WO2021014752A1 - 情報処理装置、情報処理方法、情報処理プログラム - Google Patents

情報処理装置、情報処理方法、情報処理プログラム Download PDF

Info

Publication number
WO2021014752A1
WO2021014752A1 PCT/JP2020/021124 JP2020021124W WO2021014752A1 WO 2021014752 A1 WO2021014752 A1 WO 2021014752A1 JP 2020021124 W JP2020021124 W JP 2020021124W WO 2021014752 A1 WO2021014752 A1 WO 2021014752A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
information processing
map
moving
shape
Prior art date
Application number
PCT/JP2020/021124
Other languages
English (en)
French (fr)
Inventor
政彦 豊吉
航平 漆戸
竜太 佐藤
琢人 元山
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN202080050674.6A priority Critical patent/CN114096929A/zh
Priority to US17/626,495 priority patent/US20220283584A1/en
Priority to JP2021534568A priority patent/JPWO2021014752A1/ja
Publication of WO2021014752A1 publication Critical patent/WO2021014752A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3826Terrain data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3889Transmission of selected map data, e.g. depending on route
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/206Drawing of charts or graphs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/62Control of parameters via user interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20061Hough transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Definitions

  • This technology relates to information processing devices, information processing methods, and information processing programs.
  • Patent Document 1 a technique of presenting an optimum composition according to the scene or subject to be shot by the user has been proposed.
  • Patent Document 1 The technique described in Patent Document 1 is for normal shooting in which the position of the camera is fixed, and optimization of composition in shooting with a camera mounted on an autonomous moving body is an unsolved problem.
  • This technology was made in view of these points, and provides information processing devices, information processing methods, and information processing programs that can determine a movement route for a moving object to take a picture with a desired composition while autonomously moving.
  • the purpose is to provide.
  • the first technique is a map creation unit that creates a map of a moving range that is a range to be photographed while a moving body equipped with an imaging device is moving, and extracts a shape existing in the map.
  • It is an information processing device including a shape extraction unit for setting a shape, a composition setting unit for setting the composition of an image to be captured by an imaging device, and a route determining unit for determining a moving route in a moving range of a moving body based on the shape and composition. ..
  • the second technique is to create a map of the moving range, which is the range to be photographed while the moving body equipped with the imaging device is moving, extract the shape existing in the map, and compose the image to be captured by the imaging device.
  • This is an information processing method that is set and determines the movement path in the movement range of the moving body based on the shape and composition.
  • the third technique is to create a map of the moving range, which is the range to be photographed while the moving body equipped with the imaging device is moving, extract the shape existing in the map, and compose the image to be captured by the imaging device. It is an information processing program that causes a computer to execute an information processing method that is set and determines a movement route in a movement range of a moving body based on a shape and composition.
  • FIG. 16A is an example of a semantic map
  • FIG. 16B is an example of a composition.
  • FIG. 16A is an example of a semantic map
  • FIG. 16B is an example of a composition.
  • FIG. 16B is a diagram showing a state in which a semantic map and a composition are superimposed. It is explanatory drawing of the modification of setting the composition for each waypoint.
  • Embodiment> [1-1. Configuration of shooting system 10] [1-2. Configuration of mobile 100] [1-3. Configuration of image pickup device 200] [1-4. Configuration of terminal device 300 and information processing device 400] [1-5. Processing by information processing device 400] [1-5-1. Whole processing] [1-5-2. Semantic map creation process] [1-5-3. Movement route determination process] ⁇ 2. Modification example>
  • the photographing system 10 includes a moving body 100, an imaging device 200, and a terminal device 300 having a function as an information processing device 400.
  • the mobile body 100 is an electric small aircraft (unmanned aerial vehicle) called a drone.
  • the image pickup apparatus 200 is mounted on the moving body 100 via the gimbal 500, and autonomously shoots with a preset composition during the autonomous movement of the moving body 100 to acquire a still image / moving image.
  • the terminal device 300 is a computer such as a smartphone used by a user who uses the photographing system 10 on the ground, and the information processing device 400 operating in the terminal device 300 sets a composition in photographing and creates a moving route of the moving body 100. It is something to do.
  • the mobile body 100 and the image pickup device 200 can communicate with each other by a wired or wireless connection. Further, the terminal device 300, the mobile body 100, and the image pickup device 200 can communicate with each other by wireless connection.
  • FIG. 2A is an external plan view of the moving body 100
  • FIG. 2B is an external front view of the moving body 100.
  • the airframe is composed of, for example, a cylindrical or square tubular body portion 1 as a central portion, and support shafts 2a to 2f fixed to the upper portion of the body portion 1.
  • the body portion 1 has a hexagonal tubular shape, and six support shafts 2a to 2f extend radially from the center of the body portion 1 at equiangular intervals.
  • the body portion 1 and the support shafts 2a to 2f are made of a lightweight and strong material.
  • each component of the machine body including the body portion 1 and the support shafts 2a to 2f are designed so that the center of gravity thereof is on the vertical line passing through the center of the support shafts 2a to 2f.
  • a circuit unit 5 and a battery 6 are provided in the body portion 1 so that the center of gravity is on the vertical line.
  • the number of rotor blades and motors is set to 6. However, it may have a configuration having four rotor blades and a motor, or a configuration having eight or more rotor blades and a motor.
  • Motors 3a to 3f as drive sources for rotary blades are attached to the tips of the support shafts 2a to 2f, respectively.
  • Rotor blades 4a to 4f are attached to the rotating shafts of the motors 3a to 3f.
  • a circuit unit 5 including a UAV control unit 101 for controlling each motor is attached to a central portion where the support shafts 2a to 2f intersect.
  • the motor 3a and the rotary blade 4a and the motor 3d and the rotary blade 4d form a pair.
  • (motor 3b, rotor 4b) and (motor 3e, rotor 4e) form a pair
  • (motor 3c, rotor 4c) and (motor 3f, rotor 4f) form a pair. ..
  • a battery 6 as a power source is arranged on the bottom surface in the body portion 1.
  • the battery 6 includes, for example, a lithium ion secondary battery and a battery control circuit that controls charging and discharging.
  • the battery 6 is detachably attached to the inside of the body portion 1.
  • a small electric vehicle controls the output of the motor to enable desired navigation. For example, in the state of hovering stationary in the air, the tilt is detected using the gyro sensor mounted on the aircraft, the motor output on the lower side of the aircraft is increased, and the motor output on the upper side is decreased. By doing so, the aircraft is kept horizontal. Further, when moving forward, the motor output in the traveling direction is decreased and the motor output in the opposite direction is increased to take a forward leaning posture and generate a propulsive force in the traveling direction. In the attitude control and propulsion control of such an electric small aircraft, the installation position of the battery 6 as described above can balance the stability of the airframe and the ease of control.
  • FIG. 3 is a block diagram showing the configuration of the moving body 100.
  • the moving body 100 includes a UAV (Unmanned aerial vehicle) control unit 101, a communication unit 102, a self-position estimation unit 103, a three-dimensional distance measuring unit 104, a gimbal control unit 105, a sensor unit 106, a battery 6, and motors 3a to 3f. It is configured to prepare.
  • UAV Unmanned aerial vehicle
  • the support shaft, rotary blade, and the like described in the appearance configuration of the moving body 100 described above will be omitted.
  • the UAV control unit 101, the communication unit 102, the self-position estimation unit 103, the three-dimensional distance measuring unit 104, the gimbal control unit 105, and the sensor unit 106 are included in the circuit unit 5 shown in the external view of the moving body 100 of FIG. It is assumed that there is.
  • the UAV control unit 101 is composed of a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. A program or the like that is read and operated by the CPU is stored in the ROM. The RAM is used as the work memory of the CPU. The CPU controls the entire mobile body 100 and each part by executing various processes according to the program stored in the ROM and issuing commands. Further, the UAV control unit 101 controls the flight of the moving body 100 by controlling the outputs of the motors 3a to 3f.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the communication unit 102 is various communication terminals or communication modules for transmitting / receiving data to / from the terminal device 300 and the image pickup device 200.
  • Communication with the terminal device 300 is wireless LAN (Local Area Network), WAN (Wide Area Network), WiFi (Wireless Fidelity), 4G (4th generation mobile communication system), 5G (4th generation mobile communication system), Bluetooth. (Registered trademark), ZigBee (registered trademark) and other wireless communications.
  • the communication with the image pickup apparatus 200 may be a wired communication such as a USB (Universal Serial Bus) communication in addition to the wireless communication.
  • the mobile body 100 receives the movement route information created by the information processing device 400 of the terminal device 300 at the communication unit, and autonomously moves according to the movement route to perform photographing.
  • the self-position estimation unit 103 performs a process of estimating the current position of the moving body 100 based on various sensor information acquired by the sensor unit 106.
  • the three-dimensional distance measuring unit 104 performs three-dimensional distance measuring processing based on various sensor information acquired by the sensor unit 106.
  • the gimbal control unit 105 is a processing unit that controls the operation of the gimbal 500 for rotatably mounting the image pickup device 200 on the moving body 100.
  • the orientation of the image pickup apparatus 200 can be freely adjusted by controlling the rotation of the axis of the gimbal 500 with the gimbal control unit 105. As a result, the orientation of the image pickup apparatus 200 can be adjusted according to the set composition for shooting.
  • the sensor unit 106 is a sensor capable of measuring the distance of a stereo camera, LiDAR (Laser Imaging Detection and Ringing), or the like.
  • a stereo camera is a type of distance sensor, and is a stereo camera with two left and right cameras that apply the principle of triangulation when a human looks at an object.
  • Parallax data can be generated using image data taken with a stereo camera, and the distance between the camera (lens) and the target surface can be measured.
  • LiDAR measures scattered light with respect to laser irradiation that emits pulsed light, and analyzes the distance to an object at a long distance and the properties of the object.
  • the sensor information acquired by the sensor unit 106 is supplied to the self-position estimation unit 103 and the three-dimensional distance measuring unit 104 of the moving body 100.
  • the sensor unit 106 may include a GPS (Global Positioning System) module and an IMU (Inertial Measurement Unit) module.
  • the GPS module acquires the current position (latitude / longitude information) of the moving body 100 and supplies it to the UAV control unit 101, the self-position estimation unit 103, and the like.
  • the IMU module is an inertial measurement unit, and by obtaining three-dimensional angular velocity and acceleration by an acceleration sensor, an angular velocity sensor, a gyro sensor, etc. in two or three axial directions, the moving body 100 is tilted and turned. The angular velocity and the angular velocity around the Y-axis direction are detected and supplied to the UAV control unit 101 and the like.
  • the sensor unit 106 may include an altimeter, a directional meter, and the like.
  • the altimeter measures the altitude at which the moving body 100 is located and supplies altitude data to the UAV control unit 101, and includes a barometric altimeter, a radio altimeter, and the like.
  • the directional meter detects the traveling direction of the moving body 100 by using the action of a magnet and supplies it to the UAV control unit 101 or the like.
  • the image pickup device 200 is mounted on the lower part of the moving body 100 via the gimbal 500.
  • the gimbal 500 is a kind of turntable for rotating an object (imaging device 200 in the present embodiment) supported by, for example, two or three axes.
  • the image pickup apparatus 200 is mounted on the bottom surface of the body portion 1 of the moving body 100 so as to be suspended via the gimbal 500.
  • the image pickup apparatus 200 can take an image by pointing the lens in any of the 360-degree horizontal to vertical directions. This makes it possible to shoot with the set composition.
  • the operation of the gimbal 500 is controlled by the gimbal control unit 105.
  • the configuration of the image pickup apparatus 200 will be described with reference to the block diagram of FIG.
  • the image pickup device 200 includes a control unit 201, an optical image pickup system 202, a lens drive driver 203, an image sensor 204, an image signal processing unit 205, an image memory 206, a storage unit 207, and a communication unit 208.
