即可通过一报警单元进行报警;例如:自检结果可分为三种:1,自检信号的频率大于等于基准值,不做处理;2、自检信号的频率小于基准值且大于损坏值,进行补偿;3,自检信号的频率小于或等于损坏值,报警更换;也就是说,实际工作中可以将所述自检信号的频率与损坏频率阈值和基准频率阈值进行比较,如果大于损坏频率阈值且小于基准频率阈值,则通过后续公式获得弹性波传感器的容值;又或者,根据自检信号确认属于需要校准的等级即自检结果,其后根据该自检结果获得对应校准等级的校准系数用于校准;该校准等级可以以损坏阈值为限,也就是说当自检信号高于损坏阈值时则存在对应的校准系数,其后根据该校准系数即可完成校准工作;为此,在本发明一实施例中,所述控制芯片还可以包括报警单元,所述报警单元设置为当所述自检结果大于损坏阈值时,生成报警信号,以此通知用户更换或修理所述弹性波传感器。
在上述实施例中,当所述自检结果为所述自检信号小于基准值时,通过以下公式获得所述自检结果对应的弹性波传感器的容值;根据所述弹性波传感器的容值获得校准系数,根据所述校准系数修正所述触碰压力;其中,f= α×c+β,f为自检信号的频率、c为弹性波传感器的容值、α和β为常数;其后,再以下校准函数,根据所述弹性波传感器的容值、触碰压力、校准系数通过计算获得修正后的触碰压力;所述校准函数可以包括:P=P1+x-y×c,其中,P为修正后的触碰压力,P1为控制芯片根据检测信号获得的触碰压力,c为弹性波传感器的容值,x和y为预设校准系数,为常数)。
本发明第二实施例还提供一种压电器件在线检测装置,所述装置可以包括:自检电路、切换开关电路和控制芯片;其中,
所述切换开关电路与外接电子设备的工作电路相连,设置为根据控制信号将所述工作电路中的预定弹性波传感器与所述自检电路相连;或,断开预定弹性波传感器与所述自检电路的连接;
所述自检电路设置为根据相连的弹性波传感器生成自检信号;
所述控制芯片设置为生成控制信号至所述切换开关电路使所述弹性波传感器与所述自检电路连接,或断开与所述自检电路的连接;以及,将接收到的所述自检信号与基准值进行比较,根据比较结果获得所述弹性波传感器的自检结果。
在该实施例中,所述压电器件在线检测装置作为独立于传统电子设备之外的检测机构,可便于用于在各类电子设备上进行对应的弹性波传感器检测。
在上述第二实施例中,当应用上述压电器件在线检测装置时,所述电子设备可以通过以下步骤进行自检:根据预设指令将工作电路中的弹性波传感器与自检电路连通;获取所述自检电路根据所述弹性波传感器的容值生成的自检信号,将所述自检信号与预设信号进行比较,根据比较结果获得所述弹性波传感器的自检结果;根据所述自检结果获得校准系数;根据预设指令将弹性波传感器与工作电路连通,构成触碰检测电路;通过所述弹性波传感器检测外部触碰获得检测信号,根据所述校准系数和所述检测信号计算获得外部触碰时产生的触碰压力。
在本发明一实施例中,第二实施例中的所述装置还可以包括环境检测传感器,所述环境检测传感器用于检测当前环境数据,将所述环境数据输出至所述控制芯片。所述环境检测传感器具体种类如前述实施例所示,在此就不再一一解释说明。
在第二实施例中,在本发明一实施例中,所述控制芯片还包括补偿模块,所述补偿模块用于将所述环境数据与预存阈值比较,根据比较结果获得弹性波传感器的容值:C1(t)=a×t 2+b×t+c(t≥t0);当所述温度数据小于所述预设温度阈值时,通过以下公式获得弹性波传感器的容值:C2(t)=l×t 2+m×t+n(t<t0);在上式中,C1(t)和C2(t)为弹性波传感器的容值;t为环境温度;a、b、c、l、m、n为常数。
在第二实施例中,在本发明一实施例中,所述控制芯片还包括校准模块,所述校准模块设置为根据自检结果获得弹性波传感器的容值;其中,当所述自检结果为所述自检信号小于基准值时,通过以下公式获得所述自检结果对应的弹性波传感器的容值;公式包括:f=α×c+β,f为自检信号、c为弹性波传感器的容值、α和β为常数。
请参考图4所示,本发明实施例还提供一种适用于上述压电器件在线检测装置的压电器件在线检测方法,所述方法包括:
步骤101:根据弹性波传感器生成自检信号。
在一种示例性实例中,本步骤可以包括:
根据预设指令将弹性波传感器与自检电路连通,构成自激震荡电路;
获取所述自检电路为所述弹性波传感器生成的自检信号,也就是说获取所述自激震荡电路根据自激震荡原理输出的根据所述弹性波传感器的容值生成自检信号。
在一种示例性实例中,自检信号包括如自检信号的振荡频率值等。
步骤102:比较所述自检信号与基准值,根据比较结果获得所述弹性波传感器的自检结果。
本发明实施例还提供一种适用于上述压电器件在线检测装置的压电器件在线检测方法,包括:
根据预设指令将弹性波传感器与工作电路连通,构成触碰检测电路;
对通过所述弹性波传感器检测到的触碰获得的检测信号计算获得外部触碰时产生的触碰压力。
在一种示例性实例中,所述方法还包括:根据所述自检结果获得预设的 校准系数;所述获得外部触碰时产生的触碰压力包括:根据所述校准系数和对触碰进行检测的检测信号计算获得外部触碰时产生的触碰压力。
在一种示例性实例中,所述根据所述校准系数和对触碰进行检测的检测信号计算获得外部触碰时产生的触碰压力,可以包括:
可以根据预设指令将弹性波传感器与工作电路连通,构成触碰检测电路;
通过所述弹性波传感器检测外部触碰获得检测信号,根据所述校准系数和所述检测信号计算获得外部触碰时产生的触碰压力。
在该实施例中,所述根据所述校准系数和对触碰进行检测的检测信号计算获得外部触碰时产生的触碰压力的原理在于:弹性波传感器在产生物理损坏时容值相应减小,检测电路输出的方波周期与传感器容值成线性关系,T=KC+B,其中,T表示检测电路的方波周期;K、B为线性常数;C表示传感器容值;因为传感器损坏程度与检测电路输出的周期成线性关系,因此,当传感器发生物理损坏时,可以根据检测电路测量的周期值T赋予校准系数予以修正;当然超出范围则可输出报警提示更换传感器。
