WO2021029454A1 - 모듈형 유체 칩 - Google Patents
모듈형 유체 칩 Download PDFInfo
- Publication number
- WO2021029454A1 WO2021029454A1 PCT/KR2019/010268 KR2019010268W WO2021029454A1 WO 2021029454 A1 WO2021029454 A1 WO 2021029454A1 KR 2019010268 W KR2019010268 W KR 2019010268W WO 2021029454 A1 WO2021029454 A1 WO 2021029454A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- chamber
- core
- modular
- chambers
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/028—Modular arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0848—Specific forms of parts of containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/12—Specific details about materials
Definitions
- the present invention relates to a modular fluid chip, and more particularly, to a modular fluid chip capable of quantifying a fluid and capable of connecting with other modular fluid chips.
- Lab-on-a-chip (LOC) technology is in the spotlight to overcome the shortcomings of existing diagnostic techniques.
- Lab-on-a-chip technology is a representative example of NT, IT, BT convergence technology, using technologies such as MEMS and NEMS to perform all sample pretreatment and analysis steps such as sample dilution, mixing, reaction, separation, and quantification on a single chip. It refers to the skill to do it
- Such microfluidic devices to which lab-on-a-chip technology is applied analyzes and diagnoses the flow of the fluid sample flowing through the reaction channel or the reaction between the fluid sample and the reagent supplied to the reaction channel, as well as controlling the fluid sample and It is manufactured in a form in which a number of units necessary for analysis are provided on a small chip of a size of several cm2 made of glass, silicon or plastic so that the related various steps of processing and manipulation can be performed on a single chip.
- the microfluidic device is a chamber capable of confining a small amount of fluid, a reaction channel through which the fluid can flow, a valve that can control the flow of the fluid, and various functional units capable of performing a predetermined function by receiving the fluid. And the like.
- the present invention was conceived to solve the above problems, and an object of the present invention is to provide a modular fluid chip capable of quantifying liquids of various capacities using a single fluid chip, thereby reducing costs. Is to do.
- the core includes: a first channel provided at a position spaced apart from the plurality of chambers and connectable to the at least one flow path; And a second channel connected to at least one of the plurality of chambers to be connected to the at least one flow path.
- the storage capacity of each chamber may represent a value reflecting the storage capacity of a channel connected to each chamber.
- the first channel and the second channel may have a smaller volume than that of the plurality of chambers.
- the core may be manufactured integrally through 3D printing, or may be manufactured in the form of a plurality of modules that can be combined and separated through injection molding.
- the at least one flow path may connect the plurality of chambers to each other so that fluid may be filled in an order of increasing storage capacity.
- the cover may be provided in the form of a detachable film on the outer surface of the core.
- the cover may include: a first cover member detachable from an outer surface of the core and having the at least one flow path disposed therein; And a second cover member attached to an outer surface of the first cover member and configured to prevent the fluid filled in the at least one flow path from flowing out into the external space.
- the cover may include a fluid injection port connected to a first chamber to be filled with a fluid for the first time among a plurality of chambers connected to the at least one flow path, and into which the fluid is injected; And an air outlet that is connected to a second chamber to be finally filled with fluid among the plurality of chambers connected to the at least one flow path, and through which air in the plurality of chambers is discharged when the plurality of chambers are filled with fluid. can do.
- It may further include an air filter installed at the air outlet and capable of removing air bubbles from the fluid.
- the air filter may be made of a hydrophobic material capable of removing air bubbles from a hydrophilic fluid.
- the air filter may be made of one or more hydrophobic materials selected from the group consisting of polytetrafluore ethylene (PTFE), polyethylene terephtalate (PET), and polyvinyl chloride.
- PTFE polytetrafluore ethylene
- PET polyethylene terephtalate
- PV chloride polyvinyl chloride
- the air filter may be formed of a hydrophilic material capable of removing air bubbles from a hydrophobic fluid.
- the air filter may be provided with a hydrophobic material on one side and a hydrophilic material on the other side to remove air bubbles from a mixed fluid in which a hydrophilic fluid and a hydrophobic fluid are mixed.
- a fluid detection sensor that senses a fluid and generates it as an electrical signal; And an on/off valve configured to open and close the fluid inlet according to the presence or absence of the electrical signal.
- the cover may include: a first connection channel connecting the fluid inlet and the first chamber to each other, and guiding the fluid injected through the fluid inlet to the first chamber; A second connection channel branched from the first connection channel to connect the external space and the first chamber to each other, and guide fluid flowing into the inside through the first chamber to the external space; A third connection channel that connects the air outlet and the second chamber to each other and guides the fluid filled in the second chamber to the air outlet; And a fourth connection channel branched from the third connection channel to connect the external space and the second chamber to each other, and to guide air injected from the outside to the second chamber.
- a modular fluid chip includes a core having at least one chamber; And a base coupled to the core and having at least one flow path configured to be connected to the at least one chamber.
- a modular fluid chip includes a core including a core cell having at least one chamber and a dummy cell provided in a solid form; And a cover coupled to the core cell and including at least one flow path configured to be connected to the at least one chamber.
- various storage spaces can be created by connecting at least one or two or more chambers provided in the core according to a set quantitative value using a removable cover on the outer surface of the core. It is possible to quantify liquids of various capacities through one fluid chip.
- the fluid chip in the form of a module, it is possible to implement a single fluid system to which various functions are applied in combination by independently performing a preset function or being connected to another modular fluid chip.
- FIG. 1 is a perspective view showing a modular fluid chip according to a first embodiment of the present invention.
- FIG. 2 is an exploded perspective view showing the modular fluid chip according to the first embodiment of the present invention.
- FIG. 3 is a diagram schematically illustrating a process of filling a fluid into the modular fluid chip according to the first embodiment of the present invention.
- FIGS. 4A and 4B are perspective views showing a modular fluid chip according to a second embodiment of the present invention.
- FIG. 5 is a perspective view showing a modular fluid chip according to a third embodiment of the present invention.
- FIG. 6 is a diagram schematically showing an end structure of a chamber connected to a flow path.
- FIG. 7 is a plan view showing a modular fluid chip according to a fourth embodiment of the present invention.
- FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG. 7.
- FIG. 9 is a plan view showing a modular fluid chip according to a fifth embodiment of the present invention.
- FIG. 10 is a cross-sectional view taken along the X-X line of FIG. 9.
- FIG. 11 is a perspective view showing a modular fluid chip according to a sixth embodiment of the present invention.
- FIG. 12 is an exploded perspective view of FIG. 11.
- a "module” or “unit” for a component used in the present specification performs at least one function or operation.
- the "module” or “unit” may perform a function or operation by hardware, software, or a combination of hardware and software.
- a plurality of “modules” or a plurality of “units” excluding “module” or “unit” to be performed in specific hardware or performed by at least one processor may be integrated into at least one module.
- Singular expressions include plural expressions unless the context clearly indicates otherwise.
- FIG. 1 is a perspective view showing a modular fluid chip according to a first embodiment of the present invention
- FIG. 2 is an exploded perspective view showing a modular fluid chip according to a first embodiment of the present invention
- FIG. 1 is a diagram schematically showing a process of filling a fluid into a modular fluid chip according to an embodiment.
- the modular fluid chip 100 (hereinafter referred to as'modular fluid chip 100') according to the first embodiment of the present invention can quantify fluid, and other modular fluid chips It is provided in the form of a module that can be selectively connected to a fluid chip (not shown).
- the modular fluid chip 100 is connected to a modular fluid chip (not shown) that performs other functions to implement a fluid flow system (not shown) having various structures.
- the modular fluid chip 100 may be connected to other modular fluid chips in horizontal and vertical directions to implement one fluid flow system.
- the fluid flow system implemented through the modular fluid chip 100 and other modular fluid chips is to collect samples from fluids such as body fluids, blood, saliva, liquid samples including skin cells, etc. Amplification using polymerase chain reaction including extraction, filtering, mixing, storage, valve, RT-PCR, etc. of substances such as proteins, antigen antibody reaction, affinity chromatography and electrical sensing, electrochemical sensing, capacitors Analysis/detection processes such as type electrical sensing and optical sensing with or without fluorescent material may be performed.
- the fluid flow system implemented through the modular fluid chip 100 is not necessarily limited to the above functions and may perform various functions for fluid analysis and diagnosis.
- the fluid flow system may be configured to allow a series of treatments such that a fluid enters, cells in the fluid are disrupted, filtered, and then amplified, and a fluorescent substance is attached to the amplified gene and observed.
- the fluid flow system may implement a factory-on-a-chip technology through connection with another fluid flow system (not shown).
- analysis and diagnosis on different fluids can be performed simultaneously through a plurality of fluid flow systems, and all experiments related to fluids (eg, chemical reactions and substance synthesis, etc.) can be simultaneously performed.
- the modular fluid chip 100 includes a core 110 and a cover 120.
- the core 110 may be formed to have transparency as a whole or a part to have transparency so that the flow of fluid flowing from the outside to the inside can be visually confirmed.
- the core 110 may be formed of at least one of an amorphous material such as glass, wood, polymer resin, metal, and elastomer, or may be formed through a combination thereof.
- the core 110 is not necessarily limited thereto, and may be formed of various materials.
- the core 110 includes a plurality of chambers 111 individually having a preset storage capacity.
- the plurality of chambers 111 may be formed in the form of holes having a length in a vertical direction greater than an inner diameter so as to guide the fluid filled therein in a vertical direction.
- the plurality of chambers 111 include the first chamber 111a having the largest storage capacity, the second chamber 111b having the smallest storage capacity, and the storage capacity of the first chamber 111a and the second chamber 111c. It may include a third chamber 111c having a storage capacity value between the storage capacities.
- the first chamber 111a has a storage capacity of 10 ⁇ L (microliter)
- the second chamber 111b has a storage capacity of 2 ⁇ L
- the third chamber 111c has a storage capacity of 5 ⁇ L. have.
- the storage capacities of the first chamber 111a, the second chamber 111b, and the third chamber 111c are not necessarily limited thereto, and may be changed to various values and applied.
- the first chamber 111a, the second chamber 111b, and the third chamber 111c may be provided in plurality in the core 110, respectively.
- the plurality of chambers 111 are all composed of six, but the plurality of chambers 111 are not necessarily limited thereto, and may be composed of fewer or more chambers.
- the first chamber 111a, the second chamber 111b, and the third chamber 111c may have the same inner diameter.
- the first chamber 111a has the longest length in the vertical direction compared to the second chamber 111b and the third chamber 111c, and the third chamber 111c is longer than the second chamber 111b. It can have a length in the vertical direction.
- the core 110 may further include a plurality of channels 112 connected to the plurality of chambers 111.
- the plurality of channels 112 may be formed in the form of holes having a length in a vertical direction greater than an inner diameter so as to guide the fluid filled therein in a vertical direction.
- the plurality of channels 112 includes a first channel 112a that is indirectly connected to any one of the plurality of chambers 111 and a second channel 112b that is directly connected to any one of the plurality of chambers 111.
- the first channel 112a is provided in a position spaced apart from the plurality of chambers 111 in the core 110, and is connected to at least one flow path 120a provided in the cover 120 to be described later, so that the plurality of chambers 111 ) Can be connected to any one of.
- the first channel 112a has the same length as the first chamber 111a, and may be indirectly connected to the first chamber 111a through a flow path 120a provided in the cover 120.
- the second channel 112b may be directly connected to at least one of the plurality of chambers 111.
- the second channel 112b has a shorter length than the first channel 112a, and may be directly connected to the second chamber 111b or directly connected to the third chamber 111c.
- the second channel 112b connected to the second chamber 111b may have the same length as the difference between the length of the first chamber 111a and the length of the second chamber 111b.
- the second channel 112b connected to the third chamber 111c may have the same length as the difference between the length of the first chamber 111a and the length of the third chamber 111c.
- each chamber (the first chamber 111a, the second chamber 111b, and the third chamber 111c) is each chamber (the first chamber 111a, the second chamber 111b, and the third chamber 111c). ))), the storage capacity of the channels (the first channel 112a, the second channel 112b) that is connected to each other is reflected.
- the storage capacity of the first chamber 111a may represent a value reflecting the storage capacity of the first chamber 111a and the first channel 112a connected to the first chamber 111a.
- the storage capacity of the second chamber 111b represents a value reflecting the storage capacity of the first channel 112a and the second channel 112b connected to the second chamber 111b and the second chamber 111b.
- the storage capacity of the third chamber 111c may represent a value reflecting the storage capacity of the first channel 112a and the second channel 112b connected to the third chamber 111c and the third chamber 111c.
- the plurality of channels 112 and at least one flow path 120a may be provided with a smaller volume than that of the plurality of chambers 111. Through this, it is possible to minimize the quantitative error.
- the plurality of channels 112 and at least one channel 120a may have the same inner diameter.
- the plurality of channels 112 and at least one flow path 120a have a shape and size corresponding to each other and form a fluid movement path, a predictable flow velocity when the fluid moves from one module to another module To have.
- fluid is transported through a tube.
- a vortex not only causes a rapid change in flow velocity, but also can deform the shape of the droplet.
- it may give a physical impact to the substances in the fluid or interfere with the movement of the substance.
- forming a fluid movement path with a plurality of channels 112 and at least one flow path 120a having a shape and size corresponding to each other is simply a function of ensuring the connection between modules, and a stable flow rate and material of the fluid. Enables stable movement of the vehicle.
- the plurality of channels 112 and at least one flow path 120a may be formed in a circular, polygonal, or elliptical cross-section.
- the shape of the inner diameter is not limited thereto, and may be changed and applied in various sizes and shapes.
- the end portion p1 of the chamber 111 connected to the flow path 120a may be formed in a structure in which the size of the inner diameter gradually decreases toward the flow path 120a.
- the opening of the chamber 111 in contact with the flow path 120a may have the same inner diameter as the flow path 120a.
- the cover 120 is coupled to the core 110 and includes at least one flow path 120a.
- the at least one flow path 120a is connected to the at least one chamber 111 according to a preset quantitative value, and guides the fluid flowing therein in the horizontal direction.
