WO2021031029A1 - 上行信号的发送和接收方法以及装置 - Google Patents

上行信号的发送和接收方法以及装置 Download PDF

Info

Publication number
WO2021031029A1
WO2021031029A1 PCT/CN2019/101205 CN2019101205W WO2021031029A1 WO 2021031029 A1 WO2021031029 A1 WO 2021031029A1 CN 2019101205 W CN2019101205 W CN 2019101205W WO 2021031029 A1 WO2021031029 A1 WO 2021031029A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
uplink
channel access
starting position
indication information
Prior art date
Application number
PCT/CN2019/101205
Other languages
English (en)
French (fr)
Inventor
蒋琴艳
张磊
贾美艺
Original Assignee
富士通株式会社
蒋琴艳
张磊
贾美艺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 蒋琴艳, 张磊, 贾美艺 filed Critical 富士通株式会社
Priority to KR1020227004242A priority Critical patent/KR102690795B1/ko
Priority to PCT/CN2019/101205 priority patent/WO2021031029A1/zh
Priority to EP19942597.6A priority patent/EP4016900A4/en
Priority to JP2022507755A priority patent/JP7416206B2/ja
Priority to CN201980098306.6A priority patent/CN114144986B/zh
Publication of WO2021031029A1 publication Critical patent/WO2021031029A1/zh
Priority to US17/573,690 priority patent/US20220132540A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the embodiments of the application relate to the field of communication technology.
  • Unlicensed frequency bands are an important part of spectrum resources. There are already many systems that support data transmission in unlicensed frequency bands, such as WiFi, Long Term Evolution (LTE), and License Assisted Access (LAA), etc. . However, the current New Radio (NR, New Radio) system does not support unlicensed frequency bands.
  • LTE Long Term Evolution
  • LAA License Assisted Access
  • the uplink transmission based on dynamic scheduling requires a network device (such as a base station) to confirm that a resource is available before sending dynamic scheduling indication information; terminal equipment (such as UE) confirms the resource indicated by the dynamic scheduling indication information After it is available, the uplink transmission is sent on the corresponding resource.
  • a network device such as a base station
  • terminal equipment such as UE
  • NR introduced Configuration Grant (CG, Configuration Grant).
  • CG Configuration Grant
  • NR supports two types of CG: the first type of configuration authorization (CG Type 1) and the second type of configuration authorization (CG Type 2).
  • time-frequency resources and other parameters required to send PUSCH on the configured time-frequency resources are configured through RRC signaling. After receiving the RRC signaling, the terminal device can send it on the configured time-frequency resources PUSCH.
  • resource configuration includes two steps: after configuring the time domain resource period and other parameters through high-level signaling, then configuring the time domain resource, frequency domain resource, and other PUSCH on the configured time-frequency resource through an activated DCI
  • the terminal device After the terminal device receives the activated DCI, it can send the PUSCH on the configured time-frequency resources.
  • NR_U NR operation on unlicensed band
  • the resource usage requirements of NR_U must be met.
  • the terminal device needs to confirm that the time-frequency resources are available before sending PUSCH . Therefore, the CG-based PUSCH transmission scheme in NR cannot be directly applied to NR_U.
  • embodiments of the present application provide a method and device for sending and receiving uplink signals, which can support the transmission and reception of CG-based uplink signals (such as PUSCH) that meet the requirements of NR-U, or other Transmission and reception of uplink signals (such as PRACH, PUCCH, SRS) on semi-statically configured or semi-persistently scheduled time-frequency resources.
  • CG-based uplink signals such as PUSCH
  • NR-U NR-U
  • uplink signals such as PRACH, PUCCH, SRS
  • a method for sending an uplink signal including:
  • the terminal device receives first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • the terminal device receives physical layer signaling, where the physical layer signaling is used to indicate the first starting position within the time domain of one or more time-frequency resources in the at least one time-frequency resource;
  • the terminal device starts sending the uplink signal from the first starting position on the one or more time-frequency resources.
  • an uplink signal sending apparatus including:
  • An information receiving unit that receives first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • a signaling receiving unit which receives physical layer signaling, the physical layer signaling being used to indicate the first starting position within the time domain of one or more time-frequency resources in the at least one time-frequency resource;
  • a signal sending unit which sends an uplink signal from the first starting position on the one or more time-frequency resources.
  • a method for receiving an uplink signal including:
  • the network device sends first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • the network device sends physical layer signaling, where the physical layer signaling is used to indicate the first starting position within the time domain of one or more time-frequency resources in the at least one time-frequency resource;
  • the network device receives an uplink signal, and the uplink signal is sent from the first starting position on the one or more time-frequency resources.
  • an uplink signal receiving apparatus including:
  • An information sending unit that sends first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • a signaling sending unit that sends physical layer signaling, where the physical layer signaling is used to indicate the first starting position within the time domain of one or more of the at least one time-frequency resource;
  • a signal receiving unit which receives an uplink signal, and the uplink signal is transmitted from the first starting position on the one or more time-frequency resources.
  • a communication system including:
  • a terminal device which receives first indication information, where the first indication information is used to indicate at least one time-frequency resource for semi-static configuration or semi-persistent scheduling; and receives physical layer signaling, which is used to indicate the A first starting position within the time domain of one or more time-frequency resources in the at least one time-frequency resource; and starting to send an uplink signal from the first starting position on the one or more time-frequency resources;
  • a network device that sends the first indication information and the physical layer signaling, and receives the uplink signal.
  • the first starting position in the time domain of one or more time-frequency resources of semi-static configuration or semi-persistent scheduling is indicated through physical layer signaling, and the first starting position is used to transmit
  • the uplink signal can support the transmission and reception of CG-based uplink signals that meet the requirements of NR-U, or the transmission and reception of other uplink signals on semi-statically configured or semi-continuously scheduled time-frequency resources.
  • Fig. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an uplink signal transmission method according to an embodiment of the present application.
  • FIG. 3 is an example diagram of time-frequency resources of semi-static configuration or semi-persistent scheduling according to an embodiment of the present application
  • FIG. 4 is another example diagram of time-frequency resources for semi-static configuration or semi-persistent scheduling according to an embodiment of the present application
  • FIG. 5 is another example diagram of time-frequency resources of semi-static configuration or semi-persistent scheduling according to an embodiment of the present application
  • FIG. 6 is another example diagram of time-frequency resources of semi-static configuration or semi-persistent scheduling according to an embodiment of the present application.
  • Fig. 7 is an example diagram of COT of LTE-LAA
  • FIG. 8 is an example diagram of COT in an embodiment of the present application.
  • FIG. 9 is another schematic diagram of an uplink signal sending method according to an embodiment of the present application.
  • FIG. 10 is an example diagram of a first time-frequency resource according to an embodiment of the present application.
  • FIG. 11 is another schematic diagram of an uplink signal sending method according to an embodiment of the present application.
  • Fig. 12 is an example diagram of NR uplink and downlink configuration
  • FIG. 13 is an example diagram of uplink and downlink configuration of an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an uplink signal receiving method according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of an uplink signal sending apparatus according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of an uplink signal receiving apparatus according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the terms, but they do not indicate the spatial arrangement or temporal order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that meets any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G , New Radio (NR, New Radio), etc., and/or other currently known or future communication protocols.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • New Radio NR, New Radio
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femeto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femeto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” (UE, User Equipment) or “Terminal Equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, Vehicle-mounted communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side or “network device side” refers to a side of the network, which may be a certain base station, or may include one or more network devices as described above.
  • user side or “terminal side” or “terminal device side” refers to a side of a user or a terminal, which may be a certain UE, or may include one or more terminal devices as above.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a case where a terminal device and a network device are taken as an example.
  • the communication system 100 may include a network device 101 and terminal devices 102 and 103.
  • FIG. 1 only uses two terminal devices and one network device as an example for description, but the embodiment of the present application is not limited to this.
  • the network device 101 and the terminal devices 102 and 103 can perform existing service or service transmission that can be implemented in the future.
  • these services may include, but are not limited to: enhanced Mobile Broadband (eMBB), massive machine type communication (mMTC, massive Machine Type Communication), and high-reliability and low-latency communication (URLLC, Ultra-Reliable and Low). -Latency Communication), etc.
  • LTE-LAA To support data transmission in unlicensed frequency bands, LAA (hereinafter referred to as LTE-LAA) is introduced in LTE.
  • LTE-LAA supports an uplink transmission based on semi-persistent scheduling, such as AUL PUSCH.
  • AUL PUSCH AUL PUSCH
  • the solution in LTE-LAA can be used as much as possible to support uplink transmission based on semi-static configuration or semi-persistent scheduling in NR_U.
  • NR_U the flexibility of NR increases, which can cover more application scenarios. Accordingly, the industry expects NR_U to be more flexible than LTE-LAA.
  • LTE-LAA only supports two channel access methods
  • NR_U may support more than two channel access methods.
  • a channel occupation time (COT, Channel Occupation Time) only includes one uplink and downlink conversion
  • a channel occupation time may include two or more uplink and downlink conversions.
  • LTE-LAA only supports 15kHz subcarrier spacing (SCS, SubCarrier Spacing), while NR_U may support more than one SCS, for example, 15kHz, 30kHz, 60kHz, 120kHz, etc.
  • SCS subcarrier spacing
  • NR_U may support more than one SCS, for example, 15kHz, 30kHz, 60kHz, 120kHz, etc.
  • LTE-LAA uses subframes as a unit for scheduling
  • NR_U may support slot and/or symbol (symbol) scheduling.
  • LTE-LAA only supports sending PUSCH and sounding reference signals (SRS, Sounding Reference Signal) in unlicensed frequency bands
  • NR_U may also support sending physical random access channels (PRACH, Physical Random Access Channel) and The physical uplink control channel (PUCCH, Physical Uplink Control Channel), PRACH and PUCCH may also be sent on semi-statically configured or semi-persistent scheduled time-frequency resources.
  • PRACH Physical Random Access Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH and PUCCH may also be sent on semi-statically configured or semi-persistent scheduled time-frequency resources.
  • the scheme in LTE-LAA cannot be directly applied to NR_U.
  • the embodiment of the application provides an uplink transmission scheme suitable for NR_U.
  • uplink control signal and “uplink control information (UCI, Uplink Control Information)” or “physical uplink control channel (PUCCH, Physical Uplink Control Channel)” can be used interchangeably without causing confusion.
  • uplink data signal and “uplink data information” or “physical uplink shared channel (PUSCH, Physical Uplink Shared Channel)” can be interchanged;
  • downlink control signal and “Downlink Control Information (DCI)” or “Physical Downlink Control Channel (PDCCH)” can be interchanged, and the terms “downlink data signal” and “downlink data information” Or “Physical Downlink Shared Channel (PDSCH, Physical Downlink Shared Channel)” can be interchanged.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • sending or receiving PUSCH can be understood as sending or receiving uplink data carried by PUSCH
  • sending or receiving PUCCH can be understood as sending or receiving uplink information carried by PUCCH
  • uplink signals can include uplink data signals and/or uplink control signals, etc.
  • FIG. 2 is a schematic diagram of a method for sending an uplink signal according to an embodiment of the present application. As shown in FIG. 2, the method includes:
  • a terminal device receives first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • the terminal device receives physical layer signaling, where the physical layer signaling is used to indicate a first starting position, and the first starting position is within the range of one or more of the at least one time-frequency resource. Within the time domain; and
  • the terminal device starts sending an uplink signal from the first starting position on the one or more time-frequency resources.
  • Figure 2 above only schematically illustrates an embodiment of the present application, but the present application is not limited thereto.
  • the order of execution among various operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the foregoing content, and are not limited to the description of the foregoing FIG. 2.
  • the first indication information is, for example, carried by high-level signaling and/or physical layer signaling.
  • the high-level signaling is, for example, radio resource control (RRC, Radio Resource Control) signaling (for example, referred to as RRC message (RRC message). ), for example, including MIB, system information, and dedicated RRC messages; or RRC IE (RRC information element)) and/or MAC (Medium Access Control) signaling (or MAC IE (MAC information element)); but this The application is not limited to this.
  • RRC Radio Resource Control
  • RRC message for example, including MIB, system information, and dedicated RRC messages; or RRC IE (RRC information element)) and/or MAC (Medium Access Control) signaling (or MAC IE (MAC information element)
  • the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling.
  • the at least one time-frequency resource is used for the terminal device to send uplink signals.
  • Fig. 3 is an example diagram of a time-frequency resource of semi-static configuration or semi-persistent scheduling in an embodiment of the present application. As shown in Fig. 3, a time-frequency resource that can be semi-statically configured or semi-persistent scheduling in one period.
  • FIG. 4 is another example diagram of time-frequency resources of semi-static configuration or semi-persistent scheduling according to an embodiment of the present application
  • FIG. 5 is another example diagram of time-frequency resources of semi-static configuration or semi-persistent scheduling according to an embodiment of the present application. As shown in Figures 4 and 5, assuming that there are two or more time-frequency resources in a semi-static configuration or semi-persistent scheduling in one cycle, at least two adjacent time-frequency resources in the time domain are not continuous.
  • FIG. 6 is another example diagram of time-frequency resources of semi-static configuration or semi-persistent scheduling in an embodiment of the present application. As shown in the figure, it is assumed that there are two or more time-frequency resources in a semi-static configuration or semi-persistent scheduling in a cycle, and adjacent time-frequency resources in the time domain are continuous.
  • FIGS. 3 to 6 schematically illustrate the periodic semi-static configuration or semi-persistent scheduling of time-frequency resources as an example, but the application is not limited thereto.
  • the terminal device may transmit an uplink signal on one or more of these time-frequency resources (referred to herein as at least one time-frequency resource) that are semi-statically configured or semi-persistently scheduled, and the one or more time-frequency resources are, for example, the terminal For equipment selection, this application is not limited to this.
  • the one or more time-frequency resources are referred to as the first time-frequency resource, and this uplink signal transmission (or this uplink transmission) is referred to as the first uplink transmission.
  • the uplink signal may include at least one of the following signals or channels: physical uplink shared channel (PUSCH), physical random access channel (PRACH), physical uplink control channel (PUCCH), reference signal (such as sounding reference Signal (SRS), Demodulation Reference Signal (DMRS)).
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • reference signal such as sounding reference Signal (SRS), Demodulation Reference Signal (DMRS)
  • SRS sounding reference Signal
  • DMRS Demodulation Reference Signal
  • a channel occupancy time (COT) only includes one uplink and downlink conversion, and there is no strict limitation on the time interval between adjacent transmissions in a COT.
  • FIG. 7 is an example diagram of COT of LTE-LAA. As shown in FIG. 7, only one uplink and downlink conversion is included in a channel occupation time.
  • a channel occupation time may include two or more uplink and downlink conversions.
  • a channel occupation time may include two or more uplink and downlink conversions.
  • the time interval between the uplink transmission and the previous transmission may need to meet a certain time interval requirement.
  • the time interval between the uplink transmission and the previous transmission is not greater than 25 us.
  • the channel access mode of class 1 supported in LTE-LAA only includes mode B, while NR_U will support more than one channel access mode of class 1, and the time interval corresponding to the channel access mode of different class 1 The requirements may also be different.
  • the time interval between the uplink transmission and the previous transmission should be equal to 25us. If the terminal device uses mode C to send an uplink transmission, the uplink transmission The time interval between the transmission and the previous transmission should be equal to 16 us. If the terminal device uses method C to send an uplink transmission, the time interval between the uplink transmission and the previous transmission should be less than or equal to 16 us.
  • the base station Since the last transmission may be sent by the base station or other equipment, in order to ensure that the time interval between the uplink transmission and the last transmission meets the requirements, the base station needs to dynamically indicate a starting position for sending the uplink transmission.
  • the network device can dynamically indicate the first starting position within the time domain of the first time-frequency resource through physical layer signaling, so as to ensure that the first uplink transmission and other transmissions (such as the previous The time interval between (uplink transmission) meets the requirements, so as to support CG uplink transmission that meets the NR-U requirements.
  • physical layer signaling refers to control information carried by physical layer control channels and/or physical layer signals, such as information carried by DCI and/or sequence in PDCCH, and the application is not limited thereto.
  • One physical layer signaling can be used to indicate one or more first starting positions.
  • one physical layer signaling is only used to indicate the first starting position corresponding to the first time-frequency resource.
  • the physical layer signaling is used to indicate the first starting position corresponding to the first time-frequency resource, and is also used to indicate the first starting position corresponding to the second time-frequency resource.
  • the first time-frequency resource is one or more continuous or discontinuous time-frequency resources in the time domain
  • the second time-frequency resource is another one or more continuous or discontinuous time-frequency resources.
  • the first starting position corresponding to the first time-frequency resource is within the time domain range of the first time-frequency resource
  • the first starting position corresponding to the second time-frequency resource is within the time domain range of the second time-frequency resource.
  • the method for the terminal device to send the uplink signal on the second time-frequency resource is the same as the behavior of sending the uplink signal on the first time-frequency resource.
  • channel access methods can be divided into two types: the first type of channel access methods (class 1) and the second type of channel access methods (class 2).
  • the first type of channel access method (class 1) is a channel access method used for channel sharing; for example, it may include:
  • Method B Channel access Type B: Channel access with a channel detection time of 25us;
  • Method C Channel access Type C: Channel access with a channel detection time of 16us (not supported in LTE-LAA);
  • Method D send directly (not supported in LTE-LAA).
  • the second type of channel access method (class 2) is a channel access method used to initialize occupied channels, or called an independent channel access method; for example, it may include:
  • Method A Channel access Type A: Channel access with random backoff based on a variable contention window.
  • Class 1 can also include other channel access methods.
  • multiple channel access methods in class 1 can have different channel detection times; class 2 can also include other channel access methods, for example, in class 2.
  • Multiple channel access methods can have different priorities, and different priorities have different contention window value ranges.
  • the foregoing only schematically illustrates the channel access mode, and the present application is not limited to this.
  • the channel detection time and/or priority may be changed to define more modes.
  • the terminal device may support one or more of class 1, and/or, may also support one or more of class 2. For a certain uplink transmission, one of at least one channel access mode supported by the terminal device needs to be adopted.
  • the terminal device may support at least one first channel access method, such as support methods B and C; it may also support at least one first channel access method and at least one second channel access method, such as support method A.
  • mode B it can also support at least one second channel access mode, such as mode A.
  • the terminal equipment supports mode A and mode B, and the first uplink transmission can be sent using mode B (first channel access mode). It can also be said that the terminal equipment can use mode B (first channel access mode) to send the first uplink.
  • mode B first channel access mode
  • At least one channel access method supported (or capable of being used) by the terminal device includes a channel access method that can be used by the terminal device to send the first uplink transmission on the first time-frequency resource.
  • At least one channel access method supported by a terminal device may be per UE (that is, for different uplink transmission types and/or different time-frequency resource configurations, at least one channel access method that a terminal device can use The method is the same), or for time-frequency resource configuration (per resource configuration) and/or uplink transmission type (per UL transmission type) (that is, for different uplink transmission types and/or different time-frequency resource configurations, At least one channel access mode that a terminal device can use can be different).
  • the terminal device before sending the first uplink transmission, can determine that it can be used by the terminal device in the first uplink transmission according to the time-frequency resource configuration corresponding to the first time-frequency resource and/or the uplink transmission type corresponding to the first uplink transmission.
  • the channel access mode of the first uplink transmission (or at least one channel access mode supported by the terminal device) is sent on the time-frequency resource.
  • the first channel access method and/or the second channel access method belong to at least one channel access method supported (or can be used) by the terminal device, for example, the at least one channel access method
  • the channel access mode belonging to class 1 is called the first channel access mode
  • the channel access mode belonging to class 2 of the at least one channel access mode is called the second channel access mode.
  • the at least one channel access mode supported by the terminal device may be predefined or preconfigured or indicated by the network device.
  • network equipment indication refers to the indication of network equipment through high-level signaling and/or physical layer signaling.
  • the high-level signaling is, for example, radio resource control (RRC, Radio Resource Control) signaling (for example, called RRC message ( RRC message), for example, includes MIB, system information, dedicated RRC message; or RRC IE (RRC information element)) and/or MAC (Medium Access Control) signaling (or MAC IE (MAC information element)).
  • RRC Radio Resource Control
  • RRC message for example, includes MIB, system information, dedicated RRC message; or RRC IE (RRC information element)
  • MAC Medium Access Control
  • At least one channel access mode supported by the terminal device may be predefined according to the type of uplink transmission, and the channel access modes that can be adopted corresponding to different uplink signal types may be different. For example, if the uplink transmission is CG PUSCH, the at least one channel access method supported (or can be used) by the terminal device may include method A and method B. If the uplink transmission is PRACH, the terminal device supports (or can use) At least one channel access mode may include mode A and mode C.