请参考图5所示,在本发明一实施例中,所述方法还包括:检测当前环境数据,将所述环境数据与预存阈值比较,根据比较结果修正所述触碰压力;其中,所述环境数据可以包括温度数据、湿度数据、噪声数据和电磁通量数据中一种或多种的组合。在一种示例性实例中,以温度数据为例,弹性波传感器的容值特征与温度呈现对应的函数关系,根据工作环境的不同可根据温度对传感器容值做算法补偿;在一种示例性实例中,当所述环境数据包括温度数据时,将所述温度数据与预设温度阈值比较;当所述温度数据大于或等于所述预设温度阈值时,通过以下公式获得弹性波传感器容值;根据所述弹性波传感器容值、触碰压力、补偿系数通过以下补偿函数计算获得修正后的触碰压力;C1(t)=a×t 2+b×t+c(t≥t0);当所述温度数据小于所述预设温度阈值时,通过以下公式获得弹性波传感器容值:C2(t)=l×t 2+m×t+n(t<t0);在上式中,C1(t)和C2(t)为弹性波传感器容值;t为环境温度;a、b、c、l、m、n为常数;所述补偿函数可以包括:P=P1+x-y×z;在上式中,P为修正后的触碰压力;P1为控制芯片根据检测信号获得的触碰压力;z为弹性波传感器容值,取C1(t)或C2(t);x和y为预设补偿系数,常数。
在本发明一实施例中,根据所述校准系数和所述检测信号计算获得外部触碰时产生的触碰压力可以包括:当所述自检结果为所述自检信号小于基准值时,通过以下公式获得所述自检结果对应的弹性波传感器容值;根据所述弹性波传感器容值、触碰压力、校准系数通过以下校准函数计算获得修正后的触碰压力;f=α×c+β;f为自检信号的频率;c为弹性波传感器容值;α和β为常数;所述校准函数可以括含:P=P1+x-y×c;P为修正后的触碰压力,P1为控制芯片根据检测信号获得的触碰压力,c为弹性波传感器容值,x和y为预设校准系数,为常数。
本文克服了传统传感器自检仅能在静态环境下进行的限制,在弹性波传感器处于封装固定不易拆卸的应用场景下,达到了快速完成弹性波传感器的检测,同时,本文提供的检测结构及方法与弹性波传感器的工作电路互不影响;再者,基于该压电器件在线检测装置及方法实现了随时完成在线自检,利用该在线自检可以根据传感器的物理损坏程度做软件上的补偿,间接的增加了传感器寿命和适应环境的能力。
如图6所示,该电子设备600还可以包括:通信模块110、输入单元120、音频处理单元130、显示器160、电源170。值得注意的是,电子设备600也并不是必须要包括图6中所示的所有部件;此外,电子设备600还可以包括图6中没有示出的部件,可以参考现有技术。
如图6所示,中央处理器100有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该中央处理器100接收输入并控制电子设备600的各个部件的操作。
其中,存储器140,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存上述与失败有关的信息,此外还可存储执行有关信息的程序。并且中央处理器100可执行该存储器140存储的该程序,以实现信息存储或处理等。
输入单元120向中央处理器100提供输入。该输入单元120例如为按键或触摸输入装置。电源170用于向电子设备600提供电力。显示器160用于进行图像和文字等显示对象的显示。该显示器例如可为LCD显示器,但并不限于此。
该存储器140可以是固态存储器,例如,只读存储器(ROM)、随机存取存储器(RAM)、SIM卡等。还可以是这样的存储器,其即使在断电时也保存信息,可被选择性地擦除且设有更多数据,该存储器的示例有时被称为EPROM等。存储器140还可以是某种其它类型的装置。存储器140包括缓冲存储器141(有时被称为缓冲器)。存储器140可以包括应用/功能存储部142,该应用/功能存储部142用于存储应用程序和功能程序或用于通过中央处理器100执行电子设备600的操作的流程。
存储器140还可以包括数据存储部143,该数据存储部143用于存储数据,例如联系人、数字数据、图片、声音和/或任何其他由电子设备使用的数据。存储器140的驱动程序存储部144可以包括电子设备的用于通信功能和/或用于执行电子设备的其他功能(如消息传送应用、通讯录应用等)的各种驱动程序。
通信模块110即为经由天线111发送和接收信号的发送机/接收机110。通信模块(发送机/接收机)110耦合到中央处理器100,以提供输入信号和接收输出信号,这可以和常规移动通信终端的情况相同。
基于不同的通信技术,在同一电子设备中,可以设置有多个通信模块110,如蜂窝网络模块、蓝牙模块和/或无线局域网模块等。通信模块(发送机/接收机)110还经由音频处理器130耦合到扬声器131和麦克风132,以经由扬声器131提供音频输出,并接收来自麦克风132的音频输入,从而实现通常的电信功能。音频处理器130可以包括任何合适的缓冲器、解码器、放大器等。另外,音频处理器130还耦合到中央处理器100,从而使得可以通过麦克风132能够在本机上录音,且使得可以通过扬声器131来播放本机上存储的声音。
在实际应用场景中,存在多个弹性波传感器并联使用的方案。如果并联的传感器中有传感器损坏,那么,需要定位出损坏的传感器以便于更换和维护,从而保证并联的多个传感器的所在电路的正常使用。本发明实施例还提供一种压电器件在线检测装置,用于实现并联传感器测量,以自动定位出损坏的传感器,保证电路的正常使用。
对于这种存在并联传感器的应用场景,也就是说,图1中的弹性波传感 器为n个并联的传感器的并联传感器组,自检电路包括第一测量电路、第二测量电路,控制芯片包括采样控制电路,如图7所示,图7为本发明实施例中实现并联传感器测量的压电器件在线检测装置的组成结构示意图,本发明实施例中用于实现对并联传感器的测量的压电器件在线检测装置至少包括:第一测量电路、第二测量电路、采样控制电路、包括n个并联的弹性波传感器的并联传感器组;其中,
第一测量电路,设置为在采样控制电路的控制下,检测并联传感器组;在一种示例性实例中,第一测量电路为电阻-电容电路(RC,Resistor-Capacitance circuit)即RC电路,包括第一电阻和作为第一电容的并联传感器组;第一测量电路在采样控制电路的控制下对并联传感器组进行检测;