- At least one flow path 120a provided in the cover 120 is connected to at least one of the plurality of chambers 111 or the plurality of chambers 111 so that the storage capacity of the chamber matches a preset quantitative value. ) Is configured to connect at least two or more.
- At least one flow path 120a provided in the cover 120 may be connected to the first chamber 111a having a storage capacity of 10 ⁇ L.
- at least one flow path 120a has a first chamber 111a having a storage capacity of 10 ⁇ L and a first channel 112a provided on one side of the first chamber 111a. ) Can be connected to each other.
- At least one flow path 120a provided in the cover 120 is a first chamber 111a having a storage capacity of 10 ⁇ L, as shown in FIG. 1, and a storage capacity of 5 ⁇ L.
- a third chamber 111c having a and a plurality of second chambers 111b individually having a storage capacity of 2 ⁇ L may be connected to each other.
- at least one flow path 120a includes a first channel 112a, a first chamber 111a, and a first chamber provided on one side of the first chamber 111a.
- the first channel 112a provided on one side of the (111a) and the third chamber 111c, the first channel 112a and the third chamber 111c provided on one side of the third chamber 111c, and the third chamber The second channel 112b directly connected to the (111c), the first channel 112a provided on one side of the second chamber 111b, the first channel 112a provided on one side of the second chamber 111b, and The second chamber 111b, a second channel 112b directly connected to the second chamber 111b, a first channel 112a provided on one side of another second chamber 111b, and another second chamber
- the first channel 112a provided on one side of the 111b and another second chamber 111b may be connected to each other.
- the cover 120 attached to the core 110 can be replaced, and the flow path 120a provided in the cover 120 may correspond to at least one of the plurality of chambers 111 As it is connected or configured to connect at least two or more of the plurality of chambers 111, it is possible to quantify the fluid in various capacities.
- At least one flow path 120a connects at least two or more of the plurality of chambers 111 to each other so that the sum of the storage capacities of the chambers corresponds to a preset quantitative value, Can connect them to each other.
- At least one flow path 120a is a first chamber 111a having the largest storage capacity for fluid injected into the modular fluid chip 100, and a second chamber 111a having the next largest storage capacity.
- the first chamber 111a, the second chamber 111b, and the third chamber 111c can be connected to each other so that the chamber 111c and the second chamber 111b having the smallest storage capacity can be filled in order. have. Through this, the chamber 111 in which the fluid is filled can be minimized.
- the cover 120 may be coupled to the upper and lower surfaces of the core 110, respectively, and may be provided in the form of a detachable film on the outer surface of the core 110.
- the cover 120 may include a first cover member 121 and a second cover member 122.
- the first cover member 121 may be detachable from the outer surface of the core 110.
- at least one flow path 120a may be provided inside the first cover member 121.
- an adhesive layer (not shown) may be provided on one side and the other side of the first cover member 121.
- one surface of the first cover member 121 may be detachable from the outer surface of the core 110, and the other surface of the first cover member 121 may be coupled to the second cover member 122 to be described later.
- the first cover member 121 may be formed of a transparent or opaque material.
- the second cover member 122 may be formed in a shape corresponding to the outer shape of the first cover member 121 and may be attached to the outer surface of the first cover member 121 on which an adhesive layer (not shown) is provided. Through this, the second cover member 122 may be configured to prevent the fluid filled in the at least one flow path 120a from flowing out into the external space.
- cover 120 may further include a fluid inlet 123 and an air outlet 124.
- the fluid injection port 123 may be formed through the first cover member 121 and the second cover member 122.
- the fluid injection port 123 may be connected to the first chamber 111a to be filled with a fluid for the first time among the plurality of chambers 111 connected to the at least one flow path 120a.
- the fluid injection port 123 may be connected to another modular fluid chip (not shown) or a separate fluid injection device (not shown). Through this, the fluid discharged from another modular fluid chip (not shown) or a separate fluid injection device (not shown) may be injected into the fluid injection port 123.
- the air outlet 124 may be formed through the first cover member 121 and the second cover member 122.
- the air outlet 124 is connected to the second chamber 111b to be finally filled with the fluid among the plurality of chambers 111 connected to the at least one flow path 120a to enable the flow of the fluid flowing through the chamber.
- the air outlet 124 may discharge air inside the chamber moving in one direction to the outside.
- each configuration for describing the modular fluid chip 200 according to the second embodiment of the present invention is used while describing the modular fluid chip 100 according to the first embodiment of the present invention for convenience of description.
- the same reference numerals are used, and the same or redundant description will be omitted.
- FIGS. 4A and 4B are perspective views showing a modular fluid chip according to a second embodiment of the present invention.
- the modular fluid chip 200 (hereinafter referred to as the “modular fluid chip 200”) according to the second embodiment of the present invention is configured to remove air bubbles from the fluid filled therein.
- the modular fluid chip 200 may further include an air filter 150 installed in the air outlet 124 and capable of removing air bubbles from the fluid.
- the air filter 150 is formed in the form of a film attachable to the outer surface of the cover 120 and may be attached to the outer surface of the cover 120 to cover the air outlet 124.
- the air filter 150 may be configured to pass only air bubbles from the fluid filled in the plurality of chambers 111. Accordingly, the fluid injected into the core 110 moves in one direction, and after sequentially filling all of the plurality of chambers 111, the flow is automatically restricted by being blocked by the air filter 150 installed in the air outlet 124 Can be.
- the air filter 150 may be made of a hydrophobic material capable of removing air bubbles from a hydrophilic fluid, or may be provided in the form of a fiber structure coated with a hydrophobic material on the surface.
- the air filter 150 is one or more hydrophobic materials selected from the group consisting of polytetrafluore ethylene (PTFE), polyethylene terephtalate (PET), and polyvinyl chloride. Can be provided.
- the air filter 150 may be made of a hydrophilic material capable of removing air bubbles from a hydrophobic fluid, or may be provided in the form of a fibrous structure coated with a hydrophilic material on the surface.
- the air filter 150 is in the form of a double filter in which a hydrophobic material is provided on one side and a hydrophilic material is provided on the other side to remove air bubbles from a mixed fluid in which a hydrophilic fluid and a hydrophobic fluid are mixed. Can be provided with.
- the modular fluid chip 200 detects a fluid and generates a fluid detection sensor 160 that generates an electrical signal, and a fluid injection port 123 according to the presence or absence of a signal from the fluid detection sensor 160. It may further include an on-off valve 170 configured to open and close.
- a plurality of fluid detection sensors 160 are provided and are shown to be installed in each chamber 111a, 111b, and 111c, but the fluid detection sensor 160 is not limited thereto, and is provided in the core 110. At least one or more may be provided according to the number of chambers or a preset fluid flow path.
- the fluid detection sensor 160 may be disposed at a position where the fluid is finally filled in the selected chamber so as to detect a state in which the selected chamber is filled with the fluid quantitatively.
- the first fluid detection sensor 160a for sensing a fluid filled in the first chamber 111a is disposed at the upper end of the first chamber 111a connected to the flow path 120a, and the second chamber 111b ), a second fluid detection sensor 160b for sensing the fluid filled in the second chamber 111b is disposed at the upper end of the second channel 112b connected to the flow path 120a, and the third chamber 111c
- the third fluid detection sensor 160c for sensing the fluid filled in may be disposed in the third chamber 111c and disposed at the upper end of the second channel 112b connected to the flow path 120a.
- the plurality of fluid detection sensors 160a, 160b, and 160c are electrically connected to a separate control device (not shown), and may be selectively controlled through a control device (not shown). Therefore, when the plurality of fluid detection sensors 160a, 160b, 160c are in contact with the fluid, all of them generate electrical signals and transmit them to the control device (not shown), or generate electrical signals only for a selected part of the control device (not shown). Can be transferred to.
- each of the fluid detection sensors 160a, 160b, and 160c may be provided as a flexible film-type electrode to be attached to the inner surface of the core 110, but is not limited thereto and may be changed in various forms. I can.
- the opening/closing valve 170 is electrically connected to a control device (not shown) and may open and close the fluid inlet 123 according to a control signal transmitted from the control device (not shown).
- the opening/closing valve 170 opens the fluid inlet 123 to allow the inflow of fluid, and the fluid detection sensor 160 in the control device (not shown). ), the fluid inlet 123 may be closed so that the inflow of fluid is blocked when an electrical signal notifying the detection of the fluid is transmitted from the control device (not shown).
- the opening/closing valve 170 is installed at the upper end of the first channel 112a connected to the fluid inlet 123, and is a microvalve so that it can be installed inside the first channel 112a having a diameter of 1 mm or less. Can be applied.
- the modular fluid chip 200 detects a state in which the fluid detection sensor 160 is filled with a quantity of fluid in the chamber, and the opening/closing valve 170 detects whether a signal from the fluid detection sensor 160 is generated or not. Accordingly, by opening and closing the fluid inlet 123 through which the fluid is injected, when the fluid is filled by a set amount, the inflow of the fluid can be automatically blocked and the flow of the fluid can be limited.
- the third embodiment of the present invention The modular fluid chip 300 according to will be described.
- each of the components for describing the modular fluid chip 300 according to the third embodiment of the present invention is for convenience of description, the modular fluid chip 100 according to the first and second embodiments of the present invention. , 200), the same reference numerals are used, and the same or redundant description will be omitted.
- a modular fluid chip 300 (hereinafter referred to as'modular fluid chip 300') according to a third embodiment of the present invention is filled in a plurality of chambers 111 to provide a quantified fluid. It is configured to recover.
- the modular fluid chip 200 may further include a plurality of connection channels 125 provided on the cover 120 and capable of injecting and discharging fluid, and capable of injecting and discharging air.
- the plurality of connection channels 125 may include a first connection channel 125a, a second connection channel 125b, a third connection channel 125c, and a fourth connection channel 125d.
- the first connection channel 125a may connect the fluid inlet 123 and the first chamber 111a to each other, and guide the fluid injected through the fluid inlet 123 to the first chamber 111a.
- the second connection channel 125b is branched from the first connection channel 125a to connect the external space and the first chamber 111a to each other, and due to the air injected through the fourth connection channel 125d, the first chamber ( The fluid flowing inside through 111a) can be guided to the outside space.
- first connection channel 125a and the second connection channel 125b connected to the first chamber 111a are directly connected to the first chamber 111a, or the first chamber ( It may be indirectly connected to the first chamber 111a through the first channel 112a connected to 111a).
- the third connection channel 125c connects the air outlet 124 and the second chamber 111b to each other, and guides the fluid filled in the second chamber 111b toward the air outlet 124 in which the air filter 150 is installed. can do.
- connection channel 125c and the fourth connection channel 125d connected to the second chamber 111b are directly connected to the second chamber 111b, or are provided in the second chamber 111b. It may be indirectly connected to the second chamber 111b through the channel 112b.
- the first chamber 111a, the third chamber 111c, and the third chamber are sequentially 2 It may be filled in the chamber 111b and quantified.
- the second connection channel 125b and the fourth connection channel 125d are kept closed through separate members attached to the ends of each channel.
- the air in the chamber 111 moving in one direction together with the fluid flows into the third connection channel 125c and then into the external space through the air filter 150 disposed at the end of the third connection channel 125c.
- the fluid discharged and introduced into the third connection channel 125c may be supported by the air filter 150 disposed at the end after filling the third connection channel 125c, thereby limiting the flow.
- the quantified fluid stored in the plurality of chambers 111 flows in a direction opposite to the direction in which the fluid was injected.
- the fluid stored in each chamber (111a, 111b, 111c) is discharged to the external space through the second connection channel (125b) in an order opposite to the order of filling, and thus, the quantified fluid can be completely recovered from the outside have.
- the first connection channel 125a is maintained in a closed state through a separate member attached to the end.
- the third connection channel 125c is continuously closed until the injection of air is stopped through the fluid remaining in the third connection channel 125c by being pressurized by the air injected into the fourth connection channel 125d. Will remain in the state.
- each configuration for describing the modular fluid chip 400 according to the fourth embodiment of the present invention is for convenience of description, the modular fluid chip 100 according to the first to third embodiments of the present invention. , 200, 300) are used in the same manner, and the same or redundant description will be omitted.
- FIG. 7 is a plan view showing a modular fluid chip according to a fourth embodiment of the present invention
- FIG. 8 is a cross-sectional view taken along line VIII to VIII of FIG. 7.
- the modular fluid chip 400 includes a core 110, a cover 120, a housing 130, and a connector 140.
- the core 110 includes a plurality of chambers 111 individually having a preset storage capacity.
- the plurality of chambers 111 may be formed in the form of holes having a length in a vertical direction greater than an inner diameter so as to guide the fluid filled therein in a vertical direction.
- the plurality of chambers 111 include the first chamber 111a having the largest storage capacity, the second chamber 111b having the smallest storage capacity, and the storage capacity of the first chamber 111a and the second chamber 111c. It may include a third chamber 111c having a storage capacity value between the storage capacities.
- the core 110 may further include a plurality of channels 112 connected to the plurality of chambers 111 and guiding the fluid in the vertical direction.
- the first channel 112a is provided in a position spaced apart from the plurality of chambers 111 in the core 110, and the plurality of chambers 111 are provided through at least one flow path 120a provided in the cover 120 to be described later. It can be connected to either.
- the second channel 112b is directly connected to at least one of the plurality of chambers 111, and may be connected to any one of the plurality of chambers 111 through at least one flow path 120a provided in the cover 120. have.
- each chamber (the first chamber 111a, the second chamber 111b, and the third chamber 111c) is each chamber (the first chamber 111a, the second chamber 111b, and the third chamber 111c). ))), the storage capacity of the channels (the first channel 112a, the second channel 112b) that is connected to each other is reflected.
- the core 110 may further include a third channel 112c capable of communicating with the flow path of the connector 140 coupled to the housing 130.
- the third channel 112c communicates with the flow path of the connector 140 and guides the fluid flowing into the interior through the connector 140 in the horizontal direction. And a portion extending from a portion guiding the fluid in the horizontal direction and guiding the fluid in the vertical direction.
- a plurality of third channels 112c may be provided in the core 110.
- the cover 120 is detachably coupled to the core 110 and includes at least one flow path 120a for guiding the fluid in the horizontal direction.