  • the at least one channel access mode supported by the terminal device may be indicated by the network device through high-level signaling and/or physical layer signaling. Specifically, for example, it may be indicated by the network device while indicating at least one time-frequency resource of semi-static configuration or semi-persistent scheduling.
  • the first indication information includes an indication field, which is used to indicate that the terminal device can be used to send at least the uplink transmission on at least one time-frequency resource of the semi-static configuration or semi-persistent scheduling indicated by the first indication information.
  • the indicated at least one channel access mode is at least one channel access mode supported by the terminal device, or can be used for the terminal device to send the first uplink on the first time-frequency resource.
  • Channel access method for transmission is used to indicate whether the terminal device is a channel access mode supported by the terminal device.
  • the channel access method supported by the terminal device includes at least one channel access method of class 1, because the channel access method of class 1 is a channel access method for channel sharing, and the terminal device cannot predict whether the base station occupies the channel, so Whether the terminal device can use one of the at least one channel access mode of class 1 to send the uplink transmission depends on the dynamic indication of the base station.
  • the network device can dynamically indicate the first starting position and/or the first channel access mode through physical layer signaling, which can not only guarantee the uplink transmission and other transmissions (such as the last uplink transmission) The time interval between them meets the requirements, and can support multiple channel access methods, so as to support the transmission and reception of CG-based uplink signals that meet the NR-U requirements.
  • the physical layer signaling includes second indication information, and the second indication information is used to indicate the first channel access mode and/or the first starting position.
  • the second indication information may directly or indirectly indicate the first channel access mode and/or the first starting position.
  • the second indication information may also indicate the use of COT sharing (COT sharing) on the first time-frequency resource, thereby indirectly indicating the first channel access mode adopted for sending the uplink transmission on the first time-frequency resource.
  • COT sharing COT sharing
  • the channel access mode supported by the UE only includes mode B but does not include other channel access modes belonging to class 1, or in other words, the channel access mode that can be used for the UE to send a PUSCH on the first time-frequency resource only Including method B but not including other channel access methods belonging to class 1.
  • the second indication information indicates that the UE uses COT sharing on the first time-frequency resource, that is, it indicates that the UE uses the method to send PUSCH on the first time-frequency resource B.
  • the physical layer signaling includes second indication information, and the second indication information is used to indicate the first starting position; and the third indication information is included in the physical layer signaling or other physical layer signaling.
  • the indication information indicates the first channel access mode.
  • the third indication information is sent through physical layer signaling.
  • the second indication information and the third indication information may be sent in the same physical layer signaling, or sent in different physical layers.
  • the physical layer signaling may be cell-specific, group-common, or UE-specific; the physical layer signaling is, for example, information carried by DCI and/or sequence.
  • the second indication information indicates a first offset value of the first starting position relative to the second time position.
  • the second time position may be within the time domain range of the one or more time domain resources; for example, the second time position is the start position of the first symbol of the first time domain resource, or The second time position is the second starting position described below.
  • the second indication information may indicate the first channel access mode and/or the first starting position based on the corresponding relationship. For example, if a first channel access mode corresponds to a unique first starting position, the second indication information can indirectly indicate the first starting position by indicating the first channel access mode, if a first starting position corresponds to a unique The first channel access mode, the second indication information may indirectly indicate the first channel access mode by indicating the first starting position.
  • the first channel access mode and the first offset value can correspond, and the first channel access mode and the first starting position can be indicated through the second indication information.
  • Table 2 is an example of one-to-one correspondence between the first channel access mode and the first offset value, but the present application is not limited to one-to-one correspondence, and may also be other correspondence relationships.
  • the first channel access method First offset Way B 25us Way C 16us Way D 0us
  • the first channel access mode has a one-to-one correspondence with the first offset value. Therefore, the second indication information may only include the first channel access mode indication information or the first offset value indication information . Based on this correspondence, the UE can determine the corresponding first offset value or the first channel access mode.
  • the UE can know that the first offset value is 25 us, and the UE can determine the first starting position according to the first offset value. Or, if the second indication information indicates that the first offset value is 25 us, the UE can know that the first channel access mode is mode B.
  • the first channel access mode and the first offset value set may correspond.
  • Table 3 is an example of one-to-one correspondence between the first channel access mode and the first offset value set, but the present application is not limited to one-to-one correspondence, and other correspondence relationships may also be used.
  • the first channel access method First offset set Way B 25us, 25us+TA Way C 16us,16us+TA Way D 0us
  • the second indication information may only include indication information of the first channel access mode, and based on the corresponding relationship, the UE may determine the corresponding first offset value set, and further determine the first offset value according to the third indication information, At this time, the third indication information may indicate a first offset value in the corresponding first offset value set.
  • the second indication information may only include the indication information of the first offset value, so that, based on the corresponding relationship, the UE can determine the corresponding first channel access mode.
  • the value of the first offset value may be such that the time interval between the uplink transmission and the previous transmission is not greater than 25 us, but the present application is not limited to this.
  • NR_U will support two or more uplink and downlink conversions in a COT
  • a cell can also support a COT including one uplink and downlink conversion.
  • the time interval between adjacent transmissions can be more relaxed. Therefore, in order to increase network flexibility, the second offset value may also be greater than 25 us. For example, assuming that the subcarrier interval is 15kHz, the value range of the first offset value is ⁇ 16us, 25us, 34us, 43us, 52us, 61us, 1symbol ⁇ .
  • the terminal device uses the first channel access method to send the uplink signal on the first time-frequency resource
  • the The first offset value should make the time interval between the uplink transmission and the previous transmission meet the requirements. For example, assuming that the time interval should not be greater than 25 us, the first offset value should not be greater than 25 us.
  • the uplink transmission of the UE adopts a class 1 channel access mode, and it is necessary to ensure that the first offset value is not greater than 25 us.
  • first channel access mode and the first offset value or the first offset value set may be predefined or pre-configured, or may be indicated by a network device (such as a base station), and the above
  • a network device such as a base station
  • the terminal device may use the first channel access mode to start sending the uplink signal from the first starting position on the first time-frequency resource.
  • the terminal device may also use the second channel access mode to start sending the uplink signal from the second starting position on the first time-frequency resource.
  • the terminal device uses the first channel access method to send the uplink signal from the first starting position on one or more time-frequency resources; when the judgment condition is not met, In this case, the second channel access method is adopted to send the uplink signal from the second starting position on one or more time-frequency resources, wherein the second starting position in the time domain of the one or more time-frequency resources
  • the location is pre-defined or pre-configured or indicated by network equipment (for example, through high-level signaling).
  • the judgment condition may include: whether the physical layer signaling is received no later than the first time position of the one or more time-frequency resources. Wherein, the time interval between the first time position and the start position of the first time-frequency resource of the one or more time-frequency resources is not less than the preparation time of the uplink signal, or the first The time interval between the time position and the second starting position is not less than the preparation time of the uplink signal.
  • the embodiment of the present application is not limited to this, and other judgment conditions may also be used.
  • FIG. 9 is another schematic diagram of a method for sending an uplink signal according to an embodiment of the present application.
  • the terminal device supports at least one first channel access mode and at least one second channel access mode as an example for description. As shown in Figure 9, the method includes:
  • a terminal device receives first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling.
  • 902. Determine whether physical layer signaling is received before the first time position, where the physical layer signaling is used to indicate the first time within the time domain range of one or more time-frequency resources in the at least one time-frequency resource. Start position; if yes, go to 903, otherwise go to 904;
  • a second channel access method to send the uplink signal from a second start position on the one or more time-frequency resources, where the first one in the time domain of the one or more time-frequency resources
  • the second starting position is pre-defined or pre-configured or indicated by the network device (for example, through high-layer signaling and/or physical layer signaling).
  • the RRC message including the above-mentioned first indication information may include indication information for indicating the second starting position.
  • the physical layer signaling including the first indication information may include indication information for indicating the second starting position.
  • Figure 9 above only schematically illustrates the embodiments of the present application, but the present application is not limited thereto.
  • the order of execution among various operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of FIG. 9 above.
  • the second starting position is predefined or pre-configured.
  • the UE selects a second offset value from a set of predefined second offset values, so that the second starting position can be determined according to the selected second offset value.
  • the second offset value may be an offset value relative to the start position of the first symbol of the first time-frequency resource.
  • the second starting position is indicated by the network device through fourth indication information; the fourth indication information is used to indicate the second starting position relative to the one or more time-frequency resources.
  • the fourth indication information may indicate a second offset value, and the UE may determine the second starting position according to the second offset value; or, the fourth indication information may indicate a second offset value set, and the UE A second offset value is selected from the second offset value set, so that the second starting position can be determined according to the selected second offset value.
  • the channel access mode and starting position of the present application are schematically described above, and the subcarrier spacing is described below.
  • the sub-carrier spacing (SCS) of the one or more time-frequency resources is one of at least two sub-carrier spacings
  • the terminal device is also based on the sub-carrier spacing (SCS) of the one or more time-frequency resources.
  • the carrier interval determines the first starting position and/or the second starting position.
  • At least two subcarrier intervals correspond to different first starting positions, and/or, at least two subcarrier intervals correspond to different second starting positions.
  • the first offset value and the second offset value may be characterized as the number of symbols and/or the time length, for example, 1 symbol, 1 symbol+X us, Y us. More than one SCS may be supported in NR_U, for example, 15kHz, 30kHz, 60kHz, 120kHz, etc. The time length of a symbol of different SCS is different. In order to meet the same time interval requirement, the first offset value or the second offset value required by different SCS may be different.
  • At least two subcarrier intervals correspond to different first offset values, and/or at least two subcarrier intervals correspond to different second offset values.
  • the value range of the second offset value corresponding to different subcarrier intervals may be different, and the value range may be predefined; for example, Example 1 and Example 2.
  • the fourth indication information may be based on the correspondence between the subcarrier interval and the second offset value range Relationship to indicate the second offset value or the second offset value set.
  • the UE may determine the second offset value or the second offset value set indicated by the fourth indication information according to the subcarrier interval of the first time-frequency resource. For example, Example 3 and Example 4.
  • Example 3 if the information bits included in the fourth indication information received by the UE are 110, if the subcarrier interval of the first time-frequency resource is 15kHz, the second offset value is 1 symbol, if the first time-frequency resource If the subcarrier spacing of is 30kHz, the second offset value is 2symbol.
  • Example 4 if the information bit included in the fourth indication information received by the UE is 010, if the subcarrier interval of the first time-frequency resource is 15kHz, the second offset value is 34us, if the first time-frequency resource If the sub-carrier spacing of is 30kHz, the second offset value is 1 symbol.
  • At least two types of subcarrier intervals correspond to different sets of first offset values, and/or at least two types of subcarrier intervals correspond to different sets of second offset values.
  • Example 5 if the information bit included in the fourth indication information received by the UE is 1110001, if the subcarrier interval of the first time-frequency resource is 15kHz, the set of second offset values is ⁇ 16us, 25us, 34us , 1symbol ⁇ , if the sub-carrier spacing of the first time-frequency resource is 30 kHz, the set of the second offset value is ⁇ 16us, 25us, 34us, 2symbol ⁇ .
  • Example 6 if the information bits included in the fourth indication information received by the UE are 1110001, if the subcarrier interval of the first time-frequency resource is 15kHz, the set of second offset values is ⁇ 16us, 25us, 34us , 1symbol ⁇ , if the subcarrier spacing of the first time-frequency resource is 30kHz, the set of the second offset value is ⁇ 16us, 25us, 34us ⁇ .
  • the reference subcarrier interval corresponds to a first offset value, or the reference subcarrier interval corresponds to a set of the first offset values; and/or; the reference subcarrier interval corresponds to The second offset value, or the reference subcarrier interval corresponds to the set of second offset values.
  • the fourth indication information indicates the first offset value or the first offset value set based on a reference subcarrier interval, and the reference subcarrier interval may be predefined or indicated by the base station.
  • the UE determines the second offset value or the second offset value set according to the subcarrier spacing of the first time-frequency resource. For example, Example 7 and Example 8.
  • Example 7 if the information bits included in the fourth indication information received by the UE are 110, if the subcarrier interval of the first time-frequency resource is 15kHz, the second offset value is 1 symbol, and if the first time-frequency resource is The subcarrier spacing is 30kHz, and the second offset value is 2symbol.
  • Example 8 if the information bits included in the fourth indication information received by the UE are 1110001, then if the subcarrier interval of the first time-frequency resource is 15kHz, the set of second offset values is ⁇ 16us, 25us, 34us, 1symbol ⁇ , if the subcarrier spacing of the first time-frequency resource is 30kHz, the set of the second offset value is ⁇ 16us, 25us, 34us, 2symbol ⁇ .
  • the terminal device generates the uplink signal according to the subcarrier interval of the first time-frequency resource and/or the adopted channel access mode.
  • I the number of symbols in a subframe
  • I the number of symbols in a slot
  • I the number of time slots in one subframe corresponding to one subcarrier interval.
  • the terminal device determines, according to the subcarrier spacing of the one or more time-frequency resources, the first symbol that can transmit the uplink signal and the first symbol in the one or more time-frequency resources. The starting position of a part of a symbol that can transmit the uplink signal.
  • the first offset value and the second offset value may be characterized by the number of symbols and/or the time length. If the first offset value or the second offset value is characterized by the time length, the UE may need to use the first time-frequency resource
  • the SCS determines the first start position or the second start position, or in other words, determines the first symbol that can be sent in the first time-frequency resource and the length that can be sent in the first symbol (and/or the first The starting position of the part that can be sent in the symbol).
  • the first offset value or the second offset value is characterized by the time length, expressed as t offset , then the first symbol that can be sent in the first time-frequency resource
  • the start position of the part that can be sent in the symbol l start and the symbol l start (characterized as the offset value relative to the start position of the first symbol l start )
  • the UE needs to be based on the reference subcarrier interval and The subcarrier interval of the first time-frequency resource is determined l start and/or
  • the first offset value or the second offset value is represented by the number of symbols, N offset .
  • the first offset value or the second offset value is characterized by the number of symbols and the time length N offset + t offset , then
  • the resource mapping is described below by taking CG PUSCH as an example.
  • the terminal device maps the first uplink information according to at least one or any combination of the following information: the subcarrier spacing of the one or more time-frequency resources, the channel access mode used, and the mapping instruction Indication information of the symbol position of the first uplink information.
  • the terminal device may map the first uplink information to one or more complete symbols in the time-frequency resource, and the complete symbols can use all the time for sending the uplink signal.
  • the first uplink transmission is CG PUSCH
  • UCI such as CG-UCI
  • the UCI first uplink information
  • RV, etc. are essential for the base station to correctly receive the uplink transmission; this application is not limited to this.
  • the first uplink information may also be other UCI, for example, bear at least one of the following: SR, HARQ-ACK, CSI, etc.
  • the first part of the symbols in the first time-frequency resource may not send a signal or may not be able to send a signal completely.
  • the next transmission to support the first uplink transmission can continue to share the same COT transmission, in order to ensure that there is an appropriate time interval between the first uplink transmission and the next transmission, the latter part of the symbols in the first time-frequency resource It may not be sent or not sent completely.
  • the symbol positions for mapping the first uplink information in the time-frequency resources are at least partially different.
  • the number of symbols corresponding to different SCSs that do not send a signal or cannot completely send a signal may be different. Therefore, for different SCS, the symbol positions that can be used to map UCI may be different.
  • the position of the symbol to which the first uplink information is mapped in the time-frequency resource is predefined or pre-configured or indicated by a network device.
  • the symbol positions that can be used for mapping UCI in the first time-frequency resource may be predefined or pre-configured or indicated by the base station, or the symbol positions that cannot be used for mapping UCI in the first time-frequency resource may be predefined. Or pre-configured or indicated by the base station.
  • the symbol positions that can be used for mapping UCI can be pre-defined or pre-configured.
  • the number of symbols that cannot be used to map UCI are predefined for different SCSs, for example, as shown in Table 5 below.
  • the number of symbols that cannot be used for mapping UCI can be offset from the predefined first/second offset
  • the value range corresponds to the value.
  • the value range of the first offset value is predefined as ⁇ 16us,25us,34us,43us,52us,61us,1symbol ⁇
  • the subcarrier spacing is 30kHz
  • the first offset value The value range is predefined as ⁇ 16us, 25us, 34us, 43us, 52us, 61us, 2symbol ⁇ , then for 15kHz, the first symbol is not used for mapping UCI, and for 30kHz, the first two symbols are not used for mapping UCI.
  • the value range of the first/second offset value is predefined or pre-configured based on a reference subcarrier interval, for example, the reference subcarrier interval is 15kHz, and the value range of the first offset value is predefined as ⁇ 16us, 25us, 34us, 43us, 52us, 61us, 1symbol ⁇ , for 15kHz, the first symbol is not used for mapping UCI, and for 30kHz, the first two symbols are not used for mapping UCI.
  • the UE can map UCI to symbols that can be used to map UCI in the first time-frequency resource according to the subcarrier interval of the first time-frequency resource.
  • the symbol positions that can be used for mapping UCI can be respectively indicated. For example, indicating the value of N1 and/or N2.
  • a reference subcarrier interval indication can be used to map the symbol position of UCI.
  • the base station may indirectly indicate the symbol position that can be used for mapping UCI by indicating the first/second offset value set.
  • the relationship between the set of indicated first/second offset values and the symbol positions that can be used to map UCI and the value range of the above-mentioned predefined first/second offset values and the symbol positions that can be used to map UCI The relationship is similar.
  • the base station may indirectly indicate the symbol position that can be used for mapping UCI by indicating the first/second offset value. For example, if the indicated first offset value is 43us, if the subcarrier spacing of the first time-frequency resource is 15kHz, then the first symbol is not used for mapping UCI, if the subcarrier spacing is 30kHz, the first two symbols are not used for mapping UCI. (Similar to the method in signal generation, the first completely transmitted symbol in the first time-frequency resource can be determined.
  • class 1 and class 2 have different requirements for the time interval between adjacent transmissions, and class 1 and class 2 can also correspond to different symbol positions that can be used to map UCI.
  • different channel access methods in class 1 may have different requirements for the time interval between adjacent transmissions. Therefore, the symbol positions that can be used to map UCI corresponding to different channel access methods may be different.
  • the symbol position corresponding to the first channel access mode that can be used to map UCI is determined according to a predefined first offset value range or indicated first offset value or first offset value set, for example .
  • the symbol position corresponding to the second channel access mode that can be used to map UCI is determined, for example, according to a predefined second offset value range or an indicated second offset value or a second offset value set.
  • the UE may need to determine the symbol positions in the first time-frequency resource that can be used for mapping UCI according to the channel access mode adopted for the first uplink transmission. For example, if the second channel access mode is adopted, the symbol positions that can be used for mapping UCI in the first time-frequency resource are the symbol positions that can be used for mapping UCI corresponding to the second channel access mode. If the second indication information is received indicating that the first channel access mode is adopted, the symbol positions in the first time-frequency resource that can be used for mapping UCI are corresponding to the first channel access mode and can be used for mapping UCI.
  • the UCI is then mapped to an appropriate symbol position.
  • the physical layer signaling for sending the corresponding first indication information should be sent before a certain time length of the first time-frequency resource.
  • the UE receives the physical layer signaling before the first time position. There is a certain time interval between the first time position and the start position of the first symbol of the first time-frequency resource. The time interval should not be less than the time required by the UE to prepare the PUSCH. If the UE does not receive the physical layer signaling, it will map UCI according to the symbol position corresponding to the second channel access mode that can be used to map UCI; if the physical layer signaling is received, it will correspond to the first channel access mode The symbol position that can be used to map UCI is mapped to UCI.
