WO2021027855A1 - 资源分配的方法及装置 - Google Patents

资源分配的方法及装置 Download PDF

Info

Publication number
WO2021027855A1
WO2021027855A1 PCT/CN2020/108733 CN2020108733W WO2021027855A1 WO 2021027855 A1 WO2021027855 A1 WO 2021027855A1 CN 2020108733 W CN2020108733 W CN 2020108733W WO 2021027855 A1 WO2021027855 A1 WO 2021027855A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
resource
symbols
time slot
symbol
Prior art date
Application number
PCT/CN2020/108733
Other languages
English (en)
French (fr)
Inventor
张莉莉
黎超
张兴炜
温容慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021027855A1 publication Critical patent/WO2021027855A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication technology, and in particular to methods and devices for resource allocation.
  • V2X vehicle to everything
  • BWP bandwidth part
  • V2X vehicle to everything
  • X objects that interact with vehicles
  • X mainly includes vehicles, people, and traffic. Roadside infrastructure and network.
  • V2X or device-to-device (D2D) communication transmission transmission resources need to be determined. Because the V2X system has periodic services, that is to say, V2X communication needs to be configured with transmission resources that can be used by SL all the time.
  • SL transmission resources available for SL
  • base station scheduling that is, before each terminal communicates with SL, the base station will indicate transmission resources to the terminal, and the other is based on The terminal device senses that the base station configures a resource pool for the terminal in advance, and subsequently, when the terminal performs SL communication, it selects the required transmission resources from the resource pool by itself.
  • next-generation wireless communication environment may be more complicated. For example, with a larger number of terminal devices, higher communication quality is required. Therefore, there is an urgent need for a resource allocation method adapted to a 5G communication system or similar communication system in order to indicate the resources used for the SL, so as to meet the communication requirements of the terminal.
  • the embodiments of the present application provide a method and device for resource allocation, which can indicate resources used for SL in NR-V2X more flexibly.
  • the present application provides a method for resource allocation.
  • the method can be executed by a device capable of realizing the function of an access network device.
  • the device can be an access network device, or can be used in conjunction with an access network device.
  • the device may support the access network device to realize the function of the access network device.
  • the device may be a chip system in the access network device.
  • the method may include: the access network device determines resource indication information, and the resource indication The information is used to indicate the transmission resources of the side link SL.
  • the transmission resources of the SL include the first resource and/or the second resource.
  • the first resource includes one or more first time slots, and the second resource includes one or more second resources. Two time slots; where the number of symbols used for SL transmission in the first time slot is different from the number of symbols used for SL transmission in the second time slot; the access network device sends resource indication information to the terminal device.
  • the resource configured for the terminal for SL transmission may be the entire time slot, or may be one or some symbols in the time slot, so that the resource configuration granularity is more refined.
  • the technical solution of this application can more flexibly configure the resources used for SL transmission in the terminal equipment, and improve the transmission of SL resources by the terminal equipment. Efficiency, applied to more complex communication environments.
  • all symbols in each first time slot are used for SL transmission, and some symbols in each second time slot are used for SL transmission.
  • the resource indication information includes a first SL resource bitmap, and the number of bits in the first SL resource bitmap is a time slot available for SL transmission P times the number, P is a positive integer.
  • the value of the bit in the first SL resource bitmap is used to indicate that the corresponding time slot is all symbols for SL transmission or Part of the symbols are used for SL transmission; if P is an integer greater than 1, the value of the adjacent P bits in the first SL resource bitmap is used to indicate the starting position and the number of symbols used for SL transmission in the corresponding time slot
  • adjacent P bits include the xth to x+(P-1)th bits in the first SL resource bitmap, and x+(P-1) can be divisible by P.
  • the base station sends resource indication information including the 6 bits of 001010 to the terminal, which is used to indicate that the first, second, fourth, and sixth time slots are part of the symbols used for SL transmission. All symbols in the 3rd and 5th time slots are used for SL transmission.
  • the specific symbols refer to which symbols can be pre-configured in the terminal.
  • the terminal pre-configures the first to fourth symbols in the time slot for SL transmission. Then, the terminal only needs to receive 6 bits of information through the base station to learn which symbols are specifically used for SL transmission. The terminal does not need to obtain specific indications about the starting position of some symbols and the number of symbols from the base station, which saves the overhead of sending signaling from the base station to the terminal and can improve the resource utilization of the network.
  • the resource indication information further includes a second SL resource bitmap, and the number of bits in the second SL resource bitmap is available for SL transmission.
  • Q times the number of slots, and Q is a positive integer; the value of the bit in the first SL resource bitmap is used to indicate whether all symbols in the corresponding time slot are used for SL transmission; if Q is 1, the value in the second SL resource bitmap The bit value is used to indicate whether part of the symbols of the corresponding time slot is used for SL transmission; if Q is an integer greater than 1, the value of the adjacent Q bits in the second SL resource bitmap is used to indicate that the corresponding time slot is used
  • the starting position of the symbols transmitted by SL and the number of symbols, where the adjacent Q bits include the yth to y+(Q-1) bits in the second SL resource bitmap, and y+(Q-1) can be Q is divisible.
  • the resource indication information further includes a second SL resource bitmap, and the number of bits in the second SL resource bitmap is configured to be used for SL transmission R times the number of time slots, R is a positive integer; the value of the bit in the first SL resource bitmap is used to indicate whether the corresponding time slot is configured for SL transmission; if R is 1, the second SL resource bitmap The value of the bits in is used to indicate whether part of the symbols in the time slot configured for SL transmission is used for SL transmission; if R is an integer greater than 1, the value of adjacent R bits in the second SL resource bitmap is used to indicate The starting position of the symbols used for SL transmission in the corresponding time slot and the number of symbols, wherein the adjacent R bits include the zth to z+(R-1)th bits in the second SL resource bitmap, z+ (R-1) can be divisible by R.
