WO2024082791A1 - Method and apparatus for dynamic resource allocation for sidelink transmission over unlicensed spectrum - Google Patents

Method and apparatus for dynamic resource allocation for sidelink transmission over unlicensed spectrum Download PDF

Info

Publication number
WO2024082791A1
WO2024082791A1 PCT/CN2023/112636 CN2023112636W WO2024082791A1 WO 2024082791 A1 WO2024082791 A1 WO 2024082791A1 CN 2023112636 W CN2023112636 W CN 2023112636W WO 2024082791 A1 WO2024082791 A1 WO 2024082791A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmissions
pssch
slots
dci format
channel access
Prior art date
Application number
PCT/CN2023/112636
Other languages
French (fr)
Inventor
Haipeng Lei
Zhennian SUN
Xin Guo
Xiaodong Yu
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2023/112636 priority Critical patent/WO2024082791A1/en
Publication of WO2024082791A1 publication Critical patent/WO2024082791A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • Embodiments of the present disclosure generally relate to wireless communication technology, and more particularly to dynamic resource allocation for sidelink transmissions over an unlicensed spectrum.
  • a wireless communication system may include one or multiple network communication devices, such as base stations, which may support wireless communication for one or multiple user communication devices, which may be otherwise known as user equipment (UE) , or other suitable terminology.
  • the wireless communication system may support wireless communication with one or multiple user communication devices by utilizing resources of the wireless communication system (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers, or the like) .
  • the wireless communication system may support wireless communication across various radio access technologies including third generation (3G) radio access technology, fourth generation (4G) radio access technology, fifth generation (5G) (which is also known as new radio (NR) ) radio access technology, among other suitable radio access technologies beyond 5G (e.g., sixth generation (6G) ) .
  • 3G third generation
  • 4G fourth generation
  • 5G fifth generation
  • NR new radio
  • a wireless communication system may support sidelink communications, in which devices (e.g., UEs) may communicate with one another directly via a sidelink, rather than being linked through a base station (BS) .
  • the term "sidelink" may refer to a radio link established for communicating among devices (e.g., UEs) , as opposed to communicating via the cellular infrastructure (e.g., uplink and downlink) .
  • Sidelink transmission may be performed on a licensed spectrum or an unlicensed spectrum.
  • the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ” Further, as used herein, including in the claims, a “set” may include one or more elements.
  • the first UE may include at least one memory; and at least one processor coupled with the at least one memory and configured to cause the first UE to: receive, from a BS, a downlink control information (DCI) format for scheduling a set of physical sidelink control channel (PSCCH) transmissions and a set of physical sidelink shared channel (PSSCH) transmissions in a set of consecutive slots for transmitting a transport block (TB) , wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; perform a channel access procedure according to a first channel access priority class (CAPC) value; and transmit the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
  • DCI downlink control information
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • the DCI format includes a first indicator indicating the number of slots in the set of consecutive slots.
  • a size of the first indicator is dependent on a maximum number of slots schedulable by the DCI format, which is configured by the BS, predefined, or preconfigured.
  • the DCI format includes a second indicator indicating a frequency domain resource for the set of the PSSCH transmissions.
  • the frequency domain resource includes a set of contiguous subchannels
  • the second indicator indicates a specific subchannel in the set of contiguous subchannels and a number of subchannels in the set of contiguous subchannels.
  • each of the set of PSCCH transmissions carries a sidelink control information (SCI) format and the SCI format includes a third indicator indicating a frequency domain resource for the set of the PSSCH transmissions based on the DCI format.
  • SCI sidelink control information
  • the third indicator indicates a number of contiguous subchannels for the set of the PSSCH transmissions.
  • each of the set of PSCCH transmissions carries an SCI format and the SCI format includes a fourth indicator indicating a number of remaining slots among the set of consecutive slots.
  • the DCI format indicates a second CAPC value for performing a channel access procedure.
  • the at least one processor may be further configured to cause the first UE to: determine a third CAPC value based on data carried by the TB; and select one of the second CAPC value and the third CAPC value as the first CAPC value.
  • the at least one processor may be further configured to cause the first UE to: determine a second CAPC value based on at least one of the number of slots in the set of consecutive slots or subcarrier spacing of a resource block (RB) set on which the channel access procedure is performed; determine a third CAPC value based on data carried by the TB; and select one of the second CAPC value and the third CAPC value as the first CAPC value.
  • RB resource block
  • the DCI format includes a fifth indicator indicating a cyclic prefix extension (CPE) length for transmitting the set of PSSCH transmissions.
  • CPE cyclic prefix extension
  • the channel access procedure initiates a channel occupancy time (COT) in an RB set
  • the at least one processor is further configured to cause the first UE to: transmit a CPE with the indicated CPE length before transmitting the set of PSSCH transmissions in response to the frequency domain resource for the set of the PSSCH transmissions occupying a partial bandwidth of the RB set; or transmit a CPE with a length randomly selected from a set of CPE lengths before transmitting the set of PSSCH transmissions in response to the frequency domain resource for the set of the PSSCH transmissions occupying the full bandwidth of the RB set.
  • COT channel occupancy time
  • the DCI format includes a sixth indicator for enabling or disabling the transmission of COT sharing information.
  • each of the set of PSCCH transmissions carries an SCI format, which includes COT sharing information in response to the sixth indicator enables the transmission of COT sharing information.
  • the channel access procedure initiates a COT and wherein the COT sharing information in the SCI format includes at least one of: the first CAPC value, the remaining duration of the COT, or a number of remaining slots among the set of consecutive slots.
  • the DCI format includes a seventh indicator for enabling or disabling a physical uplink control channel (PUCCH) transmission corresponding to the set of PSSCH transmissions.
  • PUCCH physical uplink control channel
  • the seventh indicator indicates an inapplicable physical sidelink feedback channel (PSFCH) to PUCCH timing value to disable the PUCCH transmission. In some embodiments, the seventh indicator indicates a specific codepoint of a resource for the PUCCH transmission to disable the PUCCH transmission.
  • PSFCH physical sidelink feedback channel
  • the BS may include at least one memory; and at least one processor coupled with the at least one memory and configured to cause the BS to: transmit, to a first UE, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; and detect hybrid automatic repeat request acknowledgement (HARQ-ACK) information corresponding to the set of PSSCH transmissions in a PUCCH transmission from the first UE in response to the PUCCH transmission being enabled.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • the DCI format includes a first indicator indicating the number of slots in the set of consecutive slots.
  • a size of the first indicator is dependent on a maximum number of slots schedulable by the DCI format.
  • the at least one processor may be further configured to cause the BS to configure the maximum number of slots for the first UE.
  • the maximum number of slots may be predefined or preconfigured.
  • the DCI format includes a second indicator indicating the frequency domain resource for the set of the PSSCH transmissions.
  • the frequency domain resource includes a set of contiguous subchannels
  • the second indicator indicates a specific subchannel in the set of contiguous subchannels and a number of subchannels in the set of contiguous subchannels.
  • the DCI format indicates a second CAPC value for the first UE to perform a channel access procedure.
  • the second CAPC value is determined based on at least one of the number of slots in the set of consecutive slots or subcarrier spacing of the frequency domain resource for the set of PSSCH transmissions.
  • the DCI format includes a fifth indicator indicating a CPE length for transmitting the set of PSSCH transmissions.
  • the DCI format includes a sixth indicator for enabling or disabling the transmission of COT sharing information.
  • the DCI format includes a seventh indicator for enabling or disabling the PUCCH transmission.
  • the seventh indicator indicates an inapplicable PSFCH to PUCCH timing value to disable the PUCCH transmission. In some embodiments, the seventh indicator indicates a specific codepoint of a resource for the PUCCH transmission to disable the PUCCH transmission.
  • the at least one processor may be further configured to cause the BS to set the seventh indicator to disable or enable the PUCCH transmission based on whether a reliability requirement of the TB is satisfied by the set of PSSCH transmissions or not.
  • the processor may include at least one controller coupled with at least one memory and configured to cause the processor to: receive, from a BS, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; perform a channel access procedure according to a first CAPC value; and transmit the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
  • Some embodiments of the present disclosure provide a method for wireless communication.
  • the method may include: receiving, from a BS, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; performing a channel access procedure according to a first CAPC value; and transmitting the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
  • the apparatus may include: at least one non-transitory computer-readable medium having stored thereon computer- executable instructions; at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry, wherein the at least one non-transitory computer-readable medium and the computer executable instructions may be configured to, with the at least one processor, cause the apparatus to perform a method according to some embodiments of the present disclosure.
  • FIG. 1 illustrates a schematic diagram of a wireless communication system in accordance with some embodiments of the present disclosure
  • FIG. 2 illustrates an exemplary sidelink transmission under resource allocation mode 1 in accordance with some embodiments of the present disclosure
  • FIG. 3 illustrates an exemplary COT initiated by a UE in accordance with some embodiments of the present disclosure
  • FIGs. 4-6 illustrate exemplary resource allocation for sidelink transmissions in accordance with some embodiments of the present disclosure
  • FIGs. 7 and 8 illustrate flowcharts of methods for wireless communication in accordance with some embodiments of the present disclosure
  • FIG. 9 illustrates a block diagram of an exemplary apparatus in accordance with some embodiments of the present disclosure.
  • FIG. 10 illustrates an example of a UE in accordance with some embodiments of the present disclosure
  • FIG. 11 illustrates an example of a processor in accordance with some embodiments of the present disclosure.
  • FIG. 12 illustrates an example of a network equipment (NE) in accordance with some embodiments of the present disclosure.
  • a DCI format can schedule a plurality of sidelink resources assigned within a window of 32 slots for a Tx UE.
  • the Tx UE may have to perform a Type 1 channel access procedure for each of the plurality of sidelink transmissions on an unlicensed spectrum. In this sense, the risk of channel access failure is quite high, and the transmission delay would be greatly increased.
  • Embodiments of the present disclosure provide solutions for facilitating sidelink transmission on an unlicensed spectrum.
  • the risk of channel access failure and the transmission delay can be reduced, and spectrum utilization efficiency can be further increased with simple UE implementation.
  • FIG. 1 illustrates a schematic diagram of wireless communication system 100 in accordance with some embodiments of the present disclosure.
  • the wireless communication system 100 may include one or more NEs 102 (e.g., one or more BSs) , one or more UEs 104, and a core network (CN) 106.
  • the wireless communication system 100 may support various radio access technologies.
  • the wireless communication system 100 may be a 4G network, such as an LTE network or an LTE-Advanced (LTE-A) network.
  • the wireless communication system 100 may be a NR network, such as a 5G network, a 5G-Advanced (5G-A) network, or a 5G ultra-wideband (5G-UWB) network.
  • the wireless communication system 100 may be a combination of a 4G network and a 5G network, or other suitable radio access technology including Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , and IEEE 802.20.
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 The wireless communication system 100 may support radio access technologies beyond 5G, for example, 6G. Additionally, the wireless communication system 100 may support technologies, such as time division multiple access (TDMA) , frequency division multiple access (FDMA) , or code division multiple access (CDMA) , etc.
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • CDMA code division multiple access
  • the one or more NEs 102 may be dispersed throughout a geographic region to form the wireless communication system 100.
  • One or more of the NEs 102 described herein may be or include or may be referred to as a network node, a base station, a network element, a network function, a network entity, a radio access network (RAN) , a NodeB, an eNodeB (eNB) , a next-generation NodeB (gNB) , or other suitable terminology.
  • An NE 102 and a UE 104 may communicate via a communication link, which may be a wireless or wired connection.
  • an NE 102 and a UE 104 may perform wireless communication (e.g., receive signaling, transmit signaling) over a Uu interface.
  • An NE 102 may provide a geographic coverage area for which the NE 102 may support services for one or more UEs 104 within the geographic coverage area.
  • an NE 102 and a UE 104 may support wireless communication of signals related to services (e.g., voice, video, packet data, messaging, broadcast, etc. ) according to one or multiple radio access technologies.
  • an NE 102 may be moveable, for example, a satellite associated with a non-terrestrial network (NTN) .
  • NTN non-terrestrial network
  • different geographic coverage areas 112 associated with the same or different radio access technologies may overlap, but the different geographic coverage areas may be associated with a different NE 102.
  • the one or more UEs 104 may be dispersed throughout a geographic region of the wireless communication system 100.
  • a UE 104 may include or may be referred to as a remote unit, a mobile device, a wireless device, a remote device, a subscriber device, a transmitter device, a receiver device, or some other suitable terminology.
  • the UE 104 may be referred to as a unit, a station, a terminal, or a client, among other examples.
  • the UE 104 may be referred to as an Internet-of-Things (IoT) device, an Internet-of-Everything (IoE) device, or machine-type communication (MTC) device, among other examples.
  • IoT Internet-of-Things
  • IoE Internet-of-Everything
  • MTC machine-type communication
  • a UE 104 may be able to support wireless communication directly with other UEs 104 over a communication link.
  • a UE 104 may support wireless communication directly with another UE 104 over a device-to-device (D2D) communication link.
  • D2D device-to-device
  • the communication link 114 may be referred to as a sidelink.
  • a UE 104 may support wireless communication directly with another UE 104 over a PC5 interface.
  • An NE 102 may support communication with the CN 106, or with another NE 102, or both.
  • an NE 102 may interface with another NE 102 or the CN 106 through one or more backhaul links (e.g., S1, N2, N3 or another network interface) .
  • the NE 102 may communicate with each other directly.
  • the NE 102 may communicate with each other or indirectly (e.g., via the CN 106.
  • one or more NEs 102 may include subcomponents, such as an access network entity, which may be an example of an access node controller (ANC) .
  • An ANC may communicate with the one or more UEs 104 through one or more other access network transmission entities, which may be referred to as radio heads, smart radio heads, or transmission-reception points (TRPs) .
  • TRPs transmission-reception points
  • the CN 106 may support user authentication, access authorization, tracking, connectivity, and other access, routing, or mobility functions.
  • the CN 106 may be an evolved packet core (EPC) , or a 5G core (5GC) , which may include a control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management functions (AMF) ) and a user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management functions
  • S-GW serving gateway
  • PDN gateway Packet Data Network gateway
  • UPF user plane function
  • control plane entity may manage non-access stratum (NAS) functions, such as mobility, authentication, and bearer management (e.g., data bearers, signal bearers, etc. ) for the one or more UEs 104 served by the one or more NEs 102 associated with the CN 106.
  • NAS non-access stratum
  • the CN 106 may communicate with a packet data network over one or more backhaul links (e.g., via an S1, N2, N3, or another network interface) .
  • the packet data network may include an application server.
  • one or more UEs 104 may communicate with the application server.
  • a UE 104 may establish a session (e.g., a protocol data unit (PDU) session, or the like) with the CN 106 via an NE 102.
  • the CN 106 may route traffic (e.g., control information, data, and the like) between the UE 104 and the application server using the established session (e.g., the established PDU session) .
  • the PDU session may be an example of a logical connection between the UE 104 and the CN 106 (e.g., one or more network functions of the CN 106) .
  • the NEs 102 and the UEs 104 may use resources of the wireless communication system 100 (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers) ) to perform various operations (e.g., wireless communication) .
  • the NEs 102 and the UEs 104 may support different resource structures.
  • the NEs 102 and the UEs 104 may support different frame structures.
  • the NEs 102 and the UEs 104 may support a single frame structure.
  • the NEs 102 and the UEs 104 may support various frame structures (i.e., multiple frame structures) .
  • the NEs 102 and the UEs 104 may support various frame structures based on one or more numerologies.
  • One or more numerologies may be supported in the wireless communication system 100, and a numerology may include a subcarrier spacing and a cyclic prefix.
  • a time interval of a resource may be organized according to frames (also referred to as radio frames) .
  • Each frame may have a duration, for example, a 10 millisecond (ms) duration.
  • each frame may include multiple subframes.
  • each frame may include 10 subframes, and each subframe may have a duration, for example, a 1 ms duration.
  • each frame may have the same duration.
  • each subframe of a frame may have the same duration.
  • a time interval of a resource may be organized according to slots.
  • a subframe may include a number (e.g., quantity) of slots.
  • the number of slots in each subframe may also depend on the one or more numerologies supported in the wireless communication system 100.
  • Each slot may include a number (e.g., quantity) of symbols (e.g., orthogonal frequency-division multiplexing (OFDM) symbols) .
  • the number (e.g., quantity) of slots for a subframe may depend on a numerology.
  • a slot For a normal cyclic prefix, a slot may include 14 symbols.
  • a slot For an extended cyclic prefix (e.g., applicable for 60 kHz subcarrier spacing) , a slot may include 12 symbols.
  • an electromagnetic (EM) spectrum may be split, based on frequency or wavelength, into various classes, frequency bands, frequency channels, etc.
  • the wireless communication system 100 may support one or multiple operating frequency bands, such as frequency range designations FR1 (410 MHz –7.125 GHz) , FR2 (24.25 GHz –52.6 GHz) , FR3 (7.125 GHz –24.25 GHz) , FR4 (52.6 GHz –114.25 GHz) , FR4a or FR4-1 (52.6 GHz –71 GHz) , and FR5 (114.25 GHz –300 GHz) .
  • FR1 410 MHz –7.125 GHz
  • FR2 24.25 GHz –52.6 GHz
  • FR3 7.125 GHz –24.25 GHz
  • FR4 (52.6 GHz –114.25 GHz)
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR5 114.25 GHz
  • the NEs 102 and the UEs 104 may perform wireless communication over one or more of the operating frequency bands.
  • FR1 may be used by the NEs 102 and the UEs 104, among other equipment or devices for cellular communication traffic (e.g., control information, data) .
  • FR2 may be used by the NEs 102 and the UEs 104, among other equipment or devices for short-range, high data rate capabilities.
  • FR1 may be associated with one or multiple numerologies (e.g., at least three numerologies) .
  • FR2 may be associated with one or multiple numerologies (e.g., at least 2 numerologies) .
  • a UE 104 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like.
  • a UE 104 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network.
  • a UE 104 includes wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, a UE 104 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
  • a UE 104 may communicate with an NE 102 (e.g., a BS) via uplink (UL) communication signals.
  • An NE 102 may communicate with a UE 104 via downlink (DL) communication signals.
  • an NE 102 and a UE 104 may communicate over licensed spectrums, whereas in some other embodiments, an NE 102 and a UE 104 may communicate over unlicensed spectrums.
  • the present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
  • Sidelink transmission may involve a PSCCH and an associated PSSCH, which is scheduled by an SCI format carried on the PSCCH.
  • the SCI and associated PSSCH may be transmitted from a transmitting UE (hereinafter referred to as "Tx UE” ) to a receiving UE (hereinafter referred to as "Rx UE” ) in a unicast manner, to a group of Rx UEs in a groupcast manner, or to Rx UEs within a range in a broadcast manner.
  • Tx UE transmitting UE
  • Rx UE receiving UE
  • the PSSCH may carry data which may require corresponding HARQ-ACK feedback from the Rx UE (s) to the Tx UE.
  • broadcast transmission may not need HARQ-ACK feedback.
  • unicast and groupcast transmission may enable HARQ-ACK feedback under some preconditions.
  • the HARQ-ACK feedback for a PSSCH may be carried on a PSFCH.
  • Resource allocation mode 1 is based on the scheduling of a BS.
  • Resource allocation mode 2 is based on the autonomous selection of a UE. The specific definitions of the two modes are described in 3GPP specifications.
  • resources may be assigned by a BS via dynamic scheduling.
  • a BS may transmit a DCI format (e.g., DCI format 3_0) to a UE (e.g., Tx UE) to indicate the time-frequency resource for sidelink transmissions (e.g., a PSCCH (s) and a PSSCH (s) ) .
  • the DCI format may also indicate PSFCH-to-PUCCH timing and a PUCCH resource (s) for the Tx UE to report HARQ-ACK information associated with the sidelink transmissions to the BS.
  • the Tx UE may transmit a PUCCH carrying the HARQ-ACK information associated with the sidelink transmissions to the BS in the indicated PUCCH resource. If the Tx UE transmits a “negative ACK (NACK) ” to the BS in the PUCCH resource, then the BS knows that the Tx UE has not successfully transmitted its data to the Rx UE (s) and may schedule resources for the Tx UE to retransmit its data to the Rx UE (s) .
  • NACK negative ACK
  • the BS If the Tx UE transmits an “ACK” to the BS in the PUCCH resource, then the BS knows that the Tx UE has already successfully transmitted its data to the Rx UE (s) and may not schedule resources for the Tx UE for retransmission. Hence, for each TB or PSSCH in resource allocation mode 1, the BS may assign a relevant PUCCH resource and indicate it to the Tx UE in the corresponding DCI format.
  • the DCI format may include a time resource assignment field to indicate the time domain resource allocation for the sidelink transmissions.
  • a higher layer parameter e.g., "sl-MaxNumPerReserve" as specified in 3GPP specifications
  • the size of the time resource assignment field in the DCI format may vary.
  • the higher layer parameter indicates the maximum number of reserved PSCCH/PSSCH resources that can be indicated by an SCI format. For example, when the value of the higher layer parameter is configured as 2 (i.e., 2 reserved resources for a PSCCH and an associated PSSCH) , the time resource assignment field may require 5 bits.
  • the time resource assignment field may require 9 bits.
  • the 2 or 3 reserved PSCCH/PSSCH resources are within a window of 32 sidelink slots which is started from the slot where a PSCCH (or an SCI format) is received.
  • a PSCCH (or an SCI format) received in slot n indicates additional 1 or 2 PSCCH/PSSCH resources within a window from slot n+1 to slot n+32.
  • the time domain offset between the PSCCH and the reserved resources as well as the time domain offset between the two reserved resources are dynamically indicated by the PSCCH.
