WO2021031219A1 - 一种有效去除中间包夹杂物的长水口吹氩精炼装置及方法 - Google Patents
一种有效去除中间包夹杂物的长水口吹氩精炼装置及方法 Download PDFInfo
- Publication number
- WO2021031219A1 WO2021031219A1 PCT/CN2019/102133 CN2019102133W WO2021031219A1 WO 2021031219 A1 WO2021031219 A1 WO 2021031219A1 CN 2019102133 W CN2019102133 W CN 2019102133W WO 2021031219 A1 WO2021031219 A1 WO 2021031219A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tundish
- argon
- shroud
- chamber
- inclusions
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
- B22D11/116—Refining the metal
- B22D11/117—Refining the metal by treating with gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/50—Pouring-nozzles
- B22D41/58—Pouring-nozzles with gas injecting means
Definitions
- the invention belongs to the technical field of continuous casting and pouring in the metallurgical industry, and in particular relates to a shroud argon blowing refining device and method for effectively removing inclusions in a tundish.
- the steel continuous casting process is an extremely important link in determining the quality of steel. Due to its unique position in the continuous casting, the tundish has a unique advantage in removing inclusions.
- the continuous casting tundish is the last refractory container that the molten steel contacts before solidification. The early tundish only played the role of storage and diversion of molten steel.
- metallurgical workers are not limited to Use the tundish as a simple steel storage and diversion vessel, and optimize the flow field of the tundish and eliminate the tundish by improving the type of the tundish, increasing the depth of the molten pool and reducing the liquid level vortex, retaining walls, dams and filters.
- the spreading and flow of the bottom reduces the volume of the dead zone, extends the residence time of molten steel, and promotes the floating and removal of inclusions.
- a Chinese patent (patent number: CN201058374, publication date: May 14, 2008) discloses an airtight ladle nozzle, which belongs to the field of continuous casting of tundish and is used to reduce the flow of molten steel from the ladle into the tundish
- the argon blowing device used in this patent only serves as an argon seal and cannot effectively remove non-metallic inclusions in molten steel
- Chinese patent (patent number: CN202490928U, publication date: October 17, 2012 ) Discloses a shroud device for a tundish that can remove inclusions.
- the patent introduces argon gas from the upper part of the shroud to seal the lower end of the shroud, and the outlet of the shroud body is set as a swirling side hole to make the molten steel rotate
- the rotation of the molten steel produced by the swirling side holes is not obvious.
- the argon bubbles entering the tundish stay in the molten steel for a short time, and the removal effect of inclusions is limited.
- the present invention provides a long nozzle argon blowing refining device and method for effectively removing inclusions in the tundish.
- the adhesion of the dispersed phase argon bubbles is used to remove the inclusions, and the bubbles of the traditional argon blowing device are solved.
- the size is large, the residence time in molten steel is too short, it is easy to break through the mold slag surface and cause the secondary oxidation of molten steel and heat loss, and the long nozzle blows argon to prevent the nozzle from clogging to a certain extent, and the rotation at the bottom
- the molten steel in the flow chamber converts the gravitational potential energy into rotational kinetic energy, which can also promote the collision and growth of the inclusions themselves to float up and remove, thereby improving the cleanliness of the molten steel.
- the present invention adopts the following technical solutions:
- a shroud argon blowing refining device that effectively removes inclusions in the tundish consists of a shroud, a swirl chamber and an outlet of the swirl chamber.
- the inner wall of the shroud has an annular groove near the top, and the annular groove has a built-in annular dispersion type.
- the air inlet chamber is closely matched with the shroud, the ring-shaped diffuse air inlet chamber is connected with the argon gas delivery system through the air inlet opening on the wall of the shroud, and the lower part of the shroud is tangentially connected with the swirl chamber.
- the air intake direction of the air intake hole is a horizontal direction, which is perpendicular to the axial direction of the shroud.
- the diameter of the shroud can be selected from 75-120mm, the diameter of the diffuse inlet chamber is the same as the diameter of the selected shroud, and the height of the diffuse inlet chamber is 20mm according to the amount of gas to be flushed. Between 50mm, the air inlet is circular in shape, and one or more can be set.
- the diameter of the swirl chamber can be 450-750mm, and the height of the swirl chamber can be 300-600mm. It is found that the diameter of the swirl chamber is about When the bottom width of the tundish is half, and the ratio of the height of the swirl chamber to the diameter of the swirl chamber is 0.75, the removal rate of inclusions is the highest.
- the argon flow rate input by the argon delivery system is controlled at 0.003 ⁇ 0.009kg/s, the volume fraction of argon in the shroud is controlled between 8-10%, and the diameter of the dispersed argon bubbles formed can be controlled within Between 0.1-1mm.
- Step 1 Before continuous casting, according to the specific size of the tundish, select the specific size of the long nozzle argon blowing refining device to effectively remove the tundish inclusions;
- Step 2 Place the long nozzle argon blowing refining device selected in Step 1 in the injection area of the tundish.
- the argon gas delivery device starts to enter the ring-shaped dispersion type air inlet through the air inlet Argon gas is transported indoors and enters the shroud to form dispersed argon bubbles;
- Step 3 During the pouring process, the molten steel flows into the cyclone chamber due to gravity in the shroud, and the dispersed phase argon bubbles will further reduce the turbulent kinetic energy and turbulent energy dissipation rate near the sliding nozzle and the shear of the steel flow.
