WO2021027886A1 - 无人机飞行控制方法及无人机 - Google Patents

无人机飞行控制方法及无人机 Download PDF

Info

Publication number
WO2021027886A1
WO2021027886A1 PCT/CN2020/108952 CN2020108952W WO2021027886A1 WO 2021027886 A1 WO2021027886 A1 WO 2021027886A1 CN 2020108952 W CN2020108952 W CN 2020108952W WO 2021027886 A1 WO2021027886 A1 WO 2021027886A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
type
altitude
drone
flight
Prior art date
Application number
PCT/CN2020/108952
Other languages
English (en)
French (fr)
Inventor
张添保
钟自明
卢明华
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2021027886A1 publication Critical patent/WO2021027886A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • This application relates to the field of drone technology, and in particular to a drone flight control method and drone.
  • the image mode of drones has a long braking distance, which requires vision to avoid obstacles and decelerate.
  • the rise of omnidirectional obstacle avoidance drones provides a good platform for the image mode; at the same time, users are increasingly concerned about the quality of photography The requirements of the video mode have gradually increased.
  • the embodiments of the present invention provide a drone flight control method and a drone that improve the flight safety of the drone in the image mode.
  • a method for controlling drone flight includes:
  • the drone is controlled to implement obstacle avoidance.
  • the determining the obstacle avoidance type in the image mode includes:
  • the obstacle avoidance type is determined according to the obstacle distance and the flight speed.
  • the obstacle avoidance type includes a deceleration type and a braking type
  • the determining the obstacle avoidance type according to the obstacle distance and the flight speed includes:
  • the obstacle avoidance type is the braking type.
  • the determining that the obstacle avoidance type is a deceleration type when the obstacle distance and the flight speed both satisfy a preset deceleration condition includes:
  • the ratio of the obstacle distance to the flight speed is less than the first preset value, determining that the obstacle avoidance type is a deceleration type
  • the determining that the obstacle avoidance type is the braking type when the obstacle distance and the flight speed both meet the preset braking conditions include:
  • the obstacle avoidance type is a braking type, wherein the second preset value is less than the first preset value.
  • the range of the first preset value is 1.0-2.0;
  • the range of the second preset value is 0.3-0.8.
  • controlling the UAV to implement obstacle avoidance according to the obstacle avoidance type includes:
  • the drone is controlled to implement braking.
  • controlling the drone to implement deceleration includes:
  • V max is the preset maximum speed
  • sat is the saturation function
  • the superscript V1 is the upper limit maximum value of the preset maximum speed
  • the value 0 is the lower limit minimum value of the preset maximum speed
  • S is the Obstacle distance.
  • controlling the drone to implement braking includes:
  • the drone After the speed of the drone drops to zero, the drone is controlled to work in a hovering state.
  • the preset angle ranges from 40° to 80°.
  • the image working state of the drone is determined.
  • the image working state includes an image mode and a non-image mode
  • the determining the image working status of the drone according to the flying height and the ground height includes:
  • the non-imaging mode is selected; the first preset reference threshold is greater than the second preset Reference threshold.
  • the method further includes: generating warning information.
  • the range of the first preset reference threshold is 3-20 m;
  • the range of the second preset reference threshold is 2-10 m.
  • the determining the maximum restricted flying speed of the drone according to the flying height includes:
  • the flight speed limit table including a number of preset altitude levels and a maximum travel speed limit corresponding to each of the preset altitude levels, each of the preset altitude levels corresponds to a flight altitude range;
  • the altitude level includes low altitude, hollow, and high altitude
  • the maximum travel restriction flight speed corresponding to the low-altitude class is less than the maximum travel restriction flight speed corresponding to the mid-air class, and the maximum travel restriction flight speed corresponding to the mid-air class is less than the maximum travel restriction flight speed corresponding to the high-altitude class.
  • the flying height of the low-altitude level is less than the first judgment height, and the range of the first judgment height is 40-150m;
  • the flying height of the hollow stage is greater than the first judgment height and less than the second judgment height, and the range of the second judgment height is 100-300m;
  • the flying height of the high-altitude class is greater than the second judgment height.
  • the range of the maximum travel speed limit corresponding to the low-altitude class is 8-10 m/s;
  • the maximum travel speed limit corresponding to the hollow stage is H/10m/s, where H is the height value within the altitude range of the hollow stage;
  • the maximum travel speed limit corresponding to the high-altitude class is 20m/s.
  • an unmanned aerial vehicle includes: at least one processor; and
  • the device can be used to execute the drone flight control method described above.
  • the drone flight control method determines the priority of different obstacle avoidance types according to different flight scenarios when the drone is flying in the image mode, and then controls the drone.
  • the drone implements effective obstacle avoidance, reduces the risk of hitting trees and buildings due to the long braking distance of the drone, and improves the flight safety of the drone in the image mode.
  • Figure 1 is a schematic diagram of an application environment of an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a drone flight control method provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the flow of S21 in Figure 2;
  • FIG. 4 is a structural block diagram of a drone flight control device provided by an embodiment of the present invention.
  • Fig. 5 is a structural block diagram of a drone provided by an embodiment of the present invention.
  • the embodiments of the present invention provide a drone flight control method and device.
  • the method and device can determine the priority of different obstacle avoidance types according to different flight scenarios when the drone is flying in the image mode, and then control
  • the UAV implements effective obstacle avoidance, reduces the risk of hitting trees and buildings due to the long braking distance of the UAV, and improves the flight safety of the UAV in the image mode.
  • the following examples illustrate the application environment of the drone flight control method and device.
  • FIG. 1 is a schematic diagram of an application environment of a drone flight control method system provided by an embodiment of the present invention; as shown in FIG. 1, the application scenario includes a drone 10, a wireless network 20, an intelligent terminal 30, and a user 40.
  • the user 40 can operate the smart terminal 30 to control the drone 10 through the wireless network 20.
  • the UAV 10 may be an unmanned aerial vehicle driven by any type of power, including but not limited to a rotary wing UAV, a fixed wing UAV, an umbrella wing UAV, a flapping wing UAV, and a helicopter model.
  • a multi-rotor drone is taken as an example for description.
  • the unmanned aerial vehicle 10 may have a corresponding volume or power according to actual needs, so as to provide load capacity, flight speed, and flight range that can meet the needs of use.
  • One or more functional modules may be added to the drone 10 to enable the drone 10 to realize corresponding functions.
  • the drone 10 is provided with at least four vision sensors, the opposite sides of the drone are provided with the vision sensors, and the other The vision drone is arranged on opposite sides.
  • the UAV 10 is provided with an information receiving device to receive and process the information collected by the visual sensor.
  • the UAV 10 includes at least one main control chip, which serves as the control core of the UAV flight and data transmission, and integrates one or more modules to execute corresponding logic control programs.
  • the main control chip may include a device 50 for controlling the flight of the drone.
  • the smart terminal 30 may be any type of smart device used to establish a communication connection with the drone 10, such as a mobile phone, a tablet computer, or a smart remote control.
  • the smart terminal 30 may be equipped with one or more different user 40 interaction devices to collect instructions from the user 40 or display and feedback information to the user 40.
  • buttons, display screens, touch screens, speakers, and remote control joysticks include but are not limited to: buttons, display screens, touch screens, speakers, and remote control joysticks.
  • the smart terminal 30 may be equipped with a touch screen, through which the user 40 receives the remote control instruction of the drone 10 and displays the image information obtained by aerial photography to the user 40 through the touch screen. The user 40 can also Switch the image information currently displayed on the display through the remote control touch screen.
  • the UAV 10 and the smart terminal 30 can also integrate existing image visual processing technologies to further provide more intelligent services.
  • the drone 10 can collect images through a dual-lens camera, and the smart terminal 30 can analyze the images, so as to realize the gesture control of the drone 10 by the user 40.
  • the wireless network 20 can be a wireless communication network based on any type of data transmission principle and used to establish a data transmission channel between two nodes, such as a Bluetooth network located in different signal frequency bands, a Wi Fi network, a wireless cellular network, or a combination thereof .
  • Fig. 2 is an embodiment of a drone flight control method provided by an embodiment of the present invention. As shown in Figure 2, the UAV flight control method includes the following steps:
  • the image mode refers to using a camera to replace human eyes to capture objective information, and obtaining contour information, depth information, position information, etc. of objects through related visual image processing algorithms to provide a basis for obstacle avoidance.
  • the vision sensor is different from sensors such as ultrasonic and lidar in that it passively receives light source information (passive perception sensor) and acquires rich information.