  • the time resource assignment field in the DCI format may indicate 2 or 3 PSCCH/PSSCH resources for scheduling 2 or 3 PSCCHs/PSSCHs for transmitting the same TB with a repetition on the 2 or 3 resources for reliability purpose.
  • FIG. 2 illustrates an exemplary sidelink transmission under resource allocation mode 1 in accordance with some embodiments of the present disclosure.
  • a DCI format (not shown in FIG. 2) may indicates three slots, slot n, slot n+5 and slot n+10 for scheduling a TB.
  • a Tx UE may respectively transmit the TB in PSSCH 221, PSSCH 223 and PSSCH 225 which are respectively scheduled by SCI 211, SCI 213 and SCI 215.
  • PSSCH 221, PSSCH 223 and PSSCH 225 has an associated PSFCH.
  • the Tx UE may determine HARQ-ACK information based on the received PSFCHs or absence of PSFCHs in slot n+3, n+7, and n+15, then report the determined HARQ-ACK information in a PUCCH (not shown in FIG. 2) to the BS.
  • a sidelink transmission may be performed on an unlicensed spectrum. This is advantageous because a sidelink transmission over an unlicensed spectrum can achieve, for example, an increased data rate (s) .
  • a channel access procedure also known as a listen-before-talk (LBT) test, may be performed before communicating (e.g., including the sidelink transmission) on the unlicensed spectrum.
  • LBT listen-before-talk
  • channel access Type 2 may further include channel access Type 2A, channel access Type 2B and channel access Type 2C.
  • channel access Type 1 and channel access Type 2 can be found in 3GPP specifications.
  • a UE by performing a Type 1 channel access procedure, can obtain a channel occupancy (CO) and occupy the channel until the maximum channel occupancy time (MCOT) .
  • the duration of the MCOT may be dependent on, for example, a CAPC value of the traffic priority and the presence of other technologies sharing the same spectrum.
  • the MCOT can be 2ms, 4ms, 6ms, 8ms or 10ms. Accordingly, after the completion of the channel access procedure, the UE can occupy the channel with a maximum of several or tens of slots, depending on the corresponding CAPC value and the subcarrier spacing of the channel.
  • the channel access type for two sidelink transmissions may be dependent on the length of the gap between the two sidelink transmissions.
  • the Tx UE may need to perform a Type 1 channel access procedure for transmitting sidelink transmission #2. If the gap between the two sidelink transmissions is at least 25 ⁇ s and sidelink transmission #2 is inside the COT initiated for sidelink transmission #1, the Tx UE can perform Type 2A channel access procedure for transmitting sidelink transmission #2. If the gap between the two sidelink transmissions is equal to 16 ⁇ s and sidelink transmission #2 is inside the COT initiated for sidelink transmission #1, the Tx UE can perform Type 2B channel access procedure for transmitting sidelink transmission #2. If the gap is up to 16 ⁇ s, sidelink transmission #2 is limited to 584 ⁇ s and sidelink transmission #2 is inside the COT initiated for sidelink transmission #1, the Tx UE can perform Type 2C channel access procedure for transmitting sidelink transmission #2.
  • Type 1 channel access procedure may be required only once before transmitting a first (earliest) sidelink transmission, and then the following sidelink transmissions do not need to perform channel access procedures if they are within the COT.
  • a UE may initiate COT 331 by performing a Type 1 channel access procedure with a CAPC value of 2.
  • the UE can contiguously transmit 4 PSCCH and the associated 4 PSSCHs (i.e., PSCCHs 311 to 317 and PSCCHs 321 to 327) in four consecutive slots (i.e., slots n to n+3) without performing channel access for the sidelink transmissions in slot n+1, n+2, and slot n+3.
  • a DCI format can schedule a plurality of sidelink resources (e.g., a maximum of 2 or 3 PSCCH/PSSCH resources) to a Tx UE.
  • the max 2 or 3 reserved sidelink resources may be assigned within a window of 32 slots using 5 or 9 bits for indicating the slot offset of the 2 nd or 3 rd transmissions with reference to the slot where the 1 st transmission is scheduled.
  • the Tx UE has to perform a channel access procedure (e.g., Type 1 channel access procedure) for each of the 2 or 3 PSCCH/PSSCH transmissions when the gap between any two PSCCH/PSSCH transmissions is larger than 25us. In this sense, the risk of an LBT failure is quite high and the transmission delay would be greatly increased.
  • Embodiments of the present disclosure provide solutions to solve the above problems.
  • solutions are provided for contiguous sidelink transmissions over an unlicensed spectrum.
  • methods for indicating time domain resources in a DCI format and an SCI format are provided to achieve the contiguous sidelink transmissions over an unlicensed spectrum.
  • methods for indicating the frequency domain resources in a DCI format and an SCI format are provided to achieve the contiguous sidelink transmissions over an unlicensed spectrum.
  • methods for indicating or determining the CAPC value or CPE are provided.
  • methods for dynamic enabling or disabling the transmission of COT sharing information are provided.
  • methods for dynamic enabling or disabling a PUCCH transmission are provided. More details on the embodiments of the present disclosure will be illustrated in the following text in combination with the appended drawings.
  • Embodiments of the present disclosure are discussed in the scenario where a sidelink transmission is performed over an unlicensed spectrum and resource allocation mode 1 is adopted for the sidelink transmission.
  • FIG. 7 illustrates a flowchart of method 700 for wireless communication in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 7.
  • method 700 may be performed by a UE, for example, UE 104 as described with reference to FIG. 1.
  • the UE may execute a set of instructions to control the functional elements of the UE to perform the described functions or operations.
  • a processor of a UE may cause the UE to perform method 700.
  • a UE may receive, from a BS, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB.
  • UE #1 may transmit, to another UE, a PSCCH (i.e., an SCI format) and an associated PSSCH in each of the set of consecutive slots.
  • PSCCH i.e., an SCI format
  • the DCI format can schedule a maximum of N sidelink transmissions in N consecutive slots for a UE (i.e., a Tx UE) to transmit the same TB with N repetitions in the N consecutive slots with one PSSCH per slot. That is, the set of PSCCH transmissions may include a maximum of N PSCCH transmissions, the set of PSSCH transmissions may include a maximum of N PSSCH transmissions, and the set of consecutive slots may include a maximum of N consecutive slots.
  • the value of N may be configured by a BS (e.g., via RRC signaling) , predefined (e.g., in a standard) , or preconfigured (e.g., during implementation) .
  • the value of N may be configured from a set of possible values, for example, ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
  • the DCI format may include an indicator (denoted as time domain resource allocation (TDRA) indicator) indicating the number of slots in the set of consecutive slots assigned (or scheduled) for the sidelink transmissions of UE #1.
  • TDRA time domain resource allocation
  • a size of the TDRA indicator may be dependent on the maximum number of slots (e.g., N) schedulable by the DCI format.
  • the TDRA indicator may require bits to indicate the number of actually assigned consecutive slots.
  • the value of N may be configured by the BS, predefined, or preconfigured.
  • a specific slot (e.g., the earliest slot) of the set of assigned consecutive slots can be determined based on the slot where the DCI format is received and a time gap indicated in the DCI format. For example, assuming that the DCI format is received in slot n (or transmitted in slot n from the perspective of the BS) and a time gap field in the DCI format indicates the value of k, then the first (earliest) slot of the assigned consecutive slots is slot n+k. Further assuming that X slots (X ⁇ N) are scheduled by the DCI format, then the assigned consecutive slots are indexed by slot n+k, n+k+1, ..., n+k+X-1.
  • the set of PSSCH transmissions may be scheduled on the same frequency domain resource. In some embodiments, the set of PSCCH transmissions may be scheduled on the same frequency domain resource. In other words, the sidelink transmissions in the assigned consecutive slots use the same frequency resource, so that UE #1 can initiate the same COT for the sidelink transmissions over the unlicensed spectrum.
  • the DCI format may include an indicator (denoted as frequency domain resource allocation (FDRA) indicator) indicating the frequency domain resource for the set of the PSSCH transmissions as well as for the set of the PSCCH transmissions.
  • FDRA frequency domain resource allocation
  • the assigned frequency domain resources may be represented in subchannels.
  • the frequency domain resource may include a set of contiguous subchannels.
  • the FDRA indicator may indicate a specific subchannel (e.g., the subchannel with the lowest index) in the set of contiguous subchannels and the number of subchannels in the set of contiguous subchannels.
  • the FDRA indicator may include a resource indication value (RIV) for the set of assigned contiguous subchannels.
  • the PSCCH i.e., the SCI format
  • the frequency domain resource can use different representation, and in such a scenario, the descriptions of the frequency domain resource and the FDRA indicator in the context of the present disclosure can be similarly applied.
  • FIG. 4 illustrates an exemplary resource allocation for sidelink transmissions in a DCI format.
  • a UE may receive DCI 461 from a BS.
  • DCI 461 may schedule a plurality of sidelink transmissions (e.g., sidelink transmissions 411-413 each of which includes a respective PSCCH and a respective PSSCH) in a plurality of consecutive slots on a set of contiguous subchannels.
  • DCI 461 may indicate the number of the scheduled slots (i.e., 3) and a time gap 471 between the slot where the DCI format and the earliest slot of the three scheduled slots.
  • the lowest subchannel of the resource pool for sidelink transmission is denoted as 481.
  • DCI 416 may indicate subchannel 491 with the lowest index among the set of scheduled contiguous subchannels and the number of subchannels in the set of scheduled contiguous subchannels.
  • the DCI payload size can be greatly reduced.
  • UE #1 may try to transmit, to another UE (denoted as UE #2) , the set of PSCCH transmissions and the set of PSSCH transmissions in the set of assigned consecutive slots.
  • UE #1 may determine an SCI format carried in each of the set of PSCCH transmissions based on the DCI format.
  • Each SCI format may indicate the scheduling information for the associated PSSCH transmission.
  • an SCI format may include an indicator (denoted as FDRA indicator) indicating the frequency domain resource for the set of the PSSCH transmissions based on the DCI format.
  • UE #2 can receive a scheduled PSSCH on the indicated frequency domain resource.
  • the assigned frequency domain resources may be represented in subchannels.
  • the frequency domain resource may include a set of contiguous subchannels.
  • the FDRA indicator in the SCI format may indicate the number of contiguous subchannels assigned for the set of the PSSCH transmissions.
  • the FDRA indicator in the SCI format may be different from that in the DCI format.
  • the SCI format since the SCI format is transmitted in a specific subchannel (e.g., the subchannel with the lowest index) of the set of assigned contiguous subchannels, it is not necessary to indicate specific subchannel index in the FDRA indicator in the SCI format. That is, the frequency domain resources assigned for the set of the PSSCH transmissions can be determined based on the subchannel where the set of the PSCCH transmissions (i.e., the SCI formats) is received and the number of contiguous subchannels as indicated in the FDRA indicator in the SCI format.
  • the SCI format may indicate the time domain resource for UE #2 to receive the remaining scheduled PSSCH (s) in the remaining consecutive scheduled slots.
  • the SCI format may include an indicator (denoted as remaining slot number indicator) indicating the number of remaining slots among the set of consecutive slots. The indicated number of remaining scheduled slots in consecutive slots should be coincident with each other. For example, in the case that two sidelink transmissions are scheduled by a DCI format in two slots, the remaining slot number indicator in a first SCI format may indicate the number of remaining slots as 1 and the remaining slot number indicator in a second SCI format may indicate the number of remaining slots as 0.
  • UE #2 can know the number of remaining scheduled PSSCH (s) and determine the currently indicated frequency resource applicable to the remaining scheduled PSSCH (s) .
  • UE #2 may generate sidelink HARQ-ACK information corresponding to the set of PSSCH transmissions carrying the same TB after receiving the last PSSCH of the set of PSSCH transmissions.
  • UE #1 may perform a channel access procedure. For example, at 713, UE #1 may perform a channel access procedure (e.g., a Type 1 channel access procedure) according to a CAPC value (denoted as CAPC value #1) . At 715, UE #1 may transmit the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
  • a channel access procedure e.g., a Type 1 channel access procedure
  • CAPC value #1 denoted as CAPC value #1
  • CAPC value #1 may be determined based on a comparison between two CAPC values (denoted as CAPC value #2 and CAPC value #3) .
  • UE #1 may determine CAPC value #2 based on the data carried by the TB (e.g., user plane data to be transmitted) .
  • the DCI format may indicate CAPC value #3. That is, the BS may determine CAPC value #3 for performing the channel access procedure. In some embodiments, the BS may determine CAPC value #3 based on at least one of the number of slots in the set of assigned consecutive slots or the subcarrier spacing of the frequency domain resource for the set of PSSCH transmissions (or the subcarrier spacing of the RB set on which the channel access procedure is to be performed) .
  • the BS may determine CAPC value #3 based on the duration of the set of assigned consecutive slots. For example, when (the number of assigned slots ⁇ the number of milliseconds per slot) is not larger than 2ms, then the BS may indicate a CAPC value of 2 in the DCI format. When (the number of assigned slots ⁇ the number of milliseconds per slot) is larger than 2ms and not larger than 4ms, then the BS may indicate a CAPC value of 4 in the DCI format.
  • the BS may indicate a CAPC value of 3 in the DCI format, where the value of Y may be dependent on the presence or absence of any other technologies. For example, when a high layer parameter (e.g., "absenceOfAnyOtherTechnology" as specified in 3GPP specifications) indicating the absence of any other technologies is provided, Y is equal to 10; otherwise, Y is equal to 6.
  • a high layer parameter e.g., "absenceOfAnyOtherTechnology" as specified in 3GPP specifications
  • the DCI format may not indicate CAPC value #3.
  • UE #1 may determine CAPC value #3.
  • UE #1 may determine CAPC value #3 based on at least one of the number of slots in the set of consecutive slots or the subcarrier spacing of the RB set on which the channel access procedure is performed (or the subcarrier spacing of the frequency domain resource for the set of PSSCH transmissions) .
  • UE #1 may determine CAPC value #3 based on the duration of the set of assigned consecutive slots. For example, when (the number of assigned slots ⁇ the number of milliseconds per slot) is not larger than 2ms, then UE #1 may determine CAPC value #3 as 2. When (the number of assigned slots ⁇ the number of milliseconds per slot) is larger than 2ms and not larger than 4ms, then UE #1 may determine CAPC value #3 as 4. When (the number of assigned slots ⁇ the number of milliseconds per slot) is larger than 4ms and not larger than Y ms, then UE #1 may determine CAPC value #3 as 3, where the value of Y may be dependent on the presence or absence of any other technologies. For example, when a high layer parameter (e.g., "absenceOfAnyOtherTechnology" as specified in 3GPP specifications) indicating the absence of any other technologies is provided, Y is equal to 10; otherwise, Y is equal to 6.
  • a high layer parameter e.g., "absenceOfAny
  • UE #1 may select one of CAPC value #2 and CAPC value #3 as CAPC value #1 for performing the channel access procedure to initiate a COT. For example, when CAPC value #3 is smaller than or equal to CAPC value #2, UE #1 may select CAPC value #2 as CAPC value #1. When CAPC value #3 is larger than CAPC value #2, UE #1 may select CAPC value #3 as CAPC value #1.
  • FIG. 5 illustrates an exemplary resource allocation for sidelink transmissions in a DCI format.
  • a UE may receive DCI 561 from a BS.
  • DCI 561 may schedule a plurality of sidelink transmissions (e.g., SCIs 521-525 and PSSCHs 511-515) in a plurality of consecutive slots (e.g., slots n to n+2) on a set of contiguous subchannels.
  • DCI 561 may indicate the number of the scheduled slots (i.e., 3) and a time gap 571 between the slot where the DCI format and the earliest slot of the three scheduled slots.
  • the lowest subchannel of the resource pool for sidelink transmission is denoted as 581.
  • DCI 516 may indicate subchannel 591 with the lowest index among the set of scheduled contiguous subchannels and the number of subchannels in the set of scheduled contiguous subchannels.
  • the UE may perform a channel access procedure to initiate COT 531.
  • the CAPC value used for the channel access procedure may be determined according to the methods as described above.
  • Each of SCIs 521-525 may be transmitted by the UE on subchannel 591 in a corresponding slot and may indicate the number of subchannels in the set of scheduled contiguous subchannels.
  • resource 541 within COT 531 can be shared by another UE.
  • FIG. 6 illustrates an exemplary resource allocation for sidelink transmissions in a DCI format.
  • a UE may receive DCI 661 from a BS.
  • DCI 661 may schedule a plurality of sidelink transmissions (e.g., SCIs 621-625 and PSSCHs 611-615) in a plurality of consecutive slots (e.g., slots n to n+2) on a set of contiguous subchannels.
  • DCI 661 may indicate the number of the scheduled slots (i.e., 3) and a time gap 671 between the slot where the DCI format and the earliest slot of the three scheduled slots.
  • the lowest subchannel of the resource pool for sidelink transmission is denoted as 681.
  • DCI 616 may indicate subchannel 691 with the lowest index among the set of scheduled contiguous subchannels and the number of subchannels in the set of scheduled contiguous subchannels.
  • the UE may perform a channel access procedure to initiate COT 631.
  • the CAPC value used for the channel access procedure may be determined according to the methods as described above.
  • resource 651 within COT 631 may be used by another UE to transmit a PSFCH.
  • the DCI format may include an indicator indicating a CPE length for transmitting the set of PSSCH transmissions.
  • the channel access procedure performed by UE #1 may initiate a COT in an RB set.
  • UE #1 in response to the frequency domain resource for the set of the PSSCH transmissions occupying a partial bandwidth of the RB set, UE #1 may transmit a CPE with the indicated CPE length before transmitting the set of PSSCH transmissions.
  • UE #1 in response to the frequency domain resource for the set of the PSSCH transmissions occupying the full bandwidth of the RB set, UE #1 may transmit a CPE with a length randomly selected from a set of CPE lengths before transmitting the set of PSSCH transmissions.
  • the set of CPE lengths may be configured by the BS for UE #1 via, for example, RRC signaling, predefined (e.g., in a standard) , or preconfigured (e.g., during implementation) .
  • UE #1 can randomly select a CPE length from the set of CPE lengths and ignore the indicated CPE length in the DCI format.
  • the FDRA field in the DCI format indicates a partial bandwidth in the RB set being assigned to UE #1, UE #1 shall use the indicated CPE length to start its sidelink transmissions in response to the channel access procedure being completed.
  • the DCI format may include an indicator (denoted as COT sharing information enabling/disabling indicator) for enabling or disabling the transmission of COT sharing information.
  • the COT sharing information enabling/disabling indicator indicate whether the SCI format should include COT sharing information or not.
  • each of the set of PSCCH transmissions carries an SCI format, which may include COT sharing information in response to the COT sharing information enabling/disabling indicator in the DCI format enables the transmission of COT sharing information, or may not include any COT sharing information in response to the COT sharing information enabling/disabling indicator in the DCI format disables the transmission of COT sharing information. That is, when the transmission of COT sharing information is enabled, UE #1 may transmit COT sharing information in each SCI format in each of the assigned slots.
  • This provides the BS the possibility to schedule another UE’s sidelink transmissions (e.g., a PSCCH and its associated PSSCH) inside the COT initiated by a Tx UE (e.g., UE #1) . Since the BS cannot know whether an Tx UE can perform a successful channel access procedure in the scheduled slots and the CAPC value according to the user plane data of the another UE as well as whether the Tx UE is the target receiver UE of the another UE’s intended transmission, the BS cannot determine whether the another UE can share the Tx UE’s COT or not.
  • a PSCCH and its associated PSSCH e.g., UE #1
  • the another UE can determine whether it can share the Tx UE’s COT based on the transmitted COT sharing information from the Tx UE.
  • the channel access procedure performed by UE #1 may initiate a COT.
  • the COT sharing information in an SCI format may include at least one of: (1) CAPC value #1 (i.e., the CAPC value used by UE #1 for initiating the current COT) , (2) the remaining duration of the COT, or (3) the number of remaining slots among the set of assigned consecutive slots.
  • Parameter (2) indicated in consecutive slots should be coincident with each other. For example, it is assumed that the COT occupies four slots, and the DCI format schedules two sidelink transmissions in the first two slots in the COT.
  • the first SCI format in the first slot of the COT may indicate that the remaining duration of the COT includes 3 slots and the second SCI format in the second slot of the COT may indicate that the remaining duration of the COT includes 2 slots.
  • Parameter (3) indicated in consecutive slots should be coincident with each other. For example, the first SCI format in the first slot of the COT may indicate the number of remaining assigned slot being 1 and the second SCI format in the second slot of the COT may indicate that the number of remaining assigned slot being 0.
  • another UE in response to the reception of the COT sharing information from UE #1, another UE (denoted as UE #3) can perform a channel access procedure (e.g., Type 2 channel access procedure) for a sidelink transmission (e.g., a PSCCH, a PSSCH, a PSFCH or any combination thereof) if, for example, at least one of the following is satisfied: the sidelink transmission of UE #3 is within UE #1’s COT, the sidelink transmission of UE #3 targets to UE #1, or the CAPC value associated with the data to be transmitted by UE #3 is not larger than the CAPC value indicated in the COT sharing information.
  • a channel access procedure e.g., Type 2 channel access procedure
  • a sidelink transmission e.g., a PSCCH, a PSSCH, a PSFCH or any combination thereof
  • UE #1 may not transmit the COT sharing information in each SCI format in each of slots assigned by the DCI format. In this sense, there is no COT sharing for other UEs in the COT initiated by UE #1.
  • UE #1 may continue the channel access procedure until it is completed. In some examples, UE #1 may perform the scheduled sidelink transmission (s) from the next slot till the last scheduled slot.
  • UE #1 may continue the channel access procedure until it is completed. UE #1 may perform the scheduled sidelink transmission (s) from the next nearest candidate starting symbol till the last scheduled slot.
  • a sidelink transmission e.g., PSCCH or PSSCH transmission
  • HARQ-ACK feedback indication in a PUCCH is optional when a single DCI format schedules a number of repetitions for transmitting a single TB.
  • Dynamic enabling/disabling PUCCH transmission is supported for sidelink resource allocation mode 1.
  • the DCI format may include an indicator (denoted as PUCCH transmission enabling/disabling indicator) for enabling or disabling a PUCCH transmission corresponding to the set of PSSCH transmissions scheduled by the DCI format.
  • the BS may disable or enable the PUCCH transmission based on whether a reliability requirement of a TB is satisfied by the set of PSSCH transmissions or not. For example, if the BS determines the scheduled multiple resources (e.g., the set of PSSCH transmissions) can satisfy the reliability requirements of the intended TB, the BS can disable the HARQ-ACK feedback in the PUCCH (e.g., setting the PUCCH transmission enabling/disabling indicator to disable the PUCCH transmission) , so as to simplify the HARQ-ACK codebook without the consideration of HARQ-ACK information bit for sidelink.
  • the BS may disable the HARQ-ACK feedback in the PUCCH (e.g., setting the PUCCH transmission enabling/disabling indicator to disable the PUCCH transmission) , so as to simplify the HARQ-ACK codebook without the consideration of HARQ-ACK information bit for sidelink.
  • the BS can enable the HARQ-ACK feedback in the PUCCH (e.g., setting the PUCCH transmission enabling/disabling indicator to enable the PUCCH transmission) , so as to schedule a resource for a retransmission of the TB if UE #1 reports a NACK in the PUCCH to the BS.
  • the HARQ-ACK feedback in the PUCCH e.g., setting the PUCCH transmission enabling/disabling indicator to enable the PUCCH transmission
