WO2021030968A1 - 通信方法、装置、系统和可读存储介质 - Google Patents

通信方法、装置、系统和可读存储介质 Download PDF

Info

Publication number
WO2021030968A1
WO2021030968A1 PCT/CN2019/101112 CN2019101112W WO2021030968A1 WO 2021030968 A1 WO2021030968 A1 WO 2021030968A1 CN 2019101112 W CN2019101112 W CN 2019101112W WO 2021030968 A1 WO2021030968 A1 WO 2021030968A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resource
agc
information
minimum bandwidth
bandwidth required
Prior art date
Application number
PCT/CN2019/101112
Other languages
English (en)
French (fr)
Inventor
向铮铮
张锦芳
苏宏家
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980099458.8A priority Critical patent/CN114223166B/zh
Priority to PCT/CN2019/101112 priority patent/WO2021030968A1/zh
Publication of WO2021030968A1 publication Critical patent/WO2021030968A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application relates to the field of wireless communication, and more specifically, to communication methods, devices, systems, and readable storage media.
  • V2X vehicle-to-everything
  • Uu interface The first is the communication link or air interface between the terminal equipment and the access network equipment or base station, which is generally called Uu interface.
  • the data link transmitted on the Uu port is called uplink (abbreviated as uplink) and downlink (abbreviated as downlink) (uplink and donwlink), and the Uu port defines the communication protocol between the terminal equipment and the base station.
  • uplink abbreviated as uplink
  • downlink uplink and donwlink
  • PC5 proximity communication
  • mode-1 two modes of terminal equipment
  • mode-2 two modes of terminal equipment
  • resource scheduling is performed by the base station during communication
  • terminal equipment in mode-2 resource scheduling is performed by terminal equipment during communication.
  • the base station pre-configures a resource pool or a standard predefined resource pool, and the terminal device selects resources from the resource pool when communicating.
  • V2X communication also considers supporting multiple sub-carrier intervals to support different types of communication scenarios. For example, in a high-speed scene, in order to combat Doppler frequency shift, a relatively large sub-carrier interval (for example, 60kHz) can be used; and for general broadcast scenarios, a lower sub-carrier interval (for example, 15kHz) can be used to tolerate greater The multipath delay. How to ensure the effective execution of automatic gain control (AGC) in the case of supporting multiple sub-carrier intervals, that is, variable sub-carrier intervals, is an urgent problem to be solved.
  • AGC automatic gain control
  • the present application provides a communication method, communication device and system, in order to ensure the effective execution of AGC under the condition of supporting multiple subcarrier intervals.
  • a communication method including:
  • Receive scheduling information from a network device includes frequency resource information, the frequency resource information indicates a frequency resource used to carry sideline data, the frequency resource information is in units of sub-channels and the frequency resource information is The indicated scheduled bandwidth is not less than the minimum bandwidth required by the first automatic gain control AGC, the minimum bandwidth required by the first AGC is the minimum bandwidth required by the receiving end of the side line data to perform AGC, the first The minimum bandwidth required by the AGC has a first correspondence with the first subcarrier interval corresponding to the side row data;
  • a terminal device or a device for a terminal device receives scheduling information from a network device, and sends sideline data to another terminal device according to the scheduling information.
  • the terminal equipment or the apparatus for the terminal equipment further sends another scheduling information to the above-mentioned another terminal equipment according to the scheduling information.
  • the first correspondence is one of multiple correspondences between the minimum bandwidth required by at least one AGC and multiple subcarrier intervals, and the minimum bandwidth required by the at least one AGC includes The minimum bandwidth required by the first AGC, and the subcarrier interval includes the first subcarrier interval.
  • a possible implementation method also includes:
  • the minimum bandwidth required by the first AGC is predefined.
  • the terminal device or the apparatus for the terminal device receives the first information from the network device.
  • the frequency resource information includes information about actually scheduled frequency resources, and the actually scheduled frequency resource information is the number N of subchannels included in the actually scheduled frequency resource, where N is Positive integer.
  • the frequency resource information indicates the difference between the information about the actually scheduled frequency resource and the number of subchannels occupied by the minimum bandwidth required by the first AGC, and the information about the actually scheduled frequency resource is The number N of subchannels included in the actually scheduled frequency resource, where N is a positive integer.
  • the frequency resource information satisfies a function of the difference between the information of the actual scheduled frequency resource and the number of subchannels occupied by the minimum bandwidth required by the first AGC.
  • the function is the actual scheduled frequency resource
  • the information of the actually scheduled frequency resource is the number N of subchannels included in the actually scheduled frequency resource, and the N is a positive integer.
  • sending side data according to the frequency resource information includes:
  • the side line data is sent according to the information of the actual scheduled frequency resource.
  • the bandwidth of the sub-channel is not greater than the minimum bandwidth required by the first AGC.
  • the minimum bandwidth required by the first AGC includes M resource blocks RB, and M is a positive integer.
  • the time-domain scheduling unit of the side row data is a first time unit
  • the first symbol of the first time unit is used by the receiving end to implement AGC
  • the first time unit includes at least A symbol.
  • the first time unit is a time slot.
  • one slot includes 14 symbols.
  • a communication method including:
  • the scheduling information includes frequency resource information, the frequency resource information indicates a frequency resource used to carry sideline data, the frequency resource information is in units of subchannels and is indicated by the frequency resource information
  • the scheduled bandwidth of is not less than the minimum bandwidth required by the first automatic gain control AGC, the minimum bandwidth required by the first AGC is the minimum bandwidth required by the receiving end of the side line data to perform AGC, the first AGC
  • the required minimum bandwidth has a first corresponding relationship with the first subcarrier interval corresponding to the side line data;
  • the network device determines the scheduling information of the sideline communication between the terminal device A and the terminal device B (also referred to as the scheduling information of the terminal device B), and sends the scheduling information to the terminal device A.
  • the scheduling information may be carried in the physical downlink control channel PDCCH or the physical downlink shared channel PDSCH.
  • the terminal device A may send another scheduling information to the terminal device B according to the scheduling information, for example, the other scheduling information and the sideline data are carried through the sideline control channel PSCCH.
  • the terminal device C determines the scheduling information of the sideline communication between the terminal device A and the terminal device B (also referred to as the scheduling information of the terminal device B), and sends the scheduling information to the terminal device A.
  • the scheduling information can be carried in the side control channel PSCCH.
  • the terminal device A may send another scheduling information to the terminal device B according to the scheduling information, for example, the other scheduling information and the sideline data are carried through the sideline control channel PSCCH.
  • the terminal device A determines the scheduling information of the sideline communication between the terminal device A and the terminal device B (also referred to as the scheduling information of the terminal device B), and sends the scheduling information to the terminal device B.
  • the scheduling information can be carried in the side control channel PSCCH.
  • Terminal device A can also send sideline data to terminal device B.
  • the execution subject of the second aspect may be network equipment or a device for network equipment, terminal equipment C or a device for terminal equipment C, or terminal equipment A or a device for terminal equipment A.
  • the first correspondence is one of multiple correspondences between the minimum bandwidth required by at least one AGC and multiple subcarrier intervals, and the minimum bandwidth required by the at least one AGC The minimum bandwidth required by the first AGC is included, and the subcarrier interval includes the first subcarrier interval.
  • it also includes:
  • the minimum bandwidth required by the first AGC is predefined.
  • the network device sends the first information to the terminal device A, or the terminal device C sends the first information to the terminal device A, or the terminal device A sends the first information to the terminal device B.
  • the frequency resource information includes information about actually scheduled frequency resources, and the actually scheduled frequency resource information is the number N of subchannels included in the actually scheduled frequency resources, and the N Is a positive integer.
  • the frequency resource information indicates the difference between the information of the actually scheduled frequency resource and the number of subchannels occupied by the minimum bandwidth required by the first AGC, and the information about the actual scheduled frequency resource Is the number N of subchannels included in the actually scheduled frequency resource, where N is a positive integer.
  • the frequency resource information satisfies a function of the difference between the information of the actual scheduling frequency resource and the number of subchannels occupied by the minimum bandwidth required by the first AGC.
  • the function may be the actual scheduling frequency
  • the information of the actually scheduled frequency resource is the number N of subchannels included in the actually scheduled frequency resource, where N is a positive integer.
  • it also includes:
  • the frequency resource information is determined according to the minimum bandwidth required by the first AGC and the information of the actually scheduled frequency resource.
  • the network device determines the frequency resource information, or the terminal device C determines the frequency resource information, or the terminal device A determines the frequency resource information.
  • the bandwidth of the sub-channel is not greater than the minimum bandwidth required by the first AGC.
  • the minimum bandwidth required by the first AGC includes M resource blocks RB, and M is a positive integer.
  • it also includes:
  • the minimum bandwidth required by the first AGC is determined according to the first subcarrier interval.
  • the network device determines the minimum bandwidth required to determine the first AGC, or the terminal device C determines the minimum bandwidth required by the first AGC, or the terminal device A determines the minimum bandwidth required by the first AGC. bandwidth.
  • the time-domain scheduling unit of the side row data is a first time unit
  • the first symbol of the first time unit is used by the receiving end to implement AGC
  • the first time unit includes At least one symbol.
  • a communication method including:
  • Receive scheduling information from a first terminal device includes frequency resource information, the frequency resource information indicates a frequency resource used to carry sideline data, the frequency resource information is in units of sub-channels and the frequency resource
  • the scheduled bandwidth indicated by the information is not less than the minimum bandwidth required by the first automatic gain control AGC, and the minimum bandwidth required by the first AGC is the minimum bandwidth required by the receiving end of the side row data to perform AGC.
  • the minimum bandwidth required by the first AGC has a first corresponding relationship with the first subcarrier interval corresponding to the side line data;
  • the second terminal device receives the scheduling information from the first terminal device (terminal device A), that is, the method is executed by the second terminal device.
  • the first correspondence is one of multiple correspondences between the minimum bandwidth required by at least one AGC and multiple subcarrier intervals, and the minimum bandwidth required by the at least one AGC The minimum bandwidth required by the first AGC is included, and the subcarrier interval includes the first subcarrier interval.
  • it also includes:
  • the minimum bandwidth required by the first AGC is predefined.
  • the second terminal device receives the first information.
  • the frequency resource information includes information about actually scheduled frequency resources, and the actually scheduled frequency resource information is the number N of subchannels included in the actually scheduled frequency resources, and the N Is a positive integer.
  • the frequency resource information indicates the difference between the information of the actually scheduled frequency resource and the number of subchannels occupied by the minimum bandwidth required by the first AGC, and the information about the actual scheduled frequency resource Is the number N of subchannels included in the actually scheduled frequency resource, where N is a positive integer.
  • the frequency resource information satisfies the function of the difference between the information of the actually scheduled frequency resource and the number of subchannels occupied by the minimum bandwidth required by the first AGC, and the function is the actual scheduled frequency resource
  • the information of the actually scheduled frequency resource is the number N of subchannels included in the actually scheduled frequency resource, where N is a positive integer.
  • receiving side data according to the frequency resource information includes:
  • the bandwidth of the sub-channel is not greater than the minimum bandwidth required by the first AGC.
  • the minimum bandwidth required by the first AGC includes M resource blocks RB, and M is a positive integer.
  • the time-domain scheduling unit of the side row data is a first time unit
  • the first symbol of the first time unit is used by the receiving end to implement AGC
  • the first time unit includes At least one symbol.
  • a device in a fourth aspect, has the function of realizing one or more of the network equipment or terminal device behaviors in any one or more of the above-mentioned first aspect to the third aspect and any one of the possible implementation manners of each aspect, and it includes aspects for performing the above-mentioned method Means corresponding to the described steps or functions.
  • the steps or functions can be realized by software, or by hardware, or by a combination of hardware and software.
  • the foregoing apparatus includes one or more processors, and further, may include a communication unit.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the network device in the above method. For example, determine scheduling information.
  • the communication unit is used to support the device to communicate with other devices, and realize the receiving and/or sending functions. For example, sending the scheduling information.
  • the device may further include one or more memories, where the memories are configured to be coupled with the processor, and store necessary program instructions and/or data for the network device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be a base station, gNB or TRP, DU or CU, etc.
  • the communication unit may be a transceiver, or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the device may also be a chip.
  • the communication unit may be an input/output circuit or interface of a chip.
  • the aforementioned device includes a processor and is coupled with a memory.
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the apparatus executes the second aspect, or the method completed by the network device in any possible implementation manner of the second aspect.
  • the device may also include a transceiver, which transmits and/or receives under the control of the processor.
  • the foregoing apparatus includes one or more processors, and further, may include a communication unit.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the terminal device in the foregoing method. For example, determine scheduling information.
  • the communication unit is used to support the device to communicate with other devices, and realize the receiving and/or sending functions. For example, sending scheduling information or receiving scheduling information.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be a smart terminal or a wearable device, etc.
  • the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the device may also be a chip.
  • the communication unit may be an input/output circuit or interface of a chip.
  • the foregoing device includes a processor, and the processor is coupled with the memory.
  • the memory is used to store a computer program, and the processor is used to run the computer program in the memory, so that the device executes the first aspect, the second aspect, the third aspect, any possible implementation manner of the first aspect, and the second aspect Any possible implementation manner of the third aspect, or any one of the possible implementation manners of the third aspect, the method completed by the terminal device.
  • a system in a fifth aspect, includes one or more of the aforementioned network equipment, terminal equipment A, terminal equipment B, or terminal equipment C.
  • a readable storage medium or program product for storing a program or instruction.
  • the program or instruction includes a program or instruction for executing any one of the first aspect to the third aspect, or the first aspect to the third aspect.
  • the instructions of the method in any one of the possible implementations of any of the aspects.
  • a chip or circuit for executing any one of the first to third aspects, or the method in any one of the first to third aspects.
  • the method provided in the embodiments of the present application can provide a communication method, which can also be referred to as a frequency resource scheduling method, in order to support multiple subcarrier intervals, that is, when the subcarrier interval is variable, the AGC can be guaranteed. Effective execution.
  • the method, device, system, and readable storage medium provided in the embodiments of the present application can be applied to the Internet of Vehicles, such as V2X, LTE-V, V2V, etc., or other D2D networks.
  • FIG. 1 is a schematic diagram of a typical scenario of V2V communication in an embodiment of the present application
  • FIG. 2 is a schematic diagram of using a bit map to indicate a time slot used for V2X communication in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a time-frequency resource of a V2X communication resource pool in an embodiment of the present application
  • Figure 4-1 is a schematic diagram of PSCCH and PSSCH in an embodiment of the present application using frequency division multiplexing
  • Figure 4-2 is a schematic diagram of PSCCH and PSSCH in an embodiment of the present application using partial frequency division multiplexing and partial time division multiplexing;
  • FIG. 5 is a schematic diagram of wireless transmission for AGC in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a communication system 100 applicable to the communication method of an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a communication system 200 applicable to the communication method of an embodiment of the present application.
  • Figure 8-1 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Figure 8-2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Figure 8-3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Figure 8-4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Fig. 9-1 is another schematic diagram of the PSCCH and PSSCH in the embodiment of the present application being mapped onto the time-frequency resources by means of partial frequency division multiplexing and partial time division multiplexing;
  • Figure 9-2 is another schematic diagram of the PSCCH and PSSCH in the embodiment of the present application being mapped onto the time-frequency resources by means of partial frequency division multiplexing and partial time division multiplexing;
  • Figure 9-3 is another schematic diagram of the PSCCH and PSSCH in the embodiment of the present application being mapped onto the time-frequency resources by means of partial frequency division multiplexing and partial time division multiplexing;
  • Fig. 10-1 is a schematic diagram of the difference indication of the number of scheduled sub-channels provided by an embodiment of the present application.
  • FIG. 10-2 is another schematic diagram of the difference indication of the number of scheduled sub-channels according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new generation of radio access technology
  • the term "exemplary” is used to indicate an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • the embodiments of the present application may be applied to a time division duplex (time division duplex, TDD) scenario, and may also be applicable to a frequency division duplex (frequency division duplex, FDD) scenario.
  • TDD time division duplex
  • FDD frequency division duplex
  • the embodiments of the present application can be applied to traditional typical networks, and can also be applied to future UE-centric networks.
  • the UE-centric network introduces a non-cell network architecture, that is, a large number of small stations are deployed in a specific area to form a hyper cell, and each small station is a transmission point of the Hyper cell ( Transmission Point (TP) or TRP, and is connected to a centralized controller (controller).
  • TP Transmission Point
  • TRP Transmission Point
  • the network-side device When the UE moves in the Hypercell, the network-side device always selects a new sub-cluster for the UE to serve it, thereby avoiding real cell switching and realizing the continuity of UE services.
  • the network side device includes a wireless network device.
  • the network device in the embodiment of the present application may be a device with a wireless transceiver function or a chip that can be installed in the device, and may be deployed in a wireless access network to provide wireless communication services for terminal devices.
  • This equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) , Base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be 5G, such as NR, gNB in the system , Or, transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or, it can also be
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • Multiple DUs can be centrally controlled by one CU.
  • CU implements some functions of gNB
  • DU implements some functions of gNB
  • CU and DU can be divided according to the protocol layer of the wireless network, such as the packet data convergence protocol (PDCP) layer and the above protocol layer functions are set in CU
  • Protocol layers below PDCP such as radio link control (RLC) layer and medium access control (MAC) layer, are set in DU.
  • RLC radio link control
  • MAC medium access control
  • CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements radio link control (radio link control, RLC), media access Control (media access control, MAC) and physical (physical, PHY) layer functions. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, in this architecture, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also It is considered to be sent by DU or DU+RU.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements radio link control (radio link control, RLC), media access Control (media access control, MAC) and physical (physical, PHY) layer functions. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, in this architecture, high-level signaling, such as RRC layer signaling or PH
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network CN, which is not limited here.
  • the CU can be divided into a control plane (CU-CP) and a user plane (CU-UP).
  • CU-CP is responsible for the control plane function, mainly including RRC and PDCP-C.
  • PDCP-C is mainly responsible for one or more of control plane data encryption and decryption, integrity protection, and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP and PDCP-U.