  • the optical image pickup system 202 is composed of an image pickup lens for concentrating light from a subject on the image pickup element 204, a drive mechanism for moving the image pickup lens to perform focusing and zooming, a shutter mechanism, an iris mechanism, and the like. There is. These are driven based on the control signals from the control unit 201 of the image pickup apparatus 200 and the lens drive driver 203.
  • the optical image of the subject obtained through the optical image pickup system 202 is imaged on the image pickup device 204 included in the image pickup apparatus 200.
  • the lens drive driver 203 is composed of, for example, a microcomputer or the like, and by moving the image pickup lens by a predetermined amount along the optical axis direction under the control of the control unit 201, autofocus is performed so as to focus on the target subject. Further, according to the control from the control unit 201, the operation of the drive mechanism, the shutter mechanism, the iris mechanism, etc. of the optical imaging system 202 is controlled. As a result, the exposure time (shutter speed) is adjusted, the aperture value (F value) and the like are adjusted.
  • the image sensor 204 photoelectrically converts the incident light from the subject into an amount of electric charge, and outputs a pixel signal. Then, the image sensor 204 outputs the pixel signal to the image signal processing unit 205.
  • a CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the image signal processing unit 205 is a sample hold for maintaining a good S / N (Signal / Noise) ratio by CDS (Correlated Double Sampling) processing with respect to the image pickup signal output from the image sensor 204, AGC (Auto Gain Control). ) Processing, A / D (Analog / Digital) conversion, etc. are performed to create an image signal.
  • the image memory 206 is a volatile memory, for example, a buffer memory composed of a DRAM (Dynamic Random Access Memory).
  • the image memory 206 temporarily stores image data that has been subjected to predetermined processing by the image signal processing unit 205.
  • the storage unit 207 is a large-capacity storage medium such as a hard disk, a USB flash memory, or an SD memory card.
  • the captured image is stored in a compressed state or an uncompressed state based on a standard such as JPEG (Joint Photographic Experts Group).
  • JPEG Joint Photographic Experts Group
  • EXIF Exchangeable Image File Format
  • additional information such as information about the saved image, imaging position information indicating the imaging position, and imaging time is also saved in association with the image.
  • the communication unit 208 is various communication terminals or communication modules for transmitting / receiving data to / from the mobile body 100 and the terminal device 300.
  • the communication may be either wired communication such as USB communication or wireless communication such as wireless LAN, WAN, WiFi, 4G, 5G, Bluetooth (registered trademark), ZigBee (registered trademark).
  • the terminal device 300 is a computer such as a smartphone, and has a function as an information processing device 400.
  • the terminal device 300 may be any device other than a smartphone as long as it can have a function as an information processing device 400 such as a personal computer, a tablet terminal, and a server device.
  • the configuration of the terminal device 300 will be described with reference to FIG.
  • the terminal device 300 includes a control unit 301, a storage unit 302, a communication unit 303, an input unit 304, a display unit 305, and an information processing device 400.
  • the control unit 301 is composed of a CPU, RAM, ROM, and the like.
  • the CPU controls the entire terminal device 300 and each part by issuing commands by executing various processes according to the program stored in the ROM.
  • the storage unit 302 is a large-capacity storage medium such as a hard disk or a flash memory. Various applications and data used in the terminal device 300 are stored in the storage unit 302.
  • the communication unit 303 is a communication module for transmitting and receiving data and various information to and from the mobile body 100 and the image pickup device 200.
  • the communication is any wireless communication such as wireless LAN, WAN, WiFi, 4G, 5G, Bluetooth (registered trademark), ZigBee (registered trademark) that can communicate with the remote mobile body 100 and the image pickup device 200. It may be a method.
  • the input unit 304 is for the user to input various inputs such as input for composition setting and input for waypoint setting and input of instructions.
  • various inputs such as input for composition setting and input for waypoint setting and input of instructions.
  • a control signal corresponding to the input is generated and supplied to the control unit 301.
  • the control unit 301 performs various processes corresponding to the control signal.
  • the input unit 304 may be a touch panel, a touch screen integrated with a monitor, voice input by voice recognition, or the like.
  • the display unit 305 is a display device such as a display that displays images / videos, GUI (Graphical User Interface), and the like.
  • the display unit 305 displays a semantic map creation range setting UI, a waypoint input UI, a movement route presentation UI, and the like.
  • the terminal device 300 may include a speaker or the like that outputs sound as an output means other than the display unit 305.
  • the information processing device 400 sets a composition so that the moving body 100 and the imaging device 200 can perform autonomous movement and autonomous photographing with a designated composition, and performs a process of determining a movement route.
  • the information processing apparatus 400 includes a map creation unit 401, a shape extraction unit 402, a composition setting unit 403, a waypoint setting unit 404, and a route determination unit 405.
  • the map creation unit 401 creates a semantic map. Semantic is translated as "meaningful, semantic, semantic, semantic", and a semantic map is meant to identify or identify objects that exist in the map. It is a map containing the information of the above and the information of the meaningful object and the boundary line between the objects.
  • Map creation unit 401 creates a semantic map for the range set on the two-dimensional map data.
  • the range in which this semantic map is created is the range in which the moving body 100 including the imaging device 200 takes a picture while moving, and corresponds to the "moving range" in the claims.
  • the shape extraction unit 402 performs a process of extracting a specific shape (straight line, curve, etc.) from the semantic map.
  • the shape extraction unit 402 extracts the shape by, for example, Hough transform.
  • the shape information indicating the extracted shape is supplied to the routing unit 405.
  • the Hough transform is a method of extracting a shape that is a predetermined template such as a straight line or a circle with an angle from an image.
  • the composition setting unit 403 performs a process of setting the composition of the image to be captured by the image pickup apparatus 200.
  • a first composition method a plurality of composition data are held in advance, displayed on the display unit 305 of the terminal device 300 and presented to the user, and the composition selected by the user is used as a composition for shooting.
  • Various compositions to be held in the composition setting unit 403 in advance include, for example, the Hinomaru composition, which has been widely used for photography, a two-division composition, a three-division composition, a diagonal composition, a symmetry composition, a radiation composition, and a triangular composition. There is something.
  • the drawing UI is displayed on the display unit 305 of the terminal device 300, the user draws a line indicating the composition by the drawing tool, and the figure represented by the line is used as the composition.
  • the route determination unit 405 proposes to the user the optimum composition for shooting. This uses the shape information extracted by the shape extraction unit 402 to compare the extracted shape with a plurality of composition data held in advance, presents the user with a composition having a high degree of similarity, and proposes the composition to the user. It is a method of setting what is decided as a composition.
  • the waypoint setting unit 404 sets the waypoints that constitute the movement path of the moving body 100.
  • the waypoint is a passing point of the moving body 100 for determining a moving route indicating how the moving body 100 moves. Since multiple waypoints are used to determine the movement route, a plurality of waypoints are set, and if there are a plurality of waypoints, the number is not limited to a specific number.
  • two-dimensional map data is displayed on the display unit 305 of the terminal device 300, and a point designated by the user on the map is set as a waypoint.
  • Waypoints may be set on a semantic map, or may be set on two-dimensional map data indicating a semantic map creation range. Further, waypoints may be specified on a map obtained by converting a semantic map into a two-dimensional bird's-eye view.
  • the route determination unit 405 determines the route to be moved for taking a picture by the image pickup apparatus 200 in the composition in which the moving body 100 is set within the semantic map creation range.
  • the movement route includes one global movement route that passes through all the waypoints set within the semantic map creation range, and a local movement route that is a movement route between each waypoint.
  • the terminal device 300 and the information processing device 400 are configured as described above.
  • the information processing device 400 is realized by executing a program, and the program may be installed in the terminal device 300 in advance, or may be distributed by download, storage medium, or the like so that the user can install it by himself / herself. Good. Further, the information processing device 400 may be realized not only by a program but also by combining a dedicated device, a circuit, or the like by hardware having the function.
  • FIG. 7 is a flowchart showing the overall flow of the information processing device 400.
  • the map creation unit 401 creates a semantic map.
  • the semantic map of FIG. 8B is represented in grayscale, and the values shown for each region classified by lightness in the figure indicate the range of grayscale gradation in that region.
  • the semantic map of FIG. 8B also includes information on meanings in the map, such as roads, trees, and the sky. The details of creating the semantic map will be described later with reference to the flowchart of FIG.
  • the created semantic map is supplied to the shape extraction unit 402.
  • step S102 the shape extraction unit 402 extracts a predetermined shape (straight line, curve, etc.) from the semantic map.
  • the shape is extracted as shown in FIG. 9 by, for example, Hough transform.
  • the extracted shape information is supplied to the routing unit 405.
  • step S103 the composition setting unit 403 sets the composition for shooting.
  • the composition information set by the composition setting unit 403 is supplied to the route determination unit 405.
  • step S104 the waypoint setting unit 404 sets the waypoint for determining the movement route.
  • step S105 the route determination unit 405 determines the movement route.
  • the details of the movement route determination will be described later with reference to the flowchart of FIG.
  • the composition setting of step S103 and the waypoint setting of step S104 may be performed prior to the creation of the semantic map in step S101 and the shape extraction in step S102, and steps S101 to S101 to the route determination in step S105 regardless of the order. It suffices if step S104 is completed.
  • the information on the moving path determined in this way is supplied to the UAV control unit 101 of the moving body 100, and the UAV control unit 101 of the moving body 100 controls to autonomously move the moving body 100 to the moving path, and the image pickup apparatus. 200 takes a picture with the composition set on the movement path.
  • step S201 the range for creating the semantic map is determined.
  • This semantic map creation range is set based on the range specified by the user on the two-dimensional map data.
  • the user encloses the range for creating a semantic map on the two-dimensional map data associated with the latitude / longitude information displayed on the display unit 305 of the terminal device 300 with a rectangular frame. Specified by. Then, the information of the designated range is supplied to the map creation unit 401, and the designated range is set as the range for creating the semantic map. After setting the semantic map creation range, it is preferable to display the semantic map creation range in the entire display unit 305 as shown in FIG. 11B in order to make it easier for the user to specify waypoints in the semantic map creation range.
  • the semantic map creation range is not limited to a rectangular shape, but may be a triangular shape, a circular shape, or a free shape that is not a specific shape.
  • the map creation range may be determined by the user by designating the range for the three-dimensional map data.
  • step S202 the destination to be reached by moving the moving body 100 in order to make observations for creating the semantic map by the sensor unit 106 in the semantic map creation range is set.
  • This destination is set on the boundary between the observed area that has been observed by the mobile body 100 and the unobserved area that has not been observed yet.
  • step S203 the operation of the moving body 100 is controlled to move to the destination.
  • step S204 three feature points are identified by a known three-dimensional shape measurement technique using a sensor unit 106 (stereo camera or the like) included in the moving body 100, and a mesh is stretched between the three points. ..
  • the semantic map is created by using the mesh.
  • the semantic map can be created not only by using a mesh but also by using voxels, for example.
  • Semantic segmentation is a process of labeling the meaning of each pixel that constitutes an image with respect to each pixel.
  • step S205 based on the result of semantic segmentation, a two-dimensional semantic label is projected onto the three-dimensional shape, and on the three-dimensional semantic map, what category is the mesh stretched in step S203 (? It is decided by voting whether it belongs to a road, a building, etc.).
