WO2021031115A1 - 一种防水防火光纤及其制备方法和采用该光纤的照明系统 - Google Patents

一种防水防火光纤及其制备方法和采用该光纤的照明系统 Download PDF

Info

Publication number
WO2021031115A1
WO2021031115A1 PCT/CN2019/101550 CN2019101550W WO2021031115A1 WO 2021031115 A1 WO2021031115 A1 WO 2021031115A1 CN 2019101550 W CN2019101550 W CN 2019101550W WO 2021031115 A1 WO2021031115 A1 WO 2021031115A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
waterproof
fireproof
light source
input end
Prior art date
Application number
PCT/CN2019/101550
Other languages
English (en)
French (fr)
Inventor
张敬敏
Original Assignee
山东光韵智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东光韵智能科技有限公司 filed Critical 山东光韵智能科技有限公司
Publication of WO2021031115A1 publication Critical patent/WO2021031115A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • C03C25/109Multiple coatings with at least one organic coating and at least one inorganic coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • C03C25/44Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/48Coating with two or more coatings having different compositions
    • C03C25/54Combinations of one or more coatings containing organic materials only with one or more coatings containing inorganic materials only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03694Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties

Definitions

  • the invention relates to the field of experiments and detection devices and detection technologies, in particular to an experimental device for quickly verifying the decomposition performance of purification materials and a method of use thereof.
  • Fiber optic lighting is a special light transmission method that places the light source transmitter in a dangerous area and transmits it to the terminal lighting through the refraction of light in the fiber. , Completely achieve photoelectric separation, and because its light-emitting process does not generate heat, it can be safely used in places with high humidity and high temperature to improve the safety performance of production.
  • optical fiber lighting in the prior art mostly uses white light for direct transmission, and white light as mixed-color light has a large loss during the transmission process, which makes the transmission distance of optical fiber lighting shorter and cannot meet more production needs, and the transmission method must be increased.
  • the power of the light source meets the needs of terminal lighting, which invisibly increases energy consumption, which is not conducive to actual production, and the existing optical fibers mostly use ordinary optical fibers, which do not have waterproof and fireproof performance, and cannot cope with the lighting in extreme environments. Therefore, how to provide a The optical fiber and optical fiber lighting system with waterproof, fireproof and long-distance transmission with low energy consumption is an urgent problem to be solved by those skilled in the art.
  • the present invention provides a modified optical fiber and through improvement provides an illumination system prepared with the modified optical fiber, which is not only waterproof and fireproof, but also capable of long-distance transmission.
  • a waterproof and fireproof optical fiber from the center to the surface, comprises a modified core, a cladding, a coating and a hydrophobic layer, the diameter of the cladding is 130-160 ⁇ m, and the thickness of the coating is 0.25-0.4 mm.
  • the modified core is a Ge-Si composite core modified by lanthanum
  • the cladding (2) is a quartz layer.
  • the hydrophobic layer (4) is a hydrophobically modified graphene material.
  • the present invention also provides a method for preparing the above-mentioned waterproof and fireproof optical fiber, which includes the following steps:
  • Step 1 Modification of graphene
  • the gaseous mixture in the step 2.1) is prepared by the MCVD method to form a preform
  • Step 3 Surface modification of basic optical fiber
  • the mass ratio of hydrazine hydrate to graphene oxide in the first step is 1.6:100.