  • the uplink signal also carries second uplink information, and the second uplink information is used to indicate the end position of the uplink signal.
  • the end positions of the uplink signal indicated by the second uplink information are different.
  • the UCI may also include indication information for indicating the end position of the first uplink transmission.
  • indication information may end in different SCS indications. For example, as shown in Table 6 below,
  • the base station after receiving the UCI, the base station needs to determine the end position of the first uplink transmission according to the subcarrier spacing of the first time-frequency resource.
  • the first starting position in the time domain of one or more time-frequency resources for semi-static configuration or semi-persistent scheduling is indicated through physical layer signaling, and the first starting position is used to transmit uplink signals, which can support The transmission and reception of CG-based uplink signals that meet the requirements of NR-U, or the transmission and reception of other uplink signals on semi-statically configured or semi-continuously scheduled time-frequency resources.
  • the embodiment of the present application provides a method for sending an uplink signal, which is described from the terminal device side.
  • the embodiments of the present application can be combined with the embodiments of the first aspect, or can be implemented separately, and the same content as the embodiments of the first aspect will not be repeated.
  • FIG. 11 is a schematic diagram of a method for sending an uplink signal according to an embodiment of the present application. As shown in FIG. 11, the method includes:
  • the terminal device generates an uplink signal
  • the terminal device sends the uplink signal on a time-frequency resource of semi-static configuration or semi-persistent scheduling without receiving corresponding dynamic indication information for indicating uplink and downlink configuration, and the time-frequency resource Include at least one symbol that is predefined or semi-statically configured to be flexible.
  • Figure 11 above only schematically illustrates an embodiment of the application, but the application is not limited thereto.
  • the order of execution among various operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of FIG. 11 above.
  • NR supports more flexible uplink and downlink configuration.
  • the uplink and downlink configuration may be semi-statically configured and/or dynamically configured. Among them, the dynamic configuration is indicated by DCI format 2-0.
  • the UE needs to determine whether it can send uplink transmission on a semi-statically configured or semi-persistently scheduled time-frequency resource based on the uplink and downlink configuration.
  • the base station configures the UE to monitor PDCCH to receive DCI format 2_0, for a semi-statically configured or semi-persistent scheduled time-frequency resource that includes at least one symbol that is semi-statically configured as Flexible, if the UE does not receive DCI format 2_0, it indicates that If the symbol is uplink, the UE cannot send uplink transmission in this time-frequency resource. This is mainly to avoid interference with other devices.
  • the UE does not receive the DCI format 2_0 indicating that the symbol is uplink can be divided into two types: does not receive the corresponding DCI format 2_0; receives the corresponding DCI format 2_0, but does not indicate that the symbol is uplink, for example, indicates that the symbol is D/F, or there is no indication of the configuration of the symbol.
  • Fig. 12 is an example diagram of the uplink and downlink configuration of NR.
  • the resource can be configured as uplink (UL), downlink (DL) or flexible (F), and then through dynamic signaling (DCI format 2_0), flexible (F) can be further configured as uplink (UL) or Downlink (DL).
  • the first 5 time units did not receive the corresponding dynamic signaling (DCI format 2_0) (used in Figure 12) Indicates), then the uplink transmission configured by higher layer signaling cannot be sent on F.
  • the next 5 time units (configured as FFFUU semi-statically) receive corresponding dynamic signaling (DCI format 2_0) (indicated by ⁇ in Figure 12), and are further configured as DDUUU, then the uplink transmission is configured by higher-level signaling Can be sent on U.
  • base stations In unlicensed frequency bands, flexible uplink and downlink configurations can give base stations and UEs more channel access opportunities. Therefore, base stations may only use dynamic configuration, or semi-statically configure more flexible symbols, which leads to all or Most time-frequency resources of semi-static configuration or semi-persistent scheduling include flexible symbols.
  • the base station may not be able to send a PDCCH carrying DCI format 2_0 due to channel access failure, and the UE may not receive DCI format 2_0.
  • the UE will not be able to send the above uplink transmission. In other words, whether the UE can send uplink transmission that is not based on dynamic scheduling is still limited by the dynamic indication of the base station, which causes the efficiency of uplink transmission to decrease and the delay may increase.
  • channel detection can avoid interference to other devices to a certain extent, in order to improve the efficiency of uplink transmission and reduce the delay. It can allow the UE to not receive the corresponding dynamic indication information (for example, DCI format 2_0, or another newly defined DCI format) used to indicate the uplink and downlink configuration, including the semi-static configuration as Flexible.
  • the semi-static configuration of symbols or the semi-persistent scheduled time-frequency resources are sent for uplink transmission.
  • FIG. 13 is an example diagram of the uplink and downlink configuration of the embodiment of the present application, as shown in FIG. 13, for example, when the corresponding DCI format 2_0 is not received (used in FIG. 13 Indicates), the UE can send an uplink signal on a time unit that is pre-defined or semi-statically configured as flexible (F).
  • F flexible
  • Figures 12 and 13 are only schematically illustrated.
  • the time units corresponding to UL, DL and F in Figure 12 or Figure 13 can be several time slots, multiple symbols, or other time lengths. , Which does not strictly correspond to a time slot.
  • the semi-static configuration information in Figures 12 and 13 such as tdd-UL-DL-ConfigurationCommon and/or device-specific uplink and downlink configuration information (tdd-UL-DL-ConfigurationDedicated, and dynamic signaling DCI format 2_0 are only implemented in this application. This is an example, but the application is not limited to this, it can also be other semi-static configuration information and/or dynamic signaling, or newly defined semi-static configuration information and/or dynamic signaling.
  • whether the terminal device is allowed to transmit data on one or more symbols that are predefined or semi-statically configured as flexible without receiving corresponding dynamic indication information for indicating uplink and downlink configuration.
  • the uplink signal is pre-defined or pre-configured or indicated by the network equipment (for example, configured by high-level signaling).
  • whether the terminal device is allowed to transmit data on one or more symbols that are predefined or semi-statically configured as flexible without receiving corresponding dynamic indication information for indicating uplink and downlink configuration.
  • the uplink signal is predefined or preconfigured for the type of the uplink signal or indicated by the network device (for example, configured by high-level signaling).
  • the UE may send the first uplink transmission in the first time-frequency resource.
  • the second channel access method is used to send the uplink transmission from the second starting position on the first time-frequency resource.
  • the UE may perform uplink transmission on the first time-frequency resource according to the embodiment of the first aspect.
  • the first DCI includes at least second indication information
  • the second DCI includes at least indication information for dynamically indicating uplink and downlink configuration. If the UE receives the first DCI and does not receive the second DCI indicating that the flexible symbol is uplink, the UE may perform uplink transmission on the first time-frequency resource according to the embodiment of the first aspect.
  • the terminal equipment can send uplink signals on the time-frequency resources of semi-static configuration or semi-persistent scheduling without receiving corresponding dynamic indication information for indicating uplink and downlink configuration.
  • the resource includes at least one symbol that is pre-defined or semi-statically configured to be flexible, which can support the transmission and reception of CG-based uplink signals that meet the requirements of NR-U, or other time-frequency configurations that are semi-statically configured or semi-persistently scheduled The sending and receiving of uplink signals on resources.
  • the embodiment of the present application provides a method for receiving an uplink signal, which is described from the network device side.
  • the embodiments of this application correspond to the embodiments of the first aspect and/or the second aspect, and the same content as the embodiments of the first aspect and/or the second aspect will not be repeated.
  • FIG. 14 is a schematic diagram of an uplink signal receiving method according to an embodiment of the present application. As shown in FIG. 14, the method includes:
  • a network device sends first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling.
  • the network device sends physical layer signaling, where the physical layer signaling is used to indicate a first starting position, and the first starting position is within the range of one or more of the at least one time-frequency resource. Within the time domain; and
  • the network device receives an uplink signal, and the uplink signal is sent by the terminal device from the first starting position on the one or more time-frequency resources.
  • the uplink signal is sent from the first starting position on the one or more time-frequency resources by the terminal device using the first channel access mode.
  • the first channel access mode and the first starting position have a corresponding relationship; the corresponding relationship is predefined or pre-configured or indicated by a network device.
  • the physical layer signaling includes second indication information, and the second indication information is used to indicate the first channel access mode and/or the first starting position.
  • the physical layer signaling includes second indication information, and the second indication information indicates the first starting position; and is determined by the information contained in the physical layer signaling or other physical layer signaling.
  • the third indication information indicates the first channel access mode.
  • the second indication information indicates a first offset value of the first starting position relative to the second time position.
  • the second time position may be within the time domain range of the one or more time domain resources; for example, the second time position is the start position of the first symbol of the one or more time domain resources , Or, the second time position is the second starting position.
  • the first channel access mode corresponds to the first offset value, or the first channel access mode of the uplink signal corresponds to the set of first offset values.
  • the subcarrier spacing (SCS) of the one or more time-frequency resources is one of at least two subcarrier spacings, and the first starting position is also based on the one or more time-frequency resources The subcarrier spacing is determined.
  • the uplink signal carries first uplink information; the first uplink information is mapped to one or more complete symbols in the time-frequency resource, and the complete symbols can use all the time. To send the uplink signal.
  • the uplink signal also carries second uplink information, and the second uplink information is used to indicate the end position of the uplink signal; the network device also determines the The end position of the uplink signal.
  • the uplink signal is also transmitted by the terminal device on one or more time-frequency resources in the at least one time-frequency resource, from the first time in the time domain of the one or more time-frequency resources.
  • the second starting position is to start sending; wherein, the second starting position is predefined or pre-configured or indicated by a network device.
  • the fourth indication information is used to indicate the second offset value of the second starting position relative to the first symbol of the one or more time-frequency resources, or indicate the second offset value.
  • the set of shift values are used to indicate the second offset value of the second starting position relative to the first symbol of the one or more time-frequency resources, or indicate the second offset value.
  • the terminal device adopts the first channel access mode and the first starting position in one or more time-frequency resources of the at least one time-frequency resource when the judgment condition is satisfied for the uplink signal. Send on; wherein the first starting position within the time domain of the one or more time-frequency resources is indicated by physical layer signaling.
  • the terminal device adopts the second channel access mode and the second starting position on the one or more time-frequency resources when the uplink signal is not met by the judgment condition. Sending, wherein the second starting position in the time domain of the one or more time-frequency resources is predefined or pre-configured or indicated by higher layer signaling.
  • the uplink signal is sent by the terminal device on one or more symbols that are configured to be flexible in a semi-statically configured or semi-persistent scheduled time-frequency resource.
  • the first starting position in the time domain of one or more time-frequency resources for semi-static configuration or semi-persistent scheduling is indicated through physical layer signaling, and the first starting position is used to transmit uplink signals, which can support The transmission and reception of CG-based uplink signals that meet the requirements of NR-U, or the transmission and reception of other uplink signals on semi-statically configured or semi-continuously scheduled time-frequency resources.
  • the embodiment of the present application provides an uplink signal sending device.
  • the device may be, for example, a terminal device, or it may be one or some parts or components of the terminal device.
  • the content of the embodiment of the present application that is the same as the embodiment of the first aspect and/or the second aspect will not be repeated.
  • FIG. 15 is a schematic diagram of an uplink signal sending apparatus according to an embodiment of the present application. As shown in FIG. 15, the uplink signal sending apparatus 1500 includes:
  • An information receiving unit 1501 which receives first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • a signaling receiving unit 1502 which receives physical layer signaling, the physical layer signaling being used to indicate the first starting position in the time domain of one or more of the at least one time-frequency resource; as well as
  • a signal sending unit 1503 which sends an uplink signal from the first starting position on the one or more time-frequency resources.
  • the signal sending unit 1503 adopts a first channel access method to send the uplink signal from the first starting position on the one or more time-frequency resources.
  • the signal sending unit 1502 uses the first channel access mode and the first starting position to send the uplink signal on the one or more time-frequency resources when the judgment condition is satisfied; If the judgment condition is not met, the uplink signal is sent on the one or more time-frequency resources using the second channel access mode and the second starting position, wherein the one or more time-frequency resources
  • the second starting position within the time domain is predefined or pre-configured or indicated by a network device.
  • the judgment condition includes: whether the physical layer signaling is received no later than the first time position of the one or more time-frequency resources.
  • the time interval between the first time position and the start position of the first time-frequency resource of the one or more time-frequency resources is not less than the preparation time of the uplink signal, or, The time interval between the first time position and the second start position is not less than the preparation time of the uplink signal.
  • the uplink signal includes at least one of the following signals or channels: physical uplink shared channel (PUSCH), physical random access channel (PRACH), physical uplink control channel (PUCCH), sounding reference signal (SRS) ).
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • the first channel access mode is a channel access mode for channel sharing
  • the second channel access mode is a channel access mode for initializing an occupied channel
  • the first channel access mode and/or the second channel access mode belong to at least one channel access mode supported by the terminal device; at least one channel access mode supported by the terminal device
  • the mode is pre-defined or pre-configured or indicated by the network device.
  • the first channel access mode and the first starting position have a corresponding relationship; the corresponding relationship is predefined or pre-configured or indicated by a network device.
  • the physical layer signaling includes second indication information
  • the second indication information is used to indicate the first channel access mode and/or the first starting position; or, the second indication information indicates the first starting position and is included in the physical
  • the third indication information in layer signaling or other physical layer signaling indicates the first channel access mode.
  • the second indication information indicates a first offset value of the first starting position relative to the second time position.
  • the second time location is within the time domain range of the one or more time domain resources.
  • the second time position is the starting position of the first symbol of the one or more time domain resources, or the second time position is the second starting position.
  • the first channel access mode corresponds to the first offset value, or the first channel access mode of the uplink signal corresponds to the set of first offset values.
  • the second starting position is indicated by the network device through fourth indication information, and the fourth indication information is used to indicate that the second starting position is relative to the one or more time-frequency The second offset value of the starting position of the first symbol of the resource, or used to indicate the set of the second offset value.
  • the subcarrier interval of the one or more time-frequency resources is one of at least two subcarrier intervals, and the signal sending unit 1503 further determines the subcarrier interval of the one or more time-frequency resources The first starting position.
  • At least two of the subcarrier intervals correspond to different first starting positions, and/or at least two of the subcarrier intervals correspond to different second starting positions.
  • the device 1500 for sending uplink signals further includes:
  • the signal generating unit 1504 generates the uplink signal according to the subcarrier spacing of the one or more time-frequency resources and/or the adopted channel access mode.
  • the signal generating unit 1504 is further configured to determine the first one that can transmit the uplink signal in the one or more time-frequency resources according to the subcarrier spacing of the one or more time-frequency resources. Symbol and the starting position of the part of the first symbol that can transmit the uplink signal.
  • the device 1500 for sending uplink signals further includes:
  • the signal mapping unit 1505 maps the first uplink information according to the subcarrier interval of the one or more time-frequency resources and/or the adopted channel access mode.
  • the signal mapping unit 1505 is further configured to map the first uplink information to one or more complete symbols in the one or more time-frequency resources, and the complete symbols can use all the time. To send the uplink signal.
  • the uplink signal also carries second uplink information, and the second uplink information is used to indicate the end position of the uplink signal.
  • the signal sending unit 1503 is further configured to send the uplink signal on one or more symbols configured as flexible in one or more time-frequency resources of semi-static configuration or semi-persistent scheduling.
  • the signal sending unit 1503 is further configured to configure the uplink and downlink configuration information for the cell general uplink and downlink configuration information and/or the device-specific uplink and downlink configuration information as flexible
  • the uplink signal is sent on one or more symbols.
  • the apparatus 1500 for sending an uplink signal may also include other components or modules.
  • the apparatus 1500 for sending an uplink signal may also include other components or modules.
  • FIG. 15 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the foregoing components or modules may be implemented by hardware facilities such as a processor, a memory, a transmitter, and a receiver; the implementation of this application does not limit this.
  • the first starting position in the time domain of one or more time-frequency resources for semi-static configuration or semi-persistent scheduling is indicated through physical layer signaling, and the first starting position is used to transmit uplink signals, which can support The transmission and reception of CG-based uplink signals that meet the requirements of NR-U, or the transmission and reception of other uplink signals on semi-statically configured or semi-continuously scheduled time-frequency resources.
  • the embodiment of the present application provides an uplink signal receiving device.
  • the device may be, for example, a network device, or may be some or some components or components configured in the network device.
  • the content of the embodiment of this application that is the same as the embodiment of the first aspect to the third aspect will not be repeated.
  • FIG. 16 is another schematic diagram of the control information indicating device according to the embodiment of the present application. As shown in FIG. 16, the uplink signal receiving device 1600 includes:
  • a signaling sending unit 1602 which sends physical layer signaling, where the physical layer signaling is used to indicate the first starting position in the time domain of one or more time-frequency resources in the at least one time-frequency resource; as well as
  • the signal receiving unit 1603 receives an uplink signal, and the uplink signal is transmitted from the first starting position on the one or more time-frequency resources.
  • the apparatus 1600 for receiving uplink signals may also include other components or modules.
  • the apparatus 1600 for receiving uplink signals may also include other components or modules.
  • FIG. 16 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the foregoing components or modules may be implemented by hardware facilities such as a processor, a memory, a transmitter, and a receiver; the embodiment of the present application does not limit this.
  • the first starting position in the time domain of one or more time-frequency resources for semi-static configuration or semi-persistent scheduling is indicated through physical layer signaling, and the first starting position is used to transmit uplink signals, which can support The transmission and reception of CG-based uplink signals that meet the requirements of NR-U, or the transmission and reception of other uplink signals on semi-statically configured or semi-continuously scheduled time-frequency resources.
  • the embodiment of the present application also provides a communication system, which can be referred to FIG. 1, and the same content as the embodiment of the first aspect to the fifth aspect will not be repeated.
  • the communication system 100 may include:
  • the terminal device 102 receives first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling; and receives physical layer signaling, which is used to indicate A first starting position within the time domain of one or more time-frequency resources in the at least one time-frequency resource; and sending an uplink signal from the first starting position on the one or more time-frequency resources ;
  • the network device 101 sends the first indication information and the physical layer signaling, and receives the uplink signal.
  • the embodiment of the present application also provides a network device, which may be a base station, for example, but the present application is not limited to this, and may also be other network devices.
  • a network device which may be a base station, for example, but the present application is not limited to this, and may also be other network devices.
  • FIG. 17 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • the network device 1700 may include: a processor 1710 (for example, a central processing unit CPU) and a memory 1720; the memory 1720 is coupled to the processor 1710.
  • the memory 1720 can store various data; in addition, it also stores an information processing program 1730, and the program 1730 is executed under the control of the processor 1710.
  • the processor 1710 may be configured to execute a program to implement the uplink signal receiving method as described in the embodiment of the third aspect.
  • the processor 1710 may be configured to perform the following control: send first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling; send physical layer signaling, said The physical layer signaling is used to indicate the first starting position within the time domain of one or more time-frequency resources in the at least one time-frequency resource; and to receive an uplink signal that is in the one or more time-frequency resources. Are sent from the first starting position on each time-frequency resource.
  • the network device 1700 may further include: a transceiver 1740, an antenna 1750, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the network device 1700 does not necessarily include all the components shown in FIG. 17; in addition, the network device 1700 may also include components not shown in FIG. 17, which can refer to the prior art.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this, and may also be other devices.