  • UE #1 may transmit HARQ-ACK information in the PUCCH scheduled by the DCI format corresponding to the transmitted TB.
  • UE #1 may not transmit any HARQ-ACK information to the BS.
  • the PUCCH transmission enabling/disabling indicator in the DCI format may be an indicator or field dedicated for dynamically enabling and disabling the PUCCH transmission.
  • the indicator may include at least one bit to indicate the enabling or disabling of the PUCCH transmission.
  • the indicator may include 1 bit, wherein bit “1” indicates enabling the PUCCH transmission while bit “0” indicates disabling the PUCCH transmission; or vice versa.
  • the PUCCH transmission enabling/disabling indicator may reuse the PSFCH-to-HARQ feedback timing indicator in the DCI format.
  • an inapplicable value (e.g., -1) can be included in a set of HARQ-ACK feedback timing values for indicating a slot level timing offset from the PSFCH to the PUCCH transmission.
  • the DCI format i.e., PSFCH-to-HARQ feedback timing indicator
  • PSFCH-to-HARQ feedback timing indicator indicates an applicable value from the set of HARQ-ACK feedback timing values
  • UE #1 may transmit HARQ-ACK information corresponding to the transmitted TB in the indicated PUCCH slot based on the indicated applicable slot level offset from the PSFCH to the PUCCH.
  • the DCI format i.e., PSFCH-to-HARQ feedback timing indicator
  • PSFCH-to-HARQ feedback timing indicator indicates the inapplicable value from the set of HARQ-ACK feedback timing values
  • UE #1 may not transmit the HARQ-ACK information corresponding to the transmitted TB to the BS.
  • the PUCCH transmission enabling/disabling indicator may reuse the PUCCH resource indicator in the DCI format.
  • a reserved code point (e.g., bits of "111" ) of the PUCCH resource indicator in the DCI format implies that the PUCCH transmission is disabled.
  • the PUCCH resource indicator in the DCI format indicates a code point other than the reserved code point, it implies that the PUCCH transmission is enabled.
  • UE #1 may transmit HARQ-ACK information corresponding to the transmitted TB in the indicated PUCCH resource based on the indicated PUCCH resource index.
  • the PUCCH resource indicator in the DCI format indicates the reserved code point, it implies that the PUCCH transmission is disabled.
  • UE #1 may not transmit the HARQ-ACK information corresponding to the transmitted TB to the BS.
  • FIG. 8 illustrates a flowchart of method 800 for wireless communication in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 8.
  • method 800 may be performed by a BS or an NE (for example, NE 102 as described with reference to FIG. 1) .
  • the BS or the NE may execute a set of instructions to control the functional elements of the BS or the NE to perform the described functions or operations.
  • a processor of an NE may cause the NE to perform method 800.
  • a BS may transmit, to a UE (e.g., UE #1) , a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB.
  • a UE e.g., UE #1
  • the set of PSSCH transmissions is scheduled on the same frequency domain resource.
  • the BS may detect HARQ-ACK information corresponding to the set of PSSCH transmissions in a PUCCH transmission from the UE in response to the PUCCH transmission being enabled. In some other embodiments, dynamic enabling and disabling the PUCCH transmission may not be supported. The BS may always detect the HARQ-ACK information corresponding to the set of PSSCH transmissions in the PUCCH transmission from the UE.
  • the DCI format may include an indicator (e.g., a TDRA indicator) indicating the number of slots in the set of consecutive slots.
  • the size of the TDRA indicator is dependent on a maximum number of slots schedulable by the DCI format.
  • the BS may configure the maximum number of slots for the UE. In some embodiments, the maximum number of slots is predefined or preconfigured.
  • the DCI format may include an indicator (e.g., a FDRA indicator) indicating the frequency domain resource for the set of the PSSCH transmissions.
  • the frequency domain resource may include a set of contiguous subchannels.
  • the FDRA indicator indicates a specific subchannel in the set of contiguous subchannels and a number of subchannels in the set of contiguous subchannels.
  • the DCI format may indicate a CAPC value (e.g., CAPC value #3) for the UE to perform a channel access procedure.
  • CAPC value is determined based on at least one of the number of slots in the set of consecutive slots or subcarrier spacing of the frequency domain resource for the set of PSSCH transmissions.
  • the DCI format may include an indicator indicating a CPE length for transmitting the set of PSSCH transmissions.
  • the DCI format may include an indicator for enabling or disabling the transmission of COT sharing information.
  • the DCI format may include an indicator (e.g., a PUCCH transmission enabling/disabling indicator) for enabling or disabling the PUCCH transmission.
  • an indicator e.g., a PUCCH transmission enabling/disabling indicator
  • the PUCCH transmission enabling/disabling indicator indicates an inapplicable PSFCH to PUCCH timing value to disable the PUCCH transmission. In some embodiments, the PUCCH transmission enabling/disabling indicator indicates a specific codepoint of a resource for the PUCCH transmission to disable the PUCCH transmission.
  • the BS may set the PUCCH transmission enabling/disabling indicator to disable or enable the PUCCH transmission based on whether a reliability requirement of the TB is satisfied by the set of PSSCH transmissions or not.
  • FIG. 9 illustrates a block diagram of exemplary apparatus 900 according to some embodiments of the present disclosure.
  • the apparatus 900 may include at least one processor 906 and at least one transceiver 902 coupled to the processor 906.
  • the apparatus 900 may be a UE or an NE (e.g., a BS) .
  • the transceiver 902 may be divided into two devices, such as a receiving circuitry and a transmitting circuitry.
  • the apparatus 900 may further include an input device, a memory, and/or other components.
  • the apparatus 900 may be a UE.
  • the transceiver 902 and the processor 906 may interact with each other so as to perform the operations with respect to the UE described in FIGs. 1-8.
  • the apparatus 900 may be an NE (e.g., a BS) .
  • the transceiver 902 and the processor 906 may interact with each other so as to perform the operations with respect to the BS or NE described in FIGs. 1-8.
  • the apparatus 900 may further include at least one non-transitory computer-readable medium.
  • the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause the processor 906 to implement the method with respect to the UE as described above.
  • the computer-executable instructions when executed, cause the processor 906 interacting with transceiver 902 to perform the operations with respect to the UE described in FIGs. 1-8.
  • the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause the processor 906 to implement the method with respect to the BS or NE as described above.
  • the computer-executable instructions when executed, cause the processor 906 interacting with transceiver 902 to perform the operations with respect to the BS or NE described in FIGs. 1-8.
  • FIG. 10 illustrates an example of a UE 1000 in accordance with aspects of the present disclosure.
  • the UE 1000 may include a processor 1002, a memory 1004, a controller 1006, and a transceiver 1008.
  • the processor 1002, the memory 1004, the controller 1006, or the transceiver 1008, or various combinations thereof or various components thereof may be examples of means for performing various aspects of the present disclosure as described herein. These components may be coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces.
  • the processor 1002, the memory 1004, the controller 1006, or the transceiver 1008, or various combinations or components thereof may be implemented in hardware (e.g., circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , or other programmable logic device, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • the processor 1002 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination thereof) .
  • the processor 1002 may be configured to operate the memory 1004.
  • the memory 1004 may be integrated into the processor 1002.
  • the processor 1002 may be configured to execute computer-readable instructions stored in the memory 1004 to cause the UE 1000 to perform various functions of the present disclosure.
  • the memory 1004 may include volatile or non-volatile memory.
  • the memory 1004 may store computer-readable, computer-executable code including instructions when executed by the processor 1002 cause the UE 1000 to perform various functions described herein.
  • the code may be stored in a non-transitory computer-readable medium such as the memory 1004 or another type of memory.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • the processor 1002 and the memory 1004 coupled with the processor 1002 may be configured to cause the UE 1000 to perform one or more of the functions described herein (e.g., executing, by the processor 1002, instructions stored in the memory 1004) .
  • the processor 1002 may support wireless communication at the UE 1000 in accordance with examples as disclosed herein.
  • the UE 1000 may be configured to support means for performing the operations as described with respect to FIG. 7.
  • the UE 1000 may be configured to support: a means for receiving, from a BS (or an NE) , a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; a means for performing a channel access procedure according to a first CAPC value; and a means for transmitting the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
  • the controller 1006 may manage input and output signals for the UE 1000.
  • the controller 1006 may also manage peripherals not integrated into the UE 1000.
  • the controller 1006 may utilize an operating system such as or other operating systems.
  • the controller 1006 may be implemented as part of the processor 1002.
  • the UE 1000 may include at least one transceiver 1008. In some other implementations, the UE 1000 may have more than one transceiver 1008.
  • the transceiver 1008 may represent a wireless transceiver.
  • the transceiver 1008 may include one or more receiver chains 1010, one or more transmitter chains 1012, or a combination thereof.
  • a receiver chain 1010 may be configured to receive signals (e.g., control information, data, or packets) over a wireless medium.
  • the receiver chain 1010 may include one or more antennas for receive the signal over the air or wireless medium.
  • the receiver chain 1010 may include at least one amplifier (e.g., a low-noise amplifier (LNA) ) configured to amplify the received signal.
  • the receiver chain 1010 may include at least one demodulator configured to demodulate the receive signal and obtain the transmitted data by reversing the modulation technique applied during transmission of the signal.
  • the receiver chain 1010 may include at least one decoder for decoding the processing the demodulated signal to receive the transmitted data.
  • a transmitter chain 1012 may be configured to generate and transmit signals (e.g., control information, data, or packets) .
  • the transmitter chain 1012 may include at least one modulator for modulating data onto a carrier signal, preparing the signal for transmission over a wireless medium.
  • the at least one modulator may be configured to support one or more techniques such as amplitude modulation (AM) , frequency modulation (FM) , or digital modulation schemes like phase-shift keying (PSK) or quadrature amplitude modulation (QAM) .
  • the transmitter chain 1012 may also include at least one power amplifier configured to amplify the modulated signal to an appropriate power level suitable for transmission over the wireless medium.
  • the transmitter chain 1012 may also include one or more antennas for transmitting the amplified signal into the air or wireless medium.
  • exemplary UE 1000 may be changed, for example, some of the components in exemplary UE 1000 may be omitted or modified or a new component (s) may be added to exemplary UE 1000, without departing from the spirit and scope of the disclosure.
  • the UE 1000 may not include the controller 1006.
  • FIG. 11 illustrates an example of a processor 1100 in accordance with aspects of the present disclosure.
  • the processor 1100 may be an example of a processor configured to perform various operations in accordance with examples as described herein.
  • the processor 1100 may include a controller 1102 configured to perform various operations in accordance with examples as described herein.
  • the processor 1100 may optionally include at least one memory 1104, which may be, for example, an L1/L2/L3 cache. Additionally, or alternatively, the processor 1100 may optionally include one or more arithmetic-logic units (ALUs) 1106.
  • ALUs arithmetic-logic units
  • the processor 1100 may be a processor chipset and include a protocol stack (e.g., a software stack) executed by the processor chipset to perform various operations (e.g., receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading) in accordance with examples as described herein.
  • a protocol stack e.g., a software stack
  • operations e.g., receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading
  • the processor chipset may include one or more cores, one or more caches (e.g., memory local to or included in the processor chipset (e.g., the processor 1100) or other memory (e.g., random access memory (RAM) , read-only memory (ROM) , dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , static RAM (SRAM) , ferroelectric RAM (FeRAM) , magnetic RAM (MRAM) , resistive RAM (RRAM) , flash memory, phase change memory (PCM) , and others) .
  • RAM random access memory
  • ROM read-only memory
  • DRAM dynamic RAM
  • SDRAM synchronous dynamic RAM
  • SRAM static RAM
  • FeRAM ferroelectric RAM
  • MRAM magnetic RAM
  • RRAM resistive RAM
  • PCM phase change memory
  • the controller 1102 may be configured to manage and coordinate various operations (e.g., signaling, receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading) of the processor 1100 to cause the processor 1100 to support various operations in accordance with examples as described herein.
  • the controller 1102 may operate as a control unit of the processor 1100, generating control signals that manage the operation of various components of the processor 1100. These control signals include enabling or disabling functional units, selecting data paths, initiating memory access, and coordinating timing of operations.
  • the controller 1102 may be configured to fetch (e.g., obtain, retrieve, receive) instructions from the memory 1104 and determine a subsequent instruction (s) to be executed to cause the processor 1100 to support various operations in accordance with examples as described herein.
  • the controller 1102 may be configured to track memory address of instructions associated with the memory 1104.
  • the controller 1102 may be configured to decode instructions to determine the operation to be performed and the operands involved.
  • the controller 1102 may be configured to interpret the instruction and determine control signals to be output to other components of the processor 1100 to cause the processor 1100 to support various operations in accordance with examples as described herein.
  • the controller 1102 may be configured to manage flow of data within the processor 1100.
  • the controller 1102 may be configured to control transfer of data between registers, ALUs, and other functional units of the processor 1100.
  • the memory 1104 may include one or more caches (e.g., memory local to or included in the processor 1100 or other memory, such RAM, ROM, DRAM, SDRAM, SRAM, MRAM, flash memory, etc. In some implementations, the memory 1104 may reside within or on a processor chipset (e.g., local to the processor 1100) . In some other implementations, the memory 1104 may reside external to the processor chipset (e.g., remote to the processor 1100) .
  • caches e.g., memory local to or included in the processor 1100 or other memory, such RAM, ROM, DRAM, SDRAM, SRAM, MRAM, flash memory, etc. In some implementations, the memory 1104 may reside within or on a processor chipset (e.g., local to the processor 1100) . In some other implementations, the memory 1104 may reside external to the processor chipset (e.g., remote to the processor 1100) .
  • the memory 1104 may store computer-readable, computer-executable code including instructions that, when executed by the processor 1100, cause the processor 1100 to perform various functions described herein.
  • the code may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the controller 1102 and/or the processor 1100 may be configured to execute computer-readable instructions stored in the memory 1104 to cause the processor 1100 to perform various functions.
  • the processor 1100 and/or the controller 1102 may be coupled with or to the memory 1104, the processor 1100, the controller 1102, and the memory 1104 may be configured to perform various functions described herein.
  • the processor 1100 may include multiple processors and the memory 1104 may include multiple memories. One or more of the multiple processors may be coupled with one or more of the multiple memories, which may, individually or collectively, be configured to perform various functions herein.
  • the one or more ALUs 1106 may be configured to support various operations in accordance with examples as described herein.
  • the one or more ALUs 1106 may reside within or on a processor chipset (e.g., the processor 1100) .
  • the one or more ALUs 1106 may reside external to the processor chipset (e.g., the processor 1100) .
  • One or more ALUs 1106 may perform one or more computations such as addition, subtraction, multiplication, and division on data.
  • one or more ALUs 1106 may receive input operands and an operation code, which determines an operation to be executed.
  • One or more ALUs 1106 be configured with a variety of logical and arithmetic circuits, including adders, subtractors, shifters, and logic gates, to process and manipulate the data according to the operation. Additionally, or alternatively, the one or more ALUs 1106 may support logical operations such as AND, OR, exclusive-OR (XOR) , not-OR (NOR) , and not-AND (NAND) , enabling the one or more ALUs 1106 to handle conditional operations, comparisons, and bitwise operations.
  • logical operations such as AND, OR, exclusive-OR (XOR) , not-OR (NOR) , and not-AND (NAND) , enabling the one or more ALUs 1106 to handle conditional operations, comparisons, and bitwise operations.
  • the processor 1100 may support wireless communication in accordance with examples as disclosed herein.
  • the processor 1100 may be configured to support means for performing the operations as described with respect to FIG. 7.
  • the processor 1100 may be configured to or operable to support: a means for receiving, from a BS (or an NE) , a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; a means for performing a channel access procedure according to a first CAPC value; and a means for transmitting the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
  • the processor 1100 may be configured to support means for performing the operations as described with respect to FIG. 8.
  • the processor 1100 may be configured to support: a means for transmitting, to a first UE, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; and a means for detecting HARQ-ACK information corresponding to the set of PSSCH transmissions in a PUCCH transmission from the first UE in response to the PUCCH transmission being enabled.
  • exemplary processor 1100 may be changed, for example, some of the components in exemplary processor 1100 may be omitted or modified or a new component (s) may be added to exemplary processor 1100, without departing from the spirit and scope of the disclosure.
  • the processor 1100 may not include the ALUs 1106.
  • FIG. 12 illustrates an example of an NE 1200 in accordance with aspects of the present disclosure.
  • the NE 1200 may include a processor 1202, a memory 1204, a controller 1206, and a transceiver 1208.
  • the processor 1202, the memory 1204, the controller 1206, or the transceiver 1208, or various combinations thereof or various components thereof may be examples of means for performing various aspects of the present disclosure as described herein. These components may be coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces.
  • the processor 1202, the memory 1204, the controller 1206, or the transceiver 1208, or various combinations or components thereof may be implemented in hardware (e.g., circuitry) .
  • the hardware may include a processor, a DSP, an ASIC, or other programmable logic device, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • the processor 1202 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination thereof) .
  • the processor 1202 may be configured to operate the memory 1204.
  • the memory 1204 may be integrated into the processor 1202.
  • the processor 1202 may be configured to execute computer-readable instructions stored in the memory 1204 to cause the NE 1200 to perform various functions of the present disclosure.
  • the memory 1204 may include volatile or non-volatile memory.
  • the memory 1204 may store computer-readable, computer-executable code including instructions when executed by the processor 1202 cause the NE 1200 to perform various functions described herein.
  • the code may be stored in a non-transitory computer-readable medium such as the memory 1204 or another type of memory.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • the processor 1202 and the memory 1204 coupled with the processor 1202 may be configured to cause the NE 1200 to perform one or more of the functions described herein (e.g., executing, by the processor 1202, instructions stored in the memory 1204) .
  • the processor 1202 may support wireless communication at the NE 1200 in accordance with examples as disclosed herein.
  • the NE 1200 may be configured to support means for performing the operations as described with respect to FIG. 8.
  • the NE 1200 may be configured to support: a means for transmitting, to a first UE, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; and a means for detecting HARQ-ACK information corresponding to the set of PSSCH transmissions in a PUCCH transmission from the first UE in response to the PUCCH transmission being enabled.
  • the controller 1206 may manage input and output signals for the NE 1200.
  • the controller 1206 may also manage peripherals not integrated into the NE 1200.
  • the controller 1206 may utilize an operating system such as or other operating systems.
  • the controller 1206 may be implemented as part of the processor 1202.
  • the NE 1200 may include at least one transceiver 1208. In some other implementations, the NE 1200 may have more than one transceiver 1208.
  • the transceiver 1208 may represent a wireless transceiver.
  • the transceiver 1208 may include one or more receiver chains 1210, one or more transmitter chains 1212, or a combination thereof.
  • a receiver chain 1210 may be configured to receive signals (e.g., control information, data, or packets) over a wireless medium.
  • the receiver chain 1210 may include one or more antennas for receive the signal over the air or wireless medium.
  • the receiver chain 1210 may include at least one amplifier (e.g., an LNA) configured to amplify the received signal.
  • the receiver chain 1210 may include at least one demodulator configured to demodulate the receive signal and obtain the transmitted data by reversing the modulation technique applied during transmission of the signal.
  • the receiver chain 1210 may include at least one decoder for decoding the processing the demodulated signal to receive the transmitted data.
  • a transmitter chain 1212 may be configured to generate and transmit signals (e.g., control information, data, or packets) .
  • the transmitter chain 1212 may include at least one modulator for modulating data onto a carrier signal, preparing the signal for transmission over a wireless medium.
  • the at least one modulator may be configured to support one or more techniques such as AM, FM, or digital modulation schemes like PSK or QAM.
  • the transmitter chain 1212 may also include at least one power amplifier configured to amplify the modulated signal to an appropriate power level suitable for transmission over the wireless medium.
  • the transmitter chain 1212 may also include one or more antennas for transmitting the amplified signal into the air or wireless medium.
  • exemplary NE 1200 may be changed, for example, some of the components in exemplary NE 1200 may be omitted or modified or a new component (s) may be added to exemplary NE 1200, without departing from the spirit and scope of the disclosure.
  • the NE 1200 may not include the controller 1206.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. Additionally, in some aspects, the operations or steps of the methods may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
  • the terms “includes, “ “including, “ or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • An element proceeded by “a, “ “an, “ or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element.
  • the term “another” is defined as at least a second or more.
  • the term “having” or the like, as used herein, is defined as "including.
  • Expressions such as “A and/or B” or “at least one of A and B” may include any and all combinations of words enumerated along with the expression.
  • the expression “A and/or B” or “at least one of A and B” may include A, B, or both A and B.
  • the wording "the first, " “the second” or the like is only used to clearly illustrate the embodiments of the present disclosure, but is not used to limit the substance of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to method and apparatus for dynamic resource allocation for sidelink transmissions over an unlicensed spectrum. According to some embodiments of the disclosure, a first UE may: receive, from a BS, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; perform a channel access procedure according to a first CAPC value; and transmit the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.