  • the hydrophobic agent in the first step is polydimethylsiloxane.
  • the concentration of the modified graphene solution in the step 3 is 0.7wt%-1.0wt%.
  • the present invention also provides a lighting system prepared by the waterproof and fireproof optical fiber prepared by the above-mentioned method, which includes a light source, a coupling device, an optical fiber 1, a light concentrating device, an optical fiber 2, and a terminal connected in sequence;
  • the light source is a monochromatic light source; the input end of the coupling device has a focusing lens one, the light source is connected to the input end of the coupling device; the output end of the coupling device is connected to the input end of the optical fiber one, the The light source, the focusing lens one and the optical fiber correspond one-to-one; the output end of the optical fiber one is connected to the input end of the condensing device, and the condensing prism and focusing are arranged in the condensing device according to the light propagation direction from the input end. Lens two, the output end of the condensing device is connected to the input end of the second optical fiber, and the output end of the second optical fiber is connected to the terminal.
  • the condensing prism is a depolarizing condensing prism.
  • the terminal is a lighting device.
  • a waterproof and fireproof optical fiber disclosed by the present invention has a fiber core material doped with lanthanum to enhance the high temperature expansion resistance of the entire material, and then the surface of the optical fiber is coated with hydrophobic
  • the modified graphene layer improves its waterproof performance, makes the optical fiber usable under extreme conditions, broadens its application range, and the preparation process is simple and easy to control, which is convenient for large-scale production; and the present invention also provides the optical fiber prepared by using the optical fiber
  • the light source when in use, the light source emits monochromatic light, and the monochromatic light is transmitted, and then mixed into the light required for illumination at the terminal.
  • the monochromatic light transmission greatly reduces the loss in the mixed light transmission process, and not only reduces
  • the power of the light source reduces energy consumption and increases the optical transmission distance, enabling it to achieve long-distance transmission, which has high application value.
  • Figure 1 is a structural diagram of a waterproof and fireproof optical fiber according to the present invention.
  • Figure 2 is a structural diagram of a waterproof and fireproof fiber optic lighting system of the present invention; in the figure: 1. Modified fiber core, 2. Cladding, 3. Coating, 4. Hydrophobic layer, 5. Light source, 6. Coupling Device, 61, focusing lens one, 7, optical fiber one, 8, condenser device, 81, focusing prism, 82, focusing lens two, 9, optical fiber two, 10, terminal.
  • a waterproof and fireproof optical fiber from the center to the surface, includes: modified core 1, cladding 2, coating 3, and hydrophobic layer 4, with a cladding diameter of 130-160 ⁇ m, and coating 3 The thickness is 0.25-0.4mm.
  • the modified core 1 is a Ge and Si composite core modified by lanthanum
  • the cladding 2 is a quartz layer
  • the hydrophobic layer (4) is a hydrophobically modified graphene material.
  • the preparation method includes the following steps:
  • the gaseous mixture in the step 2.1) is prepared by the MCVD method to form a preform
  • step one Disperse the modified graphene obtained in step one into distilled water to prepare a modified graphene solution with a concentration of 0.7wt%-1.0wt%, and then immerse the basic optical fiber obtained in step two in the modified graphene solution. After immersing in the flexible graphene solution for 1-3h, take it out and place it to dry at 80-100°C to obtain a waterproof and fireproof optical fiber.
  • the waterproof and fireproof performance test of the above-prepared optical fiber is carried out.