  • FIG. 18 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1800 may include a processor 1810 and a memory 1820; the memory 1820 stores data and programs, and is coupled to the processor 1810. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to achieve telecommunication functions or other functions.
  • the processor 1810 may be configured to execute a program to implement the uplink signal sending method as described in the embodiments of the first aspect and/or the second aspect.
  • the processor 1810 may be configured to perform the following control: receiving first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling; receiving physical layer signaling, said The physical layer signaling is used to indicate the first starting position within the time domain of one or more time-frequency resources in the at least one time-frequency resource; The first starting position starts to send uplink signals.
  • the terminal device 1800 may further include: a communication module 1830, an input unit 1840, a display 1850, and a power supply 1860.
  • a communication module 1830 the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the terminal device 1800 does not necessarily include all the components shown in FIG. 18, and the above-mentioned components are not necessary; in addition, the terminal device 1800 may also include components not shown in FIG. There is technology.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the uplink signal processing described in the embodiment of the first aspect and/or the second aspect. Delivery method.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the uplink signal sending method described in the embodiment of the first aspect and/or the second aspect.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a network device, the program causes the network device to execute the uplink signal receiving method described in the embodiment of the third aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program enables a network device to execute the uplink signal receiving method described in the embodiment of the third aspect.
  • the above devices and methods of this application can be implemented by hardware, or by hardware combined with software.
  • This application relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods Or steps.
  • This application also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by curing these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in this application. ), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a method for sending uplink signals including:
  • the terminal device receives first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • the terminal device starts sending the uplink signal from the first starting position on the one or more time-frequency resources.
  • Supplement 2 The method according to Supplement 1, wherein the terminal device sending the uplink signal from the first starting position on the one or more time-frequency resources includes:
  • the terminal device uses the first channel access mode to start sending the uplink signal from the first starting position on the one or more time-frequency resources.
  • Supplement 3 The method according to Supplement 1 or 2, wherein when the terminal device satisfies the judgment condition, the first channel access mode is used to obtain the data from the one or more time-frequency resources. Start sending the uplink signal at the first starting position;
  • the uplink signal is sent from the second starting position on the one or more time-frequency resources by adopting the second channel access mode, wherein the one or more time-frequency resources
  • the second starting position within the time domain range of the frequency resource is predefined or preconfigured or indicated by the network device.
  • Appendix 4 The method according to Appendix 3, wherein the judgment condition includes at least one of the following: whether the physical data is received no later than the first time position of the one or more time-frequency resources Layer signaling.
  • Appendix 5 The method according to Appendix 4, wherein the time interval between the first time position and the start position of the first time-frequency resource of the one or more time-frequency resources is not less than all The preparation time of the uplink signal, or the time interval between the first time position and the second starting position is not less than the preparation time of the uplink signal.
  • the uplink signal includes at least one of the following signals or channels: physical uplink shared channel (PUSCH), physical random access channel (PRACH) , Physical Uplink Control Channel (PUCCH), Sounding Reference Signal (SRS).
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • Supplement 7 The method according to any one of Supplements 2 to 6, wherein the first channel access mode is a channel access mode for channel sharing.
  • Supplement 8 The method according to Supplement 7, wherein the first channel access mode is one of at least one channel access mode for channel sharing.
  • Supplement 9 The method according to any one of Supplements 3 to 8, wherein the second channel access mode is a channel access mode for initializing an occupied channel.
  • Supplement 10 The method according to any one of Supplements 7 to 9, wherein the first channel access mode and/or the second channel access mode belong to at least one channel supported by the terminal device Access method.
  • Supplement 11 The method according to Supplement 10, wherein at least one channel access mode supported by the terminal device is predefined or preconfigured, and/or is indicated by the network device.
  • Supplement 12 The method according to any one of Supplements 2 to 11, wherein the physical layer signaling includes second indication information, and the second indication information is used to indicate the first channel access mode and /Or the first starting position.
  • Supplement 13 The method according to any one of Supplements 2 to 11, wherein the physical layer signaling includes second indication information, and the second indication information is used to indicate the first starting position; and The third indication information included in the physical layer signaling or other physical layer signaling indicates the first channel access mode.
  • Supplement 14 The method according to any one of Supplements 2 to 13, wherein there is a corresponding relationship between the first channel access mode and the first starting position; the corresponding relationship is predefined or pre-configured or Instructed by the network device.
  • Supplement 15 The method according to any one of Supplements 10 to 13, wherein the second indication information indicates a first offset value of the first starting position relative to a second time position.
  • Appendix 16 The method according to Appendix 15, wherein the second time position is within the time domain range of the one or more time domain resources.
  • Supplement 17 The method according to Supplement 15 or 16, wherein the second time position is the start position of the first symbol of the one or more time domain resources, or the second time The position is the second starting position.
  • Supplement 18 The method according to any one of Supplements 15 to 17, wherein the first channel access mode corresponds to the first offset value, or the first channel access mode corresponds to the first offset value.
  • the set of the first offset values corresponds.
  • Supplement 19 The method according to any one of Supplements 15 to 18, wherein, if the one or more time-frequency resources are within a channel occupation time including at least two uplink and downlink conversions, and the terminal device uses In the first channel access mode, the uplink signal is sent on the one or more time-frequency resources, and the first offset value is not greater than 25 us.
  • Supplement 20 The method according to any one of Supplements 3 to 11, wherein the second starting position is indicated by the network device through fourth indication information;
  • the fourth indication information is used to indicate the second offset value of the second starting position relative to the starting position of the first symbol of the one or more time-frequency resources, or used to indicate The set of second offset values.
  • Supplement 21 The method according to any one of Supplements 1 to 20, wherein the subcarrier interval (SCS) of the one or more time-frequency resources is one of at least two subcarrier intervals,
  • the terminal device further determines the first starting position and/or the second starting position according to the subcarrier interval of the one or more time-frequency resources.
  • Supplement 22 The method according to Supplement 21, wherein at least two of the subcarrier intervals correspond to different first starting positions.
  • Supplement 23 The method according to Supplement 21, wherein at least two of the subcarrier intervals correspond to different second starting positions.
  • Supplement 24 The method according to Supplement 21, wherein at least two of the subcarrier intervals correspond to different first offset values, or at least two of the subcarrier intervals correspond to different first offsets.
  • the set of shift values are
  • Supplement 25 The method according to Supplement 21, wherein at least two of the subcarrier intervals correspond to different second offset values, or at least two of the subcarrier intervals correspond to different second offsets.
  • the set of shift values are
  • Supplement 26 The method according to Supplement 21, wherein the reference sub-carrier interval corresponds to a first offset value, or the reference sub-carrier interval corresponds to a set of the first offset values.
  • Appendix 27 The method according to Appendix 21, wherein the reference subcarrier interval corresponds to a second offset value, or the reference subcarrier interval corresponds to a set of the second offset value.
  • Supplement 28 The method according to any one of Supplements 1 to 27, wherein the method further includes:
  • the terminal device generates the uplink signal according to the subcarrier spacing of the one or more time-frequency resources and/or the adopted channel access mode.
  • Supplement 29 The method according to Supplement 28, wherein the terminal device determines, according to the subcarrier interval of the one or more time-frequency resources, that the uplink can be sent in the one or more time-frequency resources.
  • Supplement 30 The method according to any one of Supplements 1 to 29, the method further comprising:
  • the terminal device maps the first uplink information according to at least one or any combination of the following information: the sub-carrier spacing of the one or more time-frequency resources, the channel access mode used, and instructions for mapping the first uplink information Indicates the position of the symbol.
  • Appendix 31 The method according to appendix 30, wherein the terminal device maps the first uplink information to one or more complete symbols in the one or more time-frequency resources, and the complete The symbol can use all the time for transmitting the uplink signal.
  • Supplement 32 The method according to claim 30 or 31, wherein, for at least two subcarrier intervals and/or at least two channel access modes, the first uplink is mapped to the one or more time-frequency resources
  • the symbol positions of the information are at least partially different.
  • Supplement 33 The method according to any one of Supplements 30 to 32, wherein the position of the symbol to which the first uplink information is mapped in the one or more time-frequency resources is predefined or pre-configured or configured by a network device Instructions.
  • Supplement 34 The method according to any one of Supplements 1 to 33, wherein the uplink signal further carries second uplink information, and the second uplink information is used to indicate the end position of the uplink signal.
  • Supplement 35 The method according to Supplement 34, wherein for at least two subcarrier intervals, the end positions of the uplink signals indicated by the second uplink information are different.
  • Supplement 36 The method according to any one of Supplements 1 to 35, wherein the one or more time-frequency resources include at least one symbol that is predefined or semi-statically configured to be flexible.
  • Supplement 37 The method according to any one of Supplements 1 to 36, wherein the terminal device can be predefined or semi-statically configured as one or more flexible ones in the one or more time-frequency resources Sending the uplink signal on the symbol.
  • Supplement 38 The method according to Supplement 36 or 37, wherein, in the case that the terminal device does not receive corresponding dynamic indication information for indicating uplink and downlink configuration, the one or more time-frequency The resource sends the uplink signal.
  • Supplement 39 The method according to any one of Supplements 36 to 38, wherein whether the terminal device is allowed to be configured to be flexible without receiving corresponding dynamic indication information for indicating uplink and downlink configuration
  • the uplink signal is sent on one or more symbols of, which is predefined or pre-configured or instructed by a network device.
  • Supplement 40 The method according to any one of Supplements 36 to 38, wherein whether the terminal device is allowed to be configured to be flexible without receiving corresponding dynamic indication information for indicating uplink and downlink configuration
  • the uplink signal is sent on one or more symbols of, and the type of the uplink signal is predefined or preconfigured or indicated by a network device.
  • a method for sending uplink signals including:
  • the terminal device receives first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • the terminal device on one or more time-frequency resources in the at least one time-frequency resource, starts to send an uplink signal from a second starting position within the time domain range of the one or more time-frequency resources,
  • the second starting position is predefined or preconfigured or indicated by the network device through fourth indication information.
  • Supplement 42 The method according to Supplement 41, wherein the fourth indication information is used to indicate the start of the second starting position relative to the first symbol of the one or more time-frequency resources The second offset value of the position, or indicates a set of the second offset values.
  • Supplement 43 The method according to Supplement 41 or 42, wherein the subcarrier interval (SCS) of the one or more time-frequency resources is one of at least two subcarrier intervals,
  • the terminal device also determines the first starting position and/or the second starting position according to the subcarrier spacing of the one or more time-frequency resources.
  • Supplement 44 The method according to Supplement 43, wherein at least two of the subcarrier intervals correspond to different first starting positions.
  • Supplement 45 The method according to Supplement 43, wherein at least two of the subcarrier intervals correspond to different second starting positions.
  • Supplement 46 The method according to Supplement 43, wherein at least two of the subcarrier intervals correspond to different first offset values, or at least two of the subcarrier intervals correspond to different first offsets.
  • the set of shift values are
  • Supplement 47 The method according to Supplement 43, wherein at least two of the subcarrier intervals correspond to different second offset values, or at least two of the subcarrier intervals correspond to different second offsets.
  • the set of shift values are
  • Appendix 48 The method according to Appendix 43, wherein the reference subcarrier interval corresponds to a first offset value, or the reference subcarrier interval corresponds to a set of the first offset values.
  • Supplement 49 The method according to Supplement 43, wherein the reference subcarrier interval corresponds to a second offset value, or the reference subcarrier interval corresponds to a set of the second offset value.
  • Supplement 50 The method according to any one of Supplements 41 to 49, wherein the method further comprises:
  • the terminal device generates the uplink signal according to the subcarrier spacing of the one or more time-frequency resources and/or the adopted channel access mode.
  • Supplement 51 The method according to Supplement 50, wherein the terminal device determines, according to the subcarrier interval of the one or more time-frequency resources, that the uplink data can be transmitted in the one or more time-frequency resources. The first symbol of the signal and the starting position of the part of the first symbol that can transmit the uplink signal.
  • Appendix 52 The method according to any one of Appendix 41 to 51, the method further comprising:
  • the terminal device maps the first uplink information according to at least one or any combination of the following information: the subcarrier interval of the one or more time-frequency resources, the channel access mode adopted, and the first uplink information are mapped to indicate Map the indication information of the symbol position of the first uplink information.
  • Supplement 53 The method according to Supplement 52, wherein the terminal device maps the first uplink information to one or more complete symbols in the one or more time-frequency resources, and the complete The symbol can use all the time for transmitting the uplink signal.
  • Supplement 54 The method according to Supplement 52 or 53, wherein, for at least two subcarrier intervals and/or at least two channel access modes, the one or more time-frequency resources are mapped to the first uplink
  • the symbol positions of the information are at least partially different.
  • Supplement 55 The method according to any one of Supplements 52 to 54, wherein the position of the symbol to which the first uplink information is mapped in the one or more time-frequency resources is predefined or pre-configured or configured by a network device Instructions.
  • Supplement 56 The method according to any one of Supplements 41 to 55, wherein the uplink signal further carries second uplink information, and the second uplink information is used to indicate the end position of the uplink signal.
  • Supplement 57 The method according to Supplement 56, wherein for at least two subcarrier intervals, the end positions of the uplink signals indicated by the second uplink information are different.
  • Supplement 58 The method according to any one of Supplements 41 to 57, wherein the one or more time-frequency resources include at least one symbol that is predefined or semi-statically configured to be flexible.
  • Supplement 59 The method according to any one of Supplements 41 to 58, wherein the terminal device can be pre-defined or semi-statically configured as one or more flexible ones in the one or more time-frequency resources Sending the uplink signal on the symbol.
  • Supplement 60 The method according to Supplement 58 or 59, wherein, in the case that the terminal device does not receive corresponding dynamic indication information for indicating uplink and downlink configuration, the one or more time-frequency The resource sends the uplink signal.
  • Supplement 61 The method according to any one of Supplements 58 to 60, wherein whether to allow the terminal device to be configured to be flexible without receiving corresponding dynamic indication information for indicating uplink and downlink configuration
  • the uplink signal is sent on one or more symbols of, which is predefined or pre-configured or configured by network equipment.
  • Supplement 62 The method according to any one of Supplements 58 to 60, wherein whether the terminal device is allowed to be configured to be flexible without receiving corresponding dynamic indication information for indicating uplink and downlink configuration
  • the uplink signal is sent on one or more symbols of, and the type of the uplink signal is predefined or pre-configured or configured by a network device.
  • a method for sending uplink signals including:
  • the terminal device adopts the first channel access mode to transmit the uplink signal from the first starting position on one or more time-frequency resources of semi-static configuration or semi-persistent scheduling; wherein the one or more The first starting position in the time domain of each time-frequency resource is indicated by physical layer signaling;
  • the terminal device uses the second channel access mode to transmit the data from the second starting position on the one or more time-frequency resources of the semi-static configuration or semi-persistent scheduling.
  • the second starting position within the time domain of the one or more time-frequency resources is predefined or pre-configured or indicated by a network device.
  • Appendix 64 The method according to appendix 62, wherein the judgment condition includes at least one of the following: whether the physical data is received no later than the first time position of the one or more time-frequency resources Layer signaling.
  • Supplement 65 A method for sending uplink signals, including:
  • the terminal equipment generates an uplink signal
  • the terminal device does not receive the corresponding dynamic indication information for indicating the uplink and downlink configuration, when the terminal device includes at least one symbol that is pre-defined or semi-statically configured as a flexible semi-static configuration or semi-persistent scheduling time-frequency Sending the uplink signal on the resource.
  • Supplement 66 The method according to Supplement 65, wherein whether to allow the terminal device to be configured as one or more flexible ones without receiving corresponding dynamic indication information for indicating uplink and downlink configuration
  • the uplink signal sent on the symbol is predefined or pre-configured or configured by network equipment.
  • Appendix 67 The method according to Appendix 65, wherein whether the terminal device is allowed to be configured as one or more flexible ones without receiving corresponding dynamic indication information for indicating uplink and downlink configuration
  • the uplink signal is sent on the symbol, and the type of the uplink signal is predefined or preconfigured or configured by a network device.
  • a method for receiving uplink signals including:
  • the network device sends first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • the physical layer signaling being used to indicate the first starting position within the time domain of one or more time-frequency resources in the at least one time-frequency resource
  • the network device receives an uplink signal, and the uplink signal is sent by the terminal device from the first starting position on the one or more time-frequency resources.
  • Supplement 69 The method according to Supplement 68, wherein the uplink signal carries first uplink information; the first uplink information is mapped to one or more complete symbols in the time-frequency resource, The complete symbol can use all the time for transmitting the uplink signal.
  • Supplement 70 The method according to Supplement 68, wherein the uplink signal also carries second uplink information; the second uplink information is used to indicate the end position of the uplink signal;
  • the network device also determines the end position of the uplink signal according to the second uplink information.
  • a method for receiving uplink signals including:
  • the network device sends first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • the network device receives an uplink signal, and the uplink signal is transmitted by the terminal device on one or more time-frequency resources in the at least one time-frequency resource, from within the time domain range of the one or more time-frequency resources. Start sending at the second starting position;
  • the second starting position is predefined or preconfigured or indicated by the network device through fourth indication information.
  • Appendix 72 The method according to Appendix 71, wherein the fourth indication information indicates that the second starting position is relative to the starting position of the first symbol of the one or more time-frequency resources.
  • the second offset value or indicates a set of the second offset values.
  • a method for receiving uplink signals including:
  • the network device sends first indication information, where the first indication information is used to indicate at least one time-frequency resource of semi-static configuration or semi-persistent scheduling;
  • the network device receives an uplink signal
  • the uplink signal is sent by the terminal device on one or more of the at least one time-frequency resource using the first channel access mode and the first starting position when the judgment condition is met; wherein The first starting position in the time domain of the one or more time-frequency resources is indicated by physical layer signaling;
  • the uplink signal is sent by the terminal device on the one or more time-frequency resources using the second channel access mode and the second starting position when the judgment condition is not met, wherein
  • the second starting position in the time domain of the one or more time-frequency resources is predefined or pre-configured or indicated by a network device.
  • Appendix 74 The method according to Appendix 73, wherein the judgment condition includes at least one of the following: whether the physical data is received no later than the first time position of the one or more time-frequency resources Layer signaling.
  • a method for receiving uplink signals including:
  • the network device receives the uplink signal sent by the terminal device,
  • the uplink signal includes the semi-static configuration of at least one symbol that is pre-defined or semi-statically configured as flexible without receiving corresponding dynamic indication information for indicating uplink and downlink configuration. Or send on the time-frequency resource of semi-persistent scheduling.
  • Appendix 76 A terminal device, comprising a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to implement the uplink as described in any one of appendix 1 to 67 The method of sending the signal.
  • Appendix 77 A network device comprising a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to implement the uplink described in any one of appendix 68 to 75 How to receive the signal.
  • a communication system including:
  • a terminal device which receives first indication information, where the first indication information is used to indicate at least one time-frequency resource for semi-static configuration or semi-persistent scheduling; and receives physical layer signaling, which is used to indicate the A first starting position within the time domain of one or more time-frequency resources in the at least one time-frequency resource; and starting to send an uplink signal from the first starting position on the one or more time-frequency resources;
  • a network device that sends the first indication information and the physical layer signaling, and receives the uplink signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种上行信号的发送和接收方法以及装置,所述方法包括:终端设备接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;接收物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号。