- the micro bubbles are broken and refined into dispersed micro bubbles, and follow the steel flow into the swirl chamber;
- Step 4 The existence of the swirling chamber causes the dispersed microbubbles to rotate and rise, and the movement path and residence time in the molten steel are prolonged;
- Step 5 The small particle size inclusions in the molten steel are adhered and wrapped by the dispersed microbubbles, and they float up together with the bubbles and are finally absorbed by the slag layer of the tundish;
- Step 6 Stop blowing in argon after pouring.
- the present invention has the following beneficial effects:
- the present invention can effectively remove small-size inclusions with a diameter of less than 50 ⁇ m by using dispersed phase bubbles, and install a diffuse annular air inlet chamber in a reserved annular groove near the top of the inner wall of the shroud, a diffuse annular air inlet chamber
- the argon gas enters the long nozzle through the air inlet hole and the argon gas delivery device, and the argon gas enters the long nozzle from the dispersed inlet chamber, and the argon bubbles are broken under the action of the shearing effect of the steel flow and the high turbulent kinetic energy and the turbulent energy dissipation rate near the sliding nozzle Refined into dispersed microbubbles, argon bubbles follow the steel flow into the bottom of the swirling chamber.
- the steel flow forms a swirling field in the swirling chamber, and the microbubbles are dispersed under the action of the swirling field. It is easier to collide and adsorb with small particle size inclusions, and then float up and remove;
- argon gas is introduced into the upper part of the shroud through a ring-shaped dispersive inlet chamber to form argon bubbles in the molten steel, which can reduce the inclusion of aluminum oxide and oxygen in the molten steel and make it difficult to deposit in the tundish
- the inner wall of the immersion nozzle effectively reduces the clogging and nodulation of the immersion nozzle;
- the present invention has universal applicability to single-stream and multi-stream intermediate packets.
- Fig. 1 is a schematic diagram of a long nozzle argon blowing refining device for effectively removing inclusions in the tundish according to the present invention
- Figure 2 is a front cross-sectional view of a long nozzle argon blowing refining device for effectively removing inclusions in the tundish according to the present invention
- Figure 3 is a partial enlarged view of the shroud in the shroud argon blowing refining device for effectively removing inclusions in the tundish according to the present invention
- Figure 4 is a schematic diagram of the finite element simulation analysis results of the comparison of the trajectory and residence time of argon bubbles of different sizes in the cyclone chamber;
- a long nozzle argon blowing refining device that effectively removes impurities in the tundish is composed of a long nozzle 1, a swirling chamber 2 and a swirling chamber outlet 3.
- the inner wall of the long nozzle 1 is near the top
- a ring-shaped groove is reserved, and the ring-shaped diffused air inlet chamber 4 is built in the ring groove.
- the ring-shaped diffuse air inlet chamber 4 is connected to the argon gas delivery system through an air inlet hole 5 opened in the wall of the long nozzle.
- the direction is the horizontal direction, which is perpendicular to the axial direction of the shroud 2; the lower part of the shroud 1 is connected to the swirl chamber 2 tangentially.
- the diameter of the shroud can be selected from 75-120mm, the diameter of the diffuse inlet chamber is the same as the diameter of the selected shroud, and the height of the diffuse inlet chamber is 20mm according to the amount of gas to be filled. Between 50mm; the shape of the air inlet hole is round, and one or more can be set; the diameter of the swirl chamber can be selected from 450-750mm, and the height of the swirl chamber can be selected from 300-600mm.
- the diameter of the chamber is about half the width of the bottom of the tundish, and the ratio of the height of the swirling chamber to the diameter of the swirling chamber is 0.75, the removal rate of inclusions is the highest, and the height of the swirling chamber is too high to easily cause liquid level fluctuations and vortexes Slag entrapment phenomenon, so when the height-diameter ratio of the swirling chamber is 0.75, it is the optimal structural size of the swirling chamber.
- the mass flow of argon inputted by the argon delivery system is controlled between 0.003 ⁇ 0.009kg/s, and the volume fraction of argon in the shroud is controlled between 8-10% to ensure the diameter of the dispersed phase argon bubbles formed Can be controlled between 0.1-1mm.
- the FLUENT module of ANSYS finite element analysis software is used for finite element simulation analysis, and the technical scheme and effects of the present invention are described in detail.
- the size parameters of the tundish and the length of the present invention The specific size parameters of the nozzle argon blowing refining device are shown in Table 1:
- parameter Size(mm) parameter Size(mm) Bottom length of tundish 4500 Diffusion type intake chamber diameter 100 Bottom width of tundish 1250 Dispersion type intake chamber height 30 Inner diameter of long nozzle 100 Swirl chamber height 450 Tundish height 1250 Inner diameter of swirl chamber 600 Top length of tundish 5000 Tundish outlet inner diameter 75 Tundish top width 1400 Number of air inlets 2 Dam height 625 Depth of retaining wall 750
- Step 1 Take the single-stream tundish as an example, select the specific size of the long nozzle argon blowing refining device to be used to effectively remove the inclusions in the tundish;
- Step 2 As shown in Figure 4(a), the long nozzle argon blowing refining device selected in step 1 is placed in the injection area of the tundish.