- At least one flow path 120a is configured to be connected to at least one of the plurality of chambers 111 or at least two or more of the plurality of chambers 111 so that the storage capacity of the chamber matches a preset quantitative value. .
- the cover 120 may be detachably coupled to the upper and lower surfaces of the core 110, respectively.
- Each cover 120 detachably coupled to the upper and lower surfaces of the core 110 is detachably coupled to the outer surface of the core 110, and a first cover member 121 including at least one flow path 120a And a second cover member 122 detachably coupled to the outer surface of the first cover member 121.
- cover 120 may further include an air outlet 124.
- the housing 130 is formed in a frame structure having an accommodation space formed therein, and is configured to accommodate the core 110 inside.
- the housing 130 is composed of a first part 131 supporting the lower surface of the core 110 and a second part 132 coupled to the upper side of the first part 131 to support the outer surface of the core 110 Can be.
- the first part 131 and the second part 132 may include a plurality of support grooves 130a that support the outer surface of the connector 140.
- the plurality of support grooves 130a may be provided in the first part 131 and the second part 132, respectively, and may be disposed to face each other. Therefore, when the first part 131 and the second part 132 are combined, the connection body 140 accommodated between the first part 131 and the second part 132 may be provided with a plurality of support grooves ( 130a) can be supported and stably fixed.
- the first part 131 and the second part 132 may be coupled to each other through magnetism.
- a magnetic material (not shown) may be provided at a portion where the first part 131 and the second part 132 come into contact.
- the first part 131 and the second part 132 are not necessarily coupled only through a magnetic material, and may be coupled to each other through various methods.
- the housing 130 may further include a coupling portion (not shown) connecting the modular fluid chip 400 to another modular fluid chip (not shown) in various directions and angles.
- the coupling portion may include at least one protrusion provided on the outer surface of the housing 130 and at least one receiving groove.
- At least one protrusion and at least one receiving groove may be formed in a shape corresponding to each other, and may be alternately arranged along the circumference of the housing 130.
- the connector 140 is formed of the core 110 of the modular fluid chip 400 and other modular fluid chips. Cores (not shown) can be communicated with each other.
- the connector 140 may be formed of an elastic material, and may form an interface at a contact portion when contacting another object.
- the connector 140 may be formed of an elastomer material.
- each configuration for describing the modular fluid chip 500 according to the fifth embodiment of the present invention is for convenience of description, the modular fluid chip 100 according to the first to fourth embodiments of the present invention. , 200, 300, 400) are used in the same manner, and the same or redundant description will be omitted.
- FIG. 9 is a plan view showing a modular fluid chip according to a fifth embodiment of the present invention
- FIG. 10 is a cross-sectional view taken along line X-X of FIG. 9.
- the modular fluid chip 500 includes a core 110, a cover 120, a housing 130, and a connector 140.
- the core 110 includes at least one core cell 110a and at least one dummy cell 110b.
- At least one core cell 110a and at least one dummy cell 110b may have the same size.
- the core cell 110a and the dummy cell 110b may each have a size of 1/n of the total size of the core 110.
- the core cell 110a and the dummy cell 110b are each formed to have a size of 1/6 of the total size of the core 110, and the four core cells 110a and the Although the two dummy cells 110b are shown in a combined state, the size and quantity of the core cell 110a and the dummy cell 110b are not necessarily limited thereto, and may be changed to various sizes and quantities.
- one core 110 may be formed through a combination of at least one core cell 110a and at least one dummy cell 110b, or may be formed through a combination of a plurality of core cells 110a.
- At least one dummy cell 110b is provided in a solid form in which fluid cannot be stored, and when coupled to the housing 130, it supports a plurality of core cells 110a to align the plurality of core cells 110a I can make it.
- the core cell 110a including the chamber 111 and the channel 112 and the solid dummy cell 110b are combined.
- dead volume can be removed and manufacturing cost can be reduced.
- the channel 112 provided in each core cell 110a may be connected to the other chamber 111 through at least one flow path 120a provided in the cover 120 to be described later, and the chamber provided in each core cell 110a (The storage capacity of 111) may represent a value reflecting the storage capacity of the channel 112 connected to the chamber 111.
- the channel 112 may include a first channel 112a that is indirectly connected to the chamber 111 and a second channel 112b that is directly connected to the chamber 111.
- the first channel 112a is provided in a position spaced apart from the plurality of chambers 111 in the core cell 110a, and may be connected to the chamber 111 through a flow path 120a provided in the cover 120.
- the second channel 112b may be directly connected to the chamber 111 and may be connected to the chamber 111 provided in the other core cell 110a through at least one flow path 120a provided in the cover 120.
- the core cell 110a may further include a third channel 112c capable of communicating with the flow path of the connector 140 coupled to the housing 130.
- the third channel 112c communicates with the flow path of the connector 140 to guide the fluid flowing into the interior through the connector 140 in the horizontal direction. It may include a portion and a portion extending from the portion guiding the fluid in the horizontal direction and guiding the fluid in the vertical direction.
- At least one flow path 120a is configured to connect a plurality of core cells 110a to each other.
- the cover 120 may be detachably coupled to the upper and lower surfaces of the core cell 110a, respectively.
- Each cover 120 detachably coupled to the upper and lower surfaces of the core cell 110a is detachably coupled to the outer surface of the core cell 110a, and is connected to the chamber 111 and the channel 112 to provide fluid
- a third cover member 126 including at least one first flow path 120a1 guided in a vertical direction, detachably coupled to an outer surface of the third cover member 126, and at least one first flow path 120a1
- the first cover member 121 including at least one second flow path 120a2 connected to and guiding the fluid in the horizontal direction, and a second cover member detachably coupled to the outer surface of the first cover member 121 ( 122).
- the cover 120 may further include an air outlet 124.
- the housing 130 is formed in a frame structure having an accommodation space formed therein and is configured to accommodate at least one core cell 110a and at least one dummy cell 110b therein.
- the housing 130 is composed of a first part 131 supporting the lower surface of the core 110 and a second part 132 coupled to the upper side of the first part 131 to support the outer surface of the core 110 Can be.
- the first part 131 and the second part 132 may include a plurality of support grooves 130a that support the outer surface of the connector 140.
- the housing 130 may further include a coupling portion (not shown) connecting the modular fluid chip 500 to another modular fluid chip (not shown) in various directions and angles.
- the coupling portion may include at least one protrusion provided on the outer surface of the housing 130 and at least one receiving groove.
- At least one protrusion and at least one receiving groove may be formed in a shape corresponding to each other, and may be alternately arranged along the circumference of the housing 130.
- the connector 140 may be accommodated and supported in the housing 130, and may be formed in a tube shape having a flow path therein to be connected to the third channel 112c of the core 110.
- the connector 140 is formed of the core 110 of the modular fluid chip 500 and other modular fluid chips. Cores (not shown) can be communicated with each other.
- the connector 140 may be formed of an elastic material, and may form an interface at a contact portion when contacting another object.
- the connector 140 may be formed of an elastomer material.
- each configuration for describing the modular fluid chip 600 according to the sixth embodiment of the present invention is for convenience of description, the modular fluid chip 100 according to the first to fifth embodiments of the present invention. , 200, 300, 400, 500) are used in the same manner as the reference numerals used in the description, and the same or redundant description will be omitted.
- FIG. 11 is a perspective view showing a modular fluid chip according to a sixth embodiment of the present invention
- FIG. 12 is an exploded perspective view of FIG. 11.
- the modular fluid chip 600 includes at least one core 110 and a base 120 to which the at least one core 110 is coupled.
- the core 110 has at least one chamber 111 individually having a preset storage capacity and at least one channel 112 connected to the at least one chamber 111.
- the core 110 is formed in a module shape detachable from the base 120.
- At least one core 110 may be coupled to the base 120 according to a set quantitative value, and through this, the core 110 is not newly manufactured, thereby reducing manufacturing cost.
- an air outlet (not shown) may be further provided in the core 110.
- the base 120 has at least one flow path 120a coupled to the core 110 and configured to be connected to at least one chamber 111. At least one flow path 120a may guide the fluid introduced into the interior in a horizontal direction.
- a coupling groove 120b into which an end of the core 110 is inserted may be provided on the upper surface of the base 120.
- the core 110 coupled to the coupling groove 120b may maintain a more stably fixed state on the upper surface of the base 120.
- the base 120 may be provided in the form of a substrate accommodated inside the housing 130 to be described later.
- the housing 130 may be formed in a frame structure having an accommodation space formed therein to accommodate the base 120 inside.
- the housing 130 may include a first part 131 supporting the lower surface of the base 120 and a second part 132 coupled to the upper side of the first part 131.
- the first part 131 and the second part 132 may include a plurality of support grooves 130a that support the outer surface of the connector 140.
- the first part 131 and the second part 132 may be coupled to each other through magnetism.
- the housing 130 may further include a coupling portion (not shown) connecting the modular fluid chip 600 to another modular fluid chip (not shown) in various directions and angles.
- the coupling portion may include at least one protrusion provided on the outer surface of the housing 130 and at least one receiving groove.
- At least one protrusion and at least one receiving groove may be formed in a shape corresponding to each other, and may be alternately arranged along the circumference of the housing 130.
- the connector 140 may be accommodated and supported in the housing 130 and may be formed in a tube shape having a flow path therein to be connected to the flow path 120a of the base 120.
- the connector 140 may communicate the modular fluid chip 600 and the other modular fluid chip with each other. .
- the connector 140 may be formed of an elastic material, and may form an interface at a contact portion when contacting another object.
- the connector 140 may be formed of an elastomer material.
- at least one or two or more of the chambers 111 provided on the core 110 are connected according to the set quantitative value using the cover 120 that is detachable to the outer surface of the core 110 By doing so, it is possible to create various storage spaces, and through this, it is possible to quantify liquids of various capacities through one fluid chip.
- the fluid chip in the form of a module, it is possible to implement a single fluid system to which various functions are applied in combination by independently performing a preset function or being connected to another modular fluid chip.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
한 개의 유체 칩을 이용하여 다양한 용량의 액체 정량이 가능하고, 이를 통해 비용을 절감할 수 있는 모듈형 유체 칩을 개시한다. 모듈형 유체 칩은 복수개의 챔버를 포함하는 코어, 및 코어에 결합되고, 복수개의 챔버 중 적어도 하나와 연결되거나, 복수개의 챔버 중 적어도 둘 이상을 연결하도록 구성되는 적어도 하나의 유로를 포함하는 커버를 포함한다.
Description
본 발명은 모듈형 유체 칩에 관한 것으로, 보다 상세하게는 유체를 정량 가능하고, 다른 모듈형 유체 칩과 연결 가능한 모듈형 유체 칩에 관한 것이다.
기존의 진단 기법의 단점을 극복하기 위해 랩온어칩(Lab-on-a-chip, LOC) 기술이 각광을 받고 있다. 랩온어칩 기술은 NT, IT, BT의 융합기술의 대표적인 예로 MEMS나 NEMS와 같은 기술을 이용하여 시료의 희석, 혼합, 반응, 분리, 정량 등 시료의 모든 전처리 및 분석 단계를 하나의 칩 위에서 수행하도록 하는 기술을 말한다.
이와 같은, 랩온어칩 기술이 적용된 미세유체 장치(microfluidic devices)는 반응채널을 흐르는 유체 시료의 유동 혹은 반응채널에 공급된 유체 시료와 시약의 반응을 분석 및 진단함은 물론, 유체 시료의 제어와 관련된 여러 단계의 처리 및 조작을 하나의 칩에서 수행할 수 있도록 유리, 실리콘 또는 플라스틱으로 된 수 ㎠ 크기의 소형의 칩 상에 분석에 필요한 다수의 유닛이 구비된 형태로 제작된다.
구체적으로, 미세유체 장치는 소량의 유체를 가두어 둘 수 있는 챔버, 유체가 흐를 수 있는 반응채널, 유체의 흐름을 조절할 수 있는 밸브, 그리고 유체를 받아 소정의 기능을 수행할 수 있는 여러 가지 기능성 유닛 등을 포함하여 구성된다.
그러나, 종래의 미세유체 장치는 실험 목적에 따라 다수의 미세유체 장치와 연관된 기능을 가지도록 제작되므로, 하나의 기능에 문제가 생기거나 변동사항이 생겨도 장치 전체를 새로 제작해야만 하고, 이로 인해 제조비용이 증가함은 물론, 관리가 용이하지 못한 문제점이 있었다.
또한, 종래의 미세유체 장치는 미리 설정된 하나의 정량값으로만 액체의 정량이 가능하도록 제작됨에 따라, 한 개의 미세유체 장치를 통해 다양한 용량의 액체 정량이 불가능한 문제점이 있었다.
아울러, 다양한 용량의 액체 정량을 수행하기 위하여 정량값이 다르게 적용된 복수개의 미세유체 장치를 별도 구비해야만 함에 따라, 비용이 증가하게되는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 한 개의 유체 칩을 이용하여 다양한 용량의 액체 정량이 가능하고, 이를 통해 비용을 절감할 수 있는 모듈형 유체 칩을 제공하는 것이다.
또한, 독립적으로 미리 설정된 기능을 수행할 수 있고, 다른 모듈형 유체 칩과 선택적으로 연결되어 하나의 유체 시스템을 구현할 수 있는 모듈형 유체 칩을 제공하는 것이다.
본 발명의 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 모듈형 유체 칩은 복수개의 챔버를 포함하는 코어; 및 상기 코어에 결합되고, 상기 복수개의 챔버 중 적어도 하나와 연결되거나, 상기 복수개의 챔버 중 적어도 둘 이상을 연결하도록 구성되는 적어도 하나의 유로를 포함하는 커버;를 포함한다.
상기 코어는, 상기 복수개의 챔버로부터 이격된 위치에 마련되어 상기 적어도 하나의 유로와 연결 가능한 제1 채널; 및 상기 복수개의 챔버 중 적어도 어느 하나에 연결되어 상기 적어도 하나의 유로와 연결 가능한 제2 채널;을 더 포함할 수 있다.
각 챔버의 저장용량은 상기 각 챔버와 연결되는 채널의 저장용량이 반영된 값을 나타낼 수 있다.