Description

上行信号的发送和接收方法以及装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
非授权频段是频谱资源的重要组成部分,目前已经有很多系统支持在非授权频段的数据传输,例如WiFi,长期演进(LTE,Long Term Evolution)授权频谱辅助接入(LAA,License Assisted Access)等。但是,目前新无线(NR,New Radio)系统还不支持非授权频段。
在非授权频段,为了使得不同系统/设备之间公平高效地利用频谱资源,一个设备需要在开始发送数据之前确认资源可用后再发送数据。由于要确认资源可用后再发送,基于动态调度的上行传输需要网络设备(例如基站)确认一个资源可用后,再发送动态调度指示信息;终端设备(例如UE)确认该动态调度指示信息指示的资源可用后,再在相应的资源上发送上行传输。这就导致基于动态调度的上行传输的效率下降且时延可能增加;从这个意义上讲,在非授权频段应用不是基于动态调度的上行传输,能够获得更高的效率和更低的时延。
另一方面,NR引入了配置授权(CG,Configuration Grant)。NR支持两类CG:第一类配置授权(CG Type 1)和第二类配置授权(CG Type 2)。
在CG Type 1中,通过RRC信令配置时频资源及其他在配置的时频资源上发送PUSCH所需的参数,终端设备接收到该RRC信令后,就可以在配置的时频资源上发送PUSCH。
在CG Type 2中,资源配置包括两步:通过高层信令配置时域资源的周期等参数后,再通过一个激活DCI配置时域资源、频域资源及其他在配置的时频资源上发送PUSCH所需的参数,终端设备在接收到激活DCI后,就可以在配置的时频资源上发送PUSCH。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是发明人发现:若将CG应用到部署在非授权频段的NR系统(NR_U,NR operation on unlicensed band),需要满足NR_U的资源使用要求,例如终端设备至少需要确认时频资源可用后再发送PUSCH。因此,NR中的基于CG的PUSCH发送方案不能直接应用到NR_U里。
针对上述问题的至少之一,本申请实施例提供一种上行信号的发送和接收方法以及装置,能够支持满足NR-U要求的基于CG的上行信号(例如PUSCH)的发送和接收,或其他在半静态配置的或半持续调度的时频资源上的上行信号(例如PRACH、PUCCH、SRS)的发送和接收。
根据本申请实施例的一个方面,提供一种上行信号的发送方法,包括:
终端设备接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
终端设备接收物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及
终端设备在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号。
根据本申请实施例的又一个方面,提供一种上行信号的发送装置,包括:
信息接收单元,其接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
信令接收单元,其接收物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及
信号发送单元,其在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号。
根据本申请实施例的又一个方面,提供一种上行信号的接收方法,包括:
网络设备发送第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
网络设备发送物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及
网络设备接收上行信号,所述上行信号在所述一个或多个时频资源上从所述第一 起始位置开始被发送。
根据本申请实施例的又一个方面,提供一种上行信号的接收装置,包括:
信息发送单元,其发送第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
信令发送单元,其发送物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及
信号接收单元,其接收上行信号,所述上行信号在所述一个或多个时频资源上从所述第一起始位置开始被发送。
根据本申请实施例的又一个方面,提供一种通信系统,包括:
终端设备,其接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;接收物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号;
网络设备,其发送所述第一指示信息和所述物理层信令,以及接收所述上行信号。
本申请实施例的有益效果之一在于:通过物理层信令指示半静态配置或半持续调度的一个或多个时频资源的时域范围内的第一起始位置,使用该第一起始位置发送上行信号,能够支持满足NR-U要求的基于CG的上行信号的发送和接收,或其他在半静态配置的或半持续调度的时频资源上的上行信号的发送和接收。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或 更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信系统的一示意图;
图2是本申请实施例的上行信号的发送方法的一示意图;
图3是本申请实施例的半静态配置或半持续调度的时频资源的一示例图;
图4是本申请实施例的半静态配置或半持续调度的时频资源的另一示例图;
图5是本申请实施例的半静态配置或半持续调度的时频资源的另一示例图;
图6是本申请实施例的半静态配置或半持续调度的时频资源的另一示例图;
图7是LTE-LAA的COT的一示例图;
图8是本申请实施例的COT的一示例图;
图9是本申请实施例的上行信号的发送方法的另一示意图;
图10是本申请实施例的第一时频资源的示例图;
图11是本申请实施例的上行信号的发送方法的另一示意图;
图12是NR的上下行配置的一示例图;
图13是本申请实施例的上下行配置的一示例图;
图14是本申请实施例的上行信号的接收方法的一示意图;
图15是本申请实施例的上行信号的发送装置的一示意图;
图16是本申请实施例的上行信号的接收装置的一示意图;
图17是本申请实施例的网络设备的一示意图;
图18是本申请实施例的终端设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、 “包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS, Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
为了支持在非授权频段的数据传输,LTE中引入了LAA(以下简称LTE-LAA)。LTE-LAA支持一种基于半持续调度的上行传输,例如AUL PUSCH。为了减少标准化工作量,可以尽可能沿用LTE-LAA中的方案,来支持NR_U中的基于半静态配置或半持续调度的上行传输。但是,从LTE到NR,NR的灵活度增加,可以覆盖更多的应用场景。相应地,业界期待NR_U也能比LTE-LAA更灵活。
例如,LTE-LAA中仅支持两种信道接入方式,而在NR_U可能支持多于两种的 信道接入方式。例如,LTE-LAA中一个信道占用时间(COT,Channel Occupation Time)内只包括一次上下行转换,而在NR-U中,一个信道占用时间内可能包括两次或两次以上的上下行转换。
再例如,LTE-LAA中仅支持15kHz的子载波间隔(SCS,SubCarrier Spacing),而在NR_U中可能支持多于一种的SCS,例如,15kHz,30kHz,60kHz,120kHz等。
再例如,LTE-LAA中是以子帧(subframe)为单位调度的,而NR_U中可能支持以时隙(slot)和/或符号(symbol)为单位调度。
再例如,LTE-LAA中仅支持在非授权频段发送PUSCH和探测参考信号(SRS,Sounding Reference Signal),NR_U可能还支持在非授权频段发送物理随机接入信道(PRACH,Physical Random Access Channel)和物理上行控制信道(PUCCH,Physical Uplink Control Channel),PRACH和PUCCH也可能在半静态配置或半持续调度的时频资源上发送。
考虑上述NR_U与LTE-LAA的区别,LTE-LAA中的方案不能直接应用在NR_U中。本申请实施例提供了适用于NR_U的上行传输方案。
在以下的说明中,在不引起混淆的情况下,术语“上行控制信号”和“上行控制信息(UCI,Uplink Control Information)”或“物理上行控制信道(PUCCH,Physical Uplink Control Channel)”可以互换,术语“上行数据信号”和“上行数据信息”或“物理上行共享信道(PUSCH,Physical Uplink Shared Channel)”可以互换;
术语“下行控制信号”和“下行控制信息(DCI,Downlink Control Information)”或“物理下行控制信道(PDCCH,Physical Downlink Control Channel)”可以互换,术语“下行数据信号”和“下行数据信息”或“物理下行共享信道(PDSCH,Physical Downlink Shared Channel)”可以互换。
另外,发送或接收PUSCH可以理解为发送或接收由PUSCH承载的上行数据,发送或接收PUCCH可以理解为发送或接收由PUCCH承载的上行信息;上行信号可以包括上行数据信号和/或上行控制信号等,也可以称为上行传输(UL transmission)或上行信息或上行信道。
第一方面的实施例
本申请实施例提供一种上行信号的发送方法,从终端设备侧进行说明。图2是本申请实施例的上行信号的发送方法的一示意图,如图2所示,该方法包括:
201,终端设备接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
202,所述终端设备接收物理层信令,所述物理层信令用于指示第一起始位置,所述第一起始位置在所述至少一个时频资源中的一个或多个时频资源的时域范围内;以及
203,所述终端设备在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号。
值得注意的是,以上附图2仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图2的记载。
在一些实施例中,第一指示信息例如由高层信令和/或物理层信令承载,高层信令例如是无线资源控制(RRC,Radio Resource Control)信令(例如称为RRC消息(RRC message),例如包括MIB、system information、专用RRC消息;或者称为RRC IE(RRC information element))和/或MAC(Medium Access Control)信令(或者称为MAC IE(MAC information element));但本申请不限于此。该第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源。该至少一个时频资源用于终端设备发送上行信号。
图3是本申请实施例的半静态配置或半持续调度的时频资源的一示例图,如图3所示,一个周期内可以半静态配置或半持续调度的一个时频资源。
图4是本申请实施例的半静态配置或半持续调度的时频资源的另一示例图,图5是本申请实施例的半静态配置或半持续调度的时频资源的另一示例图。如图4和5所示,假设一个周期里半静态配置或半持续调度有两个或两个以上时频资源,至少两个时域相邻的时频资源是不连续的。
图6是本申请实施例的半静态配置或半持续调度的时频资源的另一示例图。如图所示,假设一个周期里半静态配置或半持续调度有两个或两个以上时频资源,时域相邻的时频资源是连续的。
图3至图6以周期性地半静态配置或半持续调度时频资源为例进行了示意性说明,但本申请不限于此。
终端设备可以在半静态配置或半持续调度的这些时频资源(本文称为至少一个时频资源)中的一个或多个时频资源发送上行信号,该一个或多个时频资源例如是终端设备选择的,本申请不限于此。以下为简单起见,将该一个或多个时频资源称为第一时频资源,将本次上行信号的发送(或本次上行传输)称为第一上行传输。
在一些实施例中,上行信号可以包括如下至少之一的信号或信道:物理上行共享信道(PUSCH),物理随机接入信道(PRACH),物理上行控制信道(PUCCH),参考信号(例如探测参考信号(SRS),解调参考信号(DMRS))。本申请不限于此,以下将以PUSCH为例进行说明。
在LTE-LAA中,一个信道占用时间(COT)内只包括一次上下行转换,一个COT中相邻传输之间的时间间隔没有严格限制。图7是LTE-LAA的COT的一示例图,如图7所示,一个信道占用时间内只包括一次上下行转换。
但在NR_U中,一个信道占用时间内可能包括两次或以上的上下行转换。考虑到与其他技术(例如,LAA、WiFi等)的公平共存,对于一个COT中的相邻传输间的时间间隔可能有更严格的限制。图8是本申请实施例的COT的一示例图,如图8所示,一个信道占用时间内可能包括两次或以上的上下行转换。
例如,若终端设备采用下述的class 1的信道接入方式发送一个上行传输,该上行传输与上一传输之间的时间间隔可能需要满足一定的时间间隔要求。例如,该上行传输与上一传输之间的时间间隔不大于25us。
进一步的,LTE-LAA中支持的class 1的信道接入方式仅包括方式B,而NR_U将支持多于一种class 1的信道接入方式,不同的class 1的信道接入方式对应的时间间隔要求也可能不同。
例如,如下表1所示,若终端设备采用方式B发送一个上行传输,则该上行传输与上一传输之间的时间间隔应等于25us,若终端设备采用方式C发送一个上行传输,则该上行传输与上一传输之间的时间间隔应等于16us,若终端设备采用方式C发送一个上行传输,则该上行传输与上一传输之间的时间间隔应小于等于16us。
表1
方式B =25us
方式C =16us
方式D =<16us
由于上一传输可能是基站或其他设备发送的,为了保证该上行传输与上一传输之间的时间间隔满足要求,基站需要动态指示一个用于发送该上行传输的起始位置。
在本申请实施例中,网络设备可以通过物理层信令动态地指示第一时频资源的时域范围内的第一起始位置,这样能够保证该第一上行传输与其他传输(例如上一次的上行传输)之间的时间间隔满足要求,从而能够支持满足NR-U要求的CG上行传输。
在一些实施例中,物理层信令是指通过物理层控制信道和/或物理层信号承载的控制信息,例如是PDCCH中的DCI和/或序列承载的信息,本申请不限于此。一个物理层信令可以用于指示一个或多个第一起始位置。
例如,一个物理层信令仅用于指示第一时频资源对应的第一起始位置。
再例如,该物理层信令用于指示第一时频资源对应的第一起始位置,还用于指示第二时频资源对应的第一起始位置。其中,该第一时频资源在时域上是连续或不连续的一个或多个时频资源,第二时频资源是连续或不连续的另外的一个或多个时频资源。第一时频资源对应的第一起始位置在第一时频资源的时域范围内,第二时频资源对应的第一起始位置在第二时频资源的时域范围内。终端设备在第二时频资源上发送上行信号的方法和在第一时频资源上发送上行信号的行为是相同的。
在一些实施例中,信道接入方式可以分为两类:第一类信道接入方式(class 1)和第二类信道接入方式(class 2)。
第一类信道接入方式(class 1)为用于信道共享的信道接入方式;例如可以包括:
方式B(channel access Type B):信道检测时间为25us的信道接入;
方式C(channel access Type C):信道检测时间为16us的信道接入(LTE-LAA中不支持);
方式D(channel access Type D):直接发送(LTE-LAA中不支持)。
第二类信道接入方式(class 2)为用于初始化占用信道的信道接入方式,或者称为独立的信道接入方式;例如可以包括:
方式A(channel access Type A):基于可变竞争窗口进行随机退避的信道接入。
Class 1还可以包括其他的信道接入方式,例如,class 1中的多种信道接入方式可以具有不同的信道检测时间;class 2还可以包括其他的信道接入方式,例如,class 2中的多种信道接入方式可以具有不同的优先级,不同的优先级具有不同的竞争窗口取值范围。以上仅示意性对信道接入方式进行说明,本申请不限于此,例如还可以变更信道检测时间和/或优先级而定义更多的方式。
在一些实施例中,终端设备可以支持class 1中的一种或几种,和/或,也可以支持class 2中的一种或几种。对于某一上行传输而言,需要采用终端设备所支持的至少一种信道接入方式中的一种。
例如,终端设备可以支持至少一种第一信道接入方式,例如支持方式B和C;也可以支持至少一种第一信道接入方式和至少一种第二信道接入方式,例如支持方式A和方式B;还可以支持至少一种第二信道接入方式,例如方式A。
例如,终端设备支持方式A和方式B,第一上行传输可以采用方式B(第一信道接入方式)进行发送,也可以说,终端设备可以采用方式B(第一信道接入方式)发送第一上行传输。
在本申请中,终端设备所支持(或者能够采用)的至少一种信道接入方式包括,可以用于终端设备在上述第一时频资源上发送上述第一上行传输的信道接入方式。终端设备所支持的至少一种信道接入方式可以针对UE的(per UE)(即针对不同的上行传输类型和/或不同的时频资源配置,一个终端设备可以采用的至少一种信道接入方式是相同的),也可以是针对时频资源配置(per resource configuration)和/或上行传输类型(per UL transmission type)的(即针对不同的上行传输类型和/或不同的时频资源配置、一个终端设备可以采用的至少一种信道接入方式可以不同)。
这种情况下,终端设备在发送第一上行传输前,可以根据第一时频资源对应的时频资源配置和/或第一上行传输对应的上行传输类型确定可以用于终端设备在上述第一时频资源上发送上述第一上行传输的信道接入方式(或者说,终端设备所支持的至少一种信道接入方式)。
在一些实施例中,第一信道接入方式和/或第二信道接入方式属于终端设备所支持(或者能够采用)的至少一种信道接入方式,例如将该至少一种信道接入方式中属于class 1的信道接入方式称为第一信道接入方式,将该至少一种信道接入方式中属 于class 2的信道接入方式称为第二信道接入方式。所述终端设备支持的至少一种信道接入方式可以被预定义或预配置或者被网络设备指示。
在本申请中,网络设备指示是指网络设备通过由高层信令和/或物理层信令指示,高层信令例如是无线资源控制(RRC,Radio Resource Control)信令(例如称为RRC消息(RRC message),例如包括MIB、system information、专用RRC消息;或者称为RRC IE(RRC information element))和/或MAC(Medium Access Control)信令(或者称为MAC IE(MAC information element))。
例如,终端设备支持的至少一种信道接入方式可以根据上行传输的类型而预定义,不同的上行信号类型对应的能够采用的信道接入方式可以不同。例如,若该上行传输是CG PUSCH,终端设备支持(或者能够采用)的至少一种信道接入方式可以包括方式A和方式B,若该上行传输是PRACH,终端设备支持(或者能够采用)的至少一种信道接入方式可以包括方式A和方式C。
再例如,终端设备支持的至少一种信道接入方式可以是网络设备通过高层信令和/或物理层信令指示的。具体地,例如可以是网络设备在指示半静态配置或半持续调度的至少一个时频资源的同时指示的。例如,第一指示信息中包括一个指示域,该指示域用于指示可以用于终端设备在该第一指示信息指示的半静态配置或半持续调度的至少一个时频资源上发送上行传输的至少一种信道接入方式,该指示的至少一种信道接入方式即终端设备支持的至少一种信道接入方式,或者说可以用于终端设备在上述第一时频资源上发送上述第一上行传输的信道接入方式。
若终端设备支持的信道接入方式包括至少一种class 1的信道接入方式,由于class1的信道接入是用于信道共享的信道接入方式,而终端设备无法预测基站是否占用了信道,因此,终端设备是否能够采用该至少一种class 1的信道接入方式中的一种发送该上行传输取决于基站的动态指示。
在本申请实施例中,网络设备可以通过物理层信令动态地指示第一起始位置和/或第一信道接入方式,这样不仅能够保证该上行传输与其他传输(例如上一次的上行传输)之间的时间间隔满足要求,而且能够支持多种信道接入方式,从而能够支持满足NR-U要求的基于CG的上行信号的发送和接收。
在一些实施例中,物理层信令包括第二指示信息,所述第二指示信息用于指示第一信道接入方式和/或第一起始位置。第二指示信息可以直接或间接指示第一信道接 入方式和/或第一起始位置。
例如,若终端设备支持的信道接入方式只包括一种属于class 1的信道接入方式(即,终端设备支持的信道接入方式只包括一种用于信道共享的信道接入方式),则第二指示信息还可以通过指示在第一时频资源采用COT共享(COT sharing),间接地指示在第一时频资源上发送该上行传输采用的第一信道接入方式。
例如,若UE支持的信道接入方式只包括方式B但不包括其他属于class 1的信道接入方式,或者说,可以用于UE在第一时频资源上发送一个PUSCH的信道接入方式只包括方式B但不包括其他属于class 1的信道接入方式,第二指示信息指示UE在第一时频资源上采用COT sharing,即指示了UE在第一时频资源上发送PUSCH采用的是方式B。
在一些实施例中,物理层信令包括第二指示信息,所述第二指示信息用于指示第一起始位置;并且由包含在所述物理层信令或者其他物理层信令中的第三指示信息指示第一信道接入方式。
例如,第三指示信息通过物理层信令发送。第二指示信息和第三指示信息可以在同一物理层信令发送,或者在不同的物理层信令发送。物理层信令可以是小区公共的(cell-specific)或组公共的(group-common)或设备专用(UE-specific)的;物理层信令例如是DCI和/或序列承载的信息。
在一些实施例中,第二指示信息指示第一起始位置相对于第二时间位置的第一偏移值。所述第二时间位置可以在所述一个或多个时域资源的时域范围内;例如,所述第二时间位置是第一时域资源的第一个符号的起始位置,或者,所述第二时间位置是下述的第二起始位置。
在一些实施例中,第一信道接入方式和第一起始位置存在对应关系;所述对应关系被预定义或预配置或由网络设备指示。第二指示信息可以基于该对应关系指示第一信道接入方式和/或第一起始位置。例如,若一个第一信道接入方式对应一个唯一的第一起始位置,则第二指示信息可以通过指示第一信道接入方式间接指示第一起始位置,若一个第一起始位置对应一个唯一的第一信道接入方式,则第二指示信息可以通过指示第一起始位置间接指示第一信道接入方式。
例如,第一信道接入方式和第一偏移值可以对应,通过该第二指示信息即可以指示第一信道接入方式和第一起始位置。
表2是第一信道接入方式和第一偏移值一一对应的一个示例,但本申请不限于一一对应,还可以是其他的对应关系。
表2
第一信道接入方式 第一偏移值
方式B 25us
方式C 16us
方式D 0us
在表2中,第一信道接入方式与第一偏移值是一一对应的,因此,第二指示信息可以仅包括第一信道接入方式的指示信息或第一偏移值的指示信息。基于该对应关系,UE可以确定相应的第一偏移值或第一信道接入方式。
例如,若第二指示信息指示方式B,则UE可知第一偏移值为25us,UE根据该第一偏移值可以确定第一起始位置。或者,若第二指示信息指示第一偏移值为25us,则UE可知第一信道接入方式是方式B。
再例如,第一信道接入方式和第一偏移值的集合可以对应。表3是第一信道接入方式和第一偏移值集合一一对应的一个示例,但本申请不限于一一对应,还可以是其他的对应关系。
表3
第一信道接入方式 第一偏移值集合
方式B 25us,25us+TA
方式C 16us,16us+TA
方式D 0us
在表3中,一个第一信道接入方式对应一个第一偏移值集合,而一个第一偏移值对应一个第一信道接入方式。因此,第二指示信息可以仅包括第一信道接入方式的指示信息,基于该对应关系,UE可以确定相应的第一偏移值集合,并进一步根据第三指示信息确定第一偏移值,此时,第三指示信息可以指示相应的第一偏移值集合中的 一个第一偏移值。或者,第二指示信息可以仅包括第一偏移值的指示信息,这样,基于该对应关系,UE可以确定相应的第一信道接入方式。
上述第一偏移值的取值示例可以使得该上行传输与上一传输之间的时间间隔不大于25us,但本申请不限于此。虽然NR_U将支持一个COT中包括两次或以上的上下行转换,但根据基站的实现,一个小区也可以支持一个COT中包括一次上下行转换。在一个包括一次上下行转换的COT中,相邻传输之间的时间间隔要求可以更宽松。因此,为了增加网络灵活性,第二偏移值也可以大于25us。例如,假设子载波间隔为15kHz,第一偏移值的取值范围是{16us,25us,34us,43us,52us,61us,1symbol}。
在一些实施例中,若第一时频资源处于包括至少两次上下行转换的信道占用时间内,并且终端设备采用第一信道接入方式在第一时频资源上发送上行信号,则所述第一偏移值应使得该上行传输与上一传输之间的时间间隔满足要求。例如,假设该时间间隔不应大于25us,则第一偏移值不大于25us。
例如,若基站指示在包括两次或以上的上下行转换的COT中,UE的上行传输采用class 1的信道接入方式,则需要保证第一偏移值不大于25us。
值得注意的是,以上第一信道接入方式与第一偏移值或第一偏移值集合的对应关系可以是预定义或预配置的,也可以由网络设备(例如基站)指示,并且以上仅示例性进行了说明,本申请不限于此。
在一些实施例中,终端设备可以采用第一信道接入方式在第一时频资源上从第一起始位置开始发送上行信号。终端设备也可以采用第二信道接入方式在第一时频资源上从第二起始位置开始发送上行信号。
在一些实施例中,终端设备在满足判断条件的情况下,采用第一信道接入方式在一个或多个时频资源上从第一起始位置开始发送上行信号;在不满足所述判断条件的情况下,采用第二信道接入方式在一个或多个时频资源上从第二起始位置开始发送上行信号,其中所述一个或多个时频资源的时域范围内的第二起始位置被预定义或预配置或被网络设备(例如通过高层信令)指示。
在一些实施例中,所述判断条件可以包括:在不晚于所述一个或多个时频资源的第一时间位置之前是否接收到所述物理层信令。其中,所述第一时间位置与所述一个或多个时频资源的第一个时频资源的起始位置之间的时间间隔不小于所述上行信号 的准备时间,或者,所述第一时间位置与所述第二起始位置之间的时间间隔不小于所述上行信号的准备时间。本申请实施例不限于此,还可以采用其他的判断条件。
图9是本申请实施例的上行信号的发送方法的另一示意图,以终端设备支持至少一种第一信道接入方式和至少一种第二信道接入方式为例进行说明。如图9所示,该方法包括:
901,终端设备接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
902,确定第一时间位置之前是否接收到物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;如果是则执行903,否则执行904;
903,采用第一信道接入方式在所述一个或多个时频资源上从第一起始位置开始发送上行信号;
904,采用第二信道接入方式在所述一个或多个时频资源上从第二起始位置开始发送所述上行信号,其中所述一个或多个时频资源的时域范围内的第二起始位置被预定义或预配置或被网络设备(例如通过高层信令和/或物理层信令)指示。
例如,可以在包括上述第一指示信息的RRC消息中包括用于指示第二起始位置的指示信息。再例如,针对半持续调度的情况,可以在包括上述第一指示信息的物理层信令中包括用于指示第二起始位置的指示信息。