  • step S207 it is determined whether or not there is an unobserved area within the semantic map creation range. If there is an unobserved area, the process proceeds to step S202, and a new destination is set in step S202. Then, by repeating steps S202 to S207 until there are no unobserved areas, a semantic map of the entire semantic map creation range can be created.
  • the map creation unit 401 creates a semantic map.
  • the movement route is composed of a global movement route and a local movement route.
  • the global movement route is a route from the start point to the end point of the movement of the moving body 100 set to pass through all the waypoints, and the local movement route is a movement route set for each waypoint. ..
  • the local movement route is connected to form a global movement route.
  • the waypoint setting unit 404 sets the waypoint within the semantic map creation range based on the input from the user.
  • the waypoint indicates a specific position on the movement path of the moving body 100.
  • the waypoints set based on the user's input may be represented by the above points on the two-dimensional map data indicating the semantic map creation range as shown in FIG. 13A. This allows the user to easily see where the waypoints are.
  • a plurality of waypoints are set on the semantic map creation range.
  • the waypoints may be specified on the semantic map, or may be specified on the map obtained by converting the semantic map into a two-dimensional bird's-eye view.
  • the route determination unit 405 sets a movement route from the reference waypoint to the nearest waypoint.
  • the first reference waypoint is the position where the moving body 100 starts moving, and is set based on the input from the user.
  • the route determination unit 405 may set a waypoint as the first reference by a predetermined algorithm or the like.
  • step S303 it is determined in step S303 whether or not the movement route is set so as to pass through all the waypoints. If all the waypoints have not been passed, the process proceeds to step S304 (No in step S303).
  • step S304 the nearest waypoint for which the movement route was set in step S302 is set as the reference waypoint for the next route to be set. Then, the process proceeds to step S302, and a movement route from the reference waypoint newly set in step S304 to the nearest waypoint is set.
  • step S401 two waypoints for determining a local movement route are determined from all the waypoints.
  • the two waypoints that determine the local movement route may be automatically determined in the order of input from the user or the waypoints corresponding to the end points of the global movement route.
  • the route determination unit 405 sets a plurality of temporary movement routes between the two waypoints.
  • a method of determining a temporary movement route there are known techniques and algorithms for movement of robots, autonomous vehicles, autonomous mobile bodies, etc., such as those for efficient ones and those for finding an optimum route, and these are appropriately used. It can be used properly. These known techniques are roughly divided into two, one in which all possible routes are evaluated, and the other in which a plurality of routes are tentatively placed at random and selected from them.
  • step S403 the position and orientation of the moving body 100 on the temporary moving path are input.
  • the cost at the position and posture of the input moving body 100 is calculated.
  • step S404 the cost is calculated along the temporary movement route for one of the plurality of temporary movement routes.
  • the cost is the value obtained by normalizing the distance of the temporary movement route itself, the value obtained by normalizing the distance from the obstacle, and the value obtained by normalizing the similarity with the composition. It is calculated as a result.
  • the movement route with the lowest cost is the optimum movement route for the moving body 100, and is finally included in the global movement route. Details of cost calculation will be described later.
  • step S405 it is determined in step S405 whether or not the costs have been calculated for all the temporary movement routes. If the costs have not been calculated for all the temporary movement routes, the process proceeds to step S403 (No in step S405), and steps S403 to S405 are repeated until the costs are calculated for all the temporary movement routes.
  • the process proceeds to step S406, and the temporary movement route having the lowest cost among all the temporary movement routes is determined as the movement route to be included in the route plan.
  • the lowest cost, optimal travel route is one with a short distance between the routes themselves and a high degree of similarity in composition with the semantic map.
  • the process of FIG. 15 calculates the cost for each temporary movement route before the actual shooting, and determines the temporary movement route having the lowest cost from the plurality of temporary movement routes as the optimum local movement route.
  • step S501 the position and posture of the moving body 100 when shooting is performed with the set composition for one of the temporary moving paths among the plurality of temporary moving paths.
  • step S502 the position and orientation of the image pickup apparatus 200 when shooting is performed with the set composition for one temporary movement path are obtained.
  • the position and orientation of the image pickup apparatus 200 may be obtained as the position and orientation of the gimbal 500.
  • step S503 it is assumed that the image pickup device 200 can take a picture from the semantic map based on the position and posture of the moving body 100 calculated in step S501 and the position and posture of the image pickup device 200 calculated in step S502.
  • what kind of image can be taken in the three-dimensional space when the image is taken by the image pickup device 200 provided on the moving body 100 in the three-dimensional semantic map is represented in two dimensions, and the semantic map is displayed in the image pickup device 200. It can be said that it is a process of converting into a photographed image that can be assumed to be photographed by, that is, a process of projecting a semantic map onto a two-dimensional image as a photographed image.
  • step S503 does not actually take a picture with the image pickup apparatus 200, but the process in the information processing apparatus 400 is used to obtain a semantic map, position information and attitude information of the moving body 100, and position information and attitude information of the image pickup apparatus 200. It is calculated based on.
  • Costcompk which is the difference between the line segments constituting the set composition and the shapes (straight lines, curves, etc.) extracted in the semantic map, which is the cost related to the semantic map and the composition, is calculated by the following equation 1.
  • the difference shown in FIG. 17 is calculated as the cost between the shape extracted in the semantic map as shown in FIG. 16A and the line segment constituting the composition set as shown in FIG. 16B.
  • FIG. 17 shows a state in which the semantic map and the composition are superimposed.
  • the difference between the shape extracted in the semantic map and the line segments constituting the composition is 0, and when the difference is 0, an image that matches the composition can be taken.
  • it is difficult to make the difference so it is necessary to make the difference as small as possible (reduce the cost) in order to take an image close to the set composition. Therefore, it is necessary to adjust so that the difference between the line segment constituting the composition and the shape in the nearest semantic map is minimized.
  • the cost path which is the cost of the temporary movement route, is calculated by the following equation 2.
  • Equations 1 and 2 are as follows.
  • step S505 it is determined whether or not the calculated cost is equal to or less than a predetermined threshold value. Since it is desirable that the cost is low, if the cost is less than or equal to the threshold value, the process proceeds to step S506 (Yes in step S505), and it is determined that the temporary movement route is the optimum local movement route.
  • step S507 No in step S505
  • the process proceeds to step S507 (No in step S505), and it is determined that the temporary movement route is not the optimum local movement route because the cost is large.
  • the moving body 100 determines all the routes for performing imaging. Then, the information processing device 400 transmits the information of the determined movement route to the moving body 100.
  • the UAV control unit 101 of the mobile body 100 that has received the movement route information controls the operation of the mobile body 100 according to the movement route information, and the gimbal control unit 105 further controls the operation of the gimbal 500, whereby the moving body 100 and the imaging device It is possible to shoot a specified composition by autonomous shooting by 200. Further, by displaying the created movement route on the display unit 305 of the terminal device 300 and presenting it to the user, the user can grasp what kind of movement route the moving body 100 moves and takes a picture. ..
  • the drone as the moving body 100 is not limited to the one provided with the rotary wing as described in the embodiment, and may be a so-called fixed wing type.
  • the mobile body 100 of the present technology is not limited to a drone, and may be an automobile, a ship, a robot, or the like that automatically moves without being controlled by a person.
  • the posture of the moving body 100 and the posture of the image pickup device 200 are equal.
  • the image may be taken with the composition set by adjusting the inclination of the moving body 100.
  • the moving body 100 and the imaging device 200 are configured as separate devices, but the moving body 100 and the imaging device 200 may be configured as an integrated device.
  • any device such as a digital camera, a smartphone, a mobile phone, a portable game machine, a laptop computer, a tablet terminal, etc., which has an image pickup function and can be mounted on the mobile body 100, is used. May be good.
  • the image pickup apparatus 200 may include an input unit 304, a display unit 305, and the like. Further, the image pickup device 200 may be used alone as the image pickup device 200 when it is not connected to the moving body 100.
  • the three-dimensional map data used for creating the semantic map may be acquired from an external server or cloud, or data that is open to the public on the Internet may be used.
  • the semantic map may be created not by the drone but by a car, a robot, or a ship equipped with the sensor unit 106, or by walking of a user who possesses the sensor device.
  • the information processing device 400 may be provided on the mobile body 100 instead of the terminal device 300.
  • composition setting if there is a text input or voice input such as "I want to shoot with a focus on humans”, analyze it and set the composition (for example, the Hinomaru composition centered on people) or You may be able to make suggestions.
  • the information of the subject obtained from the semantic map and the shooting conditions such as exposure may be adjusted according to the composition. For example, the exposure of the subject that can be seen to be empty is changed.
  • one composition is set and the movement route for shooting with that composition is determined, but as shown in FIG. 18, it differs for each local movement route (for each waypoint) and for each arbitrary position. You may be able to set the composition.
  • the composition shown in FIG. 18 is merely an example, and is not limited to that composition.
  • the composition setting unit 403 may refer to the captured moving image or still image, extract the composition from the reference moving image / still image, and automatically set the same composition as the moving image or still image.
  • the present technology can also have the following configurations.
  • a map creation unit that creates a map of the moving range, which is the range in which a moving object equipped with an image pickup device moves and shoots.
  • a shape extraction unit that extracts shapes existing in the map
  • a composition setting unit that sets the composition of the image to be captured by the image pickup device
  • An information processing device including a route determining unit that determines a moving route in the moving range of the moving body based on the shape and the composition.
  • the route determining unit determines a global movement route which is a movement route passing through all of a plurality of waypoints set in the movement range.
  • the information processing apparatus determines a local movement route, which is a movement route between the waypoints, based on the composition and the cost calculated for the movement route.
  • the route determination unit sets a plurality of temporary movement routes between the plurality of waypoints, calculates the cost for each of the plurality of temporary movement routes, and uses the low cost temporary movement route as the local movement route.
  • the information processing apparatus according to (4).
  • (6) The information processing apparatus according to (4), wherein the cost is based on the difference between the shape extracted in the map by the shape extraction unit and the line segment constituting the composition.
  • composition data similar to the shape extracted in the map by the shape extraction unit is presented to the user, and the composition data determined by the input of the user is set as the composition.
  • Processing equipment (13) The information processing device according to any one of (1) to (12), wherein the composition setting unit determines the composition based on the shape extracted in the map.
  • the composition can be set for each waypoint.
  • the shape extraction unit extracts the shape existing in the map by Hough transform.
  • the shapes existing in the map are extracted and Set the composition of the image to be taken by the image pickup device, An information processing method for determining a movement path in the movement range of the moving body based on the shape and the composition.
  • (17) Create a map of the moving range, which is the range in which the moving object equipped with the image pickup device shoots while moving.
  • the shapes existing in the map are extracted and Set the composition of the image to be taken by the image pickup device,
  • An information processing program that causes a computer to execute an information processing method for determining a movement path in the movement range of the moving body based on the shape and the composition.