- the argon delivery device starts Argon gas is delivered into the annular diffused gas inlet chamber 4 through the gas inlet 5 and enters the shroud to form dispersed argon bubbles.
- the flow rate of the molten steel at the inlet of the shroud is 1m/s
- the argon flow rate is 0.005kg/s
- the diameter of the dispersed phase argon bubble is 1mm;
- Step 3 During the pouring process, the molten steel flows from the shroud 1 into the swirling chamber 2 due to gravity, and the dispersed argon bubbles are further broken and refined into dispersion under the action of the high turbulence near the sliding nozzle and the shear of the steel flow. Micro-bubbles flow into the swirling chamber following the steel flow;
- Step 4 After the dispersed micro-bubbles enter the cyclone chamber 2, the dispersed micro-bubbles rotate and rise under the action of the cyclone field due to the existence of the cyclone chamber 2, and the argon bubbles with a diameter of 1mm are in the argon blowing refining device and the tundish.
- the movement path and residence time are shown in Figure 4(b), the maximum residence time of the diffuse microbubbles is 23s, and the average residence time is 12s;
- Step 5 The inclusions in the molten steel are adhered to and wrapped by the dispersed microbubbles, and float up along with the dispersed microbubbles, flow out from the outlet 3 of the cyclone chamber into the tundish, and are finally absorbed by the slag layer of the tundish;
- Step 6 Stop blowing in argon after pouring.
- Step 1 Take the single-stream tundish as an example, select the specific size of the long nozzle argon blowing refining device to be used to effectively remove the inclusions in the tundish;
- Step 2 As shown in Figure 4(a), the long nozzle argon blowing refining device selected in step 1 is placed in the injection area of the tundish.
- the argon delivery device starts Argon gas is delivered into the annular diffused gas inlet chamber 4 through the gas inlet 5, and enters the shroud to form dispersed argon bubbles.
- the flow rate of molten steel at the inlet of the shroud is 1m/s
- the argon flow rate is 0.005 kg/s
- the diameter of the dispersed argon bubble is 0.5mm;
- Step 3 During the pouring process, the molten steel flows from the shroud 1 into the swirling chamber 2 due to gravity, and the dispersed argon bubbles are further broken and refined into dispersion under the action of the high turbulence near the sliding nozzle and the shear of the steel flow. Micro-bubbles flow into the swirling chamber following the steel flow;
- Step 4 After the dispersed micro-bubbles enter the cyclone chamber 2, the dispersed micro-bubbles rotate and rise under the action of the cyclone field due to the existence of the cyclone chamber 2, and the argon bubbles with a diameter of 0.5mm are in the argon blowing refining device and the tundish
- the movement path and residence time of Figure 4 (c) are shown in Figure 4 (c), the maximum residence time of diffuse microbubbles is 100.00s, and the average residence time is 48s;
- Step 5 The inclusions in the molten steel are adhered to and wrapped by the dispersed microbubbles, and float up along with the dispersed microbubbles, flow out from the outlet 3 of the cyclone chamber into the tundish, and are finally absorbed by the slag layer of the tundish;
- Step 6 Stop blowing in argon after pouring.
- Step 1 Take the single-stream tundish as an example, select the specific size of the long nozzle argon blowing refining device to be used to effectively remove the inclusions in the tundish;
- Step 2 As shown in Figure 4(a), the long nozzle argon blowing refining device selected in step 1 is placed in the injection area of the tundish.
- the argon delivery device starts Argon gas is delivered into the annular diffused gas inlet chamber 4 through the gas inlet 5 and enters the shroud to form dispersed argon bubbles.
- the flow rate of the molten steel at the inlet of the shroud is 1m/s
- the argon flow rate is 0.005kg/s
- the diameter of the dispersed argon bubble is 0.1mm;
- Step 3 During the pouring process, the molten steel flows from the shroud 1 into the swirling chamber 2 due to gravity, and the dispersed argon bubbles are further broken and refined into dispersion under the action of the high turbulence near the sliding nozzle and the shear of the steel flow. Micro-bubbles flow into the swirling chamber following the steel flow;
- Step 4 After the dispersed micro-bubbles enter the cyclone chamber 2, the dispersed micro-bubbles rotate and rise under the action of the cyclone field due to the existence of the cyclone chamber 2, and the argon bubbles with a diameter of 0.1mm are in the argon blowing refining device and the tundish
- the movement path and residence time of Figure 4 (d) are shown in Figure 4 (d), the maximum residence time of diffuse microbubbles is 442s, and the average residence time is 126s;
- Step 5 The inclusions in the molten steel are adhered to and wrapped by the dispersed microbubbles, and float up along with the dispersed microbubbles, flow out from the outlet 3 of the cyclone chamber into the tundish, and are finally absorbed by the slag layer of the tundish;
- Step 6 Stop blowing in argon after pouring.
- the present invention provides an annular diffused gas inlet chamber 4 on the upper part of the shroud 1, and argon gas is introduced into the shroud through the gas inlet hole 5, so that the dispersed argon bubbles follow the steel flow and flow into the tundish.