  • SDAP is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • PDCP-U is mainly responsible for one or more of data encryption and decryption, integrity protection, header compression, serial number maintenance, and data transmission.
  • CU-CP and CU-UP are connected through an interface (such as an E1 interface).
  • the CU-CP is connected to the core network through an interface (such as the Ng interface), and is connected to the DU through an interface (such as F1-C (control plane interface)).
  • the CU-UP is connected to the DU through an interface (for example, F1-U (user plane interface)).
  • the terminal equipment in the embodiments of the present application may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal , Wireless communication equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, terminal equipment in 5G networks, or public land mobile networks that will evolve in the future (public land mobile network) , PLMN) in the terminal equipment and so on.
  • PLMN public land mobile network
  • the embodiment of this application does not limit the application scenario.
  • the methods and steps implemented by the terminal device in this application can also be implemented by components (such as chips or circuits) that can be used for the terminal device.
  • the aforementioned terminal equipment and the components (such as chips or circuits) that can be installed in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • V2X communication is an important key technology for realizing environment perception and information interaction in the Internet of Vehicles.
  • Other devices here can be one of other vehicles, other infrastructure, pedestrians, or terminal devices, etc. Or multiple.
  • V2X communication can be regarded as a special case of device-to-device (D2D) communication.
  • Vehicle-to-vehicle (V2V) communication can be regarded as a special case of V2X communication.
  • D2D device-to-device
  • V2V Vehicle-to-vehicle
  • V2X communication Through direct communication between vehicles, the status information and road conditions of other vehicles can be obtained in real time. Better assist vehicle driving and even realize automatic driving.
  • the communication link between V2V may be called a side link (SL), and the side link is a direct communication link between terminal equipment and terminal equipment.
  • SL side link
  • FIG. 1 is an example of a D2D communication network, which can also be considered as a part of a V2X network. kind of example.
  • V2X communication includes two communication modes: the first communication mode is V2X communication based on network equipment (e.g. base station) scheduling. V2X users (e.g. vehicles or vehicle-mounted equipment) are scheduled according to the scheduling information of network equipment. The control message and data of V2X communication are sent on the frequency resource.
  • the second communication mode is that V2X users select the time-frequency resources used for V2X communication from the available time-frequency resources included in the pre-configured V2X communication resource pool (or can also be called the V2X resource set), and select the selected resources. Send control information and data.
  • the two communication modes have their own advantages and disadvantages, and can be flexibly used in various scenarios.
  • the time-frequency resources of V2X communication are configured based on the V2X communication resource pool.
  • the V2X communication resource pool can be regarded as a collection of time domain resources and frequency resources used for V2X communication.
  • the network device can use a bit map and periodically repeat the bit map to indicate all time units in the system, such as subframes or time slots, which can be used for V2X communication. .
  • the time length of a subframe may be 1 ms
  • the time length of a time slot may be 0.5 ms or 1 ms or other lengths (for example, determined by the subcarrier interval).
  • Fig. 2 is a schematic diagram of using a bit map to indicate a time slot used for V2X communication.
  • bit “1” can be used to indicate that a certain time slot is used for V2X communication
  • bit “0” can be used to indicate that a certain time slot is not used for V2X communication.
  • the length of the bit map in the example shown in Figure 2 is 8 bits.
  • the network device may divide the frequency band used for V2X communication into several subchannels, and each subchannel includes a certain number of resource blocks (RB).
  • the subchannel may be the smallest unit of frequency resource scheduling.
  • Figure 3 is a schematic diagram of an example of time-frequency resources in a V2X communication resource pool. As shown in Figure 3, the bit "1" is used to indicate that a certain time unit, such as a subframe or a time slot, can be used for V2X communication, and the bit "0" is used to indicate that a certain time unit is not used for V2X communication.
  • the network device will indicate the sequence number of the first resource block of the frequency resource used for V2X communication, the total number of sub-channels included in the V2X communication resource pool N, and the number of resource blocks included in each sub-channel n CH .
  • data or control information transmission can occupy one or more sub-channels at a time.
  • the subframe in the above description is a time unit defined in the communication system (such as LTE), the time length of a subframe is 1ms, and the time slot is also defined in the communication system (such as NR and LTE)
  • a time unit, the time length of a time slot is 0.5ms or 1ms or other lengths (for example, determined by the subcarrier interval).
  • a slot may include 14 symbols
  • a subframe may include 14 symbols
  • a slot may include 7 symbols (normal cyclic prefix CP).
  • the physical sidelink control channel (PSCCH) is used to transmit control information in V2X communication
  • the physical sidelink shared channel (PSSCH) is used to transmit data in V2X communication.
  • the aforementioned control information is used by the receiving end to receive data during V2X communication.
  • PSCCH and PSSCH can be multiplexed in a frequency division multiplexing (FDM) manner.
  • Figure 4-1 is a schematic diagram of PSCCH and PSSCH using frequency division multiplexing. As shown in Figure 4-1, PSCCH and PSSCH occupy the same time domain resources and occupy different subcarriers in the frequency domain.
  • PSCCH and PSSCH can use partial time division multiplexing and partial frequency division multiplexing.
  • Figure 4-2 is a schematic diagram of PSCCH and PSSCH using partial frequency division multiplexing and partial time division multiplexing. As shown in Figure 4-2, some PSSCH and PSCCH occupy the same time domain resources and different subcarriers in the frequency domain, and some PSSCH and PSCCH occupy different time domain resources in the time domain.
  • AGC is an operation in which the receiving end dynamically adjusts the gain of the amplifier according to the average or peak received power.
  • the relevant circuits of the receiving end can work normally under a larger range of input signals. Therefore, before performing AGC, the receiving end will receive the signal sent by the transmitting end, and perform AGC according to the received power of the signal. Subsequently, the receiving end can continue to receive other signals sent by the sending end. That is, effective AGC is a necessary step for the receiving end to correctly receive the information sent by the sending end.
  • Figure 5 shows a schematic diagram of wireless transmission for AGC, where a part of the beginning of the wireless transmission can be used for AGC at the receiving end, so that the receiving end can correctly receive subsequent wireless transmissions.
  • the first symbol of the V2X transmission time unit such as a subframe or a time slot, is used for AGC.
  • the NR V2X network since it can support multiple sub-carrier spacing, including one or more of 15kHz, 30kHz, 60kHz, etc. As the subcarrier spacing increases, the duration of a symbol will decrease. For example, at 15kHz, the duration of a symbol is about 66.7 microseconds; at 30kHz, the duration of a symbol is half of 15kHz, which is 33.3 microseconds; 60kHz When, the duration of a symbol is a quarter of 15kHz, or 16.7 microseconds.
  • the other subcarrier spacing can be deduced by analogy.
  • the time required for AGC is related to the bandwidth of the received signal.
  • the embodiments of the present application provide a communication method, which can also be specifically referred to as a frequency resource scheduling method, in order to ensure the effective execution of AGC when supporting multiple subcarrier intervals, that is, when the subcarrier interval is variable.
  • the symbol specifically used for AGC may be the first symbol of the V2X transmission time unit or the first several symbols.
  • FIG. 6 is a schematic diagram of a communication system 100 applicable to the communication method of an embodiment of the present application.
  • the communication system 100 includes four communication devices, for example, a network device 110, and terminal devices 121 to 123.
  • the terminal device and the terminal device can communicate data through D2D or V2X communication.
  • the network device 110 Data communication can be performed with at least one of the terminal devices 121 to 123.
  • the direct link formed between the two is SL.
  • the frequency resource scheduling method of the embodiment of the present application may be used to schedule the frequency resource carrying the side-line data.
  • FIG. 7 is a schematic diagram of a communication system 200 applicable to the communication method of an embodiment of the present application.
  • the communication system 200 includes three communication devices, for example, terminal devices 121 to 123, wherein the terminal device and the terminal device can communicate data through D2D or V2X communication methods.
  • the link between the two is SL.
  • the frequency resource scheduling method for the frequency resource in the embodiment of the present application may be used to schedule the frequency resource carrying the side-line data.
  • the communication systems shown in FIGS. 6 and 7 may also include more network nodes, such as terminal devices or network devices, and the network devices or terminal devices included in the communication systems shown in FIGS. 6 and 7 It can be a network device or terminal device of the above-mentioned various forms. The embodiments of this application are not shown one by one in the figure.
  • FIG. 1 A schematic interaction diagram of the communication method 10.
  • the method 10 can be applied in the scenarios shown in FIG. 1, FIG. 6 and FIG. 7, and of course can also be applied in other communication scenarios.
  • the embodiment of the present application does not limit it here.
  • the communication method provided in the embodiments of the present application may be specifically referred to as a frequency resource scheduling method, and may be used for side-line communication between two terminal devices, such as terminal device A and terminal device B.
  • a terminal device and a network device are taken as an example of executing the method of each embodiment to describe the method of each embodiment.
  • the execution subject of the execution method may also be a chip applied to a terminal device and a chip applied to a base station.
  • the terminal device for example, terminal device A and/or terminal device B
  • the terminal device may be one or more of vehicles, vehicle-mounted devices, and mobile phone terminals in V2X communication. item.
  • the method 10 may include:
  • the terminal device A sends first scheduling information and sideline data to the terminal device B, where the first scheduling information includes frequency resource information, and the frequency resource information indicates a frequency resource used to carry the sideline data, and the frequency resource
  • the information is in units of sub-channels (that is, the frequency resource corresponding to the first frequency resource information uses the sub-channel as the smallest frequency domain scheduling unit), and the scheduled bandwidth indicated by the frequency resource information is not less than that required by the first automatic gain control AGC
  • the minimum bandwidth required by the first AGC is the minimum bandwidth required by the receiving end of the side row data to perform AGC, and the minimum bandwidth required by the first AGC corresponds to the side row data
  • the first subcarrier interval has a first correspondence;
  • the terminal device B receives the first scheduling information from the terminal device A, and receives the sideline data from the terminal device A according to the first scheduling information;
  • the first scheduling information may be carried in physical side control information (PSCCH).
  • PSCCH physical side control information
  • the terminal device B receiving the sideline data from the terminal device A according to the first scheduling information may specifically include: the terminal device B receives the sideline data from the terminal device A according to the frequency resource information.
  • the terminal device A uses the frequency resource to send the side row data.
  • the side row data may be carried in the physical side row data channel (PSSCH).
  • PSSCH physical side row data channel
  • the PSCCH and PSSCH can be mapped on time-frequency resources in a partial frequency division multiplexing and partial time division multiplexing manner, as shown in Figure 9-1.
  • Terminal device A can send PSCCH and PSSCH
  • terminal device B can blindly detect PSCCH on the time-frequency resources contained in the V2X communication resource pool according to predefined rules, and after terminal device B detects the PSCCH, it is based on the first scheduling information carried by the PSCCH , Determine one or more of the frequency resource information and time domain resource information of the PSSCH, and receive and/or receive the corresponding PSSCH based on one or more of the frequency resource information and time domain resource information of the PSSCH deal with.
  • the PSCCH is always located in the lowest 4 RBs of the subchannel.
  • the resource pool contains 10 subchannels, numbered 0-9, and the currently scheduled PSSCH occupies subchannel 3- 5.
  • the receiving end first blindly detects the PSCCH in the first 4 RBs of each of the aforementioned 10 subchannels, detects that there is a PSCCH on channel 3, and learns that the PSSCH is carried on subchannels 3-5 according to the first scheduling information carried by the PSCCH. Furthermore, the PSSCH is received and/or processed in subchannels 3-5.
  • the method may further include:
  • the terminal device A obtains the frequency resource information, and the frequency resource information indicates a frequency resource used to carry sideline data.
  • S100 may have different modes, and specifically may include three modes.
  • S100 may include at least S1000, where:
  • Terminal device A receives second scheduling information from a network device, where the second scheduling information includes frequency resource information, the frequency resource information indicates a frequency resource used to carry sideline data, and the frequency resource information is The sub-channel is a unit and the scheduled bandwidth indicated by the frequency resource information is not less than the minimum bandwidth required by the first automatic gain control AGC.
  • the minimum bandwidth required by the first AGC is executed by the receiving end of the side line data A minimum bandwidth required by AGC, where the minimum bandwidth required by the first AGC has a first corresponding relationship with the first subcarrier interval corresponding to the side line data;
  • the network device sends the second scheduling information to the terminal device A.
  • the second scheduling information may be carried in downlink control information (DCI), where the DCI is carried in a physical downlink control channel (PDCCH); or, the second scheduling information may be carried in a physical downlink Shared channel (PDSCH).
  • DCI downlink control information
  • PDCH physical downlink control channel
  • PDSCH physical downlink Shared channel
  • the second scheduling information sent to the terminal device A may be determined before the network device sends the second scheduling information.
  • the terminal device A may send the first scheduling information to the terminal device B according to the second scheduling information and send the sideline data to the terminal device B according to the frequency resource information, that is, step S110 is performed.
  • the frequency resource information indicated by the first scheduling information (referred to as the first frequency resource information) and the frequency resource information indicated by the second scheduling information (referred to as the second frequency resource information) are both used to carry terminal equipment The side line data sent by A to the terminal device B, but the two can adopt the same form or different forms, for example, as will be described in detail later
  • the first frequency resource information can include information or indication of the actually scheduled frequency resource The difference between the information about the actually scheduled frequency resource and the number of subchannels occupied by the minimum bandwidth required by the first AGC.
  • the second frequency resource information may include information about the actually scheduled frequency resource or information indicating the actual scheduled frequency resource and The difference between the number of sub-channels occupied by the minimum bandwidth required by the first AGC.
  • S100 may include at least S1010, where:
  • the terminal device A receives third scheduling information from the terminal device C, where the third scheduling information includes frequency resource information, and the frequency resource information indicates a frequency resource used to carry sideline data.
  • the resource information is in units of sub-channels and the scheduled bandwidth indicated by the frequency resource information is not less than the minimum bandwidth required by the first automatic gain control AGC, and the minimum bandwidth required by the first AGC is that of the side row data.
  • the minimum bandwidth required by the receiving end to perform AGC where the minimum bandwidth required by the first AGC has a first correspondence with the first subcarrier interval corresponding to the side line data;
  • the terminal device C sends the third scheduling information to the terminal device A.
  • the third scheduling information may be carried in side-line control information (downlink control information, SCI), where the SCI is carried in the physical side-line control channel (PSCCH); or, the third scheduling information may be carried in Physical side line shared channel (PSSCH).
  • SCI downlink control information
  • PSCCH physical side-line control channel
  • PSSCH Physical side line shared channel
  • the third scheduling information sent to the terminal device A may be determined before the terminal device C sends the third scheduling information.
  • the terminal device A may send the first scheduling information to the terminal device B according to the third scheduling information and send the sideline data to the terminal device B according to the frequency resource information, that is, step S110 is performed.
  • the frequency resource information indicated by the first scheduling information (referred to as the first frequency resource information) and the frequency resource information indicated by the third scheduling information (referred to as the third frequency resource information) are both used to carry terminal equipment The side line data sent by A to the terminal device B, but the two can adopt the same form or different forms, for example, as will be described in detail later
  • the first frequency resource information can include information or indication of the actually scheduled frequency resource The difference between the information of the actually scheduled frequency resource and the number of subchannels occupied by the minimum bandwidth required by the first AGC.
  • the third frequency resource information may include information about the actually scheduled frequency resource or information indicating the actual scheduled frequency resource and The difference between the number of sub-channels occupied by the minimum bandwidth required by the first AGC.
  • S100 may include at least S1020, where:
  • the terminal device A determines first scheduling information by itself, where the first scheduling information includes frequency resource information, the frequency resource information indicates a frequency resource used to carry sideline data, and the frequency resource information is The channel is a unit and the scheduled bandwidth indicated by the frequency resource information is not less than the minimum bandwidth required by the first automatic gain control AGC.
  • the minimum bandwidth required by the first AGC is that the receiving end of the side line data performs AGC A required minimum bandwidth, where the minimum bandwidth required by the first AGC has a first correspondence with the first subcarrier interval corresponding to the side line data;
  • the terminal device A sends the first scheduling information to the terminal device B and uses the frequency resource corresponding to the frequency resource information to send the sideline data to the terminal device B, that is, step S110 is performed.
  • the first correspondence is one of multiple correspondences between the minimum bandwidth required by at least one AGC and multiple subcarrier intervals, and the minimum bandwidth required by the at least one AGC includes the first A minimum bandwidth required by an AGC, and the subcarrier interval includes the first subcarrier interval.
  • the correspondence between the minimum bandwidth required by AGC and the subcarrier spacing can be one-to-many, many-to-one, or one-to-one, which can be determined according to specific protocols or application scenarios or design requirements, and is not limited here. .
  • the minimum bandwidth required by the first AGC includes M resource block RBs, and M is a positive integer, that is, the minimum bandwidth required by the first AGC may be a resource block RB as a unit.
  • the bandwidth of the subchannel is not greater than the minimum bandwidth required by the first AGC.
  • the bandwidth of the subchannel can be a value predefined by the protocol, or can be configured through signaling. This configuration may be directly configuring the bandwidth of the sub-channel, or may be implemented through the correspondence between the bandwidth of the sub-channel and other parameters and the configuration of the other parameters. The correspondence between the bandwidth of the sub-channel and other parameters may be predefined by the protocol or configured through signaling, which is not limited here.
  • the other parameters may include one or more of the bandwidth of the carrier where the terminal device is located, the bandwidth of the bandwidth part (BWP) where the terminal device is located, or the side BWP bandwidth of the terminal device.
  • Table 1 below shows an example of multiple correspondences between the minimum bandwidth required by at least one AGC and multiple subcarrier intervals. It can be understood that the correspondence between the minimum bandwidth required by AGC and subcarrier spacing One of the corresponding relationships shown below can be satisfied.
  • the minimum bandwidth required by the AGC corresponding to a certain subcarrier interval in the following table can also be other values. For example, replace the minimum bandwidth required by the following different AGCs with different values such as the first value or the second value. Yes, the subcarrier interval can also be replaced with a different value such as the first subcarrier interval or the second subcarrier interval.
  • Subcarrier spacing (kHz) Minimum bandwidth required for AGC n AGC (RB) 15 4 30 8 60 12 120 12 240 twenty four 480 twenty four
  • One or more of the correspondences in the above table can also form other correspondence tables, that is, one or more tables are formed to reflect the correspondence between the minimum bandwidth required by the AGC and the subcarrier spacing.
  • the correspondence between the minimum bandwidth required by AGC and the subcarrier spacing can be expressed in the form of the aforementioned table, or it can also be expressed in other forms such as formulas or character strings, which is not here. limited.
  • the above correspondence can be stored in the sending end and/or receiving end in the above method 10, that is, pre-defined at the sending end and/or receiving end, where the sending end may be the network device mentioned in the above method ,
  • the receiving end may be the terminal device A, one or more of the terminal device B mentioned in the above method (Other parts in the embodiments of this application also apply).