Description

METHOD AND APPARATUS FOR DYNAMIC RESOURCE ALLOCATION FOR SIDELINK TRANSMISSION OVER UNLICENSED SPECTRUM TECHNICAL FIELD
Embodiments of the present disclosure generally relate to wireless communication technology, and more particularly to dynamic resource allocation for sidelink transmissions over an unlicensed spectrum.
BACKGROUND
A wireless communication system may include one or multiple network communication devices, such as base stations, which may support wireless communication for one or multiple user communication devices, which may be otherwise known as user equipment (UE) , or other suitable terminology. The wireless communication system may support wireless communication with one or multiple user communication devices by utilizing resources of the wireless communication system (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers, or the like) . Additionally, the wireless communication system may support wireless communication across various radio access technologies including third generation (3G) radio access technology, fourth generation (4G) radio access technology, fifth generation (5G) (which is also known as new radio (NR) ) radio access technology, among other suitable radio access technologies beyond 5G (e.g., sixth generation (6G) ) .
A wireless communication system may support sidelink communications, in which devices (e.g., UEs) may communicate with one another directly via a sidelink, rather than being linked through a base station (BS) . The term "sidelink" may refer to a radio link established for communicating among devices (e.g., UEs) , as opposed to communicating via the cellular infrastructure (e.g., uplink and downlink) . Sidelink transmission may be performed on a licensed spectrum or an unlicensed spectrum.
There is a need for handling sidelink transmissions on an unlicensed spectrum.
SUMMARY
An article “a” before an element is unrestricted and understood to refer to “at least one” of those elements or “one or more” of those elements. The terms “a, ” “at least one, ” “one or more, ” and “at least one of one or more” may be interchangeable. As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” or “one or both of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ” Further, as used herein, including in the claims, a “set” may include one or more elements.
Some embodiments of the present disclosure provide a first UE. The first UE may include at least one memory; and at least one processor coupled with the at least one memory and configured to cause the first UE to: receive, from a BS, a downlink control information (DCI) format for scheduling a set of physical sidelink control channel (PSCCH) transmissions and a set of physical sidelink shared channel (PSSCH) transmissions in a set of consecutive slots for transmitting a transport block (TB) , wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; perform a channel access procedure according to a first channel access priority class (CAPC) value; and transmit the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
In some embodiments, the DCI format includes a first indicator indicating the number of slots in the set of consecutive slots.
In some embodiments, a size of the first indicator is dependent on a maximum number of slots schedulable by the DCI format, which is configured by the BS, predefined, or preconfigured.
In some embodiments, the DCI format includes a second indicator indicating a frequency domain resource for the set of the PSSCH transmissions.
In some embodiments, the frequency domain resource includes a set of contiguous subchannels, and the second indicator indicates a specific subchannel in the set of contiguous subchannels and a number of subchannels in the set of contiguous subchannels.
In some embodiments, each of the set of PSCCH transmissions carries a sidelink control information (SCI) format and the SCI format includes a third indicator indicating a frequency domain resource for the set of the PSSCH transmissions based on the DCI format.
In some embodiments, the third indicator indicates a number of contiguous subchannels for the set of the PSSCH transmissions.
In some embodiments, each of the set of PSCCH transmissions carries an SCI format and the SCI format includes a fourth indicator indicating a number of remaining slots among the set of consecutive slots.
In some embodiments, the DCI format indicates a second CAPC value for performing a channel access procedure. The at least one processor may be further configured to cause the first UE to: determine a third CAPC value based on data carried by the TB; and select one of the second CAPC value and the third CAPC value as the first CAPC value.
In some embodiments, the at least one processor may be further configured to cause the first UE to: determine a second CAPC value based on at least one of the number of slots in the set of consecutive slots or subcarrier spacing of a resource block (RB) set on which the channel access procedure is performed; determine a third CAPC value based on data carried by the TB; and select one of the second CAPC value and the third CAPC value as the first CAPC value.
In some embodiments, the DCI format includes a fifth indicator indicating a cyclic prefix extension (CPE) length for transmitting the set of PSSCH transmissions.
In some embodiments, the channel access procedure initiates a channel occupancy time (COT) in an RB set, and wherein the at least one processor is further configured to cause the first UE to: transmit a CPE with the indicated CPE length before transmitting the set of PSSCH transmissions in response to the frequency domain resource for the set of the PSSCH transmissions occupying a partial bandwidth of the RB set; or transmit a CPE with a length randomly selected from a set of CPE lengths before transmitting the set of PSSCH transmissions in response to the frequency domain resource for the set of the PSSCH transmissions occupying the full bandwidth of the RB set.
In some embodiments, the DCI format includes a sixth indicator for enabling or disabling the transmission of COT sharing information.
In some embodiments, each of the set of PSCCH transmissions carries an SCI format, which includes COT sharing information in response to the sixth indicator enables the transmission of COT sharing information.
In some embodiments, the channel access procedure initiates a COT and wherein the COT sharing information in the SCI format includes at least one of: the first CAPC value, the remaining duration of the COT, or a number of remaining slots among the set of consecutive slots.
In some embodiments, the DCI format includes a seventh indicator for enabling or disabling a physical uplink control channel (PUCCH) transmission corresponding to the set of PSSCH transmissions.
In some embodiments, the seventh indicator indicates an inapplicable physical sidelink feedback channel (PSFCH) to PUCCH timing value to disable the PUCCH transmission. In some embodiments, the seventh indicator indicates a specific codepoint of a resource for the PUCCH transmission to disable the PUCCH transmission.
Some embodiments of the present disclosure provide a BS. The BS may include at least one memory; and at least one processor coupled with the at least one memory and configured to cause the BS to: transmit, to a first UE, a DCI format for  scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; and detect hybrid automatic repeat request acknowledgement (HARQ-ACK) information corresponding to the set of PSSCH transmissions in a PUCCH transmission from the first UE in response to the PUCCH transmission being enabled.
In some embodiments, the DCI format includes a first indicator indicating the number of slots in the set of consecutive slots.
In some embodiments, a size of the first indicator is dependent on a maximum number of slots schedulable by the DCI format. The at least one processor may be further configured to cause the BS to configure the maximum number of slots for the first UE. Alternatively, the maximum number of slots may be predefined or preconfigured.
In some embodiments, the DCI format includes a second indicator indicating the frequency domain resource for the set of the PSSCH transmissions.
In some embodiments, the frequency domain resource includes a set of contiguous subchannels, and the second indicator indicates a specific subchannel in the set of contiguous subchannels and a number of subchannels in the set of contiguous subchannels.
In some embodiments, the DCI format indicates a second CAPC value for the first UE to perform a channel access procedure.
In some embodiments, the second CAPC value is determined based on at least one of the number of slots in the set of consecutive slots or subcarrier spacing of the frequency domain resource for the set of PSSCH transmissions.
In some embodiments, the DCI format includes a fifth indicator indicating a CPE length for transmitting the set of PSSCH transmissions.
In some embodiments, the DCI format includes a sixth indicator for enabling or disabling the transmission of COT sharing information.
In some embodiments, the DCI format includes a seventh indicator for enabling or disabling the PUCCH transmission.
In some embodiments, the seventh indicator indicates an inapplicable PSFCH to PUCCH timing value to disable the PUCCH transmission. In some embodiments, the seventh indicator indicates a specific codepoint of a resource for the PUCCH transmission to disable the PUCCH transmission.
In some embodiments, the at least one processor may be further configured to cause the BS to set the seventh indicator to disable or enable the PUCCH transmission based on whether a reliability requirement of the TB is satisfied by the set of PSSCH transmissions or not.
Some embodiments of the present disclosure provide a processor. The processor may include at least one controller coupled with at least one memory and configured to cause the processor to: receive, from a BS, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; perform a channel access procedure according to a first CAPC value; and transmit the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
Some embodiments of the present disclosure provide a method for wireless communication. The method may include: receiving, from a BS, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; performing a channel access procedure according to a first CAPC value; and transmitting the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
Some embodiments of the present disclosure provide an apparatus. According to some embodiments of the present disclosure, the apparatus may include: at least one non-transitory computer-readable medium having stored thereon computer- executable instructions; at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry, wherein the at least one non-transitory computer-readable medium and the computer executable instructions may be configured to, with the at least one processor, cause the apparatus to perform a method according to some embodiments of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which the advantages and features of the disclosure can be obtained, a description of the disclosure is rendered by reference to specific embodiments thereof, which are illustrated in the appended drawings. These drawings depict only exemplary embodiments of the disclosure and are not therefore to be considered limiting of its scope.
FIG. 1 illustrates a schematic diagram of a wireless communication system in accordance with some embodiments of the present disclosure;
FIG. 2 illustrates an exemplary sidelink transmission under resource allocation mode 1 in accordance with some embodiments of the present disclosure;
FIG. 3 illustrates an exemplary COT initiated by a UE in accordance with some embodiments of the present disclosure;
FIGs. 4-6 illustrate exemplary resource allocation for sidelink transmissions in accordance with some embodiments of the present disclosure;
FIGs. 7 and 8 illustrate flowcharts of methods for wireless communication in accordance with some embodiments of the present disclosure;
FIG. 9 illustrates a block diagram of an exemplary apparatus in accordance with some embodiments of the present disclosure;
FIG. 10 illustrates an example of a UE in accordance with some embodiments  of the present disclosure;
FIG. 11 illustrates an example of a processor in accordance with some embodiments of the present disclosure; and
FIG. 12 illustrates an example of a network equipment (NE) in accordance with some embodiments of the present disclosure.
DETAILED DESCRIPTION
The detailed description of the appended drawings is intended as a description of the preferred embodiments of the present disclosure and is not intended to represent the only form in which the present disclosure may be practiced. It should be understood that the same or equivalent functions may be accomplished by different embodiments that are intended to be encompassed within the spirit and scope of the present disclosure.
Reference will now be made in detail to some embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. To facilitate understanding, embodiments are provided under a specific network architecture (s) and new service scenarios, such as the 3rd generation partnership project (3GPP) 5G NR or 6G, 3GPP LTE, and so on. It is contemplated that along with the developments of network architectures and new service scenarios, all embodiments in the present disclosure are also applicable to similar technical problems; and moreover, the terminologies recited in the present disclosure may change, which should not affect the principles of the present disclosure.
In resource allocation mode 1 for sidelink transmissions, a DCI format can schedule a plurality of sidelink resources assigned within a window of 32 slots for a Tx UE. Under such time domain resource allocation indication scheme, the Tx UE may have to perform a Type 1 channel access procedure for each of the plurality of sidelink transmissions on an unlicensed spectrum. In this sense, the risk of channel access failure is quite high, and the transmission delay would be greatly increased.
Embodiments of the present disclosure provide solutions for facilitating  sidelink transmission on an unlicensed spectrum. By adopting the proposed solutions, the risk of channel access failure and the transmission delay can be reduced, and spectrum utilization efficiency can be further increased with simple UE implementation.
FIG. 1 illustrates a schematic diagram of wireless communication system 100 in accordance with some embodiments of the present disclosure.
The wireless communication system 100 may include one or more NEs 102 (e.g., one or more BSs) , one or more UEs 104, and a core network (CN) 106. The wireless communication system 100 may support various radio access technologies. In some implementations, the wireless communication system 100 may be a 4G network, such as an LTE network or an LTE-Advanced (LTE-A) network. In some other implementations, the wireless communication system 100 may be a NR network, such as a 5G network, a 5G-Advanced (5G-A) network, or a 5G ultra-wideband (5G-UWB) network. In other implementations, the wireless communication system 100 may be a combination of a 4G network and a 5G network, or other suitable radio access technology including Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , and IEEE 802.20. The wireless communication system 100 may support radio access technologies beyond 5G, for example, 6G. Additionally, the wireless communication system 100 may support technologies, such as time division multiple access (TDMA) , frequency division multiple access (FDMA) , or code division multiple access (CDMA) , etc.
The one or more NEs 102 may be dispersed throughout a geographic region to form the wireless communication system 100. One or more of the NEs 102 described herein may be or include or may be referred to as a network node, a base station, a network element, a network function, a network entity, a radio access network (RAN) , a NodeB, an eNodeB (eNB) , a next-generation NodeB (gNB) , or other suitable terminology. An NE 102 and a UE 104 may communicate via a communication link, which may be a wireless or wired connection. For example, an NE 102 and a UE 104 may perform wireless communication (e.g., receive signaling, transmit signaling) over a Uu interface.
An NE 102 may provide a geographic coverage area for which the NE 102 may support services for one or more UEs 104 within the geographic coverage area.  For example, an NE 102 and a UE 104 may support wireless communication of signals related to services (e.g., voice, video, packet data, messaging, broadcast, etc. ) according to one or multiple radio access technologies. In some implementations, an NE 102 may be moveable, for example, a satellite associated with a non-terrestrial network (NTN) . In some implementations, different geographic coverage areas 112 associated with the same or different radio access technologies may overlap, but the different geographic coverage areas may be associated with a different NE 102.
The one or more UEs 104 may be dispersed throughout a geographic region of the wireless communication system 100. A UE 104 may include or may be referred to as a remote unit, a mobile device, a wireless device, a remote device, a subscriber device, a transmitter device, a receiver device, or some other suitable terminology. In some implementations, the UE 104 may be referred to as a unit, a station, a terminal, or a client, among other examples. Additionally, or alternatively, the UE 104 may be referred to as an Internet-of-Things (IoT) device, an Internet-of-Everything (IoE) device, or machine-type communication (MTC) device, among other examples.
A UE 104 may be able to support wireless communication directly with other UEs 104 over a communication link. For example, a UE 104 may support wireless communication directly with another UE 104 over a device-to-device (D2D) communication link. In some implementations, such as vehicle-to-vehicle (V2V) deployments, vehicle-to-everything (V2X) deployments, or cellular-V2X deployments, the communication link 114 may be referred to as a sidelink. For example, a UE 104 may support wireless communication directly with another UE 104 over a PC5 interface.
An NE 102 may support communication with the CN 106, or with another NE 102, or both. For example, an NE 102 may interface with another NE 102 or the CN 106 through one or more backhaul links (e.g., S1, N2, N3 or another network interface) . In some implementations, the NE 102 may communicate with each other directly. In some other implementations, the NE 102 may communicate with each other or indirectly (e.g., via the CN 106. In some implementations, one or more NEs 102 may include subcomponents, such as an access network entity, which may be an example of an access node controller (ANC) . An ANC may communicate with the one or more UEs 104 through one or more other access network transmission entities, which may  be referred to as radio heads, smart radio heads, or transmission-reception points (TRPs) .
The CN 106 may support user authentication, access authorization, tracking, connectivity, and other access, routing, or mobility functions. The CN 106 may be an evolved packet core (EPC) , or a 5G core (5GC) , which may include a control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management functions (AMF) ) and a user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . In some implementations, the control plane entity may manage non-access stratum (NAS) functions, such as mobility, authentication, and bearer management (e.g., data bearers, signal bearers, etc. ) for the one or more UEs 104 served by the one or more NEs 102 associated with the CN 106.
The CN 106 may communicate with a packet data network over one or more backhaul links (e.g., via an S1, N2, N3, or another network interface) . The packet data network may include an application server. In some implementations, one or more UEs 104 may communicate with the application server. A UE 104 may establish a session (e.g., a protocol data unit (PDU) session, or the like) with the CN 106 via an NE 102. The CN 106 may route traffic (e.g., control information, data, and the like) between the UE 104 and the application server using the established session (e.g., the established PDU session) . The PDU session may be an example of a logical connection between the UE 104 and the CN 106 (e.g., one or more network functions of the CN 106) .
In the wireless communication system 100, the NEs 102 and the UEs 104 may use resources of the wireless communication system 100 (e.g., time resources (e.g., symbols, slots, subframes, frames, or the like) or frequency resources (e.g., subcarriers, carriers) ) to perform various operations (e.g., wireless communication) . In some implementations, the NEs 102 and the UEs 104 may support different resource structures. For example, the NEs 102 and the UEs 104 may support different frame structures. In some implementations, such as in 4G, the NEs 102 and the UEs 104 may support a single frame structure. In some other implementations, such as in 5G  and among other suitable radio access technologies, the NEs 102 and the UEs 104 may support various frame structures (i.e., multiple frame structures) . The NEs 102 and the UEs 104 may support various frame structures based on one or more numerologies.
One or more numerologies may be supported in the wireless communication system 100, and a numerology may include a subcarrier spacing and a cyclic prefix. A first numerology (e.g., μ=0) may be associated with a first subcarrier spacing (e.g., 15 kHz) and a normal cyclic prefix. In some implementations, the first numerology (e.g., μ=0) associated with the first subcarrier spacing (e.g., 15 kHz) may utilize one slot per subframe. A second numerology (e.g., μ=1) may be associated with a second subcarrier spacing (e.g., 30 kHz) and a normal cyclic prefix. A third numerology (e.g., μ=2) may be associated with a third subcarrier spacing (e.g., 60 kHz) and a normal cyclic prefix or an extended cyclic prefix. A fourth numerology (e.g., μ=3) may be associated with a fourth subcarrier spacing (e.g., 120 kHz) and a normal cyclic prefix. A fifth numerology (e.g., μ=4) may be associated with a fifth subcarrier spacing (e.g., 240 kHz) and a normal cyclic prefix.