第二测量电路,设置为在采样控制电路的控制下,轮询检测并联传感器组中的任一个弹性波传感器;在一种示例性实例中,第二测量电路为RC电路,包括第二电阻、作为第二电容的并联传感器组中的任一个弹性波传感器以及由切换开关构成的切换开关电路,切换开关,设置为在所述采样控制电路的控制下将所述并联传感器组中的一个弹性波传感器作为第二电容;第二测量电路在采样控制电路的控制下分别对并联传感器组中的每一个弹性波传感器进行检测;
采样控制电路,设置为在采样控制电路所属装置的系统上电运行时或按照预设周期或接收到检测指令时,控制第一测量电路对并联传感器组进行检测,对第一测量电路的输出进行采样,并根据第一采样结果确定并联传感器组中是否存在损坏的弹性波传感器;在并联传感器组中存在损坏的弹性波传感器时,控制第二测量电路对并联传感器组中的单个弹性波传感器进行检测,对第二测量电路的输出进行采样,并根据第二采样结果确定并联传感器组中发生损坏的弹性波传感器。
在一种示例性实例中,弹性波传感器包括但不限于压电传感器、应变传感器等,压电传感器可以包括压电陶瓷传感器、压电薄膜传感器、压电晶体传感器或者其它具有压电效应的传感器等。
在一种示例性实例中,采样控制电路还设置为:在初始化时或并联传感 器组中不存在损坏的传感器时,控制并联传感器组接入工作电路。
在一种示例性实例中,组成同一个并联传感器组的弹性波传感器的容值存在下限值C L,通过滤波电路的换算当容值小于下限值时进行硬件替换或其他处理。
本申请实施例提供的用于实现对并联传感器的测量的压电器件在线检测装置,先排查并联传感器组是否有问题,然后再对并联传感器组中的传感器轮询检测,逐一排查以找出发生损坏的传感器,自动定位出了损坏的传感器,保证了电路的正常使用。
在一种示例性实例中,采样控制电路可以通过切换电路如开关来实现对第一测量电路、第二测量电路、工作电路的选择。
在一种示例性实例中,如果并联传感器组包括两组或两组以上,则对不同并联传感器组的检测可以采用切换电路来实现轮询,即采样控制电路采用切换电路逐一将每个并联传感器组接入第一测量电路,以分别对每个并联传感器组进行是否存在传感器损坏的检测。
图8为本发明实施例中第一测量电路与工作电路间切换的实施例的电路示意图,如图8所示,通过对切换开关的控制,将并联传感器组接入工作电路或第一测量电路。如图8所示实施例,通过对切换开关的控制,如果将并联传感器组接入工作电路,那么,并联传感器组的端口A与工作电路的一端(Work_+)连接,并联传感器组的端口B与工作电路的另一端(Work_-)连接;通过对切换开关的控制,如果将并联传感器组接入第一测量电路,那么,并联传感器组的端口A作为第一测量电路中第一电容的一端(Check1_+),并联传感器组的端口B作为第一测量电路中第一电容的另一端(Check_-)。
图9为本发明实施例中第二测量电路工作原理的实施例的电路示意图,如图9所示,本实施例中,假设并联传感器组中包括n个弹性波传感器,切换开关包括n个可以独立控制的开关,图9中所示的切换开关可以是并联传感器组的内部开关。通过对切换开关的控制,将并联传感器组中的某一弹性波传感器接入第二测量电路,此时,并联传感器组的端口A作为第二测量电路中第二电容的一端(Check2_+),并联传感器组的端口B作为第二测量电路中第二电容的另一端(Check_-)。
以第一测量电路和第二测量电路为RC串联电路为例,如图10所示,在采集控制电路的控制下,并联传感器组作为电容接入并成为第一测量电路或第二测量电路的一部分。本实施例中显示的RC电路中,由于有电容存在不能流过直流电流,电阻和电容都对电流存在阻碍作用,总阻抗由电阻和容抗确定,总阻抗随频率变化而变化。RC串联电路有一个转折频率f 0:f 0=1/(2π×R×C),当输入信号频率大于f 0时,整个RC串联电路总的阻抗基本不变了,其大小等于电阻值。
对于控制并联传感器组使其接入并成为第一测量电路的一部分的情况,此时转折频率f 01=1/(2π×R1×C1),其中,电阻R1的取值为一给定值,并且误差精度要求小于1%,电容C1为并联传感器组中各弹性波传感器的容值之和。当激励信号给定时,如果并联传感器中的弹性波传感器都正常工作,那么,采样控制电路获得的通过第一测量电路后输出的信号幅值是一定的(假设为信号幅值阈值A th1),如果并联传感器组中有弹性波传感器发生损坏,并联传感器组的总容值会减小即C1减小,也就意味着转折频率f 01变大,那么,采样控制电路获得的通过第一测量电路后输出的信号幅值会降低(假设为第一测量信号幅值A 11),采样控制电路记录信号幅值阈值A th1与第一测量信号幅值A 11,并计算二者的信号幅值差值H。这里,信号幅值阈值A th1可以是一个值或一个范围。
对于控制并联传感器组使其接入并成为第二测量电路的一部分的情况,此时转折频率f 02=1/(2π×R2×C2),其中,电阻R2的取值为一给定值并且误差精度要求小于1%,电容C2为并联传感器组中当前接入第二测量电路的弹性波传感器的容值。通过图10所示的并联传感器组中的切换开关,一个一个地对并联传感器组中的弹性波传感器逐个检测,直到每次检测出的幅值差值的总和等于信号幅值差值H为止。
在一种示例性实例中,当激励信号给定时,如果当前切换至的并联传感器组中的某个弹性波传感器q(假设其容值为C 2q)正常工作,那么,采样控制电路获得的通过第二测量电路后输出的信号幅值是一定的(假设为信号幅值阈值A th2),如果该弹性波传感器发生损坏,其容值会减小即C 2q减小,也就意味着转折频率f 02变大,那么,采样控制电路获得的通过第二测量电路 后输出的信号幅值会降低(假设为第二测量信号幅值A 2q),采样控制电路对应记录信号幅值阈值A th2与第二测量信号幅值A 2q,并计算二者的信号幅值差值H 2q,如果H 2q等于H,则停止采用第二测量电路的轮询检测,并确定出并联传感器组中发生损坏的传感器为传感器q;
如果H 2q小于H,那么继续对并联传感器组中的弹性波传感器进行轮询检测,如果当前切换至的并联传感器组中的某个弹性波传感器p(假设其容值为C 2p)正常工作,那么,采样控制电路获得的通过第二测量电路后输出的信号幅值是一定的(假设为信号幅值阈值A th2),如果该弹性波传感器发生损坏,其容值会减小即C 2p减小,也就意味着转折频率f 02变大,那么,采样控制电路获得的通过第二测量电路后输出的信号幅值会降低(假设为第二测量信号幅值A 2p),采样控制电路对应记录信号幅值阈值A th2与第二测量信号幅值A 2p,并计算二者的信号幅值差值H 2p,如果(H 2p+H 2q)等于H,则停止采用第二测量电路的轮询检测,并确定出并联传感器组中发生损坏的弹性波传感器为弹性波传感器q和弹性波传感器p;这里,信号幅值阈值A th2可以是一个值或一个范围。