  • the terminal can obtain specific indications about the starting position of some symbols and the number of symbols from the base station.
  • the base station can be flexible and real-time based on the current network communication conditions, such as communication quality, and different communication requirements of different terminals. Indicate the starting position and the number of symbols of the same or different partial symbols for different terminals, so that it can better meet the communication requirements of the terminal, meet the service differentiation requirements of the terminal, and improve the communication quality of the terminal.
  • the symbols used for SL transmission include uplink UL symbols or, the symbols used for SL transmission include UL symbols and flexible symbols.
  • sending resource indication information to a terminal device includes: sending first signaling to the terminal device, where the first signaling includes the resource indication information.
  • the first signaling includes radio resource control RRC signaling, media access control MAC signaling, and physical layer signaling.
  • this application provides a method for resource allocation, which can be executed by a device capable of realizing the functions of a terminal device.
  • the device can be a terminal device, or can be a device matched with the terminal device, and the device can support
  • the terminal device implements the function of the terminal device.
  • the device may be a chip system in the terminal device.
  • the method may include: the terminal device obtains resource indication information, where the resource indication information is used to indicate the transmission resources of the side link SL.
  • the transmission resource includes a first resource and/or a second resource, the first resource includes one or more first time slots, and the second resource includes one or more second time slots; wherein, the first time slot is used for SL
  • the number of transmitted symbols is different from the number of symbols used for SL transmission in the second time slot; the terminal device performs SL transmission based on the foregoing resource indication information.
  • the terminal device acquiring resource indication information includes: the terminal device receives the resource indication information from the access network device.
  • the terminal device acquiring resource indication information includes: the resource indication information is preconfigured resource indication information.
  • all symbols in each first time slot are used for SL transmission, and some symbols in each second time slot are used for SL transmission.
  • the resource indication information includes a first SL resource bitmap, and the number of bits in the first SL resource bitmap is a time slot available for SL transmission P times the number, P is a positive integer.
  • the value of the bit in the first SL resource bitmap is used to indicate that the corresponding time slot is all symbols for SL transmission or Part of the symbols are used for SL transmission; if P is an integer greater than 1, the value of the adjacent P bits in the first SL resource bitmap is used to indicate the starting position and the number of symbols used for SL transmission in the corresponding time slot
  • adjacent P bits include the xth to x+(P-1)th bits in the first SL resource bitmap, and x+(P-1) can be divisible by P.
  • the resource indication information further includes a second SL resource bitmap, and the number of bits in the second SL resource bitmap is available for SL transmission.
  • Q times the number of slots, and Q is a positive integer; the value of the bit in the first SL resource bitmap is used to indicate whether all symbols in the corresponding time slot are used for SL transmission; if Q is 1, the value in the second SL resource bitmap The bit value is used to indicate whether part of the symbols of the corresponding time slot is used for SL transmission; if Q is an integer greater than 1, the value of the adjacent Q bits in the second SL resource bitmap is used to indicate that the corresponding time slot is used
  • the starting position of the symbols transmitted by SL and the number of symbols, where the adjacent Q bits include the yth to y+(Q-1) bits in the second SL resource bitmap, and y+(Q-1) can be Q is divisible.
  • the resource indication information further includes a second SL resource bitmap, and the number of bits in the second SL resource bitmap is configured to be used for SL transmission R times the number of time slots, R is a positive integer; the value of the bit in the first SL resource bitmap is used to indicate whether the corresponding time slot is configured for SL transmission; if R is 1, the second SL resource bitmap The value of the bits in is used to indicate whether part of the symbols in the time slot configured for SL transmission is used for SL transmission; if R is an integer greater than 1, the value of adjacent R bits in the second SL resource bitmap is used to indicate The starting position of the symbols used for SL transmission in the corresponding time slot and the number of symbols, wherein the adjacent R bits include the zth to z+(R-1)th bits in the second SL resource bitmap, z+ (R-1) can be divisible by R.
  • the symbols used for SL transmission include uplink UL symbols or, the symbols used for SL transmission include UL symbols and flexible symbols.
  • sending resource indication information to the terminal device includes: sending first signaling to the terminal device, where the first signaling includes the resource indication information.
  • the first signaling includes radio resource control RRC signaling, media access control MAC signaling, and physical layer signaling.
  • this application provides a method for resource allocation.
  • the method can be executed by a device capable of realizing the function of an access network device.
  • the device can be an access network device, or can be a device that matches the access network device.
  • the device can support the access network device to realize the function of the access network device.
  • the device can be a chip system in the access network device.
  • the method includes: an access network device determines resource indication information, the resource indication information includes first information, and the first information is used to indicate a time slot and/or symbol configured for SL transmission; and the access network device sends to the terminal device Resource instructions.
  • the first information is used to indicate the time slot and/or symbol configured for SL transmission, including: the first information is used to indicate that the configuration is used The position of the time slot and/or symbol for SL transmission, and/or the first information is used to indicate the length of the time slot and/or symbol configured for SL transmission.
  • the access network device can directly configure the first signaling to directly indicate the position and/or length of the time slot and/or symbol that the terminal can use for SL transmission.
  • the base station can, according to the current network communication status, such as communication quality, Different communication requirements of different terminals, flexible and real-time indication of the same or different positions and/or lengths of time slots and/or symbols used for SL transmission for different terminals, so that it can better meet the communication needs of the terminal and meet the service of the terminal Differentiated needs to improve the communication quality of the terminal.
  • the time slots and/or symbols configured for SL transmission are a subset of the time slots that can be used for SL transmission.