  • Ultrasonic and lidar sensors actively emit sound waves or light waves (active sensing sensors), and at the same time receive the reflected information, and obtain single information.
  • the image mode is realized by a visual sensor, which includes a lens, an image sensor, an analog-to-digital converter, an image processor, a memory, and the like.
  • a visual sensor which includes a lens, an image sensor, an analog-to-digital converter, an image processor, a memory, and the like.
  • the image sensor collects the two-dimensional image light signal to obtain the analog image signal, and the image analog signal passes through the modulus.
  • the converter encodes a digital image, and finally the image processor re-encodes the digital image and saves it in the memory.
  • a high-end camera with a CCD image sensor is used as the visual sensor.
  • the CCD has the advantages of high image quality and strong anti-noise ability.
  • the obstacle avoidance type includes a deceleration type and a braking type
  • the deceleration type refers to decelerating the current speed of the drone by limiting the acceleration, speed, and angular velocity of the drone.
  • the braking type refers to releasing the attitude angle of the drone to a preset angle for braking processing. After braking, control the drone to keep hovering.
  • the obstacle avoidance type is determined to be the deceleration type; when the obstacle distance and the flight speed both meet the preset braking conditions, it is determined
  • the obstacle avoidance type is the brake type.
  • the determining that the obstacle avoidance type is the deceleration type when the obstacle distance and the flight speed both meet the preset deceleration conditions includes: when the ratio of the obstacle distance to the flight speed is less than the first The preset value determines that the obstacle avoidance type is the deceleration type.
  • the determining that the obstacle avoidance type is a braking type when the obstacle distance and the flight speed both meet the preset braking conditions includes: when the ratio of the obstacle distance to the flight speed is less than a second preset value , Determining that the obstacle avoidance type is a braking type, wherein the second preset value is less than the first preset value. Wherein, the second preset value is less than the first preset value.
  • the range of the first preset value is 1.0-2.0
  • the range of the second preset value is 0.3-0.8.
  • the embodiments of the present invention provide a drone flight control method and device.
  • the method and device can determine the priority of different obstacle avoidance types according to different flight scenarios when the drone is flying in the image mode, and then control
  • the UAV implements effective obstacle avoidance, reduces the risk of hitting trees and buildings due to the long braking distance of the UAV, and improves the flight safety of the UAV in the image mode.
  • the method further includes: generating warning information.
  • the remote control/APP prompts: "The video mode has a long braking distance, please pay attention to flight safety, beware of obstacles! or "This mode has a long braking distance, please pay attention to flying safely” , Or "This mode has a longer braking distance, beware of bombing” and other warning messages to remind users of the operating risks in the image mode, so that users can operate with caution and improve safety awareness.
  • the method further includes:
  • the flying height refers to the vertical distance from the drone to a certain reference horizontal plane in the air.
  • the take-off point of the drone is used as the reference horizontal plane, that is, the flying height Refers to the vertical distance between the drone and the take-off point.
  • the ground height refers to the vertical distance of the aircraft from the air to the ground target directly below.
  • a barometer is used to detect the flight altitude and ground altitude of the UAV 10.
  • the barometer includes an air pressure sensor, a sensor protection cover, and a conduit.
  • the air pressure sensor is sealed in the sensor protection cover and installed together with the sensor protection cover.
  • On the unmanned aerial vehicle 10, one end of the conduit is connected with the sensor protection cover, and the other end extends upward after passing through the sensor protection cover.
  • the external environment where the air pressure sensor is located can be effectively isolated from the turbulence generated by the rotation of the blade, thereby avoiding the air pressure sensor from being insensitive Stabilizing the interference of the atmospheric pressure environment helps to ensure accurate detection of the flight altitude and the ground altitude.
  • At least two sensors such as barometer, accelerometer, GPS, and ultrasonic can be used at the same time, and then use complementary or Kalman fusion of the data of these sensors to correct each other, and finally obtain the flying height and alignment of the UAV 10 Ground height.
  • the image working state of the drone is determined.
  • the image working state includes image mode and non-image mode.
  • the imaging mode is selected; when the flying altitude is less than the first A preset reference threshold, or when the ground height is less than a second preset reference threshold, select to enter the non-image mode.
  • the first preset reference threshold is greater than the second preset reference threshold.
  • the first preset reference threshold is set to 10m
  • the second preset reference threshold is set to 5m.
  • the flying altitude is less than 10m, or the ground altitude is less than 5m
  • it is not allowed to enter the image mode that is, select to enter the non-image mode.
  • the flying altitude is greater than 10m and the ground altitude is greater than 5m
  • select to enter the image mode for example and not limitation, the range of the first preset reference threshold of the flying height may be between 3-20 m.
  • the range of the second preset reference threshold of the ground height may be between 2-10 m.
  • the specific values of the first preset reference threshold and the second preset reference threshold can be selected according to the take-off point of the drone and the ground conditions during the flight. For example: if the ground conditions at the take-off point or during the flight are complex (there are many trees and buildings and the height is high), the specific values of the first preset reference threshold and the second preset reference threshold are selected to be larger; If the ground conditions at the take-off point or during the flight are relatively simple (there are few trees and buildings and the height is low), the specific values of the first preset reference threshold and the second preset reference threshold are selected to be smaller.
  • the method further includes:
  • the maximum flying speed of the drone is determined.
  • a flight speed limit table is obtained, the flight speed limit table includes a number of preset altitude levels and a maximum travel limit flight speed corresponding to each of the preset altitude levels, each of the preset altitude levels corresponds to a flight altitude Range; traverse the maximum flight speed limit corresponding to the preset altitude level including the flight altitude from the flight speed limit table.
  • the altitude levels include low altitude, hollow, and high altitude
  • the flying height of the low-altitude level is less than the first judgment height, and the range of the first judgment height is 40-150m;
  • the flying height of the hollow stage is greater than the first judgment height and less than the second judgment height, and the range of the second judgment height is 100-300m;
  • the flying height of the high-altitude class is greater than the second judgment height.
  • the maximum travel restriction flight speed corresponding to the low-altitude level is less than the maximum travel restriction flight speed corresponding to the hollow level
  • the maximum travel restriction flight speed corresponding to the hollow level is less than the maximum travel restriction flight speed corresponding to the high altitude level.
  • the maximum travel speed limit corresponding to the low-altitude class can be set to a speed in the range of 8-10m/s; the maximum travel speed limit corresponding to the hollow class is H/10m/s, where H is the The altitude value within the altitude range of the mid-air class; the maximum travel speed limit corresponding to the high-altitude class is 20m/s.
  • S21 includes the following steps:
  • the way to obtain the distance of the obstacle in the image mode can be achieved by mounting vision sensors on the four sides of the drone, and using multiple cameras to compare the same distance from multiple angles.
  • the object is photographed, and the optical flow analysis is performed on the image through the pyramid LK optical flow algorithm and the translation optical flow algorithm. According to the difference between the obstacle fusion optical flow angle and the non-obstacle fusion optical flow angle, judge whether there is an obstacle And obstacles.
  • the optical flow is used as the motion parallax of the drone, the optical flow diagram of two consecutive frames of images is calculated, the pixels of the two optical flow diagrams are matched, and erroneous matching points are eliminated according to the Euclidean distance of the matching points. Divide the image into five regions longitudinally, calculate the average or median amplitude of the non-discarded points in each region, and select the largest amplitude of the five regions after multiple iterations as the obstacle information. The obstacle information determines the distance of the obstacle.
  • S212 Determine the obstacle avoidance type according to the obstacle distance and the flight speed.
  • the obstacle avoidance type is determined to be the deceleration type; when the obstacle distance and the flight speed both meet the preset braking conditions, it is determined
  • the obstacle avoidance type is the brake type.
  • the determining that the obstacle avoidance type is the deceleration type when the obstacle distance and the flight speed both meet the preset deceleration conditions includes: when the ratio of the obstacle distance to the flight speed is less than the first The default value is to determine the obstacle avoidance type as the deceleration type;
  • the determining that the obstacle avoidance type is a braking type when the obstacle distance and the flight speed both meet the preset braking conditions includes: when the ratio of the obstacle distance to the flight speed is less than a second preset value , Determining that the obstacle avoidance type is a braking type, wherein the second preset value is less than the first preset value. Wherein, the second preset value is less than the first preset value.