- the smaller the size of the argon bubble the longer the residence time and movement path of the refined dispersed micro-bubbles in the molten steel, the larger the bubble adhesion area, which can effectively promote the adhesion and removal of the bubbles to the inclusions.
- the present invention uses the dispersed phase argon bubble adhesion to remove the inclusions compared to the removal efficiency of the small particle diameter inclusions less than 50 ⁇ m Compared with a conventional tundish of 10-15%, the present invention has universal applicability to single-stream and multi-stream tundishes, has a significant effect of removing inclusions, and plays a very important role in the production of clean steel.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
一种有效去除中间包夹杂物的长水口吹氩精炼装置,由长水口(1)、旋流室(2)及旋流室出口(3)组成,长水口(1)内壁靠近顶部处预留环形槽,环形槽内设置环状弥散型进气室(4),环状弥散型进气室(4)通过长水口(1)的壁上开设的进气孔(5)与氩气输送系统相连,长水口(1)下部与旋流室(2)切向相连。
Description
本发明属于冶金行业连铸浇注技术领域,尤其涉及一种有效去除中间包夹杂物的长水口吹氩精炼装置及方法。
随着经济和社会的发展对钢材质量要求更高,各大钢厂为了不断提升自家企业产品质量,不断改进工艺,迫使钢铁沿着高洁净度、高成分控制精度和高性能的方向发展。钢铁连铸工艺是决定钢铁质量好坏极为重要的环节,中间包由于其在连铸中独特的位置,在去除夹杂物方面有着独特的优势。连铸中间包是钢液在凝固之前接触的最后一个耐火材料容器,早期中间包仅仅只是起到钢液储存和分流的作用,后来为了提高钢材质量、有效去除夹杂物,冶金工作者不局限于将中间包当简单的储钢分流容器使用,通过改进中间包包型、增加熔池深度减轻液面旋涡、挡墙、挡坝以及过滤器的组合使用,来优化中间包的流场、消除包底的铺展流动、减少死区体积、延长钢液停留时间、促进夹杂物的上浮去除。
冶金工作者大量的实验研究表明,通过控流装置优化流场对大颗粒夹杂物去除有效,但是小颗粒夹杂在钢液中,夹杂物跟随流体性极好,上浮速度较慢,只是依靠自身浮力很难去除,无法达到高洁净钢的要求,所以依靠弥散相氩气泡粘附作用来促进中间包夹杂物去除是有效的夹杂物去除方法。
中国专利(专利号为:CN201058374,公开日:2008年05月14日)公开了一种气密式钢包长水口,该专利属于中间包连续浇注领域,用于减轻钢液从钢包流入中间包中的二次氧化,该专利采用的吹氩装置仅仅只是起到氩气密封作用,不能有效去除钢液中的非金属夹杂物;中国专利(专利号:CN202490928U,公开日:2012年10月17日)公开了一种能够去除夹杂物的中间包用长水口装置,该专利从长水口上部通入氩气,将长水口下端封闭,长水口本体出口设置成旋 流侧孔,使钢液产生旋转运动,但是由于中间包体积相对较大,旋流侧孔产生的钢液旋转不明显,同时进入中间包的氩气泡在钢液中停留时间较短,对夹杂物的去除效果有限。
因此,亟需一种有效去除中间包夹杂物的长水口吹氩精炼装置及方法,以解决上述问题。
发明概述
问题的解决方案
针对现有技术存在的不足,本发明提供一种有效去除中间包夹杂物的长水口吹氩精炼装置及方法,利用弥散相氩气泡的粘附作用去除夹杂物,解决了传统吹氩装置的气泡尺寸较大、钢水中停留时间过短,易于冲破保护渣渣面造成钢液的二次氧化以及热损失问题,并且长水口吹氩气在一定程度上防止水口结瘤堵塞,同时在底部的旋流室中钢水将重力势能转化为旋转动能,也可促进夹杂物自身的碰撞长大进而上浮去除,从而提高钢水的洁净度。
为达到上述目的,本发明采用以下技术方案:
一种有效去除中间包夹杂物的长水口吹氩精炼装置,由长水口、旋流室及旋流室出口组成,所述长水口内壁靠近顶部处预留环形槽,环形槽内置环状弥散型进气室与长水口紧密配合,环状弥散型进气室通过长水口壁开设的进气孔与氩气输送系统相连,长水口下部与旋流室切向相连。
所述进气孔进气方向为水平方向,与长水口的轴向互相垂直。
根据中间包容量,所述长水口的直径可选择75-120mm、弥散型进气室的直径与所选长水口直径相同,弥散型进气室的高度根据所需冲入气体的量选择20mm-50mm之间,进气孔形状圆形,可以设置一个或者多个,旋流室的直径可选择为450-750mm、旋流室高度可选择300-600mm,经研究发现旋流室的直径约为中间包底部宽度的一半,并且旋流室的高度与旋流室直径的比值为0.75时,夹杂物的去除率最高。