  • Slots include uplink symbols, or, slots available for SL transmission include flexible symbols, or slots available for SL transmission include uplink symbols and first symbols, or slots available for SL transmission include flexible symbols and first symbols.
  • the symbol, or, the time slot that can be used for SL transmission includes a flexible symbol, an uplink symbol, and a first symbol; wherein the position and length of the flexible symbol in the time slot that can be used for SL transmission can be pre-configured.
  • the first information is used to indicate the time slot and/or symbol configured for SL transmission, including: the first information includes a mode or index to indicate Corresponds to the configuration status of the time slot and/or symbol.
  • the first information includes a mode or index to indicate the configuration status of the corresponding time slot and/or symbol
  • the mode or index includes at least one of the following: The number of time slots used for DL transmission, the number of symbols used for DL transmission, the number of symbols used for UL transmission, the number of time slots used for UL transmission, or the number of J2' time slots used for SL transmission At least one item in; wherein the J2' time slot used for SL transmission is located at the end of the UL symbol; or, the number of time slots used for DL transmission, the number of symbols used for DL transmission, the number of symbols used for UL transmission Number, the number of time slots used for UL transmission, or at least one of the number of J2' time slots used for SL transmission; where the J2' time slot used for SL transmission is located at the end of the UL time slot; or, use The number of time slots used for DL transmission, the number of symbols used for DL transmission,
  • the first information is used to indicate a time slot and/or symbol configured for SL transmission, including: the first information includes at least one of the following : The number of time slots used for DL transmission, the number of symbols used for DL transmission, the number of symbols used for UL transmission, the number of time slots used for UL transmission, or the number of J2' time slots used for SL transmission At least one of the number; where the J2' time slot used for SL transmission is located at the end of the UL symbol; or, the number of time slots used for DL transmission, the number of symbols used for DL transmission, and the symbols used for UL transmission The number, the number of time slots used for UL transmission, or at least one of the number of J2' time slots used for SL transmission; wherein, the J2' time slot used for SL transmission is located at the end of the UL time slot; or, The number of time slots used for DL transmission, the number of symbols used for DL transmission, the number of symbols used for DL transmission, the number of symbols used for DL transmission,
  • the letters used to indicate the number of time slots or symbols are all positive integers greater than or equal to 1.
  • the present application provides a method for resource allocation, which can be executed by a device capable of realizing the functions of a terminal device.
  • the device can be a terminal device, or can be a device matched with the terminal device, and the device can support
  • the terminal device implements the function of the terminal device.
  • the device may be a chip system in the terminal device.
  • the method may include: the terminal device obtains resource indication information, where the resource indication information includes the first information.
  • the first information is used to indicate the time slot and/or symbol configured for SL transmission, and the terminal device performs SL transmission based on the foregoing resource indication information.
  • the first information is used to indicate the time slot and/or symbol configured for SL transmission, including: the first information is used to indicate that the configuration is used The position of the time slot and/or symbol for SL transmission, and/or the first information is used to indicate the length of the time slot and/or symbol configured for SL transmission.
  • the time slots and/or symbols configured for SL transmission are a subset of the time slots that can be used for SL transmission.
  • Slots include uplink symbols, or, slots available for SL transmission include flexible symbols, or slots available for SL transmission include uplink symbols and first symbols, or slots available for SL transmission include flexible symbols and first symbols.
  • the symbol, or, the time slot that can be used for SL transmission includes a flexible symbol, an uplink symbol, and a first symbol; wherein the position and length of the flexible symbol in the time slot that can be used for SL transmission can be pre-configured.
  • this application provides a device for resource allocation.
  • the device may be the device used to implement the function of the access network device in the above aspect. For example, it may be the access network device or the chip of the access network device.
  • the determining module is used to determine resource indication information.
  • the resource indication information is used to indicate the transmission resource of the side link SL.
  • the transmission resource of the SL includes a first resource and/or a second resource, and the first resource includes one or more first resources.
  • Slot, the second resource includes one or more second slots; wherein, the number of symbols used for SL transmission in the first slot is different from the number of symbols used for SL transmission in the second slot.
  • the sending module is used to send resource indication information to the terminal device.
  • all symbols in each first time slot are used for SL transmission, and some symbols in each second time slot are used for SL transmission.
  • the resource indication information includes a first SL resource bitmap, and the number of bits in the first SL resource bitmap is a time slot available for SL transmission P times the number, P is a positive integer.
  • the value of the bit in the first SL resource bitmap is used to indicate that the corresponding time slot is all symbols for SL transmission or Part of the symbols are used for SL transmission; if P is an integer greater than 1, the value of the adjacent P bits in the first SL resource bitmap is used to indicate the starting position and the number of symbols used for SL transmission in the corresponding time slot
  • adjacent P bits include the xth to x+(P-1)th bits in the first SL resource bitmap, and x+(P-1) can be divisible by P.
  • the resource indication information further includes a second SL resource bitmap, and the number of bits in the second SL resource bitmap is available for SL transmission.
  • Q times the number of slots, and Q is a positive integer; the value of the bit in the first SL resource bitmap is used to indicate whether all symbols in the corresponding time slot are used for SL transmission; if Q is 1, the value in the second SL resource bitmap The bit value is used to indicate whether part of the symbols of the corresponding time slot is used for SL transmission; if Q is an integer greater than 1, the value of the adjacent Q bits in the second SL resource bitmap is used to indicate that the corresponding time slot is used
  • the starting position of the symbols transmitted by SL and the number of symbols, where the adjacent Q bits include the yth to y+(Q-1) bits in the second SL resource bitmap, and y+(Q-1) can be Q is divisible.