  • the transmitting end can learn the minimum bandwidth required by the first AGC corresponding to the subcarrier interval according to the correspondence between the subcarrier interval corresponding to the sideline data and the stored subcarrier interval and the minimum bandwidth required by the AGC Further, the bandwidth of the frequency resource used to carry the sideline data can be determined, so that the scheduled bandwidth of the sideline data is not less than the minimum bandwidth required by the first automatic gain control AGC. This can ensure that the receiving end of the side row data effectively executes AGC. The receiving end can learn the minimum bandwidth required by the first AGC corresponding to the subcarrier interval according to the subcarrier interval corresponding to the sideline data and the correspondence between the stored subcarrier interval and the minimum bandwidth required by the AGC.
  • the above correspondence can also be configured, for example, from the sender to the receiver, or from the master control end to the sender and/or receiver, for example, through RRC signaling, MAC One or more of layer signaling or physical layer signaling is configured.
  • the items in the above correspondence can be indexed or the minimum bandwidth required by the AGC corresponding to the current side row data can be directly included in the information used for the configuration, for example, through RRC signaling, MAC One or more of the layer signaling or the physical layer signaling carries the information used for configuration, so as to directly indicate the minimum bandwidth required by the AGC corresponding to the current side line data, so that the receiving end does not need to Combine the subcarrier spacing to obtain the minimum bandwidth required by the AGC corresponding to the current side line data.
  • the frequency resource information described in the foregoing method 10 may include information about actually scheduled frequency resources, where the actually scheduled frequency resource information is the number N of subchannels included in the actually scheduled frequency resources, and N is a positive integer.
  • the frequency resource information may indicate the difference between the information of the actually scheduled frequency resource and the number of subchannels occupied by the minimum bandwidth required by the first AGC, and the information about the actually scheduled frequency resource is the actually scheduled frequency resource
  • the number of sub-channels included N, where N is a positive integer for example, the frequency resource information can satisfy the difference between the frequency resource information actually scheduled and the number of sub-channels occupied by the minimum bandwidth required by the first AGC
  • the function of the value, the function may be the difference value, or the difference value +1.
  • Indicating the difference can further reduce the overhead of scheduling information.
  • Using the difference +1 can further avoid the occurrence of information about the actually scheduled frequency resource and the minimum bandwidth required by the first AGC when the number of sub-channels is the same in the scheduling information When the value of the field corresponding to the frequency resource information is 0. In this way, it is possible to avoid the interference caused by the domain value being 0, which may cause decoding or descrambling.
  • Figure 9-2 and Figure 9-3 are schematic diagrams of the V2X resource scheduling.
  • the PSCCH/DMRS (demodulation reference signal) is transmitted in the first symbol
  • the PSCCH/DMRS in Figure 9-3 is The first symbol is not transmitted, the first symbol is used for AGC, PSCCH occupies 4 subchannels, and PSSCH occupies 8 subchannels. It can be seen that in this example, the bandwidth of the subchannel is much smaller than the minimum bandwidth required by the first AGC. Compared with setting the bandwidth of the subchannel equal to the minimum bandwidth required by the first AGC, 15RB is scheduled If 2 sub-channels are needed, 9 RBs will be wasted. The bandwidth of the sub-channels used in this example is smaller than the setting of the minimum bandwidth required by the first AGC, which can effectively avoid the waste of frequency resources.
  • the bandwidth of the PSCCH is 8 RBs, and its starting RB is always located at the lowest RB of the sub-channel.
  • the resource pool contains 20 sub-channels, numbered 0-19 , Each subchannel has a bandwidth of 2RB, and the scheduled PSSCH this time occupies subchannels 2-9, the receiving end can first blindly detect PSCCH on the lowest RB of each of the aforementioned 20 subchannels, and detect on channel 2.
  • PSCCH There is a PSCCH and the PSCCH spans subchannels 2 to 5, and then according to the indication in the PSCCH, such as scheduling information, it is learned that the PSSCH occupies subchannels 2 to 9, and then the aforementioned PSSCH is received and received on subchannels 2 to 9 (subsequent) /Or processing.
  • the sending end such as one or more of the network device, the terminal device C, and the terminal device A, may indicate the number of additional channels N sched_i through frequency resource information.
  • the minimum bandwidth n AGC required by the AGC and the configuration can be configured or pre-configured according to the number of sub-channels N sched_i indicated. Or pre-configured or protocol-defined sub-channel bandwidth n subCH , to get the number of sub-channels actually scheduled It can be seen that using this difference indication method can reduce indication overhead.
  • the above method can also be appropriately modified to avoid that the indicated number of subchannels is 0.
  • the aforementioned frequency resource information satisfies the information of actually scheduled frequency resources and the minimum bandwidth required by the first AGC.
  • a function of the difference between the number of sub-channels occupied, and the function may be the difference+1.
  • the number of sub-channels indicated by the frequency resource information is N sched_i
  • the number of sub-channels that actually need to be scheduled is N sched
  • the minimum bandwidth required by the first AGC corresponding to the current side row data is n AGC
  • the sub-channel The bandwidth is n subCH
  • Figure 10-2 shows another schematic diagram of this difference indication mode.
  • the sending end such as one or more of the network device, the terminal device C, and the terminal device A, may indicate the number of additional channels N sched_i through frequency resource information.
  • the required bandwidth n AGC and configuration or pre-configuration or standard pre-defined AGC can be configured or pre-configured.
  • the frequency resource information indicates the difference between the information of the actually scheduled frequency resource and the number of subchannels occupied by the minimum bandwidth required by the first AGC
  • the sending of side data according to the frequency resource information (S100) performed by the terminal device A in the first mode and/or the terminal device A in the second mode in the above method 10 may include: according to the requirements of the first AGC The minimum bandwidth and the frequency resource information determine the information of the actual scheduled frequency resource; and send sideline data according to the information of the actual scheduled frequency resource;
  • One or more of the network equipment or terminal equipment A in the first mode, the terminal equipment C or the terminal equipment A in the second mode, or the terminal equipment A in the third mode can be further based on the requirements of the first AGC
  • the information of the minimum bandwidth and the actually scheduled frequency resource determines the frequency resource information.
  • the frequency resource information sent by the network device and the terminal device A in the first mode can be different indication modes of the same frequency resource or the same
  • the network device directly indicates the frequency resource actually scheduled, and the terminal device A indicates the frequency resource by means of difference
  • the frequency resource information sent by the terminal device C and the terminal device A in the second method can be the same Different indication modes of frequency resources or the same indication mode, for example, the terminal device C directly indicates the actually scheduled frequency resource, and the terminal device A indicates the frequency resource by means of difference.
  • One or more of terminal device B in mode one, terminal device B in mode two, or one or more of terminal device B in mode three receiving sideline data according to the frequency resource information (S110) may include: The minimum bandwidth required by the first AGC and the frequency resource information determine the information of the actual scheduled frequency resource; and the side line data is received according to the information of the actual scheduled frequency resource.
  • the time domain scheduling unit of the side row data is a first time unit, the first symbol of the first time unit is used for the receiving end to implement AGC, and the first time unit includes at least one symbol.
  • the first time unit may include a time slot.
  • terminal device A can perform S1000 and S110.
  • the network device can perform S1001 and S1000
  • the terminal device C can perform S1011 and S1010
  • the terminal device B can perform S110.
  • the actions performed by terminal equipment A, terminal equipment B, terminal equipment C, or network equipment can also be correspondingly described as means for terminal equipment A (such as processors, circuits or chips), and means for terminal equipment B.
  • the communication method of the embodiment of the present application is described in detail above with reference to FIGS. 8-1, 8-2, 8-3, and 8-4.
  • the communication device of the embodiment of the present application such as a terminal device, a device (such as a processor, circuit, or chip), a network device, or a device for a network device (such as Processor, circuit or chip).
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device can be applied to the system shown in one or more of FIG. 1, FIG. 6 or FIG. 7 to perform the functions of the terminal device in the foregoing method embodiment.
  • FIG. 11 only shows the main components of the terminal device.
  • the terminal device 50 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiment.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in the embodiment of the present application.
  • the terminal device may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. , Execute the software program, and process the data of the software program.
  • the processor in FIG. 11 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 501 of the terminal device 50, for example, for supporting the terminal device to perform the receiving function and the transmitting function.
  • the processor 502 with processing functions is regarded as the processing unit 502 of the terminal device 50.
  • the terminal device 50 includes a transceiver unit 501 and a processing unit 502.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 501 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 501 can be regarded as the sending unit, that is, the transceiver unit 501 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 502 may be used to execute instructions stored in the memory to control the transceiver unit 501 to receive signals and/or send signals, so as to complete the functions of the terminal device in the foregoing method embodiment.
  • the processor 502 also includes an interface for implementing signal input/output functions.
  • the function of the transceiver unit 501 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 12 is another schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 60 includes a processor 601 and a transceiver 602.
  • the terminal device 600 further includes a memory 603.
  • the processor 601, the transceiver 602, and the memory 603 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 603 is used for storing computer programs, and the processor 601 is used for downloading from the memory 603 Call and run the computer program to control the transceiver 602 to send and receive signals.
  • the terminal device 600 may further include an antenna 604 for transmitting the uplink data or uplink control signaling output by the transceiver 602 through a wireless signal.
  • the aforementioned processor 601 and the memory 603 may be combined into one processing device, and the processor 601 is configured to execute the program code stored in the memory 603 to implement the aforementioned functions.
  • the memory 603 may also be integrated in the processor 601 or independent of the processor 601.
  • the terminal device 60 may correspond to each embodiment of the method according to the embodiment of the present application.
  • each unit in the terminal device 60 and other operations and/or functions described above are used to implement the corresponding processes in the various embodiments of the method.
  • the above-mentioned processor 601 can be used to execute the actions implemented by one or more of the terminal device A, the terminal device B, and the terminal device C described in the previous method embodiment (the terminal device may be the terminal device A in different communications. , Terminal device B, or terminal device C), and the transceiver 602 can be used to perform one or more of the sending or receiving actions of terminal device A, terminal device B, and terminal device C described in the foregoing method embodiments .
  • the description in the previous method embodiment which will not be repeated here.
  • the foregoing terminal device 60 may further include a power supply 605, which is used to provide power to various devices or circuits in the terminal device.
  • a power supply 605 which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device 60 may also include one or more of the input unit 606, the display unit 607, the audio circuit 608, the camera 609, and the sensor 66.
  • the audio circuit also It may include a speaker 6082, a microphone 6084, and so on.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application, such as a schematic structural diagram of a base station.
  • the base station can be applied to the system shown in one or more of Fig. 1, Fig. 6 or Fig. 7 to perform the function of the network device in the above method embodiment.
  • the base station 70 may include one or more DU 701 and one or more CU 702.
  • CU702 can communicate with NGcore (Next Generation Core Network, NC).
  • the DU 701 may include at least one radio frequency unit 7012, at least one processor 7013, and at least one memory 7014.
  • the DU701 may further include at least one antenna 7011.
  • the DU 701 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU702 may include at least one processor 7022 and at least one memory 7021.
  • CU702 and DU701 can communicate through interfaces, where the control plan interface can be Fs-C, such as F1-C, and the user plane (User Plan) interface can be Fs-U, such as F1-U.
  • the CU 702 part is mainly used to perform baseband processing and control the base station.
  • the DU 701 and the CU 702 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU 702 is the control center of the base station, which may also be called a processing unit, and is mainly used to complete baseband processing functions.
  • the CU 702 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the baseband processing on the CU and DU can be divided according to the protocol layer of the wireless network, for example, the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP, For example, functions such as the radio link control (RLC) layer and the media access control (MAC) layer are set in the DU.
  • CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements radio link control (RLC) and medium access Control (medium access control, MAC) and physical (physical, PHY) layer functions.
  • the base station 70 may include one or more antennas, one or more radio frequency units, one or more DUs, and one or more CUs.
  • the DU may include at least one processor and at least one memory
  • at least one antenna and at least one radio frequency unit may be integrated in one antenna device
  • the CU may include at least one processor and at least one memory.
  • the CU702 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), or can support wireless access networks of different access standards.
  • Access network (such as LTE network, 5G network or other networks).
  • the memory 7021 and the processor 7022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU701 can be composed of one or more single boards.
  • Multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), and can also support wireless access networks with different access standards (such as LTE network, 5G network or other network).
  • the memory 7014 and the processor 7013 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • FIG. 14 shows a schematic diagram of the structure of a communication device 80.
  • the communication device 80 may be used to implement the method described in the foregoing method embodiment, and reference may be made to the description in the foregoing method embodiment.
  • the communication device 80 may be a chip, a network device (such as a base station), or a terminal device.
  • the communication device 80 includes one or more processors 801.
  • the processor 801 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices (such as base stations, terminals, or chips), execute software programs, and process data in the software programs.
  • the device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the device may be a chip, and the transceiver unit may be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used in terminal equipment or network equipment (such as a base station).
  • the device may be a terminal device or a network device (such as a base station), and the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication device 80 includes one or more of the processors 801, and the one or more processors 801 can implement the network in the embodiments shown in FIGS. 8-1, 8-2, 8-3, and 8-4. Device or terminal device method.
  • the communication device 80 includes means for receiving scheduling information from network equipment, and means for sending sideline data according to the scheduling information.
  • the scheduling information or the side line data may be sent through a transceiver, or an input/output circuit, or an interface of a chip.
  • the scheduling information refer to related descriptions in the foregoing method embodiments.
  • the communication device 80 includes means for determining scheduling information of the terminal device, and means for sending the scheduling information to the terminal device.
  • the scheduling information may be sent through a transceiver, or an input/output circuit, or an interface of a chip, and the scheduling information of the terminal device may be determined by one or more processors.
  • the communication device 80 includes means for receiving scheduling information from the first terminal device, and means for receiving side data according to the scheduling information.
  • scheduling information and the side line data can be received through a transceiver, or an input/output circuit, or an interface of a chip.
  • the processor 801 may implement other functions in addition to the methods of one or more of the embodiments shown in FIGS. 8-1, 8-2, 8-3, and 8-4.
  • the processor 801 may also include an instruction 803, which may be executed on the processor, so that the communication device 80 executes the method described in the foregoing method embodiment.
  • the communication device 80 may also include a circuit, and the circuit may implement the functions of the network device or the terminal device in the foregoing method embodiment.
  • the communication device 80 may include one or more memories 802, on which instructions 804 are stored, and the instructions may be executed on the processor to enable the communication device 80 to execute The method described in the above method embodiment.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 802 may store the mobile effective area described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and memory can be provided separately or integrated together.
  • the communication device 80 may further include a transceiver unit 805 and an antenna 806, or include a communication interface.
  • the transceiver unit 805 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the device through the antenna 806.
  • the communication interface (not shown in the figure) may be used for communication between the core network device and the network device, or between the network device and the network device.
  • the communication interface may be a wired communication interface, such as an optical fiber communication interface.
  • the processor 801 may be called a processing unit, which controls a device (such as a terminal or a base station).
  • the sending or receiving performed by the transceiver unit 805 described in the embodiments of the present application is under the control of the processing unit (processor 801), the sending or receiving actions may also be described as processing in the embodiments of the present application.
  • the execution by the unit (processor 801) does not affect the understanding of the solution by those skilled in the art.
  • the terminal equipment and network equipment in the foregoing device embodiments may completely correspond to the terminal equipment or network equipment in the method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the chip for sending signals to other chips or devices.
  • processor in the embodiments of the present application may be a CPU, and the processor may also be other general-purpose processors, DSPs, ASICs, FPGAs or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the terminal equipment and network equipment in the foregoing device embodiments may completely correspond to the terminal equipment or network equipment in the method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the chip for sending signals to other chips or devices.
  • the embodiment of the present application also provides a communication system, which includes: the above-mentioned network equipment, terminal equipment A and terminal equipment B, or the above-mentioned terminal equipment C, terminal equipment A and terminal equipment B, or, the above-mentioned Terminal equipment A and terminal equipment B.
  • the embodiment of the present application also provides a computer-readable medium for storing computer program code, and the computer program includes a network device, terminal device A, terminal device B, or terminal device for executing the communication method in the above method 10 An instruction of the method executed in C.
  • the readable medium may be read-only memory (ROM) or random access memory (RAM), which is not limited in the embodiment of the present application.
  • This application also provides a computer program product, the computer program product includes instructions, when the instructions are executed, so that the terminal device A, the terminal device B, the terminal device C and the network device respectively execute the terminal corresponding to the above method Operation of equipment A, terminal equipment B, terminal equipment C and network equipment.
  • the embodiment of the present application also provides a system chip.
  • the system chip includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions, so that the communication device applied by the chip executes the operations of the terminal device A, the terminal device B, the terminal device C, and the network device in the method 10 provided in the above embodiment of the present application.
  • any of the communication devices provided in the foregoing embodiments of the present application may include the system chip.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit located outside the chip in the communication device, such as a ROM or a storage unit that can store static information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any one of the above may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the program execution of the feedback information transmission method described above.
  • the processing unit and the storage unit can be decoupled, respectively set on different physical devices, and connected in a wired or wireless manner to realize the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above-mentioned embodiments Various functions in.
  • the processing unit and the memory may also be coupled to the same device.
  • the processor in the embodiment of the present application may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the foregoing embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, communication device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及相应的装置和系统,可以应用于车联网,例如V2X、LTE-V、V2V等,或其他D2D通信系统。该方法包括:接收来自网络设备的调度信息,所述调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;根据所述频率资源信息发送所述侧行数据。通过该方法,可以在支持多个子载波间隔的情况下,保证AGC的有效执行。