상기 제1 채널 및 상기 제2 채널은 상기 복수개의 챔버에 비하여 더 작은 부피로 마련될 수 있다.
상기 코어는, 3D 프린팅을 통하여 일체형으로 제작되거나, 사출성형을 통하여 결합 및 분리 가능한 복수개의 모듈형태로 제작될 수 있다.
상기 적어도 하나의 유로는 저장용량이 큰 순서대로 유체가 충진될 수 있도록 상기 복수개의 챔버를 서로 연결할 수 있다.
상기 커버는 상기 코어의 외면에 탈착 가능한 필름 형태로 마련될 수 있다.
상기 커버는, 상기 코어의 외면에 탈착 가능하고, 내측에 상기 적어도 하나의 유로가 마련되는 제1 커버부재; 및 상기 제1 커버부재의 외면에 부착되고, 상기 적어도 하나의 유로에 충진된 유체가 외부공간으로 유출되는 것을 방지하도록 구성되는 제2 커버부재;를 포함할 수 있다.
상기 커버는, 상기 적어도 하나의 유로와 연결되는 복수개의 챔버 중 처음으로 유체가 충진될 제1 챔버와 연결되고, 유체가 주입되는 유체주입구; 및 상기 적어도 하나의 유로와 연결되는 복수개의 챔버 중 마지막으로 유체가 충진될 제2 챔버와 연결되고, 상기 복수개의 챔버에 유체가 충진될 경우 상기 복수개의 챔버 내의 공기가 배출되는 공기배출구;를 포함할 수 있다.
상기 공기배출구에 설치되고, 유체로부터 기포를 제거 가능한 에어필터;를 더 포함할 수 있다.
상기 에어필터는 친수성(hydrophilic) 유체로부터 기포를 제거 가능한 소수성(hydrophobic) 소재로 마련될 수 있다.
상기 에어필터는, 폴리테트라 플루오로에틸렌(Polytetrafluore ethylene, PTFE), 폴리에틸렌 테레프탈레이트(Polyethylene Terephtalate, PET), 폴리염화비닐(Polyvinyl Chloride)로 이루어진 군에서 선택되는 하나 이상의 소수성 소재로 마련될 수 있다.
상기 에어필터는 소수성 유체로부터 기포를 제거 가능한 친수성 소재로 마련될 수 있다.
상기 에어필터는 친수성 유체 및 소수성 유체가 혼합된 혼합유체로부터 기포를 제거할 수 있도록 일면에 소수성 소재가 마련되고, 타 면에 친수성 소재가 마련될 수 있다.
유체를 감지하고, 이를 전기적 신호로 발생시키는 유체감지센서; 및 상기 전기적 신호의 유무에 따라 상기 유체주입구를 개폐하도록 구성되는 개폐밸브;를 더 포함할 수 있다.
상기 커버는, 상기 유체주입구와 상기 제1 챔버를 서로 연결하고, 상기 유체주입구를 통해 주입된 유체를 상기 제1 챔버로 안내하는 제1 연결채널; 상기 제1 연결채널로부터 분기되어 외부공간과 상기 제1 챔버를 서로 연결하고, 상기 제1 챔버를 통과하여 내측으로 유입된 유체를 상기 외부공간으로 안내하는 제2 연결채널; 상기 공기배출구와 상기 제2 챔버를 서로 연결하고, 상기 제2 챔버에 충진되는 유체를 상기 공기배출구로 안내하는 제3 연결채널; 및 상기 제3 연결채널로부터 분기되어 상기 외부공간과 상기 제2 챔버를 서로 연결하고, 외부로부터 주입된 공기를 상기 제2 챔버로 안내하는 제4 연결채널;을 포함할 수 있다.
본 발명의 다른 실시예에 따른 모듈형 유체 칩은 적어도 하나의 챔버를 가지는 코어; 및 상기 코어에 결합되고 상기 적어도 하나의 챔버와 연결되도록 구성되는 적어도 하나의 유로를 가지는 베이스;를 포함한다.
본 발명의 또 다른 실시예에 따른 모듈형 유체 칩은 적어도 하나의 챔버를 가지는 코어셀 및 솔리드 형태로 마련되는 더미셀을 포함하는 코어; 및 상기 코어셀에 결합되고, 상기 적어도 하나의 챔버와 연결되도록 구성되는 적어도 하나의 유로를 포함하는 커버;를 포함한다.
본 발명의 실시예에 따르면, 코어에 마련되는 복수개의 챔버를 코어의 외면에 탈착 가능한 커버를 이용하여 설정된 정량값에 따라 적어도 하나 또는 둘 이상 연결함으로써, 다양한 저장공간을 생성할 수 있고, 이를 통해 한 개의 유체 칩을 통해 다양한 용량의 액체 정량이 가능할 수 있다.
또한, 한 개의 유체 칩을 통해 다양한 용량의 액체 정량이 가능함에 따라, 비용을 절감할 수 있다.
또한, 유체 칩을 모듈 형태로 형성함으로써, 독립적으로 미리 설정된 기능을 수행하거나, 다른 모듈형 유체 칩과 연결되어 다양한 기능이 복합적으로 적용된 하나의 유체 시스템을 구현할 수 있다.
또한, 유체 시스템에 적용될 경우, 특정 부분이 변형 또는 파손될 경우에도 해당 부분의 모듈형 유체 칩만을 교체 가능하여 관리가 용이하고, 비용을 절감할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 모듈형 유체 칩을 나타낸 사시도이다.
도 2는 본 발명의 제1 실시예에 따른 모듈형 유체 칩을 나타낸 분해사시도이다.
도 3은 본 발명의 제1 실시예에 따른 모듈형 유체 칩에 유체가 충진되는 과정을 개략적으로 나타낸 도면이다.
도 4a 및 도 4b는 본 발명의 제2 실시예에 따른 모듈형 유체 칩을 나타낸 사시도이다.
도 5는 본 발명의 제3 실시예에 따른 모듈형 유체 칩을 나타낸 사시도이다.
도 6은 유로와 연결되는 챔버의 단부 구조를 개략적으로 나타낸 도면이다.
도 7은 본 발명의 제4 실시예에 따른 모듈형 유체 칩을 나타낸 평면도이다.
도 8은 도 7의 VIII - VIII선을 따라 절개한 단면도이다.
도 9는 본 발명의 제5 실시예에 따른 모듈형 유체 칩을 나타낸 평면도이다.
도 10은 도 9의 X - X선을 따라 절개한 단면도이다.
도 11은 본 발명의 제6 실시예에 따른 모듈형 유체 칩을 나타낸 사시도이다.
도 12는 도 11의 분해 사시도이다.
이하에서는 첨부된 도면을 참조하여 다양한 실시 예를 보다 상세하게 설명한다. 본 명세서에 기재된 실시 예는 다양하게 변형될 수 있다. 특정한 실시예가 도면에서 묘사되고 상세한 설명에서 자세하게 설명될 수 있다. 그러나, 첨부된 도면에 개시된 특정한 실시 예는 다양한 실시 예를 쉽게 이해하도록 하기 위한 것일 뿐이다. 따라서, 첨부된 도면에 개시된 특정 실시 예에 의해 기술적 사상이 제한되는 것은 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이러한 구성요소들은 상술한 용어에 의해 한정되지는 않는다. 상술한 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 명세서에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
한편, 본 명세서에서 사용되는 구성요소에 대한 "모듈" 또는 "부"는 적어도 하나의 기능 또는 동작을 수행한다. 그리고, "모듈" 또는 "부"는 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합에 의해 기능 또는 동작을 수행할 수 있다. 또한, 특정 하드웨어에서 수행되어야 하거나 적어도 하나의 프로세서에서 수행되는 "모듈" 또는 "부"를 제외한 복수의 "모듈들" 또는 복수의 "부들"은 적어도 하나의 모듈로 통합될 수도 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
그 밖에도, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그에 대한 상세한 설명은 축약하거나 생략한다.
도 1은 본 발명의 제1 실시예에 따른 모듈형 유체 칩을 나타낸 사시도이고, 도 2는 본 발명의 제1 실시예에 따른 모듈형 유체 칩을 나타낸 분해사시도이며, 도 3은 본 발명의 제1 실시예에 따른 모듈형 유체 칩에 유체가 충진되는 과정을 개략적으로 나타낸 도면이다.
도 1 및 도 2를 참조하면, 본 발명의 제1 실시예에 따른 모듈형 유체 칩(100)(이하 ‘모듈형 유체 칩(100)’이라 함)은 유체를 정량할 수 있고, 다른 모듈형 유체 칩(미도시)에 선택적으로 연결 가능한 모듈 형태로 마련된다.
모듈형 유체 칩(100)은 다른 기능을 수행하는 모듈형 유체 칩(미도시)과 연결되어, 다양한 구조의 유체 유동 시스템(미도시)을 구현한다. 예시적으로, 모듈형 유체 칩(100)은 다른 모듈형 유체 칩들과 수평방향 및 수직방향으로 연결되어 하나의 유체 유동 시스템을 구현할 수 있다.
모듈형 유체 칩(100)과 다른 모듈형 유체 칩을 통해 구현된 유체 유동 시스템은 체액, 혈액, 타액, 피부세포를 포함하는 액체 시료 등과 같은 유체로부터 샘플 채취, 샘플 파쇄, 채취된 샘플로부터 유전자 또는 단백질 등과 같은 물질 추출, 필터링, 믹싱, 저장, 밸브, RT-PCR 등을 포함하는 중합효소연쇄반응 등을 이용한 증폭, 항원항체반응, 친화크로마토그래피(Affinity Chromatography) 및 전기적 센싱, 전기화학적 센싱, 캐패시터형 전기적 센싱, 형광물질을 포함하거나 포함하지 않는 광학적 센싱 등의 분석/검출 과정을 수행할 수 있다. 그러나, 모듈형 유체 칩(100)을 통해 구현된 유체 유동 시스템은 반드시 상기한 기능으로 한정되는 것은 아니며, 유체 분석 및 진단을 위한 다양한 기능을 수행할 수 있다. 예컨대, 유체 유동 시스템은 유체가 진입하여, 유체 내 세포가 파쇄되고, 필터링된 후, 유전자가 증폭되고, 증폭된 유전자에 형광물질이 부착되어 관찰되도록 하는 일련의 처리가 가능하도록 구성될 수 있다.
또한, 유체 유동 시스템은 또 다른 유체 유동 시스템(미도시)과의 연결을 통하여 팩토리온어칩(Factory-on-a-chip) 기술을 구현할 수 있다. 이를 통해 복수의 유체 유동 시스템을 통해서 서로 다른 유체에 관한 분석 및 진단을 동시에 수행할 수 있을 뿐만 아니라, 유체와 관련된 모든 실험(예컨대, 화학반응 및 물질합성 등)을 동시에 수행할 수 있다.
모듈형 유체 칩(100)은 코어(110) 및 커버(120)를 포함한다.
코어(110)는 3D 프린팅을 통하여 일체형으로 제작되거나, 사출성형을 통하여 결합 및 분리 가능한 복수개의 모듈형태로 마련될 수 있다. 그러나, 코어 (110)는 반드시 이에 한정되는 것은 아니며, MEMS, CNC가공, 임프린팅(imprinting), 고분자 캐스팅 등과 같은 다양한 기술을 이용하여 제작될 수 있다.
코어(110)는 외부에서 내부에 흐르는 유체의 유동을 육안으로 확인 할 수 있도록 전체가 투명도를 가지거나, 일부가 투명도를 가지도록 형성될 수 있다. 예시적으로, 코어(110)는 유리 등과 같은 비결정질(amorphous) 물질, 나무, 고분자 수지, 금속 및 엘라스토머 중 적어도 어느 하나로 형성되거나, 이들의 조합을 통하여 형성될 수 있다. 그러나, 코어(110)는 반드시 이에 한정되는 것은 아니며, 다양한 재질로 형성될 수 있다.
코어(110)는 개별적으로 미리 설정된 저장용량을 갖는 복수개의 챔버(111)를 포함한다.
복수개의 챔버(111)는 내부에 충진된 유체를 수직방향으로 안내할 수 있도록 수직방향의 길이가 내경보다 더 큰 값을 가지는 구멍의 형태로 형성될 수 있다.
복수개의 챔버(111)는 가장 큰 저장용량을 가지는 제1 챔버(111a), 가장 작은 저장용량을 가지는 제2 챔버(111b) 및 제1 챔버(111a)의 저장용량과 제2 챔버(111c)의 저장용량 사이의 저장용량 값을 가지는 제3 챔버(111c)를 포함할 수 있다.
예시적으로, 제1 챔버(111a)는 10μL(마이크로리터)의 저장용량을 가지고, 제2 챔버(111b)는 2μL의 저장용량을 가지며, 제3 챔버(111c)는 5μL의 저장용량을 가질 수 있다. 그러나, 제1 챔버(111a), 제2 챔버(111b) 및 제3 챔버(111c)의 저장용량은 반드시 이에 한정되는 것은 아니며, 다양한 값으로 변경되어 적용될 수 있다.
제1 챔버(111a), 제2 챔버(111b) 및 제3 챔버(111c)는 코어(110) 내에 각각 복수개로 마련될 수 있다.
본 실시예에서는 복수개의 챔버(111)가 모두 여섯 개로 구성되어 있으나, 복수개의 챔버(111)는 반드시 이에 한정되는 것은 아니며, 이보다 더 적거나, 더 많은 수의 챔버들로 구성될 수 있다.
제1 챔버(111a), 제2 챔버(111b) 및 제3 챔버(111c)는 동일한 내경의 크기를 가질 수 있다. 그리고, 제1 챔버(111a)는 제2 챔버(111b) 및 제3 챔버(111c)에 비하여 가장 긴 수직방향의 길이를 가지며, 제3 챔버(111c)는 제2 챔버(111b)에 비하여 더 긴 수직방향의 길이를 가질 수 있다.
코어(110)는 복수개의 챔버(111)와 연결되는 복수개의 채널(112)을 더 포함할 수 있다.
복수개의 채널(112)은 내부에 충진된 유체를 수직방향으로 안내할 수 있도록 수직방향의 길이가 내경보다 더 큰 값을 가지는 구멍의 형태로 형성될 수 있다.
