WO2021031662A1 - 一种反向散射通信方法及相关设备 - Google Patents

一种反向散射通信方法及相关设备 Download PDF

Info

Publication number
WO2021031662A1
WO2021031662A1 PCT/CN2020/095227 CN2020095227W WO2021031662A1 WO 2021031662 A1 WO2021031662 A1 WO 2021031662A1 CN 2020095227 W CN2020095227 W CN 2020095227W WO 2021031662 A1 WO2021031662 A1 WO 2021031662A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
tag
tag device
power control
capability
Prior art date
Application number
PCT/CN2020/095227
Other languages
English (en)
French (fr)
Inventor
邵华
黄煌
陈磊
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021031662A1 publication Critical patent/WO2021031662A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Definitions

  • This application relates to the field of communication technology, and in particular to a backscatter communication method and related equipment.
  • the backscatter communication system is a system that uses environmental energy to communicate.
  • the backscatter communication system includes: a sending device (helper) sends electromagnetic waves of a certain frequency to provide energy to the backscatter device.
  • the reverse communication device can also be called an electronic tag (Tag) device.
  • the Tag device is charged by receiving the energy signal sent by the helper device, and then modulates its own information to be transmitted onto the carrier signal for transmission.
  • the receiver can also be called a reader, which receives the data sent by the Tag device and demodulates it to obtain information.
  • the transmit power of the excitation signal of the helper device is too low, resulting in low received power of the Tag device or insufficient signal-to-noise ratio of the Receiver, the signal demodulation performance will be affected. If the transmit power of the excitation signal of the helper device is too high, it may lead to waste of power consumption.
  • the embodiments of the present application provide a backscatter communication method and related equipment, which can improve signal demodulation performance and save power consumption.
  • an embodiment of the present application provides a backscatter communication method, including: a first device obtains a reference transmit power and a power offset value, the power offset value is determined according to the capability of the electronic tag device; according to the reference The transmit power and power offset value determine the transmit power of the excitation signal sent to the Tag device; according to the transmit power of the excitation signal, the excitation signal is sent to the Tag device. Determine the transmit power of the excitation signal through the ability of the Tag device to improve the accuracy of the transmit power of the excitation signal, thereby ensuring the received power of the Tag device and the received signal-to-noise ratio of the second device, improving the signal demodulation performance and saving power consumption .
  • the reference transmit power is determined according to at least one of the first power, the first ratio, and the first difference, and the first power is the time-frequency between the first device and the second device.
  • the transmission power on the resource the first ratio is the ratio of the bandwidth of the communication channel between the first device and the tag device to the bandwidth of the time-frequency resource between the first device and the second device, and the first difference is the ratio of the tag device The difference between the target received power and the target received power of the second device.
  • At least one of the bandwidth of the communication channel, the bandwidth of the time-frequency resource, the target received power of the Tag device, or the target received power of the second device is configured by the second device.
  • the first device is capable of receiving the Tag device sent by the second device. So that the first device determines the transmit power of the excitation signal according to the capabilities of the Tag device.
  • the first device determines the power offset value according to the corresponding relationship between the capability of the Tag device and the power offset value.
  • the power offset value is determined according to the capability of the first device. Determine the power offset value through the ability of the first device to improve the accuracy of the transmission power of the excitation signal, thereby ensuring the received power of the Tag device and the received signal-to-noise ratio of the second device, improving the signal demodulation performance and saving power consumption .
  • the power offset value may also be pre-configured by the second device.
  • the power offset value may also be stipulated by the agreement.
  • the first device may first determine the time-frequency resource for sending the excitation signal, and send a notification message to the second device, where the notification message is used to indicate the time-frequency resource of the excitation signal.
  • the first device street receives the resource indication sent by the second device, and determines the time-frequency resource for sending the excitation signal according to the resource indication. Then the first device sends an excitation signal to the Tag device based on the maximum transmit power of the first device on the time-frequency resource.
  • an embodiment of the present application provides a backscatter communication method, including: the ability of the second device to receive the tag device sent by the tag device; the ability of the second device to send the tag device to the first device, the ability of the tag device Used for the first device to determine the power offset value, and the power offset value is used for the first device to determine the transmit power of the excitation signal sent to the Tag device.
  • the second device sends the configured power offset value to the first device.
  • the second device is configured with at least one of the following information: the bandwidth of the communication channel between the first device and the tag device, the bandwidth of the time-frequency resource between the first device and the second device, and the tag The target received power of the device or the target received power of the second device.
  • an embodiment of the present application provides a backscatter communication method, including: the first device obtains the distance between the first device and the second device, and the distance can be obtained by measuring the timing advance or the received power of the reference signal ; According to the mapping relationship, determine the transmit power of the excitation signal sent to the Tag device, and send the excitation signal to the Tag device according to the transmit power of the excitation signal.
  • the transmission power of the excitation signal is determined through the mapping relationship, which saves signaling overhead and improves the accuracy of the transmission power of the excitation signal, thereby ensuring the received power of the Tag device and the received signal-to-noise ratio of the second device, and the signal demodulation performance.
  • the first device determines the transmit power of the excitation signal according to the mapping relationship between the received power of the reference signal and the transmit power.
  • the first device determines the transmission power of the excitation signal according to the mapping relationship between the timing advance and the transmission power.
  • the first device determines the transmit power of the excitation signal according to the mapping relationship between the received power of the reference signal and the transmit power, and the mapping relationship between the timing advance and the transmit power.
  • the transmit power of the excitation signal is determined by the second device according to at least one of the mapping relationship between the timing advance and the transmit power, and the mapping relationship between the received power of the reference signal and the transmit power. After receiving the instruction information of the second device, the device uses the transmit power to send an excitation signal to the Tag device.
  • an embodiment of the present application provides a backscatter communication method, including: a first device obtains the first transmission power of the excitation signal sent to the Tag device and the second transmission power of the Uu air interface, and determines the first transmission Whether the sum of the power and the second transmission power is greater than the maximum transmission power of the first device. If it is greater than, according to the priority, the transmission power on the corresponding channel resource is reduced to ensure the normal operation of the first device.
  • the first device may report the power headroom reports of multiple excitation resources to the second device, and report the power thresholds of multiple excitation resources.
  • the transmit power of the Uu air interface is preferentially decreased if the priority of the uplink signal of the Uu air interface is less than the priority of the excitation signal.
  • the transmit power of the excitation signal is preferentially decreased if the priority of the uplink signal of the Uu air interface is greater than the priority of the excitation signal.
  • an embodiment of the present application provides a backscatter communication method, including: a first device obtains the power control capability of a tag device; sending power control parameters to the tag device, and the power control parameters are used for the tag device to adjust the reflected power.
  • a backscatter communication method including: a first device obtains the power control capability of a tag device; sending power control parameters to the tag device, and the power control parameters are used for the tag device to adjust the reflected power.
  • the first device receives the power control capability sent by the second device.
  • the power control parameter includes the power reflection factor or the adjustment step size of the power reflection factor.
  • the power control parameter includes a power reflection factor threshold.
  • an embodiment of the present application provides a backscatter communication method, including: a Tag device receives a power control parameter sent by a first device; the Tag device adjusts the reflected power according to the power control parameter. By adjusting the reflected power, the reflected power from multiple Tag devices to the second device is controllable, thereby increasing the success rate of signal demodulation and reducing mutual interference between Tag devices.
  • the Tag device before the Tag device receives the power control parameter sent by the first device, the Tag device transmits the power control capability to the second device.
  • the power control parameters include the power reflection factor; the Tag device adjusts the reflected power according to the power reflection factor.
  • the power control parameters include the adjustment step size of the power reflection factor, and the Tag device adjusts the reflected power according to the adjustment step size of the power reflection factor.
  • the power control parameters include the power reflection factor threshold. When the power reflection capability of the tag device is greater than or equal to the power reflection factor threshold, the tag device adjusts the reflection power; or when the power reflection capability of the tag device is less than or When equal to the power reflection factor threshold, the Tag device adjusts the reflection power.
  • an embodiment of the present application provides a backscatter communication method, including: a second device receives the power control capability of the tag device sent by the tag device; the second device sends the power control capability to the first device, and the power control capability Used to instruct the first device to determine the power control parameters, and the power control parameters are used for the Tag device to adjust the reflected power.
  • a backscatter communication method including: a second device receives the power control capability of the tag device sent by the tag device; the second device sends the power control capability to the first device, and the power control capability Used to instruct the first device to determine the power control parameters, and the power control parameters are used for the Tag device to adjust the reflected power.
  • an embodiment of the present application provides a backscatter communication method, including: a first device sends an excitation signal on a first frequency point and a second frequency point respectively, and the first frequency point and the second frequency point satisfy: Among them, f 1 is the first frequency point, f 2 is the second frequency point, and both m and n are integers greater than zero.
  • the second device instructs the first device to switch to the next frequency point to send the excitation signal, the current frequency point and the next frequency point Satisfy:
  • the first device switches the frequency point and repeatedly sends the excitation signal, and the next frequency point and the current frequency point satisfy:
  • the first device transmits the excitation signal at the first frequency and the second frequency at the same time, and the first frequency and the second frequency satisfy:
  • the first device hops and sends the excitation signal according to a fixed frequency pattern, and the first frequency and the second frequency in the frequency pattern satisfy:
  • an embodiment of the present application provides a backscatter communication method, including: a first device determines a power control mode supported by the first device. Then the priority of the power control mode is obtained, and the power control mode is selected according to the priority of the power control mode.
  • a backscatter communication method including: a first device determines a power control mode supported by the first device. Then the priority of the power control mode is obtained, and the power control mode is selected according to the priority of the power control mode.
  • the power control mode includes the power control mode of the Tag device, the frequency hopping transmission mode of the first device, and the power adjustment mode of the first device.
  • the power control method when the priority of one of the multiple power control methods is greater than the priority of other power control methods, the power control method can be selected for execution, or the priority can also be selected The power control mode is executed, and then another power control mode is selected for execution.
  • an embodiment of the present application provides a first backscatter communication device, which is configured to implement the methods and functions performed by the first device in each of the above aspects, and is implemented by hardware/software Implementation, its hardware/software includes modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a second backscatter communication device, which is configured to implement the methods and functions performed by the second device in the above aspects, and is implemented by hardware/ Software implementation, and its hardware/software includes modules corresponding to the above-mentioned functions.
  • the embodiments of the present application provide a third backscatter communication device, which is configured to implement the methods and functions performed by the Tag device in the above aspects, and is implemented by hardware/software Implementation, its hardware/software includes modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a first device, including: a processor and a memory, wherein when the processor executes a program stored in the memory, the first device is caused to execute any of the above aspects method.
  • the first device provided in this application may include a module corresponding to the behavior of the first device in the above method design.
  • the module can be software and/or hardware.
  • an embodiment of the present application provides a second device, including: a processor and a memory, wherein, when the processor executes a program stored in the memory, the second device is used to execute the method of any of the above aspects .
  • the second device provided in this application may include a module corresponding to the behavior of the second device in the above method design.
  • the module can be software and/or hardware.
  • an embodiment of the present application provides a Tag device, including: a processor and a memory, wherein when the processor executes a program stored in the memory, the tag device is caused to execute the method of any one of the foregoing aspects.
  • the Tag device provided in this application may include modules corresponding to the behavior of the Tag device in the above method design.
  • the module can be software and/or hardware.
  • this application provides a computer-readable storage medium with instructions stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the methods of the above aspects.
  • this application provides a computer program product containing instructions that, when run on a computer, causes the computer to execute the methods of the above aspects.
  • an embodiment of the present application provides a chip, including a processor, configured to call and execute instructions stored in the memory from a memory, so that a communication device installed with the chip executes any of the above aspects method.
  • the embodiments of the present application provide another chip.
  • the chip may be a chip in a first device, a second device, or a tag device.
  • the chip includes: an input interface, an output interface, and a processing circuit.
  • the interface, the output interface, and the circuit are connected through an internal connection path, and the processing circuit is used to execute the method of any one of the above aspects.
  • another chip including: an input interface, an output interface, a processor, and optionally, a memory.
  • the input interface, the output interface, the processor, and the memory pass through internal
  • the connection path is connected, the processor is used to execute the code in the memory, and when the code is executed, the processor is used to execute the method in any one of the foregoing aspects.
  • a device is provided to implement the method in any one of the foregoing aspects.
  • FIG. 1 is a schematic diagram of the architecture of a backscatter communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the architecture of another backscatter communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another backscatter communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of yet another backscatter communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of PSSCH transmission power determination provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a frequency hopping bandwidth provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a single-frequency point excitation fence effect provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a backscatter communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another backscatter communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a mapping relationship provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another mapping relationship provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of yet another backscatter communication method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of yet another backscatter communication method provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a frequency point spacing provided by an embodiment of the present application.
  • 15 is a schematic flowchart of another backscatter communication method provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a first backscatter communication device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a second backscatter communication device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a third backscatter communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a first device proposed in an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a second device proposed in an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a Tag device proposed in an embodiment of the present application.
  • FIG 1 is a schematic structural diagram of a backscatter communication system provided by an embodiment of the present application.
  • the backscatter communication system includes: a sending device (helper) sends electromagnetic waves of a certain frequency to the reverse communication device ( Backscatter device) provides energy.
  • the reverse communication device can also be called an electronic tag (Tag) device.
  • the Tag device is charged by receiving the energy signal sent by the helper device, and then modulates its own information to be transmitted onto the carrier signal for transmission.
  • the receiver can be a reading device, such as a reader.
  • the receiver device can receive the reflected signal sent by the Tag device and demodulate it to obtain information.
  • the helper device and the receiver device can also be the same entity, which not only sends excitation signals, but also has a signal connection function.
  • Tag devices often have limited energy, and are usually passive or semi-active devices.
  • the information to be transmitted is modulated onto the carrier signal for transmission.
  • RFID radio frequency identification
  • the reader sends an excitation signal to the Tag device, and then after the Tag device receives the excitation signal, it modulates its own information onto the carrier wave , Then send the reflected signal to the reader to complete the signal transmission.
  • the Tag device can reflect or receive the carrier by controlling its own antenna impedance. When the impedance matches, the Tag device will absorb the received signal to achieve the maximum energy transmission efficiency; when the impedance does not match, the Tag device will reflect the received signal.
  • the Tag device controls the impedance matching/mismatch status under the control of the microcontroller to complete the information transmission.
  • the receiver device completes information demodulation by receiving the signal sent by the Tag device.
  • the modulation mode from the tag device to the receiver device there are different modulation formats according to different tag capabilities.