Description

通信方法、装置、系统和可读存储介质 技术领域
本申请涉及无线通信领域,并且更具体地,涉及通信方法、装置、系统和可读存储介质。
背景技术
在车到一切(vehicle-to-everything,V2X)通信中,定义了两种空口,第一种为终端设备与接入网设备或基站之间的通信链路或者空口,一般称为Uu口,在Uu口传输的数据链路被称为上行链路(简称为上行)和下行链路(简称为下行)(uplink and donwlink),Uu口定义了终端设备和基站之间的通信协议。第二种叫近距离通信(proximity communication 5,PC5),在PC5口传输的数据链路被称为侧行链路(sidelink,SL)(简称为侧行),PC5口定义了终端设备和终端设备之间的通信协议。在sidelink通信中,规定了终端设备的两种模式(mode),即mode-1和mode-2。它们之间的区别是,处于mode-1的终端设备,在通信时,资源调度由基站进行;而处于mode-2的终端设备,在通信时,资源调度由终端设备进行。例如,基站预先配置资源池或者标准预定义资源池,终端设备在通信时,从该资源池中选择资源。
在新空口(new radio,NR)系统中,V2X通信也考虑支持多种子载波间隔,以支持不同类型的通信场景。比如在高速场景下,为了对抗多普勒频移,可以采用比较大的子载波间隔(例如60kHz);而对于一般的广播场景,可以采用较低的子载波间隔(例如15kHz)从而容忍更大的多径时延。如何在支持多种子载波间隔,即子载波间隔可变,的情况下,保证自动增益控制(automatic gain control,AGC)的有效执行,是一个亟待解决的问题。
发明内容
本申请提供一种通信方法、通信装置和系统,以期在支持多种子载波间隔的情况下,保证AGC的有效执行。
第一方面,提供了一种通信方法,包括:
接收来自网络设备的调度信息,所述调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
根据所述频率资源信息发送所述侧行数据。
具体的,终端设备或用于终端设备的装置接收来自网络设备的调度信息,并根据所述调度信息向另一终端设备发送侧行数据。
终端设备或用于终端设备的装置还根据所述调度信息发送另一调度信息给上述另一终端设备。
一种可能的实现方式中,所述第一对应关系为至少一个AGC所需的最小带宽与多个子载波间隔之间的多个对应关系中的一个,所述至少一个AGC所需的最小带宽包括所述第一AGC所需的最小带宽,所述子载波间隔包括所述第一子载波间隔。
一种可能的实现方式中,还包括:
接收来自所述网络设备的第一信息,所述第一信息指示所述第一AGC所需的最小带宽;或者,
所述第一AGC所需的最小带宽为预定义的。
具体的,终端设备或用于终端设备的装置接收来自网络设备的第一信息。
一种可能的实现方式中,所述频率资源信息包括实际调度的频率资源的信息,所述实际调度的频率资源信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
一种可能的实现方式中,所述频率资源信息指示实际调度的频率资源的信息与第一AGC所 需的最小带宽所占子信道个数的差值,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
一种可能的实现方式中,所述频率资源信息满足实际调度频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值的函数,比如,该函数为实际调度频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,或者,实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值+1,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
一种可能的实现方式中,根据所述频率资源信息发送侧行数据,包括:
根据所述第一AGC所需的最小带宽和所述频率资源信息确定实际调度频率资源的信息;
根据所述实际调度频率资源的信息发送侧行数据。
一种可能的实现方式中,所述子信道的带宽不大于所述第一AGC所需的最小带宽。
一种可能的实现方式中,所述第一AGC所需的最小带宽包括M个资源块RB,M为正整数。
一种可能的实现方式中,所述侧行数据的时域调度单位为第一时间单元,所述第一时间单元的第一个符号用于接收端实现AGC,所述第一时间单元包括至少一个符号。可选的,第一时间单元为时隙。可选的,一个时隙包括14个符号。
第二方面,提供了一种通信方法,包括:
确定终端设备的调度信息,所述调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
向所述终端设备发送所述调度信息。
具体的,网络设备确定终端设备A和终端设备B之间侧行通信的调度信息(也称为终端设备B的调度信息),并向所述终端设备A发送该调度信息。该调度信息可以承载在物理下行控制信道PDCCH中或是物理下行共享信道PDSCH中。可选的,终端设备A可以根据该调度信息向终端设备B发送另一调度信息,比如通过侧行控制信道PSCCH承载该另一调度信息,和侧行数据。
或者,终端设备C确定终端设备A和终端设备B之间侧行通信的调度信息(也称为终端设备B的调度信息),并向所述终端设备A发送该调度信息。该调度信息可以承载在侧行控制信道PSCCH中。可选的,终端设备A可以根据该调度信息向终端设备B发送另一调度信息,比如通过侧行控制信道PSCCH承载该另一调度信息,和侧行数据。
或者,终端设备A确定终端设备A和终端设备B之间侧行通信的调度信息(也称为终端设备B的调度信息),并向所述终端设备B发送该调度信息。该调度信息可以承载在侧行控制信道PSCCH中。终端设备A还可以向终端设备B发送侧行数据。
也就是,第二方面的执行主体可以是网络设备或用于网络设备的装置,终端设备C或用于终端设备C的装置,或,终端设备A或用于终端设备A的装置。
在一种可能的实现方式中,所述第一对应关系为至少一个AGC所需的最小带宽与多个子载波间隔之间的多个对应关系中的一个,所述至少一个AGC所需的最小带宽包括所述第一AGC所需的最小带宽,所述子载波间隔包括所述第一子载波间隔。
在一种可能的实现方式中,还包括:
向所述终端设备发送第一信息,所述第一信息指示所述第一AGC所需的最小带宽;或者,
所述第一AGC所需的最小带宽为预定义的。
具体的,网络设备向终端设备A发送第一信息,或,终端设备C向终端设备A发送第一信息,或,终端设备A向终端设备B发送第一信息。
在一种可能的实现方式中,所述频率资源信息包括实际调度的频率资源的信息,所述实际调度的频率资源信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
在一种可能的实现方式中,所述频率资源信息指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
在一种可能的实现方式中,所述频率资源信息满足实际调度频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值的函数,比如该函数可以为实际调度频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,或者,实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值+1,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
在一种可能的实现方式中,还包括:
根据所述第一AGC所需的最小带宽和实际调度的频率资源的信息确定所述频率资源信息。
具体的,网络设备确定所述频率资源信息,或,终端设备C确定所述频率资源信息,或,终端设备A确定所述频率资源信息。
在一种可能的实现方式中,所述子信道的带宽不大于所述第一AGC所需的最小带宽。
在一种可能的实现方式中,所述第一AGC所需的最小带宽包括M个资源块RB,M为正整数。
在一种可能的实现方式中,还包括:
根据所述第一子载波间隔确定所述第一AGC所需的最小带宽。
具体的,网络设备确定确定所述第一AGC所需的最小带宽,或,终端设备C确定所述第一AGC所需的最小带宽,或,终端设备A确定所述第一AGC所需的最小带宽。
在一种可能的实现方式中,所述侧行数据的时域调度单位为第一时间单元,所述第一时间单元的第一个符号用于接收端实现AGC,所述第一时间单元包括至少一个符号。
第三方面,提供了一种通信方法,包括:
接收来自第一终端设备的调度信息,所述调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
根据所述频率资源信息接收所述侧行数据。
具体的,第二终端设备(终端设备B)接收来自第一终端设备(终端设备A)的所述调度信息,即本方法由第二终端设备执行。
在一种可能的实现方式中,所述第一对应关系为至少一个AGC所需的最小带宽与多个子载波间隔之间的多个对应关系中的一个,所述至少一个AGC所需的最小带宽包括所述第一AGC所需的最小带宽,所述子载波间隔包括所述第一子载波间隔。
在一种可能的实现方式中,还包括:
接收来自所述第一终端设备的第一信息,所述第一信息指示所述第一AGC所需的最小带宽;或者,
所述第一AGC所需的最小带宽为预定义的。
具体的,第二终端设备接收所述第一信息。
在一种可能的实现方式中,所述频率资源信息包括实际调度的频率资源的信息,所述实际调度的频率资源信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
在一种可能的实现方式中,所述频率资源信息指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
在一种可能的实现方式中,所述频率资源信息满足实际调度频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值的函数,该函数为实际调度频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,或者,实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值+1,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
在一种可能的实现方式中,根据所述频率资源信息接收侧行数据,包括:
根据所述第一AGC所需的最小带宽和所述频率资源信息确定实际调度频率资源的信息;
根据所述实际调度频率资源的信息接收侧行数据。
在一种可能的实现方式中,所述子信道的带宽不大于所述第一AGC所需的最小带宽。
在一种可能的实现方式中,所述第一AGC所需的最小带宽包括M个资源块RB,M为正整数。
在一种可能的实现方式中,所述侧行数据的时域调度单位为第一时间单元,所述第一时间单元的第一个符号用于接收端实现AGC,所述第一时间单元包括至少一个符号。
第四方面,提供一种装置。本申请提供的装置具有实现上述第一方面至第三方面及各方面的任一种可能的实现方式中一项或多项中网络设备或终端设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器,进一步的,可以包括通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中网络设备相应的功能。例如,确定调度信息。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,发送所述调度信息。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为基站,gNB或TRP,DU或CU等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为芯片。所述通信单元可以为芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括处理器,与存储器耦合。该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第二方面,或,第二方面中任一种可能的实现方式中网络设备完成的方法。进一步的,该装置还可以包括收发器,在处理器的控制下,进行发送和/或接收。
在一种可能的设计中,上述装置包括一个或多个处理器,进一步的,可以包括通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中终端设备相应的功能。例如,确定调度信息。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,发送调度信息或接收调度信息。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为智能终端或可穿戴设备等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为芯片。所述通信单元可以为芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括处理器,该处理器与存储器耦合。该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面,第二方面,第三方面,第一方面的任一种可能实现方式,第二方面的任一种可能的实现方式,或,第三方面的任一种可能的实现方式中终端设备完成的方法。
第五方面,提供了一种系统,该系统包括上述网络设备,终端设备A,终端设备B,或,终端设备C中的一项或多项。
第六方面,提供了一种可读存储介质或程序产品,用于存储程序或指令,该程序或指令包括用于执行第一方面至第三方面中任一方面,或第一方面至第三方面中任一方面的任一种可能实现方式中的方法的指令。
第七方面,提供了一种芯片或电路,用于执行第一方面至第三方面中任一方面,或第一方面至第三方面中任一方面的任一种可能实现方式中的方法。
通过本申请实施例提供的方法,可以提供一种通信方法,也可称为一种频率资源的调度方法,以期在支持多种子载波间隔,即,子载波间隔可变的情况下,保证AGC的有效执行。本申请实施例提供的方法、装置,系统和可读存储介质,可以应用于车联网,例如V2X、LTE-V、V2V等, 或,其他D2D网络。
附图说明
图1是本申请实施例中的V2V通信的一个典型场景的示意图;
图2是本申请实施例中的利用比特地图指示用于V2X通信的时隙的示意图;
图3是本申请实施例中的V2X通信资源池的一个时频资源示意图;
图4-1是本申请实施例中的PSCCH和PSSCH采用频分复用的示意图;
图4-2是本申请实施例中的PSCCH和PSSCH采用部分频分复用和部分时分复用的示意图;
图5是本申请实施例中的用于AGC的无线传输的示意图;
图6是适用于本申请实施例的通信方法的通信系统100的示意图;
图7是适用于本申请实施例的通信方法的通信系统200的示意图;
图8-1是本申请实施例提供的通信方法的示意性流程图;
图8-2是本申请实施例提供的通信方法的示意性流程图;
图8-3是本申请实施例提供的通信方法的示意性流程图;
图8-4是本申请实施例提供的通信方法的示意性流程图;
图9-1是本申请实施例中的PSCCH和PSSCH采用部分频分复用和部分时分复用的方式映射在时频资源上的再一示意图;
图9-2是本申请实施例中的PSCCH和PSSCH采用部分频分复用和部分时分复用的方式映射在时频资源上的又一示意图;
图9-3是本申请实施例中的PSCCH和PSSCH采用部分频分复用和部分时分复用的方式映射在时频资源上的又一示意图;
图10-1是本申请实施例提供的被调度的子信道的数目进行差值指示的示意图;
图10-2是本申请实施例提供的被调度的子信道的数目进行差值指示的另一示意图;
图11是本申请实施例提供的一种终端设备的结构示意图;
图12是本申请实施例提供的一种终端设备的另一结构示意图;
图13是本申请实施例提供的一种网络设备的结构示意图;
图14是本申请实施例提供的通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),多种系统融合的网络,物联网系统,车联网系统,以及未来的通信系统,如6G系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例既可以应用于时分双工(time division duplex,TDD)的场景,也可以适用于频分双工(frequency division duplex,FDD)的场景。
本申请实施例既可以应用在传统的典型网络中,也可以应用在未来的以UE为中心(UE-centric)的网络中。UE-centric网络引入无小区(Non-cell)的网络架构,即在某个特定的区域内部署大量 小站,构成一个超级小区(Hyper cell),每个小站为Hyper cell的一个传输点(Transmission Point,TP)或TRP,并与一个集中控制器(controller)相连。当UE在Hyper cell内移动时,网络侧设备时时为UE选择新的sub-cluster(子簇)为其服务,从而避免真正的小区切换,实现UE业务的连续性。其中,网络侧设备包括无线网络设备。
本申请实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例中的网络设备可以为具有无线收发功能的设备或可设置于该设备的芯片,可以部署在无线接入网中为终端设备提供无线通信服务。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等,或者,为车载设备、可穿戴设备或未来演进的PLMN网络中的网络设备等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。多个DU可以由一个CU集中控制。CU实现gNB的部分功能,DU实现gNB的部分功能,CU和DU可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和介质接入控制(medium access control,MAC)层等的功能设置在DU。又例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