  • the resource indication information further includes a second SL resource bitmap, and the number of bits in the second SL resource bitmap is configured to be used for SL transmission R times the number of time slots, R is a positive integer; the value of the bit in the first SL resource bitmap is used to indicate whether the corresponding time slot is configured for SL transmission; if R is 1, the second SL resource bitmap The value of the bits in is used to indicate whether part of the symbols in the time slot configured for SL transmission is used for SL transmission; if R is an integer greater than 1, the value of adjacent R bits in the second SL resource bitmap is used to indicate The starting position of the symbols used for SL transmission in the corresponding time slot and the number of symbols, wherein the adjacent R bits include the zth to z+(R-1)th bits in the second SL resource bitmap, z+ (R-1) can be divisible by R.
  • the symbols used for SL transmission include uplink UL symbols or, the symbols used for SL transmission include UL symbols and flexible symbols.
  • sending resource indication information to the terminal device includes: a sending module sends first signaling to the terminal device, where the first signaling includes the resource indication information.
  • the first signaling includes radio resource control RRC signaling, media access control MAC signaling, and physical layer signaling.
  • the present application provides a device for resource allocation.
  • the device may be the device used to implement terminal functions in the above aspect.
  • it may be a terminal device or a chip of a terminal device.
  • the device includes: an acquisition module and a transmission Module.
  • the acquisition module is used to acquire resource indication information.
  • the resource indication information is used to indicate the transmission resource of the side link SL.
  • the transmission resource of the SL includes a first resource and/or a second resource, and the first resource includes one or more first resources.
  • Time slot, the second resource includes one or more second time slots; wherein, the number of symbols used for SL transmission in the first time slot is different from the number of symbols used for SL transmission in the second time slot; the transmission module is used for Perform SL transmission based on resource indication information.
  • the acquiring module acquiring resource indication information includes: the acquiring module receives resource indication information from an access network device.
  • the acquiring module acquiring resource indication information includes: the acquiring module acquiring preconfigured resource indication information.
  • all symbols in each first time slot are used for SL transmission, and some symbols in each second time slot are used for SL transmission.
  • the resource indication information includes a first SL resource bitmap, and the number of bits in the first SL resource bitmap is a time slot available for SL transmission P times the number, P is a positive integer.
  • the value of the bit in the first SL resource bitmap is used to indicate that the corresponding time slot is all symbols for SL transmission or Part of the symbols are used for SL transmission; if P is an integer greater than 1, the value of the adjacent P bits in the first SL resource bitmap is used to indicate the starting position and the number of symbols used for SL transmission in the corresponding time slot
  • adjacent P bits include the xth to x+(P-1)th bits in the first SL resource bitmap, and x+(P-1) can be divisible by P.
  • the resource indication information further includes a second SL resource bitmap, and the number of bits in the second SL resource bitmap is available for SL transmission.
  • Q times the number of slots, and Q is a positive integer; the value of the bit in the first SL resource bitmap is used to indicate whether all symbols in the corresponding time slot are used for SL transmission; if Q is 1, the value in the second SL resource bitmap The bit value is used to indicate whether part of the symbols of the corresponding time slot is used for SL transmission; if Q is an integer greater than 1, the value of the adjacent Q bits in the second SL resource bitmap is used to indicate that the corresponding time slot is used
  • the starting position of the symbols transmitted by SL and the number of symbols, where the adjacent Q bits include the yth to y+(Q-1) bits in the second SL resource bitmap, and y+(Q-1) can be Q is divisible.
  • the resource indication information further includes a second SL resource bitmap, and the number of bits in the second SL resource bitmap is configured to be used for SL transmission R times the number of time slots, R is a positive integer; the value of the bit in the first SL resource bitmap is used to indicate whether the corresponding time slot is configured for SL transmission; if R is 1, the second SL resource bitmap The value of the bits in is used to indicate whether part of the symbols in the time slot configured for SL transmission is used for SL transmission; if R is an integer greater than 1, the value of adjacent R bits in the second SL resource bitmap is used to indicate The starting position of the symbols used for SL transmission in the corresponding time slot and the number of symbols, wherein the adjacent R bits include the zth to z+(R-1)th bits in the second SL resource bitmap, z+ (R-1) can be divisible by R.
  • the symbols used for SL transmission include uplink UL symbols or, the symbols used for SL transmission include UL symbols and flexible symbols.
  • the acquiring module acquires resource indication information, including: the acquiring module acquires first signaling from an access network device, where the first signaling includes resource indication information .
  • the first signaling includes radio resource control RRC signaling, media access control MAC signaling, and physical layer signaling.
  • the present application provides a device for resource allocation.
  • the device includes a determining module and a sending module.
  • the determining module is used to determine resource indication information, the resource indication information includes first indication information, the first indication information is used to indicate the time slot and/or symbol configured for SL transmission; the sending module is used to send to the terminal device The above-mentioned resource indication information.
  • the first information is used to indicate the time slot and/or symbol configured for SL transmission, including: the first information is used to indicate the configuration is used The position of the time slot and/or symbol for SL transmission, and/or the first information is used to indicate the length of the time slot and/or symbol configured for SL transmission.
  • the time slots and/or symbols configured for SL transmission are a subset of the time slots that can be used for SL transmission, and can be used for SL transmission.
  • Slots include uplink symbols, or, slots available for SL transmission include flexible symbols, or slots available for SL transmission include uplink symbols and first symbols, or slots available for SL transmission include flexible symbols and first symbols.
  • the symbol, or, the time slot that can be used for SL transmission includes a flexible symbol, an uplink symbol, and a first symbol; wherein the position and length of the flexible symbol in the time slot that can be used for SL transmission can be pre-configured.
  • the present application provides a resource allocation device, which includes: an acquisition module and a transmission module.