  • the supported modulation formats include amplitude shift keying (ASK), frequency shift keying (FSK), phase shift keying (PSK), etc.
  • ASK amplitude shift keying
  • FSK frequency shift keying
  • PSK phase shift keying
  • the helper device may be a base station (BS), and the receiver device may be a terminal device (user equipment, UE).
  • the helper device is a terminal device, and the receiver device is a base station.
  • the helper device can send an excitation signal to the Tag on the designated time-frequency resource under the coordination and control of the reading device to complete the communication process.
  • Tag devices can be used as low-cost tags and installed in large numbers on objects. Base stations and terminal devices can charge and obtain information on Tag devices when electronic tag information is needed.
  • FIG. 2 is a schematic structural diagram of another backscatter communication system provided by an embodiment of the present application.
  • the terminal equipment (UE) acts as the excitation source
  • the base station equipment (BS) acts as the reading device.
  • the UE can send an excitation signal to the Tag device at a specific time-frequency resource location.
  • the time-frequency resource and the type of excitation signal can be pre-configured by the base station equipment on the Uu air interface.
  • the tag device After the tag device receives the excitation signal sent by the UE, it collects energy through the antenna of the tag device, and modulates the information to be transmitted, such as the ID number, on the carrier wave sent by the UE for reflection.
  • the BS can receive the reflected signal sent by the Tag device at a predefined location, and demodulate the reflected signal to obtain information. In this process, the BS may also receive the excitation signal sent by the UE.
  • FIG. 3 is a schematic structural diagram of another backscatter communication system provided by an embodiment of the present application.
  • the base station equipment (BS) serves as the excitation source
  • the terminal equipment (UE) serves as the reading device.
  • the BS can send an excitation signal to the Tag device at a specific time-frequency location, where the time-frequency location can be notified to the UE in advance by the BS through the Uu air interface.
  • the Tag device uses the excitation energy of the BS for charging, and at the same time sends the self-generated information to be transmitted to the UE through backscattering.
  • the UE receives the reflected signal from the Tag device at the time-frequency position notified in advance, and demodulates the reflected signal to obtain information.
  • FIG. 4 is a schematic structural diagram of yet another backscatter communication system provided by an embodiment of the present application.
  • the base station equipment (BS) serves as an excitation source
  • the base station equipment (BS) serves as a reading device.
  • the terminal equipment (UE) serves as the excitation source and the terminal equipment (UE) serves as the reading device.
  • the communication method is similar to the above two methods, and will not be repeated here.
  • LTE-vehicle to everything V2X
  • PSSCH physical sidelink channel
  • P PSCCH min ⁇ P cmax, PSSCH , 10log(M PSSCH ) + PO_PSSCH, 1 + ⁇ PSSCH, 1 ⁇ PL ⁇ .
  • PSSCH represents the transmit power of the V2X terminal
  • M PSSCH represents the bandwidth of the sidelink resource
  • PO_PSSCH 1 represents the target received power of the PSSCH, which is configured by the base station
  • PL is the parameter of the link loss between the V2X terminal and the base station
  • ⁇ PSSCH, 1 is the coefficient factor configured by the base station.
  • Figure 5 is a schematic diagram of PSSCH transmission power determination.
  • PSSCH represents the link between UE1 and UE2, and the transmit power of UE1 is determined by the link loss PL between UE1 and BS, the bandwidth M PSSCH configured between UE1 and UE2, and the target received power P O_PSSCH,1 of UE2.
  • the transmit power Uu air interface reference transmit power + power offset value.
  • the reference transmit power of the Uu air interface is ⁇ PSSCH,1 ⁇ PL
  • the power offset value is 10log(M PSSCH )+ PO_PSSCH,1 .
  • the Uu air interface is the air interface between the V2X terminal and the base station.
  • the above power control scheme has the following problems.
  • the link loss between UE1 and the base station is not necessarily equal to the path loss between UE1 and UE2. Therefore, the transmission power of UE1 calculated based on the link loss between UE1 and the base station is not accurate.
  • the excitation signal is usually a narrowband signal
  • a frequency hopping transmission scheme is often used to obtain frequency selective gain.
  • Tag equipment is usually passive or semi-active. Whether its information can be sent successfully will be directly affected by the power of the excitation signal. Because the receiver device can not only receive the reflected signal sent by the Tag device, but also the excitation signal sent by the helper device. For the reflected signal of the Tag device, the excitation signal of the helper device is a strong interference signal.
  • FIG. 6 is a schematic diagram of a frequency hopping bandwidth provided by an embodiment of the present application.
  • the frequency hopping bandwidth of Msg3PUSCH in the NR system is related to the bandwidth part (BWP) and is configured by the base station.
  • BWP bandwidth part
  • the BWP is less than 50 physical resource block (PRB)
  • PRB physical resource block
  • the base station is configured Msg3PUSCH frequency hopping, and N UL,hop is configured as 0
  • the frequency interval between the frequency of the first hop and the frequency of the second hop is If the base station is configured with Msg3PUSCH frequency hopping, and N UL,hop is configured as 1, then the frequency interval between the frequency of the first hop and the frequency of the second hop is Other configurations are similar, so I won't repeat them here.
  • FIG. 7 is a schematic diagram of a single-frequency point excitation fence effect provided by an embodiment of the present application. Since the receiver device can receive two signals from the helper device and the tag device, when the two signals arrive at the receiver device, if the two signals are exactly opposite in phase, the excitation signal sent by the helper device is much stronger than the reflected signal from the tag device. The reflected signal of the Tag device may be completely cancelled out, making the reflected signal of the Tag device unable to be demodulated.
  • a fence effect will be formed in space, making the receiver device unable to receive the reflected signal from the Tag device in some locations.
  • the two signals from the helper device and the tag device to the receiver device at different locations are respectively 1 and 1', 2 and 2', 3 and 3'indicate that the phase difference to the receiver device is pi, 0, and -pi respectively. Since the phases at the positions of A and C are exactly opposite, the weaker signal is completely cancelled out, which makes it impossible to resolve the reflected signal. Tune to get information.
  • FIG. 8 is a schematic flowchart of a backscatter communication method provided by an embodiment of the present application.
  • the first device may be a helper device
  • the second device may be a receiver device
  • the first device and the second device may also be the same entity.
  • the steps in the embodiment of this application at least include:
  • the first device obtains a reference transmission power and a power offset value, where the power offset value is determined according to the capability of the electronic tag device.
  • open loop control is adopted between the first device and the second device, that is, the first device obtains the link loss by measuring the reference signal of the Uu air interface.
  • the reference transmit power is based on the excitation parameter ⁇ of the Tag device, the link loss PL between the first device and the second device, and the target demodulation power Po,tag of the Tag device. At least one item is determined, for example, the reference transmit power is expressed as ⁇ *PL+ Po,tag .
  • the first device may demodulate the downlink control channel according to the downlink synchronization signal-physical broadcast channel (synchronization signal/physical broadcast channel, SS/PBCH), channel state indicator-reference signal (channel state indicator-reference signal, CSI-RS) Reference signal (demodulation reference signal, DMRS), one or more of the DMRS of the downlink data channel determines the link loss PL.
  • the excitation parameter ⁇ and the target demodulation power Po,tag may be pre-configured by the second device (for example, the base station) to the first device, or the first device may be obtained from the second device in advance.
  • closed-loop control is adopted between the first device and the second device, that is, the transmission power of the first device on the Uu air interface is instructed by the second device through transmission power control (TPC).
  • the reference transmission power is determined according to at least one of the first power Puu , the first ratio M, and the first difference ⁇ P o.
  • the reference transmit power is expressed as P uu +10*log10(M)+ ⁇ P o .
  • the first power Puu is the transmit power of the first device on the corresponding time-frequency resource of the Uu air interface
  • the time-frequency resource of the Uu air interface may include physical uplink control channel (PUCCH), physical uplink One or more of the channel resources of the shared channel (physical uplink shared control channel, PUSCH), sounding reference signal (SRS), and DMRS.
  • the first power P uu can be one of PUCCH, PUSCH, SRS, and DMRS Or multiple ok. In the case of multiple time-frequency resources, the maximum value or the minimum value of the multiple time-frequency resources may be selected as the first power Puu .
  • the first difference ⁇ P o is the difference between the target received power of the Tag device and the target received power of the second device.
  • at least one of the bandwidth W tag of the communication channel, the bandwidth Wu uu of the time-frequency resource, the target received power of the Tag device, or the target received power of the second device is determined by the second device. Equipment configuration.
  • the first device may determine the power offset value according to the capability of the Tag device.
  • the ability of the tag device is specifically expressed as the energy or power loss of the tag device itself, and the ability of the tag device can include the excitation ability, the charging ability, and so on.
  • the capabilities of Tag devices are also different.
  • the first device may determine the power offset value according to the corresponding relationship between the capability of the Tag device and the power offset value. For example, for a tag device of the first type, the power offset value can be set to 3db, and for a tag device of the second type, the power offset value can be set to 6db.
  • the steps in this embodiment of the present application further include: S804, the tag device sends the capability of the tag device to the second device, and the second device receives the capability of the tag device sent by the tag device.
  • S805 The second device sends the capability of the tag device to the first device, and the first device receives the capability of the tag device sent by the second device, and then determines the power offset value according to the capability of the tag device.
  • the first device may determine the power offset value according to the capability of the first device. Different device types of the first device have different capabilities of the first device. For example, when the first device is a helper device of the first type, the power offset value is 3db, and when the first device is a helper device of the second type, the power offset value is 6db, and so on.
  • the first device may determine the power offset value according to the capabilities of the first device and the tag device. For example, when the first device is a helper device of the first type and the tag device is a tag device of the first type, the power offset value is 3db. When the first device is a helper device of the second type and the tag device is a tag device of the second type, the power offset value is 6db.
  • the power offset value may also be pre-configured by the second device (for example, the base station).
  • the base station can configure a list of power offset values ⁇ 0,3,6,9 ⁇ db through radio resource control (RRC), and then through the media access layer control element (MAC-) CE) or downlink control information (downlink control information, DCI), etc. select one or more of the power offset value lists, and indicate the power offset value to the first device.
  • RRC radio resource control
  • MAC- CE media access layer control element
  • DCI downlink control information
  • the power offset value may also be specified by the protocol, for example, 3db.
  • the first device determines the transmission power for sending an excitation signal to the Tag device according to the reference transmission power and the power offset value.
  • the sum of the reference transmission power and the power offset value may be calculated as the transmission power of the excitation signal.
  • the transmission power of the excitation signal P ⁇ *PL+ Po,tag + ⁇ P, where ⁇ is the excitation parameter of the Tag device, and PL is the distance between the first device and the second device
  • the link loss of P o,tag is the target demodulation power of the Tag device, and ⁇ P is the power offset value.
  • the transmission power of the excitation signal P P uu +10*log10(M)+ ⁇ P o + ⁇ P
  • P uu is the transmission power of the first device on the time-frequency resource corresponding to the Uu air interface
  • M is the ratio of bandwidth W uu first device and a communication channel between said apparatus Tag bandwidth W tag when between the first device and the second device-frequency resources
  • ⁇ P o is the apparatus Tag The difference between the target received power and the target received power of the second device, where ⁇ P is the power offset value.
  • the first device sends the excitation signal to the Tag device according to the transmit power of the excitation signal.
  • the Tag device receives the excitation signal and modulates the information to be transmitted onto the excitation signal for transmission, so that the second device can demodulate and obtain the information.
  • the transmission power of the excitation signal is determined by the capabilities of the Tag device, such as the energy and power loss of the Tag device itself, and the accuracy of the transmission power of the excitation signal is improved, thereby ensuring the received power of the Tag device and the second device.
  • Receive signal to noise ratio guarantee signal demodulation performance, and can save power consumption.
  • the first device may first determine the time-frequency resource for sending the excitation signal, and send a notification message to the second device, where the notification message is used to indicate the time-frequency resource of the excitation signal.
  • the first device street receives the resource indication sent by the second device, and determines the time-frequency resource for sending the excitation signal according to the resource indication. Then the first device sends the excitation signal to the Tag device based on the maximum transmission power of the first device on the time-frequency resource.
  • FIG. 9 is a schematic flowchart of another backscatter communication method provided by an embodiment of the present application.
  • the steps in the embodiment of this application at least include:
  • the first device obtains the distance between the first device and the second device.
  • the distance may be obtained by measuring a timing advance (TA) or a reference signal receiving power (RSRP).
  • TA timing advance
  • RSRP reference signal receiving power
  • the first device determines the transmit power of the excitation signal sent to the Tag device according to the mapping relationship.
  • the first device may determine the transmission power of the excitation signal according to the mapping relationship between the timing advance and the transmission power.
  • FIG. 10 is a schematic diagram of a mapping relationship provided by an embodiment of the present application.
  • t1 and t2 are non-negative real numbers, and the units are seconds, milliseconds, microseconds, and nanoseconds.
  • Tc 1/(4096*480000) second.
  • the transmission power of the excitation signal is P1
  • the transmission power of the excitation signal is P2
  • the transmission power of the excitation signal is P3
  • the transmission power of the excitation signal is P3.
  • the first device may determine the transmit power of the excitation signal according to the mapping relationship between the received power of the reference signal and the transmit power.
  • FIG. 11 is a schematic diagram of another mapping relationship provided by an embodiment of the present application.
  • the reference signal may be one or more of SS/PBCH, CSI-RS, DMRS, SRS and PRACH.
  • the transmission power of the excitation signal is P4.
  • the transmission power of the excitation signal is P5.
  • the transmission power of the excitation signal is P6.
  • the first device may determine the transmit power of the excitation signal according to the timing advance and the mapping relationship between the received power of the reference signal and the transmit power. Similar to the above two cases, we will not repeat them here.
  • the second device may determine the transmit power of the excitation signal to the Tag device according to at least one of the mapping relationship between the timing advance and the transmit power, and the mapping relationship between the received power of the reference signal and the transmit power, and send the excitation signal to the tag device.
  • a device sends instruction information, where the instruction information is used to notify the first device to use the transmit power to send an excitation signal to the Tag device.
  • S903 The first device sends the excitation signal to the Tag device according to the transmit power of the excitation signal.
  • the first device determines the transmission power of the excitation signal through the mapping relationship, which saves signaling overhead and improves the accuracy of the transmission power of the excitation signal, thereby ensuring the received power of the Tag device and the reception of the second device.
  • the signal-to-noise ratio guarantees signal demodulation performance.
  • FIG. 12 is a schematic flowchart of a backscatter communication method provided by an embodiment of the present application. The steps in the embodiment of this application at least include:
  • the first device obtains the first transmit power of the excitation signal sent to the Tag device and the second transmit power of the Uu air interface, where the Uu air interface is the air interface between the first device and the second device.
  • the time-frequency resources of the Uu air interface may include one or more of the physical uplink control channel PUCCH and the physical uplink shared channel PUSCH.
  • the first device may report power headroom reports (power headroom reports, PHR) of multiple excitation resources to the second device, and report power thresholds of multiple excitation resources.
  • the power headroom report format may be: X-bit excitation resource index+Y-bit PHR, where X and Y are integers greater than or equal to 1.
  • S1202 The first device determines whether the sum of the first transmission power and the second transmission power is greater than the maximum transmission power of the first device. If it is greater than, then perform S1203, if not greater than, then perform S1204.
  • S1203 The first device reduces the transmission power on the corresponding channel resource according to the priority.
  • the first device sends an uplink signal to the second device on the physical uplink control channel PUCCH and the physical uplink shared channel PUSCH of the Uu air interface in the same symbol or time slot, and sends an incentive to the tag device at the same time Signal, if it is determined that the sum of the transmit power of the uplink signal and the transmit power of the excitation signal is greater than the maximum transmit power of the first device, then the first device can perform power back-off, and the transmit power can be decremented according to priority.
  • the descending order can include :
  • the transmit power of the Uu air interface is preferentially reduced. For example, first reduce the transmit power on the PUSCH, then reduce the transmit power on the PUCCH, and finally reduce the excitation signal transmit power.
  • the transmit power of the excitation signal is preferentially decreased. For example, first reduce the transmission power of the excitation signal, and then reduce the transmission power on the PUSCH or PUCCH. If the priority of the uplink signal of the Uu air interface is the same as the priority of the excitation signal, the transmit power corresponding to any channel resource can be selected for fallback.
  • the first device communicates with the Tag device according to the first transmission power, and communicates with the second device according to the second transmission power.
  • the transmission power on the channel resource can be reduced according to the priority, thereby Ensure the normal operation of the first device.
  • FIG. 13 is a schematic flowchart of a backscatter communication method provided by an embodiment of the present application.
  • the first device may be a helper device
  • the second device may be a receiver device
  • the first device and the second device may also be the same entity.
  • the steps in the embodiment of this application at least include:
  • the first device obtains the power control capability of the Tag device.
  • the power control capability is used to instruct the first device to determine power control parameters.
  • the power control capability can be support or not to adjust the reflected power, and the power control capability can also be the power reflection factor. Different levels of the power reflection factor correspond to different reflection capabilities. For example, the first level of the power reflection factor corresponds to 0.5, and the power The second level of reflection factor corresponds to 0.3.