所述氩气输送系统输入的氩气流量控制在0.003~0.009kg/s,将长水口内氩气的 体积分数控制在8-10%之间,保证形成的弥散相氩气泡的直径可以控制在0.1-1mm之间。
一种如述的有效去除中间包夹杂物的长水口吹氩精炼装置的吹氩精炼方法,包括以下步骤:
步骤一:连铸前针对中间包的具体尺寸大小,选定所要使用的有效去除中间包夹杂物的长水口吹氩精炼装置的具体尺寸;
步骤二:将步骤一中选择的长水口吹氩精炼装置放置于中间包的注流区域内,当浇注达到中间包的工作液位后,氩气输送装置开始通过进气孔向环状弥散型进气室内输送氩气,进入长水口形成弥散相氩气泡;
步骤三:在浇注过程中,钢水在长水口内由于受重力作用流入旋流室,弥散相氩气泡在滑动水口附近的高湍动能和湍动能耗散率以及钢流的剪切作用下进一步将微小气泡破碎细化成弥散微气泡,并跟随钢流流入旋流室;
步骤四:旋流室的存在使得弥散微气泡旋转上升,在钢液中的运动路径和停留时间延长;
步骤五:钢液中的小粒径夹杂物被弥散微气泡粘附裹带,并随气泡一起上浮最后被中间包的渣层吸收;
步骤六:浇注完毕后停止吹入氩气。
发明的有益效果
与现有技术相比,本发明具有以下有益效果:
(1)本发明能够利用弥散相气泡有效去除直径小于50μm的小粒径夹杂物,在长水口内壁靠近顶部处预留环形槽内安装弥散型环状进气室,弥散型环状进气室通过进气孔与氩气输送装置连接,氩气从弥散型进气室进入长水口,在钢流剪切作用和滑动水口附近的高湍动能和湍动能耗散率的作用下将氩气泡破碎细化成弥散微气泡,氩气泡跟随钢流流入旋流室底部,由于长水口下部与旋流室切向相连,钢流在旋流室中形成旋流场,在旋流场作用下弥散微气泡与小粒径夹杂更易碰撞吸附,然后上浮去除;
(2))从长水口底部跟随钢液进入旋流室的弥散微气泡,和常规气泡相比与 流体的跟随性好,在钢液中所受浮力小于常规气泡、上浮速度慢,因此在钢液中停留时间延长,而且微气泡经过旋流室出口流入中间包后,在中间包内扩散的范围更广,运动路径更长,而停留时间越长气泡扩散的范围越广,更有利于与小粒径夹杂物的充分接触,从而有效提高小粒径夹杂物的去除率,经深入研究发现弥散微气泡去除夹杂物的去除率比常规中间包高10-15%;
(3)本发明弥散微气泡进入中间包后,对中间包内的钢液同时也具有强烈的搅拌作用,易于加速反应器内的传质与传热,均匀钢水成分及温度;
(4)本发明采用在长水口上部通过环状弥散型进气室通入氩气在钢液中形成氩气泡,可以减少钢液中的三氧化二铝氧夹杂,使其不易沉积于中间包的浸入式水口内壁,有效减少浸入式水口的堵塞结瘤现象;
(5)本发明中由于钢液从旋流室的切线方向流入,旋流室内有旋转流场的存在,钢水中的夹杂物也同时产生旋转流动,旋转产生的离心力也会促进夹杂物自身的碰撞团聚长大上浮;
(6)本发明对于单流和多流中间包具有普适性。
对附图的简要说明
图1为本发明中一种有效去除中间包夹杂物的长水口吹氩精炼装置的示意图;
图2为本发明中一种有效去除中间包夹杂物的长水口吹氩精炼装置的主视剖视图;
图3为本发明中一种有效去除中间包夹杂物的长水口吹氩精炼装置中长水口的局部放大图;
图4为不同大小氩气泡在旋流室中运动轨迹及停留时间对比的有限元仿真分析结果示意图;
其中,
1-长水口,2-旋流室,3-旋流室出口,4-环状弥散型进气室,5-进气孔。
发明实施例
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对 本发明的技术方案和效果作详细描述。
如图1-3所示,一种有效去除中间包夹杂物的长水口吹氩精炼装置,由长水口1、旋流室2及旋流室出口3组成,所述长水口1内壁靠近顶部处预留环形槽,环形槽内置环状弥散型进气室4,环状弥散型进气室4通过长水口壁开设的进气孔5与氩气输送系统相连,所述进气孔5进气方向为水平方向,与长水口2的轴向互相垂直;长水口1下部与旋流室2切向相连。
根据中间包容量,所述长水口的直径可选择75-120mm、弥散型进气室的直径与所选长水口直径相同,弥散型进气室的高度根据所需充入气体的量选择20mm-50mm之间;进气孔形状圆形,可以设置一个或者多个;旋流室的直径可选择为450-750mm、旋流室高度可选择300-600mm,经研究得出,经研究发现旋流室的直径约为中间包底部宽度的一半,并且旋流室的高度与旋流室直径的比值为0.75时,夹杂物的去除率最高,旋流室高度过高容易造成液面波动,出现旋涡卷渣现象,因此旋流室的高径比为0.75时为最优旋流室的结构尺寸。
所述氩气输送系统输入的氩气质量流量控制在0.003~0.009kg/s之间,将长水口内氩气的体积分数控制在8-10%之间,保证形成的弥散相氩气泡的直径可以控制在0.1-1mm之间。
下面以浇铸大板坯的单流中间包为例,采用ANSYS有限元分析软件的FLUENT模块进行有限元仿真分析,对本发明的技术方案和效果作详细描述,此中间包尺寸参数和本发明中长水口吹氩精炼装置的具体尺寸参数如表1所示:
表1吹氩精炼装置与单流中间包具体的尺寸参数
[Table 1]
参数 | 尺寸(mm) | 参数 | 尺寸(mm) |
中间包底部长度 | 4500 | 弥散型进气室内径 | 100 |