Abstract

撮像装置を備える移動体が移動しながら撮影する範囲である移動範囲のマップを作成するマップ作成部と、マップ内に存在する形状を抽出する形状抽出部と、撮像装置で撮影する画像の構図を設定する構図設定部と、形状と構図に基づいて移動体の移動範囲における移動経路を決定する経路決定部とを備える情報処理装置である。

Description

情報処理装置、情報処理方法、情報処理プログラム
 本技術は、情報処理装置、情報処理方法、情報処理プログラムに関する。
 従来からカメラによる撮影の技術においては、ユーザが撮影しようとするシーンや被写体などに合わせて最適な構図を提示する技術が提案されている(特許文献1)。
 また近年、ドローンなどの自律移動体が普及し、その自律移動体にカメラを搭載して撮影を行う方法も普及しつつある。
特開2011-135527号公報
 特許文献1に記載の技術はカメラの位置が固定された通常の撮影におけるものであり、自律移動する自律移動体に搭載されたカメラでの撮影における構図の最適化は未解決の課題である。
 本技術はこのような点に鑑みなされたものであり、移動体が自律移動しながら所望の構図で撮影するための移動経路を決定することができる情報処理装置、情報処理方法、情報処理プログラムを提供することを目的とする。
 上述した課題を解決するために、第1の技術は、撮像装置を備える移動体が移動しながら撮影する範囲である移動範囲のマップを作成するマップ作成部と、マップ内に存在する形状を抽出する形状抽出部と、撮像装置で撮影する画像の構図を設定する構図設定部と、形状と構図に基づいて移動体の移動範囲における移動経路を決定する経路決定部とを備える情報処理装置である。
 また、第2の技術は、撮像装置を備える移動体が移動しながら撮影する範囲である移動範囲のマップを作成し、マップ内に存在する形状を抽出し、撮像装置で撮影する画像の構図を設定し、形状と構図に基づいて移動体の移動範囲における移動経路を決定する情報処理方法である。
 また、第3の技術は、撮像装置を備える移動体が移動しながら撮影する範囲である移動範囲のマップを作成し、マップ内に存在する形状を抽出し、撮像装置で撮影する画像の構図を設定し、形状と構図に基づいて移動体の移動範囲における移動経路を決定する情報処理方法をコンピュータに実行させる情報処理プログラムである。
撮影システム10の構成を示す全体図である。 移動体100の構成を示す外観図である。 移動体100の構成を示すブロック図である。 撮像装置200の構成を示すブロック図である。 端末装置300の構成を示すブロック図である。 情報処理装置400の構成を示すブロック図である。 移動経路決定の全体フローを示すフローチャートである。 セマンティックマップの例を示す図である。 セマンティックマップからの形状抽出の説明図である。 セマンティックマップ作成処理を示すフローチャートである。 マップ作成範囲の設定の説明図である。 移動経路決定処理を示すフローチャートである。 ウェイポイント設定の説明図である。 局所的移動経路決定処理を示すフローチャートである。 移動経路についてのコスト算出処理を示すフローチャートである。 コスト算出の説明図であり、図16Aはセマンティックマップの例であり、図16Bは構図の例である。 コスト算出の説明図であり、セマンティックマップと構図を重ね合わせた状態を示す図である。 ウェイポイント間ごとに構図を設定する変形例の説明図である。
 以下、本技術の実施の形態について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<1.実施の形態>
[1-1.撮影システム10の構成]
[1-2.移動体100の構成]
[1-3.撮像装置200の構成]
[1-4.端末装置300および情報処理装置400の構成]
[1-5.情報処理装置400による処理]
[1-5-1.全体処理]
[1-5-2.セマンティックマップ作成処理]
[1-5-3.移動経路決定処理]
<2.変形例>
<1.実施の形態>
[1-1.撮影システム10の構成]
 まず図1を参照して撮影システム10の構成について説明する。撮影システム10は、移動体100、撮像装置200、情報処理装置400としての機能を有する端末装置300とから構成されている。
 本実施の形態において移動体100はドローンと称される電動小型飛行体(無人航空機)である。撮像装置200はジンバル500を介して移動体100に搭載され、移動体100の自律移動中に予め設定された構図で自律撮影を行って静止画/動画を取得するものである。
 端末装置300は地上において撮影システム10を利用するユーザが使用するスマートフォンなどのコンピュータであり、端末装置300において動作する情報処理装置400が撮影における構図の設定や移動体100の移動経路の作成などを行うものである。
 移動体100と撮像装置200は有線または無線接続により通信可能となっている。また、端末装置300と移動体100および撮像装置200は無線接続により通信可能となっている。
[1-2.移動体100の構成]
 図2および図3を参照して移動体100の構成について説明する。図2Aは移動体100の外観平面図であり、図2Bは移動体100の外観正面図である。中心部としての例えば円筒状または角筒状の胴体部1と、胴体部1の上部に固定された支持軸2a~2fとから機体が構成される。一例として、胴体部1が6角筒状とされ、胴体部1の中心から6本の支持軸2a~2fが等角間隔で放射状に延びるようになされている。胴体部1および支持軸2a~2fは、軽量で強度の高い材料から構成されている。
 さらに、胴体部1および支持軸2a~2fからなる機体は、その重心が支持軸2a~2fの中心を通る鉛直線上にくるように、各構成部品の形状、配置等が設計される。さらに、この鉛直線上に重心がくるように、胴体部1内に回路ユニット5およびバッテリ6が設けられている。
 図2の例では、回転翼およびモータの数が6個とされている。しかしながら、4個の回転翼およびモータを有する構成、或いは8個以上の回転翼およびモータを有する構成でもよい。
 支持軸2a~2fの先端部には、回転翼の駆動源としてのモータ3a~3fがそれぞれ取り付けられている。モータ3a~3fの回転軸に回転翼4a~4fが取り付けられている。各モータを制御するためのUAV制御部101などを含む回路ユニット5が支持軸2a~2fが交わる中心部に取り付けられている。
 モータ3aおよび回転翼4aと、モータ3dおよび回転翼4dとが対を構成する。同様に、(モータ3b,回転翼4b)と(モータ3e,回転翼4e)とが対を構成し、(モータ3c,回転翼4c)と(モータ3f,回転翼4f)とが対を構成する。
 胴体部1内に底面に動力源としてのバッテリ6が配置されている。バッテリ6は、例えばリチウムイオン二次電池と充放電を制御するバッテリ制御回路とを有する。バッテリ6は、胴体部1の内部に着脱自在に取り付けられている。バッテリ6の重心と機体の重心とを一致させることによって、重心の安定性が増加する。
 一般的にドローンと称される電動小型飛行体は、モータの出力を制御して所望の航行を可能としている。例えば、空中に静止しているホバーリングの状態では、機体に搭載されたジャイロセンサを用いて傾きを検知し、機体が下がった側のモータ出力を増加させ、上がった側のモータ出力を低下させることによって、機体を水平に保つようにしている。さらに、前進の際には、進行方向のモータ出力を低下、逆方向のモータ出力を増加させることによって、前傾姿勢を取らせ、進行方向への推進力を発生させるようにしている。このような電動小型飛行体の姿勢制御および推進制御において、上述したようなバッテリ6の設置位置は、機体の安定性と制御の容易性とのバランスをとることができる。
 図3は、移動体100の構成を示すブロック図である。移動体100は、UAV(Unmanned aerial vehicle)制御部101、通信部102、自己位置推定部103、3次元測距部104、ジンバル制御部105、センサ部106、バッテリ6、モータ3a~3f、を備えて構成されている。なお、上述の移動体100の外観構成で説明した支持軸、回転翼などは省略する。UAV制御部101、通信部102、自己位置推定部103、3次元測距部104、ジンバル制御部105、センサ部106は図2の移動体100の外観図に示される回路ユニット5に含まれているものとする。
 UAV制御部101はCPU(Central Processing Unit)、RAM(Random Access Memory)およびROM(Read Only Memory)などから構成されている。ROMには、CPUにより読み込まれ動作されるプログラムなどが記憶されている。RAMは、CPUのワークメモリとして用いられる。CPUは、ROMに記憶されたプログラムに従い様々な処理を実行してコマンドの発行を行うことによって、移動体100全体および各部を制御する。また、UAV制御部101は、モータ3a~3fの出力を制御することにより移動体100の飛行を制御するものである。
 通信部102は、端末装置300および撮像装置200とデータの送受信を行なうための各種通信用端子または通信モジュールである。通信は、端末装置300とは無線LAN(Local Area Network)やWAN(Wide Area Network)、WiFi(Wireless Fidelity)、4G(第4世代移動通信システム)、5G(第4世代移動通信システム)、Bluetooth(登録商標)、ZigBee(登録商標)などの無線通信で行われる。また、撮像装置200との通信は無線通信のほか、USB(Universal Serial Bus)通信などの有線通信でもよい。移動体100は端末装置300の情報処理装置400が作成した移動経路情報を通信部で受信してその移動経路に従って自律移動して撮影を行う。
 自己位置推定部103は、センサ部106で取得した各種センサ情報に基づいて移動体100の現在位置を推定する処理を行うものである。
 3次元測距部104は、センサ部106で取得した各種センサ情報に基づいて3次元の測距処理を行うものである。
 ジンバル制御部105は、移動体100に撮像装置200を回転自在に装着させるためのジンバル500の動作を制御する処理部である。ジンバル制御部105でジンバル500の軸の回転を制御することにより撮像装置200の向きを自在に調整することができる。これにより、設定された構図に合わせて撮像装置200の向きを調整して撮影を行うことができる。
 センサ部106は、ステレオカメラ、LiDAR(Laser Imaging Detection and Ranging)などの距離を測定することができるセンサである。ステレオカメラは、距離センサの一種で、人間が物を見るときの三角測量の原理を応用した左右2台のカメラによるステレオ方式カメラである。ステレオカメラで撮影した画像データを用いて視差データを生成し、カメラ(レンズ)と対象表面までの距離を測定することができる。LiDARはパルス状に発光するレーザー照射に対する散乱光を測定し、遠距離にある対象までの距離やその対象の性質を分析するものである。センサ部106が取得したセンサ情報を移動体100の自己位置推定部103と3次元測距部104に供給される。