值得注意的是,以上附图9仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图9的记载。
在一些实施例中,第二起始位置被预定义或预配置。
例如,UE从一个预定义的第二偏移值集合中选择一个第二偏移值,从而根据选择的第二偏移值可以确定第二起始位置。第二偏移值可以是相对于第一时频资源的第一个符号的起始位置的偏移值。
在一些实施例中,第二起始位置被网络设备通过第四指示信息指示;所述第四指示信息用于指示所述第二起始位置相对于所述一个或多个时频资源的第一个符号的起始位置的第二偏移值,或者用于指示所述第二偏移值的集合。
例如,该第四指示信息可以指示一个第二偏移值,UE根据该第二偏移值可以确定第二起始位置;或者,该第四指示信息可以指示一个第二偏移值集合,UE在该第二偏移值集合中选择一个第二偏移值,从而根据选择的第二偏移值可以确定第二起始位置。
以上对本申请的信道接入方式和起始位置进行了示意性说明,以下对于子载波间隔进行说明。
在一些实施例中,所述一个或多个时频资源的子载波间隔(SCS)为至少两种子载波间隔的其中之一,所述终端设备还根据所述一个或多个时频资源的子载波间隔确定所述第一起始位置和/或所述第二起始位置。
在一些实施例中,至少两种子载波间隔对应不同的第一起始位置,和/或,至少两种子载波间隔对应不同的第二起始位置。
例如,第一偏移值和第二偏移值可以表征为符号数和/或时间长度,例如,1symbol,1symbol+X us,Y us。NR_U中可能支持多于一种SCS,例如,15kHz,30kHz,60kHz,120kHz等,不同SCS的一个符号的时间长度不同。为了满足相同的时间间隔要求,不同的SCS所需的第一偏移值或第二偏移值可能不同。
在一些实施例中,至少两种子载波间隔对应不同的第一偏移值,和/或,至少两种子载波间隔对应不同的第二偏移值。
以第二偏移值为例。不同子载波间隔对应的第二偏移值取值范围可能不同,该取值范围可以是预定义的;例如例1和例2。
例1:
SCS 第二偏移值的取值范围
15kHz {16us,25us,34us,43us,52us,61us,1symbol}
30kHz {16us,25us,34us,43us,52us,61us,2symbols}
60kHz {16us,25us,34us,43us,52us,61us,4symbols}
例2:
SCS 第二偏移值的取值范围
15kHz {16us,25us,34us,43us,52us,61us,1symbol}
30kHz {16us,25us,1symbol}
再例如,若第二偏移值或第二偏移值集合是第四指示信息指示的,为了节省信令 开销,第四指示信息可以基于子载波间隔与第二偏移值取值范围的对应关系,来指示第二偏移值或第二偏移值集合。UE接收到第四指示信息后,可以根据第一时频资源的子载波间隔确定第四指示信息指示的第二偏移值或第二偏移值集合。例如例3和例4。
例3:
Figure PCTCN2019101205-appb-000001
根据例3,若UE接收到的第四指示信息中包括的信息比特为110,则若第一时频资源的子载波间隔为15kHz,则第二偏移值为1symbol,若第一时频资源的子载波间隔为30kHz,则第二偏移值为2symbol。
例4:
Figure PCTCN2019101205-appb-000002
根据例4,若UE接收到的第四指示信息中包括的信息比特为010,则若第一时频资源的子载波间隔为15kHz,则第二偏移值为34us,若第一时频资源的子载波间隔为30kHz,则第二偏移值为1symbol。
在一些实施例中,至少两种子载波间隔对应不同的第一偏移值的集合,和/或,至少两种子载波间隔对应不同的第二偏移值的集合。
以第二偏移值集合为例。例如例5和例6。
例5:
Figure PCTCN2019101205-appb-000003
根据例5,若UE接收到的第四指示信息中包括的信息比特为1110001,则若第一时频资源的子载波间隔为15kHz,则第二偏移值的集合为{16us,25us,34us,1symbol},若第一时频资源的子载波间隔为30kHz,则第二偏移值的集合为{16us,25us,34us,2symbol}。
例6:
Figure PCTCN2019101205-appb-000004
根据例6,若UE接收到的第四指示信息中包括的信息比特为1110001,则若第一时频资源的子载波间隔为15kHz,则第二偏移值的集合为{16us,25us,34us,1symbol},若第一时频资源的子载波间隔为30kHz,则第二偏移值的集合为{16us,25us,34us}。
在一些实施例中,参考子载波间隔对应于第一偏移值,或者,所述参考子载波间隔对应于所述第一偏移值的集合;和/或;所述参考子载波间隔对应于第二偏移值,或者,所述参考子载波间隔对应于所述第二偏移值的集合。
以第二偏移值为例。第四指示信息基于一个参考子载波间隔指示第一偏移值或第一偏移值集合,参考子载波间隔可以是预定义的或基站指示的。UE根据第一时频资源的子载波间隔确定第二偏移值或第二偏移值集合。例如例7和例8。
例7:
Figure PCTCN2019101205-appb-000005
根据例7,若UE接收到的第四指示信息中包括的信息比特为110,则若第一时频资源的子载波间隔为15kHz,第二偏移值为1symbol,若第一时频资源的子载波间隔为30kHz,第二偏移值为2symbol。
例8:
Figure PCTCN2019101205-appb-000006
根据例8,若UE接收到的第四指示信息中包括的信息比特为1110001,则若第一时频资源的子载波间隔为15kHz,第二偏移值的集合为{16us,25us,34us,1symbol},若第一时频资源的子载波间隔为30kHz,第二偏移值的集合为{16us,25us,34us,2symbol}。
以上对子载波间隔对起始位置的影响进行了示意性说明,以下对上行信号的生成进行说明。
在一些实施例中,终端设备根据第一时频资源的子载波间隔和/或所采用的信道接入方式生成上行信号。
例如,假设l表征一个子帧中的符号索引,
Figure PCTCN2019101205-appb-000007
Figure PCTCN2019101205-appb-000008
是一个子帧中的符号数,其中,
Figure PCTCN2019101205-appb-000009
为一个时隙中的符号数,
Figure PCTCN2019101205-appb-000010
为对应一个子载波间隔的一个子帧中的时隙数。例如,
表4
Figure PCTCN2019101205-appb-000011
Figure PCTCN2019101205-appb-000012
Figure PCTCN2019101205-appb-000013
分别是符号l对应的符号长度和CP长度,以NCP为例,
Figure PCTCN2019101205-appb-000014
Figure PCTCN2019101205-appb-000015
在一些实施例中,终端设备根据所述一个或多个时频资源的子载波间隔,确定在 所述一个或多个时频资源中能够发送所述上行信号的第一个符号以及所述第一个符号中能够发送所述上行信号的部分的起始位置。
例如,第一偏移值和第二偏移值可以表征为符号数和/或时间长度,若第一偏移值或第二偏移值表征为时间长度,UE可能需要根据第一时频资源的SCS确定第一起始位置或第二起始位置,或者说,确定第一时频资源中能够发送的第一个符号及该第一个符号中能够发送的长度(和/或该第一个符号中能够发送的部分的起始位置)。
假设符号l 0是第一时频资源的第一个符号,第一偏移值或第二偏移值表征为时间长度,表示为t offset,则第一时频资源中能够发送的第一个符号l start以及符号l start中能够发送的部分的起始位置(表征为相对于第一个符号l start的起始位置的偏移值
Figure PCTCN2019101205-appb-000016
)例如为
Figure PCTCN2019101205-appb-000017
Figure PCTCN2019101205-appb-000018
其中,
Figure PCTCN2019101205-appb-000019
表示第一时频资源的SCS对应的参考符号长度,例如,
Figure PCTCN2019101205-appb-000020
另一方面,若第一偏移值或第二偏移值是基于一个参考SCS指示的,而第一偏移值表征为符号数,或符号数和时间长度,UE需要根据参考子载波间隔和第一时频资源的子载波间隔确定l start和/或
Figure PCTCN2019101205-appb-000021
假设参考子载波间隔为μ 0,例如,第一偏移值或第二偏移值表征为符号数,N offset,则
Figure PCTCN2019101205-appb-000022
Figure PCTCN2019101205-appb-000023
再例如,第一偏移值或第二偏移值表征为符号数和时间长度N offset+t offset,则
Figure PCTCN2019101205-appb-000024
Figure PCTCN2019101205-appb-000025
根据
Figure PCTCN2019101205-appb-000026
符号l start对应的信号例如为
Figure PCTCN2019101205-appb-000027
或者,
Figure PCTCN2019101205-appb-000028
其中,采用第一偏移值还是第二偏移值如上面所述。
以下以CG PUSCH为例对资源映射进行说明。
在一些实施例中,终端设备根据如下信息的至少之一或任意组合映射第一上行信息:所述一个或多个时频资源的子载波间隔、所采用的信道接入方式、用于指示映射第一上行信息的符号位置的指示信息。所述终端设备可以将所述第一上行信息映射到所述时频资源中的一个或多个完整符号上,所述完整符号能够将全部时间用于发送所述上行信号。
例如,若第一上行传输是CG PUSCH,第一上行传输中可能需要承载UCI(例如CG-UCI),该UCI(第一上行信息)可以用于指示上行传输对应的HARQ(process)ID,NDI,RV等,对于基站正确接收该上行传输至关重要;本申请不限于此。再例如,第一上行信息还可以是其他UCI,例如承载如下至少之一:SR、HARQ-ACK、CSI等。
一方面,如上所述,为了保证第一上行传输与上一次传输之间有适当的时间间隔,第一时频资源中的前一部分符号可能不发送信号或不能完整地发送信号。另一方面,若要支持第一上行传输的下一传输能够继续共享同一COT发送,为了保证第一上行传输与下一传输之间有适当的时间间隔,第一时频资源中的后一部分符号也可能不发送或不能完整发送。为了使基站能够正确接收该UCI,需要避免将上述UCI映射在 第一时频资源中不能发送或不能完整发送的符号上。
图10是本申请实施例的第一时频资源的示例图。例如如图10所示,假设第一时频资源的第一个符号为0,最后一个符号为8,其中前N1=2个符号,后N2=2个符号不发送信号或不完整地发送信号,UCI可以映射在符号2到符号6上。
在一些实施例中,针对至少两种子载波间隔和/或至少两种信道接入方式,所述时频资源中映射所述第一上行信息的符号位置至少部分不同。
例如,由于不同的SCS对应的符号长度不同,不同的SCS对应的不发送信号或不能完整地发送信号的符号个数可能不同。因此,针对不同的SCS,可以用于映射UCI的符号位置可能不同。
在一些实施例中,所述时频资源中映射所述第一上行信息的符号位置被预定义或者预配置或者由网络设备指示。
例如,第一时频资源中可以用于映射UCI的符号位置可以是预定义的或预配置的或基站指示的,或者,第一时频资源中不能用于映射UCI的符号位置可以是预定义的或预配置的或基站指示的。
例如,对于不同的SCS,可以分别预定义或预配置可以用于映射UCI的符号位置。具体地,针对不同的SCS分别预定义不能用于映射UCI的符号数量,例如如下表5所示。
表5
SCS N1 N2
15kHz 1 1
30kHz 2 2
再例如,若不同SCS对应的第一/第二偏移值的取值范围是分别预定义或预配置的,则不能用于映射UCI的符号数量可以与预定义的第一/第二偏移值的取值范围相对应。例如,若针对子载波间隔15kHz,第一偏移值的取值范围预定义为{16us,25us,34us,43us,52us,61us,1symbol},若针对子载波间隔30kHz,第一偏移值的取值范围预定义为{16us,25us,34us,43us,52us,61us,2symbol},则对于15kHz,前1个符号不用于映射UCI,对于30kHz,前2个符号不用于映射UCI。
再例如,第一/第二偏移值的取值范围是基于一个参考子载波间隔预定义或预配置的,例如参考子载波间隔为15kHz,第一偏移值的取值范围预定义为{16us,25us, 34us,43us,52us,61us,1symbol},则对于15kHz,前1个符号不用于映射UCI,对于30kHz,前2个符号不用于映射UCI。
这样,UE可以根据第一时频资源的子载波间隔将UCI映射在第一时频资源中可以用于映射UCI的符号上。
对于基站直接指示的情况,对于不同的SCS,可以分别指示可以用于映射UCI的符号位置。例如,指示上述N1和/或N2的取值。或者,基于一个参考子载波间隔指示可以用于映射UCI的符号位置。
对于基站间接指示的情况,基站可以通过指示第一/第二偏移值集合间接指示可以用于映射UCI的符号位置。指示的第一/第二偏移值的集合与可以用于映射UCI的符号位置的关系与上述预定义的第一/第二偏移值的取值范围与可以用于映射UCI的符号位置的关系类似。
或者,基站可以通过指示第一/第二偏移值间接指示可以用于映射UCI的符号位置。例如,若指示的第一偏移值为43us,若第一时频资源的子载波间隔为15kHz,则前1个符号不用于映射UCI,若子载波间隔为30kHz,则前2个符号不用于映射UCI。(类似信号生成中的方法,可以确定第一时频资源中第一个完整发送的符号。
在一些实施例中,如前所述,class 1和class 2对相邻传输之间的时间间隔的要求不同,class 1和class 2也可以对应不同的可以用于映射UCI的符号位置。并且,class 1中不同的信道接入方式对相邻传输之间的时间间隔的要求不同也可能不同。因此,不同信道接入方式对应的可以用于映射UCI的符号位置可能不同。
例如,第一信道接入方式对应的可以用于映射UCI的符号位置,例如是根据预定义的第一偏移值取值范围或指示的第一偏移值或第一偏移值集合确定的。第二信道接入方式对应的可以用于映射UCI的符号位置,例如是根据预定义的第二偏移值取值范围或指示的第二偏移值或第二偏移值集合确定的。
这种情况下,UE可能需要根据第一上行传输采用的信道接入方式确定第一时频资源中可以用于映射UCI的符号位置。例如,若采用第二信道接入方式,则第一时频资源中可以用于映射UCI的符号位置是第二信道接入方式对应的可以用于映射UCI的符号位置。若接收到第二指示信息指示采用第一信道接入方式,则第一时频资源中可以用于映射UCI的符号位置是第一信道接入方式对应的可以用于映射UCI的符号位置。
再例如,由于UE需要接收第二指示信息,进而将UCI映射在适当的符号位置上。为了使UE有足够的时间准备PUSCH,用于发送相应第一指示信息的物理层信令应在第一时频资源的一定时间长度之前发送。
即对UE来说,UE在第一时间位置之前接收该物理层信令,该第一时间位置与第一时频资源的第一个符号的起始位置之间有一定的时间间隔,该一定的时间间隔应不小于UE所需的准备PUSCH的时间。若UE未接收到该物理层信令,则根据第二信道接入方式对应的可以用于映射UCI的符号位置映射UCI;若接收到该物理层信令,则根据第一信道接入方式对应的可以用于映射UCI的符号位置映射UCI。
在一些实施例中,所述上行信号中还承载第二上行信息,所述第二上行信息用于指示所述上行信号的结束位置。
在一些实施例中,针对至少两种子载波间隔,所述第二上行信息指示的所述上行信号的结束位置不同。
例如,为了使基站能够在第一上行传输之后采用COT sharing发送下行传输,该UCI还可能包括用于指示第一上行传输的结束位置的指示信息。为了节省信令开销,相同的指示信息针对不同的SCS指示的结束位置可以不同。例如如下表6所示,
表6
Figure PCTCN2019101205-appb-000029
相应地,基站接收到该UCI后,需要根据第一时频资源的子载波间隔确定第一上行传输的结束位置。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,通过物理层信令指示半静态配置或半持续调度的一个或多个时频资源的时域范围内的第一起始位置,使用该第一起始位置发送上行信号,能够支持满足NR-U要求的基于CG的上行信号的发送和接收,或其他在半静态配置的或半持续调度的时频资源上的上行信号的发送和接收。
第二方面的实施例
本申请实施例提供一种上行信号的发送方法,从终端设备侧进行说明。本申请实施例可以与第一方面的实施例结合起来,也可以单独地进行实施,与第一方面的实施例相同的内容不再赘述。
图11是本申请实施例的上行信号的发送方法的一示意图,如图11所示,该方法包括:
1101,终端设备生成上行信号,
1102,所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下,在半静态配置或半持续调度的时频资源上发送所述上行信号,所述时频资源包括被预定义或半静态配置为灵活的至少一个符号。
值得注意的是,以上附图11仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图11的记载。
相比LTE,NR支持更为灵活的上下行配置。上下行配置可能是半静态配置的和/或动态配置的。其中,动态配置是通过DCI format 2-0指示的。在NR中,UE需要根据上下行配置判断是否可以在一个半静态配置的或半持续调度的时频资源发送上行传输。
例如,若基站配置了UE监听PDCCH以接收DCI format 2_0,针对一个至少包括一个符号被半静态配置为Flexible的半静态配置或半静态调度的时频资源,若UE没有接收到DCI format 2_0指示该符号为上行,则UE不能在该时频资源发送上行传输。这主要是为了避免对其他设备的干扰。
UE没有接收到DCI format 2_0指示该符号为上行的情况可以分为2种:没有接收到相应的DCI format 2_0;接收到相应的DCI format 2_0,但没有指示该符号为上 行,例如指示该符号为D/F,或者没有指示该符号的配置。
图12是NR的上下行配置的一示例图,如图12所示,例如通过小区通用上下行配置信息(tdd-UL-DL-ConfigurationCommon)和/或设备专用上下行配置信息(tdd-UL-DL-ConfigurationDedicated),资源可以被配置为上行(UL)、下行(DL)或灵活(F),再通过动态信令(DCI format 2_0),灵活(F)可以进一步被配置为上行(UL)或下行(DL)。
如图12所示,前面5个时间单元(被半静态配置为DDFFF)没有收到相应的动态信令(DCI format 2_0)(图12中使用
Figure PCTCN2019101205-appb-000030
表示),则被高层信令配置的上行传输不能在F上发送。后面5个时间单元(被半静态配置为FFFUU)收到了相应的动态信令(DCI format 2_0)(图12中使用□表示),并被进一步配置为DDUUU,则被高层信令配置的上行传输才能在U上发送。
在非授权频段,灵活的上下行配置可以使基站和UE有更多的信道接入机会,因此基站可能仅采用动态配置的方式,或者半静态配置较多的Flexible的符号,这就导致全部或大部分半静态配置或半持续调度的时频资源包括Flexible的符号。
然而,基站可能因为信道接入失败不能发送承载DCI format 2_0的PDCCH,UE也就不能接收到DCI format 2_0,根据NR中的方案,UE将不能发送上述上行传输。也就是说,UE是否能够发送不基于动态调度的上行传输仍然受限于基站的动态指示,造成上行传输的效率下降且时延可能增加。
在本申请实施例中,例如,考虑到信道检测可以在一定程度上避免对其他设备的干扰,为了提高上行传输的效率并降低时延。可以允许UE在没有接收到相应的用于指示上下行配置的动态指示信息(例如可以是DCI format 2_0,也可以是新定义的另一DCI format)的情况下,在包括半静态配置为Flexible的符号的半静态配置或半持续调度的时频资源发送上行传输。
图13是本申请实施例的上下行配置的一示例图,如图13所示,例如在没有接收到相应的DCI format 2_0的情况下(图13中使用
Figure PCTCN2019101205-appb-000031
表示),在被预定义或半静态配置为灵活(F)的时间单元上,UE可以发送上行信号。
值得注意的是,图12和13仅示意性进行了说明,图12或图13中UL、DL、F对应的时间单元可以是几个时隙,也可以是多个符号,或者其他的时间长度,其并不 严格对应于一个时隙。
此外,图12和13中的半静态配置信息例如tdd-UL-DL-ConfigurationCommon和/或设备专用上下行配置信息(tdd-UL-DL-ConfigurationDedicated,以及动态信令DCI format 2_0仅是本申请实施例的例子,但本申请不限于此,还可以是其他的半静态配置信息和/或动态信令,或者是新定义的半静态配置信息和/或动态信令。
在一些实施例中,是否允许所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下在被预定义或半静态配置为灵活的一个或多个符号上发送所述上行信号,被预定义或预配置或被网络设备指示(例如由高层信令配置)。
在一些实施例中,是否允许所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下在被预定义或半静态配置为灵活的一个或多个符号上发送所述上行信号,针对所述上行信号的类型被预定义或预配置或被网络设备指示(例如由高层信令配置)。
如果允许终端设备在被预定义或半静态配置为灵活的一个或多个符号上发送上行信号,假设第一时频资源包括半静态配置为Flexible的符号,在没有接收到DCI format 2_0的情况下,UE可以在第一时频资源发送第一上行传输。例如,采用第二信道接入方式在第一时频资源从第二起始位置开始发送上行传输。再例如,UE可以根据第一方面的实施例在第一时频资源进行上行传输。
或者,假设第一DCI至少包括第二指示信息,而第二DCI至少包括用于动态指示上下行配置的指示信息。若UE接收到第一DCI,未接收到第二DCI指示Flexible的符号为上行,UE可以根据第一方面的实施例在第一时频资源进行上行传输。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备能够在没有接收到相应的用于指示上下行配置的动态指示信息的情况下,在半静态配置或半持续调度的时频资源上发送上行信号,所述时频资源包括被预定义或半静态配置为灵活的至少一个符号,由此能够支持满足NR-U要求的基于CG的上行信号的发送和接收,或其他在半静态配置的或半持续调度的时频资源上的上行信号的发送和接收。
第三方面的实施例
本申请实施例提供一种上行信号的接收方法,从网络设备侧进行说明。本申请实施例对应于第一方面和/或第二方面的实施例,与第一方面和/或第二方面的实施例相同的内容不再赘述。
图14是本申请实施例的上行信号的接收方法的一示意图,如图14所示,该方法包括:
1401,网络设备发送第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
1402,所述网络设备发送物理层信令,所述物理层信令用于指示第一起始位置,所述第一起始位置在所述至少一个时频资源中的一个或多个时频资源的时域范围内;以及
1403,所述网络设备接收上行信号,所述上行信号在所述一个或多个时频资源上从所述第一起始位置开始被终端设备发送。
在一些实施例中,所述上行信号由所述终端设备采用第一信道接入方式在所述一个或多个时频资源上从所述第一起始位置开始发送。
在一些实施例中,所述第一信道接入方式和所述第一起始位置存在对应关系;所述对应关系被预定义或预配置或由网络设备指示。
在一些实施例中,所述物理层信令包括第二指示信息,所述第二指示信息用于指示所述第一信道接入方式和/或所述第一起始位置。
在一些实施例中,所述物理层信令包括第二指示信息,所述第二指示信息指示所述第一起始位置;并且由包含在所述物理层信令或者其他物理层信令中的第三指示信息指示所述第一信道接入方式。
在一些实施例中,所述第二指示信息指示所述第一起始位置相对于第二时间位置的第一偏移值。所述第二时间位置可以在所述一个或多个时域资源的时域范围内;例如,所述第二时间位置是所述一个或多个时域资源的第一个符号的起始位置,或者,所述第二时间位置是第二起始位置。
在一些实施例中,所述第一信道接入方式和所述第一偏移值对应,或者,所述上行信号的第一信道接入方式和所述第一偏移值的集合对应。
在一些实施例中,所述一个或多个时频资源的子载波间隔(SCS)为至少两种子 载波间隔的其中之一,所述第一起始位置还根据所述一个或多个时频资源的子载波间隔而确定。
在一些实施例中,所述上行信号中承载第一上行信息;所述第一上行信息被映射到所述时频资源中的一个或多个完整符号上,所述完整符号能够将全部时间用于发送所述上行信号。
在一些实施例中,所述上行信号中还承载第二上行信息,所述第二上行信息用于指示所述上行信号的结束位置;所述网络设备还根据所述第二上行信息确定所述上行信号的结束位置。
在一些实施例中,所述上行信号还由终端设备在所述至少一个时频资源中的一个或多个时频资源上,从所述一个或多个时频资源的时域范围内的第二起始位置开始发送;其中,所述第二起始位置被预定义或预配置或被网络设备指示。
在一些实施例中,第四指示信息用于指示所述第二起始位置相对于所述一个或多个时频资源的第一个符号的第二偏移值,或者指示所述第二偏移值的集合。
在一些实施例中,所述上行信号由终端设备在满足判断条件的情况下,采用第一信道接入方式和第一起始位置在所述至少一个时频资源中的一个或多个时频资源上发送;其中所述一个或多个时频资源的时域范围内的所述第一起始位置被物理层信令指示。
在一些实施例中,所述上行信号由所述终端设备在不满足所述判断条件的情况下,采用第二信道接入方式和第二起始位置在所述一个或多个时频资源上发送,其中所述一个或多个时频资源的时域范围内的所述第二起始位置被预定义或预配置或通过高层信令被指示。
在一些实施例中,所述上行信号由所述终端设备在半静态配置或半持续调度的时频资源中被配置为灵活的一个或多个符号上发送。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,通过物理层信令指示半静态配置或半持续调度的一个或多个时频资源的时域范围内的第一起始位置,使用该第一起始位置发送上行信号,能够支持满足NR-U要求的基于CG的上行信号的发送和接收,或其他在半静态配置的或半 持续调度的时频资源上的上行信号的发送和接收。
第四方面的实施例
本申请实施例提供一种上行信号的发送装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。本申请实施例与第一方面和/或第二方面的实施例相同的内容不再赘述。
图15是本申请实施例的上行信号的发送装置的一示意图,如图15所示,上行信号的发送装置1500包括:
信息接收单元1501,其接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
信令接收单元1502,其接收物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及
信号发送单元1503,其在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号。
在一些实施例中,信号发送单元1503采用第一信道接入方式在所述一个或多个时频资源上从所述第一起始位置开始发送所述上行信号。