如果(H 2p+H 2q)小于H,那么继续对并联传感器组中的弹性波传感器进行轮询检测,直到检测出的各信号幅值差值之和等于H为止,并确定检测出有信号幅值差值对应的弹性波传感器为发生损坏的传感器。
需要说明的时,激励信号给定意味着在整个测量过程中,激励信号保持不变。
本发明实施例还提供一种用于实现并联传感器测量的压电器件在线检测方法,包括:
控制第一测量电路对并联传感器组进行检测,对第一测量电路的输出进行采样,并根据第一采样结果确定并联传感器组中是否存在损坏的弹性波传感器;
在并联传感器组中存在损坏的弹性波传感器时,控制第二测量电路对并联传感器组中的单个传感器进行检测,对第二测量电路的输出进行采样,并根据第二采样结果确定并联传感器组中发生损坏的弹性波传感器。
在一种示例性实例中,第一测量电路为第一电阻-电容RC电路;第二测 量电路为第二电阻-电容RC电路;
控制第一测量电路对并联传感器组进行检测,包括:将并联传感器组作为第一RC电路中的第一电容,对第一RC电路的输出进行采样,并根据第一采样结果检测并联传感器组中是否存在损坏的弹性波传感器;
控制第二测量电路对并联传感器组中的单个传感器进行检测,包括:将并联传感器组中的传感器作为第二RC电路中的第二电容对并联传感器组中的弹性波传感器进行轮询检测,分别对第二RC电路的输出进行采样,并根据第二采样结果确定损坏的弹性波传感器。
图11为本发明实施例中利用RC电路实现并联传感器测量的实施例的流程示意图,如图11所示,在本实施例中,包括:
步骤1100:将并联传感器组作为第一RC电路中的第一电容,对第一测量电路的输出进行采样,并根据第一采样结果检测并联传感器组中是否存在损坏的弹性波传感器。
在一种示例性实例中,本步骤中的检测并联传感器组中是否存在损坏的弹性波传感器,包括:
当激励信号给定时,如果相对于信号幅值阈值A th1,第一采样结果显示的第一测量信号幅值A 11降低,也就是说,第一测量信号幅值A 11小于信号幅值阈值A th1,那么,检测出并联传感器组中存在损坏的弹性波传感器;记录信号幅值阈值A th1与第一测量信号幅值A 11,并计算二者的信号幅值差值H;这里,信号幅值阈值A th1可以是一个值或一个范围;
其中,当激励信号给定时,如果并联传感器中的弹性波传感器都正常工作,那么,第一采样结果显示的第一测量信号幅值A 11是一定的,即为信号幅值阈值A th1
步骤1101:当并联传感器组中存在损坏的弹性波传感器时,将并联传感器组中的弹性波传感器作为第二RC电路中的第二电容对并联传感器组中的弹性波传感器进行轮询检测,分别对第二测量电路的输出进行采样,并根据第二采样结果确定损坏的弹性波传感器。
在一种示例性实例中,确定损坏的弹性波传感器,包括:
当激励信号给定时,对并联传感器组中的弹性波传感器逐个检测,直到每次检测出的幅值差值的总和等于信号幅值差值H为止,确定检测出有信号幅值差值对应的传感器为发生损坏的弹性波传感器。
在一种示例性实例中,确定检测出有信号幅值差值对应的弹性波传感器为发生损坏的弹性波传感器,具体包括:
当激励信号给定时,对弹性波传感器q进行检测,相对于信号幅值阈值A th2,第二采样结果显示的第二测量信号幅值A 2q降低,也就是说,如果第二采样结果显示的第二测量信号幅值A 2q小于信号幅值阈值A th2,那么,检测出弹性波传感器q为损坏的弹性波传感器,采样控制电路记录信号幅值阈值A th2与第二测量信号幅值A 2q,并计算二者的信号幅值差值H 2q,如果H 2q等于H,则确定出并联传感器组中发生损坏的弹性波传感器为弹性波传感器q;这里,信号幅值阈值A th1可以是一个值或一个范围;
如果H 2q小于H,那么继续对并联传感器组中的弹性波传感器进行轮询检测,对弹性波传感器p进行检测,相对于信号幅值阈值A th2,第二采样结果显示的第二测量信号幅值A 2p降低,也就是说,如果第二采样结果显示的第二测量信号幅值A 2p小于信号幅值阈值A th2,那么,检测出弹性波传感器p为损坏的弹性波传感器,采样控制电路记录信号幅值阈值A th2与第二测量信号幅值A 2p,并计算二者的信号幅值差值H 2p,如果(H 2p+H 2q)等于H,则确定出并联传感器组中发生损坏的弹性波传感器为弹性波传感器q和弹性波传感器p;
如果(H 2p+H 2q)小于H,那么继续对并联传感器组中的弹性波传感器进行轮询检测,直到检测出的各信号幅值差值之和等于H为止,并确定检测出有信号幅值差值对应的弹性波传感器为发生损坏的弹性波传感器;
其中,当激励信号给定时,如果并联传感器中的各弹性波传感器i正常工作,那么,第二采样结果显示的第二测量信号幅值A 2i是一定的,即为信号幅值阈值A th2。其中,i为1~n,n为并联传感器组中的弹性波传感器的个数,p、q为n各弹性波传感器中任一个。
在一种示例性实例中,在初始化时或检测出并联传感器组中不存在损坏的弹性波传感器时,控制并联传感器组接入工作电路。
在一种示例性实例中,如果并联传感器组包括两组或两组以上,则按照步骤1100~步骤1101的方式,对不同并联传感器组进行轮询检测,即逐一将每个并联传感器组接入第一RC电路,以分别对每个并联传感器组进行是否存在弹性波传感器损坏的检测。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项所述的压电器件在线检测方法。
本发明实施例还一种电子设备,包括存储器、压电器件在线检测装置、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现上述任一项所述的压电器件在线检测方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种压电器件在线检测装置,包括:弹性波传感器、自检电路、工作电路、切换开关电路和控制芯片;所述切换开关电路分别与所述弹性波传感器、所述自检电路和所述工作电路连接;其中,