  • the acquisition module is configured to acquire resource indication information, the resource indication information includes first information, and the first information is used to indicate the time slot and/or symbol configured for SL transmission; the transmission module is configured to be based on the above-mentioned resource indication information Perform SL transmission.
  • the first information is used to indicate the time slot and/or symbol configured for SL transmission, including: the first information is used to indicate the configuration is used The position of the time slot and/or symbol for SL transmission, and/or the first information is used to indicate the length of the time slot and/or symbol configured for SL transmission.
  • the time slots and/or symbols configured for SL transmission are a subset of the time slots that can be used for SL transmission and can be used for SL transmission.
  • Slots include uplink symbols, or, slots available for SL transmission include flexible symbols, or slots available for SL transmission include uplink symbols and first symbols, or slots available for SL transmission include flexible symbols and first symbols.
  • the symbol, or, the time slot that can be used for SL transmission includes a flexible symbol, an uplink symbol, and a first symbol; wherein the position and length of the flexible symbol in the time slot that can be used for SL transmission can be pre-configured.
  • this application provides a resource allocation device, which has the function of implementing the resource allocation method of any one of the foregoing aspects.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • a device for resource allocation including: a processor; the processor is configured to couple with a memory, and after reading instructions in the memory, execute the resource allocation method according to any one of the foregoing aspects according to the instructions.
  • a device for resource allocation including: a processor and a memory; the memory is used to store computer execution instructions, and when the device for resource allocation is running, the processor executes the computer execution instructions stored in the memory , So that the device for resource allocation performs the method for resource allocation in any one of the foregoing aspects.
  • this application provides a resource allocation device, which includes a processor, a memory, a bus, and a communication interface.
  • the memory is used to store one or more programs.
  • the one or more programs include computer-executable instructions, and when the device is running, the processor executes the computer-executable instructions stored in the memory, so that the device executes any aspect and any one of its various optional implementation modes The method of resource allocation.
  • a circuit system in a thirteenth aspect, includes a processing circuit configured to perform the method for resource allocation in any one of the above-mentioned aspects.
  • a chip in a fourteenth aspect, includes a processor, the processor is coupled to a memory, and the memory stores program instructions. When the program instructions stored in the memory are executed by the processor, the resource allocation of any one of the foregoing method.
  • this application provides a computer-readable storage medium with instructions stored in the computer-readable storage medium.
  • the computer executes the instructions, the computer executes any of the above aspects and various optional implementations. Any one of the resource allocation methods.
  • this application provides a computer program product containing instructions, which when the computer program product runs on a computer, causes the computer to execute any of the above-mentioned aspects and various optional implementations thereof 1.
  • the method of resource allocation
  • a resource allocation system includes the terminal device (or terminal chip) and the access network device (or the chip of the access network device) of the foregoing aspect.
  • FIG. 1 is a schematic diagram of a communication network structure applied by a resource allocation method and device provided by an embodiment of this application;
  • FIG. 2 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a 5G NR-TDD radio frame structure provided by an embodiment of this application;
  • FIG. 4 is a schematic diagram 1 of a resource allocation method provided by an embodiment of this application.
  • FIG. 5 is a second schematic diagram of a resource allocation method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram 1 of an SL resource configuration method provided by an embodiment of this application.
  • FIG. 7 is a second schematic diagram of an SL resource configuration method provided by an embodiment of this application.
  • FIG. 8 is a third schematic diagram of an SL resource configuration method provided by an embodiment of this application.
  • FIG. 9 is a fourth schematic diagram of an SL resource configuration method provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram 5 of an SL resource configuration method provided by an embodiment of this application.
  • FIG. 11 is a sixth schematic diagram of an SL resource configuration method provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram 1 of a resource allocation device provided by an embodiment of this application.
  • FIG. 13 is a second schematic structural diagram of a resource allocation device provided by an embodiment of this application.
  • FIG. 14 is a third structural diagram of a resource allocation device provided by an embodiment of this application.
  • 15 is a schematic structural diagram 4 of a resource allocation device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram 5 of a resource allocation device provided by an embodiment of this application.
  • first and second in the description of the application and the drawings are used to distinguish different objects, or to distinguish different processing of the same object, rather than describing a specific order of objects.
  • the technical solutions of the embodiments of the present application can be applied to systems that can communicate through SL between terminals, such as V2X communication systems, device-to-device (D2D) communication systems, car networking communication systems, long term evolution, LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), worldwide interoperability for microwave access (WiMAX) communication system, fifth generation (5th generation, 5G) mobile communication systems, such as NR systems, and future communication systems, such as 6G systems.
  • V2X communication systems device-to-device (D2D) communication systems, car networking communication systems, long term evolution, LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), worldwide interoperability for microwave access (WiMAX) communication system
  • 5G fifth generation
  • 5G fifth generation
  • NR systems such as NR systems
  • future communication systems such as 6G systems.
  • the wireless communication system applicable to the embodiments of the present application is described in detail by taking the communication system shown in FIG. 1 as an example.
  • the communication system includes a first terminal device, a second terminal device and a network device.
  • the aforementioned terminal device such as the first terminal device or the second terminal device, may be connected to the network device through an air interface, so as to receive network services.
  • the above-mentioned network equipment is mainly used to implement wireless physical layer functions, resource scheduling and wireless resource management, wireless access control, and mobility management functions.
  • the above-mentioned first terminal device and the second terminal device may also directly communicate on a side link (Side Link, SL), such as V2X communication.
  • SL Side Link
  • the resource pool used for direct communication on the SL can be the resource pool configured by the network device, such as the resource pool used when the air interface of the first terminal device and the second terminal device and the network device are connected normally, or it can be The resource pools pre-configured in the first terminal device and the second terminal device, for example, the resource pool that the device manufacturer configures in the terminal device in advance according to the protocol provisions before the terminal device leaves the factory.