A time interval of a resource (e.g., a communication resource) may be organized according to frames (also referred to as radio frames) . Each frame may have a duration, for example, a 10 millisecond (ms) duration. In some implementations, each frame may include multiple subframes. For example, each frame may include 10 subframes, and each subframe may have a duration, for example, a 1 ms duration. In some implementations, each frame may have the same duration. In some implementations, each subframe of a frame may have the same duration.
Additionally or alternatively, a time interval of a resource (e.g., a communication resource) may be organized according to slots. For example, a subframe may include a number (e.g., quantity) of slots. The number of slots in each subframe may also depend on the one or more numerologies supported in the wireless communication system 100. For instance, the first, second, third, fourth, and fifth numerologies (i.e., μ=0, μ=1, μ=2, μ=3, μ=4) associated with respective subcarrier spacings of 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz may utilize a single slot per subframe, two slots per subframe, four slots per subframe, eight slots per subframe, and 16 slots per subframe, respectively. Each slot may include a number (e.g.,  quantity) of symbols (e.g., orthogonal frequency-division multiplexing (OFDM) symbols) . In some implementations, the number (e.g., quantity) of slots for a subframe may depend on a numerology. For a normal cyclic prefix, a slot may include 14 symbols. For an extended cyclic prefix (e.g., applicable for 60 kHz subcarrier spacing) , a slot may include 12 symbols. The relationship between the number of symbols per slot, the number of slots per subframe, and the number of slots per frame for a normal cyclic prefix and an extended cyclic prefix may depend on a numerology. It should be understood that reference to a first numerology (e.g., μ=0) associated with a first subcarrier spacing (e.g., 15 kHz) may be used interchangeably between subframes and slots.
In the wireless communication system 100, an electromagnetic (EM) spectrum may be split, based on frequency or wavelength, into various classes, frequency bands, frequency channels, etc. By way of example, the wireless communication system 100 may support one or multiple operating frequency bands, such as frequency range designations FR1 (410 MHz –7.125 GHz) , FR2 (24.25 GHz –52.6 GHz) , FR3 (7.125 GHz –24.25 GHz) , FR4 (52.6 GHz –114.25 GHz) , FR4a or FR4-1 (52.6 GHz –71 GHz) , and FR5 (114.25 GHz –300 GHz) . In some implementations, the NEs 102 and the UEs 104 may perform wireless communication over one or more of the operating frequency bands. In some implementations, FR1 may be used by the NEs 102 and the UEs 104, among other equipment or devices for cellular communication traffic (e.g., control information, data) . In some implementations, FR2 may be used by the NEs 102 and the UEs 104, among other equipment or devices for short-range, high data rate capabilities.
FR1 may be associated with one or multiple numerologies (e.g., at least three numerologies) . For example, FR1 may be associated with a first numerology (e.g., μ =0) , which includes 15 kHz subcarrier spacing; a second numerology (e.g., μ =1) , which includes 30 kHz subcarrier spacing; and a third numerology (e.g., μ=2) , which includes 60 kHz subcarrier spacing. FR2 may be associated with one or multiple numerologies (e.g., at least 2 numerologies) . For example, FR2 may be associated with a third numerology (e.g., μ=2) , which includes 60 kHz subcarrier spacing; and a fourth numerology (e.g., μ=3) , which includes 120 kHz subcarrier spacing.
A UE 104 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like. According to some embodiments of the present disclosure, a UE 104 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network. In some embodiments of the present disclosure, a UE 104 includes wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, a UE 104 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art. A UE 104 may communicate with an NE 102 (e.g., a BS) via uplink (UL) communication signals. An NE 102 may communicate with a UE 104 via downlink (DL) communication signals.
In some embodiments of the present disclosure, an NE 102 and a UE 104 may communicate over licensed spectrums, whereas in some other embodiments, an NE 102 and a UE 104 may communicate over unlicensed spectrums. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
Sidelink transmission may involve a PSCCH and an associated PSSCH, which is scheduled by an SCI format carried on the PSCCH. The SCI and associated PSSCH may be transmitted from a transmitting UE (hereinafter referred to as "Tx UE" ) to a receiving UE (hereinafter referred to as "Rx UE" ) in a unicast manner, to a group of Rx UEs in a groupcast manner, or to Rx UEs within a range in a broadcast manner.
The PSSCH may carry data which may require corresponding HARQ-ACK feedback from the Rx UE (s) to the Tx UE. In some embodiments, broadcast transmission may not need HARQ-ACK feedback. In some embodiments, unicast and groupcast transmission may enable HARQ-ACK feedback under some  preconditions. The HARQ-ACK feedback for a PSSCH may be carried on a PSFCH.
Several resource allocation modes (e.g., resource allocation mode 1 and resource allocation mode 2) can be employed for a sidelink transmission. Resource allocation mode 1 is based on the scheduling of a BS. Resource allocation mode 2 is based on the autonomous selection of a UE. The specific definitions of the two modes are described in 3GPP specifications.
In resource allocation mode 1, resources may be assigned by a BS via dynamic scheduling. For example, a BS may transmit a DCI format (e.g., DCI format 3_0) to a UE (e.g., Tx UE) to indicate the time-frequency resource for sidelink transmissions (e.g., a PSCCH (s) and a PSSCH (s) ) . The DCI format may also indicate PSFCH-to-PUCCH timing and a PUCCH resource (s) for the Tx UE to report HARQ-ACK information associated with the sidelink transmissions to the BS. After receiving sidelink HARQ-ACK feedback on a PSFCH (s) from an Rx UE (s) , the Tx UE may transmit a PUCCH carrying the HARQ-ACK information associated with the sidelink transmissions to the BS in the indicated PUCCH resource. If the Tx UE transmits a “negative ACK (NACK) ” to the BS in the PUCCH resource, then the BS knows that the Tx UE has not successfully transmitted its data to the Rx UE (s) and may schedule resources for the Tx UE to retransmit its data to the Rx UE (s) . If the Tx UE transmits an “ACK” to the BS in the PUCCH resource, then the BS knows that the Tx UE has already successfully transmitted its data to the Rx UE (s) and may not schedule resources for the Tx UE for retransmission. Hence, for each TB or PSSCH in resource allocation mode 1, the BS may assign a relevant PUCCH resource and indicate it to the Tx UE in the corresponding DCI format.
In some embodiments of the present disclosure, the DCI format may include a time resource assignment field to indicate the time domain resource allocation for the sidelink transmissions. For example, depending on the value of a higher layer parameter (e.g., "sl-MaxNumPerReserve" as specified in 3GPP specifications) , the size of the time resource assignment field in the DCI format may vary. The higher layer parameter indicates the maximum number of reserved PSCCH/PSSCH resources that can be indicated by an SCI format. For example, when the value of the higher layer parameter is configured as 2 (i.e., 2 reserved resources for a PSCCH and an associated  PSSCH) , the time resource assignment field may require 5 bits. When the value of the higher layer parameter is configured as 3 (i.e., 3 reserved for a PSCCH and an associated PSSCH) , the time resource assignment field may require 9 bits. The 2 or 3 reserved PSCCH/PSSCH resources are within a window of 32 sidelink slots which is started from the slot where a PSCCH (or an SCI format) is received. For example, a PSCCH (or an SCI format) received in slot n indicates additional 1 or 2 PSCCH/PSSCH resources within a window from slot n+1 to slot n+32. The time domain offset between the PSCCH and the reserved resources as well as the time domain offset between the two reserved resources are dynamically indicated by the PSCCH.
The time resource assignment field in the DCI format may indicate 2 or 3 PSCCH/PSSCH resources for scheduling 2 or 3 PSCCHs/PSSCHs for transmitting the same TB with a repetition on the 2 or 3 resources for reliability purpose.
FIG. 2 illustrates an exemplary sidelink transmission under resource allocation mode 1 in accordance with some embodiments of the present disclosure. In FIG. 2, a DCI format (not shown in FIG. 2) may indicates three slots, slot n, slot n+5 and slot n+10 for scheduling a TB. In response to receiving the DCI format, a Tx UE may respectively transmit the TB in PSSCH 221, PSSCH 223 and PSSCH 225 which are respectively scheduled by SCI 211, SCI 213 and SCI 215. Each of PSSCH 221, PSSCH 223 and PSSCH 225 has an associated PSFCH. The Tx UE may determine HARQ-ACK information based on the received PSFCHs or absence of PSFCHs in slot n+3, n+7, and n+15, then report the determined HARQ-ACK information in a PUCCH (not shown in FIG. 2) to the BS.
In some embodiments of the present disclosure, a sidelink transmission may be performed on an unlicensed spectrum. This is advantageous because a sidelink transmission over an unlicensed spectrum can achieve, for example, an increased data rate (s) . In order to achieve fair coexistence between various systems, for example, NR systems (e.g., NR-U systems) and other wireless systems, a channel access procedure, also known as a listen-before-talk (LBT) test, may be performed before communicating (e.g., including the sidelink transmission) on the unlicensed spectrum.
Various types of channel access procedures including, but not limited to, channel access Type 1 and channel access Type 2 may be supported. In some  examples, channel access Type 2 may further include channel access Type 2A, channel access Type 2B and channel access Type 2C. The specific definitions of channel access Type 1 and channel access Type 2 can be found in 3GPP specifications.
In some embodiments, by performing a Type 1 channel access procedure, a UE can obtain a channel occupancy (CO) and occupy the channel until the maximum channel occupancy time (MCOT) . In some embodiments, the duration of the MCOT may be dependent on, for example, a CAPC value of the traffic priority and the presence of other technologies sharing the same spectrum. In some examples, the MCOT can be 2ms, 4ms, 6ms, 8ms or 10ms. Accordingly, after the completion of the channel access procedure, the UE can occupy the channel with a maximum of several or tens of slots, depending on the corresponding CAPC value and the subcarrier spacing of the channel.
In view of the above, for sidelink transmissions over an unlicensed spectrum, from the perspective of a Tx UE, the channel access type for two sidelink transmissions (e.g., sidelink transmission #1 and sidelink transmission #2) may be dependent on the length of the gap between the two sidelink transmissions.
For example, if sidelink transmission #2 is outside the COT initiated for sidelink transmission #1, the Tx UE may need to perform a Type 1 channel access procedure for transmitting sidelink transmission #2. If the gap between the two sidelink transmissions is at least 25μs and sidelink transmission #2 is inside the COT initiated for sidelink transmission #1, the Tx UE can perform Type 2A channel access procedure for transmitting sidelink transmission #2. If the gap between the two sidelink transmissions is equal to 16μs and sidelink transmission #2 is inside the COT initiated for sidelink transmission #1, the Tx UE can perform Type 2B channel access procedure for transmitting sidelink transmission #2. If the gap is up to 16μs, sidelink transmission #2 is limited to 584μs and sidelink transmission #2 is inside the COT initiated for sidelink transmission #1, the Tx UE can perform Type 2C channel access procedure for transmitting sidelink transmission #2.
To avoid performing a Type 1 channel access procedure, it is better to assign consecutive resources for transmitting PSCCHs and PSSCHs, for example, without any gap larger than 16μs as a sidelink transmission burst. In this way, Type 1 channel  access procedure may be required only once before transmitting a first (earliest) sidelink transmission, and then the following sidelink transmissions do not need to perform channel access procedures if they are within the COT.
For example, as shown in FIG. 3, a UE may initiate COT 331 by performing a Type 1 channel access procedure with a CAPC value of 2. The UE can contiguously transmit 4 PSCCH and the associated 4 PSSCHs (i.e., PSCCHs 311 to 317 and PSCCHs 321 to 327) in four consecutive slots (i.e., slots n to n+3) without performing channel access for the sidelink transmissions in slot n+1, n+2, and slot n+3.
As mentioned above, in resource allocation mode 1, a DCI format can schedule a plurality of sidelink resources (e.g., a maximum of 2 or 3 PSCCH/PSSCH resources) to a Tx UE. The max 2 or 3 reserved sidelink resources may be assigned within a window of 32 slots using 5 or 9 bits for indicating the slot offset of the 2nd or 3rd transmissions with reference to the slot where the 1st transmission is scheduled. Under such time domain resource allocation indication scheme, the Tx UE has to perform a channel access procedure (e.g., Type 1 channel access procedure) for each of the 2 or 3 PSCCH/PSSCH transmissions when the gap between any two PSCCH/PSSCH transmissions is larger than 25us. In this sense, the risk of an LBT failure is quite high and the transmission delay would be greatly increased.
Embodiments of the present disclosure provide solutions to solve the above problems. For example, solutions are provided for contiguous sidelink transmissions over an unlicensed spectrum. For example, methods for indicating time domain resources in a DCI format and an SCI format are provided to achieve the contiguous sidelink transmissions over an unlicensed spectrum. For example, methods for indicating the frequency domain resources in a DCI format and an SCI format are provided to achieve the contiguous sidelink transmissions over an unlicensed spectrum. For example, methods for indicating or determining the CAPC value or CPE are provided. For example, methods for dynamic enabling or disabling the transmission of COT sharing information are provided. For example, methods for dynamic enabling or disabling a PUCCH transmission are provided. More details on the embodiments of the present disclosure will be illustrated in the following text in combination with the appended drawings.
Embodiments of the present disclosure are discussed in the scenario where a sidelink transmission is performed over an unlicensed spectrum and resource allocation mode 1 is adopted for the sidelink transmission.
FIG. 7 illustrates a flowchart of method 700 for wireless communication in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 7. In some examples, method 700 may be performed by a UE, for example, UE 104 as described with reference to FIG. 1. In some embodiments, the UE may execute a set of instructions to control the functional elements of the UE to perform the described functions or operations. In some examples, a processor of a UE may cause the UE to perform method 700.
At 711, a UE (denoted as UE #1) may receive, from a BS, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB. For example, UE #1 may transmit, to another UE, a PSCCH (i.e., an SCI format) and an associated PSSCH in each of the set of consecutive slots.
In some embodiments, the DCI format can schedule a maximum of N sidelink transmissions in N consecutive slots for a UE (i.e., a Tx UE) to transmit the same TB with N repetitions in the N consecutive slots with one PSSCH per slot. That is, the set of PSCCH transmissions may include a maximum of N PSCCH transmissions, the set of PSSCH transmissions may include a maximum of N PSSCH transmissions, and the set of consecutive slots may include a maximum of N consecutive slots. In some examples, the value of N may be configured by a BS (e.g., via RRC signaling) , predefined (e.g., in a standard) , or preconfigured (e.g., during implementation) . For example, the value of N may be configured from a set of possible values, for example, {1, 2, 3, 4, 5, 6, 7, 8} .
In some embodiments, the DCI format may include an indicator (denoted as time domain resource allocation (TDRA) indicator) indicating the number of slots in the set of consecutive slots assigned (or scheduled) for the sidelink transmissions of UE #1. In some embodiments, a size of the TDRA indicator may be dependent on the maximum number of slots (e.g., N) schedulable by the DCI format. For example, the  TDRA indicator may requirebits to indicate the number of actually assigned consecutive slots. As stated above, the value of N may be configured by the BS, predefined, or preconfigured.
In some embodiments, a specific slot (e.g., the earliest slot) of the set of assigned consecutive slots can be determined based on the slot where the DCI format is received and a time gap indicated in the DCI format. For example, assuming that the DCI format is received in slot n (or transmitted in slot n from the perspective of the BS) and a time gap field in the DCI format indicates the value of k, then the first (earliest) slot of the assigned consecutive slots is slot n+k. Further assuming that X slots (X≤N) are scheduled by the DCI format, then the assigned consecutive slots are indexed by slot n+k, n+k+1, …, n+k+X-1.
In some embodiments, the set of PSSCH transmissions may be scheduled on the same frequency domain resource. In some embodiments, the set of PSCCH transmissions may be scheduled on the same frequency domain resource. In other words, the sidelink transmissions in the assigned consecutive slots use the same frequency resource, so that UE #1 can initiate the same COT for the sidelink transmissions over the unlicensed spectrum.
In some embodiments, the DCI format may include an indicator (denoted as frequency domain resource allocation (FDRA) indicator) indicating the frequency domain resource for the set of the PSSCH transmissions as well as for the set of the PSCCH transmissions.
The assigned frequency domain resources may be represented in subchannels. In some embodiments, for overhead reduction, the frequency domain resource may include a set of contiguous subchannels. The FDRA indicator may indicate a specific subchannel (e.g., the subchannel with the lowest index) in the set of contiguous subchannels and the number of subchannels in the set of contiguous subchannels. For example, the FDRA indicator may include a resource indication value (RIV) for the set of assigned contiguous subchannels. In some embodiments, the PSCCH (i.e., the SCI format) may be transmitted in a specific subchannel (e.g., the subchannel with the lowest index) of the set of assigned contiguous subchannels. It should be noted that the frequency domain resource can use different representation, and in such a scenario,  the descriptions of the frequency domain resource and the FDRA indicator in the context of the present disclosure can be similarly applied.
FIG. 4 illustrates an exemplary resource allocation for sidelink transmissions in a DCI format. Referring to FIG. 4, a UE may receive DCI 461 from a BS. DCI 461 may schedule a plurality of sidelink transmissions (e.g., sidelink transmissions 411-413 each of which includes a respective PSCCH and a respective PSSCH) in a plurality of consecutive slots on a set of contiguous subchannels. DCI 461 may indicate the number of the scheduled slots (i.e., 3) and a time gap 471 between the slot where the DCI format and the earliest slot of the three scheduled slots. The lowest subchannel of the resource pool for sidelink transmission is denoted as 481. DCI 416 may indicate subchannel 491 with the lowest index among the set of scheduled contiguous subchannels and the number of subchannels in the set of scheduled contiguous subchannels.
By employing consecutive time domain resource allocation and the same frequency domain resource allocation for the multiple scheduled sidelink transmissions, the DCI payload size can be greatly reduced.
Referring back to FIG. 7, in response to receiving the DCI format, UE #1 may try to transmit, to another UE (denoted as UE #2) , the set of PSCCH transmissions and the set of PSSCH transmissions in the set of assigned consecutive slots. UE #1 may determine an SCI format carried in each of the set of PSCCH transmissions based on the DCI format. Each SCI format may indicate the scheduling information for the associated PSSCH transmission.
In some embodiments, an SCI format may include an indicator (denoted as FDRA indicator) indicating the frequency domain resource for the set of the PSSCH transmissions based on the DCI format. UE #2 can receive a scheduled PSSCH on the indicated frequency domain resource.
The assigned frequency domain resources may be represented in subchannels. For overhead reduction, the frequency domain resource may include a set of contiguous subchannels. In some embodiments, the FDRA indicator in the SCI format may indicate the number of contiguous subchannels assigned for the set of the PSSCH  transmissions.
The FDRA indicator in the SCI format may be different from that in the DCI format. For example, since the SCI format is transmitted in a specific subchannel (e.g., the subchannel with the lowest index) of the set of assigned contiguous subchannels, it is not necessary to indicate specific subchannel index in the FDRA indicator in the SCI format. That is, the frequency domain resources assigned for the set of the PSSCH transmissions can be determined based on the subchannel where the set of the PSCCH transmissions (i.e., the SCI formats) is received and the number of contiguous subchannels as indicated in the FDRA indicator in the SCI format.