  • the range of the first preset value is 1.0-2.0, and the range of the second preset value is 0.3-0.8.
  • the drone is controlled to decelerate.
  • the flight speed is reduced to a preset maximum speed
  • V max is the preset maximum speed
  • sat is the saturation function
  • the superscript V1 is the upper limit maximum value of the preset maximum speed
  • the value 0 is the lower limit minimum value of the preset maximum speed
  • S is the Obstacle distance.
  • the drone is controlled to implement braking.
  • the range of the preset angle is 40°-80°.
  • the embodiments of the present application provide a drone flight control device 40.
  • the UAV flight control device 40 includes an obstacle avoidance type determination module 41 and a flight control module 42.
  • the obstacle avoidance type determining module 41 is used to determine the obstacle avoidance type in the image mode.
  • the flight control module 42 is used to control the UAV to implement obstacle avoidance according to the obstacle avoidance type.
  • the drone flight control device 40 further includes a storage module
  • the storage module 43 is configured to store a first preset value, a second preset value, a preset speed, a preset angle, a first preset reference threshold, a second preset reference threshold, and a flight speed limit table.
  • the drone flight control device 40 further includes a height acquisition module 44 and an image work determination module 45, the height acquisition module 44 is used to acquire the flight height and the ground height of the drone;
  • the imaging work determining module 45 is used for determining the imaging work status of the drone according to the flying height and the ground altitude.
  • the image working state includes image mode and non-image mode.
  • the imaging work determining module 45 is specifically configured to select to enter the imaging mode when the flying altitude is greater than or equal to a first preset reference threshold, and the ground altitude is greater than or equal to a second preset reference threshold;
  • the non-imaging mode is selected; the first preset reference threshold is greater than the second preset Reference threshold.
  • the range of the first preset reference threshold is 3-20m; the range of the second preset reference threshold is 2-10m.
  • the UAV flight control device 40 further includes a warning information generating module 46, and the warning information generating module 46 is used to generate warning information.
  • the drone flight control device 40 further includes a speed control module 47 and a flight control module 48.
  • the speed control module 47 is configured to determine the maximum flight speed limit of the UAV according to the flying height.
  • the flight control module 48 is configured to control the drone to fly according to the maximum travel speed limit.
  • the speed control module 47 is specifically configured to obtain a flight speed limit table.
  • the flight speed limit table includes a number of preset altitude levels and a maximum travel limit flight speed corresponding to each of the preset altitude levels.
  • the altitude level corresponds to a flight altitude range; the maximum travel speed limit corresponding to the preset altitude level including the flight altitude is traversed from the flight speed limit table.
  • the altitude levels include low-altitude, medium-altitude, and high-altitude levels; the maximum restricted flight speed corresponding to the low-altitude level is less than the maximum restricted flight speed corresponding to the hollow-air level, and the maximum restricted flight speed corresponding to the hollow-air level is less than the high altitude The maximum travel speed corresponding to the level.
  • the flying height range of the low-altitude class is 40-150m
  • the maximum travel speed range corresponding to the low-altitude class is 8-10m/s
  • the flying height range of the hollow class is 100-300m
  • the The maximum travel speed limit corresponding to the mid-air class is H/10m/s, where H is the altitude value within the altitude range of the mid-air class; the flying altitude range of the high-altitude class is greater than 200m, and the maximum travel speed corresponding to the mid-air class It is 20m/s.
  • the obstacle avoidance type determining module 41 includes a measuring unit and a determining unit.
  • the measuring unit is used to obtain the flight speed and the obstacle distance in the image mode; the determining unit is used to determine the obstacle avoidance type according to the obstacle distance and the flight speed, and the obstacle avoidance Types include deceleration type and brake type.
  • the determining unit is specifically configured to determine that the obstacle avoidance type is a deceleration type when the obstacle distance and the flight speed both meet the preset deceleration conditions; when the obstacle distance and the flight speed both meet the preset braking When the conditions are met, determine that the obstacle avoidance type is the brake type.
  • the determining that the obstacle avoidance type is the deceleration type when the obstacle distance and the flight speed both meet the preset deceleration conditions includes: when the ratio of the obstacle distance to the flight speed is less than the first The preset value determines that the obstacle avoidance type is the deceleration type.
  • the determining that the obstacle avoidance type is the braking type when the obstacle distance and the flight speed both meet the preset braking conditions include:
  • the obstacle avoidance type is a braking type, wherein the second preset value is less than the first preset value.
  • the range of the first preset value is 1.0-2.0; the range of the second preset value is 0.3-0.8.
  • the determining unit includes a deceleration subunit and a braking subunit.
  • the deceleration subunit is used to control the UAV to implement deceleration when the obstacle avoidance type belongs to the deceleration type, specifically to decelerate the flight speed to a preset maximum speed; the preset maximum speed passes below
  • the formula is:
  • V max is the preset maximum speed
  • sat is the saturation function
  • the superscript V1 is the upper limit maximum value of the preset maximum speed
  • the value 0 is the lower limit minimum value of the preset maximum speed
  • S is the Obstacle distance.
  • the braking subunit is used for controlling the UAV to implement braking when the obstacle avoidance type belongs to the braking type.
  • the braking subunit is specifically used to adjust the attitude angle of the drone to a preset angle for braking processing; and to control the drone to work in a hovering state.
  • the range of the preset angle is 40°-80°.
  • FIG. 5 is a structural block diagram of the UAV 10 provided by an embodiment of the present invention.
  • the drone 10 may be used to implement all or part of the functions of the main control chip. As shown in FIG. 5, the drone 10 may include a processor 11, a memory 12 and a communication module 13.
  • the processor 11, the memory 12, and the communication module 13 establish a communication connection between any two through a bus.
  • the processor 11 may be of any type, and has one or more processing cores. It can perform single-threaded or multi-threaded operations, and is used to parse instructions to perform operations such as obtaining data, performing logical operation functions, and issuing operation processing results.
  • the memory 12 can be used to store non-transitory software programs, non-transitory computer executable programs and modules, such as the program corresponding to the drone flight control method in the embodiment of the present invention Instructions/modules (for example, the obstacle avoidance type determination module 41, the flight control module 42, the storage module 43, the altitude acquisition module 44, the image work determination module 45, the warning information generation module 46, the speed control module 47, Control the flight module 48).
  • the processor 11 executes various functional applications and data processing of the UAV flight control device 40 by running the non-transient software programs, instructions and modules stored in the memory 12, that is, to realize the unmanned operation in any of the above method embodiments. Aircraft flight control method.
  • the memory 12 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the drone flight control device 40 Wait.
  • the memory 12 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 12 may optionally include memories remotely provided with respect to the processor 11, and these remote memories may be connected to the drone 10 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the memory 12 stores instructions that can be executed by the at least one processor 11; the at least one processor 11 is used to execute the instructions to implement the drone flight control method in any of the foregoing method embodiments, for example, The steps 21, 22, etc. of the method described above are executed to realize the functions of the modules 41-48 in FIG. 4.
  • the communication module 13 is a functional module used to establish a communication connection and provide a physical channel.
  • the communication module 13 may be any type of wireless or wired communication module 13, including but not limited to a Wi-Fi module or a Bluetooth module.
  • the embodiment of the present invention also provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors 11 execution, for example, executed by a processor 11 in FIG. 5, can make the above one or more processors 11 execute the drone flight control method in any of the above method embodiments, for example, execute the above-described method steps 21, 22 and so on, realize the functions of modules 41-48 in Figure 4.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by instructing relevant hardware by a computer program in a computer program product.
  • the computer program can be stored in a non-transitory computer.
  • the computer program includes program instructions, and when the program instructions are executed by a related device, the related device can execute the procedures of the embodiments of the foregoing methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • the above products can execute the drone flight control method provided by the embodiments of the present invention, and have the corresponding functional modules and beneficial effects for executing the drone flight control method.
  • the drone flight control method provided in the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机飞行控制方法及无人机,该方法包括:确定影像模式下的避障类型(S21);根据避障类型,控制无人机实施避障(S22)。该方法可以在无人机(10)进行影像模式飞行时,通过根据不同飞行场景,确定不同避障类型的优先级,进而控制无人机(10)实施有效避障,减小由于无人机(10)的刹车距离很长,撞树、撞楼的风险,提高了无人机(10)在影像模式下的飞行安全性。