  • the test process and results are as follows:
  • the optical fiber is immerse the optical fiber in water for a period of time and take it out to test the water residue on the surface of the optical fiber. After observation, there are no water droplets on the surface and have no effect on conduction.
  • the optical fiber is burned with an open flame outer flame to observe its thermal expansion. Test, the optical fiber has no thermal expansion and melting performance after burning;
  • optical fiber material of the present invention has waterproof erosion and high temperature burning resistance performance, so that it can be applied under extreme conditions, and its application range is broadened.
  • the present invention provides a lighting system prepared by using the waterproof and fireproof optical fiber of Example 1, which includes the light source 5, the coupling device 6, the optical fiber one 7, the condensing device 8, and the optical fiber two. And terminal 10;
  • the light source 5 is a monochromatic light source; the input end of the coupling device 6 has a focusing lens 61, and the light source 5 is connected to the input end of the coupling device 6; the output end of the coupling device 6 is connected to the optical fiber 1.
  • the input end of the light source 5, the focusing lens 61 and the optical fiber 7 are in one-to-one correspondence; the output end of the optical fiber 7 is connected to the input end of the light concentrating device 8.
  • the end is provided with a condenser prism 81 and a second focusing lens 82 in sequence according to the light propagation direction.
  • the output end of the condenser device 8 is connected to the input end of the second optical fiber 9 and the output end of the second optical fiber 9 is connected to the terminal 10. .
  • the condenser prism 81 is a depolarization condenser prism
  • the terminal 10 is an illumination device.
  • the monochromatic light When in use, the monochromatic light is emitted from the light source 5 and collected by the focusing lens 61 in the coupling device 6, so that the beam is completely and parallel irradiated into the optical fiber, transmitted through the optical fiber to the end of use, and then the monochromatic light is condensed
  • the condensing prism 81 in the device 8 is condensed into mixed light, and then the mixed light is condensed by the second focusing lens 82 and then incident parallel to the second optical fiber 9, and is transmitted to the terminal 10 through the second optical fiber 9 for illumination.
  • the invention discloses a waterproof and fireproof optical fiber.
  • the core material of the optical fiber is doped with lanthanum element to enhance the high-temperature expansion resistance of the material as a whole, and then the surface of the optical fiber is coated with a hydrophobically modified graphene layer to improve its waterproof performance.
  • the optical fiber can be used under extreme conditions, broaden its application range, and the preparation process is simple and easy to control, which is convenient for large-scale production; and the present invention also provides an illumination system prepared by using the optical fiber.
  • the light source emits monochromatic light
  • the monochromatic light is transmitted, and then mixed into the light required for illumination at the terminal.
  • the monochromatic light transmission greatly reduces the loss in the mixed light transmission process, not only reducing the power of the light source and reducing the energy consumption, but also increasing the optical transmission distance. It can realize long-distance transmission and has high application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种防水防火光纤及制备方法和采用光纤的照明系统,在光纤芯材中掺杂镧元素,增强了材料整体的抗高温膨胀性能,之后在光纤表面包覆疏水改性后的石墨烯层,提升其防水性能,使光纤在极端条件下可使用,拓宽其应用范围,并且制备工艺简便易操控,便于大规模声场;还提供了使用光纤制备的照明系统,在使用时候,由光源(5)发射单色光,单色光进行传输,之后在终端(10)处进行混合为照明所需灯光,单色光传输大大降低了混合光传输过程中的损耗,不仅降低了光源(5)功率降低能耗,而且提升了光传输距离,使其实现远途传输,具有较高的应用价值。