  • the power control capability can also be the charging time of the Tag device (for example, the amount of electricity/power required for a certain calculation or operation), or the power control capability can also be the charging speed set by the Tag, where the first The difference between a quantity/power and the second quantity/power, and the effective time required from the first quantity/power to the second quantity/power, and then the difference is divided by the effective time to calculate the charging speed .
  • the power control capability may be known in advance by the first device or the second device.
  • the power control capability can be obtained in the following ways, including: S1304, the Tag device sends the power control capability to the second device, S1305, after the second device receives the power control capability, the first device Transmit power control capability, the first device receives the power control capability sent by the second device.
  • the first device sends a power control parameter to the Tag device, and the Tag device receives the power control parameter sent by the first device.
  • the first device may send a power control parameter to the Tag device. If the Tag device does not support adjusting the reflected power, the first device is silent or does not respond. Or, if the power control capability includes multiple power reflection factors, a power reflection factor can be selected from the multiple power reflection factors as the power control parameter.
  • the power control parameter may include the power reflection factor or the adjustment step size of the power reflection factor.
  • the power control parameter may also include a power reflection factor threshold.
  • the power control parameters may also include the power reflection factor or the adjustment step size of the power reflection factor, and the power reflection factor threshold.
  • the power control parameter may be carried in the signal sent by the first device to the Tag device.
  • the signal may be a broadcast signal or a unicast signal, and the signal may be carried on a data channel or a control channel.
  • the power control parameters can be preset or instructed by the second device.
  • the Tag device adjusts the reflected power according to the power control parameter.
  • the Tag device may adjust the reflected power according to the power reflection factor.
  • the Tag device may adjust the reflected power according to the adjustment step size of the power reflection factor.
  • the trigger condition may include that the Tag device receives the same instruction sent by the first device, for example, the instruction may be ACK/NACK, etc., indicating that under the previous power reflection factor, the information transmission failed, and the power reflection factor needs to be adjusted to reset Send the signal.
  • the Tag device when the power reflection capability of the Tag device is greater than or equal to the power reflection factor threshold, the Tag device adjusts the reflection power; or when the power reflection capability of the Tag device is less than or equal to the power reflection factor threshold , The Tag device adjusts the reflected power.
  • the Tag device may The reflection factor adjusts the reflected power.
  • the Tag device may The adjustment step of the reflection factor adjusts the reflection power.
  • the reflected power is adjusted to make the reflected power from multiple Tag devices to the second device controllable, thereby increasing the success rate of signal demodulation and reducing the number of tag devices. Of mutual interference.
  • the first device may use a single tone excitation mode or a multi-carrier excitation mode to transmit the excitation signal.
  • the two signals may cancel out due to phase problems.
  • the excitation signal can be sent in the following ways:
  • Implementation manner 1 If the second device does not receive the reflected signal of the Tag device for N consecutive times, the second device instructs the first device to switch to the next frequency point to send the excitation signal.
  • the current frequency point and the next frequency point satisfy: Wherein, N is an integer greater than or equal to 2, the f 1 is the current frequency point, the f 2 is the next frequency point, and the m and the n are both integers greater than 0.
  • Implementation mode two the first device switches the frequency point and repeatedly sends the excitation signal, the next frequency point and the current frequency point meet:
  • the f 1 is the next frequency point
  • the f 2 is the current frequency point
  • both m and n are integers greater than zero.
  • Implementation mode 3 The first device sends the excitation signal at the first frequency point and the second frequency point simultaneously, and the first frequency point and the second frequency point satisfy: Wherein, the f 1 is the first frequency point, the f 2 is the second frequency point, and both m and n are integers greater than zero.
  • Implementation manner 4 The first device hops and sends the excitation signal according to a fixed frequency pattern.
  • the first frequency and the second frequency in the frequency pattern satisfy: Wherein, the f 1 is the first frequency point, the f 2 is the second frequency point, and both m and n are integers greater than zero.
  • FIG. 14 is a schematic diagram of a frequency point spacing provided by an embodiment of the present application.
  • the frequency point spacing between f 1 and f 2 is 1/4, and the frequency point spacing between f 1 and f 4 is 3/4.
  • the phase difference between the two signals reaching the second device is pi/2 and 3pi/2 respectively, so the two signals will not be cancelled .
  • FIG. 15 is a schematic flowchart of a backscatter communication method provided by an embodiment of the present application.
  • the steps in the embodiment of this application at least include:
  • the first device determines the power control mode supported by the first device.
  • the power control mode may include the power control mode of the Tag device, the frequency hopping transmission mode of the first device, and the power adjustment mode of the first device.
  • the specific implementation of each power control mode please refer to the above-mentioned embodiments. Repeat it again.
  • the first device obtains the priority of the power control mode.
  • the priority of the power control mode may be indicated by the second device, or may be pre-configured.
  • S1503 The first device selects and executes the power control mode according to the priority of the power control mode.
  • the power control method can be selected for execution, or the power control method can also be selected for execution in priority. Then select other power control methods to execute.
  • the power adjustment mode of the first device> the frequency hopping transmission mode of the first device> the power control mode of the tag device the power adjustment mode of the first device is preferentially selected for execution, and then the frequency hopping transmission mode of the first device is executed. Finally, the power control mode of the Tag device is executed, or only the power adjustment mode of the first device is selected for execution. Or, if the power control mode of the tag device>the frequency hopping transmission mode of the first device>the power adjustment mode of the first device, the power control mode of the tag device is selected first, and then the frequency hopping transmission mode of the first device is executed. Perform the power adjustment mode of the first device, or only select the power control mode of the Tag device to perform. The other situations are similar, so I won't repeat them here.
  • the communication system when the communication system supports multiple power control methods at the same time, it can ensure that the behaviors of the first device, the second device, and the tag device are consistent.
  • FIG. 16 is a schematic structural diagram of a first backscatter communication device provided by an embodiment of the present application.
  • the first backscatter communication device may include an acquisition module 1601, a processing module 602, a sending module 1603, and a receiving module.
  • Module 1604 where the detailed description of each module is as follows.
  • the obtaining module 1601 is configured to obtain a reference transmission power and a power offset value, where the power offset value is determined according to the capability of the electronic tag device;
  • the processing module 1602 is configured to determine the transmission power of the excitation signal sent to the Tag device according to the reference transmission power and the power offset value;
  • the sending module 1603 is configured to send the excitation signal to the Tag device according to the transmission power of the excitation signal.
  • the reference transmit power is determined according to at least one of a first power, a first ratio, and a first difference
  • the first power is a value between the first device and the second device
  • the transmit power on the time-frequency resource, and the first ratio is the ratio of the bandwidth of the communication channel between the first device and the tag device and the time-frequency resource between the first device and the second device
  • the ratio of the bandwidth, and the first difference is the difference between the target received power of the Tag device and the target received power of the second device.
  • At least one of the bandwidth of the communication channel, the bandwidth of the time-frequency resource, the target received power of the Tag device, or the target received power of the second device is configured by the second device.
  • the receiving module 1604 is configured to receive the capability of the Tag device sent by the second device.
  • the obtaining module 1601 is further configured to determine the power offset value according to the corresponding relationship between the capability of the Tag device and the power offset value.
  • the power offset value is determined according to the capability of the first device.
  • the obtaining module 1601 is used to obtain the power control capability of the Tag device
  • the sending module 1603 is configured to send power control parameters to the Tag device, where the power control parameters are used for the Tag device to adjust the reflected power.
  • the acquiring module 1601 is further configured to receive the power control capability sent by the second device.
  • the power control parameter includes a power reflection factor or an adjustment step size of the power reflection factor.
  • the power control parameter includes a power reflection factor threshold.
  • each module can also refer to the corresponding description of the foregoing method embodiment to execute the method and function performed by the first device in the foregoing embodiment.
  • FIG. 17 is a schematic structural diagram of a second backscatter communication device provided by an embodiment of the present application.
  • the second backscatter communication device may include a receiving module 1701, a sending module 1702, and a processing module 1703. , The detailed description of each module is as follows.
  • the receiving module 1701 is configured to receive the capability of the Tag device sent by the Tag device;
  • the sending module 1702 is configured to send the capability of the Tag device to the first device, where the capability of the Tag device is used by the first device to determine a power offset value, and the power offset value is used for the first device Determine the transmit power of the excitation signal sent to the Tag device.
  • the sending module 1702 is further configured to send the configured power offset value to the first device.
  • the processing module 1703 is configured to configure at least one of the following information: the bandwidth of the communication channel between the first device and the Tag device, and the bandwidth of the time-frequency resource between the first device and the second device , The target received power of the Tag device or the target received power of the second device.
  • the receiving module 1701 is configured to receive the power control capability of the Tag device sent by the Tag device;
  • the sending module 1702 is configured to send the power control capability to a first device, where the power control capability is used to instruct the first device to determine a power control parameter, and the power control parameter is used for the Tag device to adjust the reflected power.
  • each module may also refer to the corresponding description of the foregoing method embodiment to execute the method and function performed by the second device in the foregoing embodiment.
  • FIG. 18 is a schematic structural diagram of a third backscatter communication device according to an embodiment of the present application.
  • the third backscatter communication device may include a receiving module 1801, a processing module 1802, and a sending module 1803. , The detailed description of each module is as follows.
  • the receiving module 1801 is configured to receive power control parameters sent by the first device
  • the processing module 1802 is configured to adjust the reflected power according to the power control parameter.
  • the sending module 1803 is configured to transmit the power control capability to the second device.
  • the power control parameter includes a power reflection factor
  • the processing module 1802 is further configured to adjust the reflected power according to the power reflection factor.
  • the power control parameter includes an adjustment step size of the power reflection factor
  • the processing module 1802 is further configured to adjust the reflected power according to the adjustment step size of the power reflection factor.
  • the power control parameter includes a power reflection factor threshold
  • the processing module 1802 is further configured to adjust the reflected power when the power reflection capability of the Tag device is greater than or equal to the power reflection factor threshold; or when the power reflection capability of the Tag device is less than or equal to the power reflection When the factor threshold is set, adjust the reflected power.
  • each module can also refer to the corresponding description of the foregoing method embodiment to execute the method and function performed by the Tag device in the foregoing embodiment.
  • FIG. 19 is a schematic structural diagram of a first device according to an embodiment of the present application.
  • the first device may include: at least one processor 1901, at least one communication interface 1902, and at least one memory 1903.
  • the processor 1901 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication interface 1902 of the device in the embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 1903 may include volatile memory, such as nonvolatile random access memory (NVRAM), phase change RAM (PRAM), magnetoresistive random access memory (magetoresistive) RAM, MRAM), etc., can also include non-volatile memory, such as at least one disk storage device, electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), flash memory devices, such as reverse or flash memory (NOR flash memory) or NAND flash memory (NAND flash memory), semiconductor devices, such as solid state disks (SSD), etc.
  • the memory 1903 may also be at least one storage device located far away from the foregoing processor 1901.
  • the memory 1903 may also store a group of program codes.
  • the processor 1901 may optionally execute a program stored in the memory 1903.
  • the processor 1901 is configured to perform the following operations:
  • the reference transmit power is determined according to at least one of a first power, a first ratio, and a first difference
  • the first power is a value between the first device and the second device
  • the transmit power on the time-frequency resource, and the first ratio is the ratio of the bandwidth of the communication channel between the first device and the tag device and the time-frequency resource between the first device and the second device
  • the ratio of the bandwidth, and the first difference is the difference between the target received power of the Tag device and the target received power of the second device.
  • At least one of the bandwidth of the communication channel, the bandwidth of the time-frequency resource, the target received power of the Tag device, or the target received power of the second device is configured by the second device.
  • the processor 1901 is configured to perform the following operations:
  • the processor 1901 is configured to perform the following operations:
  • the power offset value is determined according to the capability of the first device.
  • the processor 1901 is configured to perform the following operations:
  • the processor 1901 is configured to perform the following operations:
  • the power control parameter includes a power reflection factor or an adjustment step size of the power reflection factor.
  • the power control parameter includes a power reflection factor threshold.
  • processor may also cooperate with the memory and the communication interface to execute the operation of the first device in any of the foregoing embodiments.
  • FIG. 20 is a schematic structural diagram of a second device according to an embodiment of the present application.
  • the second device may include: at least one processor 2001, at least one communication interface 2002, and at least one memory 2003.
  • the processor 2001 may be the various types of processors mentioned above.
  • the communication interface 2002 of the device in the embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 2003 may be the various types of memory mentioned above.
  • the memory 2003 may also be at least one storage device located far away from the aforementioned processor 2001.
  • the memory 2003 stores a set of program codes, and the processor 2001 executes the programs in the memory 2003.
  • the processor 2001 is configured to perform the following operations:
  • the capability of the Tag device is sent to the first device, the capability of the Tag device is used by the first device to determine a power offset value, and the power offset value is used by the first device to determine the The transmit power of the excitation signal.
  • the processor 2001 is configured to perform the following operations:
  • the processor 1901 is configured to perform the following operations:
  • the processor 2001 is configured to perform the following operations:
  • the power control capability is sent to the first device, where the power control capability is used to instruct the first device to determine a power control parameter, and the power control parameter is used for the Tag device to adjust the reflected power.
  • processor may also cooperate with the memory and the communication interface to execute the operation of the second device in any of the foregoing embodiments.
  • the Tag device may include: at least one processor 2101, at least one communication interface 2102, and at least one memory 2103.
  • the processor 2101 may be various types of processors mentioned above.
  • the communication interface 2102 of the device in the embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 2103 may be various types of memories mentioned above.
  • the memory 2103 may also be at least one storage device located far away from the foregoing processor 2101.
  • the memory 2103 stores a group of program codes, and the processor 2101 executes the programs in the memory 2103.
  • the processor 2101 is configured to perform the following operations:
  • the power control parameter includes a power reflection factor
  • the processor 2101 is configured to perform the following operations:
  • the power control parameter includes an adjustment step size of the power reflection factor;
  • the processor 2101 is configured to perform the following operations:
  • the Tag device adjusts the reflected power according to the adjustment step size of the power reflection factor.
  • the power control parameter includes a power reflection factor threshold, where the processor 2101 is configured to perform the following operations:
  • the Tag device adjusts the reflected power
  • the Tag device adjusts the reflection power.
  • the processor can also cooperate with the memory and the communication interface to perform the operation of the Tag device in any of the above embodiments.
  • the embodiments of the present application also provide a chip system.
  • the chip system includes a processor for supporting a first device, a second device, and a tag device to implement the functions involved in any of the foregoing embodiments, such as generating or processing the foregoing The data and/or information involved in the method.
  • the chip system may further include a memory, which is used for necessary program instructions and data of the first device, the second device, and the tag device.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • the embodiments of the present application also provide a processor, which is configured to be coupled with a memory and configured to execute any method and function related to the first device, the second device, and the tag device in any of the foregoing embodiments.
  • the embodiment of the present application also provides a computer program product containing instructions, which when running on a computer, causes the computer to execute any method involving the first device, the second device, and the Tag device in any of the above embodiments and function.
  • the embodiments of the present application also provide a device for executing any method and function related to the first device, the second device, and the tag device in any of the foregoing embodiments.
  • An embodiment of the present application also provides a wireless communication system, which includes at least one first device, at least one second device, and at least one Tag device involved in any of the foregoing embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本申请实施例公开了一种反向散射通信方法及相关设备,包括:第一设备获取参考发射功率以及功率偏移值,所述功率偏移值为根据电子标签Tag设备的能力确定的;所述第一设备根据所述参考发射功率以及所述功率偏移值,确定向所述Tag设备发送激励信号的发射功率;所述第一设备根据所述激励信号的发射功率,向所述Tag设备发送所述激励信号。采用本申请实施例,可以提高信号解调性能,节省功耗。