The SCI format may indicate the time domain resource for UE #2 to receive the remaining scheduled PSSCH (s) in the remaining consecutive scheduled slots. In some embodiments, the SCI format may include an indicator (denoted as remaining slot number indicator) indicating the number of remaining slots among the set of consecutive slots. The indicated number of remaining scheduled slots in consecutive slots should be coincident with each other. For example, in the case that two sidelink transmissions are scheduled by a DCI format in two slots, the remaining slot number indicator in a first SCI format may indicate the number of remaining slots as 1 and the remaining slot number indicator in a second SCI format may indicate the number of remaining slots as 0.
In response to receiving the SCI format, UE #2 can know the number of remaining scheduled PSSCH (s) and determine the currently indicated frequency resource applicable to the remaining scheduled PSSCH (s) . In some embodiments, UE #2 may generate sidelink HARQ-ACK information corresponding to the set of PSSCH transmissions carrying the same TB after receiving the last PSSCH of the set of PSSCH transmissions.
To transmit the set of PSCCH transmissions and the set of PSSCH transmissions on the unlicensed spectrum, UE #1 may perform a channel access procedure. For example, at 713, UE #1 may perform a channel access procedure (e.g., a Type 1 channel access procedure) according to a CAPC value (denoted as CAPC value #1) . At 715, UE #1 may transmit the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the  channel access procedure.
CAPC value #1 may be determined based on a comparison between two CAPC values (denoted as CAPC value #2 and CAPC value #3) . For example, UE #1 may determine CAPC value #2 based on the data carried by the TB (e.g., user plane data to be transmitted) .
In some embodiments, the DCI format may indicate CAPC value #3. That is, the BS may determine CAPC value #3 for performing the channel access procedure. In some embodiments, the BS may determine CAPC value #3 based on at least one of the number of slots in the set of assigned consecutive slots or the subcarrier spacing of the frequency domain resource for the set of PSSCH transmissions (or the subcarrier spacing of the RB set on which the channel access procedure is to be performed) .
For example, the BS may determine CAPC value #3 based on the duration of the set of assigned consecutive slots. For example, when (the number of assigned slots × the number of milliseconds per slot) is not larger than 2ms, then the BS may indicate a CAPC value of 2 in the DCI format. When (the number of assigned slots × the number of milliseconds per slot) is larger than 2ms and not larger than 4ms, then the BS may indicate a CAPC value of 4 in the DCI format. When (the number of assigned slots × the number of milliseconds per slot) is larger than 4ms and not larger than Y ms, then the BS may indicate a CAPC value of 3 in the DCI format, where the value of Y may be dependent on the presence or absence of any other technologies. For example, when a high layer parameter (e.g., "absenceOfAnyOtherTechnology" as specified in 3GPP specifications) indicating the absence of any other technologies is provided, Y is equal to 10; otherwise, Y is equal to 6.
In some other embodiments, the DCI format may not indicate CAPC value #3. UE #1 may determine CAPC value #3. In some embodiments, UE #1 may determine CAPC value #3 based on at least one of the number of slots in the set of consecutive slots or the subcarrier spacing of the RB set on which the channel access procedure is performed (or the subcarrier spacing of the frequency domain resource for the set of PSSCH transmissions) .
For example, UE #1 may determine CAPC value #3 based on the duration of  the set of assigned consecutive slots. For example, when (the number of assigned slots × the number of milliseconds per slot) is not larger than 2ms, then UE #1 may determine CAPC value #3 as 2. When (the number of assigned slots × the number of milliseconds per slot) is larger than 2ms and not larger than 4ms, then UE #1 may determine CAPC value #3 as 4. When (the number of assigned slots × the number of milliseconds per slot) is larger than 4ms and not larger than Y ms, then UE #1 may determine CAPC value #3 as 3, where the value of Y may be dependent on the presence or absence of any other technologies. For example, when a high layer parameter (e.g., "absenceOfAnyOtherTechnology" as specified in 3GPP specifications) indicating the absence of any other technologies is provided, Y is equal to 10; otherwise, Y is equal to 6.
UE #1 may select one of CAPC value #2 and CAPC value #3 as CAPC value #1 for performing the channel access procedure to initiate a COT. For example, when CAPC value #3 is smaller than or equal to CAPC value #2, UE #1 may select CAPC value #2 as CAPC value #1. When CAPC value #3 is larger than CAPC value #2, UE #1 may select CAPC value #3 as CAPC value #1.
FIG. 5 illustrates an exemplary resource allocation for sidelink transmissions in a DCI format. Referring to FIG. 5, a UE may receive DCI 561 from a BS. DCI 561 may schedule a plurality of sidelink transmissions (e.g., SCIs 521-525 and PSSCHs 511-515) in a plurality of consecutive slots (e.g., slots n to n+2) on a set of contiguous subchannels. DCI 561 may indicate the number of the scheduled slots (i.e., 3) and a time gap 571 between the slot where the DCI format and the earliest slot of the three scheduled slots. The lowest subchannel of the resource pool for sidelink transmission is denoted as 581. DCI 516 may indicate subchannel 591 with the lowest index among the set of scheduled contiguous subchannels and the number of subchannels in the set of scheduled contiguous subchannels.
The UE may perform a channel access procedure to initiate COT 531. The CAPC value used for the channel access procedure may be determined according to the methods as described above. Each of SCIs 521-525 may be transmitted by the UE on subchannel 591 in a corresponding slot and may indicate the number of subchannels in the set of scheduled contiguous subchannels. In some examples, resource 541 within  COT 531 can be shared by another UE.
FIG. 6 illustrates an exemplary resource allocation for sidelink transmissions in a DCI format. Referring to FIG. 6, a UE may receive DCI 661 from a BS. DCI 661 may schedule a plurality of sidelink transmissions (e.g., SCIs 621-625 and PSSCHs 611-615) in a plurality of consecutive slots (e.g., slots n to n+2) on a set of contiguous subchannels. DCI 661 may indicate the number of the scheduled slots (i.e., 3) and a time gap 671 between the slot where the DCI format and the earliest slot of the three scheduled slots. The lowest subchannel of the resource pool for sidelink transmission is denoted as 681. DCI 616 may indicate subchannel 691 with the lowest index among the set of scheduled contiguous subchannels and the number of subchannels in the set of scheduled contiguous subchannels. The UE may perform a channel access procedure to initiate COT 631. The CAPC value used for the channel access procedure may be determined according to the methods as described above. In some examples, resource 651 within COT 631 may be used by another UE to transmit a PSFCH.
Referring back to FIG. 7, in some embodiments, the DCI format may include an indicator indicating a CPE length for transmitting the set of PSSCH transmissions. The channel access procedure performed by UE #1 may initiate a COT in an RB set. In some embodiments, in response to the frequency domain resource for the set of the PSSCH transmissions occupying a partial bandwidth of the RB set, UE #1 may transmit a CPE with the indicated CPE length before transmitting the set of PSSCH transmissions. In some embodiments, in response to the frequency domain resource for the set of the PSSCH transmissions occupying the full bandwidth of the RB set, UE #1 may transmit a CPE with a length randomly selected from a set of CPE lengths before transmitting the set of PSSCH transmissions. The set of CPE lengths may be configured by the BS for UE #1 via, for example, RRC signaling, predefined (e.g., in a standard) , or preconfigured (e.g., during implementation) .
For example, when the FDRA indicator in the DCI format indicates the full bandwidth in the RB set being assigned to UE #1, UE #1 can randomly select a CPE length from the set of CPE lengths and ignore the indicated CPE length in the DCI format. When the FDRA field in the DCI format indicates a partial bandwidth in the  RB set being assigned to UE #1, UE #1 shall use the indicated CPE length to start its sidelink transmissions in response to the channel access procedure being completed.
In some embodiments, the DCI format may include an indicator (denoted as COT sharing information enabling/disabling indicator) for enabling or disabling the transmission of COT sharing information. The COT sharing information enabling/disabling indicator indicate whether the SCI format should include COT sharing information or not.
For example, each of the set of PSCCH transmissions carries an SCI format, which may include COT sharing information in response to the COT sharing information enabling/disabling indicator in the DCI format enables the transmission of COT sharing information, or may not include any COT sharing information in response to the COT sharing information enabling/disabling indicator in the DCI format disables the transmission of COT sharing information. That is, when the transmission of COT sharing information is enabled, UE #1 may transmit COT sharing information in each SCI format in each of the assigned slots.
This provides the BS the possibility to schedule another UE’s sidelink transmissions (e.g., a PSCCH and its associated PSSCH) inside the COT initiated by a Tx UE (e.g., UE #1) . Since the BS cannot know whether an Tx UE can perform a successful channel access procedure in the scheduled slots and the CAPC value according to the user plane data of the another UE as well as whether the Tx UE is the target receiver UE of the another UE’s intended transmission, the BS cannot determine whether the another UE can share the Tx UE’s COT or not. However, with the COT sharing information enabling/disabling indicator enabling the transmission of COT sharing information in the Tx UE’s SCI format, the another UE can determine whether it can share the Tx UE’s COT based on the transmitted COT sharing information from the Tx UE.
In some embodiments, the channel access procedure performed by UE #1 may initiate a COT. The COT sharing information in an SCI format may include at least one of: (1) CAPC value #1 (i.e., the CAPC value used by UE #1 for initiating the current COT) , (2) the remaining duration of the COT, or (3) the number of remaining slots among the set of assigned consecutive slots.
Parameter (2) indicated in consecutive slots should be coincident with each other. For example, it is assumed that the COT occupies four slots, and the DCI format schedules two sidelink transmissions in the first two slots in the COT. The first SCI format in the first slot of the COT may indicate that the remaining duration of the COT includes 3 slots and the second SCI format in the second slot of the COT may indicate that the remaining duration of the COT includes 2 slots. Parameter (3) indicated in consecutive slots should be coincident with each other. For example, the first SCI format in the first slot of the COT may indicate the number of remaining assigned slot being 1 and the second SCI format in the second slot of the COT may indicate that the number of remaining assigned slot being 0.
In response to the reception of the COT sharing information from UE #1, another UE (denoted as UE #3) can perform a channel access procedure (e.g., Type 2 channel access procedure) for a sidelink transmission (e.g., a PSCCH, a PSSCH, a PSFCH or any combination thereof) if, for example, at least one of the following is satisfied: the sidelink transmission of UE #3 is within UE #1’s COT, the sidelink transmission of UE #3 targets to UE #1, or the CAPC value associated with the data to be transmitted by UE #3 is not larger than the CAPC value indicated in the COT sharing information.
When the DCI format disables the transmission of the COT sharing information, UE #1 may not transmit the COT sharing information in each SCI format in each of slots assigned by the DCI format. In this sense, there is no COT sharing for other UEs in the COT initiated by UE #1.
Since the set of sidelink transmissions (e.g., the set of PSCCH transmissions and the set of PSSCH transmissions) scheduled by the DCI format are consecutive in the time domain, when the channel access procedure for initiating a COT for transmitting the PSCCHs and PSSCHs in the scheduled consecutive slots is not completed before the transmission of the first (earliest) PSCCH and PSSCH, UE #1 may continue the channel access procedure until it is completed. In some examples, UE #1 may perform the scheduled sidelink transmission (s) from the next slot till the last scheduled slot. In some examples, when the scheduled slots are configured with multiple candidate starting symbols for a sidelink transmission (e.g., PSCCH or PSSCH  transmission) , in the case that the channel access procedure from the first (earliest) candidate starting symbol of the first (earliest) scheduled slot is not completed before the transmission of the first (earliest) PSCCH and PSSCH, UE #1 may continue the channel access procedure until it is completed. UE #1 may perform the scheduled sidelink transmission (s) from the next nearest candidate starting symbol till the last scheduled slot.
In some embodiments, HARQ-ACK feedback indication in a PUCCH is optional when a single DCI format schedules a number of repetitions for transmitting a single TB. Dynamic enabling/disabling PUCCH transmission is supported for sidelink resource allocation mode 1. For example, the DCI format may include an indicator (denoted as PUCCH transmission enabling/disabling indicator) for enabling or disabling a PUCCH transmission corresponding to the set of PSSCH transmissions scheduled by the DCI format.
The BS may disable or enable the PUCCH transmission based on whether a reliability requirement of a TB is satisfied by the set of PSSCH transmissions or not. For example, if the BS determines the scheduled multiple resources (e.g., the set of PSSCH transmissions) can satisfy the reliability requirements of the intended TB, the BS can disable the HARQ-ACK feedback in the PUCCH (e.g., setting the PUCCH transmission enabling/disabling indicator to disable the PUCCH transmission) , so as to simplify the HARQ-ACK codebook without the consideration of HARQ-ACK information bit for sidelink. If the BS is not sure about whether the scheduled multiple resources can satisfy the reliability requirements of the intended TB, the BS can enable the HARQ-ACK feedback in the PUCCH (e.g., setting the PUCCH transmission enabling/disabling indicator to enable the PUCCH transmission) , so as to schedule a resource for a retransmission of the TB if UE #1 reports a NACK in the PUCCH to the BS.
From the perspective of UE #1, when the DCI format enables the PUCCH transmission, UE #1 may transmit HARQ-ACK information in the PUCCH scheduled by the DCI format corresponding to the transmitted TB. When the DCI format disables the PUCCH transmission, UE #1 may not transmit any HARQ-ACK information to the BS.
Various methods can be employed to dynamically enabling and disabling the PUCCH transmission in a DCI format. Or put another way, various methods can be employed to implement the PUCCH transmission enabling/disabling indicator in the DCI format.
In some embodiments, the PUCCH transmission enabling/disabling indicator in the DCI format may be an indicator or field dedicated for dynamically enabling and disabling the PUCCH transmission. For example, the indicator may include at least one bit to indicate the enabling or disabling of the PUCCH transmission. For example, the indicator may include 1 bit, wherein bit “1” indicates enabling the PUCCH transmission while bit “0” indicates disabling the PUCCH transmission; or vice versa.
In some embodiments, the PUCCH transmission enabling/disabling indicator may reuse the PSFCH-to-HARQ feedback timing indicator in the DCI format.
For example, an inapplicable value (e.g., -1) can be included in a set of HARQ-ACK feedback timing values for indicating a slot level timing offset from the PSFCH to the PUCCH transmission. When the DCI format (i.e., PSFCH-to-HARQ feedback timing indicator) indicates an applicable value from the set of HARQ-ACK feedback timing values, it implies that the PUCCH transmission is enabled. UE #1 may transmit HARQ-ACK information corresponding to the transmitted TB in the indicated PUCCH slot based on the indicated applicable slot level offset from the PSFCH to the PUCCH. When the DCI format (i.e., PSFCH-to-HARQ feedback timing indicator) indicates the inapplicable value from the set of HARQ-ACK feedback timing values, it implies that the PUCCH transmission is disabled. UE #1 may not transmit the HARQ-ACK information corresponding to the transmitted TB to the BS.
In some embodiments, the PUCCH transmission enabling/disabling indicator may reuse the PUCCH resource indicator in the DCI format.
For example, a reserved code point (e.g., bits of "111" ) of the PUCCH resource indicator in the DCI format implies that the PUCCH transmission is disabled. When the PUCCH resource indicator in the DCI format indicates a code point other than the reserved code point, it implies that the PUCCH transmission is enabled. UE #1 may transmit HARQ-ACK information corresponding to the transmitted TB in the indicated  PUCCH resource based on the indicated PUCCH resource index. When the PUCCH resource indicator in the DCI format indicates the reserved code point, it implies that the PUCCH transmission is disabled. UE #1 may not transmit the HARQ-ACK information corresponding to the transmitted TB to the BS.
It should be appreciated by persons skilled in the art that the sequence of the operations in exemplary method 700 may be changed and some of the operations in exemplary method 700 may be eliminated or modified, without departing from the spirit and scope of the disclosure.
FIG. 8 illustrates a flowchart of method 800 for wireless communication in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 8. In some examples, method 800 may be performed by a BS or an NE (for example, NE 102 as described with reference to FIG. 1) . In some embodiments, the BS or the NE may execute a set of instructions to control the functional elements of the BS or the NE to perform the described functions or operations. In some examples, a processor of an NE may cause the NE to perform method 800.
At 811, a BS may transmit, to a UE (e.g., UE #1) , a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB. The above descriptions regarding the DCI format may apply here. In some embodiments, the set of PSSCH transmissions is scheduled on the same frequency domain resource.
At 813, the BS may detect HARQ-ACK information corresponding to the set of PSSCH transmissions in a PUCCH transmission from the UE in response to the PUCCH transmission being enabled. In some other embodiments, dynamic enabling and disabling the PUCCH transmission may not be supported. The BS may always detect the HARQ-ACK information corresponding to the set of PSSCH transmissions in the PUCCH transmission from the UE.
In some embodiments, the DCI format may include an indicator (e.g., a TDRA indicator) indicating the number of slots in the set of consecutive slots. In some  embodiments, the size of the TDRA indicator is dependent on a maximum number of slots schedulable by the DCI format. In some embodiments, the BS may configure the maximum number of slots for the UE. In some embodiments, the maximum number of slots is predefined or preconfigured.
In some embodiments, the DCI format may include an indicator (e.g., a FDRA indicator) indicating the frequency domain resource for the set of the PSSCH transmissions. In some embodiments, the frequency domain resource may include a set of contiguous subchannels. The FDRA indicator indicates a specific subchannel in the set of contiguous subchannels and a number of subchannels in the set of contiguous subchannels.
In some embodiments, the DCI format may indicate a CAPC value (e.g., CAPC value #3) for the UE to perform a channel access procedure. In some embodiments, the CAPC value is determined based on at least one of the number of slots in the set of consecutive slots or subcarrier spacing of the frequency domain resource for the set of PSSCH transmissions.
In some embodiments, the DCI format may include an indicator indicating a CPE length for transmitting the set of PSSCH transmissions.
In some embodiments, the DCI format may include an indicator for enabling or disabling the transmission of COT sharing information.
In some embodiments, the DCI format may include an indicator (e.g., a PUCCH transmission enabling/disabling indicator) for enabling or disabling the PUCCH transmission.
In some embodiments, the PUCCH transmission enabling/disabling indicator indicates an inapplicable PSFCH to PUCCH timing value to disable the PUCCH transmission. In some embodiments, the PUCCH transmission enabling/disabling indicator indicates a specific codepoint of a resource for the PUCCH transmission to disable the PUCCH transmission.
In some embodiments, the BS may set the PUCCH transmission  enabling/disabling indicator to disable or enable the PUCCH transmission based on whether a reliability requirement of the TB is satisfied by the set of PSSCH transmissions or not.
It should be appreciated by persons skilled in the art that the sequence of the operations in exemplary method 800 may be changed and some of the operations in exemplary method 800 may be eliminated or modified, without departing from the spirit and scope of the disclosure.