Description

一种防水防火光纤及其制备方法和采用该光纤的照明系统 技术领域
本发明涉及实验及检测装置及检测技术领域,尤其涉及一种快速验证净化材料分解性能的实验装置及其使用方法。
背景技术
背景技术随着工业化的快速发展,各行业的安全生产也飞速进步,由于生产过程中带来的隐患所造成的巨大损失是人们越来越重视高危险行业的生产安全,尤其是油库、矿区等严禁火种入内的危险场合,工作场合中的用电安全就成了格外关注的问题,例如照明系统,现有技术中的照明系统均采用电传导至终端照明,稍有不慎就会酿成不可挽回的巨大损失,因此,照明安全的研究应势而生。
技术问题
针对上述问题,目前市面上出现了光纤照明技术,光纤照明是一种特殊的光传导方式,其将光源发射器设置于原理危险地区的地方,通过光在光纤中的折射等作用传输至终端照明,完全做到了光电分离,并且由于其发光过程不产生热量,可安全的应用于高湿度高温度的场所,提高生产的安全性能。
但是现有技术中的光纤照明多采用白光直接传输,白光作为混色光在传输过程中的损耗较大,使得光纤照明的传输距离较短,无法满足更多的生产需求,且该传输方式必须增加光源的功率以满足终端照明的需求,无形增加了能耗,不利于实际生产,并且现有的光纤多采用普通光纤,不具备防水防火性能,无法应对极端环境的照明,因此,如何提供一种具有防水防火且可远距离低能耗传输的光纤及光纤照明系统,是本领域技术人员亟待解决的问题。
技术解决方案
本发明提供了一种改性处理的光纤并通过改进提供了一种用改性光纤制备的照明系统,不仅防水防火,还可远距离传输。
为了实现上述目的,本发明采用如下技术方案:
一种防水防火光纤,由中心至表面依次包括:改性纤芯、包层、涂覆层和疏水层,所述包层直径130-160μm,所述涂覆层厚度为0.25-0.4mm。
进一步的,所述改性纤芯为经镧改性的Ge、Si复合材料纤芯,所述包层(2)为石英层。进一步的,所述疏水层(4)为疏水改性石墨烯材料。
本发明还提供了一种上述的防水防火光纤的制备方法,包括以下步骤:
步骤一:石墨烯的改性;
将氧化石墨烯分散至蒸馏水中并超声处理2-3h,之后加入80wt%水合肼升温至93-97℃搅拌10-15min后冷凝回流22-24h,之后加入稀盐酸溶液,过滤洗涤至中性后50-60℃干燥,最后将干燥产物与疏水剂混合均匀置于马弗炉中在230-240℃下保温1-1.5h,即得改性石墨烯;
步骤二:基础光纤的制备
2.1)按摩尔比1:5:1分别称取GeCl4、SiCl4、LaCl3,升温至三者呈气态混合物;
2.2)将所述步骤2.1)中的气态混合物采用MCVD法制备形成预制棒;
2.3)将所述步骤2.2)预制棒置于光纤拉丝塔进行拉丝,拉丝后迅速在表面涂覆两层树脂,即得基础光纤;
步骤三:基础光纤表面改性;
将所述步骤一制得的改性石墨烯分散至蒸馏水中制备成改性石墨烯溶液,之后把所述步骤二制得的基础光纤浸泡于所述改性石墨烯溶液中浸渍1-3h后取出,置于80-100℃条件下干燥,即得防水防火光纤。
优选的,所述步骤一中的水合肼与氧化石墨烯的质量比为1.6:100。
优选的,所述步骤一中的疏水剂为聚二甲基硅氧烷。
优选的,所述步骤三中的改性石墨烯溶液浓度为0.7wt%-1.0wt%。
本发明还提供了一种利用上述方法制备的防水防火光纤制备的照明系统,包括依次连接的:光源、耦合装置、光纤一、聚光装置、光纤二和终端;
所述光源为单色光源;所述耦合装置的输入端具有聚焦透镜一,所述光源连接所述耦合装置的输入端;所述耦合装置的输出端连接所述光纤一的输入端,所述光源、聚焦透镜一和光纤一一一对应;所述光纤一的输出端连接所述聚光装置的输入端,所述聚光装置内由输入端按光传播方向依次设置有聚光棱镜和聚焦透镜二,所述聚光装置的输出端连接所述光纤二的输入端,所述光纤二的输出端连接所述终端。
进一步的,所述聚光棱镜为消偏振聚光棱镜。
进一步的,所述终端为照明装置。
有益效果
经由上述技术方案可知,与现有技术相比,本发明公开的一种防水防火光纤,在光纤芯材中掺杂镧元素,增强了材料整体的抗高温膨胀性能,之后在光纤表面包覆疏水改性后的石墨烯层,提升其防水性能,使光纤在极端条件下可使用,拓宽其应用范围,并且制备工艺简便易操控,便于大规模生产;而且本发明还提供了使用该光纤制备的照明系统,在使用时候,由光源发射单色光,单色光进行传输,之后在终端处进行混合为照明所需灯光,单色光传输大大降低了混合光传输过程中的损耗,不仅降低了光源功率降低能耗,而且提升了光传输距离,使其实现远途传输,具有较高的应用价值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明一种防水防火光纤结构图;