Description

一种反向散射通信方法及相关设备
本申请要求于2019年8月16日提交中国专利局、申请号为201910761838.5、申请名称为“一种反向散射通信方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种反向散射通信方法及相关设备。
背景技术
反向散射通信(backscatter communication)系统是一种借助于环境能量进行通信的系统。反向散射通信系统包括:发送设备(helper)发送一定频率的电磁波,给反向通信设备(backscatter device)提供能量。反向通信设备也可以被称为电子标签(Tag)设备,Tag设备通过接收helper设备发送的能量信号进行充电,然后将自身的待传输信息调制到载波信号上进行发送。接收设备(receiver)也可以被称为读写器,接收Tag设备发送的数据并进行解调获得信息。在此过程中,如果helper设备的激励信号的发射功率过低,导致Tag设备接收功率很低或者Receiver接收信噪比不足,会影响信号解调性能。而如果helper设备的激励信号的发射功率过高,可能导致功耗浪费。
发明内容
本申请实施例提供一种反向散射通信方法及相关设备,可以提高信号解调性能,节省功耗。
第一方面,本申请实施例提供了一种反向散射通信方法,包括:第一设备获取参考发射功率以及功率偏移值,功率偏移值为根据电子标签Tag设备的能力确定的;根据参考发射功率以及功率偏移值,确定向Tag设备发送激励信号的发射功率;根据激励信号的发射功率,向Tag设备发送激励信号。通过Tag设备的能力确定激励信号的发射功率,提高激励信号的发射功率的准确性,从而保障了Tag设备接收功率以及第二设备接收信噪比,提高了信号解调性能,并且节省了功耗。
在一种可能的设计中,参考发射功率为根据第一功率、第一比值以及第一差值中的至少一项确定的,第一功率为在第一设备与第二设备之间的时频资源上的发射功率,第一比值为第一设备与Tag设备之间的通信信道的带宽与第一设备与第二设备之间的时频资源的带宽的比值,第一差值为Tag设备的目标接收功率与第二设备的目标接收功率的差值。
在另一种可能的设计中,通信信道的带宽、时频资源的带宽、Tag设备的目标接收功率或者第二设备的目标接收功率中至少一种信息是由第二设备配置的。
在另一种可能的设计中,第一设备接收第二设备发送的Tag设备的能力。以便第一设备根据Tag设备的能力确定激励信号的发射功率。
在另一种可能的设计中,第一设备根据Tag设备的能力与功率偏移值的对应关系,确定功率偏移值。
在另一种可能的设计中,功率偏移值为根据第一设备的能力确定的。通过第一设备的能力确定功率偏移值,提高激励信号的发射功率的准确性,从而保障了Tag设备接收功率以及第二设备接收信噪比,提高了信号解调性能,并且可以节省功耗。
在另一种可能的设计中,功率偏移值也可以为第二设备预先配置的。
在另一种可能的设计中,功率偏移值也可以是协议规定的。
在另一种可能的设计中,第一设备可以首先确定发送激励信号的时频资源,向第二设备发送通知消息,该通知消息用于指示激励信号的时频资源。或者第一设备街接收第二设备发送的资源指示,根据该资源指示,确定发送激励信号的时频资源。然后第一设备在时频资源上,根据第一设备的最大发送功率,向Tag设备发送激励信号。
第二方面,本申请实施例提供了一种反向散射通信方法,包括:第二设备接收Tag设备发送的Tag设备的能力;第二设备向第一设备发送Tag设备的能力,Tag设备的能力用于第一设备确定功率偏移值,功率偏移值用于第一设备确定向Tag设备发送激励信号的发射功率。通过Tag设备的能力确定激励信号的发射功率,提高激励信号的发射功率的准确性,从而保障了Tag设备接收功率以及第二设备接收信噪比,提高了信号的解调性能,并且能够节省功耗。
在一种可能的设计中,第二设备向第一设备发送配置的功率偏移值。
在另一种可能的设计中,第二设备配置如下至少一种信息:第一设备与Tag设备之间的通信信道的带宽、第一设备与第二设备之间的时频资源的带宽、Tag设备的目标接收功率或第二设备的目标接收功率。
第三方面,本申请实施例提供了一种反向散射通信方法,包括:第一设备获取第一设备与第二设备之间的距离,该距离可以通过测量时间提前量或参考信号接收功率得到;根据映射关系,确定向Tag设备发送激励信号的发射功率,根据激励信号的发射功率,向Tag设备发送激励信号。通过映射关系确定激励信号的发射功率,节省了信令开销,并且提高了激励信号的发射功率的准确性,从而保障了Tag设备接收功率以及第二设备接收信噪比,保障信号解调性能。
在一种可能的设计中,第一设备根据参考信号接收功率与发射功率的映射关系,确定激励信号的发射功率。
在另一种可能的设计中,第一设备根据时间提前量与发射功率的映射关系,确定激励信号的发射功率。
在另一种可能的设计中,第一设备根据参考信号接收功率与发射功率的映射关系、和时间提前量与发射功率的映射关系,确定激励信号的发射功率。
在另一种可能的设计中,激励信号的发射功率由第二设备根据时间提前量与发射功率的映射关系、以及参考信号接收功率与发射功率的映射关系中的至少一种确定的,第一设备接收到第二设备的指示信息之后采用该发射功率向Tag设备发送激励信号。
第四方面,本申请实施例提供了一种反向散射通信方法,包括:第一设备获取向Tag设备发送的激励信号的第一发射功率、以及Uu空口的第二发射功率,确定第一发射功率与第二发射功率之和是否大于第一设备的最大发射功率。如果大于,根据优先级,降低对应信道资源上的发射功率,保障第一设备的正常工作。
在一种可能的设计中,第一设备可以向第二设备上报多个激励资源的功率余量报告,并上报多个激励资源的功率阈值。
在另一种可能的设计中,如果Uu空口的上行信号的优先级小于激励信号的优先级,则优先递减Uu空口的发射功率。
在另一种可能的设计中,如果Uu空口的上行信号的优先级大于激励信号的优先级,则优先递减激励信号的发射功率。
第五方面,本申请实施例提供了一种反向散射通信方法,包括:第一设备获取Tag设备的功率控制能力;向Tag设备发送功率控制参数,功率控制参数用于Tag设备调整反射功率。通过调整反射功率,使得从多个Tag设备到达第二设备的反射功率可控,从而提高信号解调的成功率,降低Tag设备之间的相互干扰。
在一种可能的设计中,第一设备接收第二设备发送的功率控制能力。
在另一种可能的设计中,功率控制参数包括功率反射因子或功率反射因子的调整步长。
在另一种可能的设计中,功率控制参数包括功率反射因子阈值。
第六方面,本申请实施例提供了一种反向散射通信方法,包括:Tag设备接收第一设备发送的功率控制参数;Tag设备根据功率控制参数,调整反射功率。通过调整反射功率,使得从多个Tag设备到达第二设备的反射功率可控,从而提高信号解调的成功率,降低Tag设备之间的相互干扰。
在一种可能的设计中,Tag设备接收第一设备发送的功率控制参数之前,Tag设备向第二设备发射功率控制能力。
在另一种可能的设计中,功率控制参数包括功率反射因子;Tag设备根据功率反射因子,调整反射功率。
在另一种可能的设计中,功率控制参数包括功率反射因子的调整步长,Tag设备按照功率反射因子的调整步长,调整反射功率。
在另一种可能的设计中,功率控制参数包括功率反射因子阈值,当Tag设备的功率反射能力大于或等于功率反射因子阈值时,Tag设备调整反射功率;或当Tag设备的功率反射能力小于或等于功率反射因子阈值时,Tag设备调整反射功率。
第七方面,本申请实施例提供了一种反向散射通信方法,包括:第二设备接收Tag设备发送的Tag设备的功率控制能力;第二设备向第一设备发送功率控制能力,功率控制能力用于指示第一设备确定功率控制参数,功率控制参数用于Tag设备调整反射功率。通过调整反射功率,使得从多个Tag设备到达第二设备的反射功率可控,从而提高信号解调的成功率,降低Tag设备之间的相互干扰。
第八方面,本申请实施例提供了一种反向散射通信方法,包括:第一设备分别在第一频点和第二频点上发送激励信号,第一频点和第二频点满足:
Figure PCTCN2020095227-appb-000001
其中,f 1为第一频点,f 2为第二频点,m、n均为大于0的整数。通过发送满足上述公式的激励信号,可以减少由于相位问题而造成的信号抵消,保证至少有一个频点能够成功激活Tag完成通 信,而且可以获得跳频增益。
在一种可能的设计中,如果第二设备连续N次没有接收到Tag设备的反射信号,则第二设备指示第一设备切换到下一个频点发送激励信号,当前频点和下一个频点满足:
Figure PCTCN2020095227-appb-000002
在另一种可能的设计中,第一设备切换频点重复发送激励信号,下一个频点和当前频点满足:
Figure PCTCN2020095227-appb-000003
在另一种可能的设计中,第一设备在第一频点和第二频点同时发送激励信号,第一频点和第二频点满足:
Figure PCTCN2020095227-appb-000004
在另一种可能的设计中,第一设备按照固定的频点图样跳频发送激励信号,频点图样中的第一频点和第二频点满足:
Figure PCTCN2020095227-appb-000005
第九方面,本申请实施例提供了一种反向散射通信方法,包括:第一设备确定第一设备所支持的功率控制方式。然后获取功率控制方式的优先级,根据功率控制方式的优先级,选择执行功率控制方式。通信系统同时支持多种功率控制方式时,能够保证第一设备、第二设备以及Tag设备的行为一致。
在一种可能的设计中,功率控制方式包括Tag设备的功率控制方式、第一设备的跳频发送方式以及第一设备的功率调整方式。
在一种可能的设计中,当多种功率控制方式中的一种功率控制方式的优先级大于其他的功率控制方式的优先级时,可以选择该功率控制方式执行,或者,也可以优先选择该功率控制方式执行,然后选择其他功率控制方式执行。
第十方面,本申请实施例提供了一种第一反向散射通信装置,该第一反向散射通信装置被配置为实现上述各个方面中第一设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第十一方面,本申请实施例提供了一种第二反向散射通信装置,该第二反向散射通信装置被配置为实现上述各个方面中第二设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第十二方面,本申请实施例提供了一种第三反向散射通信装置,该第三反向散射通信装置被配置为实现上述各个方面中Tag设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第十三方面,本申请实施例提供了一种第一设备,包括:处理器和存储器,其中,当处理器执行存储器中存储的程序时,使得所述第一设备执行上述任一方面中的方法。
在一个可能的设计中,本申请提供的第一设备可以包含用于执行上述方法设计中第一设备的行为相对应的模块。模块可以是软件和/或是硬件。
第十四方面,本申请实施例提供了一种第二设备,包括:处理器和存储器,其中,当 处理器执行存储器中存储的程序时,使得第二设备用于执行上述任一方面的方法。
在一个可能的设计中,本申请提供的第二设备可以包含用于执行上述方法设计中第二设备的行为相对应的模块。模块可以是软件和/或是硬件。
第十五方面,本申请实施例提供了一种Tag设备,包括:处理器和存储器,其中,当处理器执行存储器中存储的程序时,使得所述tag设备执行上述任一方面的方法。
在一个可能的设计中,本申请提供的Tag设备可以包含用于执行上述方法设计中Tag设备的行为相对应的模块。模块可以是软件和/或是硬件。
第十六方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第十七方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第十八方面,本申请实施例提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述任一方面的方法。
第十九方面,本申请实施例提供了另一种芯片,该芯片可以为第一设备、第二设备或Tag设备内的芯片,该芯片包括:输入接口、输出接口和处理电路,所述输入接口、所述输出接口与所述电路之间通过内部连接通路相连,所述处理电路用于执行上述任一方面的方法。
第二十方面,提供另一种芯片,包括:输入接口、输出接口、处理器,可选的,还包括存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述任一方面中的方法。
第二十一方面,提供一种装置,用于实现上述任一方面的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种反向散射通信系统的架构示意图;
图2是本申请实施例提供的另一种反向散射通信系统的架构示意图;
图3是本申请实施例提供的另一种反向散射通信系统的架构示意图;
图4是本申请实施例提供的又一种反向散射通信系统的架构示意图;
图5是本申请实施例提供的一种PSSCH发射功率确定的示意图;
图6是本申请实施例提供的一种跳频带宽大小的示意图;
图7是本申请实施例提供的一种单频点激励栏栅效应的示意图;
图8是本申请实施例提供的一种反向散射通信方法的流程示意图;
图9是本申请实施例提供的另一种反向散射通信方法的流程示意图;
图10是本申请实施例提供的一种映射关系的示意图;
图11是本申请实施例提供的另一种映射关系的示意图;
图12是本申请实施例提供的又一种反向散射通信方法的流程示意图;
图13是本申请实施例提供的又一种反向散射通信方法的流程示意图;
图14是本申请实施例提供的一种频点间距的示意图;
图15是本申请实施例提供的又一种反向散射通信方法的流程示意图;
图16是本申请实施例提供的一种第一反向散射通信装置的结构示意图;
图17是本申请实施例提供的一种第二反向散射通信装置的结构示意图;
图18是本申请实施例提供的一种第三反向散射通信装置的结构示意图;
图19是本申请实施例提出的一种第一设备的结构示意图;
图20是本申请实施例提出的一种第二设备的结构示意图;
图21是本申请实施例提出的一种Tag设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图1,图1是本申请实施例提供的一种反向散射通信系统的架构示意图,该反向散射通信系统包括:发送设备(helper)发送一定频率的电磁波,给反向通信设备(backscatter device)提供能量。反向通信设备也可以被称为电子标签(Tag)设备,Tag设备通过接收helper设备发送的能量信号进行充电,然后将自身的待传输信息调制到载波信号上进行发送。接收设备(receiver)可以为读设备,例如读写器,receiver设备可以接收Tag设备发送的反射信号并进行解调获得信息。在某些应用中,helper设备和receiver设备也可以是同一个实体,既发送激励信号,又具有信号接功能。Tag设备本身往往能量有限,通常为无源或者半有源设备,通过接收helper设备发送的能量信号和载波信号,将自身的待传输信息调制到载波信号上进行发送。例如,射频识别(radio frequency identification,RFID)是一种典型的反向散射通信系统,首先读写器向Tag设备发送激励信号,然后Tag设备接收到激励信号之后,将自身的信息调制到载波上、再向读写器发送反射信号,完成信号发送。
其中,Tag设备可以通过控制自身天线阻抗,实现对载波的反射或者接收。当阻抗匹配时,Tag设备将吸收接收到的信号,达到能量传输效率的最大;当阻抗不匹配时,Tag设备将反射接收到的信号。Tag设备在微控制器的控制下,控制阻抗匹配/不匹配状态,完成信息发送。receiver设备通过接收Tag设备发送的信号,完成信息解调。对于Tag设备到receiver设备的调制方式,根据Tag能力不同,具有不同的调制格式。支持的调制格式有幅移键控(amplitude shift keying,ASK)、频移键控(frequency shift keying,FSK)、相移键控(phase shift keying,PSK)等。通常而言,由于Tag设备的成本较低,实现较简单,同时能量受限,只能实现一些简单的或低阶的调制。
在未来的应用中,反向散射通信可以应用于蜂窝网络中。例如,helper设备可以是一个基站(base station,BS),receiver设备可以是一个终端设备(user equipment,UE)。或者,helper设备是一个终端设备,receiver设备是一个基站。helper设备可以在读设备的协调和控制下,在指定的时频资源上向Tag发送激励信号,完成通信过程。例如,在物联网的应用场景下,Tag设备可以作为低成本标签,大量地安装在物体上,基站和终端设备可以在需要电子标签信息时,对Tag设备进行充电和获取信息。
如图2所示,图2是本申请实施例提供的另一种反向散射通信系统的架构示意图。终端设备(UE)作为激励源,基站设备(BS)作为读设备。UE可以在特定的时频资源位置上向Tag设备发送激励信号。其中,时频资源和激励信号的类型可以由基站设备在Uu空口进行预先配置。Tag设备在接收到UE发送的激励信号之后,通过Tag设备的天线进行能量收集,并将自身待传输的信息,如ID号等,调制在UE发送的载波上进行反射。BS可以在预先定义的位置上接收Tag设备发送的反射信号,并对反射信号进行解调获得信息。在此过程中,BS也有可能接收到UE发送的激励信号。
如图3所示,图3是本申请实施例提供的另一种反向散射通信系统的架构示意图。基站设备(BS)作为激励源,终端设备(UE)作为读设备。BS可以在特定的时频位置上向Tag设备发送激励信号,其中,时频位置可以由BS通过Uu空口预先通知UE。Tag设备利用BS的激励能量进行充电,同时将自生待传输的信息通过反向散射方式发送给UE。UE在提前被告知的时频位置,接收Tag设备的反射信号,并对该反射信号进行解调获得信息。