복수개의 채널(112)은 복수개의 챔버(111) 중 어느 하나와 간접적으로 연결되는 제1 채널(112a)과, 복수개의 챔버(111) 중 어느 하나와 직접적으로 연결되는 제2 채널(112b)을 포함할 수 있다.
제1 채널(112a)은 코어(110) 내에서 복수개의 챔버(111)로부터 이격된 위치에 마련되고, 후술할 커버(120)에 마련된 적어도 하나의 유로(120a)와 연결되어 복수개의 챔버(111) 중 어느 하나에 연결될 수 있다.
일 예로, 제1 채널(112a)은 제1 챔버(111a)와 동일한 길이를 가지며, 커버(120)에 마련된 유로(120a)를 통하여 제1 챔버(111a)에 간접적으로 연결될 수 있다.
제2 채널(112b)은 복수개의 챔버(111) 중 적어도 어느 하나에 직접적으로 연결될 수 있다.
일 예로, 제2 채널(112b)은 제1 채널(112a)에 비하여 더 짧은 길이를 가지며, 제2 챔버(111b)와 직접적으로 연결되거나, 제3 챔버(111c)와 직접적으로 연결될 수 있다. 제2 챔버(111b)에 연결되는 제2 채널(112b)은 제1 챔버(111a)의 길이와 제2 챔버(111b)의 길이의 차이와 동일한 길이를 가질 수 있다. 그리고, 제3 챔버(111c)에 연결되는 제2 채널(112b)은 제1 챔버(111a)의 길이와 제3 챔버(111c)의 길이의 차이와 동일한 길이를 가질 수 있다.
각 챔버(제1 챔버(111a), 제2 챔버(111b), 제3 챔버(111c))의 저장용량은 각 챔버(제1 챔버(111a), 제2 챔버(111b), 제3 챔버(111c))와 연결되는 채널(제1 채널(112a), 제2 채널(112b))의 저장용량이 반영된 값을 나타낼 수 있다.
예를 들어, 도 1의 경우, 제1 챔버(111a)의 저장용량은 제1 챔버(111a) 및 제1 챔버(111a)와 연결된 제1 채널(112a)의 저장용량이 반영된 값을 나타낼 수 있다. 그리고, 제2 챔버(111b)의 저장용량은 제2 챔버(111b) 및 제2 챔버(111b)와 연결된 제1 채널(112a) 및 제2 채널(112b)의 저장용량이 반영된 값을 나타내며, 제3 챔버(111c)의 저장용량은 제3 챔버(111c)및 제3 챔버(111c)와 연결된 제1 채널(112a) 및 제2 채널(112b)의 저장용량이 반영된 값을 나타낼 수 있다.
이에 따라, 모듈형 유체 칩(100)에 유체가 주입될 경우, 복수개의 채널(112)에 충진되는 유체에 의한 정량오차가 제거될 수 있다.
또한, 복수개의 채널(112) 및 적어도 하나의 유로(120a)는 복수개의 챔버(111)에 비하여 더 작은 부피로 마련될 수 있다. 이를 통해, 정량오차를 최소화할 수 있다.
복수개의 채널(112) 및 적어도 하나의 유로(120a)는 동일한 내경의 크기를 가질 수 있다.
이를 통해, 유체의 흐름 시 코어(110)와 커버(120) 사이에 유체의 압력이 높아지거나 유체의 흐름이 불안정한 현상을 예방할 수 있다.
즉, 복수개의 채널(112) 및 적어도 하나의 유로(120a)가 서로 대응되는 형상 및 크기를 가지고 유체의 이동 경로를 형성하는 것은, 유체가 하나의 모듈에서 다른 모듈로 이동될 때 예측 가능한 유속을 가질 수 있게 한다. 종래의 일부 미세 유체 유동 장치들에서는 튜브를 통해서 유체를 이송시킨다. 튜브를 이용하는 미세 유체 유동 장치의 경우, 튜브와 장치가 연결되는 부분에서 채널의 너비에 차이가 생기거나 채널에 공간이 생겨 유체에 볼텍스를 일으킬 수 있다. 이러한 볼텍스는 유속의 급격한 변화를 일으킬 뿐만 아니라 액적의 형상을 변형시킬 수 있다. 또는, 유체 내의 물질들에 물리적 충격을 주거나 물질의 이동을 방해할 수 있다. 따라서, 복수개의 채널(112) 및 적어도 하나의 유로(120a)가 서로 대응되는 형상 및 크기를 가지고 유체의 이동 경로를 형성하는 것은 단순히 모듈들 간의 연결을 보장하는 기능에 더하여 유체의 안정적인 유속과 물질의 안정적인 이동을 가능하게 한다.
일 예로, 복수개의 채널(112) 및 적어도 하나의 유로(120a)는 단면이 원형, 또는 다각형 또는 타원 형상으로 형성될 수 있다. 그러나, 상기 내경의 형상은 이에 한정되는 것은 아니며 다양한 크기 및 형상으로 변경되어 적용될 수 있다.
도 6을 참조하면, 유로(120a)와 연결되는 챔버(111)의 단부(p1)는 유로(120a)를 향하여 내경의 크기가 점차 좁아지는 구조로 형성될 수 있다. 예시적으로, 유로(120a)에 접하는 챔버(111)의 개구부는 유로(120a)와 동일한 내경의 크기를 가질 수 있다.
이를 통해, 유체의 유동 시 공기가 코어(110) 내에 잔류하는 것을 방지할 수 있다.
도 1 및 도 2를 참조하면, 커버(120)는 코어(110)에 결합되고, 적어도 하나의 유로(120a)를 포함한다.
적어도 하나의 유로(120a)는 미리 설정된 정량값에 따라 적어도 하나의 챔버(111)와 연결되고, 내부에 흐르는 유체를 수평방향으로 안내한다.
더 자세하게는, 커버(120)에 마련된 적어도 하나의 유로(120a)는, 챔버의 저장용량이 미리 설정된 정량값과 일치되도록, 복수개의 챔버(111) 중 적어도 하나와 연결되거나, 복수개의 챔버(111) 중 적어도 둘 이상을 연결하도록 구성된다.
일 예로, 정량값이 10μL로 설정될 경우, 커버(120)에 마련된 적어도 하나의 유로(120a)는 10μL의 저장용량을 가지는 제1 챔버(111a)와 연결될 수 있다. 보다 자세하게는, 정량값이 10μL로 설정될 경우, 적어도 하나의 유로(120a)는 10μL의 저장용량을 가지는 제1 챔버(111a) 및 제1 챔버(111a)의 일 측에 마련된 제1 채널(112a)을 서로 연결할 수 있다.
다른 예로, 정량값이 19μL로 설정될 경우, 커버(120)에 마련된 적어도 하나의 유로(120a)는 도 1에 도시된 바와 같이 10μL의 저장용량을 가지는 제1 챔버(111a), 5μL의 저장용량을 가지는 제3 챔버(111c), 그리고 개별적으로 2μL의 저장용량을 가지는 복수개의 제2 챔버(111b)를 서로 연결할 수 있다. 보다 자세하게는, 정량값이 19μL로 설정될 경우, 적어도 하나의 유로(120a)는, 제1 챔버(111a)의 일 측에 마련된 제1 채널(112a)과 제1 챔버(111a), 제1 챔버(111a)와 제3 챔버(111c)의 일 측에 마련된 제1 채널(112a), 제3 챔버(111c)의 일 측에 마련된 제1 채널(112a)과 제3 챔버(111c), 제3 챔버(111c)에 직접적으로 연결된 제2 채널(112b)과 제2 챔버(111b)의 일 측에 마련된 제1 채널(112a), 제2 챔버(111b)의 일 측에 마련된 제1 채널(112a)과 제2 챔버(111b), 제2 챔버(111b) 에 직접적으로 연결된 제2 채널(112b)과 또 다른 제2 챔버(111b)의 일 측에 마련된 제1 채널(112a), 및 또 다른 제2 챔버(111b)의 일 측에 마련된 제1 채널(112a)과 또 다른 제2 챔버(111b)를 서로 연결할 수 있다.
즉, 본 모듈형 유체 칩(100)은 코어(110)에 부착되는 커버(120)의 교체가 가능하고, 커버(120)에 마련되는 유로(120a)가 복수개의 챔버(111) 중 적어도 하나와 연결되거나, 복수개의 챔버(111) 중 적어도 둘 이상을 연결하도록 구성됨에 따라, 다양한 용량으로 유체의 정량을 수행할 수 있다.
적어도 하나의 유로(120a)는 챔버들의 저장용량의 합이 미리 설정된 정량값에 대응되도록 복수개의 챔버(111) 중 적어도 둘 이상을 서로 연결하되, 저장용량이 큰 순서대로 유체가 충진될 수 있도록 챔버들을 서로 연결할 수 있다.
일 예로, 도 3을 참조하면, 적어도 하나의 유로(120a)는 모듈형 유체 칩(100)으로 주입된 유체가 가장 큰 저장용량을 가지는 제1 챔버(111a), 다음으로 큰 저장용량을 가지는 제3 챔버(111c) 및 가장 작은 저장용량을 가지는 제2 챔버(111b)의 순으로 충진될 수 있도록, 제1 챔버(111a), 제2 챔버(111b) 및 제3 챔버(111c)를 서로 연결할 수 있다. 이를 통해, 유체가 충진되는 챔버(111)가 최소화될 수 있다.
도 1 및 도 2를 참조하면, 커버(120)는 코어(110)의 상면 및 하면에 각각 결합되고, 코어(110)의 외면에 탈착 가능한 필름 형태로 마련될 수 있다.
커버(120)는 제1 커버부재(121) 및 제2 커버부재(122)를 포함할 수 있다.
제1 커버부재(121)는 코어(110)의 외면에 탈착 가능할 수 있다. 그리고, 제1 커버부재(121) 의 내측에는 적어도 하나의 유로(120a)가 마련될 수 있다.
예시적으로, 제1 커버부재(121)의 일면 및 타면에는 접착층(미도시)이 마련될 수 있다. 이를 통해, 제1 커버부재(121)의 일면은 코어(110)의 외면에 탈착 가능하고, 제1 커버부재(121)의 타면은 후술할 제2 커버부재(122)와 결합될 수 있다. 그리고, 제1 커버부재(121)는 투명 또는 불투명한 재질로 형성될 수 있다.
제2 커버부재(122)는 제1 커버부재(121)의 외형에 대응되는 형상으로 형성되어, 접착층(미도시)이 마련된 제1 커버부재(121)의 외면에 부착될 수 있다. 이를 통해, 제2 커버부재(122)는 적어도 하나의 유로(120a)에 충진되는 유체가 외부공간으로 유출되는 것을 방지하도록 구성될 수 있다.
예시적으로, 제2 커버부재(122)는 투명한 재질로 형성될 수 있다.
또한, 커버(120)는 유체주입구(123) 및 공기배출구(124)를 더 포함할 수 있다.
도 1 및 도 2를 참조하면, 유체주입구(123)는 제1 커버부재(121) 및 제2 커버부재(122)를 관통하여 형성될 수 있다. 그리고, 유체주입구(123)는 적어도 하나의 유로(120a)와 연결되는 복수개의 챔버(111) 중 처음으로 유체가 충진될 제1 챔버(111a)와 연결될 수 있다. 또한, 유체주입구(123)는 다른 모듈형 유체 칩(미도시) 혹은 별도의 유체주입장치(미도시) 등과 연결될 수 있다. 이를 통해 유체주입구(123)에는 다른 모듈형 유체 칩(미도시) 혹은 별도의 유체주입장치(미도시)로부터 배출된 유체가 주입될 수 있다.
공기배출구(124)는 제1 커버부재(121) 및 제2 커버부재(122)를 관통하여 형성될 수 있다. 그리고, 공기배출구(124)는 적어도 하나의 유로(120a)와 연결되는 복수개의 챔버(111) 중 마지막으로 유체가 충진될 제2 챔버(111b)와 연결되어 챔버에 흐르는 유체의 유동을 가능하게 한다. 또한, 공기배출구(124)는 복수개의 챔버(111)에 유체가 충진될 경우, 일방향으로 이동되는 챔버 내부의 공기를 외부로 배출시킬 수 있다.
이하에서는, 본 발명의 제2 실시예에 따른 모듈형 유체 칩(200)에 대하여 설명한다.
참고로, 본 발명의 제2 실시예에 따른 모듈형 유체 칩(200)을 설명하기 위한 각 구성에 대해서는 설명의 편의상 본 발명의 제1 실시예에 따른 모듈형 유체 칩(100)을 설명하면서 사용한 도면부호를 동일하게 사용하고, 동일하거나 중복된 설명은 생략하기로 한다.
도 4a 및 도 4b는 본 발명의 제2 실시예에 따른 모듈형 유체 칩을 나타낸 사시도이다.
도 4a를 참조하면, 본 발명의 제2 실시예에 따른 모듈형 유체 칩(200)(이하 ‘모듈형 유체 칩(200)’이라 함)은 내부에 충진되는 유체로부터 기포를 제거하도록 구성된다.
모듈형 유체 칩(200)은 공기배출구(124)에 설치되고, 유체로부터 기포를 제거 가능한 에어필터(150)를 더 포함할 수 있다.
에어필터(150)는 커버(120)의 외면에 부착 가능한 필름 형태로 형성되고, 공기배출구(124)를 가리도록 커버(120)의 외면에 부착될 수 있다.
에어필터(150)는 복수개의 챔버(111)에 충진되는 유체로부터 기포만을 통과시키도록 구성될 수 있다. 이에 따라, 코어(110)로 주입된 유체는 일방향으로 이동하며 복수개의 챔버(111)를 순차적으로 모두 충진시킨 후, 공기배출구(124)에 설치된 에어필터(150)에 가로막혀 자동적으로 유동이 제한될 수 있다.