中间包底部宽度 | 1250 | 弥散型进气室高度 | 30 |
长水口内径 | 100 | 旋流室高度 | 450 |
中间包高度 | 1250 | 旋流室的内径 | 600 |
中间包顶部长度 | 5000 | 中间包出口内径 | 75 |
中间包顶部宽度 | 1400 | 进气孔数量 | 2 |
挡坝高度 | 625 | 挡墙深度 | 750 |
实施例1
一种如上述的有效去除中间包夹杂物的长水口吹氩精炼装置的吹氩精炼方法,包括以下步骤:
步骤一:以单流中间包为例,选定所要使用的有效去除中间包夹杂物的长水口吹氩精炼装置的具体尺寸;
步骤二:如图4(a)所示,将步骤一中选择的长水口吹氩精炼装置放置于中间包的注流区域内,当浇注达到中间包的工作液位后,氩气输送装置开始通过进气孔5向环状弥散型进气室4内输送氩气,进入长水口形成弥散相氩气泡,本实施例中,长水口入口处钢液的流速为1m/s,氩气流量为0.005kg/s,弥散相氩气泡的直径为1mm;
步骤三:在浇注过程中,钢水从长水口1由于受重力作用流入旋流室2,弥散相氩气泡在滑动水口附近的高湍流和钢流剪切的作用下进一步将微小气泡破碎细化成弥散微气泡,并跟随钢流流入旋流室;
步骤四:弥散微气泡进入旋流室2后,由于旋流室2的存在使得弥散微气泡在旋流场的作用下旋转上升,直径为1mm的氩气泡在吹氩精炼装置及中间包中的运动路径和停留时间如图4中(b)图所示,弥散型微气泡的最大停留时间为23s,平均停留时间为12s;
步骤五:钢液中的夹杂物被弥散微气泡粘附裹带,并随弥散微气泡一起上浮从旋流室出口3流出进入中间包,最后被中间包的渣层吸收;
步骤六:浇注完毕后停止吹入氩气。
实施例2
一种如上述的有效去除中间包夹杂物的长水口吹氩精炼装置的吹氩精炼方法,包括以下步骤:
步骤一:以单流中间包为例,选定所要使用的有效去除中间包夹杂物的长水口吹氩精炼装置的具体尺寸;
步骤二:如图4(a)所示,将步骤一中选择的长水口吹氩精炼装置放置于中间包的注流区域内,当浇注达到中间包的工作液位后,氩气输送装置开始通过进气孔5向环状弥散型进气室4内输送氩气,进入长水口形成弥散相氩气泡,本实施例中,长水口入口钢液的流速为1m/s,氩气流量为0.005kg/s,弥散相氩气泡的直径为0.5mm;
步骤三:在浇注过程中,钢水从长水口1由于受重力作用流入旋流室2,弥散相氩气泡在滑动水口附近的高湍流和钢流剪切的作用下进一步将微小气泡破碎细化成弥散微气泡,并跟随钢流流入旋流室;
步骤四:弥散微气泡进入旋流室2后,由于旋流室2的存在使得弥散微气泡在旋流场的作用下旋转上升,直径为0.5mm的氩气泡在吹氩精炼装置及中间包中的运动路径和停留时间如图4中(c)图所示,弥散型微气泡的最大停留时间为100.00s,平均停留时间为48s;
步骤五:钢液中的夹杂物被弥散微气泡粘附裹带,并随弥散微气泡一起上浮从旋流室出口3流出进入中间包,最后被中间包的渣层吸收;
步骤六:浇注完毕后停止吹入氩气。
实施例3
一种如上述的有效去除中间包夹杂物的长水口吹氩精炼装置的吹氩精炼方法,包括以下步骤:
步骤一:以单流中间包为例,选定所要使用的有效去除中间包夹杂物的长水口吹氩精炼装置的具体尺寸;
步骤二:如图4(a)所示,将步骤一中选择的长水口吹氩精炼装置放置于中间包的注流区域内,当浇注达到中间包的工作液位后,氩气输送装置开始通过进气孔5向环状弥散型进气室4内输送氩气,进入长水口形成弥散相氩气泡,本实施例中,长水口入口处钢液的流速为1m/s,氩气流量为0.005kg/s,弥散相氩气泡的直径为0.1mm;
步骤三:在浇注过程中,钢水从长水口1由于受重力作用流入旋流室2,弥散相氩气泡在滑动水口附近的高湍流和钢流剪切的作用下进一步将微小气泡破碎细化成弥散微气泡,并跟随钢流流入旋流室;
步骤四:弥散微气泡进入旋流室2后,由于旋流室2的存在使得弥散微气泡在旋流场的作用下旋转上升,直径为0.1mm的氩气泡在吹氩精炼装置及中间包中的运动路径和停留时间如图4中(d)图所示,弥散型微气泡的最大停留时间为442s,平均停留时间为126s;
步骤五:钢液中的夹杂物被弥散微气泡粘附裹带,并随弥散微气泡一起上浮从旋流室出口3流出进入中间包,最后被中间包的渣层吸收;
步骤六:浇注完毕后停止吹入氩气。
表二不同实施方案中50μm以下夹杂物的去除率
由上述实施例所述,本发明通过在长水口1上部设置环形弥散型进气室4,通过进气孔5向长水口内通入氩气,使得弥散相氩气泡跟随钢流旋转流入中间包内,氩气泡的尺寸越小,被细化成的弥散型微气泡在钢液中停留时间与运动路径越长,气泡的黏附作用区域范围更大,可以有效促进气泡对夹杂物的黏附去除。经研究对比不同气泡直径对于50μm以下夹杂物的去除率,如表2所示,本发明利 用弥散相氩气泡粘附去除夹杂物针对于直径小于50μm的小粒径夹杂物的去除的效率相比于常规的中间包高10-15%,本发明对于单流和多流中间包具有普适性,去除夹杂物的效果显著,对于生产洁净钢有着十分重要的作用。
以上为示意性的对本方案的装置及其精炼方法进行了描述说明,此描述说明没有限制性,实际结构并不局限于此,从事本领域的技术人员应当理解,在不脱离本发明的创造宗旨下,不经创造性的设计与该方案类似的结构方式及实施例,均应涵盖在权利要求范围中。
Claims (5)