Description

无人机飞行控制方法及无人机
本申请要求于2019年8月15日提交中国专利局、申请号为201910753777.8、申请名称为“无人机飞行控制方法及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人机技术领域,尤其涉及一种无人机飞行控制方法及无人机。
背景技术
目前无人机的影像模式刹车距离较长,需要靠视觉来进行避障、减速,全向避障无人机的兴起,为影像模式提供了良好的平台;同时用户对摄影质量越来越高的要求,促使影像模式的地位逐渐升高。
但是,无人机在影像模式下飞行时,由于为了保证无人机的拍摄质量、避免图像的顿挫感,需将无人机的加速度、速度以及角速度进行限制,而这样的限制会导致无人机的刹车距离很长,撞树、撞楼的风险相应提升。因此,需要对影像模式采取一些安全保护措施。
发明内容
为了解决上述技术问题,本发明实施例提供一种提高无人机在影像模式下飞行安全性的无人机飞行控制方法及无人机。
为解决上述技术问题,本发明实施例提供以下技术方案:一种无人机飞行控制方法。所述无人机飞行控制方法包括:
确定影像模式下的避障类型;
根据所述避障类型,控制所述无人机实施避障。
可选地,所述确定影像模式下的避障类型,包括:
在所述影像模式下,获取飞行速度与障碍物距离;
根据所述障碍物距离与所述飞行速度,确定所述避障类型。
可选地,所述避障类型包括减速类型与刹车类型;
所述根据所述障碍物距离与所述飞行速度,确定避障类型,包括:
当所述障碍物距离及所述飞行速度皆满足预设减速条件时,确定避障类型为减速类型;
当所述障碍物距离及所述飞行速度皆满足预设刹车条件时,确定避障类型为刹车类型。
可选地,所述当所述障碍物距离及所述飞行速度皆满足预设减速条件时,确定避障类型为减速类型,包括:
当所述障碍物距离与所述飞行速度的比值小于第一预设值,确定避障类型 为减速类型;
所述当所述障碍物距离及所述飞行速度皆满足预设刹车条件时,确定避障类型为刹车类型,包括:
当所述障碍物距离与所述飞行速度的比值小于第二预设值,确定避障类型为刹车类型,其中,所述第二预设值小于所述第一预设值。
可选地,所述第一预设值的范围为1.0-2.0;
所述第二预设值的范围为0.3-0.8。
可选地,所述根据所述避障类型,控制所述无人机实施避障,包括:
当所述避障类型属于减速类型时,控制所述无人机实施减速;
当所述避障类型属于刹车类型时,控制所述无人机实施刹车。
可选地,所述当所述避障类型属于减速类型时,控制所述无人机实施减速,包括:
根据以下式子,将所述飞行速度减速至预设最大速度,
Figure PCTCN2020108952-appb-000001
其中,V max为所述预设最大速度,sat为饱和函数,上标V1为所述预设最大速度的上限最大值,数值0为所述预设最大速度的下限最小值,S为所述障碍物距离。
可选地,所述当所述避障类型属于刹车类型时,控制所述无人机实施刹车,包括:
将所述无人机的姿态角度调整至预设角度,以进行刹车处理;
所述无人机的速度降为零后,控制无人机工作在悬停状态。
可选地,所述预设角度的范围为40°-80°。
可选地,获取所述无人机的飞行高度和对地高度;
根据所述飞行高度和所述对地高度,确定所述无人机的影像工作状态。
可选地,所述影像工作状态包括影像模式与非影像模式;
所述根据所述飞行高度和所述对地高度,确定所述无人机的影像工作状态,包括:
当所述飞行高度大于或等于第一预设参考阈值,并且,所述对地高度大于或等于第二预设参考阈值时,选择进入所述影像模式;
当所述飞行高度小于第一预设参考阈值,或者,所述对地高度小于第二预设参考阈值时,选择进入所述非影像模式;所述第一预设参考阈值大于第二预设参考阈值。
可选地,在选择进入所述影像模式之后,所述方法还包括:生成警示信息。
可选地,所述第一预设参考阈值的范围为3-20m;
所述第二预设参考阈值的范围为2-10m。
可选地,根据所述飞行高度,确定所述无人机的最大限行飞行速度;
根据所述最大限行飞行速度,控制所述无人机飞行。
可选地,所述根据所述飞行高度,确定所述无人机的最大限行飞行速度, 包括:
获取飞行速度限制表,所述飞行速度限制表包括若干预设高度等级及与每个所述预设高度等级对应的最大限行飞行速度,每个所述预设高度等级对应一个飞行高度范围;
从所述飞行速度限制表遍历出与包含所述飞行高度的预设高度等级对应的最大限行飞行速度。
可选地,所述高度等级包括低空级、中空级及高空级;
所述低空级对应的最大限行飞行速度小于所述中空级对应的最大限行飞行速度,所述中空级对应的最大限行飞行速度小于所述高空级对应的最大限行飞行速度。
可选地,所述低空级的飞行高度小于第一判定高度,第一判定高度的范围为40~150m;
所述中空级的飞行高度大于所述第一判定高度且小于第二判定高度,所述第二判定高度的范围为100~300m;
所述高空级的飞行高度大于第二判定高度。
可选地,所述低空级对应的最大限行飞行速度的范围为8-10m/s;
所述中空级对应的最大限行飞行速度为H/10m/s,其中,H为所述中空级高度范围内的高度值;
所述高空级对应的最大限行飞行速度为20m/s。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无人机。所述无人机包括:至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如上所述的无人机飞行控制方法。
与现有技术相比较,本发明实施例的提供无人机飞行控制方法在无人机进行影像模式飞行时,通过根据不同飞行场景,确定不同避障类型的优先级,进而控制所述无人机实施有效避障,减小由于无人机的刹车距离很长,撞树、撞楼的风险,提高了无人机在影像模式下的飞行安全性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例的应用环境示意图;
图2为本发明实施例提供的无人机飞行控制方法的流程示意图;
图3是图2中S21的流程示意图;
图4为本发明实施例提供的无人机飞行控制装置的结构框图;
图5为本发明实施例提供的无人机的结构框图。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明实施例提供了一种无人机飞行控制方法和装置,所述方法和装置可以在无人机进行影像模式飞行时,通过根据不同飞行场景,确定不同避障类型的优先级,进而控制所述无人机实施有效避障,减小由于无人机的刹车距离很长,撞树、撞楼的风险,提高了无人机在影像模式下的飞行安全性。
以下举例说明所述无人机飞行控制方法和装置的应用环境。
图1是本发明实施例提供的无人机飞行控制方法系统的应用环境的示意图;如图1所示,所述应用场景包括无人机10、无线网络20、智能终端30以及用户40。用户40可操作智能终端30通过无线网络20操控所述无人机10。
无人机10可以是以任何类型的动力驱动的无人飞行载具,包括但不限于旋翼无人机、固定翼无人机、伞翼无人机、扑翼无人机以及直升机模型等。在本发明的一个实施例中以多旋翼无人机为例进行陈述。
该无人机10可以根据实际情况的需要,具备相应的体积或者动力,从而提供能够满足使用需要的载重能力、飞行速度以及飞行续航里程等。无人机10上还可以添加有一种或者多种功能模块,令无人机10能够实现相应的功能。
例如,在本发明的一个实施例中,该无人机10设置有至少四个视觉传感器,所述无人机其中的相对两侧分别设置有所述视觉传感器,所述无人机的另外的相对两侧设置有所述视觉无人机。相对应地,该无人机10设置有信息接收装置,接收并处理所述视觉传感器采集的信息。
无人机10上包含至少一个主控芯片,作为无人机飞行和数据传输等的控制核心,整合一个或者多个模块,以执行相应的逻辑控制程序。
例如,在一些实施例中,所述主控芯片上可以包括用于对无人机飞行控制的装置50。
智能终端30可以是任何类型,用以与无人机10建立通信连接的智能装置,例如手机、平板电脑或者智能遥控器等。该智能终端30可以装配有一种或者多种不同的用户40交互装置,用以采集用户40指令或者向用户40展示和反馈信息。
这些交互装置包括但不限于:按键、显示屏、触摸屏、扬声器以及遥控操作杆。例如,智能终端30可以装配有触控显示屏,通过该触控显示屏接收用户40对无人机10的遥控指令并通过触控显示屏向用户40展示航拍获得的图像信息,用户40还可以通过遥控触摸屏切换显示屏当前显示的图像信息。
在一些实施例中,无人机10与智能终端30之间还可以融合现有的图像视觉处理技术,进一步的提供更智能化的服务。例如无人机10可以通过双光相机采集图像的方式,由智能终端30对图像进行解析,从而实现用户40对于无人机10的手势控制。
无线网络20可以是基于任何类型的数据传输原理,用于建立两个节点之间的数据传输信道的无线通信网络,例如位于不同信号频段的蓝牙网络、Wi F i网络、无线蜂窝网络或者其结合。