    所述自检电路还与所述控制芯片相连,设置为在与所述弹性波传感器相连时生成自检信号;
    所述工作电路还与所述控制芯片相连,设置为在与所述弹性波传感器相连时构成触碰检测电路并通过所述弹性波传感器检测外部触碰获得检测信号;
    所述控制芯片还与所述切换开关电路相连,设置为输出控制信号至所述切换开关电路使所述弹性波传感器连接所述工作电路或所述自检电路;以及将接收到的所述自检信号与基准值进行比较,根据比较结果获得所述弹性波传感器的自检结果;或根据接收到的所述检测信号获得外部触碰产生的触碰压力。
  2. 根据权利要求1所述的压电器件在线检测装置,所述装置还包括环境检测传感器,所述环境检测传感器设置为检测当前环境数据,将所述环境数据输出至所述控制芯片;
    所述控制芯片还包括补偿模块,所述补偿模块设置为将所述环境数据与预存阈值比较,根据比较结果修正所述触碰压力。
  3. 根据权利要求2所述的压电器件在线检测装置,其中,所述环境检测传感器包括温度传感器;
    所述补偿模块设置为:比较所述温度传感器采集到的温度数据与预设温度阈值,当所述温度数据大于或等于所述预设温度阈值时,通过以下公式获得所述弹性波传感器的容值,C1(t)=a×t 2+b×t+c(t≥t0);当所述温度数据小于所述预设温度阈值时,通过以下公式获得所述弹性波传感器的容值:C2(t)=l×t 2+m×t+n(t<t0);其中,C1(t)和C2(t)为所述弹性波传感器的容值;t为环境温度;a、b、c、l、m、n为常数。
  4. 根据权利要求3所述的压电器件在线检测装置,其中,所述补偿模块设置为:根据所述弹性波传感器的容值、所述触碰压力、补偿系数,通过补 偿函数计算获得修正后的触碰压力;所述补偿函数包括:P=P1+x-y×z,其中,P为所述修正后的触碰压力,P1为所述控制芯片根据所述检测信号获得的触碰压力,z为所述弹性波传感器的容值,x和y为预设补偿系数,为常数。
  5. 根据权利要求1所述的压电器件在线检测装置,所述控制芯片还包括校准模块,所述校准模块设置为根据所述自检结果获得校准系数,根据所述校准系数修正所述触碰压力;
    当所述自检信号小于基准值时,通过以下公式获得所述弹性波传感器的容值,f=α×c+β,其中,f为所述自检信号的频率;c为所述弹性波传感器的容值;α和β为常数;
    根据所述弹性波传感器的容值、所述触碰压力、校准系数,通过校准函数计算获得修正后的触碰压力;所述校准函数包括:P=P1+x-y×c,其中,P为所述修正后的触碰压力,P1为所述控制芯片根据所述检测信号获得的触碰压力,c为所述弹性波传感器的容值,x和y为预设校准系数,为常数。
  6. 根据权利要求1所述的压电器件在线检测装置,其中,所述弹性波传感器为并联传感器组,包括n个并联的弹性波传感器;所述自检电路包括:第一测量电路、第二测量电路;所述控制芯片包括:采样控制电路;其中,
    第一测量电路,用于在采样控制电路的控制下,检测并联传感器组;
    第二测量电路,用于在采样控制电路的控制下,轮询检测并联传感器组中的任一个弹性波传感器;
    采样控制电路,用于控制第一测量电路对并联传感器组进行检测,对第一测量电路的输出进行采样,并根据第一采样结果确定并联传感器组中是否存在损坏的弹性波传感器;在并联传感器组中存在损坏的弹性波传感器时,控制第二测量电路对并联传感器组中的单个传感器进行检测,对第二测量电路的输出进行采样,并根据第二采样结果确定并联传感器组中发生损坏的弹性波传感器;在初始化时或所述并联传感器组中不存在损坏的弹性波传感器时,控制所述并联传感器组接入所述工作电路。
  7. 根据权利要求6所述的压电器件在线检测装置,其中,
    所述第一测量电路为电阻-电容RC电路;包括:第一电阻和作为第一电 容的所述并联传感器组;
    所述第二测量电路为RC电路;包括:第二电阻、作为第二电容的所述并联传感器组中的任一个传感器,以及切换开关;切换开关,设置为在所述采样控制电路的控制下将所述并联传感器组中的一个传感器作为第二电容。
  8. 根据权利要求6所述的压电器件在线检测装置,其中,如果所述并联传感器组包括两组或两组以上,所述采样控制电路采用切换电路逐一将每个并联传感器组接入所述第一测量电路,以分别对每个所述并联传感器组进行是否存在传感器损坏的检测。
  9. 一种压电器件在线检测装置,包括:自检电路、切换开关电路和控制芯片;其中,
    所述切换开关电路与外接电子设备的工作电路相连,设置为根据控制信号将所述工作电路中的预定弹性波传感器与所述自检电路相连;或,断开预定弹性波传感器与所述自检电路的连接;
    所述自检电路,设置为为相连的弹性波传感器生成自检信号;
    所述控制芯片,设置为生成控制信号至所述切换开关电路使所述弹性波传感器与所述自检电路连接,或断开与所述自检电路的连接;以及,将接收到的所述自检信号与基准值进行比较,根据比较结果获得所述弹性波传感器的自检结果。
  10. 根据权利要求9所述的压电器件在线检测装置,所述控制芯片还包括补偿模块,所述补偿模块设置为将所述环境数据与预存阈值比较,根据比较结果获得所述弹性波传感器的容值;
    当所述环境数据包括温度数据,且所述温度数据大于预设温度阈值时,通过以下公式获得所述弹性波传感器的容值:
    C1(t)=a×t 2+b×t+c(t≥t0);
    当所述温度数据小于所述预设温度阈值时,通过以下公式获得弹性波传感器的容值:
    C2(t)=l×t 2+m×t+n(t<t0);
    在上式中,C1(t)和C2(t)为弹性波传感器的容值;t为环境温度;a、b、c、 l、m、n为常数。
  11. 根据权利要求9所述的压电器件在线检测装置,所述控制芯片还包含校准模块,所述校准模块设置为根据所述自检结果获得所述弹性波传感器的容值;其中,
    当所述自检信号小于基准值时,通过以下公式获得所述弹性波传感器的容值,f=α×c+β;其中,f为所述自检信号的频率;c为所述弹性波传感器的容值;α和β为常数。