或者,CU可以划分为控制面(CU-CP)和用户面(CU-UP)。其中CU-CP负责控制面功能,主要包含RRC和PDCP-C。PDCP-C主要负责控制面数据的加解密,完整性保护,数据传输等中的一项或多项。CU-UP负责用户面功能,主要包含SDAP和PDCP-U。其中SDAP主要负责将核心网的数据进行处理并将flow映射到承载。PDCP-U主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等中的一项或多项。其中CU-CP和CU-UP通过接口(例如E1接口)连接。CU-CP通过接口(例如Ng接口)和核心网连接,通过接口(例如F1-C(控制面接口))和DU连接。CU-UP通过接口(例如F1-U(用户面接口))和DU连接。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等等。本申请的实施例对应用场景不做限定。本申请中由终端设备实现的方法和步骤,也可以由可用于终端设备的部件(例如芯片或者电路)等实现。本申请中将前述终端设备及可设置于前述终端设备的部件(例如芯片或者电路)统称为终端设备。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
车辆对其他设备(vehicle to everything,V2X)通信是车联网中实现环境感知、信息交互的重要关键技术,这里的其他设备可以是其他车辆、其他基础设施、行人、或终端设备等中的一项或多项。V2X通信可以看成是设备到设备(device to device,D2D)通信的一种特殊情形。车辆到车辆(vehicle to vehicle,V2V)之间的通信可以看成是V2X通信的一种特殊情形,通过车辆和车辆之间直接进行通信,可以实时地获取其他车辆的状态信息以及路面情况,从而更好地辅助车辆驾驶甚至实现自动驾驶。V2V之间的通信链路可以称为侧行链路(side link,SL),侧行链路为终端设备和终端设备设备之间的通信直连链路。例如,可以车辆到车辆之间的通信等。直连链路可以理解为两个终端设备之间直接进行数据传输的链路,两个终端设备之间没有其他的网络节点。图1是V2V通信的一个典型场景的示意图。如图1所示,行驶中的车辆可以通过V2V通信来直接和附近的其他车辆交互信息。可以理解的是,本申请实施例提供的方法、装置,系统和可读存储介质,也可以应用于其他D2D通信网络,图1为D2D通信网络的一种示例,也可以认为是V2X网络的一种示例。
目前,V2X通信包含两种通信模式:第一种通信模式是基于网络设备(例如基站)调度的V2X通信,V2X用户(例如可以是车辆或者车载设备)根据网络设备的调度信息在被调度的时频资源上发送V2X通信的控制消息和数据。第二种通信模式是V2X用户在预配置的V2X通信资源池(或者也可以称为V2X资源集合)包含的可用时频资源中自行选择V2X通信所用的时频资源,并在所选择的资源上发送控制信息和数据。两种通信模式各有优缺点,可以灵活运用于各种不同的场景。
V2X通信的时频资源是基于V2X通信资源池来进行配置的。V2X通信资源池可以看作是用于V2X通信的时域资源和频率资源的集合。例如,对于时域资源,网络设备可以采用一个比特地图(bit map)并且周期性重复该比特地图来指示系统中所有时间单元,比如子帧或时隙,中可用于V2X通信的时间单元的集合。其中,一个子帧的时间长度可以为1ms,一个时隙的时间长度可以为0.5ms或者1ms或者其他长度(比如由子载波间隔决定)。图2是利用比特地图指示用于V2X通信的时隙的示意图。例如,可以利用比特位“1”指示某一个时隙用于V2X通信,利用比特位“0”指示某一个时隙不用于V2X通信。图2所示例子中的比特地图的长度为8比特。
对于V2X通信资源池的频率资源,网络设备可以将用于V2X通信的频段分成若干个子信道,每个子信道包含一定数量的资源块(resource block,RB)。子信道可以为频率资源调度的最小单元。图3是一例V2X通信资源池的时频资源示意图。如图3所示,利用比特位“1”指示某一时间单元,比如子帧或时隙,可用于V2X通信,利用比特位“0”指示某一个时间单元不用于V2X通信。另外网络设备会指示用于V2X通信的频率资源的第一个资源块的序号,该V2X通信资源池包含的总的子信道的数目N,每个子信道包含的资源块的数目n CH。V2X通信时数据或者控制信息传输一次可以占用一个或者多个子信道。需要理解的是,上述描述中的子帧为通信系统(例 如LTE)中定义的一种时间单位,一个子帧的时间长度为1ms,时隙也为通信系统(例如NR及LTE)中定义的一种时间单位,一个时隙的时间长度为0.5ms或者1ms或者其他长度(比如由子载波间隔决定)。示例的,在NR中,一个时隙可以包括14个符号,在LTE中,一个子帧可以包括14个符号,一个时隙可以包括7个符号(正常循环前缀CP)。
在V2X通信系统中,物理侧行控制信道(physical sidelink control channel,PSCCH)用于传输V2X通信中的控制信息,物理侧行共享信道(physical sidelink shared channel,PSSCH)用于传输V2X通信中的数据。前述控制信息用于接收端接收V2X通信时的数据。目前,比如但不限于LTE系统,PSCCH和PSSCH可以采用频分复用(frequency division multiplexing,FDM)的方式进行复用。图4-1是PSCCH和PSSCH采用频分复用的示意图。如图4-1所示,PSCCH和PSSCH的占用相同的时域资源,在频域上占据不同的子载波。
作为另外一种可能实现方式,PSCCH和PSSCH可以利用部分时分复用和部分频分复用的方式,图4-2是PSCCH和PSSCH采用部分频分复用和部分时分复用的示意图。如图4-2所示,一部分PSSCH与PSCCH占用相同的时域资源,在频域上占据不同的子载波,一部分PSSCH与PSCCH在时域上占据不同的时域资源。
在无线通信过程中,AGC是接收端根据平均或者峰值接收功率来动态地调整放大器的增益的操作,通过AGC可以使得接收端的相关电路能够在更大范围的输入信号下正常地工作。因此,在进行AGC之前,接收端会接收发送端发送的信号,并且根据所述信号的接收功率进行AGC。随后,接收端可以继续接收发送端发送的其他信号。也即,进行有效的AGC是接收端正确接收发送端所发信息的一个必要步骤。图5给出了一个用于AGC的无线传输的示意图,其中在无线传输开头的一部分可以用于接收端进行AGC,从而使得接收端能正确接收随后的无线传输。
当前V2X网络中,V2X传输时间单元,如子帧或时隙,的第一个符号用于AGC。
对于NR V2X网络,由于可以支持多种子载波间隔,包括15kHz,30kHz,60kHz等中的一项或多项。随着子载波间隔的增大,一个符号的持续时间会减少,例如15kHz时,一个符号持续时间大约是66.7微秒;30kHz时,一个符号持续时间是15kHz的一半,也即33.3微秒;60kHz时,一个符号持续时间是15kHz的四分之一,也即16.7微秒。其他子载波间隔以此类推。而AGC所需要的时间和接收信号的带宽相关,接收信号的带宽越大,AGC所需的时间越短;接收信号的带宽越小,AGC所需的时间越大。换言之,如果用于AGC的信号占据一个符号,那么随着子载波间隔的增大,AGC的持续时间会减小,所需要的接收信号的带宽也会越大,从而需要进一步考虑AGC对于V2X资源调度的影响。
有鉴于此,本申请实施例提供了一种通信方法,具体也可以称为频率资源的调度方法,以期在支持多种子载波间隔,即,子载波间隔可变的情况下,保证AGC的有效执行。在本申请实施例中,具体用于AGC的符号可以是V2X传输时间单元的第一个符号,或是前若干个符号。
为便于理解本申请实施例,首先结合图6和图7简单介绍适用于本申请实施例的通信系统。
图6是适用于本申请实施例的通信方法的通信系统100的示意图。如图6所示,该通信系统100包括四个通信设备,例如,网络设备110,终端设备121至123,其中,终端设备和终端设备可以通过D2D或者V2X的通信方式进行数据通信,网络设备110与终端设备121至123中的至少一个之间可以进行数据通信。对于终端设备121至123,两两之间形成的直连链路为SL。例如,终端设备121和123进行侧行控制信息和/或数据的传输时,可以通过本申请实施例的频率资源的调度方法进行承载侧行数据的频率资源的调度。
图7是适用于本申请实施例的通信方法的通信系统200的示意图。如图7所示,该通信系统200包括三个通信设备,例如,终端设备121至123,其中,终端设备和终端设备可以通过D2D或者V2X的通信方式进行数据通信。对于终端设备121至123,两两之间的链路为SL。例如,终端设备123和122之间进行侧行控制信息和/或数据的传输时,可以通过本申请实施例的频率资源的调度方法进行承载侧行数据的频率资源的调度。
应理解,图6和图7所示的各通信系统中还可以包括更多的网络节点,例如终端设备或网络设备,图6和图7所示的各通信系统中包括的网络设备或者终端设备可以是上述各种形式的网络设备或者终端设备。本申请实施例在图中不再一一示出。
下面结合图8-1,8-2,8-3和8-4详细说明本申请提供的通信方法,图8-1,8-2,8-3和8-4是本申请一个实施例的通信方法10的示意性交互图,该方法10可以应用在图1、图6和图7所示 的场景中,当然也可以应用在其他通信场景中,本申请实施例在此不作限制。
本申请实施例提供的通信方法,具体可以称为频率资源的调度方法,可以用于两个终端设备,比如终端设备A和终端设备B,之间的侧行通信。
应理解,在本申请实施例中,以终端设备和网络设备作为各个实施例的执行方法的执行主体为例,对各个实施例的方法进行说明。作为示例而非限定,执行方法的执行主体也可以是应用于终端设备的芯片和应用于基站的芯片。示例性的,方法10应用于V2X通信系统中时,该终端设备(比如,终端设备A和/或终端设备B)可以是V2X通信中的车辆、车载设备、手机终端等中的一项或多项。
如图8-1所示,该方法10可以包括:
S110,终端设备A向终端设备B发送第一调度信息和侧行数据,所述第一调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位(即,第一频率资源信息对应的频率资源以子信道为最小频域调度单元)且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
相应的,终端设备B接收来自终端设备A的所述第一调度信息,并根据所述第一调度信息接收来自所述终端设备A的侧行数据;
可选的,该第一调度信息可以承载在物理侧行控制信息(PSCCH)中。
其中,终端设备B根据所述第一调度信息接收来自所述终端设备A的侧行数据,具体可以包括:终端设备B根据所述频率资源信息接收来自所述终端设备A的侧行数据。
其中,终端设备A利用所述频率资源发送所述侧行数据。
可选的,侧行数据可以承载在物理侧行数据信道(PSSCH)中。
其中,所述PSCCH和PSSCH可以采用部分频分复用和部分时分复用的方式映射在时频资源上,如图9-1所示。终端设备A可以发送PSCCH和PSSCH,终端设备B可以根据预先定义的规则在V2X通信资源池所包含的时频资源上盲检PSCCH,终端设备B检测到PSCCH后,根据PSCCH携带的第一调度信息,确定PSSCH的频率资源信息和时域资源信息中的一项或多项,并基于所述PSSCH的频率资源信息和时域资源信息中的一项或多项对相应的PSSCH进行接收和/或处理。例如,如图9-1所示,可以规定PSCCH总是位于子信道的最低的4个RB,假设资源池包含10个子信道,编号为0-9,并且当前被调度的PSSCH占据子信道3-5。接收端首先在前述10个子信道中的每个子信道的前4个RB盲检PSCCH,检测到信道3上有PSCCH,并根据PSCCH承载的第一调度信息获知PSSCH承载在子信道3-5上,进而在子信道3-5对PSSCH进行接收和/或处理。
在S110之前,该方法还可以包括:
S100,终端设备A获得所述频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源;
基于不同的V2X的通信模式,即,终端设备所处的不同通信模式,S100可以有不同的方式,具体可以包括三种方式。
其中,方式一,适用于工作在模式1(mode-1)的终端设备,如图8-2所示,S100可以至少包括S1000,其中:
S1000,终端设备A接收来自网络设备的第二调度信息,其中,所述第二调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
相应的,网络设备向所述终端设备A发送所述第二调度信息。
可选的,所述第二调度信息可以承载在下行控制信息(downlink control information,DCI)中,其中,DCI携带在物理下行控制信道(PDCCH)中;或者,第二调度信息可以承载在物理下行共享信道(PDSCH)中。
可选的,在所述网络设备发送所述第二调度信息之前,可以确定发给所述终端设备A的第二 调度信息。
进一步的,终端设备A可以根据所述第二调度信息向所述终端设备B发送第一调度信息并根据所述频率资源信息向终端设备B发送所述侧行数据,即,执行步骤S110。
可以理解的是,第一调度信息所指示的频率资源信息(简称第一频率资源信息)和第二调度信息所指示的频率资源信息(简称第二频率资源信息)虽然都是用于承载终端设备A向终端设备B发送的侧行数据的,但二者可以采用相同的形式或不同的形式,比如,如后续将详细描述的,第一频率资源信息可以包括实际调度的频率资源的信息或指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,第二频率资源信息可以包括实际调度的频率资源的信息或指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,在第一频率资源信息和第二频率资源信息采用不同的形式时,终端设备A可以将所接收到第二频率资源信息转换为待发送给终端设备B的第一频率资源信息。
方式二,适用于工作在模式2(mode-2)的终端设备,如图8-3所示,S100可以至少包括S1010,其中:
S1010,所述终端设备A接收来自终端设备C的第三调度信息,其中,所述第三调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
相应的,终端设备C向所述终端设备A发送所述第三调度信息。
可选的,所述第三调度信息可以承载在侧行控制信息(downlink control information,SCI)中,其中,SCI携带在物理侧行控制信道(PSCCH)中;或者,第三调度信息可以承载在物理侧行共享信道(PSSCH)中。
可选的,在所述终端设备C发送所述第三调度信息之前,可以确定发给所述终端设备A的第三调度信息。
进一步的,终端设备A可以根据所述第三调度信息向所述终端设备B发送第一调度信息并根据所述频率资源信息向终端设备B发送所述侧行数据,即,执行步骤S110。
可以理解的是,第一调度信息所指示的频率资源信息(简称第一频率资源信息)和第三调度信息所指示的频率资源信息(简称第三频率资源信息)虽然都是用于承载终端设备A向终端设备B发送的侧行数据的,但二者可以采用相同的形式或不同的形式,比如,如后续将详细描述的,第一频率资源信息可以包括实际调度的频率资源的信息或指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,第三频率资源信息可以包括实际调度的频率资源的信息或指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,在第一频率资源信息和第三频率资源信息采用不同的形式时,终端设备A可以将所接收到第三频率资源信息转换为待发送给终端设备B的第一频率资源信息。
方式三,适用于工作在模式2(mode-2)的终端设备,如图8-4所示,S100可以至少包括S1020,其中:
S1020,所述终端设备A自行确定第一调度信息,其中,所述第一调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
进一步的,终端设备A向所述终端设备B发送第一调度信息并利用所述频率资源信息对应的频率资源向终端设备B发送所述侧行数据,即,执行步骤S110。
以上方法10中,所述第一对应关系为至少一个AGC所需的最小带宽与多个子载波间隔之间的多个对应关系中的一个,所述至少一个AGC所需的最小带宽包括所述第一AGC所需的最小带宽,所述子载波间隔包括所述第一子载波间隔。
其中,AGC所需的最小带宽与子载波间隔之间的对应关系可以为一对多,多对一,或者,一对一,可以依据具体协议或应用场景或设计需求确定,在此不予限定。
可选的,所述第一AGC所需的最小带宽包括M个资源块RB,M为正整数,即,第一AGC所需的最小带宽可以以资源块RB为单位。
可选的,所述子信道的带宽不大于所述第一AGC所需的最小带宽。这样,可以避免在第一AGC所需的最小带宽较大的情况下,以子信道为最小调度单元进行频域资源的调度,所造成的频域资源的浪费。此外,子信道的带宽可以为协议预定义的值,也可以通过信令进行配置。该配置可以是直接配置子信道的带宽,或者,可以通过子信道的带宽与其他参数的对应关系及所述其他参数的配置来实现。其中,子信道的带宽与其他参数的对应关系可以为协议预定义的,或是,通过信令配置的,在此不予限定。其中,其他参数可以包括终端设备所在载波的带宽或者终端设备所在的带宽部分(bandwidth part,BWP)的带宽或者是终端设备的侧行BWP带宽等中的一项或多项。