图2为本发明实施例提供的无人机飞行控制方法的实施例。如图2所示,该无人机飞行控制方法包括如下步骤:
S21、确定影像模式下的避障类型。
具体地,所述影像模式是指利用摄像机代替人眼捕获客观事物信息,通过相关视觉图像处理算法获取事物的轮廓信息、深度信息、位置信息等,为避障提供依据。视觉传感器与超声波、激光雷达等传感器不同,它是被动接受光源信息(被动感知传感器),而且获取信息丰富。超声波和激光雷达传感器是主动发射声波或光波(主动感知传感器),同时再接收反射回的信息,且获取信息单一。
所述影像模式通过视觉传感器来实现,所述视觉传感器包括镜头、图像传感器、模数转换器、图像处理器、存储器等。视觉传感器在成像时,障碍物在三维空间中的光信息通过透镜,经过图像几何变化,投射在二维平面上,图像传感器采集二维图像光信号,获得模拟图像信号,图像模拟信号经过模数转换器编码成数字图像,最终由图像处理器对数字图像重新编码,并保存在存储器。在本发明的一个实施例中,采用CCD图像传感器的高端摄像机作为视觉传感器,CCD具有影像品质高、抗噪能力强等优点。
具体地,所述避障类型包括减速类型和刹车类型,所述减速类型是指通过将无人机的加速度、速度以及角速度进行限制,对无人机的当前速度进行减速处理。所述刹车类型是指将无人机的姿态角度放开至预设角度进行刹车处理。刹车完毕后,并控制无人机保持悬停状态。
S22、根据所述避障类型,控制所述无人机实施避障。
具体地,当所述障碍物距离及所述飞行速度皆满足预设减速条件时,确定避障类型为减速类型;当所述障碍物距离及所述飞行速度皆满足预设刹车条件时,确定避障类型为刹车类型。
具体地,所述当所述障碍物距离及所述飞行速度皆满足预设减速条件时,确定避障类型为减速类型,包括:当所述障碍物距离与所述飞行速度的比值小于第一预设值,确定避障类型为减速类型。
所述当所述障碍物距离及所述飞行速度皆满足预设刹车条件时,确定避障类型为刹车类型,包括:当所述障碍物距离与所述飞行速度的比值小于第二预设值,确定避障类型为刹车类型,其中,所述第二预设值小于所述第一预设值。其中,所述第二预设值小于所述第一预设值。示例的而非限制的,所述第一预设值的范围为1.0-2.0,所述第二预设值的范围为0.3-0.8。
本发明实施例提供了一种无人机飞行控制方法和装置,所述方法和装置可以在无人机进行影像模式飞行时,通过根据不同飞行场景,确定不同避障类型的优先级,进而控制所述无人机实施有效避障,减小由于无人机的刹车距离很长,撞树、撞楼的风险,提高了无人机在影像模式下的飞行安全性。
在一些实施例中,为了更好的保证用户在影像模式下的操作安全,在选择进入所述影像模式之后,所述方法还包括:生成警示信息。
具体地,在进入影像模式成功时,在遥控器/APP上提示:“影像模式刹车距离较长,请注意飞行安全,谨防障碍物!”或“该模式刹车距离较长,请注意安全飞行”、或“该模式刹车距离较长,谨防炸机”等警示信息,以提醒用户在影像模式下的操作风险,使用户谨慎操作,提高安全意识。
在一些实施例中,为了更好的保证用户在影像模式下的操作安全,在所述确定影像模式下的避障类型之前,所述方法还包括:
获取所述无人机的飞行高度和对地高度。
具体地,所述飞行高度是指无人机在空中至某一基准水平面的垂直距离,在本发明的一个实施例中,将所述无人机的起飞点作为基准水平面,即所述飞行高度是指所述无人机与起飞点的垂直距离。所述对地高度是指飞行器从空中到正下方地面目标的垂道距离。
具体地,以采用气压计来检测无人机10的飞行高度和对地高度,该气压计包括气压传感器、传感器保护罩及导管,气压传感器密封设于传感器保护罩内,并连同传感器保护罩安装于无人机10上,导管的一端与传感器保护罩连通,另一端从传感器保护罩穿出后向上延伸。
通过设有传感器保护罩及导管,并将导管的顶端的管口位置设置成向上延伸,以能将气压传感器的所在外部环境与桨叶旋转产生的扰流进行有效隔离,进而避免气压传感器受不稳定气压环境的干扰,利于确保飞行高度和对地高度的精确检测。
在一些实施例中,可同时采用气压计、加速度计、GPS和超声波等至少二种传感器,然后使用互补或者卡尔曼融合这些传感器的数据,互相修正,最后 得到无人机10的飞行高度和对地高度。
根据所述飞行高度和所述对地高度,确定所述无人机的影像工作状态。所述影像工作状态包括影像模式与非影像模式。
具体地,当所述飞行高度大于或等于第一预设参考阈值,并且,所述对地高度大于或等于第二预设参考阈值时,选择进入所述影像模式;当所述飞行高度小于第一预设参考阈值,或者,所述对地高度小于第二预设参考阈值时,选择进入所述非影像模式。所述第一预设参考阈值大于第二预设参考阈值。
具体地,由于一般的树木高度在3-20m以下,在3-20m范围内,优选地,将第一预设参考阈值设置为10m,同时将第二预设参考阈值设置为5m此时,例如:当飞行高度小于10m,或对地高度小于5m时,不允许进入影像模式,即选择进入所述非影像模式,当飞行高度大于10m且对地高度大于5m时,选择进入所述影像模式。其中,例如的而非限制的,飞行高度的第一预设参考阈值的范围可在3-20m之间。其中,例如的而非限制的,对地高度的第二预设参考阈值的范围可在2-10m之间。
所述第一预设参考阈值和第二预设参考阈值的具体数值的选取可根据无人机起飞点和飞行过程中地面情况进行选取。例如:若起飞点或飞行过程中地面情况较为复杂(树木及建筑物等较多且高度较高),所述第一预设参考阈值和第二预设参考阈值的具体数值选取较大值;若起飞点或飞行过程中地面情况较为简单(树木及建筑物等较少且高度较低),所述第一预设参考阈值和第二预设参考阈值的具体数值选取较小值。
在一些实施例中,为了更好的保证用户在影像模式下的操作安全,所述方法还包括:
根据所述飞行高度,确定所述无人机的最大限行飞行速度。
具体地,获取飞行速度限制表,所述飞行速度限制表包括若干预设高度等级及与每个所述预设高度等级对应的最大限行飞行速度,每个所述预设高度等级对应一个飞行高度范围;从所述飞行速度限制表遍历出与包含所述飞行高度的预设高度等级对应的最大限行飞行速度。
在本发明的一个实施例中,所述高度等级包括低空级、中空级及高空级;
具体地,所述低空级的飞行高度小于第一判定高度,第一判定高度的范围为40~150m;
所述中空级的飞行高度大于所述第一判定高度且小于第二判定高度,所述第二判定高度的范围为100~300m;
所述高空级的飞行高度大于第二判定高度。
根据所述最大限行飞行速度,控制所述无人机飞行。
具体地,所述低空级对应的最大限行飞行速度小于所述中空级对应的最大限行飞行速度,所述中空级对应的最大限行飞行速度小于所述高空级对应的最大限行飞行速度。
具体地,所述低空级对应的最大限行飞行速度可设置为8-10m/s范围内的 一速度;所述中空级对应的最大限行飞行速度为H/10m/s,其中,H为所述中空级高度范围内的高度值;所述高空级对应的最大限行飞行速度为20m/s。
为了确定影像模式下的避障类型,保证用户在影像模式下的操作安全,在一些实施例中,请参阅图3,S21包括如下步骤:
S211:在所述影像模式下,获取飞行速度与障碍物距离。
具体地,在本发明的一个实施例中,所述影像模式下的障碍物的距离的获取方式可通过在所述无人机上的四侧分别搭载视觉传感器,利用多个摄像头从多角度对相同物体进行拍摄,通过金字塔LK光流算法和平移光流算法分别对图像进行光流分析,根据障碍物融合光流夹角与非障碍物融合光流夹角不同这一特性,判断是否有障碍物及障碍物的距离。
在一些实施例中,可通过采集前方连续的图像,根据近大远小线索,使用SURF特征点提取和模板匹配算法,测量障碍物的膨胀系数,该系数与碰撞时间成比例关系,寻找最近障碍物及判断障碍物的距离。
在一些实施例中,利用光流作为无人机的运动视差,计算连续两帧图像的光流图,对两幅光流图进行像素匹配,并根据匹配点的欧氏距离剔除误匹配点,将图像纵向分割成五个区域,计算每个区域中非丢弃点的平均或中值幅值,多次迭代后选择五个区域中最大的一个幅值,作为障碍物的信息,并根据所述障碍物的信息判断障碍物的距离。
S212:根据所述障碍物距离与所述飞行速度,确定所述避障类型。
具体地,当所述障碍物距离及所述飞行速度皆满足预设减速条件时,确定避障类型为减速类型;当所述障碍物距离及所述飞行速度皆满足预设刹车条件时,确定避障类型为刹车类型。
具体地,所述当所述障碍物距离及所述飞行速度皆满足预设减速条件时,确定避障类型为减速类型,包括:当所述障碍物距离与所述飞行速度的比值小于第一预设值,确定避障类型为减速类型;
所述当所述障碍物距离及所述飞行速度皆满足预设刹车条件时,确定避障类型为刹车类型,包括:当所述障碍物距离与所述飞行速度的比值小于第二预设值,确定避障类型为刹车类型,其中,所述第二预设值小于所述第一预设值。其中,所述第二预设值小于所述第一预设值。所述第一预设值范围为1.0-2.0,所述第二预设值的范围为0.3-0.8。