 またセンサ部106はGPS(Global Positioning System)モジュール、IMU(Inertial Measurement Unit)モジュールを含んでいてもよい。GPSモジュールは、移動体100の現在位置(緯度経度情報)を取得してUAV制御部101、自己位置推定部103などに供給するものである。IMUモジュールは、慣性計測装置であり、2軸または3軸方向に対する加速度センサ、角度速度センサ、ジャイロセンサなどによって、3次元の角速度と加速度を求めることにより、移動体100の姿勢、傾き、旋回時の角速度やY軸方向周りの角速度など検出してUAV制御部101などに供給する。
 さらにセンサ部106は高度計、方位計などを含んでいてもよい。高度計は、移動体100が位置する高度を計測して高度データをUAV制御部101に供給するものであり、気圧高度計、電波高度計などがある。方位計は磁石の作用を用いて移動体100の進行方角を検出してUAV制御部101などに供給するものである。
 本実施の形態においては、移動体100の下部にジンバル500を介して撮像装置200が搭載されている。ジンバル500とは、例えば2軸または3軸の軸で支持する物体(本実施の形態では撮像装置200)を回転させる回転台の一種である。
[1-3.撮像装置200の構成]
 撮像装置200は、図2Bに示すように移動体100の胴体部1の底面にジンバル500を介して吊り下げられるように搭載されている。撮像装置200はジンバル500の駆動により360度水平方向から垂直方向への全方向のいずれの方向にもレンズを向けて撮像することが可能となっている。これにより、設定した構図での撮影が可能となっている。なお、ジンバル500の動作制御はジンバル制御部105により行われる。
 図4のブロック図を参照して撮像装置200の構成について説明する。撮像装置200は、制御部201、光学撮像系202、レンズ駆動ドライバ203、撮像素子204、画像信号処理部205、画像メモリ206、記憶部207、通信部208を備えて構成されている。
 光学撮像系202は、被写体からの光を撮像素子204に集光するための撮像レンズ、撮像レンズを移動させてフォーカス合わせやズーミングを行うための駆動機構、シャッタ機構、アイリス機構などから構成されている。これらは撮像装置200の制御部201、レンズ駆動ドライバ203からの制御信号に基づいて駆動される。光学撮像系202を介して得られた被写体の光画像は、撮像装置200が備える撮像素子204上に結像される。
 レンズ駆動ドライバ203は、例えばマイコンなどにより構成され、制御部201の制御に従い撮像レンズを光軸方向に沿って所定量移動させることにより、目標とする被写体に合焦するようにオートフォーカスを行う。また、制御部201からの制御に従い、光学撮像系202の駆動機構、シャッタ機構、アイリス機構などの動作を制御する。これにより、露光時間(シャッタースピード)の調整、絞り値(F値)などの調整がなされる。
 撮像素子204は、被写体からの入射光を光電変換して電荷量に変換して、画素信号を出力する。そして、撮像素子204は画素信号を画像信号処理部205に出力する。撮像素子204としては、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)などが用いられる。
 画像信号処理部205は撮像素子204から出力された撮像信号に対して、CDS(Correlated Double Sampling)処理によりS/N(Signal/Noise)比を良好に保つためのサンプルホールド、AGC(Auto Gain Control)処理、A/D(Analog/Digital)変換などを行ない、画像信号を作成する。
 画像メモリ206は、揮発性メモリ、例えば、DRAM(Dynamic Random Access Memory)で構成されるバッファメモリである。画像メモリ206は画像信号処理部205によって所定の処理が施された画像データを一時的に蓄えておくものである。
 記憶部207は、例えば、ハードディスク、USBフラッシュメモリ、SDメモリカードなどの大容量記憶媒体である。撮像された画像は例えばJPEG(Joint Photographic Experts Group)などの規格に基づいて圧縮された状態または非圧縮の状態で保存される。また、保存された画像に関する情報、撮像位置を示す撮像位置情報、撮像日時を示す撮像時刻情報などの付加情報を含むEXIF(Exchangeable Image File Format)データもその画像に対応付けられて保存される。
 通信部208は、移動体100および端末装置300とデータの送受信を行なうための各種通信用端子または通信モジュールである。通信は、USB通信などの有線通信や、無線LAN、WAN、WiFi、4G、5G、Bluetooth(登録商標)、ZigBee(登録商標)などの無線通信のどちらであってもよい。
[1-4.端末装置300および情報処理装置400の構成]
 端末装置300はスマートフォンなどコンピュータであり、情報処理装置400としての機能を備える。なお、端末装置300はスマートフォン以外にもパーソナルコンピュータ、タブレット端末、サーバ装置など情報処理装置400としての機能を備える事が可能である装置であればどのようなものでもよい。
 図5を参照して端末装置300の構成について説明する。端末装置300は制御部301、記憶部302、通信部303、入力部304、表示部305、情報処理装置400を備えて構成されている。
 制御部301は、CPU、RAMおよびROMなどから構成されている。CPUは、ROMに記憶されたプログラムに従い様々な処理を実行してコマンドの発行を行うことによって端末装置300の全体および各部の制御を行う。
 記憶部302は、例えば、ハードディスク、フラッシュメモリなどの大容量記憶媒体である。記憶部302には端末装置300で使用する各種アプリケーションやデータなどが格納されている。
 通信部303は、移動体100および撮像装置200とデータや各種情報の送受信を行なうための通信モジュールである。通信は、離れた移動体100および撮像装置200と通信することができる無線LAN、WAN、WiFi、4G、5G、Bluetooth(登録商標)、ZigBee(登録商標)などの無線通信であればどのような方法でもよい。
 入力部304は、ユーザが構図設定のための入力、ウェイポイント設定のための入力など各種入力および指示の入力などを行うためのものである。入力部304に対してユーザから入力がなされると、その入力に応じた制御信号が生成されて制御部301に供給される。そして、制御部301はその制御信号に対応した各種処理を行う。入力部304は物理ボタンの他、タッチパネル、モニタと一体に構成されたタッチスクリーン、音声認識による音声入力などでもよい。
 表示部305は、画像/映像、GUI(Graphical User Interface)などを表示するディスプレイなどの表示デバイスである。本実施の形態において表示部305にはセマンティックマップ作成範囲設定用UI、ウェイポイント入力用UI、移動経路提示用UIなどが表示される。なお、端末装置300は表示部305以外の出力手段として音声を出力するスピーカなどを備えていてもよい。
 次に情報処理装置400の構成について説明する。情報処理装置400は移動体100と撮像装置200により指定の構図で自律移動および自律撮影を行うことができるように構図を設定し、移動経路を決定する処理を行うものである。図6に示すように情報処理装置400はマップ作成部401、形状抽出部402、構図設定部403、ウェイポイント設定部404、経路決定部405を備えて構成されている。
 マップ作成部401はセマンティックマップを作成するものである。セマンティック(semantic)とは、「意味の、語義の、意味論の、意味的な」という訳されるものであり、セマンティックマップとはマップ中に存在するオブジェクトを識別したり特定したりする意味としての情報と、意味を有するオブジェクトとオブジェクトの境界線の情報を含むマップである。
 マップ作成部401は2次元の地図データ上に設定される範囲についてセマンティックマップを作成する。このセマンティックマップが作成される範囲は撮像装置200を備える移動体100が移動しながら撮影する範囲であり、特許請求の範囲の「移動範囲」に相当するものである。
 形状抽出部402はセマンティックマップから特定の形状(直線、曲線など)を抽出する処理を行うものである。形状抽出部402は例えばHough変換により形状の抽出を行う。抽出した形状を示す形状情報は経路決定部405に供給される。Hough変換は、角度を持った直線、円など予め定めたテンプレートである形状を画像から抽出する手法である。
 構図設定部403は、撮像装置200で撮影する画像の構図を設定する処理を行うものである。構図の第1の設定方法としては、予め複数の構図データを保持しておき、それを端末装置300の表示部305に表示してユーザに提示し、ユーザから選択された構図を撮影用の構図として設定する、という方法がある。構図設定部403に予め保持させておく構図としては、例えば従来から写真撮影に広く用いられている日の丸構図、2分割構図、3分割構図、対角構図、シンメトリー構図、放射線構図、三角構図など様々なものがある。
 また第2の方法として、既存の構図ではなくユーザの描画入力により構図を設定する方法がある。例えば、端末装置300の表示部305に描画用UIを表示させ、描画ツールによりユーザが構図を示す線を描き、その線で表される図形を構図とする。
 さらに第3の方法としては、経路決定部405がユーザに撮影に最適な構図を提案する、という方法である。これは形状抽出部402が抽出した形状の情報を利用して、抽出された形状と予め保持している複数の構図データを比較して類似度が高い構図をユーザに提示して提案し、ユーザが決定したものを構図として設定するという方法である。
 ウェイポイント設定部404は、移動体100の移動経路を構成するウェイポイントを設定するものである。ウェイポイントとは、移動体100がどのように移動するかを示す移動経路を決定するための移動体100の通過地点である。ウェイポイントは移動経路を決定するためのものであるため複数設定され、複数でさえあればその数は特定の数に限定されるものではない。例えば端末装置300の表示部305に2次元地図データを表示し、その地図上にユーザから指定された地点をウェイポイントとして設定する。ウェイポイントはセマンティックマップ上に設定してもよいし、セマンティックマップ作成範囲を示す2次元の地図データ上に設定してもよい。さらに、セマンティックマップを2次元の鳥瞰図に変換したマップ上にウェイポイントを指定できるようにしてもよい。
 経路決定部405は、セマンティックマップ作成範囲内において移動体100が設定された構図で撮像装置200による撮影を行うために移動する経路を決定するものである。移動経路にはセマンティックマップ作成範囲内において設定された全てのウェイポイントを通過する一つの大域的移動経路と、各ウェイポイント間の移動経路である局所的移動経路がある。