  12. 一种压电器件在线检测方法,包括:
    根据预设指令将弹性波传感器与自检电路连通;
    获取所述自检电路为所述弹性波传感器生成的自检信号,比较所述自检信号与预存基准值,根据比较结果获得所述弹性波传感器的自检结果;
    根据预设指令将所述弹性波传感器与工作电路连通,构成触碰检测电路;
    通过所述弹性波传感器检测外部触碰获得检测信号,根据所述检测信号计算获得外部触碰时产生的触碰压力。
  13. 根据权利要求12所述的压电器件在线检测方法,其中,
    所述获取所述自检电路为所述弹性波传感器生成自检信号,包括:获取所述自检电路根据所述弹性波传感器的容值生成的自检信号;
    获得所述自检结果后,还根据所述自检结果获得校准系数;
    所述根据所述检测信号计算获得外部触碰时产生的触碰压力,包括:
    根据所述校准系数和所述检测信号计算获得所述外部触碰时产生的触碰压力。
  14. 根据权利要求12所述的压电器件在线检测方法,所述方法还包括:检测当前环境数据,比较所述环境数据与预存阈值,根据比较结果修正所述触碰压力。
  15. 根据权利要求14所述的压电器件在线检测方法,其特征在于,所述根据比较结果修正所述触碰压力包括:
    所述环境数据包含温度数据,将所述温度数据与预设温度阈值比较;当 所述温度数据大于或等于所述预设温度阈值时,通过以下公式获得弹性波传感器的容值,C1(t)=a×t 2+b×t+c(t≥t0);当所述温度数据小于所述预设温度阈值时,通过以下公式获得弹性波传感器的容值:C2(t)=l×t 2+m×t+n(t<t0);其中,C1(t)和C2(t)为弹性波传感器的容值;t为环境温度;a、b、c、l、m、n为常数;
    根据所述弹性波传感器的容值、触碰压力、补偿系数,通过以下补偿函数计算获得修正后的触碰压力;所述补偿函数包括:P=P1+x-y×z;其中,P为修正后的触碰压力;P1为控制芯片根据检测信号获得的触碰压力;z为弹性波传感器容值;x和y为预设补偿系数。
  16. 根据权利要求12所述的压电器件在线检测方法,其特征在于,所述根据所述校准系数和对触碰进行检测的检测信号计算获得外部触碰时产生的触碰压力,包括:
    当所述自检信号小于基准值时,通过以下公式获得所述自检结果对应的弹性波传感器的容值,f=α×c+β,其中,f为自检信号的频率;c为弹性波传感器的容值;α和β为常数;
    根据所述弹性波传感器的容值、触碰压力、校准系数通过以下校准函数计算获得修正后的触碰压力;所述校准函数包括:P=P1+x-y×c,其中,P为修正后的触碰压力;P1为控制芯片根据所述检测信号获得的触碰压力;c为弹性波传感器的容值;x和y为预设校准系数,常数。
  17. 根据权利要求12所述的压电器件在线检测方法,其中,所述弹性波传感器为并联传感器组,包括n个并联的弹性波传感器;所述自检电路包括:第一测量电路、第二测量电路;
    所述获取所述自检电路为所述弹性波传感器生成的自检信号,比较所述自检信号与基准值,根据比较结果获得所述弹性波传感器的自检结果,包括:
    控制第一测量电路对并联传感器组进行检测,对第一测量电路的输出进行采样,并根据第一采样结果确定并联传感器组中是否存在损坏的传感器;
    在并联传感器组中存在损坏的传感器时,控制第二测量电路对并联传感器组中的单个传感器进行检测,对第二测量电路的输出进行采样,并根据第 二采样结果确定并联传感器组中发生损坏的传感器。
  18. 根据权利要求17所述的压电器件在线检测方法,其中,所述第一测量电路为第一电阻-电容RC电路;所述第二测量电路为第二电阻-电容RC电路;
    所述控制第一测量电路对并联传感器组进行检测,包括:将所述并联传感器组作为第一RC电路中的第一电容,对第一RC电路的输出进行采样,并根据第一采样结果检测并联传感器组中是否存在损坏的传感器;
    所述控制第二测量电路对并联传感器组中的单个传感器进行检测,包括:将所述并联传感器组中的传感器作为第二RC电路中的第二电容对所述并联传感器组中的传感器进行轮询检测,分别对第二RC电路的输出进行采样,并根据第二采样结果确定损坏的传感器。
  19. 根据权利要求18所述的压电器件在线检测方法,其中,
    所述检测并联传感器组中是否存在损坏的传感器,包括:
    当激励信号给定时,如果所述第一采样结果显示的第一测量信号幅值A 11小于信号幅值阈值A th1,那么,检测出所述并联传感器组中存在损坏的传感器;记录信号幅值阈值A th1与第一测量信号幅值A 11,并计算二者的信号幅值差值H;
    其中,当激励信号给定时,如果所述并联传感器中的传感器都正常工作,所述第一采样结果显示的第一测量信号幅值A 11为信号幅值阈值A th1
    所述根据第二采样结果确定损坏的传感器包括:对所述并联传感器组中的传感器逐个检测,直到每次检测出的幅值差值的总和等于所述信号幅值差值H为止,确定检测出有信号幅值差值对应的传感器为发生损坏的传感器。
  20. 根据权利要求18所述的压电器件在线检测方法,其中,所述确定检测出有信号幅值差值对应的传感器为发生损坏的传感器,包括:
    对传感器q进行检测,如果所述第二采样结果显示的第二测量信号幅值A 2q小于信号幅值阈值A th2,检测出传感器q为损坏的传感器,记录信号幅值阈值A th2与第二测量信号幅值A 2q,并计算二者的信号幅值差值H 2q,如果H 2q等于H,则确定出所述并联传感器组中发生损坏的传感器为传感器q,结 束;否则,
    如果H 2q小于H,对传感器p进行检测,所述第二采样结果显示的第二测量信号幅值A 2p小于信号幅值阈值A th2,检测出传感器p为损坏的传感器,记录信号幅值阈值A th2与第二测量信号幅值A 2p,并计算二者的信号幅值差值H 2p,如果(H 2p+H 2q)等于H,则确定出所述并联传感器组中发生损坏的传感器为传感器q和传感器p,结束;否则;
    如果(H 2p+H 2q)小于H,那么继续对并联传感器组中的传感器进行轮询检测,直到检测出的各信号幅值差值之和等于H为止,并确定检测出有信号幅值差值对应的传感器为发生损坏的传感器;