FIG. 9 illustrates a block diagram of exemplary apparatus 900 according to some embodiments of the present disclosure. As shown in FIG. 9, the apparatus 900 may include at least one processor 906 and at least one transceiver 902 coupled to the processor 906. The apparatus 900 may be a UE or an NE (e.g., a BS) .
Although in this figure, elements such as the at least one transceiver 902 and processor 906 are described in the singular, the plural is contemplated unless a limitation to the singular is explicitly stated. In some embodiments of the present disclosure, the transceiver 902 may be divided into two devices, such as a receiving circuitry and a transmitting circuitry. In some embodiments of the present disclosure, the apparatus 900 may further include an input device, a memory, and/or other components.
In some embodiments of the present disclosure, the apparatus 900 may be a UE. The transceiver 902 and the processor 906 may interact with each other so as to perform the operations with respect to the UE described in FIGs. 1-8. In some embodiments of the present disclosure, the apparatus 900 may be an NE (e.g., a BS) . The transceiver 902 and the processor 906 may interact with each other so as to perform the operations with respect to the BS or NE described in FIGs. 1-8.
In some embodiments of the present disclosure, the apparatus 900 may further include at least one non-transitory computer-readable medium.
For example, in some embodiments of the present disclosure, the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause the processor 906 to implement the method with respect to the UE  as described above. For example, the computer-executable instructions, when executed, cause the processor 906 interacting with transceiver 902 to perform the operations with respect to the UE described in FIGs. 1-8.
In some embodiments of the present disclosure, the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause the processor 906 to implement the method with respect to the BS or NE as described above. For example, the computer-executable instructions, when executed, cause the processor 906 interacting with transceiver 902 to perform the operations with respect to the BS or NE described in FIGs. 1-8.
FIG. 10 illustrates an example of a UE 1000 in accordance with aspects of the present disclosure. The UE 1000 may include a processor 1002, a memory 1004, a controller 1006, and a transceiver 1008. The processor 1002, the memory 1004, the controller 1006, or the transceiver 1008, or various combinations thereof or various components thereof may be examples of means for performing various aspects of the present disclosure as described herein. These components may be coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces.
The processor 1002, the memory 1004, the controller 1006, or the transceiver 1008, or various combinations or components thereof may be implemented in hardware (e.g., circuitry) . The hardware may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , or other programmable logic device, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
The processor 1002 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination thereof) . In some implementations, the processor 1002 may be configured to operate the memory 1004. In some other implementations, the memory 1004 may be integrated into the processor 1002. The processor 1002 may be configured to execute computer-readable instructions stored in the memory 1004 to cause the UE 1000 to perform various functions of the present disclosure.
The memory 1004 may include volatile or non-volatile memory. The memory 1004 may store computer-readable, computer-executable code including instructions when executed by the processor 1002 cause the UE 1000 to perform various functions described herein. The code may be stored in a non-transitory computer-readable medium such as the memory 1004 or another type of memory. Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
In some implementations, the processor 1002 and the memory 1004 coupled with the processor 1002 may be configured to cause the UE 1000 to perform one or more of the functions described herein (e.g., executing, by the processor 1002, instructions stored in the memory 1004) . For example, the processor 1002 may support wireless communication at the UE 1000 in accordance with examples as disclosed herein. For example, the UE 1000 may be configured to support means for performing the operations as described with respect to FIG. 7.
For example, the UE 1000 may be configured to support: a means for receiving, from a BS (or an NE) , a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; a means for performing a channel access procedure according to a first CAPC value; and a means for transmitting the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
The controller 1006 may manage input and output signals for the UE 1000. The controller 1006 may also manage peripherals not integrated into the UE 1000. In some implementations, the controller 1006 may utilize an operating system such as or other operating systems. In some implementations, the controller 1006 may be implemented as part of the processor 1002.
In some implementations, the UE 1000 may include at least one transceiver  1008. In some other implementations, the UE 1000 may have more than one transceiver 1008. The transceiver 1008 may represent a wireless transceiver. The transceiver 1008 may include one or more receiver chains 1010, one or more transmitter chains 1012, or a combination thereof.
A receiver chain 1010 may be configured to receive signals (e.g., control information, data, or packets) over a wireless medium. For example, the receiver chain 1010 may include one or more antennas for receive the signal over the air or wireless medium. The receiver chain 1010 may include at least one amplifier (e.g., a low-noise amplifier (LNA) ) configured to amplify the received signal. The receiver chain 1010 may include at least one demodulator configured to demodulate the receive signal and obtain the transmitted data by reversing the modulation technique applied during transmission of the signal. The receiver chain 1010 may include at least one decoder for decoding the processing the demodulated signal to receive the transmitted data.
A transmitter chain 1012 may be configured to generate and transmit signals (e.g., control information, data, or packets) . The transmitter chain 1012 may include at least one modulator for modulating data onto a carrier signal, preparing the signal for transmission over a wireless medium. The at least one modulator may be configured to support one or more techniques such as amplitude modulation (AM) , frequency modulation (FM) , or digital modulation schemes like phase-shift keying (PSK) or quadrature amplitude modulation (QAM) . The transmitter chain 1012 may also include at least one power amplifier configured to amplify the modulated signal to an appropriate power level suitable for transmission over the wireless medium. The transmitter chain 1012 may also include one or more antennas for transmitting the amplified signal into the air or wireless medium.
It should be appreciated by persons skilled in the art that the components in exemplary UE 1000 may be changed, for example, some of the components in exemplary UE 1000 may be omitted or modified or a new component (s) may be added to exemplary UE 1000, without departing from the spirit and scope of the disclosure. For example, in some embodiments, the UE 1000 may not include the controller 1006.
FIG. 11 illustrates an example of a processor 1100 in accordance with aspects  of the present disclosure. The processor 1100 may be an example of a processor configured to perform various operations in accordance with examples as described herein. The processor 1100 may include a controller 1102 configured to perform various operations in accordance with examples as described herein. The processor 1100 may optionally include at least one memory 1104, which may be, for example, an L1/L2/L3 cache. Additionally, or alternatively, the processor 1100 may optionally include one or more arithmetic-logic units (ALUs) 1106. One or more of these components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces (e.g., buses) .
The processor 1100 may be a processor chipset and include a protocol stack (e.g., a software stack) executed by the processor chipset to perform various operations (e.g., receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading) in accordance with examples as described herein. The processor chipset may include one or more cores, one or more caches (e.g., memory local to or included in the processor chipset (e.g., the processor 1100) or other memory (e.g., random access memory (RAM) , read-only memory (ROM) , dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , static RAM (SRAM) , ferroelectric RAM (FeRAM) , magnetic RAM (MRAM) , resistive RAM (RRAM) , flash memory, phase change memory (PCM) , and others) .
The controller 1102 may be configured to manage and coordinate various operations (e.g., signaling, receiving, obtaining, retrieving, transmitting, outputting, forwarding, storing, determining, identifying, accessing, writing, reading) of the processor 1100 to cause the processor 1100 to support various operations in accordance with examples as described herein. For example, the controller 1102 may operate as a control unit of the processor 1100, generating control signals that manage the operation of various components of the processor 1100. These control signals include enabling or disabling functional units, selecting data paths, initiating memory access, and coordinating timing of operations.
The controller 1102 may be configured to fetch (e.g., obtain, retrieve, receive) instructions from the memory 1104 and determine a subsequent instruction (s) to be  executed to cause the processor 1100 to support various operations in accordance with examples as described herein. The controller 1102 may be configured to track memory address of instructions associated with the memory 1104. The controller 1102 may be configured to decode instructions to determine the operation to be performed and the operands involved. For example, the controller 1102 may be configured to interpret the instruction and determine control signals to be output to other components of the processor 1100 to cause the processor 1100 to support various operations in accordance with examples as described herein. Additionally, or alternatively, the controller 1102 may be configured to manage flow of data within the processor 1100. The controller 1102 may be configured to control transfer of data between registers, ALUs, and other functional units of the processor 1100.
The memory 1104 may include one or more caches (e.g., memory local to or included in the processor 1100 or other memory, such RAM, ROM, DRAM, SDRAM, SRAM, MRAM, flash memory, etc. In some implementations, the memory 1104 may reside within or on a processor chipset (e.g., local to the processor 1100) . In some other implementations, the memory 1104 may reside external to the processor chipset (e.g., remote to the processor 1100) .
The memory 1104 may store computer-readable, computer-executable code including instructions that, when executed by the processor 1100, cause the processor 1100 to perform various functions described herein. The code may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. The controller 1102 and/or the processor 1100 may be configured to execute computer-readable instructions stored in the memory 1104 to cause the processor 1100 to perform various functions. For example, the processor 1100 and/or the controller 1102 may be coupled with or to the memory 1104, the processor 1100, the controller 1102, and the memory 1104 may be configured to perform various functions described herein. In some examples, the processor 1100 may include multiple processors and the memory 1104 may include multiple memories. One or more of the multiple processors may be coupled with one or more of the multiple memories, which may, individually or collectively, be configured to perform various functions herein.
The one or more ALUs 1106 may be configured to support various operations  in accordance with examples as described herein. In some implementations, the one or more ALUs 1106 may reside within or on a processor chipset (e.g., the processor 1100) . In some other implementations, the one or more ALUs 1106 may reside external to the processor chipset (e.g., the processor 1100) . One or more ALUs 1106 may perform one or more computations such as addition, subtraction, multiplication, and division on data. For example, one or more ALUs 1106 may receive input operands and an operation code, which determines an operation to be executed. One or more ALUs 1106 be configured with a variety of logical and arithmetic circuits, including adders, subtractors, shifters, and logic gates, to process and manipulate the data according to the operation. Additionally, or alternatively, the one or more ALUs 1106 may support logical operations such as AND, OR, exclusive-OR (XOR) , not-OR (NOR) , and not-AND (NAND) , enabling the one or more ALUs 1106 to handle conditional operations, comparisons, and bitwise operations.
The processor 1100 may support wireless communication in accordance with examples as disclosed herein.
For example, the processor 1100 may be configured to support means for performing the operations as described with respect to FIG. 7. For example, the processor 1100 may be configured to or operable to support: a means for receiving, from a BS (or an NE) , a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; a means for performing a channel access procedure according to a first CAPC value; and a means for transmitting the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
For example, the processor 1100 may be configured to support means for performing the operations as described with respect to FIG. 8. For example, the processor 1100 may be configured to support: a means for transmitting, to a first UE, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; and a  means for detecting HARQ-ACK information corresponding to the set of PSSCH transmissions in a PUCCH transmission from the first UE in response to the PUCCH transmission being enabled.
It should be appreciated by persons skilled in the art that the components in exemplary processor 1100 may be changed, for example, some of the components in exemplary processor 1100 may be omitted or modified or a new component (s) may be added to exemplary processor 1100, without departing from the spirit and scope of the disclosure. For example, in some embodiments, the processor 1100 may not include the ALUs 1106.
FIG. 12 illustrates an example of an NE 1200 in accordance with aspects of the present disclosure. The NE 1200 may include a processor 1202, a memory 1204, a controller 1206, and a transceiver 1208. The processor 1202, the memory 1204, the controller 1206, or the transceiver 1208, or various combinations thereof or various components thereof may be examples of means for performing various aspects of the present disclosure as described herein. These components may be coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more interfaces.
The processor 1202, the memory 1204, the controller 1206, or the transceiver 1208, or various combinations or components thereof may be implemented in hardware (e.g., circuitry) . The hardware may include a processor, a DSP, an ASIC, or other programmable logic device, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
The processor 1202 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination thereof) . In some implementations, the processor 1202 may be configured to operate the memory 1204. In some other implementations, the memory 1204 may be integrated into the processor 1202. The processor 1202 may be configured to execute computer-readable instructions stored in the memory 1204 to cause the NE 1200 to perform various functions of the present disclosure.
The memory 1204 may include volatile or non-volatile memory. The  memory 1204 may store computer-readable, computer-executable code including instructions when executed by the processor 1202 cause the NE 1200 to perform various functions described herein. The code may be stored in a non-transitory computer-readable medium such as the memory 1204 or another type of memory. Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
In some implementations, the processor 1202 and the memory 1204 coupled with the processor 1202 may be configured to cause the NE 1200 to perform one or more of the functions described herein (e.g., executing, by the processor 1202, instructions stored in the memory 1204) . For example, the processor 1202 may support wireless communication at the NE 1200 in accordance with examples as disclosed herein. For example, the NE 1200 may be configured to support means for performing the operations as described with respect to FIG. 8.
For example, the NE 1200 may be configured to support: a means for transmitting, to a first UE, a DCI format for scheduling a set of PSCCH transmissions and a set of PSSCH transmissions in a set of consecutive slots for transmitting a TB, wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; and a means for detecting HARQ-ACK information corresponding to the set of PSSCH transmissions in a PUCCH transmission from the first UE in response to the PUCCH transmission being enabled.
The controller 1206 may manage input and output signals for the NE 1200. The controller 1206 may also manage peripherals not integrated into the NE 1200. In some implementations, the controller 1206 may utilize an operating system such as or other operating systems. In some implementations, the controller 1206 may be implemented as part of the processor 1202.
In some implementations, the NE 1200 may include at least one transceiver 1208. In some other implementations, the NE 1200 may have more than one transceiver 1208. The transceiver 1208 may represent a wireless transceiver. The  transceiver 1208 may include one or more receiver chains 1210, one or more transmitter chains 1212, or a combination thereof.
A receiver chain 1210 may be configured to receive signals (e.g., control information, data, or packets) over a wireless medium. For example, the receiver chain 1210 may include one or more antennas for receive the signal over the air or wireless medium. The receiver chain 1210 may include at least one amplifier (e.g., an LNA) configured to amplify the received signal. The receiver chain 1210 may include at least one demodulator configured to demodulate the receive signal and obtain the transmitted data by reversing the modulation technique applied during transmission of the signal. The receiver chain 1210 may include at least one decoder for decoding the processing the demodulated signal to receive the transmitted data.
A transmitter chain 1212 may be configured to generate and transmit signals (e.g., control information, data, or packets) . The transmitter chain 1212 may include at least one modulator for modulating data onto a carrier signal, preparing the signal for transmission over a wireless medium. The at least one modulator may be configured to support one or more techniques such as AM, FM, or digital modulation schemes like PSK or QAM. The transmitter chain 1212 may also include at least one power amplifier configured to amplify the modulated signal to an appropriate power level suitable for transmission over the wireless medium. The transmitter chain 1212 may also include one or more antennas for transmitting the amplified signal into the air or wireless medium.
It should be appreciated by persons skilled in the art that the components in exemplary NE 1200 may be changed, for example, some of the components in exemplary NE 1200 may be omitted or modified or a new component (s) may be added to exemplary NE 1200, without departing from the spirit and scope of the disclosure. For example, in some embodiments, the NE 1200 may not include the controller 1206.
Those having ordinary skill in the art would understand that the operations or steps of the methods described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a  removable disk, a CD-ROM, or any other form of storage medium known in the art. Additionally, in some aspects, the operations or steps of the methods may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
While this disclosure has been described with specific embodiments thereof, it is evident that many alternatives, modifications, and variations may be apparent to those skilled in the art. The disclosure is not limited to the examples and designs described herein but is to be accorded with the broadest scope consistent with the principles and novel features disclosed herein. For example, various components of the embodiments may be interchanged, added, or substituted in other embodiments. Also, all of the elements of each figure are not necessary for the operation of the disclosed embodiments. For example, one of ordinary skill in the art of the disclosed embodiments would be enabled to make and use the teachings of the disclosure by simply employing the elements of the independent claims. Accordingly, embodiments of the disclosure as set forth herein are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the disclosure.
In this document, the terms "includes, " "including, " or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "a, " "an, " or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element. Also, the term "another" is defined as at least a second or more. The term "having" or the like, as used herein, is defined as "including. " Expressions such as "A and/or B" or "at least one of A and B" may include any and all combinations of words enumerated along with the expression. For instance, the expression "A and/or B" or "at least one of A and B" may include A, B, or both A and B. The wording "the first, " "the second" or the like is only used to clearly illustrate the embodiments of the present disclosure, but is not used to limit the substance of the present disclosure.