일 실시예로, 에어필터(150)는 친수성(hydrophilic) 유체로부터 기포를 제거 가능한 소수성(hydrophobic) 소재로 마련되거나, 표면에 소수성 물질이 코팅된 섬유조직의 형태로 마련될 수 있다. 예시적으로, 에어필터(150)는 폴리테트라 플루오로에틸렌(Polytetrafluore ethylene, PTFE), 폴리에틸렌 테레프탈레이트(Polyethylene Terephtalate, PET), 폴리염화비닐(Polyvinyl Chloride)로 이루어진 군에서 선택되는 하나 이상의 소수성 소재로 마련될 수 있다.
다른 실시예로, 에어필터(150)는 소수성 유체로부터 기포를 제거 가능한 친수성 소재로 마련되거나, 표면에 친수성 물질이 코팅된 섬유조직의 형태로 마련될 수 있다.
또 다른 실시예로, 에어필터(150)는 친수성 유체 및 소수성 유체가 혼합된 혼합유체로부터 기포를 제거할 수 있도록 일면에 소수성 소재가 마련되고, 타 면에 친수성 소재가 마련되는 2중 필터의 형태로 마련될 수 있다.
또한, 모듈형 유체 칩(200)은 특정위치에서 챔버(111)에 충진되는 유체를 감지하고, 유체가 감지될 경우 유체의 유입을 차단하여 코어(110)로 주입된 유체의 유동을 제한하도록 구성된다.
도 4b를 참조하면, 모듈형 유체 칩(200)은 유체를 감지하고, 이를 전기적 신호로 발생시키는 유체감지센서(160)와, 유체감지센서(160)의 신호 발생 유무에 따라 유체주입구(123)를 개폐하도록 구성되는 개폐밸브(170)를 더 포함할 수 있다.
도 4b에서는 유체감지센서(160)가 복수개로 마련되어 각 챔버(111a, 111b, 111c)에 설치되는 것으로 도시되어 있으나, 유체감지센서(160)는 이에 한정되는 것은 아니며, 코어(110)에 마련되는 챔버의 수량 또는 미리 설정된 유체의 유동경로에 따라 적어도 하나 이상 마련될 수 있다.
또한, 챔버(111)에 설치되는 유체감지센서(160)는 마지막으로 유체가 충진되는 위치에 배치될 수 있다.
즉, 유체감지센서(160)는 선택된 챔버에 유체가 정량으로 충진된 상태를 감지할 수 있도록, 선택된 챔버에서 유체가 마지막으로 충진되는 위치에 배치될 수 있다.
예시적으로, 제1 챔버(111a)에 충진되는 유체를 감지하는 제1 유체감지센서(160a)는 유로(120a)와 연결되는 제1 챔버(111a)의 상단부에 배치되고, 제2 챔버(111b)에 충진되는 유체를 감지하는 제2 유체감지센서(160b)는 제2 챔버(111b)에 마련되어 유로(120a)와 연결되는 제2 채널(112b)의 상단부에 배치되며, 제3 챔버(111c)에 충진되는 유체를 감지하는 제3 유체감지센서(160c)는 제3 챔버(111c)에 마련되어 유로(120a)와 연결되는 제2 채널(112b)의 상단부에 배치될 수 있다.
한편, 복수개의 유체감지센서(160a, 160b, 160c)는 별도의 제어장치(미도시)와 전기적으로 연결되고, 제어장치(미도시)를 통하여 선택적으로 제어될 수 있다. 따라서, 복수개의 유체감지센서(160a, 160b, 160c)는 유체와의 접촉 시, 모두 전기적 신호를 생성하여 제어장치(미도시)로 전송하거나, 선택된 일부만 전기적 신호를 생성하여 제어장치(미도시)로 전송할 수 있다.
또한, 각 유체감지센서(160a, 160b, 160c)는 코어(110)의 내면에 부착 가능하도록 플렉서블(flexible)한 필름 형태의 전극으로 마련될 수 있으나, 반드시 이에 한정되는 것은 아니며 다양한 형태로 변경될 수 있다.
개폐밸브(170)는 제어장치(미도시)와 전기적으로 연결되고, 제어장치(미도시)로부터 전송되는 제어신호에 따라 유체주입구(123)를 개폐할 수 있다.
구체적으로, 개폐밸브(170)는 제어장치(미도시)로부터 제어신호가 전송되지 않은 경우 유체의 유입이 가능하도록 유체주입구(123)를 개방하고, 제어장치(미도시)에 유체감지센서(160)로부터 유체의 감지를 알리는 전기적 신호가 전송되어 제어장치(미도시)로부터 제어신호가 전송될 경우 유체의 유입이 차단되도록 유체주입구(123)를 페쇄할 수 있다.
예시적으로, 개폐밸브(170)는 유체주입구(123)와 연결되는 제1 채널(112a)의 상단부에 설치되며, 직경이 1mm 이하인 제1 채널(112a)의 내측에 설치될 수 있도록 마이크로 밸브로 적용될수 있다.
상기와 같이, 본 모듈형 유체 칩(200)은 유체감지센서(160)가 챔버에 유체가 정량으로 충진된 상태를 감지하고, 개폐밸브(170)가 유체감지센서(160)의 신호 발생 유무에 따라 유체의 주입이 이루어지는 유체주입구(123)를 개폐함으로써, 유체가 설정된 양만큼 충진될 경우 자동적으로 유체의 유입을 차단하여 유체의 유동을 제한할 수 있다.이하에서는, 본 발명의 제3 실시예에 따른 모듈형 유체 칩(300)에 대하여 설명한다.
참고로, 본 발명의 제3 실시예에 따른 모듈형 유체 칩(300)을 설명하기 위한 각 구성에 대해서는 설명의 편의상 본 발명의 제1 실시예 및 제2 실시예에 따른 모듈형 유체 칩(100, 200)을 설명하면서 사용한 도면부호를 동일하게 사용하고, 동일하거나 중복된 설명은 생략하기로 한다.
도 5는 본 발명의 제3 실시예에 따른 모듈형 유체 칩을 나타낸 사시도이다.
도 5를 참조하면, 본 발명의 제3 실시예에 따른 모듈형 유체 칩(300)(이하 ‘모듈형 유체 칩(300)’이라 함)은 복수개의 챔버(111)에 충진되어 정량된 유체를 회수하도록 구성된다.
모듈형 유체 칩(200)은 커버(120)에 마련되고, 유체의 주입 및 배출이 가능하고, 공기의 주입 및 배출이 가능한 복수개의 연결채널(125)을 더 포함할 수 있다.
복수개의 연결채널(125)은 제1 연결채널(125a), 제2 연결채널(125b), 제3 연결채널(125c) 및 제4 연결채널(125d)을 포함할 수 있다.
제1 연결채널(125a)은 유체주입구(123)와 제1 챔버(111a)를 서로 연결하고, 유체주입구(123)를 통해 주입된 유체를 제1 챔버(111a)로 안내할 수 있다.
제2 연결채널(125b)은 제1 연결채널(125a)로부터 분기되어 외부공간과 제1 챔버(111a)를 서로 연결하고, 제4 연결채널(125d)을 통해 주입된 공기로 인해 제1 챔버(111a)를 통과하여 내측으로 유입된 유체를 외부공간으로 안내할 수 있다.
예시적으로, 제1 챔버(111a)와 연결된 제1 연결채널(125a) 및 제2 연결채널(125b)은 제1 챔버(111a)와 직접적으로 연결되거나, 유로(120a)를 통해 제1 챔버(111a)와 연결된 제1 채널(112a)을 통해 제1 챔버(111a)와 간접적으로 연결될 수 있다.
제3 연결채널(125c)은 공기배출구(124)와 제2 챔버(111b)를 서로 연결하고, 제2 챔버(111b)에 충진되는 유체를 에어필터(150)가 설치된 공기배출구(124) 측으로 안내할 수 있다.
제4 연결채널(125d)은 제3 연결채널(125c)로부터 분기되어 외부공간과 제2 챔버(111b)를 서로 연결하고, 외부로부터 주입된 공기를 제2 챔버(111b)로 안내할 수 있다.
예시적으로, 제2 챔버(111b)와 연결된 제3 연결채널(125c) 및 제4 연결채널(125d)은 제2 챔버(111b)와 직접적으로 연결되거나, 제2 챔버(111b)에 마련된 제2 채널(112b)을 통해 제2 챔버(111b)와 간접적으로 연결될 수 있다.
따라서, 유체주입구(123)를 통하여 주입된 유체는 제1 연결채널(125a)을 통하여 제1 챔버(111a)로 유입된 후, 순차적으로 제1 챔버(111a), 제3 챔버(111c) 및 제2 챔버(111b)에 충진되어 정량될 수 있다. 이때, 제2 연결채널(125b) 및 제4 연결채널(125d)은 각 채널의 단부에 부착되는 별도의 부재를 통하여 폐쇄된 상태를 유지하게 된다. 그리고, 유체와 함께 일 방향으로 이동중인 챔버(111)내의 공기는 제3 연결채널(125c)로 유입된 후 제3 연결채널(125c)의 단부에 배치된 에어필터(150)를 통해 외부공간으로 배출되고, 제3 연결채널(125c)로 유입된 유체는 제3 연결채널(125c)을 충진시킨 후, 단부에 배치된 에어필터(150)에 지지되어 유동이 제한될 수 있다.
또한, 제4 연결채널(125d)로 공기가 주입될 경우, 복수개의 챔버(111)에 저장된 정량된 유체는 유체가 주입된 방향과 반대되는 방향으로 유동하게 된다. 이를 통해 각 챔버(111a, 111b, 111c)에 저장된 유체는 충진된 순서와 반대되는 순서대로 제2 연결채널(125b)을 통하여 외부공간으로 배출되고, 이에 따라 정량된 유체를 외부에서 온전히 회수할 수 있다. 이때, 제1 연결채널(125a)은 단부에 부착되는 별도의 부재를 통하여 폐쇄된 상태로 유지하게 된다. 그리고, 제3 연결채널(125c)은, 제4 연결채널(125d)로 주입되는 공기에 가압되어 제3 연결채널(125c)에 잔류하고 있는 유체를 통해, 공기의 주입이 멈출 때까지 지속적으로 폐쇄된 상태를 유지하게 된다.
이하에서는, 본 발명의 제4 실시예에 따른 모듈형 유체 칩(400)에 대하여 설명한다.
참고로, 본 발명의 제4 실시예에 따른 모듈형 유체 칩(400)을 설명하기 위한 각 구성에 대해서는 설명의 편의상 본 발명의 제1 실시예 내지 제3 실시예에 따른 모듈형 유체 칩(100, 200, 300)을 설명하면서 사용한 도면부호를 동일하게 사용하고, 동일하거나 중복된 설명은 생략하기로 한다.
도 7은 본 발명의 제4 실시예에 따른 모듈형 유체 칩을 나타낸 평면도이고, 도 8은 도 7의 VIII - VIII선을 따라 절개한 단면도이다.
도 7 및 도 8을 참조하면, 모듈형 유체 칩(400)은 코어(110), 커버(120), 하우징(130) 및 연결체(140)를 포함한다.
코어(110)는 개별적으로 미리 설정된 저장용량을 갖는 복수개의 챔버(111)를 포함한다.
복수개의 챔버(111)는 내부에 충진된 유체를 수직방향으로 안내할 수 있도록 수직방향의 길이가 내경보다 더 큰 값을 가지는 구멍의 형태로 형성될 수 있다.
복수개의 챔버(111)는 가장 큰 저장용량을 가지는 제1 챔버(111a), 가장 작은 저장용량을 가지는 제2 챔버(111b) 및 제1 챔버(111a)의 저장용량과 제2 챔버(111c)의 저장용량 사이의 저장용량 값을 가지는 제3 챔버(111c)를 포함할 수 있다.
코어(110)는 복수개의 챔버(111)와 연결되고, 유체를 수직방향으로 안내하는 복수개의 채널(112)을 더 포함할 수 있다.
복수개의 채널(112)은 복수개의 챔버(111) 중 어느 하나와 간접적으로 연결되는 제1 채널(112a)과, 복수개의 챔버(111) 중 어느 하나와 직접적으로 연결되는 제2 채널(112b)을 포함할 수 있다.
제1 채널(112a)은 코어(110) 내에서 복수개의 챔버(111)로부터 이격된 위치에 마련되고, 후술할 커버(120)에 마련된 적어도 하나의 유로(120a)를 통하여 복수개의 챔버(111) 중 어느 하나에 연결될 수 있다.
제2 채널(112b)은 복수개의 챔버(111) 중 적어도 어느 하나에 직접적으로 연결되고, 커버(120)에 마련된 적어도 하나의 유로(120a)를 통하여 복수개의 챔버(111) 중 어느 하나에 연결될 수 있다.
각 챔버(제1 챔버(111a), 제2 챔버(111b), 제3 챔버(111c))의 저장용량은 각 챔버(제1 챔버(111a), 제2 챔버(111b), 제3 챔버(111c))와 연결되는 채널(제1 채널(112a), 제2 채널(112b))의 저장용량이 반영된 값을 나타낼 수 있다.
또한, 코어(110)는 하우징(130)에 결합되는 연결체(140)의 유로와 연통 가능한 제3 채널(112c)을 더 포함할 수 있다.
제3 채널(112c)은 코어(110)가 하우징(130)에 결합될 경우, 연결체(140)의 유로와 연통되어 연결체(140)를 통해 내부로 유입된 유체를 수평방향으로 안내하는 부분과, 유체를 수평방향으로 안내하는 부분으로부터 연장되어 유체를 수직방향으로 안내하는 부분을 포함할 수 있다.
제3 채널(112c)은 코어(110)에 복수개로 마련될 수 있다.
커버(120)는 코어(110)에 탈착 가능하게 결합되고, 유체를 수평방향으로 안내하는 적어도 하나의 유로(120a)를 포함한다.
적어도 하나의 유로(120a)는, 챔버의 저장용량이 미리 설정된 정량값과 일치되도록, 복수개의 챔버(111) 중 적어도 하나와 연결되거나, 복수개의 챔버(111) 중 적어도 둘 이상을 연결하도록 구성된다.
커버(120)는 코어(110)의 상면과 하면에 각각 탈착 가능하게 결합될 수 있다.