- 一种有效去除中间包夹杂物的长水口吹氩精炼装置,其特征在于:由长水口、旋流室及旋流室出口组成,所述长水口内壁靠近顶部处预留环形槽,环形槽内置环状弥散型进气室与长水口紧密配合,环状弥散型进气室通过长水口壁开设的进气孔与氩气输送系统相连,长水口下部与旋流室切向相连。
- 根据权利要求1所述的一种有效去除中间包夹杂物的长水口吹氩精炼装置,其特征在于:所述进气孔进气方向为水平方向,与长水口的轴向互相垂直。
- 根据权利要求1所述的一种有效去除中间包夹杂物的长水口吹氩精炼装置,其特征在于:根据中间包容量,所述长水口的直径可选择75-120mm、弥散型进气室的直径与所选长水口直径相同,弥散型进气室的高度根据所需充入气体的量选择20mm-50mm之间,进气孔形状圆形,可以设置一个或者多个,旋流室的直径可选择为450-750mm、旋流室高度可选择300-600mm,经研究发现旋流室的直径约为中间包底部宽度的一半,并且旋流室的高度与旋流室直径的比值为0.75时,夹杂物的去除率最高。
- 根据权利要求1所述的一种有效去除中间包夹杂物的长水口吹氩精炼装置,其特征在于:所述氩气输送系统输入的氩气流量控制在0.003~0.009kg/s,将长水口内氩气的体积分数控制在8-10%之间,保证形成的弥散相氩气泡的直径可以控制在0.1-1mm之间。
- 一种如权利要求1~4任一项所述的有效去除中间包夹杂物的长水口吹氩精炼装置的吹氩精炼方法,包括以下步骤:步骤一:连铸前针对中间包的具体尺寸大小,选定所要使用的有效去除中间包夹杂物的长水口吹氩精炼装置的具体尺寸;步骤二:将步骤一中选择的长水口吹氩精炼装置放置于中间包的注流区域内,当浇注达到中间包的工作液位后,氩气输送装置开始通过进气孔向环状弥散型进气室内输送氩气,进入长水口形成 弥散相氩气泡;步骤三:在浇注过程中,钢水从长水口由于受重力作用流入旋流室,弥散相氩气泡在滑动水口附近的高湍动能和湍动能耗散率以及钢流的剪切作用下进一步将微小气泡破碎细化成弥散微气泡,并跟随钢流流入旋流室;步骤四:旋流室的存在使得弥散微气泡旋转上升,在钢液中的运动路径和停留时间延长;步骤五:钢液中的小粒径夹杂物被弥散微气泡粘附裹带,并随气泡一起上浮最后被中间包的渣层吸收;步骤六:浇注完毕后停止吹入氩气。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910772326.9A CN110394433A (zh) | 2019-08-21 | 2019-08-21 | 一种有效去除中间包夹杂物的长水口吹氩精炼装置及方法 |
CN201910772326.9 | 2019-08-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021031219A1 true WO2021031219A1 (zh) | 2021-02-25 |
Family
ID=68328836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/102133 WO2021031219A1 (zh) | 2019-08-21 | 2019-08-23 | 一种有效去除中间包夹杂物的长水口吹氩精炼装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110394433A (zh) |
WO (1) | WO2021031219A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110918961B (zh) * | 2019-12-24 | 2021-10-29 | 重庆大学 | 一种有利于去除钢液中夹杂物的感应加热通道与中间包 |
CN111915081B (zh) * | 2020-08-03 | 2023-10-17 | 东北大学秦皇岛分校 | 一种基于深度学习的峰值敏感型出行需求预测方法 |
CN112760454A (zh) * | 2020-12-23 | 2021-05-07 | 二重(德阳)重型装备有限公司 | 模铸中间包钢水纯净化方法 |
CN114472818B (zh) * | 2021-12-27 | 2023-07-14 | 东北大学 | 一种旋流室底吹气有效去除夹杂物的装置及使用方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201058374Y (zh) * | 2007-07-03 | 2008-05-14 | 邯郸钢铁股份有限公司 | 气密式钢包长水口 |
CN202877537U (zh) * | 2012-09-19 | 2013-04-17 | 中冶南方工程技术有限公司 | 洁净钢用吹氩长水口 |
CN203316714U (zh) * | 2013-06-13 | 2013-12-04 | 重庆科技学院 | 连铸中间包自旋式湍流控制器 |
JP2014124661A (ja) * | 2012-12-26 | 2014-07-07 | Kobe Steel Ltd | 連続鋳造方法 |
CN104226936A (zh) * | 2013-06-19 | 2014-12-24 | 鞍钢股份有限公司 | 一种中间包钢液的净化装置及其净化方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100333865C (zh) * | 2005-08-03 | 2007-08-29 | 东北大学 | 一种钢水自旋式连铸中间包 |