    其中,当激励信号给定时,如果并联传感器中的各传感器i正常工作,那么,第二采样结果显示的第二测量信号幅值A 2i为信号幅值阈值A th2;其中,i为1~n,n为并联传感器组中的传感器的个数,p、q为n各传感器中任一个传感器。
PCT/CN2020/106535 2019-08-20 2020-08-03 压电器件在线检测装置及方法 WO2021031831A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/631,617 US11959797B2 (en) 2019-08-20 2020-08-03 Online detection device and method for piezoelectric device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910770203.1 2019-08-20
CN201910770203.1A CN112415292B (zh) 2019-08-20 2019-08-20 压电器件在线检测装置及方法
CN201911012641.8A CN112697187B (zh) 2019-10-23 2019-10-23 一种实现并联传感器测量的装置和方法
CN201911012641.8 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021031831A1 true WO2021031831A1 (zh) 2021-02-25

Family

ID=74660177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106535 WO2021031831A1 (zh) 2019-08-20 2020-08-03 压电器件在线检测装置及方法

Country Status (2)

Country Link
US (1) US11959797B2 (zh)
WO (1) WO2021031831A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950470B (zh) * 2022-12-20 2024-04-19 陕西宝成航空仪表有限责任公司 一种传感器功能自检电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040070495A1 (en) * 2002-10-15 2004-04-15 Advanced Custom Sensors, Inc. Sensor signal conditioner
CN201247262Y (zh) * 2008-07-14 2009-05-27 深圳华为通信技术有限公司 一种测试夹具
CN207318002U (zh) * 2017-10-26 2018-05-04 江苏德尔科测控技术有限公司 一种压力传感器的自动化标定与测试设备
CN109444607A (zh) * 2018-12-17 2019-03-08 江南机电设计研究所 一种火工品测试设备及其测试方法
CN109470407A (zh) * 2018-11-15 2019-03-15 北京华航无线电测量研究所 分布式多节点液体温度、压力传感器测量数据的校准方法
CN109580088A (zh) * 2018-12-21 2019-04-05 中国科学院电子学研究所 谐振器特性的批量化自动测试系统及测试方法
CN110132458A (zh) * 2018-02-09 2019-08-16 北京钛方科技有限责任公司 一种动态或准动态力度检测装置及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526894A (ja) 1991-07-19 1993-02-02 Mitsubishi Petrochem Co Ltd 自己診断回路付き加速度センサ
US7042228B2 (en) * 2001-04-27 2006-05-09 Oceana Sensor Technologies, Inc. Transducer in-situ testing apparatus and method
US6531884B1 (en) 2001-08-27 2003-03-11 Rosemount Inc. Diagnostics for piezoelectric sensor
US7032430B1 (en) 2005-06-07 2006-04-25 Texas Instruments Incorporated Systems and methods for self test for a slowly varying sensor
US20070231304A1 (en) 2006-01-30 2007-10-04 Introgen Therapeutics, Inc. Prognostic factors for anti-hyperproliferative disease gene therapy
US8654487B2 (en) 2011-03-11 2014-02-18 Siemens Industry, Inc. Methods, systems, and apparatus and for detecting parallel electrical arc faults
KR20140002893A (ko) 2012-06-28 2014-01-09 현대제철 주식회사 나이프 정렬장치 및 그 나이프 정렬방법
US9238580B2 (en) * 2013-03-11 2016-01-19 Analog Devices Global Spread-spectrum MEMS self-test system and method
CN103592554B (zh) 2013-12-03 2016-01-27 武汉大学 一种35kV高压并联电容器在线监测系统及方法