在一些实施例中,信号发送单元1502在满足判断条件的情况下,采用第一信道接入方式和所述第一起始位置在所述一个或多个时频资源上发送所述上行信号;在不满足所述判断条件的情况下,采用第二信道接入方式和第二起始位置在所述一个或多个时频资源上发送所述上行信号,其中所述一个或多个时频资源的时域范围内的所述第二起始位置被预定义或预配置或被网络设备指示。
在一些实施例中,所述判断条件包括:在不晚于所述一个或多个时频资源的第一时间位置之前是否接收到所述物理层信令。
在一些实施例中,所述第一时间位置与所述一个或多个时频资源的第一个时频资源的起始位置之间的时间间隔不小于所述上行信号的准备时间,或者,所述第一时间位置与所述第二起始位置之间的时间间隔不小于所述上行信号的准备时间。
在一些实施例中,所述上行信号包括如下至少之一的信号或信道:物理上行共享信道(PUSCH),物理随机接入信道(PRACH),物理上行控制信道(PUCCH),探测参考信号(SRS)。
在一些实施例中,所述第一信道接入方式为用于信道共享的信道接入方式,所述第二信道接入方式为初始化占用信道的信道接入方式。
在一些实施例中,所述第一信道接入方式和/或所述第二信道接入方式属于终端设备支持的至少一种信道接入方式;所述终端设备支持的至少一种信道接入方式被预定义或预配置或被网络设备指示。
在一些实施例中,所述第一信道接入方式和所述第一起始位置存在对应关系;所述对应关系被预定义或预配置或由网络设备指示。
在一些实施例中,所述物理层信令包括第二指示信息;
所述第二指示信息用于指示所述第一信道接入方式和/或所述第一起始位置;或者,所述第二指示信息指示所述第一起始位置,并且由包含在所述物理层信令或者其他物理层信令中的第三指示信息指示所述第一信道接入方式。
在一些实施例中,所述第二指示信息指示所述第一起始位置相对于第二时间位置的第一偏移值。
在一些实施例中,所述第二时间位置在所述一个或多个时域资源的时域范围内。
在一些实施例中,所述第二时间位置是所述一个或多个时域资源的第一个符号的起始位置,或者,所述第二时间位置是所述第二起始位置。
在一些实施例中,所述第一信道接入方式和所述第一偏移值对应,或者,所述上行信号的第一信道接入方式和所述第一偏移值的集合对应。
在一些实施例中,所述第二起始位置被网络设备通过第四指示信息被指示,所述第四指示信息用于指示所述第二起始位置相对于所述一个或多个时频资源的第一个符号的起始位置的第二偏移值,或者用于指示所述第二偏移值的集合。
在一些实施例中,所述一个或多个时频资源的子载波间隔为至少两种子载波间隔的其中之一,信号发送单元1503还根据所述一个或多个时频资源的子载波间隔确定所述第一起始位置。
在一些实施例中,至少两种所述子载波间隔对应不同的第一起始位置,和/或,至少两种所述子载波间隔对应不同的第二起始位置。
在一些实施例中,如图15所示,上行信号的发送装置1500还包括:
信号生成单元1504,其根据所述一个或多个时频资源的子载波间隔和/或所采用的信道接入方式生成所述上行信号。
在一些实施例中,信号生成单元1504还用于根据所述一个或多个时频资源的子载波间隔,确定在所述一个或多个时频资源中能够发送所述上行信号的第一个符号以及所述第一个符号中能够发送所述上行信号的部分的起始位置。
在一些实施例中,如图15所示,上行信号的发送装置1500还包括:
信号映射单元1505,其根据所述一个或多个时频资源的子载波间隔和/或所采用的信道接入方式映射第一上行信息。
在一些实施例中,信号映射单元1505还用于将所述第一上行信息映射到所述一个或多个时频资源中的一个或多个完整符号上,所述完整符号能够将全部时间用于发送所述上行信号。
在一些实施例中,所述上行信号中还承载第二上行信息,所述第二上行信息用于指示所述上行信号的结束位置。
在一些实施例中,信号发送单元1503还用于在半静态配置或半持续调度的一个或多个时频资源中被配置为灵活的一个或多个符号上发送所述上行信号。
在一些实施例中,在没有接收到进行上下行配置的动态指示信息的情况下,信号发送单元1503还用于在通过小区通用上下行配置信息和/或设备专用上下行配置信息配置为灵活的一个或多个符号上发送所述上行信号。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。上行信号的发送装置1500还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图15中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,通过物理层信令指示半静态配置或半持续调度的一个或多个时频资源的时域范围内的第一起始位置,使用该第一起始位置发送上行信号,能够支持满足NR-U要求的基于CG的上行信号的发送和接收,或其他在半静态配置的或半 持续调度的时频资源上的上行信号的发送和接收。
第五方面的实施例
本申请实施例提供一种上行信号的接收装置。该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件。本申请实施例与第一方面至第三方面的实施例相同的内容不再赘述。
图16是本申请实施例的控制信息的指示装置的另一示意图,如图16所示,上行信号的接收装置1600包括:
信息发送单元1601,其发送第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
信令发送单元1602,其发送物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及
信号接收单元1603,其接收上行信号,所述上行信号在所述一个或多个时频资源上从所述第一起始位置开始被发送。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。上行信号的接收装置1600还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图16中仅示例性示出各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施例并不对此进行限制。
由上述实施例可知,通过物理层信令指示半静态配置或半持续调度的一个或多个时频资源的时域范围内的第一起始位置,使用该第一起始位置发送上行信号,能够支持满足NR-U要求的基于CG的上行信号的发送和接收,或其他在半静态配置的或半持续调度的时频资源上的上行信号的发送和接收。
第六方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一方面至第五方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100可以包括:
终端设备102,其接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;接收物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号;
网络设备101,其发送所述第一指示信息和所述物理层信令,以及接收所述上行信号。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图17是本申请实施例的网络设备的构成示意图。如图17所示,网络设备1700可以包括:处理器1710(例如中央处理器CPU)和存储器1720;存储器1720耦合到处理器1710。其中该存储器1720可存储各种数据;此外还存储信息处理的程序1730,并且在处理器1710的控制下执行该程序1730。
例如,处理器1710可以被配置为执行程序而实现如第三方面的实施例所述的上行信号的接收方法。例如处理器1710可以被配置为进行如下的控制:发送第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;发送物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及接收上行信号,所述上行信号在所述一个或多个时频资源上从所述第一起始位置开始被发送。
此外,如图17所示,网络设备1700还可以包括:收发机1740和天线1750等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1700也并不是必须要包括图17中所示的所有部件;此外,网络设备1700还可以包括图17中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图18是本申请实施例的终端设备的示意图。如图18所示,该终端设备1800可以包括处理器1810和存储器1820;存储器1820存储有数据和程序,并耦合到处理器1810。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1810可以被配置为执行程序而实现如第一方面和/或第二方面的实 施例所述的上行信号的发送方法。例如处理器1810可以被配置为进行如下的控制:接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;接收物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号。
如图18所示,该终端设备1800还可以包括:通信模块1830、输入单元1840、显示器1850、电源1860。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1800也并不是必须要包括图18中所示的所有部件,上述部件并不是必需的;此外,终端设备1800还可以包括图18中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一方面和/或第二方面的实施例所述的上行信号的发送方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一方面和/或第二方面的实施例所述的上行信号的发送方法。
本申请实施例还提供一种计算机程序,其中当在网络设备中执行所述程序时,所述程序使得所述网络设备执行第三方面的实施例所述的上行信号的接收方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络设备执行第三方面的实施例所述的上行信号的接收方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM 存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1、一种上行信号的发送方法,包括:
终端设备接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
所述终端设备接收物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及
所述终端设备在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号。
附记2、根据附记1所述的方法,其中,所述终端设备在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号,包括:
所述终端设备采用第一信道接入方式在所述一个或多个时频资源上从所述第一 起始位置开始发送所述上行信号。
附记3、根据附记1或2所述的方法,其中,所述终端设备在满足判断条件的情况下,采用第一信道接入方式在所述一个或多个时频资源上从所述第一起始位置开始发送所述上行信号;
在不满足所述判断条件的情况下,采用第二信道接入方式在所述一个或多个时频资源上从第二起始位置开始发送所述上行信号,其中所述一个或多个时频资源的时域范围内的所述第二起始位置被预定义或预配置或被网络设备指示。
附记4、根据附记3所述的方法,其中,所述判断条件包括如下至少之一:在不晚于所述一个或多个时频资源的第一时间位置之前是否接收到所述物理层信令。
附记5、根据附记4所述的方法,其中,所述第一时间位置与所述一个或多个时频资源的第一个时频资源的起始位置之间的时间间隔不小于所述上行信号的准备时间,或者,所述第一时间位置与所述第二起始位置之间的时间间隔不小于所述上行信号的准备时间。
附记6、根据附记1至5任一项所述的方法,其中,所述上行信号包括如下至少之一的信号或信道:物理上行共享信道(PUSCH),物理随机接入信道(PRACH),物理上行控制信道(PUCCH),探测参考信号(SRS)。
附记7、根据附记2至6任一项所述的方法,其中,所述第一信道接入方式为用于信道共享的信道接入方式。
附记8、根据附记7所述的方法,其中,所述第一信道接入方式为用于信道共享的至少一种信道接入方式的其中一种。
附记9、根据附记3至8任一项所述的方法,其中,所述第二信道接入方式为初始化占用信道的信道接入方式。
附记10、根据附记7至9任一项所述的方法,其中,所述第一信道接入方式和/或所述第二信道接入方式属于所述终端设备支持的至少一种信道接入方式。
附记11、根据附记10所述的方法,其中,所述终端设备支持的至少一种信道接入方式被预定义或预配置,和/或,被网络设备指示。
附记12、根据附记2至11任一项所述的方法,其中,所述物理层信令包括第二指示信息,所述第二指示信息用于指示所述第一信道接入方式和/或所述第一起始位置。
附记13、根据附记2至11任一项所述的方法,其中,所述物理层信令包括第二指示信息,所述第二指示信息用于指示所述第一起始位置;并且由包含在所述物理层信令或者其他物理层信令中的第三指示信息指示所述第一信道接入方式。
附记14、根据附记2至13任一项所述的方法,其中,所述第一信道接入方式和所述第一起始位置存在对应关系;所述对应关系被预定义或预配置或由网络设备指示。
附记15、根据附记10至13任一项所述的方法,其中,所述第二指示信息指示所述第一起始位置相对于第二时间位置的第一偏移值。
附记16、根据附记15所述的方法,其中,所述第二时间位置在所述一个或多个时域资源的时域范围内。
附记17、根据附记15或16所述的方法,其中,所述第二时间位置是所述一个或多个时域资源的第一个符号的起始位置,或者,所述第二时间位置是所述第二起始位置。
附记18、根据附记15至17任一项所述的方法,其中,所述第一信道接入方式和所述第一偏移值对应,或者,所述第一信道接入方式和所述第一偏移值的集合对应。
附记19、根据附记15至18任一项所述的方法,其中,若所述一个或多个时频资源处于包括至少两次上下行转换的信道占用时间内,并且所述终端设备采用所述第一信道接入方式在所述一个或多个时频资源上发送所述上行信号,所述第一偏移值不大于25us。
附记20、根据附记3至11任一项所述的方法,其中,所述第二起始位置被网络设备通过第四指示信息指示;
其中,所述第四指示信息用于指示所述第二起始位置相对于所述一个或多个时频资源的第一个符号的起始位置的第二偏移值,或者用于指示所述第二偏移值的集合。
附记21、根据附记1至20任一项所述的方法,其中,所述一个或多个时频资源的子载波间隔(SCS)为至少两种子载波间隔的其中之一,
所述终端设备还根据所述一个或多个时频资源的子载波间隔确定所述第一起始位置和/或第二起始位置。
附记22、根据附记21所述的方法,其中,至少两种所述子载波间隔对应不同的第一起始位置。
附记23、根据附记21所述的方法,其中,至少两种所述子载波间隔对应不同的 第二起始位置。
附记24、根据附记21所述的方法,其中,至少两种所述子载波间隔对应不同的第一偏移值,或者,至少两种所述子载波间隔对应不同的所述第一偏移值的集合。
附记25、根据附记21所述的方法,其中,至少两种所述子载波间隔对应不同的第二偏移值,或者,至少两种所述子载波间隔对应不同的所述第二偏移值的集合。
附记26、根据附记21所述的方法,其中,参考子载波间隔对应于第一偏移值,或者,所述参考子载波间隔对应于所述第一偏移值的集合。
附记27、根据附记21所述的方法,其中,所述参考子载波间隔对应于第二偏移值,或者,所述参考子载波间隔对应于所述第二偏移值的集合。
附记28、根据附记1至27任一项所述的方法,其中,所述方法还包括:
所述终端设备根据所述一个或多个时频资源的子载波间隔和/或所采用的信道接入方式生成所述上行信号。
附记29、根据附记28所述的方法,其中,所述终端设备根据所述一个或多个时频资源的子载波间隔确定在所述一个或多个时频资源中能够发送所述上行信号的第一个符号以及所述第一个符号中能够发送所述上行信号的部分的起始位置。
附记30、根据附记1至29任一项所述的方法,所述方法还包括:
所述终端设备根据如下至少之一或任意组合的信息映射第一上行信息:所述一个或多个时频资源的子载波间隔、所采用的信道接入方式、用于指示映射第一上行信息的符号位置的指示信息。
附记31、根据附记30所述的方法,其中,所述终端设备将所述第一上行信息映射到所述一个或多个时频资源中的一个或多个完整符号上,所述完整符号能够将全部时间用于发送所述上行信号。
附记32、根据权利要求30或31所述的方法,其中,针对至少两种子载波间隔和/或至少两种信道接入方式,所述一个或多个时频资源中映射所述第一上行信息的符号位置至少部分不同。
附记33、根据附记30至32任一项所述的方法,其中,所述一个或多个时频资源中映射所述第一上行信息的符号位置被预定义或者预配置或者由网络设备指示。
附记34、根据附记1至33任一项所述的方法,其中,所述上行信号中还承载第二上行信息,所述第二上行信息用于指示所述上行信号的结束位置。
附记35、根据附记34所述的方法,其中,针对至少两种子载波间隔,所述第二上行信息指示的所述上行信号的结束位置不同。
附记36、根据附记1至35任一项所述的方法,其中,所述一个或多个时频资源中包括被预定义或半静态配置为灵活的至少一个符号。
附记37、根据附记1至36任一项所述的方法,其中,所述终端设备能够在所述一个或多个时频资源中被预定义或半静态配置为灵活的一个或多个符号上发送所述上行信号。
附记38、根据附记36或37所述的方法,其中,所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下,在所述一个或多个时频资源发送所述上行信号。
附记39、根据附记36至38任一项所述的方法,其中,是否允许所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下在被配置为灵活的一个或多个符号上发送所述上行信号,被预定义或预配置或被网络设备指示。
附记40、根据附记36至38任一项所述的方法,其中,是否允许所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下在被配置为灵活的一个或多个符号上发送所述上行信号,针对所述上行信号的类型被预定义或预配置或被网络设备指示。
附记41、一种上行信号的发送方法,包括:
终端设备接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
所述终端设备在所述至少一个时频资源中的一个或多个时频资源上,从所述一个或多个时频资源的时域范围内的第二起始位置开始发送上行信号,
其中所述第二起始位置被预定义或预配置或被网络设备通过第四指示信息指示。
附记42、根据附记41所述的方法,其中,所述第四指示信息用于指示所述第二起始位置相对于所述一个或多个时频资源的第一个符号的起始位置的第二偏移值,或者指示所述第二偏移值的集合。
附记43、根据附记41或42所述的方法,其中,所述一个或多个时频资源的子载波间隔(SCS)为至少两种子载波间隔的其中之一,
所述终端设备还根据所述一个或多个时频资源的子载波间隔确定第一起始位置 和/或第二起始位置。
附记44、根据附记43所述的方法,其中,至少两种所述子载波间隔对应不同的第一起始位置。
附记45、根据附记43所述的方法,其中,至少两种所述子载波间隔对应不同的第二起始位置。
附记46、根据附记43所述的方法,其中,至少两种所述子载波间隔对应不同的第一偏移值,或者,至少两种所述子载波间隔对应不同的所述第一偏移值的集合。
附记47、根据附记43所述的方法,其中,至少两种所述子载波间隔对应不同的第二偏移值,或者,至少两种所述子载波间隔对应不同的所述第二偏移值的集合。
附记48、根据附记43所述的方法,其中,参考子载波间隔对应于第一偏移值,或者,所述参考子载波间隔对应于所述第一偏移值的集合。
附记49、根据附记43所述的方法,其中,所述参考子载波间隔对应于第二偏移值,或者,所述参考子载波间隔对应于所述第二偏移值的集合。
附记50、根据附记41至49任一项所述的方法,其中,所述方法还包括:
所述终端设备根据所述一个或多个时频资源的子载波间隔和/或所采用的信道接入方式生成所述上行信号。
附记51、根据附记50所述的方法,其中,所述终端设备根据所述一个或多个时频资源的子载波间隔确定在所述一个或多个时频资源中能够发送所述上行信号的第一个符号以及所述第一个符号中能够发送所述上行信号的部分的起始位置。
附记52、根据附记41至51任一项所述的方法,所述方法还包括:
所述终端设备根据如下至少之一或任意组合的信息映射第一上行信息:所述一个或多个时频资源的子载波间隔、所采用的信道接入方式映射第一上行信息、用于指示映射第一上行信息的符号位置的指示信息。
附记53、根据附记52所述的方法,其中,所述终端设备将所述第一上行信息映射到所述一个或多个时频资源中的一个或多个完整符号上,所述完整符号能够将全部时间用于发送所述上行信号。
附记54、根据附记52或53所述的方法,其中,针对至少两种子载波间隔和/或至少两种信道接入方式,所述一个或多个时频资源中映射所述第一上行信息的符号位置至少部分不同。
附记55、根据附记52至54任一项所述的方法,其中,所述一个或多个时频资源中映射所述第一上行信息的符号位置被预定义或者预配置或者由网络设备指示。
附记56、根据附记41至55任一项所述的方法,其中,所述上行信号中还承载第二上行信息,所述第二上行信息用于指示所述上行信号的结束位置。
附记57、根据附记56所述的方法,其中,针对至少两种子载波间隔,所述第二上行信息指示的所述上行信号的结束位置不同。
附记58、根据附记41至57任一项所述的方法,其中,所述一个或多个时频资源中包括被预定义或半静态配置为灵活的至少一个符号。
附记59、根据附记41至58任一项所述的方法,其中,所述终端设备能够在所述一个或多个时频资源中被预定义或半静态配置为灵活的一个或多个符号上发送所述上行信号。
附记60、根据附记58或59所述的方法,其中,所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下,在所述一个或多个时频资源发送所述上行信号。
附记61、根据附记58至60任一项所述的方法,其中,是否允许所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下在被配置为灵活的一个或多个符号上发送所述上行信号,被预定义或预配置或被网络设备配置。
附记62、根据附记58至60任一项所述的方法,其中,是否允许所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下在被配置为灵活的一个或多个符号上发送所述上行信号,针对所述上行信号的类型被预定义或预配置或被网络设备配置。
附记63、一种上行信号的发送方法,包括:
终端设备在满足判断条件的情况下,采用第一信道接入方式在半静态配置或半持续调度的一个或多个时频资源上从第一起始位置开始发送上行信号;其中所述一个或多个时频资源的时域范围内的所述第一起始位置被物理层信令指示;
所述终端设备在不满足所述判断条件的情况下,采用第二信道接入方式在所述半静态配置或半持续调度的一个或多个时频资源上从第二起始位置开始发送所述上行信号,其中所述一个或多个时频资源的时域范围内的所述第二起始位置被预定义或预配置或被网络设备指示。
附记64、根据附记62所述的方法,其中,所述判断条件包括如下至少之一:在不晚于所述一个或多个时频资源的第一时间位置之前是否接收到所述物理层信令。
附记65、一种上行信号的发送方法,包括:
终端设备生成上行信号;
所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下,在包括被预定义或半静态配置为灵活的至少一个符号的半静态配置或半持续调度的时频资源上发送所述上行信号。
附记66、根据附记65所述的方法,其中,是否允许所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下在被配置为灵活的一个或多个符号上发送所述上行信号,被预定义或预配置或被网络设备配置。
附记67、根据附记65所述的方法,其中,是否允许所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下在被配置为灵活的一个或多个符号上发送所述上行信号,针对所述上行信号的类型被预定义或预配置或被网络设备配置。
附记68、一种上行信号的接收方法,包括:
网络设备发送第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
所述网络设备发送物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及
所述网络设备接收上行信号,所述上行信号在所述一个或多个时频资源上从所述第一起始位置开始被终端设备发送。
附记69、根据附记68所述的方法,其中,所述上行信号中承载第一上行信息;所述第一上行信息被映射到所述时频资源中的一个或多个完整符号上,所述完整符号能够将全部时间用于发送所述上行信号。
附记70、根据附记68所述的方法,其中,所述上行信号中还承载第二上行信息;所述第二上行信息用于指示所述上行信号的结束位置;
所述网络设备还根据所述第二上行信息确定所述上行信号的结束位置。
附记71、一种上行信号的接收方法,包括:
网络设备发送第一指示信息,所述第一指示信息用于指示半静态配置或半持续调 度的至少一个时频资源;以及
所述网络设备接收上行信号,所述上行信号由终端设备在所述至少一个时频资源中的一个或多个时频资源上,从所述一个或多个时频资源的时域范围内的第二起始位置开始发送;
其中,所述第二起始位置被预定义或预配置或被网络设备通过第四指示信息指示。
附记72、根据附记71所述的方法,其中,所述第四指示信息指示所述第二起始位置相对于所述一个或多个时频资源的第一个符号的起始位置的第二偏移值,或者指示所述第二偏移值的集合。
附记73、一种上行信号的接收方法,包括:
网络设备发送第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;以及
所述网络设备接收上行信号;
其中,所述上行信号由终端设备在满足判断条件的情况下,采用第一信道接入方式和第一起始位置在所述至少一个时频资源中的一个或多个时频资源上发送;其中所述一个或多个时频资源的时域范围内的所述第一起始位置被物理层信令指示;
或者,所述上行信号由所述终端设备在不满足所述判断条件的情况下,采用第二信道接入方式和第二起始位置在所述一个或多个时频资源上发送,其中所述一个或多个时频资源的时域范围内的所述第二起始位置被预定义或预配置或被网络设备指示。
附记74、根据附记73所述的方法,其中,所述判断条件包括如下至少之一:在不晚于所述一个或多个时频资源的第一时间位置之前是否接收到所述物理层信令。
附记75、一种上行信号的接收方法,包括:
网络设备接收终端设备发送的上行信号,
其中,所述上行信号由所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下,在包括被预定义或半静态配置为灵活的至少一个符号的半静态配置或半持续调度的时频资源上发送。
附记76、一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至67任一项所述的上行信号的发送方法。
附记77、一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序, 所述处理器被配置为执行所述计算机程序而实现如附记68至75任一项所述的上行信号的接收方法。
附记78、一种通信系统,包括:
终端设备,其接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;接收物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号;
网络设备,其发送所述第一指示信息和所述物理层信令,以及接收所述上行信号