图2附图为本发明一种防水防火光纤照明系统结构图;图中:1、改性纤芯, 2、包层,3、涂覆层,4、疏水层,5、光源,6、耦合装置,61、聚焦透镜一,7、光纤一,8、聚光装置,81、聚光棱镜,82、聚焦透镜二,9、光纤二,10、终端。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如附图1所示,一种防水防火光纤,由中心至表面依次包括:改性纤芯1、包层2、涂覆层3和疏水层4,包层直径130-160μm,涂覆层3厚度为0.25-0.4mm。   
其中,所述改性纤芯1为经镧改性的Ge、Si复合材料纤芯,包层2为石英层,疏水层(4)为疏水改性石墨烯材料。
其制备方法包括以下步骤:
步骤一:石墨烯的改性
将100g氧化石墨烯分散至蒸馏水中并超声处理2-3h,之后加入2mL 80wt%水合肼升温至93-97℃搅拌10-15min后冷凝回流22-24h,之后加入过量的5mol/L的稀盐酸溶液,生成沉淀后过滤洗涤至中性50-60℃干燥,最后将干燥产物与聚二甲基硅氧烷以质量比2:1的比例混合均匀置于马弗炉中在230-240℃下保温1-1.5h,即得改性石墨烯;
步骤二:基础光纤的制备
2.1)按摩尔比1:5:1分别称取GeCl4、SiCl4、LaCl3,升温至三者呈气态混合物;
2.2)将所述步骤2.1)中的气态混合物采用MCVD法制备形成预制棒;
2.3)将所述步骤2.2)预制棒置于光纤拉丝塔进行拉丝,拉丝后迅速在表面涂覆两层树脂,即得基础光纤;
步骤三:基础光纤表面改性
将所述步骤一制得的改性石墨烯分散至蒸馏水中制备成浓度为0.7wt%-1.0wt%的改性石墨烯溶液,之后把所述步骤二制得的基础光纤浸泡于所述改性石墨烯溶液中浸渍1-3h后取出,置于80-100℃条件下干燥,即得防水防火光纤。
对上述制得的光纤进行防水和防火性能测试,测试过程及结果如下:
首先将光纤浸渍与水中一段时间取出,测试光纤表面的水残留,经观察,其表面无水珠残留且对传导无影响;其次,采用明火外焰对光纤进行灼烧,观察其热膨胀性,经测试,灼烧后的光纤无热膨胀及熔融表现;
上述测试表明,本发明的光纤材料具有防水侵蚀及抗高温灼烧性能,使其在极端条件下也可应用,拓宽其应用范围。
实施例2
如附图2所示,本发明提供的一种利用实施例1的防水防火光纤制备的照明系统,包括依次连接的:光源5、耦合装置6、光纤一7、聚光装置8、光纤二9和终端10;
所述光源5为单色光源;所述耦合装置6的输入端具有聚焦透镜一61,所述光源5连接所述耦合装置6的输入端;所述耦合装置6的输出端连接所述光纤一7的输入端,所述光源5、聚焦透镜一61和光纤一7一一对应;所述光纤一7的输出端连接所述聚光装置8的输入端,所述聚光装置8内由输入端按光传播方向依次设置有聚光棱镜81和聚焦透镜二82,所述聚光装置8的输出端连接所述光纤二9的输入端,所述光纤二9的输出端连接所述终端10。
其中,所述聚光棱镜81为消偏振聚光棱镜,终端10为照明装置。
在使用时候,由光源5发射单色光,经过耦合装置6内的聚焦透镜一61的聚光,使光束完全且平行照射进入光纤,经光纤传输至使用端,再将单色光经聚光装置8中的聚光棱镜81聚合为混合光,然后混合光经聚焦透镜二82聚光后平行入射至光纤二9,经光纤二9传输至终端10进行照明。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
工业实用性
本发明公开的一种防水防火光纤,在光纤芯材中掺杂镧元素,增强了材料整体的抗高温膨胀性能,之后在光纤表面包覆疏水改性后的石墨烯层,提升其防水性能,使光纤在极端条件下可使用,拓宽其应用范围,并且制备工艺简便易操控,便于大规模生产;而且本发明还提供了使用该光纤制备的照明系统,在使用时候,由光源发射单色光,单色光进行传输,之后在终端处进行混合为照明所需灯光,单色光传输大大降低了混合光传输过程中的损耗,不仅降低了光源功率降低能耗,而且提升了光传输距离,使其实现远途传输,具有较高的应用价值。
 