为了控制所述无人机有效地实施减速,在一些实施例中,所述当所述避障类型属于减速类型时,控制所述无人机实施减速。
具体地,根据以下式子,将所述飞行速度减速至预设最大速度,
Figure PCTCN2020108952-appb-000002
其中,V max为所述预设最大速度,sat为饱和函数,上标V1为所述预设最大速度的上限最大值,数值0为所述预设最大速度的下限最小值,S为所述障碍物距离。
例如,障碍物距离5m时,预设速度限制为V max=2m/s;障碍物距离小于3m时,预设速度限制为V max=0m/s。
为了控制所述无人机有效地实施刹车,在一些实施例中,当所述避障类型属于刹车类型时,控制所述无人机实施刹车。
具体地,将所述无人机的姿态角度调整至预设角度,以进行刹车处理;
当所述无人机的速度降为零后,控制无人机工作在悬停状态。所述预设角度的范围为40°-80°。
需要说明的是,在上述各个实施例中,上述各步骤之间并不必然存在一定的先后顺序,本领域普通技术人员,根据本申请实施例的描述可以理解,不同实施例中,上述各步骤可以有不同的执行顺序,亦即,可以并行执行,亦可以交换执行等等。
作为本申请实施例的另一方面,本申请实施例提供一种无人机飞行控制装置40。请参阅图4,该无人机飞行控制装置40包括:避障类型确定模块41和控制飞行模块42。
避障类型确定模块41用于确定影像模式下的避障类型。
控制飞行模块42用于根据所述避障类型,控制所述无人机实施避障。
在一些实施例中,无人机飞行控制装置40还包括存储模块
43,所述存储模块43用于存储第一预设值、第二预设值、预设速度、预设角度、第一预设参考阈值、第二预设参考阈值以及飞行速度限制表等。
在一些实施例中,无人机飞行控制装置40还包括高度获取模块44和影像工作确定模块45,所述高度获取模块44用于获取所述无人机的飞行高度和对地高度;所述影像工作确定模块45用于根据所述飞行高度和所述对地高度,确定所述无人机的影像工作状态。所述影像工作状态包括影像模式与非影像模式。
所述影像工作确定模块45具体用于当所述飞行高度大于或等于第一预设参考阈值,并且,所述对地高度大于或等于第二预设参考阈值时,选择进入所述影像模式;
当所述飞行高度小于第一预设参考阈值,或者,所述对地高度小于第二预设参考阈值时,选择进入所述非影像模式;所述第一预设参考阈值大于第二预设参考阈值。所述第一预设参考阈值的范围为3-20m;所述第二预设参考阈值的范围为2-10m。
在一些实施例中,无人机飞行控制装置40还包括警示信息生成模块46,所述警示信息生成模块46用于生成警示信息。
在一些实施例中,无人机飞行控制装置40还包括速度控制模块47和控制飞行模块48。
所述速度控制模块47用于根据所述飞行高度,确定所述无人机的最大限行飞行速度。所述控制飞行模块48用于根据所述最大限行飞行速度,控制所述无人机飞行。
所述速度控制模块47具体用于获取飞行速度限制表,所述飞行速度限制表包括若干预设高度等级及与每个所述预设高度等级对应的最大限行飞行速度,每个所述预设高度等级对应一个飞行高度范围;从所述飞行速度限制表遍历出与包含所述飞行高度的预设高度等级对应的最大限行飞行速度。所述高度等级包括低空级、中空级及高空级;所述低空级对应的最大限行飞行速度小于所述中空级对应的最大限行飞行速度,所述中空级对应的最大限行飞行速度小于所述高空级对应的最大限行飞行速度。
具体地,所述低空级的飞行高度范围为40-150m,所述低空级对应的最大限行飞行速度的范围为8-10m/s;所述中空级的飞行高度范围为100-300m,所述中空级对应的最大限行飞行速度为H/10m/s,其中,H为中空级高度范围内的高度值;所述高空级的飞行高度范围为大于200m,所述中空级对应的最大限行飞行速度为20m/s。
其中,在一些实施例中,所述避障类型确定模块41包括测量单元和确定单元。所述测量单元用于在所述影像模式下,获取飞行速度与障碍物距离;所述确定单元用于根据所述障碍物距离与所述飞行速度,确定所述避障类型,所述避障类型包括减速类型与刹车类型。
所述确定单元具体用于当所述障碍物距离及所述飞行速度皆满足预设减速条件时,确定避障类型为减速类型;当所述障碍物距离及所述飞行速度皆满足预设刹车条件时,确定避障类型为刹车类型。
具体地,所述当所述障碍物距离及所述飞行速度皆满足预设减速条件时,确定避障类型为减速类型,包括:当所述障碍物距离与所述飞行速度的比值小于第一预设值,确定避障类型为减速类型。
所述当所述障碍物距离及所述飞行速度皆满足预设刹车条件时,确定避障类型为刹车类型,包括:
当所述障碍物距离与所述飞行速度的比值小于第二预设值,确定避障类型为刹车类型,其中,所述第二预设值小于所述第一预设值。所述第一预设值的范围为1.0-2.0;所述第二预设值的范围为0.3-0.8。
所述确定单元包括减速子单元和刹车子单元。
所述减速子单元用于当所述避障类型属于减速类型时,控制所述无人机实施减速,具体用于将所述飞行速度减速至预设最大速度;所述预设最大速度通过以下算式得到:
Figure PCTCN2020108952-appb-000003
其中,V max为所述预设最大速度,sat为饱和函数,上标V1为所述预设最大速度的上限最大值,数值0为所述预设最大速度的下限最小值,S为所述障碍物距离。
所述刹车子单元用于当所述避障类型属于刹车类型时,控制所述无人机实施刹车。
所述刹车子单元具体用于将所述无人机的姿态角度调整至预设角度,以进 行刹车处理;控制无人机工作在悬停状态。所述预设角度的范围为40°-80°。
图5为本发明实施例提供的无人机10的结构框图。无人机10可以用于实现所述主控芯片中的全部或者部分功能模块的功能。如图5所示,该无人机10可以包括:处理器11、存储器12以及通信模块13。
所述处理器11、存储器12以及通信模块13之间通过总线的方式,建立任意两者之间的通信连接。
处理器11可以为任何类型,具备一个或者多个处理核心的处理器11。其可以执行单线程或者多线程的操作,用于解析指令以执行获取数据、执行逻辑运算功能以及下发运算处理结果等操作。
存储器12作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的无人机飞行控制方法对应的程序指令/模块(例如,附图4所示的避障类型确定模块41、控制飞行模块42、存储模块43、高度获取模块44、影像工作确定模块45、警示信息生成模块46、速度控制模块47、控制飞行模块48)。处理器11通过运行存储在存储器12中的非暂态软件程序、指令以及模块,从而执行无人机飞行控制装置40的各种功能应用以及数据处理,即实现上述任一方法实施例中无人机飞行控制方法。
存储器12可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据无人机飞行控制装置40的使用所创建的数据等。此外,存储器12可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器12可选包括相对于处理器11远程设置的存储器,这些远程存储器可以通过网络连接至无人机10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述存储器12存储有可被所述至少一个处理器11执行的指令;所述至少一个处理器11用于执行所述指令,以实现上述任意方法实施例中无人机飞行控制方法,例如,执行以上描述的方法步骤21、22等等,实现图4中的模块41-48的功能。
通信模块13是用于建立通信连接,提供物理信道的功能模块。通信模块13以是任何类型的无线或者有线通信模块13,包括但不限于Wi F i模块或者蓝牙模块等。
进一步地,本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器11执行,例如,被图5中的一个处理器11执行,可使得上述一个或多个处理器11执行上述任意方法实施例中无人机飞行控制方法,例如,执行以上描述的方法步骤21、22等等,实现图4中的模块41-48的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的 单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被相关设备执行时,可使相关设备执行上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上述产品可执行本发明实施例所提供的无人机飞行控制方法,具备执行无人机飞行控制方法相应的功能模块和有益效果。未在本发明的一个实施例中详尽描述的技术细节,可参见本发明实施例所提供的无人机飞行控制方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