코어(110)의 상면과 하면에 탈착 가능하게 결합되는 각 커버(120)는 코어(110)의 외면에 탈착 가능하게 결합되고, 적어도 하나의 유로(120a)를 포함하는 제1 커버부재(121) 및 제1 커버부재(121)의 외면에 탈착 가능하게 결합되는 제2 커버부재(122)를 포함할 수 있다.
또한, 커버(120)는 공기배출구(124)를 더 포함할 수 있다.
공기배출구(124)는 복수개의 챔버(111) 중 어느 하나 혹은 복수개의 채널(112) 중 어느 하나와 연통 가능하도록 제1 커버부재(121) 및 제2 커버부재(122)를 관통하여 형성될 수 있다.
하우징(130)은 내부에 수용공간이 형성된 프레임 구조로 형성되어 코어(110)를 내측에 수용하도록 구성된다.
하우징(130)은 코어(110)의 하면을 지지하는 제1 파트(131)와, 제1 파트(131)의 상측에 결합되어 코어(110)의 외면을 지지하는 제2 파트(132)로 구성될 수 있다.
제1 파트(131)와 제2 파트(132)는 연결체(140)의 외면을 지지하는 복수개의 지지홈(130a)을 포함할 수 있다.
복수개의 지지홈(130a)은 제1 파트(131)와 제2 파트(132)에 각각 마련되고, 상호 대향 배치될 수 있다. 따라서, 제1 파트(131)와 제2 파트(132)가 결합될 경우 제1 파트(131)와 제2 파트(132) 사이에 수용된 연결체(140)는 상호 대향 배치된 복수개의 지지홈(130a)을 통해 지지되어 안정적으로 고정될 수 있다.
제1 파트(131)와 제2 파트(132)는 자성을 통하여 상호 결합될 수 있다.
예시적으로, 제1 파트(131)와 제2 파트(132)의 결합 시 제1 파트(131)와 제2 파트(132)가 접촉되는 부위에는 자성체(미도시)가 마련될 수 있다. 그러나, 제1 파트(131)와 제2 파트(132)는 반드시 자성체를 통해서만 결합되는 것은 아니며, 다양한 방식을 통하여 상호 결합될 수 있다.
하우징(130)은 본 모듈형 유체 칩(400)을 다른 모듈형 유체 칩(미도시)에 다양한 방향 및 다양한 각도로 연결시키는 결합부(미도시)를 더 포함할 수 있다.
예시적으로, 결합부는 하우징(130)의 외면에 마련되는 적어도 하나의 돌기와, 적어도 하나의 수용홈을 포함할 수 있다.
적어도 하나의 돌기와, 적어도 하나의 수용홈은 서로 대응되는 형상으로 형성되고, 하우징(130)의 둘레를 따라 교대로 배열될 수 있다.
연결체(140)는 하우징(130)에 수용되어 지지되고, 내부에 유로가 구비된 튜브 형태로 형성되어 코어(110)의 제3 채널(112c)과 연결될 수 있다.
따라서, 본 모듈형 유체 칩(400)이 다른 모듈형 유체 칩(미도시)과 연결될 경우, 연결체(140)는 본 모듈형 유체 칩(400)의 코어(110)와 다른 모듈형 유체 칩의 코어(미도시)를 서로 연통시킬 수 있다.
연결체(140)는 탄성체 소재로 형성되고, 타 물체에 접촉 시 접촉부위에 계면을 형성할 수 있다. 예시적으로, 연결체(140)는 엘라스토머(elastomer) 소재로 형성될 수 있다.
이하에서는, 본 발명의 제5 실시예에 따른 모듈형 유체 칩(500)에 대하여 설명한다.
참고로, 본 발명의 제5 실시예에 따른 모듈형 유체 칩(500)을 설명하기 위한 각 구성에 대해서는 설명의 편의상 본 발명의 제1 실시예 내지 제4 실시예에 따른 모듈형 유체 칩(100, 200, 300, 400)을 설명하면서 사용한 도면부호를 동일하게 사용하고, 동일하거나 중복된 설명은 생략하기로 한다.
도 9는 본 발명의 제5 실시예에 따른 모듈형 유체 칩을 나타낸 평면도이고, 도 10은 도 9의 X - X선을 따라 절개한 단면도이다.
도 9 및 도 10을 참조하면, 모듈형 유체 칩(500)은 코어(110), 커버(120), 하우징(130) 및 연결체(140)를 포함한다.
코어(110)는 적어도 하나의 코어셀(110a)과 적어도 하나의 더미셀(110b)을 포함한다.
적어도 하나의 코어셀(110a)과 적어도 하나의 더미셀(110b)은 동일한 크기로 형성될 수 있다. 그리고, 코어셀(110a)과 더미셀(110b)은 각각 코어(110) 전체 크기의 1/n의 크기로 형성될 수 있다. 예시적으로, 본 실시예에서는 코어셀(110a)과 더미셀(110b)이 각각 코어(110) 전체 크기의 1/6의 크기로 형성되고, 하우징(130)에 네 개의 코어셀(110a)과 두 개의 더미셀(110b)이 결합된 상태로 도시되어 있으나, 코어셀(110a)과 더미셀(110b)의 크기 및 수량은 반드시 이에 한정되는 것은 아니며, 다양한 크기 및 수량으로 변경될 수 있다.
따라서, 하나의 코어(110)는 적어도 하나의 코어셀(110a)과 적어도 하나의 더미셀(110b)의 조합을 통해 이루어지거나, 복수개의 코어셀(110a)들의 조합을 통해 이루어질 수 있다.
적어도 하나의 코어셀(110a)은 미리 설정된 저장용량을 갖는 챔버(111) 및 챔버(111)의 일 측에 마련되고, 챔버(111)와 함께 내부로 유입된 유체를 수직방향으로 안내하는 채널(112)을 포함할 수 있다.
적어도 하나의 더미셀(110b)은 내측에 유체가 저장될 수 없는 솔리드 형태로 마련되고, 하우징(130)에 결합될 경우 복수개의 코어셀(110a)들을 지지하여 복수개의 코어셀(110a)들을 정렬시킬 수 있다.
이를 통해, 설정된 유체의 정량값에 따라 코어(110)를 신규 제작하지 않고, 챔버(111) 및 채널(112)을 포함하는 코어셀(110a)과, 솔리드 형태의 더미셀(110b)을 조합하여 하우징(130)에 설치함으로써, 데드볼륨(dead volume)을 제거하고, 제조비용을 절감할 수 있다.
각 코어셀(110a)에 마련된 채널(112)은 후술할 커버(120)에 마련된 적어도 하나의 유로(120a)를 통하여 다른 챔버(111)와 연결될 수 있고, 각 코어셀(110a)에 마련된 챔버(111)의 저장용량은 챔버(111)와 연결되는 채널(112)의 저장용량이 반영된 값을 나타낼 수 있다.
채널(112)은 챔버(111)와 간접적으로 연결되는 제1 채널(112a)과, 챔버(111) 와 직접적으로 연결되는 제2 채널(112b)을 포함할 수 있다.
제1 채널(112a)은 코어셀(110a) 내에서 복수개의 챔버(111)로부터 이격된 위치에 마련되고, 커버(120)에 마련된 유로(120a)를 통하여 챔버(111) 에 연결될 수 있다.
제2 채널(112b)은 챔버(111)에 직접적으로 연결되고, 커버(120)에 마련된 적어도 하나의 유로(120a)를 통하여 다른 코어셀(110a)에 마련된 챔버(111)에 연결될 수 있다.
또한, 코어셀(110a)은 하우징(130)에 결합되는 연결체(140)의 유로와 연통 가능한 제3 채널(112c)을 더 포함할 수 있다.
제3 채널(112c)은 코어셀(110a)이 하우징(130)에 결합될 경우, 연결체(140)의 유로와 연통되어 연결체(140)를 통해 내부로 유입된 유체를 수평방향으로 안내하는 부분과, 유체를 수평방향으로 안내하는 부분으로부터 연장되어 유체를 수직방향으로 안내하는 부분을 포함할 수 있다.
커버(120)는 코어셀(110a)에 탈착 가능하게 결합되고, 유체를 수직 및 수평방향으로 안내하는 적어도 하나의 유로(120a)를 포함한다.
적어도 하나의 유로(120a)는, 복수개의 코어셀(110a)을 서로 연결하도록 구성된다.
커버(120)는 코어셀(110a)의 상면과 하면에 각각 탈착 가능하게 결합될 수 있다.
코어셀(110a)의 상면과 하면에 탈착 가능하게 결합되는 각 커버(120)는, 코어셀(110a)의 외면에 탈착 가능하게 결합되고, 챔버(111) 및 채널(112)과 연결되어 유체를 수직방향으로 안내하는 적어도 하나의 제1 유로(120a1)를 포함하는 제3 커버부재(126), 제3 커버부재(126)의 외면에 탈착 가능하게 결합되고, 적어도 하나의 제1 유로(120a1)와 연결되어 유체를 수평방향으로 안내하는 적어도 하나의 제2 유로(120a2)를 포함하는 제1 커버부재(121) 및 제1 커버부재(121)의 외면에 탈착 가능하게 결합되는 제2 커버부재(122)를 포함할 수 있다.또한, 커버(120)는 공기배출구(124)를 더 포함할 수 있다.
하우징(130)은 내부에 수용공간이 형성된 프레임 구조로 형성되어 적어도 하나의 코어셀(110a)과 적어도 하나의 더미셀(110b)를 내측에 수용하도록 구성된다.
하우징(130)은 코어(110)의 하면을 지지하는 제1 파트(131)와, 제1 파트(131)의 상측에 결합되어 코어(110)의 외면을 지지하는 제2 파트(132)로 구성될 수 있다. 제1 파트(131)와 제2 파트(132)는 연결체(140)의 외면을 지지하는 복수개의 지지홈(130a)을 포함할 수 있다.
하우징(130)은 본 모듈형 유체 칩(500)을 다른 모듈형 유체 칩(미도시)에 다양한 방향 및 다양한 각도로 연결시키는 결합부(미도시)를 더 포함할 수 있다.
결합부는 하우징(130)의 외면에 마련되는 적어도 하나의 돌기와, 적어도 하나의 수용홈을 포함할 수 있다.
적어도 하나의 돌기와, 적어도 하나의 수용홈은 서로 대응되는 형상으로 형성되고, 하우징(130)의 둘레를 따라 교대로 배열될 수 있다.
연결체(140)는 하우징(130)에 수용되어 지지되고, 내부에 유로가 구비된 튜브 형태로 형성되어 코어(110)의 제3 채널(112c)과 연결될 수 있다.
따라서, 본 모듈형 유체 칩(500)이 다른 모듈형 유체 칩(미도시)과 연결될 경우, 연결체(140)는 본 모듈형 유체 칩(500)의 코어(110)와 다른 모듈형 유체 칩의 코어(미도시)를 서로 연통시킬 수 있다.
연결체(140)는 탄성체 소재로 형성되고, 타 물체에 접촉 시 접촉부위에 계면을 형성할 수 있다. 예시적으로, 연결체(140)는 엘라스토머(elastomer) 소재로 형성될 수 있다.
이하에서는, 본 발명의 제6 실시예에 따른 모듈형 유체 칩(600)에 대하여 설명한다.
참고로, 본 발명의 제6 실시예에 따른 모듈형 유체 칩(600)을 설명하기 위한 각 구성에 대해서는 설명의 편의상 본 발명의 제1 실시예 내지 제5 실시예에 따른 모듈형 유체 칩(100, 200, 300, 400, 500)을 설명하면서 사용한 도면부호를 동일하게 사용하고, 동일하거나 중복된 설명은 생략하기로 한다.
도 11은 본 발명의 제6 실시예에 따른 모듈형 유체 칩을 나타낸 사시도이고, 도 12는 도 11의 분해 사시도이다.
도 11 및 도 12를 참조하면, 모듈형 유체 칩(600)은 적어도 하나의 코어(110) 및 적어도 하나의 코어(110)가 결합되는 베이스(120)를 포함한다.
코어(110)는 개별적으로 미리 설정된 저장용량을 갖는 적어도 하나의 챔버(111)와 적어도 하나의 챔버(111)와 연결되는 적어도 하나의 채널(112)을 가진다.
코어(110)는 베이스(120)에 탈착 가능한 모듈 형태로 형성된다.
따라서, 코어(110)는 설정되는 정량값에 따라 베이스(120)에 적어도 하나 이상 결합될 수 있고, 이를 통해, 코어(110)를 신규 제작하지 않음으로써, 제조비용을 절감할 수 있다.
도면에는 도시되지 않았으나, 코어(110)에는 공기배출구(미도시)가 더 마련될 수 있다.
베이스(120)는 코어(110)에 결합되고 적어도 하나의 챔버(111)와 연결되도록 구성되는 적어도 하나의 유로(120a)를 가진다. 적어도 하나의 유로(120a)는 내부로 유입된 유체를 수평방향으로 안내할 수 있다.
예시적으로, 베이스(120)의 상면에는 코어(110)의 단부가 삽입되는 결합홈(120b)이 마련될 수 있다. 이를 통해, 결합홈(120b)에 결합된 코어(110)는 베이스(120)의 상면에 보다 안정적으로 고정된 상태를 유지할 수 있다. 또한, 베이스(120)는 후술할 하우징(130)의 내측에 수용되는 기판의 형태로 마련될 수 있다.
또한, 본 모듈형 유체 칩(600)은 하우징(130) 및 연결체(140)를 더 포함할 수 있다.
하우징(130)은 내부에 수용공간이 형성된 프레임 구조로 형성되어 베이스(120)를 내측에 수용할 수 있다.
하우징(130)은 베이스(120)의 하면을 지지하는 제1 파트(131)와, 제1 파트(131)의 상측에 결합되는 제2 파트(132)로 구성될 수 있다.
제1 파트(131)와 제2 파트(132)는 연결체(140)의 외면을 지지하는 복수개의 지지홈(130a)을 포함할 수 있다.
제1 파트(131)와 제2 파트(132)는 자성을 통하여 상호 결합될 수 있다.
하우징(130)은 본 모듈형 유체 칩(600)을 다른 모듈형 유체 칩(미도시)에 다양한 방향 및 다양한 각도로 연결시키는 결합부(미도시)를 더 포함할 수 있다.