序列表自由内容
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种防水防火光纤,其特征在于,由中心至表面依次包括:改性纤芯(1)、包层(2)、涂覆层(3)和疏水层(4),所述包层直径130-160μm,所述涂覆层(3)厚度为0.25-0.4mm。
  2. 根据权利要求2所述的一种防水防火光纤,其特征在于,所述改性纤芯(1)为经镧改性的Ge、Si复合材料纤芯,所述包层(2)为石英层。
  3. 根据权利要求2所述的一种防水防火光纤,其特征在于,所述疏水层(4)为疏水改性石墨烯材料。
  4. 一种权利要求1-3任一项所述的防水防火光纤的制备方法,其特征在于,包括以下步骤:
    步骤一:石墨烯的改性
    将氧化石墨烯分散至蒸馏水中并超声处理2-3h,之后加入80wt%水合肼升温至93-97℃搅拌10-15min后冷凝回流22-24h,之后加入稀盐酸溶液,过滤洗涤至中性后50-60℃干燥,最后将干燥产物与疏水剂混合均匀置于马弗炉中在230-240℃下保温1-1.5h,即得改性石墨烯;
    步骤二:基础光纤的制备
    2.1)按摩尔比1:5:1分别称取GeCl4、SiCl4、LaCl3,升温至三者呈气态混合物;
    2.2)将所述步骤2.1)中的气态混合物采用MCVD法制备形成预制棒;
    2.3)将所述步骤2.2)预制棒置于光纤拉丝塔进行拉丝,拉丝后迅速在表面涂覆两层树脂,即得基础光纤;
    步骤三:基础光纤表面改性
    将所述步骤一制得的改性石墨烯分散至蒸馏水中制备成改性石墨烯溶液,之后把所述步骤二制得的基础光纤浸泡于所述改性石墨烯溶液中浸渍1-3h后取出,置于80-100℃条件下干燥,即得防水防火光纤。
  5. 根据权利要求4所述的一种防水防火光纤的制备方法,其特征在于,所述步骤一中的水合肼与氧化石墨烯的质量比为1.6:100。
  6. 根据权利要求4所述的一种防水防火光纤的制备方法,其特征在于,所述步骤一中的疏水剂为聚二甲基硅氧烷。
  7. 根据权利要求4所述的一种防水防火光纤的制备方法,其特征在于,所述步骤三中的改性石墨烯溶液浓度为0.7wt%-1.0wt%。
  8. 一种权利要求1-7任一项所述的防水防火光纤照明系统,其特征在于,包括依次连接的:光源(5)、耦合装置(6)、光纤一(7)、聚光装置(8)、光纤二(9)和终端(10);
    所述光源(5)为单色光源;所述耦合装置(6)的输入端具有聚焦透镜一(61),所述光源(5)连接所述耦合装置(6)的输入端;所述耦合装置(6)的输出端连接所述光纤一(7)的输入端,所述光源(5)、聚焦透镜一(61)和光纤一(7)一一对应;所述光纤一(7)的输出端连接所述聚光装置(8)的输入端,所述聚光装置(8)内由输入端按光传播方向依次设置有聚光棱镜(81)和聚焦透镜二(82),所述聚光装置(8)的输出端连接所述光纤二(9)的输入端,所述光纤二(9)的输出端连接所述终端(10)。
  9. 根据权利要求8所述的一种防水防火光纤照明系统,其特征在于,所述聚光棱镜(81)为消偏振聚光棱镜。
  10. 根据权利要求8所述的一种防水防火光纤照明系统,其特征在于,所述终端(10)为照明装置。
PCT/CN2019/101550 2019-08-17 2019-08-20 一种防水防火光纤及其制备方法和采用该光纤的照明系统 WO2021031115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910761035.X 2019-08-17
CN201910761035.XA CN110456447B (zh) 2019-08-17 2019-08-17 一种防水防火光纤及其制备方法和采用该光纤的照明系统