如图4所示,图4是本申请实施例提供的又一种反向散射通信系统的架构示意图。基站设备(BS)作为激励源、且基站设备(BS)作为读设备。或者终端设备(UE)作为激励源、且终端设备(UE)作为读设备。通信方式与上述两种方式类似,此处不再赘述。
目前,独立的RFID系统并没有相关的功率控制方案。但是,可以将反向散射应用在蜂窝网络中,蜂窝网络具有类似的功率控制方案。在长期演进(long term evolution,LTE)-车联网(vehicle to everything,V2X)中,对于旁路(sidelink)的数据信道,例如物理旁路信道(physical sidelink channel,PSSCH)发送功率,协议规定发射功率如下:
P PSCCH=min{P cmax,PSSCH,10log(M PSSCH)+P O_PSSCH,1PSSCH,1·PL}。
其中,P cmax,PSSCH表示V2X终端的发射功率,M PSSCH表示sidelink资源的带宽,P O_PSSCH,1表示PSSCH的目标接收功率,由基站配置,PL为V2X终端与基站的链路损耗的参数,α PSSCH,1为基站配置的系数因子。如图5所示,图5是一种PSSCH发射功率确定的示意图。PSSCH表示UE1与UE2之间的链路,UE1的发射功率由UE1到BS之间的链路损耗PL、UE1与UE2之间所配置的带宽M PSSCH以及UE2的目标接收功率P O_PSSCH,1确定。
因此,发射功率=Uu空口的参考发射功率+功率偏移值。其中,Uu空口的参考发射功率为α PSSCH,1·PL,功率偏移值为10log(M PSSCH)+P O_PSSCH,1。Uu空口为V2X终端和基站之间的空中接口。
但是,上述功率控制方案存在如下问题,第一,由于UE1到UE2之间的链路损耗PL无法获得,因此采用了UE1到基站之间的链路损耗的参数。但是,UE1到基站之间的链路损耗并不一定等于UE1到UE2之间的路损,因此基于UE1到基站之间的链路损耗计算得 到的UE1的发射功率并不准确。第二,由于功率偏移值没有包括Tag本身的能量/功率损耗,如果将上述功率控制方案应用到反向散射通信系统中,可能导致Tag设备接收功率过低,或者receiver设备接收信噪比不足,影响信号解调性能。而且,不同tag设备在接收激励信号过程中,可能存在不同的能量损失情况。
另一方面,在反向散射通信中,由于激励信号通常是一个窄带信号,存在由于频率选择性衰落而带来的性能下降问题。为了降低频率选择性衰落的影响,提高上行性能,往往采用跳频发送的方案,获得频率选择性增益。但是,Tag设备通常无源或者半有源,其信息能否发送成功,将直接受到激励信号的功率影响。由于receiver设备除了能接收到Tag设备发送的反射信号之外,还可以接收到helper设备发送的激励信号。对于Tag设备的反射信号而言,helper设备的激励信号是一个强干扰信号。
例如,如图6所示,图6是本申请实施例提供的一种跳频带宽大小的示意图。在蜂窝网络中,NR系统中的Msg3PUSCH的跳频带宽与带宽部分(bandwidth part,BWP)有关,由基站进行配置,当BWP小于50物理资源块(physical resource block,PRB)时,如果基站配置了Msg3PUSCH跳频,且N UL,hop配置为0,则第一跳的频率与第二跳的频率之间的频率间隔为
Figure PCTCN2020095227-appb-000006
如果基站配置了Msg3PUSCH跳频,且N UL,hop配置为1,则第一跳的频率与第二跳的频率之间的频率间隔为
Figure PCTCN2020095227-appb-000007
其他配置类似,在此不再赘述。
但是,在到达接收设备的两路信号的相位相反(相差180度)的情况下,较弱一路信号将被削弱,造成无法解调Tag设备的反射信号。如图7所示,图7是本申请实施例提供的一种单频点激励栏栅效应的示意图。由于receiver设备能够接收到来自helper设备和Tag设备的两路信号,当两路信号到达receiver设备时,如果两路信号恰好相位相反,由于helper设备发送的激励信号远比Tag设备的反射信号强,则Tag设备的反射信号可能被完全抵消掉,使得Tag设备的反射信号无法解调。在空间上会形成栏栅效应,使得在某些位置上,receiver设备无法接收到Tag设备的反射信号。例如,假设helper设备采用单频点激励,则在不同的位置(A、B、C),从helper设备和Tag设备到达receiver设备的两路信号,分别用1和1’、2和2’、3和3’表示,到达receiver设备的相位差分别是pi、0和-pi,则由于在A和C的位置,相位恰好相反,较弱一路信号完全被抵消掉,导致无法对反射信号进行解调获得信息。
为了解决上述技术问题,本申请实施例提供了如下解决方案。
如图8所示,图8是本申请实施例提供的一种反向散射通信方法的流程示意图。本申 请实施例中的第一设备可以为helper设备,第二设备可以为receiver设备,第一设备和第二设备也可以为同一个实体。本申请实施例中的步骤至少包括:
S801,第一设备获取参考发射功率以及功率偏移值,所述功率偏移值为根据电子标签Tag设备的能力确定的。
在一种实现方式中,第一设备和第二设备之间采用开环控制,即第一设备通过测量Uu空口的参考信号获取链路损耗。所述参考发射功率为根据所述Tag设备的激励参数α、所述第一设备与所述第二设备之间的链路损耗PL以及所述Tag设备的目标解调功率P o,tag中的至少一项确定的,例如参考发射功率表示为α*PL+P o,tag
其中,第一设备可以根据下行同步信号-物理广播信道(synchronization signal/physical broadcast channel,SS/PBCH)、信道状态指示参考信号(channel state indicator-reference signal,CSI-RS)下行控制信道的解调参考信号(demodulation reference signal,DMRS),下行数据信道的DMRS中的一个或多个确定链路损耗PL。激励参数α和目标解调功率P o,tag可以是第二设备(例如基站)预先配置给第一设备的,或者是第一设备预先从第二设备中获取。
在另一种实现方式中,第一设备和第二设备之间采用闭环控制,即第一设备在Uu空口的发射功率由第二设备通过传输功率控制(transmission power control,TPC)进行指示。所述参考发射功率为根据第一功率P uu、第一比值M以及第一差值ΔP o中的至少一项确定的。例如,参考发射功率表示为P uu+10*log10(M)+ΔP o
其中,所述第一功率P uu为第一设备在Uu空口相应时频资源上的发射功率,所述Uu空口的时频资源可以包括物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared control channel,PUSCH)、监听参考信号(sounding reference signal,SRS)、DMRS的信道资源中一种或多种,第一功率P uu可以由PUCCH、PUSCH、SRS和DMRS中一个或多个确定。在多个时频资源的情况下,可以选取多个时频资源中的最大值或最小值作为第一功率P uu。所述第一比值M为所述第一设备与所述Tag设备之间的通信信道的带宽W tag与所述第一设备与所述第二设备之间的时频资源的带宽W uu的比值,即M=W tag/W uu,所述第一差值ΔP o为所述Tag设备的目标接收功率与所述第二设备的目标接收功率的差值。其中,所述通信信道的带宽W tag、所述时频资源的带宽W uu、所述Tag设备的目标接收功率或者所述第二设备的目标接收功率中至少一种信息是由所述 第二设备配置的。
其中,第一设备可以根据Tag设备的能力确定功率偏移值。其中,Tag设备的能力具体表现为Tag设备本身的能量或功率损耗等等,Tag设备的能力可以包括激励能力、充电能力等等。对于不同的Tag设备的设备类型,Tag设备的能力也不同。第一设备可以根据所述Tag设备的能力与所述功率偏移值的对应关系,确定所述功率偏移值。例如,对于第一类型的Tag设备,该功率偏移值可以设置为3db,对于第二类型的Tag设备,该功率偏移值可以设置为6db。
可选的,如图8所示,本申请实施例中步骤还包括:S804,Tag设备向第二设备发送Tag设备的能力,第二设备接收Tag设备发送的所述Tag设备的能力。S805,第二设备向第一设备发送所述Tag设备的能力,第一设备接收第二设备发送的Tag设备的能力,然后根据Tag设备的能力确定功率偏移值。
可选的,第一设备可以根据所述第一设备的能力确定所述功率偏移值。第一设备的设备类型不同,第一设备的能力也不同。例如,当第一设备为第一种类型的helper设备,该功率偏移值为3db,当第一设备为第二种类型的helper设备,该功率偏移值为6db等等。
可选的,第一设备可以根据所述第一设备的能力和Tag设备的能力确定功率偏移值。例如,当第一设备为第一类型的helper设备、且Tag设备为第一类型的Tag设备,该功率偏移值为3db。当第一设备为第二类型的helper设备、且Tag设备为第二类型的Tag设备,该功率偏移值为6db。
可选的,功率偏移值也可以为第二设备(例如基站)预先配置的。例如,基站可以通过无线资源控制(radio resource control,RRC)配置一个功率偏移值列表{0,3,6,9}db,然后通过媒体接入层控制单元(media access layer control element,MAC-CE)或下行控制信息(downlink control information,DCI)等选择该功率偏移值列表中一个或者多个,向第一设备指示功率偏移值。
可选的,功率偏移值也可以是协议规定的,例如3db。
S802,第一设备根据所述参考发射功率以及所述功率偏移值,确定向所述Tag设备发送激励信号的发射功率。
具体实现中,可以计算所述参考发射功率与所述功率偏移值之和,作为激励信号的发射功率。在开环控制情况下,激励信号的发射功率P=α*PL+P o,tag+ΔP,其中,α为Tag设备的激励参数、PL为所述第一设备与所述第二设备之间的链路损耗,P o,tag为所述Tag设备的目标解调功率,ΔP为功率偏移值。在闭环控制情况下,激励信号的发射功率P=P uu+10*log10(M)+ΔP o+ΔP,P uu为第一设备在Uu空口对应时频资源上的发射功率,M为所述第一设备与所述Tag设备之间的通信信道的带宽W tag与所述第一设备与所述第二设备之间的时频资源的带宽W uu的比值,ΔP o为所述Tag设备的目标接收功率与所述第二设备的目标接收功率的差值,ΔP为功率偏移值。
S803,第一设备根据所述激励信号的发射功率,向所述Tag设备发送所述激励信号。所述Tag设备接收激励信号,并将待传输信息调制到激励信号上进行发送,以便第二设备解调获取信息。
在本申请实施例中,通过Tag设备的能力例如Tag设备本身的能量和功率损耗,确定激励信号的发射功率,提高激励信号的发射功率的准确性,从而保障了Tag设备接收功率以及第二设备接收信噪比,保障信号解调性能,并且能节省功耗。
可选的,第一设备可以首先确定发送激励信号的时频资源,向第二设备发送通知消息,该通知消息用于指示激励信号的时频资源。或者第一设备街接收第二设备发送的资源指示,根据该资源指示,确定发送激励信号的时频资源。然后第一设备在时频资源上,根据第一设备的最大发送功率,向所述Tag设备发送所述激励信号。
如图9所示,图9是本申请实施例提供的另一种反向散射通信方法的流程示意图。本申请实施例中步骤至少包括:
S901,第一设备获取第一设备与第二设备之间的距离,该距离可以通过测量时间提前量(timing advance,TA)或参考信号接收功率(reference signal receiving power,RSRP)得到。
S902,第一设备根据映射关系,确定向所述Tag设备发送激励信号的发射功率。
可选的,第一设备可以根据时间提前量与发射功率的映射关系,确定激励信号的发射功率。例如,如图10所示,图10是本申请实施例提供的一种映射关系的示意图。其中,t1、t2为非负实数,单位为秒、毫秒、微秒、纳秒。或者t1、t2为非负整数,单位为基本时间长度Tc,例如Tc=1/(4096*480000)秒。t1、t2中任意一个或多个可以是预设的,或者也可以是第二设备或其他设备配置的。例如t1=1ms,t2=0.5ms。当TA大于t1时,激励信号的发射功率为P1,当TA小于等于t1、且大于等于t2时,激励信号的发射功率为P2,当TA小于t2时,激励信号的发射功率为P3。本示例仅考虑了两个TA门限值,对应三种激励信号的发射功率。还可以设置两个以上的TA门限值,对应三种以上激励信号的发射功率。设置方式相同,此处不再赘述。
可选的,第一设备可以根据参考信号接收功率与发射功率的映射关系,确定激励信号的发射功率。例如,如图11所示,图11是本申请实施例提供的另一种映射关系的示意图。其中Th1、Th2为实数,例如Th1=100,Th2=90。Th1和Th2中任意一个或多个可以为预设的,也可以是第二设备或其他设备配置的,也可以是根据配置的参数(例如子载波间隔、功率偏移值、发送功率等)确定的。其中,所述的参考信号可以为SS/PBCH、CSI-RS、DMRS、SRS和PRACH中的一种或者多种。当RSRP小于-Th1时,激励信号的发射功率为P4,当RSRP大于等于-Th1、且小于等于-Th2时,激励信号的发射功率为P5,当RSRP小于-Th2时,激励信号的发射功率为P6。本示例仅考虑了两个RSRP门限值,对应三种激励信号的发射功率。还可以设置两个以上的RSRP门限值,对应三种以上激励信号的发射功率。设置方式相同,此处不再赘述。
可选的,第一设备可以根据时间提前量、参考信号接收功率与发射功率的映射关系,确定激励信号的发射功率。与上述两种情况类似,此处不再赘述。
可选的,第二设备可以根据时间提前量与发射功率的映射关系,以及参考信号接收功率与发射功率的映射关系中的至少一种,确定向Tag设备发送激励信号的发射功率,并向第一设备发送指示信息,所述指示信息用于通知第一设备采用该发射功率向Tag设备发送激励信号。
S903,第一设备根据所述激励信号的发射功率,向所述Tag设备发送所述激励信号。
在本申请实施例中,第一设备通过映射关系确定激励信号的发射功率,节省了信令开销,并且提高了激励信号的发射功率的准确性,从而保障了Tag设备接收功率以及第二设备接收信噪比,保障信号解调性能。
如图12所示,图12是本申请实施例提供的一种反向散射通信方法的流程示意图。本申请实施例中步骤至少包括:
S1201,第一设备获取向Tag设备发送的激励信号的第一发射功率、以及Uu空口的第二发射功率,其中,Uu空口为第一设备与第二设备之间的空中接口。Uu空口的时频资源可以包括物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一种或多种。
可选的,第一设备可以向第二设备上报多个激励资源的功率余量报告(power headroom report,PHR),并上报多个激励资源的功率阈值。例如,功率余量报告格式可以为:X比特激励资源索引+Y比特PHR,其中,X和Y为大于等于1的整数。第二设备接收到功率余量报告和功率阈值之后,判断每个激励资源的功率余量是否大于该激励资源的功率阈值,如果大于,则第二设备可以确定第一设备具有功率余量进行功率爬坡。如果不大于,则第二设备可以确定第一设备不存在功率余量进行功率爬坡。在第二设备在确定第一设备是否具有功率余量进行功率爬坡之后,可以向第一设备发送回复消息,该回复消息用于通知第一设备开始进行功率爬坡或者不允许第一设备进行功率爬坡。
S1202,第一设备确定第一发射功率与第二发射功率之和是否大于第一设备的最大发射功率。如果大于,则执行S1203,如果不大于,则执行S1204。
S1203,第一设备根据优先级,降低对应信道资源上的发射功率。
例如,在某一个时刻,第一设备在同一个符号或时隙中,在Uu空口的物理上行控制信道PUCCH、和物理上行共享信道PUSCH上向第二设备发送上行信号,同时向Tag设备发送激励信号,如果确定上行信号的发射功率和激励信号的发射功率之和大于第一设备的最大发射功率,那么第一设备可以进行功率回退,按照优先级依次对发射功率进行递减,递减顺序可以包括:
第一种方式,如果Uu空口的上行信号的优先级小于激励信号的优先级,则优先递减Uu空口的发射功率。例如,先减少PUSCH上的发射功率,再减少PUCCH上的发射功率,最后再减少激励信号发送功率。
第二种方式,如果Uu空口的上行信号的优先级大于激励信号的优先级,则优先递减激励信号的发射功率。例如,先减少激励信号发送功率,再减少PUSCH或PUCCH上的发射功率。如果Uu空口的上行信号的优先级与激励信号的优先级相同,可以选择任意一个信道资源对应的发射功率进行回退。
S1204,第一设备按照第一发射功率与Tag设备进行通信,按照第二发射功率与第二 设备进行通信。
在本申请实施例中,在Uu空口或sidelink发送上行信号,同时向Tag设备发送激励信号的情况下,如果发送功率之和超过最大发送功率,可以按照优先级降低信道资源上的发射功率,从而保障第一设备的正常工作。
如图13所示,图13是本申请实施例提供的一种反向散射通信方法的流程示意图。本申请实施例中的第一设备可以为helper设备,第二设备可以为receiver设备,第一设备和第二设备也可以为同一个实体。本申请实施例中步骤至少包括:
S1301,第一设备获取Tag设备的功率控制能力。其中,所述功率控制能力用于指示所述第一设备确定功率控制参数。
其中,功率控制能力可以为支持或不支持调整反射功率,功率控制能力也可以为功率反射因子,功率反射因子的不同等级对应不同的反射能力,例如,功率反射因子的第一等级对应0.5,功率反射因子的第二等级对应0.3。或者,功率控制能力也可以为Tag设备的充电时间(例如,某项运算或者操作所需要的电量/功率的时间),或者,功率控制能力也可以为Tag设的充电速度,其中,可以计算第一电量/功率与第二电量/功率之间的差值、以及第一电量/功率到第二电量/功率所需要的有效时间,然后将所述差值除以所述有效时间计算得到充电速度。