  1. 一种无人机飞行控制方法,其特征在于,包括:
    确定影像模式下的避障类型;
    根据所述避障类型,控制所述无人机实施避障。
  2. 根据权利要求1所述的方法,其特征在于,所述确定影像模式下的避障类型,包括:
    在所述影像模式下,获取飞行速度与障碍物距离;
    根据所述障碍物距离与所述飞行速度,确定所述避障类型。
  3. 根据权利要求2所述的方法,其特征在于,所述避障类型包括减速类型与刹车类型;
    所述根据所述障碍物距离与所述飞行速度,确定避障类型,包括:
    当所述障碍物距离及所述飞行速度皆满足预设减速条件时,确定避障类型为减速类型;
    当所述障碍物距离及所述飞行速度皆满足预设刹车条件时,确定避障类型为刹车类型。
  4. 根据权利要求3所述的方法,其特征在于,所述当所述障碍物距离及所述飞行速度皆满足预设减速条件时,确定避障类型为减速类型,包括:
    当所述障碍物距离与所述飞行速度的比值小于第一预设值,确定避障类型为减速类型。
  5. 根据权利要求4所述的方法,其特征在于,所述当所述障碍物距离及所述飞行速度皆满足预设刹车条件时,确定避障类型为刹车类型,包括:
    当所述障碍物距离与所述飞行速度的比值小于第二预设值,确定避障类型为刹车类型,其中,所述第二预设值小于所述第一预设值。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一预设值的范围为1.0-2.0;
    所述第二预设值的范围为0.3-0.8。
  7. 根据权利要求3至6任一项所述的方法,其特征在于,所述根据所述避障类型,控制所述无人机实施避障,包括:
    当所述避障类型属于减速类型时,控制所述无人机实施减速;
    当所述避障类型属于刹车类型时,控制所述无人机实施刹车。
  8. 根据权利要求7所述的方法,其特征在于,所述当所述避障类型属于减速类型时,控制所述无人机实施减速,包括:
    根据以下式子,将所述飞行速度减速至预设最大速度,
    Figure PCTCN2020108952-appb-100001
    其中,V max为所述预设最大速度,sat为饱和函数,上标V1为所述预设最大速度的上限最大值,数值0为所述预设最大速度的下限最小值,S为所述障碍物距离。
  9. 根据权利要求7所述的方法,其特征在于,所述当所述避障类型属于刹车类型时,控制所述无人机实施刹车,包括:
    将所述无人机的姿态角度调整至预设角度,以进行刹车处理;
    所述无人机的速度降为零后,控制所述无人机工作在悬停状态。
  10. 根据权利要求9所述的方法,其特征在于,
    所述预设角度的范围为40°-80°。
  11. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    获取所述无人机的飞行高度和对地高度;
    根据所述飞行高度和所述对地高度,确定所述无人机的影像工作状态。
  12. 根据权利要求11所述的方法,其特征在于,所述影像工作状态包括影像模式与非影像模式;
    所述根据所述飞行高度和所述对地高度,确定所述无人机的影像工作状态,包括:
    当所述飞行高度大于或等于第一预设参考阈值,并且,所述对地高度大于或等于第二预设参考阈值时,选择进入所述影像模式;
    当所述飞行高度小于第一预设参考阈值,或者,所述对地高度小于第二预设参考阈值时,选择进入所述非影像模式,所述第一预设参考阈值大于第二预设参考阈值。
  13. 根据权利要求12所述的方法,其特征在于,在选择进入所述影像模式之后,所述方法还包括:生成警示信息。
  14. 根据权利要求12所述的方法,其特征在于,
    所述第一预设参考阈值的范围为3-20m;
    所述第二预设参考阈值的范围为2-10m。
  15. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    根据所述飞行高度,确定所述无人机的最大限行飞行速度;
    根据所述最大限行飞行速度,控制所述无人机飞行。
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述飞行高度,确定所述无人机的最大限行飞行速度,包括:
    获取飞行速度限制表,所述飞行速度限制表包括若干预设高度等级及与每个所述预设高度等级对应的最大限行飞行速度,每个所述预设高度等级对应一个飞行高度范围;
    从所述飞行速度限制表遍历出与包含所述飞行高度的预设高度等级对应的最大限行飞行速度。
  17. 根据权利要求16所述的方法,其特征在于,
    所述高度等级包括低空级、中空级及高空级;
    所述低空级对应的最大限行飞行速度小于所述中空级对应的最大限行飞行速度,所述中空级对应的最大限行飞行速度小于所述高空级对应的最大限行飞行速度。
  18. 根据权利要求17所述的方法,其特征在于,
    所述低空级的飞行高度小于第一判定高度,第一判定高度的范围为40~150m;
    所述中空级的飞行高度大于所述第一判定高度且小于第二判定高度,所述第二判定高度的范围为100~300m;
    所述高空级的飞行高度大于第二判定高度。
  19. 根据权利要求18所述的方法,其特征在于,
    所述低空级对应的最大限行飞行速度的范围为8-10m/s;
    所述中空级对应的最大限行飞行速度为H/10m/s,其中,H为所述中空级高度范围内的高度值;
    所述高空级对应的最大限行飞行速度为20m/s。
  20. 一种无人机,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如权利要求1-19中任一项所述的无人机飞行控制方法。
PCT/CN2020/108952 2019-08-15 2020-08-13 无人机飞行控制方法及无人机 WO2021027886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910753777.8 2019-08-15
CN201910753777.8A CN110568857A (zh) 2019-08-15 2019-08-15 无人机飞行控制方法及无人机