 端末装置300と情報処理装置400は以上のようにして構成されている。なお、情報処理装置400はプログラムの実行により実現され、そのプログラムは予め端末装置300内にインストールされていてもよいし、ダウンロード、記憶媒体などで配布されて、ユーザが自らインストールするようにしてもよい。さらに、情報処理装置400は、プログラムによって実現されるのみでなく、その機能を有するハードウェアによる専用の装置、回路などを組み合わせて実現されてもよい。
[1-5.情報処理装置400による処理]
[1-5-1.全体処理]
 次に情報処理装置400における全体処理について説明する。図7は情報処理装置400による全体フローを示すフローチャートである。まずステップS101でマップ作成部401によりセマンティックマップを作成する。セマンティックマップは例えば元画像が図8Aに示すものである場合、図8Bに示すようなものとして作成される。図8Bのセマンティックマップはグレースケールで表したものであり、図中において明度で分類された領域ごとに示した値はその領域のグレースケールの階調の範囲を示すものである。図8Bのセマンティックマップには例えば、道路、木、空などマップ中における意味の情報も含まれている。セマンティックマップ作成の詳細は図10のフローチャートを参照して後述する。作成されたセマンティックマップは形状抽出部402に供給される。
 次にステップS102で形状抽出部402がセマンティックマップ中から所定の形状(直線、曲線など)を抽出する。形状は例えばHough変換により図9に示すように抽出される。抽出された形状の情報は経路決定部405に供給される。
 次にステップS103で構図設定部403により撮影のための構図を設定する。構図設定部403により設定された構図の情報は経路決定部405に供給される。
 次にステップS104でウェイポイント設定部404により移動経路決定のためのウェイポイントを設定する。
 次にステップS105で経路決定部405により移動経路を決定する。移動経路決定の詳細については図12のフローチャートを参照して後述する。なお、ステップS101のセマンティックマップ作成およびステップS102の形状抽出より先にステップS103の構図設定およびステップS104のウェイポイント設定を行っていてもよく、順序に関わらずステップS105の経路決定までにステップS101乃至ステップS104が完了していればよい。
 このようにして決定された移動経路の情報は移動体100のUAV制御部101に供給され、移動体100のUAV制御部101が移動経路に移動体100を自律移動させるよう制御を行い、撮像装置200が移動経路上において設定された構図で撮影を行う。
[1-5-2.セマンティックマップ作成処理]
 まず図10のフローチャートを参照して図7のステップS101におけるセマンティックマップ作成処理について説明する。
 まず、ステップS201でセマンティックマップを作成する範囲を決定する。このセマンティックマップ作成範囲は2次元の地図データ上においてユーザにより指定された範囲に基づいて設定される。
 例えば図11Aに示すように端末装置300の表示部305に表示された、緯度経度情報と対応づけられた2次元の地図データ上においてユーザはセマンティックマップを作成する範囲を矩形状の枠で囲うことにより指定する。そしてこの指定された範囲の情報がマップ作成部401に供給され、指定された範囲がセマンティックマップを作成する範囲として設定される。セマンティックマップ作成範囲を設定した後は、セマンティックマップ作成範囲においてユーザがウェイポイントを指定しやすくするために、図11Bに示すようにセマンティックマップ作成範囲を表示部305全域に表示するとよい。
 なお、セマンティックマップ作成範囲は矩形状に限られず、三角形状、円形状の他、特定の形状ではない自由形状でもよい。なお、マップ作成範囲は3次元の地図データに対してユーザが範囲を指定して決定されてもよい。
 次にステップS202で、セマンティックマップ作成範囲においてセンサ部106によるセマンティックマップ作成用の観測を行うために移動体100を移動させて到達させる目的地を設定する。この目的地は移動体100による観測が済んだ観測済エリアと、まだ観測が行われていない未観測エリアの境界上に設定する。
 次にステップS203で移動体100の動作を制御して目的地まで移動させる。次にステップS204で、移動体100が備えているセンサ部106(ステレオカメラ等)を用いた公知の3次元形状測定技術で3点の特徴点を特定し、その3点の間にメッシュを張る。このように本実施の形態ではセマンティックマップをメッシュを用いて作成する。なお、セマンティックマップはメッシュだけでなく例えばボクセルを用いて作成することも可能である。
 次にステップS204でセマンティックセグメンテーションを行う。セマンティックセグメンテーションとは画像を構成する画素の1つ1つに対して、その画素が示す意味をラベル付けする処理である。
 次にステップS205で、セマンティックセグメンテーションの結果に基づいて、3次元形状に対して2次元のセマンティックのラベルを投影して3次元のセマンティックマップ上において、ステップS203で張ったメッシュがどのようなカテゴリ(道路、建築物など)に属するものであるかを投票により決定する。
 次にステップS207でセマンティックマップ作成範囲内に未観測エリアがあるか否かが判定される。未観測エリアがある場合処理はステップS202に進み、ステップS202で新たな目的地が設定される。そして未観測エリアがなくなるまでステップS202乃至ステップS207を繰り返すことによりセマンティックマップ作成範囲全体のセマンティックマップを作成することができる。
 以上のようにしてマップ作成部401によるセマンティックマップの作成が行われる。
[1-5-3.移動経路決定処理]
 次に図12のフローチャートを参照して図7のフローチャートのステップS103における移動経路決定処理について説明する。移動経路は大域的移動経路と局所的移動経路とから構成されている。大域的移動経路とは全てのウェイポイントを通過するように設定される移動体100の移動の始点から終点までの経路であり、局所的移動経路はウェイポイント間ごとに設定される移動経路である。局所的移動経路が連なって大域的移動経路が構成されることとなる。
 まずステップS301でユーザからの入力に基づいてウェイポイント設定部404がセマンティックマップ作成範囲内にウェイポイントを設定する。ウェイポイントとは移動体100の移動経路上の特定の位置を示すものである。例えば、ユーザの入力に基づいて設定されたウェイポイントは図13Aに示すようにセマンティックマップ作成範囲を示す2次元の地図データ上に上の点で表すようにするとよい。これによりユーザはウェイポイントがどこであるかを容易に確認することができる。図13Aに示すようにウェイポイントは、セマンティックマップ作成範囲上に複数設定される。なお、ウェイポイントはセマンティックマップ上に指定できるようにしてもよいし、セマンティックマップを2次元の鳥瞰図に変換したマップ上に指定できるようにしてもよい。
 次にステップS302で経路決定部405は基準とするウェイポイントから最寄りのウェイポイントまでの移動経路を設定する。最初の基準となるウェイポイントは移動体100が移動を開始する位置であり、ユーザからの入力に基づいて設定される。なお、所定のアルゴリズム等により経路決定部405が最初の基準となるウェイポイントを設定してもよい。
 次にステップS303で全てのウェイポイントを通過するように移動経路を設定したか否かが判定される。全てのウェイポイントを通過していない場合処理はステップS304に進む(ステップS303のNo)。
 次にステップS304で、ステップS302で移動経路が設定された最寄りのウェイポイントを次に設定する経路の基準となるウェイポイントに設定する。そして処理はステップS302に進み、ステップS304で新たに設定された基準ウェイポイントから最寄りのウェイポイントまでの移動経路を設定する。
 このステップS302乃至ステップS304を繰り返すことにより図13Bに示すように全てのウェイポイントを経由する大域的移動経路を設定することができる。このように大域的移動経路は全てのウェイポイントを通過するように作成される。
 次に図14のフローチャートを参照して2つのウェイポイント間における移動経路である局所的移動経路を設定する処理について説明する。
 まずステップS401で全てのウェイポイントの中から局所的移動経路を決定する2つのウェイポイントを決定する。局所的移動経路を決定する2つのウェイポイントはユーザからの入力や大域的移動経路の始点から終点に対応するウェイポイントの順に自動的に決定するようにしてもよい。
 次にステップS402で、経路決定部405は2つのウェイポイント間における複数の仮の移動経路を設定する。仮の移動経路の決め方としては、効率的なもの、最適な経路を求めるためのもの等、ロボット、自律車両、自律移動体などの移動についての公知の技術、公知のアルゴリズムがあり、それらを適宜使い分けることができる。それら公知の技術には大きく分けて、考えられる経路を全て評価するもの、ランダムに経路を複数仮に置いてその中から選択するものの2つがある。
 次にステップS403で、仮の移動経路上における移動体100の位置および姿勢を入力する。以下の処理ではこの入力した移動体100の位置および姿勢におけるコストが算出される。
 次にステップS404で、複数の仮移動経路のうちの1つの仮移動経路について、その仮移動経路に沿ってコストを算出する。コストとは、仮移動経路自体の距離を正規化して得られる値と、障害物からの距離を正規化した値と、構図との類似度を正規化した値とをそれぞれ重み付けして足し合わせた結果算出されるものである。コストが最も低い移動経路が移動体100にとって最適な移動経路であり、最終的に大域的移動経路に含まれるものとなる。コスト算出の詳細は後述する。
 次にステップS405で全ての仮移動経路についてコストを算出したか否かが判定される。全ての仮移動経路についてコストを算出していない場合、処理はステップS403に進み(ステップS405のNo)、全ての仮移動経路についてコストを算出するまで全てステップS403乃至ステップS405が繰り返される。
 そして全ての仮移動経路についてコストを算出した場合処理はステップS406に進み、全ての仮移動経路の中から最もコストが低い仮移動経路を経路計画に含める移動経路として決定する。コストが最も低く、最適な移動経路とは経路自体の距離が短く、セマンティックマップと構図の類似度が高い移動経路である。
 次に図15のフローチャートを参照して仮移動経路についてのコストの算出を説明する。図15の処理は本番撮影の前に、仮移動経路ごとのコストを算出して複数の仮移動経路の中から最もコストが低い仮移動経路を最適な局所的移動経路として決定するものである。
 まずステップS501で、複数の仮移動経路の中の一の仮移動経路について、設定された構図で撮影を行うとする場合の移動体100の位置と姿勢を求める。
 次にステップS502で、一の仮移動経路について、設定された構図で撮影を行うとする場合の撮像装置200の位置と姿勢を求める。なお、撮像装置200の位置および姿勢はジンバル500の位置および姿勢として求めるようにしてもよい。