其中,功率控制能力可以是第一设备或第二设备预先知道的。可选的,如图13所示,可以通过以下方式获取功率控制能力,包括:S1304,Tag设备向第二设备发送功率控制能力,S1305,第二设备接收到功率控制能力之后,向第一设备发送功率控制能力,第一设备接收第二设备发送的功率控制能力。
S1302,第一设备向所述Tag设备发送功率控制参数,Tag设备接收第一设备发送的功率控制参数。
具体的,如果确定Tag设备支持调整反射功率,则第一设备可以向Tag设备发送功率控制参数,如果Tag设备不支持调整反射功率,则第一设备静默或不响应。或者,如果功率控制能力包括多个功率反射因子的,可以从多个功率反射因子的选择一个功率反射因子作为功率控制参数。
其中,功率控制参数可以包括功率反射因子或功率反射因子的调整步长。功率控制参数也可以包括功率反射因子阈值。功率控制参数也可以包括功率反射因子或功率反射因子的调整步长、以及功率反射因子阈值。功率控制参数可以携带在第一设备向Tag设备发送的信号中,所述信号可以为广播信号,也可以单播信号,所述信号可以承载在数据信道上或控制信道上。功率控制参数可以是预设的,也可以通过第二设备进行指示。
S1303,所述Tag设备根据所述功率控制参数,调整反射功率。
可选的,在触发条件发生时,Tag设备可以根据所述功率反射因子,调整所述反射功率。可选的,在触发条件发生时,Tag设备可以按照所述功率反射因子的调整步长,调整所述反射功率。其中,所述触发条件可以包括Tag设备接收到第一设备发送的相同指令,例如该指令可以为ACK/NACK等,说明在上一个功率反射因子下,信息发送失败,需要调整功率反射因子来重新发送信号。
可选的,当所述Tag设备的功率反射能力大于或等于所述功率反射因子阈值时,Tag设备调整所述反射功率;或当Tag设备的功率反射能力小于或等于所述功率反射因子阈值时,Tag设备调整所述反射功率。
可选的,当所述Tag设备的功率反射能力大于或等于所述功率反射因子阈值,或所述Tag设备的功率反射能力小于或等于所述功率反射因子阈值时,Tag设备可以根据所述功率反射因子,调整所述反射功率。或者,当所述Tag设备的功率反射能力大于或等于所述功率反射因子阈值,或所述Tag设备的功率反射能力小于或等于所述功率反射因子阈值时,所述Tag设备可以按照所述功率反射因子的调整步长,调整所述反射功率。
在本申请实施例中,对于支持功率控制的Tag设备,通过调整反射功率,使得从多个Tag设备到达第二设备的反射功率可控,从而提高信号解调的成功率,降低Tag设备之间的相互干扰。
在跳频发送过程中,第一设备可以采用单音激励方式或者多载波激励方式发送激励信号。但是,两路信号到达第二设备之后,由于相位问题而可能造成信号抵消,可以通过以下方式来发送激励信号:
实现方式一,如果第二设备连续N次没有接收到Tag设备的反射信号,则第二设备指示第一设备切换到下一个频点发送激励信号。当前频点和下一个频点满足:
Figure PCTCN2020095227-appb-000008
其中,N为大于等于2的整数,所述f 1为所述当前频点,所述f 2为所述下一个频点,所述m、所述n均为大于0的整数。
实现方式二,第一设备切换频点重复发送激励信号,下一个频点和当前频点满足:
Figure PCTCN2020095227-appb-000009
其中,所述f 1为所述下一个频点,所述f 2为所述当前频点,所述m、所述n均为大于0的整数。
实现方式三,第一设备在第一频点和第二频点同时发送激励信号,第一频点和第二频点满足:
Figure PCTCN2020095227-appb-000010
其中,所述f 1为所述第一频点,所述f 2为所述第二频点,所述m、所述n均为大于0的整数。
实现方式四,第一设备按照固定的频点图样跳频发送激励信号,频点图样中的第一频点和第二频点满足:
Figure PCTCN2020095227-appb-000011
其中,所述f 1为所述第一频点,所述f 2为所述第二频点,所述m、所述n均为大于0的整数。
如图14所示,图14是本申请实施例提供的一种频点间距的示意图。f 1与f 2之间的频点间距为1/4、以及f 1与f 4之间的频点间距为3/4。当采用f 1和f 2、或f 1与f 4同时发送激励信号时,到达第二设备的两路信号的相位之差分别为pi/2和3pi/2,因此两路信号不会被 抵消。
在本申请实施例中,通过发送满足上述公式的激励信号,可以减少由于相位问题而造成的信号抵消,保证至少有一个频点能够成功激活Tag完成通信,而且可以获得跳频增益。
如图15所示,图15是本申请实施例提供的一种反向散射通信方法的流程示意图。本申请实施例中步骤至少包括:
S1501,第一设备确定第一设备所支持的功率控制方式。
其中,功率控制方式可以包括Tag设备的功率控制方式、第一设备的跳频发送方式以及第一设备的功率调整方式等等,各个功率控制方式的具体实现方式可以参考上述实施例,此处不再赘述。
S1502,第一设备获取功率控制方式的优先级。其中,功率控制方式的优先级可以由第二设备指示,也可以是预先配置的。
S1503,第一设备根据功率控制方式的优先级,选择执行功率控制方式。
具体的,当多种功率控制方式中的一种功率控制方式的优先级大于其他的功率控制方式的优先级时,可以选择该功率控制方式执行,或者,也可以优先选择该功率控制方式执行,然后选择其他功率控制方式执行。
例如,如果第一设备的功率调整方式>第一设备的跳频发送方式>Tag设备的功率控制方式,则优先选择第一设备的功率调整方式执行,然后执行第一设备的跳频发送方式,最后执行Tag设备的功率控制方式,也可以仅选择第一设备的功率调整方式执行。或者,如果Tag设备的功率控制方式>第一设备的跳频发送方式>第一设备的功率调整方式,则优先选择Tag设备的功率控制方式执行,然后执行第一设备的跳频发送方式,最后执行第一设备的功率调整方式,也可以仅选择Tag设备的功率控制方式执行。其他几种情况类似,此处不再赘述。
在本申请实施例中,当通信系统同时支持多种功率控制方式时,能够保证第一设备、第二设备以及Tag设备的行为一致。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图16,图16是本申请实施例提供的一种第一反向散射通信装置的结构示意图,该第一反向散射通信装置可以包括获取模块1601、处理模块602、发送模块1603以及接收模块1604,其中,各个模块的详细描述如下。
在一个实施例中:
获取模块1601,用于获取参考发射功率以及功率偏移值,所述功率偏移值为根据电子标签Tag设备的能力确定的;
处理模块1602,用于根据所述参考发射功率以及所述功率偏移值,确定向所述Tag设备发送激励信号的发射功率;
发送模块1603,用于根据所述激励信号的发射功率,向所述Tag设备发送所述激励信号。
其中,所述参考发射功率为根据第一功率、第一比值以及第一差值中的至少一项确定的,所述第一功率为在所述第一设备与所述第二设备之间的时频资源上的发射功率,所述第一比值为所述第一设备与所述Tag设备之间的通信信道的带宽与所述第一设备与所述第二设备之间的时频资源的带宽的比值,所述第一差值为所述Tag设备的目标接收功率与所述第二设备的目标接收功率的差值。
其中,所述通信信道的带宽、所述时频资源的带宽、所述Tag设备的目标接收功率或者所述第二设备的目标接收功率中至少一种信息是由所述第二设备配置的。
可选的,接收模块1604,用于接收所述第二设备发送的所述Tag设备的能力。
可选的,所述获取模块1601,还用于根据所述Tag设备的能力与所述功率偏移值的对应关系,确定所述功率偏移值。
其中,所述功率偏移值为根据所述第一设备的能力确定的。
在另一个实施例中:
获取模块1601,用于获取Tag设备的功率控制能力;
发送模块1603,用于向所述Tag设备发送功率控制参数,所述功率控制参数用于所述Tag设备调整反射功率。
可选的,获取模块1601,还用于接收第二设备发送的所述功率控制能力。
其中,所述功率控制参数包括功率反射因子或功率反射因子的调整步长。
其中,所述功率控制参数包括功率反射因子阈值。
需要说明的是,各个模块的实现还可以对应参照上述方法实施例的相应描述,执行上述实施例中第一设备所执行的方法和功能。
请参见图17,图17是本申请实施例提供的一种第二反向散射通信装置的结构示意图,该第二反向散射通信装置可以包括接收模块1701、发送模块1702以及处理模块1703,其中,各个模块的详细描述如下。
在一个实施例中:
接收模块1701,用于接收Tag设备发送的所述Tag设备的能力;
发送模块1702,用于向第一设备发送所述Tag设备的能力,所述Tag设备的能力用于所述第一设备确定功率偏移值,所述功率偏移值用于所述第一设备确定向所述Tag设备发送激励信号的发射功率。
可选的,发送模块1702,还用于向第一设备发送配置的所述功率偏移值。
处理模块1703,用于配置如下至少一种信息:所述第一设备与所述Tag设备之间的通信信道的带宽、所述第一设备与所述第二设备之间的时频资源的带宽、所述Tag设备的目标接收功率或者所述第二设备的目标接收功率。
在另一个实施例中:
接收模块1701,用于接收Tag设备发送的所述Tag设备的功率控制能力;
发送模块1702,用于向第一设备发送所述功率控制能力,所述功率控制能力用于指示所述第一设备确定功率控制参数,所述功率控制参数用于所述Tag设备调整反射功率。
需要说明的是,各个模块的实现还可以对应参照上述方法实施例的相应描述,执行上述实施例中第二设备所执行的方法和功能。
请参见图18,图18是本申请实施例提供的一种第三反向散射通信装置的结构示意图,该第三反向散射通信装置可以包括接收模块1801、处理模块1802以及发送模块1803,其中,各个模块的详细描述如下。
接收模块1801,用于接收第一设备发送的功率控制参数;
处理模块1802,用于根据所述功率控制参数,调整反射功率。
可选的,发送模块1803,用于向第二设备发射功率控制能力。
其中,所述功率控制参数包括功率反射因子;
可选的,处理模块1802,还用于根据所述功率反射因子,调整所述反射功率。
其中,所述功率控制参数包括功率反射因子的调整步长;
处理模块1802,还用于按照所述功率反射因子的调整步长,调整所述反射功率。
其中,所述功率控制参数包括功率反射因子阈值;
处理模块1802,还用于当所述Tag设备的功率反射能力大于或等于所述功率反射因子阈值时,调整所述反射功率;或当所述Tag设备的功率反射能力小于或等于所述功率反射因子阈值时,调整所述反射功率。
需要说明的是,各个模块的实现还可以对应参照上述方法实施例的相应描述,执行上述实施例中Tag设备所执行的方法和功能。
请继续参考图19,图19是本申请实施例提出的一种第一设备的结构示意图。如图19所示,该第一设备可以包括:至少一个处理器1901,至少一个通信接口1902、以及至少一个存储器1903。
其中,处理器1901可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。本申请实施例中设备的通信接口1902用于与其他节点设备进行信令或数据的通信。存储器1903可以包括易失性存储器,例如非挥发性动态随机存取内存(nonvolatile random access memory,NVRAM)、相变化随机存取内存(phase change RAM,PRAM)、磁阻式随机存取内存(magetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)、半导体器件,例如固态硬盘(solid state disk,SSD)等。存储器1903可选的还可以是至少一个位于远离前述处理器1901的存储装置。存储器1903中可选的还可以存储一组程序代码。处理器1901可选的还可以执行存储器1903中所存储的程序。
在一个实施例中:
其中,处理器1901用于执行如下操作:
获取参考发射功率以及功率偏移值,所述功率偏移值为根据电子标签Tag设备的能力确定的;
根据所述参考发射功率以及所述功率偏移值,确定向所述Tag设备发送激励信号的发射功率;
根据所述激励信号的发射功率,向所述Tag设备发送所述激励信号。
其中,所述参考发射功率为根据第一功率、第一比值以及第一差值中的至少一项确定的,所述第一功率为在所述第一设备与所述第二设备之间的时频资源上的发射功率,所述第一比值为所述第一设备与所述Tag设备之间的通信信道的带宽与所述第一设备与所述第二设备之间的时频资源的带宽的比值,所述第一差值为所述Tag设备的目标接收功率与所述第二设备的目标接收功率的差值。
其中,所述通信信道的带宽、所述时频资源的带宽、所述Tag设备的目标接收功率或者所述第二设备的目标接收功率中至少一种信息是由所述第二设备配置的。
其中,处理器1901用于执行如下操作:
接收所述第二设备发送的所述Tag设备的能力。
其中,处理器1901用于执行如下操作:
根据所述Tag设备的能力与所述功率偏移值的对应关系,确定所述功率偏移值。
其中,所述功率偏移值为根据所述第一设备的能力确定的。
在另一个实施例中:
其中,处理器1901用于执行如下操作:
获取Tag设备的功率控制能力;
向所述Tag设备发送功率控制参数,所述功率控制参数用于所述Tag设备调整反射功率。
其中,处理器1901用于执行如下操作:
接收第二设备发送的所述功率控制能力。
其中,所述功率控制参数包括功率反射因子或功率反射因子的调整步长。
其中,所述功率控制参数包括功率反射因子阈值。
进一步的,处理器还可以与存储器和通信接口相配合,执行上述任一实施例中第一设备的操作。
请继续参考图20,图20是本申请实施例提出的一种第二设备的结构示意图。如图所示,该第二设备可以包括:至少一个处理器2001,至少一个通信接口2002、以及至少一个存储器2003。
其中,处理器2001可以是前文提及的各种类型的处理器。本申请实施例中设备的通信接口2002用于与其他节点设备进行信令或数据的通信。存储器2003可以是前文提及的各种类型的存储器。存储器2003可选的还可以是至少一个位于远离前述处理器2001的存储装置。存储器2003中存储一组程序代码,且处理器2001执行存储器2003中程序。
在一个实施例中:
其中,处理器2001用于执行如下操作:
接收Tag设备发送的所述Tag设备的能力;
向第一设备发送所述Tag设备的能力,所述Tag设备的能力用于所述第一设备确定功 率偏移值,所述功率偏移值用于所述第一设备确定向所述Tag设备发送激励信号的发射功率。
其中,处理器2001用于执行如下操作:
向第一设备发送配置的所述功率偏移值。
其中,处理器1901用于执行如下操作:
配置如下至少一种信息:所述第一设备与所述Tag设备之间的通信信道的带宽、所述第一设备与所述第二设备之间的时频资源的带宽、所述Tag设备的目标接收功率或者所述第二设备的目标接收功率。
在另一个实施例中:
其中,处理器2001用于执行如下操作:
接收Tag设备发送的所述Tag设备的功率控制能力;
向第一设备发送所述功率控制能力,所述功率控制能力用于指示所述第一设备确定功率控制参数,所述功率控制参数用于所述Tag设备调整反射功率。
进一步的,处理器还可以与存储器和通信接口相配合,执行上述任一实施例中第二设备的操作。
请继续参考图21,图21是本申请实施例提出的一种Tag设备的结构示意图。如图所示,该Tag设备可以包括:至少一个处理器2101,至少一个通信接口2102、以及至少一个存储器2103。
其中,处理器2101可以是前文提及的各种类型的处理器。本申请实施例中设备的通信接口2102用于与其他节点设备进行信令或数据的通信。存储器2103可以是前文提及的各种类型的存储器。存储器2103可选的还可以是至少一个位于远离前述处理器2101的存储装置。存储器2103中存储一组程序代码,且处理器2101执行存储器2103中程序。
接收第一设备发送的功率控制参数;
根据所述功率控制参数,调整反射功率。
其中,处理器2101用于执行如下操作:
向第二设备发射功率控制能力。
其中,所述功率控制参数包括功率反射因子;处理器2101用于执行如下操作:
根据所述功率反射因子,调整所述反射功率。
其中,所述功率控制参数包括功率反射因子的调整步长;处理器2101用于执行如下操作:
所述Tag设备按照所述功率反射因子的调整步长,调整所述反射功率。
其中,所述功率控制参数包括功率反射因子阈值,其中,处理器2101用于执行如下操作:
当所述Tag设备的功率反射能力大于或等于所述功率反射因子阈值时,所述Tag设备调整所述反射功率;或
当所述Tag设备的功率反射能力小于或等于所述功率反射因子阈值时,所述Tag设备调整所述反射功率。
进一步的,处理器还可以与存储器和通信接口相配合,执行上述任一实施例中Tag设 备的操作。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持第一设备、第二设备以及Tag设备以实现上述任一实施例中所涉及的功能,例如生成或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还可以包括存储器,所述存储器,用于第一设备、第二设备以及Tag设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及第一设备、第二设备以及Tag设备的任意方法和功能。
本申请实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及第一设备、第二设备以及Tag设备的任意方法和功能。
本申请实施例还提供了一种装置,用于执行上述各实施例中任一实施例中涉及第一设备、第二设备以及Tag设备的任意方法和功能。
本申请实施例还提供一种无线通信系统,该系统包括上述任一实施例中涉及的至少一个第一设备、至少一个第二设备和至少一个Tag设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (40)