결합부는 하우징(130)의 외면에 마련되는 적어도 하나의 돌기와, 적어도 하나의 수용홈을 포함할 수 있다.
적어도 하나의 돌기와, 적어도 하나의 수용홈은 서로 대응되는 형상으로 형성되고, 하우징(130)의 둘레를 따라 교대로 배열될 수 있다.
연결체(140)는 하우징(130)에 수용되어 지지되고, 내부에 유로가 구비된 튜브 형태로 형성되어 베이스(120)의 유로(120a)와 연결될 수 있다.
따라서, 본 모듈형 유체 칩(600)이 다른 모듈형 유체 칩(미도시)과 연결될 경우, 연결체(140)는 본 모듈형 유체 칩(600)과 다른 모듈형 유체 칩을 서로 연통시킬 수 있다.
연결체(140)는 탄성체 소재로 형성되고, 타 물체에 접촉 시 접촉부위에 계면을 형성할 수 있다. 예시적으로, 연결체(140)는 엘라스토머(elastomer) 소재로 형성될 수 있다. 이처럼 본 발명의 실시예에 따르면, 코어(110)에 마련되는 복수개의 챔버(111)를 코어(110)의 외면에 탈착 가능한 커버(120)를 이용하여 설정된 정량값에 따라 적어도 하나 또는 둘 이상 연결함으로써, 다양한 저장공간을 생성할 수 있고, 이를 통해 한 개의 유체 칩을 통해 다양한 용량의 액체 정량이 가능할 수 있다.
또한, 한 개의 유체 칩을 통해 다양한 용량의 액체 정량이 가능함에 따라, 비용을 절감할 수 있다.
또한, 유체 칩을 모듈 형태로 형성함으로써, 독립적으로 미리 설정된 기능을 수행하거나, 다른 모듈형 유체 칩과 연결되어 다양한 기능이 복합적으로 적용된 하나의 유체 시스템을 구현할 수 있다.
또한, 유체 시스템에 적용될 경우, 특정 부분이 변형 또는 파손될 경우에도 해당 부분의 모듈형 유체 칩만을 교체 가능하여 관리가 용이하고, 비용을 절감할 수 있다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안 될 것이다.
[이 발명을 지원한 국가연구개발사업]
과제고유번호: 2017M3A7B4039936
부처명: 과학기술정보통신부
연구관리전문기관: 한국연구재단
연구사업명: 나노·소재원천기술개발사업
연구과제명: 전기 나노바이오센서 모듈화 원천 요소기술 및 준양산 모듈칩 개발(3/5)
기여율: 8/10
주관기관: 나노종합기술원
연구기간: 2019.02.01 ~ 2019.12.31
[이 발명을 지원한 국가연구개발사업]
과제고유번호: 2014R1A5A201008
부처명: 과학기술정보통신부
연구관리전문기관: 한국연구재단
연구사업명: 선도연구센터사업(기초의과학분야(MRC))
연구과제명: 나노바이오칩 요소기술 개발 및 제작(6/7)
기여율: 2/10
주관기관: 계명대학교
연구기간: 2019.03.01 ~ 2020.02.29
Claims (18)
- 모듈형 유체 칩으로서,복수개의 챔버를 포함하는 코어; 및상기 코어에 결합되고, 상기 복수개의 챔버 중 적어도 하나와 연결되거나, 상기 복수개의 챔버 중 적어도 둘 이상을 연결하도록 구성되는 적어도 하나의 유로를 포함하는 커버;를 포함하는 모듈형 유체 칩.
- 제1항에 있어서,상기 코어는,상기 복수개의 챔버로부터 이격된 위치에 마련되어 상기 적어도 하나의 유로와 연결 가능한 제1 채널; 및상기 복수개의 챔버 중 적어도 어느 하나에 연결되어 상기 적어도 하나의 유로와 연결 가능한 제2 채널;을 더 포함하는 모듈형 유체 칩.
- 제2항에 있어서,각 챔버의 저장용량은 상기 각 챔버와 연결되는 채널의 저장용량이 반영된 값을 나타내는 모듈형 유체 칩.
- 제2항에 있어서,상기 제1 채널 및 상기 제2 채널은 상기 복수개의 챔버에 비하여 더 작은 부피로 마련되는 모듈형 유체 칩.
- 제1항에 있어서,상기 코어는, 3D 프린팅을 통하여 일체형으로 제작되거나, 사출성형을 통하여 결합 및 분리 가능한 복수개의 모듈형태로 제작되는 모듈형 유체 칩.
- 제1항에 있어서,상기 적어도 하나의 유로는 저장용량이 큰 순서대로 유체가 충진될 수 있도록 상기 복수개의 챔버를 서로 연결하는 모듈형 유체 칩.
- 제1항에 있어서,상기 커버는 상기 코어의 외면에 탈착 가능한 필름 형태로 마련되는 모듈형 유체 칩.
- 제7항에 있어서,상기 커버는,상기 코어의 외면에 탈착 가능하고, 내측에 상기 적어도 하나의 유로가 마련되는 제1 커버부재; 및상기 제1 커버부재의 외면에 부착되고, 상기 적어도 하나의 유로에 충진된 유체가 외부공간으로 유출되는 것을 방지하도록 구성되는 제2 커버부재;를 포함하는 모듈형 유체 칩.
- 제1항에 있어서,상기 커버는,상기 적어도 하나의 유로와 연결되는 복수개의 챔버 중 처음으로 유체가 충진될 제1 챔버와 연결되고, 유체가 주입되는 유체주입구; 및상기 적어도 하나의 유로와 연결되는 복수개의 챔버 중 마지막으로 유체가 충진될 제2 챔버와 연결되고, 상기 복수개의 챔버에 유체가 충진될 경우 상기 복수개의 챔버 내의 공기가 배출되는 공기배출구;를 포함하는 모듈형 유체 칩.
- 제9항에 있어서,상기 공기배출구에 설치되고, 유체로부터 기포를 제거 가능한 에어필터;를 더 포함하는 모듈형 유체 칩.
- 제10항에 있어서,상기 에어필터는 친수성(hydrophilic) 유체로부터 기포를 제거 가능한 소수성(hydrophobic) 소재로 마련되는 모듈형 유체 칩.
- 제11항에 있어서,상기 에어필터는, 폴리테트라 플루오로에틸렌(Polytetrafluore ethylene, PTFE), 폴리에틸렌 테레프탈레이트(Polyethylene Terephtalate, PET), 폴리염화비닐(Polyvinyl Chloride)로 이루어진 군에서 선택되는 하나 이상의 소수성 소재로 마련되는 모듈형 유체 칩.
- 제10항에 있어서,상기 에어필터는 소수성 유체로부터 기포를 제거 가능한 친수성 소재로 마련되는 모듈형 유체 칩.
- 제10항에 있어서,상기 에어필터는 친수성 유체 및 소수성 유체가 혼합된 혼합유체로부터 기포를 제거할 수 있도록 일면에 소수성 소재가 마련되고, 타 면에 친수성 소재가 마련되는 모듈형 유체 칩.
- 제9항에 있어서,유체를 감지하고, 이를 전기적 신호로 발생시키는 유체감지센서; 및상기 전기적 신호의 유무에 따라 상기 유체주입구를 개폐하도록 구성되는 개폐밸브;를 더 포함하는 모듈형 유체 칩.
- 제10항에 있어서,상기 커버는,상기 유체주입구와 상기 제1 챔버를 서로 연결하고, 상기 유체주입구를 통해 주입된 유체를 상기 제1 챔버로 안내하는 제1 연결채널;상기 제1 연결채널로부터 분기되어 외부공간과 상기 제1 챔버를 서로 연결하고, 상기 제1 챔버를 통과하여 내측으로 유입된 유체를 상기 외부공간으로 안내하는 제2 연결채널;상기 공기배출구와 상기 제2 챔버를 서로 연결하고, 상기 제2 챔버에 충진되는 유체를 상기 공기배출구로 안내하는 제3 연결채널; 및상기 제3 연결채널로부터 분기되어 상기 외부공간과 상기 제2 챔버를 서로 연결하고, 외부로부터 주입된 공기를 상기 제2 챔버로 안내하는 제4 연결채널;을 포함하는 모듈형 유체 칩.
- 모듈형 유체 칩으로서,적어도 하나의 챔버를 가지는 코어; 및상기 코어에 결합되고 상기 적어도 하나의 챔버와 연결되도록 구성되는 적어도 하나의 유로를 가지는 베이스;를 포함하는 모듈형 유체 칩.
- 모듈형 유체 칩으로서,적어도 하나의 챔버를 가지는 코어셀 및 솔리드 형태로 마련되는 더미셀을 포함하는 코어; 및상기 코어셀에 결합되고, 상기 적어도 하나의 챔버와 연결되도록 구성되는 적어도 하나의 유로를 포함하는 커버;를 포함하는 모듈형 유체 칩.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190097961A KR102346313B1 (ko) | 2019-08-12 | 2019-08-12 | 모듈형 유체 칩 |
KR10-2019-0097961 | 2019-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021029454A1 true WO2021029454A1 (ko) | 2021-02-18 |
Family
ID=74570325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/010268 WO2021029454A1 (ko) | 2019-08-12 | 2019-08-13 | 모듈형 유체 칩 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102346313B1 (ko) |
WO (1) | WO2021029454A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090257920A1 (en) * | 2008-04-11 | 2009-10-15 | Fluidigm Corporation | Multilevel microfluidic systems and methods |
US20100258211A1 (en) * | 2009-03-25 | 2010-10-14 | Burns Mark A | Modular microfluidic assembly block and system including the same |
KR20170049564A (ko) * | 2014-09-08 | 2017-05-10 | 이노베이티브 서모어낼리틱 인스트루먼츠 카게 | 모듈식 반응기 |
US20180078936A1 (en) * | 2016-09-16 | 2018-03-22 | Massachusetts Institute Of Technology | Systems, Devices, and Methods for Microfluidics Using Modular Blocks |
KR101885087B1 (ko) * | 2017-06-12 | 2018-08-03 | 티엔에스(주) | 랩온어칩 기반 분자진단칩 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101780429B1 (ko) | 2015-11-30 | 2017-09-21 | 주식회사 진시스템 | 정량주입 가능한 바이오칩 |
-
2019
- 2019-08-12 KR KR1020190097961A patent/KR102346313B1/ko active IP Right Grant
- 2019-08-13 WO PCT/KR2019/010268 patent/WO2021029454A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090257920A1 (en) * | 2008-04-11 | 2009-10-15 | Fluidigm Corporation | Multilevel microfluidic systems and methods |
US20100258211A1 (en) * | 2009-03-25 | 2010-10-14 | Burns Mark A | Modular microfluidic assembly block and system including the same |
KR20170049564A (ko) * | 2014-09-08 | 2017-05-10 | 이노베이티브 서모어낼리틱 인스트루먼츠 카게 | 모듈식 반응기 |
US20180078936A1 (en) * | 2016-09-16 | 2018-03-22 | Massachusetts Institute Of Technology | Systems, Devices, and Methods for Microfluidics Using Modular Blocks |
KR101885087B1 (ko) * | 2017-06-12 | 2018-08-03 | 티엔에스(주) | 랩온어칩 기반 분자진단칩 |
Also Published As
Publication number | Publication date |
---|---|
KR20210019167A (ko) | 2021-02-22 |
KR102346313B1 (ko) | 2022-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016117726A1 (en) | Cartridge | |
WO2018212496A2 (ko) | 카트리지를 이용한 핵산 분석 장치 | |
WO2016114523A1 (en) | Dust collecting apparatus | |
WO2016088992A1 (en) | Test apparatus and control method thereof | |
WO2023277247A1 (ko) | 플로우 커버를 포함하는 유전체 추출 장치 | |
WO2023101486A1 (ko) | 통합 생태독성감시 장치 | |
WO2017039280A1 (ko) | 샘플 전처리 시스템 및 그 제어방법 | |
WO2023277246A1 (ko) | 기체 이동 통로와 추출액 이동 통로를 갖는 증폭 모듈 | |
WO2021029454A1 (ko) | 모듈형 유체 칩 | |
WO2018124462A1 (ko) | 웨이퍼 가공 설비용 버퍼 챔버 유닛 | |
WO2023017894A1 (ko) | 내측 챔버와 결합되는 안전 클립을 포함하는 유전체 추출 장치 | |
EP3177193A1 (en) | Cleaner and dust separating device applying the same | |
WO2019107763A1 (ko) | 다공성 박막을 이용하여 채널 내 미세 버블의 제거가 가능한 마이크로 플루이딕 디바이스와 버블 유입 방지용 시료주입 장치 및 이형필름을 이용한 미세유체 소자의 패널 본딩방법 | |
WO2019194327A1 (ko) | 웨이퍼 수납용기 | |
WO2011111908A1 (ko) | 미소입자 선택적 포획-회수 장치 | |
WO2021054725A1 (ko) | 카메라 모듈 | |
WO2019039911A9 (ko) | 시료 분석용 칩, 이를 포함하는 시료 분석용 디바이스, 그리고 시료 분석용 칩에 장착되는 카트리지 | |
WO2011096782A2 (ko) | 액체 유동 장치와 액체 정량공급장치, 그리고 이를 이용한 목표물질 추출장치 및 목표물질 추출방법 | |
WO2012173342A1 (ko) | 샘플러 | |
WO2020106004A1 (ko) | 박막을 이용하여 분리 가능한 구조를 갖는 마이크로 플루이딕 디바이스 | |
WO2023204432A1 (ko) | 바이오 센서 카트리지 및 그를 포함하는 바이오 센서 시스템 | |
WO2020027500A1 (ko) | 모듈형 유체 칩 및 이를 포함하는 유체 유동 시스템 | |
WO2020027499A1 (ko) | 모듈형 유체 칩 및 이를 포함하는 유체 유동 시스템 | |
WO2023277248A1 (ko) | 외측 챔버와 비드 챔버가 결합된 이중 챔버 구조의 유전체 추출 장치 | |
WO2022124753A1 (ko) | 전도성 피펫 장착용 어댑터, 시료튜브개폐장치 및 시료자동분석시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19940981 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19940981 Country of ref document: EP Kind code of ref document: A1 |