Claims (20)

  1. A first user equipment (UE) , comprising:
    at least one memory; and
    at least one processor coupled with the at least one memory and configured to cause the first UE to:
    receive, from a base station (BS) , a downlink control information (DCI) format for scheduling a set of physical sidelink control channel (PSCCH) transmissions and a set of physical sidelink shared channel (PSSCH) transmissions in a set of consecutive slots for transmitting a transport block (TB) , wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource;
    perform a channel access procedure according to a first channel access priority class (CAPC) value; and
    transmit the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
  2. The first UE of claim 1, wherein the DCI format comprises a first indicator indicating the number of slots in the set of consecutive slots.
  3. The first UE of claim 1, wherein the DCI format comprises a second indicator indicating a frequency domain resource for the set of the PSSCH transmissions; and
    wherein the frequency domain resource comprises a set of contiguous subchannels, and the second indicator indicates a specific subchannel in the set of contiguous subchannels and a number of subchannels in the set of contiguous subchannels.
  4. The first UE of claim 1, wherein each of the set of PSCCH transmissions carries a sidelink control information (SCI) format and the SCI format comprises a third  indicator indicating a frequency domain resource for the set of the PSSCH transmissions based on the DCI format; and
    wherein the third indicator indicates a number of contiguous subchannels for the set of the PSSCH transmissions.
  5. The first UE of claim 1, wherein each of the set of PSCCH transmissions carries a sidelink control information (SCI) format and the SCI format comprises a fourth indicator indicating a number of remaining slots among the set of consecutive slots.
  6. The first UE of claim 1, wherein the DCI format indicates a second CAPC value for performing a channel access procedure; and
    wherein the at least one processor is further configured to cause the first UE to:
    determine a third CAPC value based on data carried by the TB; and
    select one of the second CAPC value and the third CAPC value as the first CAPC value.
  7. The first UE of claim 1, wherein the at least one processor is further configured to cause the first UE to:
    determine a second CAPC value based on at least one of the number of slots in the set of consecutive slots or subcarrier spacing of a resource block (RB) set on which the channel access procedure is performed;
    determine a third CAPC value based on data carried by the TB; and
    select one of the second CAPC value and the third CAPC value as the first CAPC value.
  8. The first UE of claim 1, wherein the DCI format comprises a fifth indicator indicating a cyclic prefix extension (CPE) length for transmitting the set of PSSCH transmissions.
  9. The first UE of claim 8, wherein the channel access procedure initiates a channel occupancy time (COT) in a resource block (RB) set, and wherein the at least one processor is further configured to cause the first UE to:
    transmit a CPE with the indicated CPE length before transmitting the set of PSSCH transmissions in response to the frequency domain resource for the set of the PSSCH transmissions occupying a partial bandwidth of the RB set; or
    transmit a CPE with a length randomly selected from a set of CPE lengths before transmitting the set of PSSCH transmissions in response to the frequency domain resource for the set of the PSSCH transmissions occupying the full bandwidth of the RB set.
  10. The first UE of claim 1, wherein the DCI format comprises a sixth indicator for enabling or disabling the transmission of channel occupancy time (COT) sharing information;
    wherein each of the set of PSCCH transmissions carries a SCI format, which comprises COT sharing information in response to the sixth indicator enables the transmission of COT sharing information; and
    wherein the channel access procedure initiates a COT and wherein the COT sharing information in the SCI format comprises at least one of: the first CAPC value, the remaining duration of the COT, or a number of remaining slots among the set of consecutive slots.
  11. The first UE of claim 1, wherein the DCI format comprises a seventh indicator for enabling or disabling a physical uplink control channel (PUCCH) transmission corresponding to the set of PSSCH transmissions.
  12. A base station (BS) , comprising:
    at least one memory; and
    at least one processor coupled with the at least one memory and configured to cause the BS to:
    transmit, to a first user equipment (UE) , a downlink control information (DCI) format for scheduling a set of physical sidelink control channel (PSCCH) transmissions and a set of physical sidelink shared channel (PSSCH) transmissions in a set of consecutive slots for transmitting a transport block (TB) , wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource; and
    detect hybrid automatic repeat request acknowledgement (HARQ-ACK) information corresponding to the set of PSSCH transmissions in a physical uplink control channel (PUCCH) transmission from the first UE in response to the PUCCH transmission being enabled.
  13. The BS of claim 12, wherein the DCI format comprises a first indicator indicating the number of slots in the set of consecutive slots.
  14. The BS of claim 12, wherein the DCI format comprises a second indicator indicating the frequency domain resource for the set of the PSSCH transmissions; and
    wherein the frequency domain resource comprises a set of contiguous subchannels, and the second indicator indicates a specific subchannel in the set of contiguous subchannels and a number of subchannels in the set of contiguous subchannels.
  15. The BS of claim 12, wherein the DCI format indicates a second channel access priority class (CAPC) value for the first UE to perform a channel access procedure; and
    wherein the second CAPC value is determined based on at least one of the number of slots in the set of consecutive slots or subcarrier spacing of the frequency domain resource for the set of PSSCH transmissions.
  16. The BS of claim 12, wherein the DCI format comprises a fifth indicator indicating a cyclic prefix extension (CPE) length for transmitting the set of PSSCH transmissions.
  17. The BS of claim 12, wherein the DCI format comprises a sixth indicator for enabling or disabling the transmission of channel occupancy time (COT) sharing information.
  18. The BS of claim 12, wherein the DCI format comprises a seventh indicator for enabling or disabling the PUCCH transmission.
  19. A processor, comprising:
    at least one controller coupled with at least one memory and configured to cause the processor to:
    receive, from a base station (BS) , a downlink control information (DCI) format for scheduling a set of physical sidelink control channel (PSCCH) transmissions and a set of physical sidelink shared channel (PSSCH) transmissions in a set of consecutive slots for transmitting a transport block (TB) , wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource;
    perform a channel access procedure according to a first channel access priority class (CAPC) value; and
    transmit the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
  20. A method for wireless communication, comprising:
    receiving, from a base station (BS) , a downlink control information (DCI) format for scheduling a set of physical sidelink control channel (PSCCH) transmissions and a set of physical sidelink shared channel (PSSCH) transmissions in a set of  consecutive slots for transmitting a transport block (TB) , wherein the set of PSSCH transmissions is scheduled on the same frequency domain resource;
    performing a channel access procedure according to a first channel access priority class (CAPC) value; and
    transmitting the set of PSCCH transmissions and the set of PSSCH transmissions in the set of consecutive slots in response to a completion of the channel access procedure.
PCT/CN2023/112636 2023-08-11 2023-08-11 Method and apparatus for dynamic resource allocation for sidelink transmission over unlicensed spectrum WO2024082791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/112636 WO2024082791A1 (en) 2023-08-11 2023-08-11 Method and apparatus for dynamic resource allocation for sidelink transmission over unlicensed spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/112636 WO2024082791A1 (en) 2023-08-11 2023-08-11 Method and apparatus for dynamic resource allocation for sidelink transmission over unlicensed spectrum

Publications (1)

Publication Number Publication Date
WO2024082791A1 true WO2024082791A1 (en) 2024-04-25

Family

ID=90736917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112636 WO2024082791A1 (en) 2023-08-11 2023-08-11 Method and apparatus for dynamic resource allocation for sidelink transmission over unlicensed spectrum

Country Status (1)

Country Link
WO (1) WO2024082791A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220140964A1 (en) * 2019-02-18 2022-05-05 Mediatek Singapore Pte. Ltd. Two-stage physical sidelink control channel (pscch) for sidelink communications
EP4027555A1 (en) * 2019-10-04 2022-07-13 LG Electronics Inc. Method for identifying transmission resource on basis of control information in nr v2x, and synchronization
EP4033826A1 (en) * 2019-10-17 2022-07-27 LG Electronics Inc. Method and device for reselecting sidelink resources in nr v2x
CN115443705A (en) * 2020-04-22 2022-12-06 联想(北京)有限公司 Method and apparatus for sharing channel occupancy time
CN115915397A (en) * 2021-08-02 2023-04-04 维沃移动通信有限公司 Side link resource determining method, device, terminal and storage medium
US20230199780A1 (en) * 2021-12-21 2023-06-22 Qualcomm Incorporated Ue scheduling grant based on a pro-ue implementation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220140964A1 (en) * 2019-02-18 2022-05-05 Mediatek Singapore Pte. Ltd. Two-stage physical sidelink control channel (pscch) for sidelink communications
EP4027555A1 (en) * 2019-10-04 2022-07-13 LG Electronics Inc. Method for identifying transmission resource on basis of control information in nr v2x, and synchronization
EP4033826A1 (en) * 2019-10-17 2022-07-27 LG Electronics Inc. Method and device for reselecting sidelink resources in nr v2x
CN115443705A (en) * 2020-04-22 2022-12-06 联想(北京)有限公司 Method and apparatus for sharing channel occupancy time
CN115915397A (en) * 2021-08-02 2023-04-04 维沃移动通信有限公司 Side link resource determining method, device, terminal and storage medium
US20230199780A1 (en) * 2021-12-21 2023-06-22 Qualcomm Incorporated Ue scheduling grant based on a pro-ue implementation

Similar Documents

Publication Publication Date Title
WO2024082791A1 (en) Method and apparatus for dynamic resource allocation for sidelink transmission over unlicensed spectrum
WO2024103833A1 (en) Method and apparatus for transmitting pucch on licensed carrier for sidelink transmission on unlicensed spectrum
WO2024103835A1 (en) Method and apparatus for generating harq-ack information associated with sidelink transmission for pucch transmission
WO2024119844A1 (en) Method and apparatus for prioritizing physical sidelink feedback channels on unlicensed spectrum
WO2024109112A1 (en) Method and apparatus for harq-ack information bit generation and ordering
WO2024124951A1 (en) Methods and apparatus of implementing tboms and dmrs bundling in m-trp transmission
WO2024074070A1 (en) Ta management of a serving cell configured with two timing advance groups
WO2024109154A1 (en) Sidelink wake up signal transmission
WO2024074068A1 (en) Waveform design for integrated sensing and communication system
WO2024109113A1 (en) Method and apparatus for harq-ack codebook determination based on downlink assignment index
WO2024109120A1 (en) Pusch retransmissions
WO2024087746A1 (en) Configured grant transmission
WO2024087666A1 (en) Method and apparatus for transmitting integrated sensing and communication signals
WO2024093429A1 (en) Full power operation for simultaneous multi-panel ul transmission
WO2024093349A1 (en) Autonomous retransmission for sl mcst
WO2024093262A1 (en) Pusch resource indication mechanism
WO2024124926A1 (en) Harq feedback associated with pssch transmission
WO2024093399A1 (en) Psfch transmissions on an unlicensed spectrum
WO2024109139A1 (en) Method and apparatus of supporting beam reporting
WO2024074074A1 (en) Methods and apparatus of two ptrs ports design for dft-s-ofdm pusch transmission
WO2024074065A1 (en) Methods and apparatus of ptrs transmission for pusch
WO2024074081A1 (en) Method and apparatus of supporting beam reporting
WO2024119886A1 (en) Multiple puschs and multiple pdschs bundle transmssion
WO2024087743A1 (en) Methods and apparatuses for srs with cs hopping and/or comb offset hopping
WO2024093337A1 (en) Devices and methods of communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878787

Country of ref document: EP

Kind code of ref document: A1