  1. 一种反向散射通信方法,其特征在于,所述方法包括:
    第一设备获取参考发射功率以及功率偏移值,所述功率偏移值为根据电子标签Tag设备的能力确定的;
    所述第一设备根据所述参考发射功率以及所述功率偏移值,确定向所述Tag设备发送激励信号的发射功率;
    所述第一设备根据所述激励信号的发射功率,向所述Tag设备发送所述激励信号。
  2. 如权利要求1所述的方法,其特征在于,所述参考发射功率为根据第一功率、第一比值以及第一差值中的至少一项确定的,所述第一功率为在所述第一设备与所述第二设备之间的时频资源上的发射功率,所述第一比值为所述第一设备与所述Tag设备之间的通信信道的带宽与所述第一设备与所述第二设备之间的时频资源的带宽的比值,所述第一差值为所述Tag设备的目标接收功率与所述第二设备的目标接收功率的差值。
  3. 如权利要求2所述的方法,其特征在于,所述通信信道的带宽、所述时频资源的带宽、所述Tag设备的目标接收功率或者所述第二设备的目标接收功率中至少一种信息是由所述第二设备配置的。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的所述Tag设备的能力。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一设备获取参考发射功率以及功率偏移值包括:
    所述第一设备根据所述Tag设备的能力与所述功率偏移值的对应关系,确定所述功率偏移值。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述功率偏移值为根据所述第一设备的能力确定的。
  7. 一种反向散射通信方法,其特征在于,所述方法包括:
    第二设备接收Tag设备发送的所述Tag设备的能力;
    所述第二设备向第一设备发送所述Tag设备的能力,所述Tag设备的能力用于所述第一设备确定功率偏移值,所述功率偏移值用于所述第一设备确定向所述Tag设备发送激励信号的发射功率。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第二设备向第一设备发送配置的所述功率偏移值。
  9. 如权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述第二设备配置如下至少一种信息:所述第一设备与所述Tag设备之间的通信信道的带宽、所述第一设备与所述第二设备之间的时频资源的带宽、所述Tag设备的目标接收功率或所述第二设备的目标接收功率。
  10. 一种反向散射通信方法,其特征在于,所述方法包括:
    第一设备获取Tag设备的功率控制能力;
    所述第一设备向所述Tag设备发送功率控制参数,所述功率控制参数用于所述Tag设备调整反射功率。
  11. 如权利要求10所述的方法,其特征在于,所述第一设备获取Tag设备的功率控制能力包括:
    所述第一设备接收第二设备发送的所述功率控制能力。
  12. 如权利要求10或11所述的方法,其特征在于,所述功率控制参数包括功率反射因子或功率反射因子的调整步长。
  13. 如权利要求10-12任一项所述的方法,其特征在于,所述功率控制参数包括功率反射因子阈值。
  14. 一种反向散射通信方法,其特征在于,所述方法包括:
    Tag设备接收第一设备发送的功率控制参数;
    所述Tag设备根据所述功率控制参数,调整反射功率。
  15. 如权利要求14所述的方法,其特征在于,所述Tag设备接收第一设备发送的功率控制参数之前,还包括:
    所述Tag设备向第二设备发射功率控制能力。
  16. 如权利要求14或15所述的方法,其特征在于,所述功率控制参数包括功率反射因子;所述Tag设备根据所述功率控制参数,调整反射功率包括:
    所述Tag设备根据所述功率反射因子,调整所述反射功率。
  17. 如权利要求14或15所述的方法,其特征在于,所述功率控制参数包括功率反射因子的调整步长,所述Tag设备根据所述功率控制参数,调整反射功率包括:
    所述Tag设备按照所述功率反射因子的调整步长,调整所述反射功率。
  18. 如权利要求14-17任一项所述的方法,其特征在于,所述功率控制参数包括功率 反射因子阈值,所述Tag设备根据所述功率控制参数,调整反射功率包括:
    当所述Tag设备的功率反射能力大于或等于所述功率反射因子阈值时,所述Tag设备调整所述反射功率;或
    当所述Tag设备的功率反射能力小于或等于所述功率反射因子阈值时,所述Tag设备调整所述反射功率。
  19. 一种反向散射通信方法,其特征在于,所述方法包括:
    第二设备接收Tag设备发送的所述Tag设备的功率控制能力;
    所述第二设备向第一设备发送所述功率控制能力,所述功率控制能力用于指示所述第一设备确定功率控制参数,所述功率控制参数用于所述Tag设备调整反射功率。
  20. 一种第一反向散射通信装置,其特征在于,所述装置包括:
    获取模块,用于获取参考发射功率以及功率偏移值,所述功率偏移值为根据电子标签Tag设备的能力确定的;
    处理模块,用于根据所述参考发射功率以及所述功率偏移值,确定向所述Tag设备发送激励信号的发射功率;
    发送模块,用于根据所述激励信号的发射功率,向所述Tag设备发送所述激励信号。
  21. 如权利要求20所述的装置,其特征在于,所述参考发射功率为根据第一功率、第一比值以及第一差值中的至少一项确定的,所述第一功率为在所述第一设备与所述第二设备之间的时频资源上的发射功率,所述第一比值为所述第一设备与所述Tag设备之间的通信信道的带宽与所述第一设备与所述第二设备之间的时频资源的带宽的比值,所述第一差值为所述Tag设备的目标接收功率与所述第二设备的目标接收功率的差值。
  22. 如权利要求21所述的装置,其特征在于,所述通信信道的带宽、所述时频资源的带宽、所述Tag设备的目标接收功率或者所述第二设备的目标接收功率中至少一种信息是由所述第二设备配置的。
  23. 如权利要求20-22任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述第二设备发送的所述Tag设备的能力。
  24. 如权利要求20-23任一项所述的装置,其特征在于,
    所述获取模块,还用于根据所述Tag设备的能力与所述功率偏移值的对应关系,确定所述功率偏移值。
  25. 如权利要求10-14任一项所述的装置,其特征在于,所述功率偏移值为根据所述第一设备的能力确定的。
  26. 一种第二反向散射通信装置,其特征在于,所述装置包括:
    接收模块,用于接收Tag设备发送的所述Tag设备的能力;
    发送模块,用于向第一设备发送所述Tag设备的能力,所述Tag设备的能力用于所述第一设备确定功率偏移值,所述功率偏移值用于所述第一设备确定向所述Tag设备发送激励信号的发射功率。
  27. 如权利要求26所述的装置,其特征在于,
    所述发送模块,还用于向第一设备发送配置的所述功率偏移值。
  28. 如权利要求26或27所述的装置,其特征在于,所述装置还包括:
    处理模块,用于配置如下至少一种信息:所述第一设备与所述Tag设备之间的通信信道的带宽、所述第一设备与所述第二设备之间的时频资源的带宽、所述Tag设备的目标接收功率或者所述第二设备的目标接收功率。
  29. 一种第一反向散射通信装置,其特征在于,所述装置包括:
    获取模块,用于获取Tag设备的功率控制能力;
    发送模块,用于向所述Tag设备发送功率控制参数,所述功率控制参数用于所述Tag设备调整反射功率。
  30. 如权利要求29所述的装置,其特征在于,
    所述获取模块,还用于接收第二设备发送的所述功率控制能力。
  31. 如权利要求29或30所述的装置,其特征在于,所述功率控制参数包括功率反射因子或功率反射因子的调整步长。
  32. 如权利要求29-31任一项所述的装置,其特征在于,所述功率控制参数包括功率反射因子阈值。
  33. 一种第三反向散射通信装置,其特征在于,所述装置包括:
    接收模块,用于接收第一设备发送的功率控制参数;
    处理模块,用于根据所述功率控制参数,调整反射功率。
  34. 如权利要求33所述的装置,其特征在于,
    发送模块,用于向第二设备发射功率控制能力。
  35. 如权利要求33或34所述的装置,其特征在于,所述功率控制参数包括功率反射因子;
    所述处理模块,还用于根据所述功率反射因子,调整所述反射功率。
  36. 如权利要求33或34所述的装置,其特征在于,所述功率控制参数包括功率反射因子的调整步长;
    所述处理模块,还用于按照所述功率反射因子的调整步长,调整所述反射功率。
  37. 如权利要求33-36任一项所述的装置,其特征在于,所述功率控制参数包括功率反射因子阈值;
    所述处理模块,还用于当所述Tag设备的功率反射能力大于或等于所述功率反射因子阈值时,调整所述反射功率;或当所述Tag设备的功率反射能力小于或等于所述功率反射因子阈值时,调整所述反射功率。
  38. 一种第二反向散射通信装置,其特征在于,所述装置包括:
    接收模块,用于接收Tag设备发送的所述Tag设备的功率控制能力;
    发送模块,用于向第一设备发送所述功率控制能力,所述功率控制能力用于指示所述第一设备确定功率控制参数,所述功率控制参数用于所述Tag设备调整反射功率。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行权利要求1-19任一项所述的方法。
  40. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1-19任一项所述的方法。
PCT/CN2020/095227 2019-08-16 2020-06-09 一种反向散射通信方法及相关设备 WO2021031662A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910761838.5 2019-08-16
CN201910761838.5A CN112399542B (zh) 2019-08-16 2019-08-16 一种反向散射通信方法及相关设备