 次にステップS503で、ステップS501で算出した移動体100の位置および姿勢と、ステップS502で算出した撮像装置200の位置および姿勢に基づいてセマンティックマップから撮像装置200で撮影できると想定される撮影画像を取得する。この処理は、3次元のセマンティックマップにおいて移動体100に設けられた撮像装置200で撮影したときに3次元空間上ではどのような画像が撮れるかを2次元上に表し、セマンティックマップを撮像装置200で撮影できるであろうと想定できる撮影画像に変換する処理、すなわち、セマンティックマップを撮影画像としての2次元画像に投影する処理ともいえる。
 仮移動経路の途中で、移動体100が特定の位置と姿勢であり、かつ、移動体100に設けられた撮像装置200が特定の位置と姿勢である場合に撮影されることが予想される2次元画像を3次元のマップと照らし合わせて算出する。このステップS503の処理は実際に撮像装置200で撮影をするわけではなく、情報処理装置400内の処理でセマンティックマップ、移動体100の位置情報および姿勢情報、撮像装置200の位置情報および姿勢情報に基づいて算出するものである。
 次にステップS504での仮移動経路のコストを算出する。設定された構図を構成する線分とセマンティックマップにおいて抽出された形状(直線、曲線など)との差である、セマンティックマップと構図に関するコストであるcostcomp kは下記の式1で算出される。
 例えば図16Aに示すようにセマンティックマップにおいて抽出された形状と、図16Bに示すように設定された構図を構成する線分とでは、図17に示す差がコストとして算出される。図17はセマンティックマップと構図を重ね合わせた状態である。セマンティックマップにおいて抽出された形状と構図を構成する線分の差は0であることが理想であり差が0の場合、構図と合致した画像の撮影を行うことができる。しかし実際は差を0にするのは難しいため、設定された構図に近い画像を撮影するためには差をなるべく小さくする(コストを小さくする)必要がある。よって、構図を構成する線分とそれに最寄りのセマンティックマップ中の形状との差が最も小さくなるように調整する必要がある。
[式1]
Figure JPOXMLDOC01-appb-I000001
 そして、仮移動経路のコストであるcostpathは下記の式2で算出される。
[式2]
Figure JPOXMLDOC01-appb-I000002
式1、式2において用いられている変数は下記のとおりである。
構図に含まれている線分の数:n
Hough変換で検出されたl番目の直線:a+b+c=0
i番目の線分上の任意点:(x,y
ある経路上の位置および姿勢kから得られるコスト:costcomp k
経路上の位置および姿勢の数:p
目的地(ウェイポイント)との距離から得られるコスト:costdist
障害物との距離から得られるコスト:costobs
重み:w1, w2, w3
 次にステップS505で、算出したコストが所定の閾値以下であるか否かが判定される。コストは低いことが望ましいため、コストが閾値以下である場合処理はステップS506に進み(ステップS505のYes)、仮移動経路が最適な局所的移動経路であると決定する。
 なお、コストが閾値以下である仮移動経路が複数ある場合、その中から最もコストが低い仮移動経路を最適な局所的移動経路として決定するとよい。
 一方、コストが閾値以下ではない場合、処理はステップS507に進み(ステップS505のNo)、コストが大きいとして仮移動経路は最適な局所的移動経路ではないと決定する。
 このようにして各ウェイポイント間の局所的移動経路の全てを決定することができる。大域的移動経路は複数の局所的移動経路から構成されているため、全ての局所的移動経路が決定すると移動体100が撮影を行うための経路の全てを決定したことになる。そして情報処理装置400は決定した移動経路の情報を移動体100に送信する。移動経路情報を受信した移動体100のUAV制御部101は移動経路情報に従い移動体100の動作を制御し、さらにジンバル制御部105がジンバル500の動作を制御することにより、移動体100と撮像装置200による自律撮影で指定の構図の撮影を行うことができる。また、作成された移動経路を端末装置300の表示部305に表示してユーザに提示することによりユーザはどのような移動経路で移動体100が移動して撮影を行うかを把握することができる。
 本技術によれば、ドローンなどの移動体100を使った撮影において従来は必要であった高度な技術を有するオペレータは必要ない。
<2.変形例>
 以上、本技術の実施の形態について具体的に説明したが、本技術は上述の実施の形態に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 移動体100としてのドローンは実施の形態で説明したような回転翼を備えるものに限られず、いわゆる固定翼型であってもよい。
 本技術の移動体100はドローンに限られず、人の操縦を受けずに自動で移動する自動車、船舶、ロボットなどであってもよい。
 撮像装置200がジンバル500としての機能を有するカメラマウントを介して移動体100に搭載されておらず、一定の状態に固定されて搭載されている場合、移動体100の姿勢と撮像装置200の姿勢は等しくなる。この場合、移動体100の傾きを調整することにより設定された構図で撮影を行うようにしてもよい。
 実施の形態では、移動体100と撮像装置200とを別個の装置として構成したが、移動体100と撮像装置200とを一体の装置として構成してもよい。
 撮像装置200としては、デジタルカメラ、スマートフォン、携帯電話機、携帯ゲーム機、ノートパソコン、タブレット端末など、撮像機能を備え、移動体100に搭載させることができる機器であればどのようなものを用いてもよい。
 撮像装置200は入力部304、表示部305などを備えていてもよい。また、撮像装置200は移動体100と接続しない場合には単体で撮像装置200として使用できるものであってもよい。
 また、セマンティックマップ作成に用いる3次元のマップデータは、外部のサーバやクラウドから取得してもよいし、インターネット上において一般に公開されているデータを用いてもよい。
 また、セマンティックマップの作成はドローンではなくセンサ部106を搭載した自動車、ロボット、船舶で行い、またはセンサ装置を所持するユーザの歩行で行ってもよい。
 情報処理装置400は端末装置300ではなく移動体100に設けられていてもよい。
 また、構図の設定において、例えば「人間を中心に撮影したい」というようなテキスト入力または音声入力があった場合、それを解析して構図(例えば、人を中心にした日の丸構図など)を設定または提案できるようにしてもよい。
 また、セマンティックマップで得られる被写体の情報と、構図に合わせて露光などの撮影条件の調整を行うようにしてもよい。例えば、被写体のうち、空であることがわかる範囲は露光を変えるなど、である。
 実施の形態では構図を一つ設定してその構図で撮影を行うための移動経路を決定したが、図18に示すように局所的移動経路ごと(ウェイポイント間ごと)や任意の位置ごとに異なる構図を設定できるようにしてもよい。なお図18に示す構図はあくまで一例であり、その構図に限定されるものではない。
 構図設定部403は、撮影済みの動画や静止画を参考にし、その参考動画/静止画から構図を抽出し、自動的にその動画や静止画と同様の構図を設定するようにしてもよい。
 本技術は以下のような構成も取ることができる。
(1)
 撮像装置を備える移動体が移動しながら撮影する範囲である移動範囲のマップを作成するマップ作成部と、
 前記マップ内に存在する形状を抽出する形状抽出部と、
 前記撮像装置で撮影する画像の構図を設定する構図設定部と、
 前記形状と前記構図に基づいて前記移動体の前記移動範囲における移動経路を決定する経路決定部と
を備える情報処理装置。
(2)
 前記マップはセマンティックマップである(1)に記載の情報処理装置。
(3)
 前記経路決定部は、前記移動範囲において設定された複数のウェイポイントの全てを通過する移動経路である大域的移動経路を決定する(1)または(2)に記載の情報処理装置。
(4)
 前記経路決定部は、前記構図と前記移動経路について算出するコストに基づいて前記ウェイポイント間の移動経路である局所的移動経路を決定する(3)に記載の情報処理装置。
(5)
 前記経路決定部は、複数の前記ウェイポイント間それぞれにおいて複数の仮移動経路を設定し、複数の前記仮移動経路それぞれについて前記コストを算出し、コストが低い前記仮移動経路を前記局所的移動経路として決定する(4)に記載の情報処理装置。
(6)
 前記コストは、前記形状抽出部により前記マップにおいて抽出された形状と、前記構図を構成する線分との差に基づくものである(4)に記載の情報処理装置。
(7)
 前記コストは、前記ウェイポイント間の一端側の前記ウェイポイントから他端側の前記ウェイポイントまでの距離に基づくものである(4)に記載の情報処理装置。
(8)
 前記コストは、前記ウェイポイント間の一端側の前記ウェイポイントから他端側の前記ウェイポイントまでにおける障害物との距離に基づくものである(4)に記載の情報処理装置。
(9)
 前記構図設定部は、ユーザからの入力に基づいて前記構図を設定する(1)から(8)のいずれかに記載の情報処理装置。
(10)
 予め定めた複数の構図データから前記ユーザの入力により選択されたものを前記構図として設定する
請求項9に記載の情報処理装置。
(11)
 前記ユーザからの描画により入力された図形を前記構図として設定する
請求項9に記載の情報処理装置。
(12)
 前記形状抽出部により前記マップにおいて抽出された形状と類似している構図データを前記ユーザに提示し、前記ユーザの入力により決定された前記構図データを前記構図として設定する
請求項9に記載の情報処理装置。
(13)
 前記構図設定部は、前記マップにおいて抽出された前記形状に基づいて前記構図を決定する(1)から(12)のいずれかに記載の情報処理装置。
(14)
 前記構図は前記ウェイポイント間ごとに設定可能である(3)に記載の情報処理装置。
(15)
 前記形状抽出部は、Hough変換により前記マップ内に存在する前記形状を抽出する(1)から(13)のいずれかに記載の情報処理装置。
(16)
 撮像装置を備える移動体が移動しながら撮影する範囲である移動範囲のマップを作成し、
 前記マップ内に存在する形状を抽出し、
 前記撮像装置で撮影する画像の構図を設定し、
 前記形状と前記構図に基づいて前記移動体の前記移動範囲における移動経路を決定する情報処理方法。
(17)
 撮像装置を備える移動体が移動しながら撮影する範囲である移動範囲のマップを作成し、
 前記マップ内に存在する形状を抽出し、
 前記撮像装置で撮影する画像の構図を設定し、
 前記形状と前記構図に基づいて前記移動体の前記移動範囲における移動経路を決定する情報処理方法をコンピュータに実行させる情報処理プログラム。
100・・・移動体
200・・・撮像装置
400・・・情報処理装置
401・・・マップ作成部
402・・・形状抽出部
403・・・構図設定部
405・・・経路決定部