下表1示出了至少一个AGC所需的最小带宽与多个子载波间隔之间的多个对应关系的一个举例,可以理解的是,AGC所需的最小带宽与子载波间隔之间的对应关系可以满足以下所示对应关系中的一个。下表中的某子载波间隔所对应的AGC所需的最小带宽也可以为其他值,比如将以下不同的AGC所需的最小带宽替换为第一值或第二值等不同的取值,相应的,子载波间隔也可以替换为第一子载波间隔或第二子载波间隔等不同的取值。
表1.AGC所需的最小带宽和子载波间隔的对应关系
子载波间隔(kHz) AGC所需最小带宽n AGC(RB)
15 4
30 8
60 12
120 12
240 24
480 24
上表中的对应关系的一项或多项还可以形成其他的对应关系表,即,形成一张或多张表,来体现AGC所需的最小带宽与子载波间隔之间的对应关系。此外,可以理解的是,AGC所需的最小带宽与子载波间隔之间的对应关系可以通过前述的表的形式表现,或者,还可以为以公式或字符串等其他形式表现,在此不予限定。
可选的,以上对应关系可以存储于以上方法10中的发送端和/或接收端,即,预定义在发送端和/或接收端的,其中,发送端可以为上述方法中提及的网络设备,终端设备C,终端设备A中的一个或多个(在本申请实施例中的其他部分也适用),接收端可以为上述方法中提及的终端设备A,终端设备B中的一个或多个(在本申请实施例中的其他部分也适用)。这样,发送端可以根据侧行数据所对应的子载波间隔及所存储的子载波间隔与AGC所需的最小带宽之间的对应关系获知该子载波间隔所对应的第一AGC所需的最小带宽,进而,可以确定用于承载侧行数据的频率资源的带宽,以使得侧行数据的被调度带宽不小于第一自动增益控制AGC所需的最小带宽。这样可以保证侧行数据的接收端有效的执行AGC。而接收端可以根据侧行数据所对应的子载波间隔及所存储的子载波间隔与AGC所需的最小带宽之间的对应关系获知该子载波间隔所对应的第一AGC所需的最小带宽。
可选的,以上对应关系也可以进行配置,比如由发送端向接收端进行配置,或是,由主控制端向所述发送端和/或接收端进行配置,比如,通过RRC信令,MAC层信令或物理层信令中的一项或多项进行配置。具体的,可以对以上对应关系中的各项进行索引或是直接将当前侧行数据所对应的AGC所需的最小带宽包括在用于所述配置的信息中,比如,通过RRC信令,MAC层信令 或物理层信令中的一项或多项携带所述用于配置的信息,从而对当前侧行数据所对应的AGC所需的最小带宽进行直接的指示,这样,接收端可以无需结合子载波间隔来获得当前侧行数据所对应的AGC所需的最小带宽。
可选的,前述方法10中所述的频率资源信息可以包括实际调度的频率资源的信息,所述实际调度的频率资源信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。或者,所述频率资源信息可以指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数,比如,所述频率资源信息可以满足实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值的函数,该函数可以为所述差值,或者,所述差值+1。指示差值,可以进一步降低调度信息的开销,使用差值+1,可以进一步避免出现实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数相同时在调度信息中频率资源信息所对应的域的值为0的情况。这样,可以避免域的值为0,对译码或是解扰造成的干扰。
以频率资源信息包括实际调度的频率资源的信息为例,假设子信道的带宽n subCH=2(RB),当前侧行数据对应的第一AGC所需的最小带宽n AGC=12(RB)(根据表1,当前侧行数据对应的子载波间隔为60kHz或120kHz),而终端设备A当前V2X数据传输所需的带宽为15RB。则可以调度V2X的传输带宽,即侧行数据(PSSCH)的被调度带宽为8个子信道,并且侧行控制信息(PSCCH)在频域上也可以跨多个子信道。图9-2和图9-3为该V2X资源调度的示意图,其中,图9-2中PSCCH/DMRS(解调参考信号)在第一个符号中传输,图9-3中PSCCH/DMRS在第一个符号中不传输,第一个符号用于AGC,PSCCH占据4个子信道,PSSCH占据8个子信道。可以看到,在该示例中,子信道的带宽远小于所述第一AGC所需的最小带宽,相较于将子信道的带宽设置为等于所述第一AGC所需的最小带宽,调度15RB需要2个子信道,会有9个RB被浪费,该示例采用的子信道的带宽小于所述第一AGC所需的最小带宽的设置,可以有效的避免频率资源的浪费。以图9-2或图9-3为例,可以规定PSCCH的带宽是8个RB,并且其起始RB总是位于子信道的最低RB,假设资源池包含20个子信道,编号为0~19,每个子信道带宽2RB,并且此次被调度的PSSCH占据子信道2~9,接收端可以先在前述20个子信道中的每个子信道的最低RB为起始盲检PSCCH,检测到信道2上有PSCCH并且该PSCCH横跨子信道2~5,进而根据PSCCH中的指示,如调度信息,获知PSSCH占据子信道2~9,进而在子信道2~9上对前述PSSCH进行(后续)接收和/或处理。
再以频率资源信息指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值为例,记频率资源信息所指示的子信道的数目为N sched_i,记实际需要调度的子信道的数目为N sched,当前侧行数据对应的第一AGC所需的最小带宽为n AGC,子信道的带宽为n subCH,则
Figure PCTCN2019101112-appb-000001
图10-1给出了这种差值指示方式的一个示意图。其中,左图中,假设n AGC=10RB、n subCH=4RB、实际需要调度的子信道数目N sched=3(如图中阴影部分),则需要额外指示的信道的数目N sched_i=0;右图中,假设n AGC=10RB、n subCH=6RB、实际需要调度的子信道数目N sched=4(如图中阴影部分),则需要额外指示的信道的数目N sched_i=2。也就是,发送端,如网络设备,终端设备C,终端设备A中的一个或多个,可以通过频率资源信息指示额外的信道数目N sched_i。对于接收端,如终端设备A,终端设备B中的一个或多个,可以根据被指示的子信道的数目N sched_i,配置或者预配置或者协议预定义的AGC所需的最小带宽n AGC以及配置或者预配置或者协议预定义的子信道带宽n subCH,得出实际调度的子信道的数目
Figure PCTCN2019101112-appb-000002
可以看出,采用这种差值的指示方法可以降低指示开销。
另一方面,也可以对上述方法进行适当改动,从而避免出现所指示的子信道数目为0,比如前述的所述频率资源信息满足实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值的函数,该函数可以为所述差值+1。具体地,记频率资源信息指示的子信道的数目为N sched_i,记实际需要调度的子信道的数目为N sched,当前侧行数据对应的第一AGC所需的最小带宽为n AGC,子信道的带宽为n subCH,则
Figure PCTCN2019101112-appb-000003
图10-2给出了这种差值指示方式的另一个示意图,其中,左图中,假设n AGC=10RB、n subCH=4RB、实际需要调度的子信道数目N sched=3(如图中阴影部分)时,则需要额外指示的信道的数目N sched_i=1;右图中,假设n AGC=10RB、n subCH=6RB、实际需要调度的子信道数目N sched=4(如图中阴影部分)时,则需要 额外指示的信道的数目N sched_i=3。也就是,发送端,如网络设备,终端设备C,终端设备A中的一个或多个,可以通过频率资源信息指示额外的信道数目N sched_i。对于接收端,如终端设备A,终端设备B中的一个或多个,可以根据被指示的子信道的数目N sched_i,配置或者预配置或者标准预定义的AGC所需带宽n AGC以及配置或者预配置或者标准预定义的子信道带宽n subCH,得出实际调度的子信道的数目
Figure PCTCN2019101112-appb-000004
进一步的,在频率资源信息指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值的情况下,
以上方法10中的方式一中的终端设备A和/或方式二中的终端设备A所执行的根据所述频率资源信息发送侧行数据(S100)可以包括:根据所述第一AGC所需的最小带宽和所述频率资源信息确定实际调度频率资源的信息;并根据所述实际调度频率资源的信息发送侧行数据;
方式一中的网络设备或终端设备A,方式二中的终端设备C或终端设备A,或,方式三中的终端设备A中的一项或多项可以进一步根据所述第一AGC所需的最小带宽和实际调度的频率资源的信息确定所述频率资源信息,可以理解的是,方式一中网络设备和终端设备A所发送的频率资源信息可以为相同的频率资源的不同的指示方式或相同的指示方式,比如网络设备直接指示实际调度的频率资源,终端设备A则通过差值的方式指示频率资源;同样,方式二中终端设备C和终端设备A所发送的频率资源信息可以为相同的频率资源的不同的指示方式或相同的指示方式,比如终端设备C直接指示实际调度的频率资源,终端设备A则通过差值的方式指示频率资源。
方式一中的终端设备B,方式二中的终端设备B,或,方式三中的终端设备B中的一项或多项根据所述频率资源信息接收侧行数据(S110),可以包括:根据所述第一AGC所需的最小带宽和所述频率资源信息确定实际调度频率资源的信息;并根据所述实际调度频率资源的信息接收侧行数据。
可选的,所述侧行数据的时域调度单位为第一时间单元,所述第一时间单元的第一个符号用于接收端实现AGC,所述第一时间单元包括至少一个符号。可选的,第一时间单元可以包括时隙。
可以理解的是,以上实施例虽然从系统通信的角度进行的描述,本领域技术人员直接毫无疑义的从中获得从各个网元的角度进行分别描述的方法,比如终端设备A可以执行S1000和S110,或,S1010和S110,或,S1020和S110,网络设备可以执行S1001和S1000,终端设备C可以执行S1011和S1010,终端设备B可以执行S110,具体可以参考前述方法10中的描述,在此不予赘述。此外,终端设备A,终端设备B,终端设备C或网络设备所执行的动作也可以相应的描述为用于终端设备A的装置(比如处理器,电路或芯片),用于终端设备B的装置(比如处理器,电路或芯片),用于终端设备C的装置(比如处理器,电路或芯片),用于网络设备的装置(比如处理器,电路或芯片)所执行的动作,具体可以参见前述方法10中的描述,在此不予赘述。
以上结合图8-1,8-2,8-3和8-4详细说明了本申请实施例的通信方法。以下结合图11至图14详细说明本申请实施例的通信装置,比如终端设备,用于终端设备的装置(比如处理器,电路或芯片),网络设备,或,用于网络设备的装置(比如处理器,电路或芯片)。
图11是本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图1,图6或图7中的一项或多项所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图11仅示出了终端设备的主要部件。如图11所示,终端设备50包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基 带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
作为一种可选的实现方式,所述终端设备可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图11中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备50的收发单元501,例如,用于支持终端设备执行接收功能和发送功能。将具有处理功能的处理器502视为终端设备50的处理单元502。如图11所示,终端设备50包括收发单元501和处理单元502。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元501中用于实现接收功能的器件视为接收单元,将收发单元501中用于实现发送功能的器件视为发送单元,即收发单元501包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器502可用于执行该存储器存储的指令,以控制收发单元501接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。所述处理器502还包括接口,用以实现信号的输入/输出功能。作为一种实现方式,收发单元501的功能可以考虑通过收发电路或者收发的专用芯片实现。
图12是本申请实施例提供的终端设备的另一结构示意图。如图12所示,终端设备60包括处理器601和收发器602。可选的,该终端设备600还包括存储器603。其中,处理器601、收发器602和存储器603之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器603用于存储计算机程序,该处理器601用于从该存储器603中调用并运行该计算机程序,以控制该收发器602收发信号。终端设备600还可以包括天线604,用于将收发器602输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器601和存储器603可以合成一个处理装置,处理器601用于执行存储器603中存储的程序代码来实现上述功能。具体实现时,该存储器603也可以集成在处理器601中,或者独立于处理器601。
具体的,该终端设备60可对应于根据本申请实施例的方法的各个实施例中。并且,该终端设备60中的各单元和上述其他操作和/或功能分别为了实现方法的各个实施例中的相应流程。
上述处理器601可以用于执行前面方法实施例中描述的终端设备A,终端设备B,终端设备C中的一项或多项实现的动作(终端设备在不同的通信中,可以为终端设备A,终端设备B,或,终端设备C),而收发器602可以用于执行前面方法实施例中描述的终端设备A,终端设备B,终端设备C中的一项或多项发送或者接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选的,上述终端设备60还可以包括电源605,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备60还可以包括输入单元606、显示单元607、音频电路608、摄像头609和传感器66等中的一个或多个,该音频电路还可以包括扬声器6082、麦克风6084等。
图13是本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图13所示,该基站可应用于如图1,图6或图7中的一项或多项所示的系统中,执行上述方法实施 例中网络设备的功能。基站70可包括一个或多个DU 701和一个或多个CU 702。CU702可以与NG core(下一代核心网,NC)通信。所述DU 701可以包括至少一个射频单元7012,至少一个处理器7013和至少一个存储器7014。所述DU701还可以包括至少一个天线7011。所述DU 701部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU702可以包括至少一个处理器7022和至少一个存储器7021。CU702和DU701之间可以通过接口进行通信,其中,控制面(Control plan)接口可以为Fs-C,比如F1-C,用户面(User Plan)接口可以为Fs-U,比如F1-U。
所述CU 702部分主要用于进行基带处理,对基站进行控制等。所述DU 701与CU 702可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 702为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 702可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和媒体接入控制(media access control,MAC)层等的功能设置在DU。又例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、介质接入控制(medium access control,MAC)和物理(physical,PHY)层的功能。
此外,可选的(图中未示),基站70可以包括一个或多个天线,一个或多个射频单元,一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器和至少一个存储器,至少一个天线和至少一个射频单元可以集成在一个天线装置中,CU可以包括至少一个处理器和至少一个存储器。
在一个实例中,所述CU702可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器7021和处理器7022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU701可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器7014和处理器7013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图14给出了一种通信装置80的结构示意图。通信装置80可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置80可以是芯片,网络设备(如基站),或,终端设备。