Publications (1)

Publication Number Publication Date
WO2021031662A1 true WO2021031662A1 (zh) 2021-02-25

Family

ID=74603211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095227 WO2021031662A1 (zh) 2019-08-16 2020-06-09 一种反向散射通信方法及相关设备

Country Status (2)

Country Link
CN (2) CN112399542B (zh)
WO (1) WO2021031662A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746536A (zh) * 2021-07-22 2021-12-03 中国电子科技集团公司第五十四研究所 散射通信方法、信号发射装置、信号接收装置及系统
CN113891356A (zh) * 2021-09-29 2022-01-04 中国信息通信研究院 一种无线通信数据信息传输方法和设备
CN114337970A (zh) * 2021-12-31 2022-04-12 中国信息通信研究院 一种边链路信息传输方法和设备
WO2023015572A1 (zh) * 2021-08-13 2023-02-16 Oppo广东移动通信有限公司 无线通信的方法和设备
WO2023220850A1 (en) * 2022-05-16 2023-11-23 Qualcomm Incorporated Multiple thresholds for communication systems with backscattering-based communications devices
WO2023237002A1 (zh) * 2022-06-08 2023-12-14 维沃移动通信有限公司 信息传输方法、装置、第一设备及第二设备
WO2024056530A1 (en) * 2022-09-12 2024-03-21 Sony Group Corporation Hybrid backscatter communication
WO2024088218A1 (zh) * 2022-10-25 2024-05-02 维沃移动通信有限公司 信号传输方法、装置、通信设备及存储介质
WO2024098424A1 (zh) * 2022-11-11 2024-05-16 Oppo广东移动通信有限公司 无线通信的方法及设备
EP4322657A4 (en) * 2021-04-30 2024-06-12 Huawei Technologies Co., Ltd. METHOD, SYSTEM AND APPARATUS FOR TRANSMITTING INFORMATION

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010321A1 (zh) * 2021-08-04 2023-02-09 Oppo广东移动通信有限公司 一种无线通信方法及装置、通信设备
CN115915021A (zh) * 2021-08-11 2023-04-04 Oppo广东移动通信有限公司 信号处理方法、装置、交互系统、电子设备及存储介质
CN115828946A (zh) * 2021-09-18 2023-03-21 华为技术有限公司 功率控制方法、装置及系统
CN116963251A (zh) * 2022-04-20 2023-10-27 维沃移动通信有限公司 功率控制方法、装置、终端、网络侧设备及系统
CN116997020A (zh) * 2022-04-22 2023-11-03 维沃移动通信有限公司 资源分配方法、设备及可读存储介质
CN117254890A (zh) * 2022-06-09 2023-12-19 维沃移动通信有限公司 反向散射通信配置方法、装置、网络侧设备和终端
CN117528492A (zh) * 2022-07-29 2024-02-06 维沃移动通信有限公司 能力上报方法、装置、反向散射设备及第一通信设备
CN118157691A (zh) * 2022-12-05 2024-06-07 维沃移动通信有限公司 参数配置方法、装置、设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060197652A1 (en) * 2005-03-04 2006-09-07 International Business Machines Corporation Method and system for proximity tracking-based adaptive power control of radio frequency identification (RFID) interrogators
CN102969751A (zh) * 2012-09-29 2013-03-13 深圳市金溢科技有限公司 一种无线充电装置及相关方法
US20170193256A1 (en) * 2016-01-04 2017-07-06 Electronics And Telecommunications Research Institute Rfid tag and method of controlling the same
CN109447223A (zh) * 2018-10-31 2019-03-08 华大半导体有限公司 一种增强超高频rfid标签反射功率的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151778A2 (en) * 2008-04-14 2009-12-17 Mojix, Inc. Radio frequency identification tag location estimation and tracking system and method
CN105303137B (zh) * 2015-10-29 2018-06-26 北京交通大学 一种环境反向散射系统的读写器的门限值的确定方法
EP3408681B1 (en) * 2016-01-26 2024-01-24 University of Washington Backscatter devices including examples of single sideband operation
JP2020509618A (ja) * 2016-10-25 2020-03-26 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 後方散乱周囲ismバンド信号
CN109412992B (zh) * 2018-11-13 2020-07-14 上海交通大学 基于正交频分多址技术的反向散射系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060197652A1 (en) * 2005-03-04 2006-09-07 International Business Machines Corporation Method and system for proximity tracking-based adaptive power control of radio frequency identification (RFID) interrogators
CN102969751A (zh) * 2012-09-29 2013-03-13 深圳市金溢科技有限公司 一种无线充电装置及相关方法
US20170193256A1 (en) * 2016-01-04 2017-07-06 Electronics And Telecommunications Research Institute Rfid tag and method of controlling the same
CN109447223A (zh) * 2018-10-31 2019-03-08 华大半导体有限公司 一种增强超高频rfid标签反射功率的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3 Generation Partnership Project; Technical Specification Group Core Network and Terminals; Universal Subscriber Identity Module (USIM) Application Toolkit (USAT) (Release 13)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 31.111, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG6, no. V13.8.0, 4 October 2018 (2018-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 136, XP051487589 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4322657A4 (en) * 2021-04-30 2024-06-12 Huawei Technologies Co., Ltd. METHOD, SYSTEM AND APPARATUS FOR TRANSMITTING INFORMATION
CN113746536A (zh) * 2021-07-22 2021-12-03 中国电子科技集团公司第五十四研究所 散射通信方法、信号发射装置、信号接收装置及系统
CN113746536B (zh) * 2021-07-22 2024-04-26 中国电子科技集团公司第五十四研究所 散射通信方法、信号发射装置、信号接收装置及系统
WO2023015572A1 (zh) * 2021-08-13 2023-02-16 Oppo广东移动通信有限公司 无线通信的方法和设备
CN113891356B (zh) * 2021-09-29 2024-06-04 中国信息通信研究院 一种无线通信数据信息传输方法和设备
CN113891356A (zh) * 2021-09-29 2022-01-04 中国信息通信研究院 一种无线通信数据信息传输方法和设备
CN114337970A (zh) * 2021-12-31 2022-04-12 中国信息通信研究院 一种边链路信息传输方法和设备
CN114337970B (zh) * 2021-12-31 2023-10-13 中国信息通信研究院 一种边链路信息传输方法和设备
WO2023220850A1 (en) * 2022-05-16 2023-11-23 Qualcomm Incorporated Multiple thresholds for communication systems with backscattering-based communications devices
WO2023237002A1 (zh) * 2022-06-08 2023-12-14 维沃移动通信有限公司 信息传输方法、装置、第一设备及第二设备
WO2024056530A1 (en) * 2022-09-12 2024-03-21 Sony Group Corporation Hybrid backscatter communication
WO2024088218A1 (zh) * 2022-10-25 2024-05-02 维沃移动通信有限公司 信号传输方法、装置、通信设备及存储介质
WO2024098424A1 (zh) * 2022-11-11 2024-05-16 Oppo广东移动通信有限公司 无线通信的方法及设备

Also Published As

Publication number Publication date
CN112399542A (zh) 2021-02-23
CN112399542B (zh) 2022-04-12
CN114828185A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2021031662A1 (zh) 一种反向散射通信方法及相关设备
US11178695B2 (en) Apparatus and method for adaptively determining Tx beam subset for random access in wireless communication system
WO2017132825A1 (zh) 确定发射功率的方法、用户设备和基站
US20220052822A1 (en) Data transmission method and device
CN113891356A (zh) 一种无线通信数据信息传输方法和设备
JP7001307B2 (ja) 通信方法、端末デバイス、ネットワークデバイス、プログラム、および通信システム
US20210410080A1 (en) Power Control Method and Power Control Apparatus
CN110535593B (zh) 信号发送、资源确定方法、装置、终端、基站和存储介质
CN108702278B (zh) 一种业务传输方法、设备及系统
CN113573409A (zh) 一种通信方法及装置
US20230209478A1 (en) Emission restricted transmission of reference signals
US20220393717A1 (en) Flexible frequency hopping
CN109391386B (zh) 一种上行控制信息发送方法
CN114828237A (zh) 一种调度请求的传输方法及装置
JP2006279855A (ja) 無線通信システム及びその通信制御方法
CN106797280A (zh) 一种数据传输方法、系统及终端
CN113545137A (zh) 对终端请求的功率降低的控制
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2019120090A1 (zh) 参考信号传输方法和通信装置
WO2023207530A1 (zh) 一种功率控制方法、装置及计算机可读存储介质
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2023030060A1 (zh) 一种通信方法和设备
WO2023237002A1 (zh) 信息传输方法、装置、第一设备及第二设备
WO2024082791A1 (en) Method and apparatus for dynamic resource allocation for sidelink transmission over unlicensed spectrum
WO2023279325A1 (zh) 一种通信方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855747

Country of ref document: EP

Kind code of ref document: A1