CN202490928U (zh) * | 2012-03-31 | 2012-10-17 | 安徽工业大学 | 一种能够去除夹杂物的中间包用长水口装置 |
CN103894571B (zh) * | 2014-03-28 | 2016-03-30 | 上海大学 | 气体漩流净化中间包钢液的方法及钢液净化装置 |
JP6354341B2 (ja) * | 2014-05-30 | 2018-07-11 | 新日鐵住金株式会社 | 溶融金属への旋回流付与方法 |
CN105965003B (zh) * | 2016-07-05 | 2018-05-29 | 东北大学 | 一种水口旋流发生装置及水口旋流连铸方法 |
-
2019
- 2019-08-21 CN CN201910772326.9A patent/CN110394433A/zh active Pending
- 2019-08-23 WO PCT/CN2019/102133 patent/WO2021031219A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201058374Y (zh) * | 2007-07-03 | 2008-05-14 | 邯郸钢铁股份有限公司 | 气密式钢包长水口 |
CN202877537U (zh) * | 2012-09-19 | 2013-04-17 | 中冶南方工程技术有限公司 | 洁净钢用吹氩长水口 |
JP2014124661A (ja) * | 2012-12-26 | 2014-07-07 | Kobe Steel Ltd | 連続鋳造方法 |
CN203316714U (zh) * | 2013-06-13 | 2013-12-04 | 重庆科技学院 | 连铸中间包自旋式湍流控制器 |
CN104226936A (zh) * | 2013-06-19 | 2014-12-24 | 鞍钢股份有限公司 | 一种中间包钢液的净化装置及其净化方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110394433A (zh) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021031219A1 (zh) | 一种有效去除中间包夹杂物的长水口吹氩精炼装置及方法 | |
WO2021012201A1 (zh) | 一种连铸用气动旋流中间包 | |
CN106424576A (zh) | 一种基于下铸法的旋流式铸造装置 | |
CN211758438U (zh) | 一种小方坯高速连铸用浸入式水口 | |
CN210085544U (zh) | 一种铝液在线精炼装置 | |
CN111299566A (zh) | 一种中间包自由注流长水口结构及吹氩冶炼方法 | |
CN206425485U (zh) | 一种基于下铸法的旋流式铸造装置 | |
CN208303859U (zh) | 一种铝锭浇注装置 | |
CN205687963U (zh) | Rh真空槽导流式整体浸渍管及其真空精炼装置 | |
CN111940713B (zh) | 便于炉渣清理的钢包组件 | |
CN110004305B (zh) | 一种铝液在线精炼装置 | |
CN203292440U (zh) | 一种可降低钢液冲击的连铸浸入式水口 | |
CN107755679A (zh) | 一种吹氩密封及洁净钢水的长水口装置及吹氩方法 | |
CN211713139U (zh) | 液态钢渣处理装置 | |
CN110814330A (zh) | 一种连铸中间包顶旋型湍流控制器 | |
CN111397379A (zh) | 一种底吹炼铜炉熔锍熔渣高效分离装置及工艺 | |
CN111893246B (zh) | 用于钢水转运除杂的钢包组件 | |
CN112247136B (zh) | 中间包短距射流长水口结构及吹氩冶炼方法 | |
CN104985148A (zh) | 一种抑制短路流的中间包湍流抑制器 | |
JP2005254245A (ja) | タンディッシュ用注入管 | |
CN117862430B (zh) | 一种在中间包内去除钢液中夹杂物的装置及方法 | |
CN219093577U (zh) | 一种铜合金用中间包底部吹氩装置 | |
CN218744812U (zh) | 一种可减小对中间包侧壁冲刷的装置 | |
JP7397499B2 (ja) | タンディッシュに衝撃パッドを利用する溶融金属の鋳造方法 | |
CN117718468A (zh) | 一种金属液体熔渣分离器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19942293 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19942293 Country of ref document: EP Kind code of ref document: A1 |