所述通信装置80包括一个或多个处理器801。所述处理器801可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端设备或网络设备(比如基站)。又如,装置可以为终端设备或网络设备(比如基站),所述收发单元可以为收发器,射频芯片等。
所述通信装置80包括一个或多个所述处理器801,所述一个或多个处理器801可实现图8-1,8-2,8-3,8-4所示的实施例中网络设备或者终端设备的方法。
在一种可能的设计中,所述通信装置80包括用于接收来自网络设备的调度信息的部件(means),以及用于根据所述调度信息发送侧行数据的部件(means)。例如可以通过收发器、或输入/输出电路、或芯片的接口接收所述调度信息或发送所述侧行数据。所述调度信息可以参见上述方法实施例中的相关描述。
在一种可能的设计中,所述通信装置80包括用于确定终端设备的调度信息的部件(means),以及用于向所述终端设备发送所述调度信息的部件(means)。具体参见上述方法实施例中的相关描 述。例如可以通过收发器、或输入/输出电路、或芯片的接口发送调度信息,通过一个或多个处理器确定终端设备的调度信息。
在一种可能的设计中,所述通信装置80包括用于接收来自第一终端设备的调度信息的部件(means),以及用于根据所述调度信息接收侧行数据的部件(means)。具体参见上述方法实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口接收调度信息和侧行数据。
可选的,处理器801除了实现图8-1,8-2,8-3,8-4中的一项或多项所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器801也可以包括指令803,所述指令可以在所述处理器上被运行,使得所述通信装置80执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置80也可以包括电路,所述电路可以实现前述方法实施例中网络设备或终端设备的功能。
在又一种可能的设计中所述通信装置80中可以包括一个或多个存储器802,其上存有指令804,所述指令可在所述处理器上被运行,使得所述通信装置80执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器802可以存储上述实施例中所描述的移动有效区域,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置80还可以包括收发单元805以及天线806,或者,包括通信接口。所述收发单元805可以称为收发机、收发电路、或者收发器等,用于通过天线806实现装置的收发功能。所述通信接口(图中未示出),可以用于核心网设备和网络设备,或是,网络设备和网络设备之间的通信。可选的,该通信接口可以为有线通信的接口,比如光纤通信的接口。
所述处理器801可以称为处理单元,对装置(比如终端或者基站)进行控制。
此外,由于本申请实施例中所描述收发单元805进行的发送或接收是在处理单元(处理器801)的控制之下,因此,本申请实施例中也可以将发送或接收的动作描述为处理单元(处理器801)执行的,并不影响本领域技术人员对方案的理解。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
应理解,本申请实施例中的处理器可以为CPU,该处理器还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
本申请实施例还提供了一种通信系统,该通信系统包括:上述的网络设备,终端设备A和终 端设备B,或,上述的终端设备C,终端设备A和终端设备B,或,上述的终端设备A和终端设备B。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法10中通信方法中网络设备,终端设备A,终端设备B,或,终端设备C中的一项所执行方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该终端设备A、终端设备B、终端设备C和网络设备分别执行对应于上述方法的终端设备A、终端设备B、终端设备C和网络设备的操作。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该芯片所应用的通信装置执行上述本申请实施例提供的方法10中的终端设备A、终端设备B、终端设备C和网络设备的操作。
可选地,上述本申请实施例中提供的任意一种通信装置可以包括该系统芯片。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该通信装置内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的反馈信息传输的方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该系统芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。应理解,在本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。 例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、通信装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (46)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的调度信息,所述调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
    根据所述频率资源信息发送所述侧行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一对应关系为至少一个AGC所需的最小带宽与多个子载波间隔之间的多个对应关系中的一个,所述至少一个AGC所需的最小带宽包括所述第一AGC所需的最小带宽,所述子载波间隔包括所述第一子载波间隔。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    接收来自所述网络设备的第一信息,所述第一信息指示所述第一AGC所需的最小带宽;或者,
    所述第一AGC所需的最小带宽为预定义的。
  4. 根据权利要求1或2所述的方法,其特征在于,所述频率资源信息包括实际调度的频率资源的信息,所述实际调度的频率资源信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述频率资源信息指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
  6. 根据权利要求5所述的方法,其特征在于,所述频率资源信息包括实际调度频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,或者,实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值+1,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
  7. 根据权利要求5或6所述的方法,其特征在于,根据所述频率资源信息发送侧行数据,包括:
    根据所述第一AGC所需的最小带宽和所述频率资源信息确定实际调度频率资源的信息;
    根据所述实际调度频率资源的信息发送侧行数据。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述子信道的带宽不大于所述第一AGC所需的最小带宽。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一AGC所需的最小带宽包括M个资源块RB,M为正整数。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述侧行数据的时域调度单位为第一时间单元,所述第一时间单元的第一个符号用于接收端实现AGC,所述第一时间单元包括至少一个符号。
  11. 一种通信方法,其特征在于,包括:
    确定终端设备的调度信息,所述调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
    向所述终端设备发送所述调度信息。
  12. 如权利要求11所述的方法,其特征在于,所述第一对应关系为至少一个AGC所需的最小带宽与多个子载波间隔之间的多个对应关系中的一个,所述至少一个AGC所需的最小带宽包括所述第一AGC所需的最小带宽,所述子载波间隔包括所述第一子载波间隔。
  13. 根据权利要求11或12所述的方法,其特征在于,还包括:
    向所述终端设备发送第一信息,所述第一信息指示所述第一AGC所需的最小带宽;或者,所述第一AGC所需的最小带宽为预定义的。
  14. 根据权利要求11或12所述的方法,其特征在于,所述频率资源信息包括实际调度的频率资源的信息,所述实际调度的频率资源信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
  15. 根据权利要求11-13中任一项所述的方法,其特征在于,所述频率资源信息指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
  16. 根据权利要求15所述的方法,其特征在于,所述频率资源信息包括实际调度频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,或者,实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值+1,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
  17. 根据权利要求15或16所述的方法,其特征在于,还包括:
    根据所述第一AGC所需的最小带宽和实际调度的频率资源的信息确定所述频率资源信息。
  18. 根据权利要求11-17中任一项所述的方法,其特征在于,所述子信道的带宽不大于所述第一AGC所需的最小带宽。
  19. 根据权利要求11-18中任一项所述的方法,其特征在于,所述第一AGC所需的最小带宽包括M个资源块RB,M为正整数。
  20. 根据权利要求11-19中任一项所述的方法,其特征在于,还包括:
    根据所述第一子载波间隔确定所述第一AGC所需的最小带宽。
  21. 根据权利要求11-20中任一项所述的方法,其特征在于,所述侧行数据的时域调度单位为第一时间单元,所述第一时间单元的第一个符号用于接收端实现AGC,所述第一时间单元包括至少一个符号。
  22. 一种通信方法,其特征在于,包括:
    接收来自第一终端设备的调度信息,所述调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
    根据所述频率资源信息接收所述侧行数据。
  23. 根据权利要求22所述的方法,其特征在于,所述第一对应关系为至少一个AGC所需的最小带宽与多个子载波间隔之间的多个对应关系中的一个,所述至少一个AGC所需的最小带宽包括所述第一AGC所需的最小带宽,所述子载波间隔包括所述第一子载波间隔。
  24. 根据权利要求22或23所述的方法,其特征在于,还包括:
    接收来自所述第一终端设备的第一信息,所述第一信息指示所述第一AGC所需的最小带宽;或者,
    所述第一AGC所需的最小带宽为预定义的。
  25. 根据权利要求22或23所述的方法,其特征在于,所述频率资源信息包括实际调度的频率资源的信息,所述实际调度的频率资源信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
  26. 根据权利要求22-24中任一项所述的方法,其特征在于,所述频率资源信息指示实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
  27. 根据权利要求26所述的方法,其特征在于,所述频率资源信息包括实际调度频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值,或者,实际调度的频率资源的信息与第一AGC所需的最小带宽所占子信道个数的差值+1,所述实际调度的频率资源的信息为实际调度的频率资源所包括的子信道的个数N,所述N为正整数。
  28. 根据权利要求26或27所述的方法,其特征在于,根据所述频率资源信息接收侧行数据,包括:
    根据所述第一AGC所需的最小带宽和所述频率资源信息确定实际调度频率资源的信息;
    根据所述实际调度频率资源的信息接收侧行数据。
  29. 根据权利要求22-28中任一项所述的方法,其特征在于,所述子信道的带宽不大于所述第一AGC所需的最小带宽。
  30. 根据权利要求22-29中任一项所述的方法,其特征在于,所述第一AGC所需的最小带宽包括M个资源块RB,M为正整数。
  31. 根据权利要求22-30中任一项所述的方法,其特征在于,所述侧行数据的时域调度单位为第一时间单元,所述第一时间单元的第一个符号用于接收端实现AGC,所述第一时间单元包括至少一个符号。
  32. 一种通信装置,其特征在于,用于执行如权利要求1至10中任一项所述的方法。
  33. 一种通信装置,其特征在于,用于执行如权利要求11至21中任一项所述的方法。
  34. 一种通信装置,其特征在于,用于执行如权利要求22至31中任一项所述的方法。
  35. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序或指令;
    处理器,用于执行所述存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至10中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序或指令;
    处理器,用于执行所述存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求11至21中任一项所述的方法。
  37. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序或指令;
    处理器,用于执行所述存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求22至31中任一项所述的方法。
  38. 一种可读存储介质,包括程序或指令,当所述程序或指令被处理器运行时,如权利要求1至10中任意一项所述的方法被执行。
  39. 一种可读存储介质,包括程序或指令,当所述程序或指令被处理器运行时,如权利要求11至21中任意一项所述的方法被执行。
  40. 一种可读存储介质,包括程序或指令,当所述程序或指令被处理器运行时,如权利要求22至31中任意一项所述的方法被执行。
  41. 一种通信系统,其特征在于,包括如权利要求35所述的装置和权利要求36所述的装置,或者,权利要求36所述的装置。
  42. 如权利要求41所述的系统,其特征在于,还包括如权利要求37所述的装置。
  43. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的调度信息,所述调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
    发送单元,用于根据所述频率资源信息发送所述侧行数据。
  44. 一种通信装置,其特征在于,包括:
    处理单元,用于确定终端设备的调度信息,所述调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小 带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
    发送单元,用于向所述终端设备发送所述调度信息。
  45. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自第一终端设备的调度信息,所述调度信息包括频率资源信息,所述频率资源信息指示用于承载侧行数据的频率资源,所述频率资源信息以子信道为单位且所述频率资源信息所指示的被调度带宽不小于第一自动增益控制AGC所需的最小带宽,所述第一AGC所需的最小带宽为所述侧行数据的接收端执行AGC所需的最小带宽,所述第一AGC所需的最小带宽与所述侧行数据所对应的第一子载波间隔具有第一对应关系;
    所述接收单元,还用于根据所述频率资源信息接收所述侧行数据。
  46. 一种通信系统,其特征在于,包括如权利要求43所述的通信装置和如权利要求44所述的通信装置和如权利要求45所述的通信装置,或者,包括如权利要求44所述的通信装置和如权利要求45所述的通信装置。
PCT/CN2019/101112 2019-08-16 2019-08-16 通信方法、装置、系统和可读存储介质 WO2021030968A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980099458.8A CN114223166B (zh) 2019-08-16 2019-08-16 通信方法、装置、系统和可读存储介质
PCT/CN2019/101112 WO2021030968A1 (zh) 2019-08-16 2019-08-16 通信方法、装置、系统和可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101112 WO2021030968A1 (zh) 2019-08-16 2019-08-16 通信方法、装置、系统和可读存储介质