Claims (20)

  1. 一种上行信号的发送装置,包括:
    信息接收单元,其接收第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
    信令接收单元,其接收物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及
    信号发送单元,其在所述一个或多个时频资源上从所述第一起始位置开始发送上行信号。
  2. 根据权利要求1所述的装置,其中,所述信号发送单元采用第一信道接入方式在所述一个或多个时频资源上从所述第一起始位置开始发送所述上行信号。
  3. 根据权利要求2所述的装置,其中,所述第一信道接入方式和所述第一起始位置存在对应关系;所述对应关系被预定义或预配置或由网络设备指示。
  4. 根据权利要求1所述的装置,其中,第二指示信息指示所述第一起始位置相对于第二时间位置的第一偏移值。
  5. 根据权利要求4所述的装置,其中,所述第二时间位置在所述一个或多个时域资源的时域范围内。
  6. 根据权利要求5所述的装置,其中,所述第二时间位置是所述一个或多个时域资源的第一个符号的起始位置,或者,所述第二时间位置是所述第二起始位置。
  7. 根据权利要求1所述的装置,其中,所述信号发送单元在满足判断条件的情况下,采用第一信道接入方式在所述一个或多个时频资源上从所述第一起始位置开始发送所述上行信号;
    在不满足所述判断条件的情况下,采用第二信道接入方式在所述一个或多个时频资源上从第二起始位置开始发送所述上行信号,其中所述一个或多个时频资源的时域范围内的所述第二起始位置被预定义或预配置或被网络设备指示。
  8. 根据权利要求7所述的装置,其中,所述判断条件包括如下至少之一:在不晚于所述一个或多个时频资源的第一时间位置之前是否接收到所述物理层信令。
  9. 根据权利要求8所述的装置,其中,所述第一时间位置与所述一个或多个时频资源的第一个时频资源的起始位置之间的时间间隔不小于所述上行信号的准备时 间,或者,所述第一时间位置与所述第二起始位置之间的时间间隔不小于所述上行信号的准备时间。
  10. 根据权利要求2所述的装置,其中,所述上行信号包括如下至少之一的信号或信道:物理上行共享信道,物理随机接入信道,物理上行控制信道,探测参考信号,解调参考信号。
  11. 根据权利要求2所述的装置,其中,所述第一信道接入方式为用于信道共享的信道接入方式。
  12. 根据权利要求11所述的装置,其中,所述第一信道接入方式为用于信道共享的至少一种信道接入方式的其中一种。
  13. 根据权利要求7所述的装置,其中,所述第二信道接入方式为初始化占用信道的信道接入方式。
  14. 根据权利要求7所述的装置,其中,所述第一信道接入方式和/或所述第二信道接入方式属于终端设备支持的至少一种信道接入方式。
  15. 根据权利要求14所述的装置,其中,所述终端设备支持的至少一种信道接入方式被预定义或预配置或被网络设备指示。
  16. 根据权利要求2所述的装置,其中,所述物理层信令包括第二指示信息,所述第二指示信息用于指示所述第一信道接入方式和/或所述第一起始位置。
  17. 根据权利要求2所述的装置,其中,所述物理层信令包括第二指示信息,所述第二指示信息用于指示所述第一起始位置;并且由包含在所述物理层信令或者其他物理层信令中的第三指示信息指示所述第一信道接入方式。
  18. 根据权利要求7所述的装置,其中,所述第二起始位置被网络设备通过第四指示信息指示;
    其中,所述第四指示信息用于指示所述第二起始位置相对于所述一个或多个时频资源的第一个符号的起始位置的第二偏移值,或者用于指示所述第二偏移值的集合。
  19. 一种上行信号的接收装置,包括:
    信息发送单元,其发送第一指示信息,所述第一指示信息用于指示半静态配置或半持续调度的至少一个时频资源;
    信令发送单元,其发送物理层信令,所述物理层信令用于指示在所述至少一个时频资源中的一个或多个时频资源的时域范围内的第一起始位置;以及
    信号接收单元,其接收上行信号,其中所述上行信号在所述一个或多个时频资源上从所述第一起始位置开始被发送。
  20. 一种上行信号的发送方法,包括:
    终端设备生成上行信号;
    所述终端设备在没有接收到相应的用于指示上下行配置的动态指示信息的情况下,在包括被预定义或半静态配置为灵活的至少一个符号的半静态配置或半持续调度的时频资源上发送所述上行信号。
PCT/CN2019/101205 2019-08-16 2019-08-16 上行信号的发送和接收方法以及装置 WO2021031029A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227004242A KR102690795B1 (ko) 2019-08-16 2019-08-16 업링크 신호를 송신하기 위한 방법 및 장치와, 업링크 신호를 수신하기 위한 방법 및 장치
PCT/CN2019/101205 WO2021031029A1 (zh) 2019-08-16 2019-08-16 上行信号的发送和接收方法以及装置
EP19942597.6A EP4016900A4 (en) 2019-08-16 2019-08-16 UPLINK SIGNAL SENDING METHOD AND APPARATUS, AND UPLINK SIGNAL RECEIVING METHOD AND APPARATUS
JP2022507755A JP7416206B2 (ja) 2019-08-16 2019-08-16 上りリンク信号の送受信方法及び装置
CN201980098306.6A CN114144986B (zh) 2019-08-16 2019-08-16 上行信号的发送和接收方法以及装置
US17/573,690 US20220132540A1 (en) 2019-08-16 2022-01-12 Methods and apparatuses for transmitting and receiving uplink signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101205 WO2021031029A1 (zh) 2019-08-16 2019-08-16 上行信号的发送和接收方法以及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/573,690 Continuation US20220132540A1 (en) 2019-08-16 2022-01-12 Methods and apparatuses for transmitting and receiving uplink signal

Publications (1)

Publication Number Publication Date
WO2021031029A1 true WO2021031029A1 (zh) 2021-02-25

Family

ID=74660443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101205 WO2021031029A1 (zh) 2019-08-16 2019-08-16 上行信号的发送和接收方法以及装置

Country Status (6)

Country Link
US (1) US20220132540A1 (zh)
EP (1) EP4016900A4 (zh)
JP (1) JP7416206B2 (zh)
KR (1) KR102690795B1 (zh)
CN (1) CN114144986B (zh)
WO (1) WO2021031029A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851822A (zh) * 2017-02-04 2017-06-13 北京佰才邦技术有限公司 传输方法和用户终端
CN108289333A (zh) * 2017-01-10 2018-07-17 北京佰才邦技术有限公司 一种上行传输起始位置的配置方法、接入网实体及ue
WO2018175596A1 (en) * 2017-03-23 2018-09-27 Sharp Laboratories Of America, Inc. Downlink control channel for uplink ultra-reliable and low-latency communications
WO2018173004A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget L M Ericsson (Publ) Multiple starting and ending positions for scheduled downlink transmission on unlicensed spectrum
CN109845374A (zh) * 2016-10-17 2019-06-04 高通股份有限公司 半自主传输

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716020B2 (en) * 2016-02-23 2020-07-14 Samsung Electronics Co., Ltd. Method and apparatus for measurement reference signal
CN109314977B (zh) * 2016-04-07 2022-07-22 诺基亚技术有限公司 用于v2x通信的半持续资源分配增强
US11219055B2 (en) * 2016-12-23 2022-01-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and apparatus
EP3503651A4 (en) * 2017-10-27 2020-04-01 LG Electronics Inc. -1- METHOD FOR OPERATING A DEVICE IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR
US10904909B2 (en) * 2018-01-23 2021-01-26 Huawei Technologies Co., Ltd. System and method for time domain grant-free PUSCH resource allocation
WO2019214405A1 (en) * 2018-05-05 2019-11-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for resource scheduling and network node
US11411690B2 (en) * 2018-11-21 2022-08-09 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel based on a plurality of physical uplink shared channels in communication system and apparatus for the same
WO2020166878A1 (ko) * 2019-02-15 2020-08-20 한국전자통신연구원 비면허 대역 통신을 위한 신호 전송 및 수신 방법, 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109845374A (zh) * 2016-10-17 2019-06-04 高通股份有限公司 半自主传输
CN108289333A (zh) * 2017-01-10 2018-07-17 北京佰才邦技术有限公司 一种上行传输起始位置的配置方法、接入网实体及ue
CN106851822A (zh) * 2017-02-04 2017-06-13 北京佰才邦技术有限公司 传输方法和用户终端
WO2018175596A1 (en) * 2017-03-23 2018-09-27 Sharp Laboratories Of America, Inc. Downlink control channel for uplink ultra-reliable and low-latency communications
WO2018173004A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget L M Ericsson (Publ) Multiple starting and ending positions for scheduled downlink transmission on unlicensed spectrum

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4016900A4 *
VIVO: "PUSCH enhancements for URLLC", 3GPP DRAFT; R1-1906148 PUSCH ENHANCEMENTS FOR URLLC, vol. RAN WG1, 1 May 2019 (2019-05-01), Reno, USA, pages 1 - 9, XP051708189 *

Also Published As

Publication number Publication date
EP4016900A1 (en) 2022-06-22
KR20220031090A (ko) 2022-03-11
JP7416206B2 (ja) 2024-01-17
EP4016900A4 (en) 2022-08-24
CN114144986B (zh) 2024-06-14
KR102690795B1 (ko) 2024-08-05
CN114144986A (zh) 2022-03-04
JP2022544178A (ja) 2022-10-17
US20220132540A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
US11832234B2 (en) Scheduling in license assisted access
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2020143057A1 (zh) 信道接入方案的确定方法及装置、终端设备、网络设备
US11134523B2 (en) Uplink transmission control method and apparatus and communication system
WO2017166276A1 (zh) 发送上行信息的方法和装置及接收上行信息的方法和装置
JP2019510386A (ja) サービス伝送方法及び装置
WO2021026917A1 (zh) 信号发送方法、装置和系统
WO2016070552A1 (zh) 功能指示的方法、装置及系统
TW202008828A (zh) 資源配置的方法和終端設備
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
WO2020164156A1 (zh) 传输带宽的确定方法、设备及存储介质
WO2021109461A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020143060A1 (zh) 数据传输方法及装置
WO2017024565A1 (zh) 数据传输方法、装置及系统
WO2020142925A1 (zh) 上行控制信息的发送和接收方法以及装置
WO2020143064A1 (zh) 数据传输方法及装置
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
WO2022077410A1 (zh) 信息反馈方法以及装置
WO2021062824A1 (zh) 一种信息处理方法和通信设备
WO2020142987A1 (zh) 边链路信息的发送和接收方法以及装置
WO2020029299A1 (zh) 数据中断指示方法及其装置、通信系统
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
WO2021031029A1 (zh) 上行信号的发送和接收方法以及装置
WO2023010494A1 (zh) 数据调度方法、数据发送方法以及装置
WO2023150987A1 (zh) 数据发送方法、数据接收方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507755

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227004242

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019942597

Country of ref document: EP

Effective date: 20220316