  • the aforementioned network device may be an access network device, a device located on the network side of the aforementioned V2X communication system and having a wireless transceiver function or a chip that can be installed in the device.
  • the network equipment includes but not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) ), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be 5G, such as new radio (new radio , NR) gNB in the system, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system
  • new radio new
  • the above-mentioned terminal device is a terminal that accesses the above-mentioned V2X communication system and has a wireless transceiver function or a chip that can be installed in the terminal.
  • the terminal device may also be referred to as a user device, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, vehicle-mounted terminals, RSUs with terminal functions, etc.
  • the terminal device of the present application may also be an on-board module, on-board module, on-board component, on-board chip, or on-board unit built into a vehicle as one or more components or units. The vehicle passes through the built-in on-board module, on-board module, On-board components, on-board chips or on-board units can implement the resource allocation method provided in this application.
  • the above network devices are optional. For example, if there is a base station, it is a scenario with network coverage; if there is no base station, it is a scenario without network coverage. In a scenario with network coverage, communication between terminal devices can be performed using resources configured by the network device, and in a scenario without network coverage, communication between terminal devices can be performed using pre-configured resources.
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding, and the communication system may also include other network devices, and/or other terminal devices, which are not shown in FIG. 1.
  • the communication method provided in the embodiment of the present application may be applicable to the communication device 200 shown in FIG. 2.
  • the communication device 200 may be used to implement the functions of the terminal device as shown in FIG. 1, for example, it may be a terminal device, or may be a chip applied to the terminal device or other components with terminal functions.
  • the communication device 200 may also be used to implement the functions of the network device as shown in FIG. 1, and it may be a network device, or a chip applied to the network device or other components with network device functions.
  • the communication device 200 may include at least one processor 201, a memory 202, and a transceiver 203. Among them, there is a signal connection between at least one processor 201, memory 202, and transceiver 203, such as a bus connection.
  • the components of the communication device 200 will be specifically introduced below with reference to FIG. 2:
  • the processor 201 is the control center of the communication device 200, and may be a processor or a collective name for multiple processing elements.
  • the processor 201 is one or more central processing units (CPU), or may be an application specific integrated circuit (ASIC), or may be configured to implement one or more of the embodiments of the present application.
  • An integrated circuit for example: one or more microprocessors (digital signal processor, DSP), or one or more field programmable gate arrays (FPGA).
  • the processor 201 can execute various functions of the communication device 200 by running or executing a software program stored in the memory 202 and calling data stored in the memory 202.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 2.
  • the communication device 200 may also include multiple processors, such as the processor 201 and the processor 204 shown in FIG. 2. Each of these processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more communication devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 202 can be a read-only memory (ROM) or other types of static storage communication devices that can store static information and instructions, a random access memory (RAM), or other types that can store information and instructions.
  • the type of dynamic storage communication equipment can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, Optical disc storage (including compact disc, laser disc, optical disc, digital universal disc, Blu-ray disc, etc.), magnetic disk storage media or other magnetic storage communication devices, or can be used to carry or store desired program codes in the form of instructions or data structures and Any other medium that can be accessed by the computer, but not limited to this.
  • the memory 202 may exist independently, or may be integrated with the processor 201.
  • the memory 202 is used to store a software program for executing the solution of the present application, and the processor 201 controls the execution.
  • the aforementioned memory 202 may store software programs or instructions.
  • the processor 201 can read and execute the software programs or instructions stored in the memory 202, so that the communication device 200 can execute the resource allocation method described in the following method embodiments.
  • the following method embodiments which will not be repeated here.
  • the transceiver 203 is used for communication with other communication devices.
  • the transceiver 203 can also be used to communicate with communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), and so on.
  • the transceiver 203 may include a receiving unit to implement a receiving function, and a sending unit to implement a sending function.
  • the structure of the communication device 200 shown in FIG. 2 does not constitute a limitation on the communication device.
  • the actual communication device may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • Fig. 3 is a schematic diagram of a 5G NR-TDD radio frame structure provided by an embodiment of the application.
  • 5G NR supports a variety of radio frame structures, and the sub-carrier spacing includes 15KHz, 30KHz, 60KHz, 120KHz, 240Khz modes.
  • a TDD radio frame has a length of 10ms and is divided into 10 subframes (not shown in the figure), and the subframe has a length of 1ms.
  • the subcarrier interval is 30KHz
  • a TDD radio frame includes 20 time slots.
  • each subframe contains two time slots, and each time slot is 0.5ms in length.
  • 5 time slots constitute a Pattern period
  • time slot 0 -Time slot 4 constitutes a Pattern 1 (P1) cycle
  • time slot 5 to time slot 9 constitutes a Pattern 2 (P2) cycle, that is, a Pattern cycle has a length of 2.5 ms.
  • 10 time slots (slot 0-slot 9) constitute a set of Pattern (P1+P2) cycles.
  • Each slot consists of 13 symbols.
  • FIG. 3 only shows a TDD frame structure as an example. It can be understood that the resource allocation described in the embodiment of the present application The method is also applicable to other frame structures.
  • a 5G NR-TDD radio frame can be used to transmit uplink signals as well as downlink signals, that is, the 5G NR system can define the TDD uplink and downlink subframe configuration.
  • a 5G NR-TDD uplink and downlink subframe configuration is provided.