Publications (1)

Publication Number Publication Date
WO2021030968A1 true WO2021030968A1 (zh) 2021-02-25

Family

ID=74659851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101112 WO2021030968A1 (zh) 2019-08-16 2019-08-16 通信方法、装置、系统和可读存储介质

Country Status (2)

Country Link
CN (1) CN114223166B (zh)
WO (1) WO2021030968A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166983A1 (zh) * 2016-03-29 2017-10-05 中兴通讯股份有限公司 一种前缀长度确定方法、装置及计算机存储介质
WO2019033959A1 (zh) * 2017-08-17 2019-02-21 华为技术有限公司 同步方法和装置
CN109565798A (zh) * 2016-09-29 2019-04-02 松下电器(美国)知识产权公司 无线通信方法、装置和系统
US20190110325A1 (en) * 2017-10-11 2019-04-11 Qualcomm Incorporated Methods and apparatus for device-to-device feedback

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9888450B2 (en) * 2014-12-16 2018-02-06 Lg Electronics Inc. Method and apparatus for detecting synchronization signal in wireless communication system
CN109392141B (zh) * 2017-08-11 2021-07-09 华为技术有限公司 一种调整频域资源和发送指示信息的方法、装置及系统
EP3883163B1 (en) * 2018-11-15 2023-10-04 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for transmitting control information and data
CN109891981B (zh) * 2019-01-09 2022-03-01 北京小米移动软件有限公司 资源分配方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166983A1 (zh) * 2016-03-29 2017-10-05 中兴通讯股份有限公司 一种前缀长度确定方法、装置及计算机存储介质
CN109565798A (zh) * 2016-09-29 2019-04-02 松下电器(美国)知识产权公司 无线通信方法、装置和系统
WO2019033959A1 (zh) * 2017-08-17 2019-02-21 华为技术有限公司 同步方法和装置
US20190110325A1 (en) * 2017-10-11 2019-04-11 Qualcomm Incorporated Methods and apparatus for device-to-device feedback

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on AGC settling issue for NR sidelink", 3GPP TSG RAN WG1 MEETING #94; R1-1808779, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 10 August 2018 (2018-08-10), Gothenburg, Sweden, 20180820-20180824, pages 1 - 4, XP051516152 *
SAMSUNG: "On AGC settling issues with evaluation results for NR V2X", 3GPP TSG RAN WG1 MEETING #96BIS; R1-1906944, 3RD GENERATION PARTNERSHIP PROJECT (3GPP),SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 13 May 2019 (2019-05-13), Reno, USA; 20190513 - 20190517, XP051728394 *

Also Published As

Publication number Publication date
CN114223166B (zh) 2023-07-11
CN114223166A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
JP7364749B2 (ja) 通信装置、通信方法、及び無線通信システム
WO2018082544A1 (zh) 无线通信的方法和装置
JP7100671B2 (ja) 制御情報送信のための送信電力および周波数ホッピングの構成
JP2021503834A (ja) マルチキャリア通信のためのキャリア・スイッチング方法、装置およびシステム
WO2020114129A1 (zh) 确定传输资源的方法和装置
RU2759800C2 (ru) Устройство связи, способ связи и программа
WO2019029348A1 (zh) 数据传输方法、终端和基站
WO2020088054A1 (zh) 通信资源的配置方法、通信装置、通信设备及存储介质
WO2021031048A1 (zh) 一种通信方法及装置
WO2020029403A1 (zh) 侧行信道配置方法、终端设备和网络设备
WO2020029228A1 (zh) 解调参考信号的资源分配方法和基站
TW202013919A (zh) 一種資料傳輸方法、終端設備及網路設備
WO2022151404A1 (zh) 基于接入回传一体化的通信方法及装置
WO2020063596A1 (zh) 一种通信方法及装置
WO2022213872A1 (zh) 通信方法和通信装置
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2018188095A1 (zh) 一种通信方法及装置
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2021030968A1 (zh) 通信方法、装置、系统和可读存储介质
WO2021047615A1 (zh) 参考信号传输方法及通信装置
WO2021248456A1 (zh) 无线通信的方法及设备
JP2024502356A (ja) サイドリンクにおける不連続受信の構成
EP4021102A1 (en) Method, apparatus and system for receiving and sending control information
WO2019191993A1 (zh) 一种信息传输的方法和设备
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941980

Country of ref document: EP

Kind code of ref document: A1