CN203688055U (zh) 2014-01-21 2014-07-02 承德市五岳电子技术有限公司 一种动态轨道衡称重仪表
CN105203146A (zh) 2015-09-23 2015-12-30 浪潮集团有限公司 传感器互连装置、传感器检测系统和方法
WO2019012147A1 (en) 2017-07-13 2019-01-17 Institut Gustave-Roussy RADIOMY-BASED IMAGING TOOL FOR MONITORING INFILTRATION AND TUMOR LYMPHOCYTE AND RESULTS IN CANCER PATIENTS TREATED WITH ANTI-PD-1 / PD-L1 AGENTS
CN108414959B (zh) 2018-04-04 2024-02-23 京东方科技集团股份有限公司 压电传感器检测电路、阵列压电传感器电路及控制方法
CN109459651B (zh) 2018-11-12 2020-09-04 中车永济电机有限公司 机车变流器接地故障检测电路及方法
CN110045150A (zh) 2019-05-13 2019-07-23 中国工程物理研究院电子工程研究所 一种在线自检测压电加速度传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040070495A1 (en) * 2002-10-15 2004-04-15 Advanced Custom Sensors, Inc. Sensor signal conditioner
CN201247262Y (zh) * 2008-07-14 2009-05-27 深圳华为通信技术有限公司 一种测试夹具
CN207318002U (zh) * 2017-10-26 2018-05-04 江苏德尔科测控技术有限公司 一种压力传感器的自动化标定与测试设备
CN110132458A (zh) * 2018-02-09 2019-08-16 北京钛方科技有限责任公司 一种动态或准动态力度检测装置及方法
CN109470407A (zh) * 2018-11-15 2019-03-15 北京华航无线电测量研究所 分布式多节点液体温度、压力传感器测量数据的校准方法
CN109444607A (zh) * 2018-12-17 2019-03-08 江南机电设计研究所 一种火工品测试设备及其测试方法
CN109580088A (zh) * 2018-12-21 2019-04-05 中国科学院电子学研究所 谐振器特性的批量化自动测试系统及测试方法

Also Published As

Publication number Publication date
US20220283023A1 (en) 2022-09-08
US11959797B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
US20220178894A1 (en) Formaldehyde concentration measurement method and apparatus, and air purifier
CN102271177B (zh) 一种手机接近传感器的校准方法及系统
CN102866322B (zh) 一种触摸装置检测方法
US9785281B2 (en) Acoustic touch sensitive testing
CN107621279B (zh) 数据处理方法、传感器数据校准方法及装置
CN104898013A (zh) 一种利用声学测量诊断电路故障的方法及系统
WO2021031831A1 (zh) 压电器件在线检测装置及方法
CN105630158A (zh) 传感器数据处理方法、装置及终端设备
CN101403635A (zh) 一种次声波检测装置
JPS62191774A (ja) インピ−ダンスの測定方法
US20210003524A1 (en) Method of operating a gas sensing device, and corresponding gas sensing device
CN110991599B (zh) 一种纸张计数显示装置
CN110554792B (zh) 传感器校准调节装置及方法
US20150212621A1 (en) Touch panel controlling method and system
US10915775B2 (en) Noise detection circuit, noise detection method, and print recognition apparatus
CN112415292B (zh) 压电器件在线检测装置及方法
US8692142B2 (en) Circuit for determining positions of contacts on capacitive position detecting panel, touch panel module and method for detecting contacts on capacitive position detecting panel
CN104635190A (zh) 一种计量芯片抗干扰检测及纠错方法和装置
TW201316206A (zh) 觸控點感測方法
CN102185956B (zh) 一种便携式电子装置及其自动控制方法
TW201303679A (zh) 觸控感測裝置及其方法
CN112697187B (zh) 一种实现并联传感器测量的装置和方法
JP2012173200A (ja) 異常状態検出方法および電子機器
TWI596472B (zh) 記錄器系統及其資料記錄方法
KR20160007134A (ko) 가스 감지 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853699

Country of ref document: EP

Kind code of ref document: A1