  • the time slot with mesh filling and "DL” is used for Time slots for downlink (DL) transmission, mesh-filled symbols indicate symbols used for DL transmission; dotted-filled time slots with "UL” indicate that they are used for uplink (UL) ) Time slot for transmission, dot-filled symbols indicate symbols used for UL transmission; blank time slots with the letter “S” indicate flexible slots (special) used to provide guard intervals or provide data transmission Time slot), blank symbols written with the letter "X” represent flexible symbols (flexible symbols) used to provide guard intervals or provide data transmission, and flexible symbols are symbols in flexible time slots.
  • Figure 3 exemplarily shows the time slot 3, where the last two consecutive symbols in the 13 symbols included in the time slot 3 are flexible symbols, and the remaining symbols are downlink symbols; the first two consecutive symbols in the 13 symbols included in the time slot 4 Two symbols are flexible symbols, and the remaining symbols are uplink symbols; 4 consecutive symbols at the end of the 13 symbols included in slot 7 are flexible symbols, and the remaining symbols are downlink symbols.
  • the 5G NR-TDD uplink and downlink subframe configuration in Figure 3 is only an exemplary configuration, and different types of radio frames and/or different uplink and downlink configurations can also be configured according to application scenarios.
  • Pattern 1 can also be all uplink time slots
  • Pattern 2 is a mixed time slot (including uplink time slots, flexible time slots, and downlink time slots). The embodiments of this application do not specifically limit this.
  • the embodiment of the present application provides a resource allocation method.
  • the method may include S101-S104:
  • the access network device determines resource indication information.
  • the foregoing resource indication information is used to indicate the transmission resources of the SL, and the transmission resources of the SL include the first resource and/or the second resource, that is, the SL transmission resource includes the first resource, or includes the second resource, or includes the first resource And the second resource.
  • the first resource includes one or more first time slots
  • the second resource includes one or more second time slots.
  • the number of symbols used for SL transmission in the first time slot is different from the number of symbols used for SL transmission in the second time slot.
  • all symbols in the first time slot are used for SL transmission, and some symbols in the second time slot are used for SL transmission.
  • all symbols in each first slot are used for SL transmission, and some symbols in each second slot are used for SL transmission.
  • the resource indication information indicates that the SL transmission resource includes the first 4 symbols of time slot 3 shown in FIG. 3, and may also include the first 3 symbols of time slot 7.
  • the above resource indication information includes a first SL resource bitmap (bitmap), and the number of bits in the first SL resource bitmap is P of the number of time slots available for SL transmission Times, P is a positive integer.
  • the time slots that can be used for SL transmission refer to the collection of time slots that can be used for SL transmission.
  • the time slots in this collection can be configured for the terminal for SL communication.
  • the time slot used can be all symbols for terminal use, or part of the symbols for terminal use.
  • the time slots used for SL transmission may be time slots excluding some reserved time slots, synchronization time slots, downlink time slots, and other time slots.
  • the time slots available for SL transmission include only uplink time slots.
  • the time slots available for SL transmission include uplink time slots and flexible time slots.
  • the value of the bit in the first SL resource bitmap is used to indicate that the corresponding time slot is all symbols used for SL transmission or part of the symbols used for SL transmission; in this case, the use of time slots
  • the state can be pre-configured in the terminal or configured to the terminal by the network device through signaling.
  • the network equipment is configured to the terminal through signaling: the network equipment uses radio resource control (radio resource control, RRC) signaling, and medium access control (MAC) signaling. Or at least one item of physical layer signaling is sent to the terminal.
  • RRC radio resource control
  • MAC medium access control
  • the resource bitmap in the embodiment of this application is a bitmap.
  • adjacent P bits include the xth to x+(P-1)th bits in the first SL resource bitmap, where x+(P-1) can be evenly divisible by P.
  • the start position and the number of symbols used for SL transmission in a time slot may be referred to as the use state or configuration state of the time slot, or may also be other names.
  • the start positions of the symbols used for SL transmission in the time slot are different, and/or the number of symbols is different.
  • the start position of the symbol used to transmit SL transmission in the time slot is the first symbol, and the number of symbols is 3.
  • the time slot is used to transmit SL The starting position of the transmitted symbol is the second symbol, and the number of symbols is also 3.
  • the same time slot can be configured with the same use state or different use states.
  • different time slots can be configured with the same or different usage states.
  • P adjacent bits in the first resource bitmap indicate a use state
  • the total number of use states that can be indicated by the P bits is 2 ⁇ P.
  • the bit length of the first SL resource bitmap may be referred to as the period length of the first SL resource bitmap.
  • the period length of the first SL resource bitmap may be a multiple of the first slot length, or the first slot length may be a multiple of the period length of the first SL resource bitmap.
  • the first slot length is the slot length represented by Pattern 1 or Pattern 1+Pattern 2 configured through common RRC signaling in the existing 5G system (the length of P1 plus P2 as shown in Figure 3), excluding transmission The sum of the length of the time slot of the downlink signal and the remaining part of the slot after the reserved slot (not shown in FIG. 3) is removed.
  • the multiple is a positive integer
  • the reserved slot refers to a slot pre-configured by the network device for transmission detection or synchronization of information resources.
  • the first slot length is the slot length indicated by Pattern 1 configured through common RRC signaling in the existing 5G system, excluding the time slot for transmitting the downlink signal and The length of the remaining part of the slot after excluding the reserved slot; when both pattern 1 and pattern 2 are configured in the system, the first slot length is the pattern 1+Pattern configured through common RRC signaling in the existing 5G system
  • the length of the slot indicated by 2 is the sum of the length of the remaining slot after excluding the time slot for transmitting the downlink signal and the reserved slot. Among them, the length sum is the sum of the number of slots.
  • the above period length can be a multiple of the first slot length, usually several first slot lengths to form a periodically applicable SL transmission configuration; or the above period length can be divisible by the first slot length (that is, the first slot length is The multiple of the period length), usually a first slot length includes several configurations of SL transmission that can be applied periodically.