Publications (1)

Publication Number Publication Date
WO2021027886A1 true WO2021027886A1 (zh) 2021-02-18

Family

ID=68775590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108952 WO2021027886A1 (zh) 2019-08-15 2020-08-13 无人机飞行控制方法及无人机

Country Status (2)

Country Link
CN (1) CN110568857A (zh)
WO (1) WO2021027886A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568857A (zh) * 2019-08-15 2019-12-13 深圳市道通智能航空技术有限公司 无人机飞行控制方法及无人机
CN113678081A (zh) * 2020-10-22 2021-11-19 深圳市大疆创新科技有限公司 控制方法、装置、可移动平台、遥控终端与控制系统
CN113064447B (zh) * 2021-03-19 2023-02-28 深圳市道通智能航空技术股份有限公司 安全检测方法、装置、系统、无人飞行器及其控制设备
CN113253762B (zh) * 2021-06-21 2021-09-17 广东电网有限责任公司佛山供电局 一种无人机巡检安全返航的避障方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062251A (zh) * 2018-08-23 2018-12-21 拓攻(南京)机器人有限公司 无人机避障方法、装置、设备及存储介质
CN109240334A (zh) * 2018-10-22 2019-01-18 深圳市智璟科技有限公司 一种无人飞机的避障方法
US20190094861A1 (en) * 2017-09-28 2019-03-28 Intel IP Corporation Unmanned aerial vehicle and method for operating an unmanned aerial vehicle
CN109782788A (zh) * 2019-03-26 2019-05-21 台州学院 基于双目视觉的无人机低空避障系统及控制方法
CN110119162A (zh) * 2019-06-20 2019-08-13 亿航智能设备(广州)有限公司 一种无人机避障控制方法、无人机及计算机可读存储介质
CN110568857A (zh) * 2019-08-15 2019-12-13 深圳市道通智能航空技术有限公司 无人机飞行控制方法及无人机
WO2020139481A1 (en) * 2018-12-27 2020-07-02 Intel Corporation Collision avoidance system, depth imaging system, vehicle, obstacle map generator, and methods thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592947B (zh) * 2013-11-19 2015-11-11 华南农业大学 一种农用飞行器安全作业飞行监控装置及其控制算法
WO2016011590A1 (zh) * 2014-07-21 2016-01-28 深圳市大疆创新科技有限公司 一种数据处理方法、装置及飞行器
WO2016033795A1 (en) * 2014-09-05 2016-03-10 SZ DJI Technology Co., Ltd. Velocity control for an unmanned aerial vehicle
JP6755755B2 (ja) * 2016-01-28 2020-09-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 飛行高度制御装置、無人飛行体、飛行高度制御方法及び飛行高度制御プログラム
CN107139666B (zh) * 2017-05-19 2019-04-26 四川宝天智控系统有限公司 越障识别系统及方法
CN108334103B (zh) * 2017-12-21 2023-04-14 广州亿航智能技术有限公司 无人机多距离避障方法及避障系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190094861A1 (en) * 2017-09-28 2019-03-28 Intel IP Corporation Unmanned aerial vehicle and method for operating an unmanned aerial vehicle
CN109062251A (zh) * 2018-08-23 2018-12-21 拓攻(南京)机器人有限公司 无人机避障方法、装置、设备及存储介质
CN109240334A (zh) * 2018-10-22 2019-01-18 深圳市智璟科技有限公司 一种无人飞机的避障方法
WO2020139481A1 (en) * 2018-12-27 2020-07-02 Intel Corporation Collision avoidance system, depth imaging system, vehicle, obstacle map generator, and methods thereof
CN109782788A (zh) * 2019-03-26 2019-05-21 台州学院 基于双目视觉的无人机低空避障系统及控制方法
CN110119162A (zh) * 2019-06-20 2019-08-13 亿航智能设备(广州)有限公司 一种无人机避障控制方法、无人机及计算机可读存储介质
CN110568857A (zh) * 2019-08-15 2019-12-13 深圳市道通智能航空技术有限公司 无人机飞行控制方法及无人机

Also Published As

Publication number Publication date
CN110568857A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2021027886A1 (zh) 无人机飞行控制方法及无人机
US11797028B2 (en) Unmanned aerial vehicle control method and device and obstacle notification method and device
US10266263B2 (en) System and method for omni-directional obstacle avoidance in aerial systems
US20220083078A1 (en) Method for controlling aircraft, device, and aircraft
US10979615B2 (en) System and method for providing autonomous photography and videography
US10802509B2 (en) Selective processing of sensor data
US20210133996A1 (en) Techniques for motion-based automatic image capture
US20170195549A1 (en) Systems, methods, and devices for setting camera parameters
WO2021078003A1 (zh) 无人载具的避障方法、避障装置及无人载具
CN110366745B (zh) 信息处理装置、飞行控制指示方法、程序及记录介质
US20180275659A1 (en) Route generation apparatus, route control system and route generation method
JPWO2019082301A1 (ja) 検出システム、検出方法、及びプログラム
CN109716255A (zh) 用于操作可移动物体以规避障碍物的方法和系统
WO2021088684A1 (zh) 全向避障方法及无人飞行器
US20200133310A1 (en) Method for controlling palm landing of unmanned aerial vehicle, control device, and unmanned aerial vehicle
WO2020073245A1 (zh) 手势识别方法、vr视角控制方法以及vr系统
WO2018018514A1 (en) Target-based image exposure adjustment
WO2019105231A1 (zh) 信息处理装置、飞行控制指示方法及记录介质
JP2021096865A (ja) 情報処理装置、飛行制御指示方法、プログラム、及び記録媒体
WO2023025202A1 (zh) 云台方向的控制方法、装置及终端
KR101876829B1 (ko) 소형 드론의 실내 비행제어를 위한 유도 제어 시스템
WO2021238743A1 (zh) 一种无人机飞行控制方法、装置及无人机
WO2021014752A1 (ja) 情報処理装置、情報処理方法、情報処理プログラム
KR20180000110A (ko) 드론 및 그 제어방법
JP2021103410A (ja) 移動体及び撮像システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851988

Country of ref document: EP

Kind code of ref document: A1