Claims (17)

  1.  撮像装置を備える移動体が移動しながら撮影する範囲である移動範囲のマップを作成するマップ作成部と、
     前記マップ内に存在する形状を抽出する形状抽出部と、
     前記撮像装置で撮影する画像の構図を設定する構図設定部と、
     前記形状と前記構図に基づいて前記移動体の前記移動範囲における移動経路を決定する経路決定部と
    を備える
    情報処理装置。
  2.  前記マップはセマンティックマップである
    請求項1に記載の情報処理装置。
  3.  前記経路決定部は、前記移動範囲において設定された複数のウェイポイントの全てを通過する移動経路である大域的移動経路を決定する
    請求項1に記載の情報処理装置。
  4.  前記経路決定部は、前記構図と前記移動経路について算出するコストに基づいて前記ウェイポイント間の移動経路である局所的移動経路を決定する
    請求項3に記載の情報処理装置。
  5.  前記経路決定部は、複数の前記ウェイポイント間それぞれにおいて複数の仮移動経路を設定し、複数の前記仮移動経路それぞれについて前記コストを算出し、コストが低い前記仮移動経路を前記局所的移動経路として決定する
    請求項4に記載の情報処理装置。
  6.  前記コストは、前記形状抽出部により前記マップにおいて抽出された形状と、前記構図を構成する線分との差に基づくものである
    請求項4に記載の情報処理装置。
  7.  前記コストは、前記ウェイポイント間の一端側の前記ウェイポイントから他端側の前記ウェイポイントまでの距離に基づくものである
    請求項4に記載の情報処理装置。
  8.  前記コストは、前記ウェイポイント間の一端側の前記ウェイポイントから他端側の前記ウェイポイントまでにおける障害物との距離に基づくものである
    請求項4に記載の情報処理装置。
  9.  前記構図設定部は、ユーザからの入力に基づいて前記構図を設定する
    請求項1に記載の情報処理装置。
  10.  予め定めた複数の構図データから前記ユーザの入力により選択されたものを前記構図として設定する
    請求項9に記載の情報処理装置。
  11.  前記ユーザからの描画により入力された図形を前記構図として設定する
    請求項9に記載の情報処理装置。
  12.  前記形状抽出部により前記マップにおいて抽出された形状と類似している構図データを前記ユーザに提示し、前記ユーザの入力により決定された前記構図データを前記構図として設定する
    請求項9に記載の情報処理装置。
  13.  前記構図設定部は、前記マップにおいて抽出された前記形状に基づいて前記構図を決定する
    請求項1に記載の情報処理装置。
  14.  前記構図は前記ウェイポイント間ごとに設定可能である
    請求項3に記載の情報処理装置。
  15.  前記形状抽出部は、Hough変換により前記マップ内に存在する前記形状を抽出する
    請求項1に記載の情報処理装置。
  16.  撮像装置を備える移動体が移動しながら撮影する範囲である移動範囲のマップを作成し、
     前記マップ内に存在する形状を抽出し、
     前記撮像装置で撮影する画像の構図を設定し、
     前記形状と前記構図に基づいて前記移動体の前記移動範囲における移動経路を決定する
    情報処理方法。
  17.  撮像装置を備える移動体が移動しながら撮影する範囲である移動範囲のマップを作成し、
     前記マップ内に存在する形状を抽出し、
     前記撮像装置で撮影する画像の構図を設定し、
     前記形状と前記構図に基づいて前記移動体の前記移動範囲における移動経路を決定する情報処理方法をコンピュータに実行させる情報処理プログラム。
PCT/JP2020/021124 2019-07-19 2020-05-28 情報処理装置、情報処理方法、情報処理プログラム WO2021014752A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080050674.6A CN114096929A (zh) 2019-07-19 2020-05-28 信息处理设备、信息处理方法和信息处理程序
US17/626,495 US20220283584A1 (en) 2019-07-19 2020-05-28 Information processing device, information processing method, and information processing program
JP2021534568A JPWO2021014752A1 (ja) 2019-07-19 2020-05-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-133622 2019-07-19
JP2019133622 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021014752A1 true WO2021014752A1 (ja) 2021-01-28

Family

ID=74194143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021124 WO2021014752A1 (ja) 2019-07-19 2020-05-28 情報処理装置、情報処理方法、情報処理プログラム

Country Status (4)

Country Link
US (1) US20220283584A1 (ja)
JP (1) JPWO2021014752A1 (ja)
CN (1) CN114096929A (ja)
WO (1) WO2021014752A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11804038B1 (en) * 2021-06-22 2023-10-31 Amazon Technologies, Inc. Aerial array surveying of surfaces and subsurfaces

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212465A (ja) * 2015-04-28 2016-12-15 株式会社ニコン 電子機器および撮像システム
US20170293297A1 (en) * 2016-04-07 2017-10-12 Samsung Electronics Co., Ltd. Electronic apparatus and operating method thereof
JP2017211909A (ja) * 2016-05-27 2017-11-30 株式会社東芝 情報処理装置及び移動体装置
JP2018078371A (ja) * 2016-11-07 2018-05-17 オリンパス株式会社 移動撮影装置、移動撮影指示装置、撮影機器及び移動撮影システム
JP2018201119A (ja) * 2017-05-26 2018-12-20 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd モバイルプラットフォーム、飛行体、支持装置、携帯端末、撮像補助方法、プログラム、及び記録媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10599161B2 (en) * 2017-08-08 2020-03-24 Skydio, Inc. Image space motion planning of an autonomous vehicle
US20220157179A1 (en) * 2019-03-06 2022-05-19 Sony Group Corporation Action control device and action control method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212465A (ja) * 2015-04-28 2016-12-15 株式会社ニコン 電子機器および撮像システム
US20170293297A1 (en) * 2016-04-07 2017-10-12 Samsung Electronics Co., Ltd. Electronic apparatus and operating method thereof
JP2017211909A (ja) * 2016-05-27 2017-11-30 株式会社東芝 情報処理装置及び移動体装置
JP2018078371A (ja) * 2016-11-07 2018-05-17 オリンパス株式会社 移動撮影装置、移動撮影指示装置、撮影機器及び移動撮影システム
JP2018201119A (ja) * 2017-05-26 2018-12-20 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd モバイルプラットフォーム、飛行体、支持装置、携帯端末、撮像補助方法、プログラム、及び記録媒体

Also Published As

Publication number Publication date
JPWO2021014752A1 (ja) 2021-01-28
US20220283584A1 (en) 2022-09-08
CN114096929A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US11649052B2 (en) System and method for providing autonomous photography and videography
US20210065400A1 (en) Selective processing of sensor data
US10645300B2 (en) Methods and apparatus for image processing
US10447912B2 (en) Systems, methods, and devices for setting camera parameters
US10599149B2 (en) Salient feature based vehicle positioning
EP3397554B1 (en) System and method for utilization of multiple-camera network to capture static and/or motion scenes
US11288824B2 (en) Processing images to obtain environmental information
EP3420428B1 (en) Systems and methods for visual target tracking
CN111194433A (zh) 用于构图和捕捉图像的方法和系统
WO2021014752A1 (ja) 情報処理装置、情報処理方法、情報処理プログラム
JP2020036163A (ja) 情報処理装置、撮影制御方法、プログラム及び記録媒体
JP2018201119A (ja) モバイルプラットフォーム、飛行体、支持装置、携帯端末、撮像補助方法、プログラム、及び記録媒体
JP6481228B1 (ja) 決定装置、制御装置、撮像システム、飛行体、決定方法、及びプログラム
WO2020225979A1 (ja) 情報処理装置、情報処理方法、プログラム、及び情報処理システム
WO2021035746A1 (zh) 图像处理方法、装置和可移动平台
WO2021059684A1 (ja) 情報処理システム、情報処理方法、情報処理プログラム
JP2021064951A (ja) システム、方法、装置、および非一時的コンピュータ読取可能媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843291

Country of ref document: EP

Kind code of ref document: A1