Publications (1)

Publication Number Publication Date
WO2021031115A1 true WO2021031115A1 (zh) 2021-02-25

Family

ID=68487306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101550 WO2021031115A1 (zh) 2019-08-17 2019-08-20 一种防水防火光纤及其制备方法和采用该光纤的照明系统

Country Status (2)

Country Link
CN (1) CN110456447B (zh)
WO (1) WO2021031115A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010383B (zh) * 2022-06-30 2023-12-15 天津斯坦利新型材料有限公司 具有至少两层涂覆层的玻璃纤维、制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427272A (zh) * 2001-12-18 2003-07-02 古河电气工业株式会社 光放大器用的光纤
CN1556430A (zh) * 2003-12-30 2004-12-22 天津大学 显微镜用自动线性可变单色照明装置
CN102815866A (zh) * 2012-08-17 2012-12-12 华中科技大学 一种光纤预制棒的掺杂装置
US20150205040A1 (en) * 2013-11-03 2015-07-23 Tyson York Winarski Graphene coated optic fibers
CN207729291U (zh) * 2018-01-05 2018-08-14 杭州远方光电信息股份有限公司 一种照明装置
CN208224563U (zh) * 2018-06-12 2018-12-11 上海昊量光电设备有限公司 一种石英光缆
CN109254369A (zh) * 2018-11-29 2019-01-22 安徽牡东通讯光缆有限公司 一种抗电痕腐蚀自承式光缆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759854B2 (ja) * 2011-09-30 2015-08-05 株式会社日立製作所 水素濃度計測装置及び水素濃度表示装置
CN203395799U (zh) * 2013-07-09 2014-01-15 国家电网公司 自然光延伸器
CN203810289U (zh) * 2014-05-13 2014-09-03 烟台有信机械零部件有限公司 一种基于光纤的led光源器
CN104200913A (zh) * 2014-09-28 2014-12-10 韩金玲 一种石墨烯金属化光纤电光缆及生产方法
CN104503020A (zh) * 2014-12-19 2015-04-08 华中科技大学 一种纵向螺旋模式转移光纤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427272A (zh) * 2001-12-18 2003-07-02 古河电气工业株式会社 光放大器用的光纤
CN1556430A (zh) * 2003-12-30 2004-12-22 天津大学 显微镜用自动线性可变单色照明装置
CN102815866A (zh) * 2012-08-17 2012-12-12 华中科技大学 一种光纤预制棒的掺杂装置
US20150205040A1 (en) * 2013-11-03 2015-07-23 Tyson York Winarski Graphene coated optic fibers
CN207729291U (zh) * 2018-01-05 2018-08-14 杭州远方光电信息股份有限公司 一种照明装置
CN208224563U (zh) * 2018-06-12 2018-12-11 上海昊量光电设备有限公司 一种石英光缆
CN109254369A (zh) * 2018-11-29 2019-01-22 安徽牡东通讯光缆有限公司 一种抗电痕腐蚀自承式光缆

Also Published As

Publication number Publication date
CN110456447A (zh) 2019-11-15
CN110456447B (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
CN102218871B (zh) 锂离子二次电池用改性隔膜的制备方法及其产品、制备装置
CN108314411A (zh) 采用无氯无醇工艺制备二氧化硅气凝胶复合材料的方法
PT807154E (pt) Sistema de vitrificacao por fusao com plasma a arco para o tratamento de lixos e recuperacao de recursos
CN104292836A (zh) 一种高强耐热改性硅橡胶电力电缆护套材料
WO2021031115A1 (zh) 一种防水防火光纤及其制备方法和采用该光纤的照明系统
CN102276141B (zh) 一种利用热态煤渣制备无机矿渣纤维的方法
CN103046166A (zh) 一种聚碳硅烷纤维的化学气相交联方法
DK158897B (da) Optisk kvartsglasfiber
CN103396001A (zh) 一种低能耗的玻璃纤维
CN203324510U (zh) 一种带隔离功能的晶体型1*2保偏耦合器
CN105061964A (zh) 新型的复合材料的合成路径及其应用
CN110006263A (zh) 陶瓷基板生产废气处理装置及处理方法
CN200986600Y (zh) 耐高温光纤
CN102277718B (zh) 一种高耐酸聚酰亚胺纤维及其制备方法
CN106784515A (zh) 一种聚丙烯腈基碳纤维覆盖的动力电池
CN107175054B (zh) 平板显示用上转换光扩散微球及其制备方法
CN204653891U (zh) 一种阻燃隔热防水防护服面料
CN106215517B (zh) 一种强韧性复合高温针刺过滤材料的制备方法
CN216890659U (zh) 一种带有余热换热的微纤维玻璃棉生产系统
CN217777983U (zh) 一种防火隔热薄壁金属构件
CN221031177U (zh) 耐高温塑胶地板
CN115925319B (zh) 一种含有中空氧化铝纤维的吸热防火卷材及其制造方法
CN112684537B (zh) 一种具有优异光传输性能的石英光纤及其制备方法
CN209336203U (zh) 一种环保型高强隔热吸音棉
CN108749188B (zh) 一种用于邮轮发动机和管路的隔温夹套及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941888

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19941888

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19941888

Country of ref document: EP

Kind code of ref document: A1