  • the RRC signaling indicated by the slot format used for SL transmission may be signaling indicated by the base station through a system information block (System Message Block, SIB) or any dedicated signaling (dedicated signaling).
  • SIB System Message Block
  • slot 8 slot 9 is UL slot
  • the symbols contained in slot 4 include UL symbol, so slot 4 can also be used for SL transmission. Therefore, in a radio frame shown in FIG. 3, the 6 slots corresponding to S, UL, UL, S, UL, and UL (slot 4, slot 8, slot 9) from left to right can be used for SL transmission. Therefore, the number of bits in the first SL resource bitmap is 6 times P.
  • the use status of the time slot can be pre-configured in the terminal, that is, part of the symbols used for SL transmission can be pre-configured in the terminal, for example, the last 4 symbols in the pre-configured slot are used for SL Transmission, or singular partial symbols are used for SL transmission, for example, the first, third, and fifth symbols are used for SL transmission, and even partial symbols are used for SL transmission.
  • the terminal can also be configured by the network device through signaling. Of course, there can also be other configuration methods, which are not specifically limited in the embodiment of the present application.
  • the first SL resource bitmap when used to indicate the usage status of the above 6 slots for SL transmission, the first SL resource bitmap can be 01 10 00 11 10 00. Taking the first two bits of the 12 bits as an example, the first two bits are used to indicate the usage status of the first time slot in the 6 time slots, that is, the first to the first time slot in the first time slot. Four symbols are configured for SL transmission.
  • the P value can be dynamically adjusted, so that the usage status of different numbers of symbols can be indicated.
  • the overhead of the resource indication information sent by the base station to the terminal is small.
  • the P value is larger, it can indicate more usage status of the time slot, that is, it can indicate the usage status of the time slot in a more refined manner. In this way, there can be more terminal resource configuration schemes, and the resources configured for the terminal It can be more fine-grained to meet the communication requirements of different terminals.
  • adjacent P bits in the first resource bitmap are used to indicate the corresponding time slot usage status in the first SL resource bitmap, where the adjacent P bits are not adjacent Any adjacent P bits.
  • the form of the first resource bitmap is xxx xxx xxx xxx xxx xxx (x only represents the bit position, not the specific value, for example, xxx is also possible Is 001)
  • adjacent P bits include the x-th to x+(P-1)th bits in the first SL resource bitmap, where x+(P-1) can be divisible by P, and x is a variable.
  • slot 8 slot 9 is UL slot that can be used for SL transmission
  • slot 4 includes UL symbol and flexible symbol It can be used for SL transmission.
  • Slot 3 and slot 7 contain flexible symbols and can be used for SL transmission. Therefore, in a radio frame shown in Figure 3, the corresponding S, S, S, UL, UL, S, S, S, UL, UL (slot 3, slot 4, slot 7, slot 8 from left to right) 9.
  • Slot 9 These 10 slots can be used for SL transmission, so the number of bits in the first SL resource bitmap is 10 times P.
  • 00 can be used to represent all the symbols of the corresponding slot for SL transmission; part of the symbols of the slot corresponding to 01, 10, and 11 are used for SL transmission, respectively corresponding to the same or different symbols used for SL transmission. Start position and number of symbols. Then, the usage status of the 10 slots used for SL transmission is represented by the first SL resource bitmap. At this time, the first SL resource bitmap can be 10 01 10 01 00 11 10 11 00 11.
  • the foregoing resource indication information not only includes the first SL resource bitmap, but also includes the second SL resource bitmap.
  • the number of bits in the first SL resource bitmap is P times the number of time slots available for SL transmission, and P is a positive integer.
  • the number of bits in the second SL resource bitmap is Q times the number of time slots available for SL transmission, and Q is a positive integer.
  • the value of the bit in the first SL resource bitmap is used to indicate whether all symbols of the corresponding time slot are used for SL transmission. If Q is 1, the value of the bit in the second SL resource bitmap is used to indicate whether the corresponding time slot is part of the symbol for SL transmission; if Q is an integer greater than 1, the second SL resource bitmap is adjacent to Q The bit value is used to indicate the starting position of the symbol used for SL transmission in the corresponding time slot and the number of symbols, and the adjacent Q bits include the yth to y+th bits in the second SL resource bitmap. Q-1) bits, where y+(Q-1) can be divisible by Q.
  • the Q value can be dynamically adjusted, so that the usage status of different numbers of symbols can be indicated.
  • the Q value when the Q value is small, the overhead of the resource indication information sent by the base station to the terminal is small.
  • the Q value is larger, it can indicate more usage status of the time slot, that is, it can indicate the usage status of the time slot more refinedly. In this way, there can be more terminal resource configuration schemes, and the resources configured for the terminal It can be more fine-grained to meet the communication requirements of different terminals.
  • adjacent Q bits in the second resource bitmap are used to indicate the number of time slots used for SL transmission, where adjacent Q bits are not any adjacent Q Bits.
  • the form of the second resource bitmap is yyy yyy yyy yyyyyyyyyyyyyyyyyyy (y only represents bit occupancy, not a specific value, such as yyy Is 001)
  • adjacent Q bits include the yth to y+(Q-1)th bits in the second SL resource bitmap, where y+(Q-1) can be divisible by Q, and y is a variable.
  • the start position and the number of symbols used for SL transmission in a time slot may be referred to as the use state or configuration state of the time slot, or may also be other names.
  • the start positions of the symbols used for SL transmission in the time slot are different, and/or the number of symbols is different.
  • N N is a positive integer
  • Y logN.
  • bit lengths of the first SL resource bitmap and the second SL resource bitmap are the same or different.
  • the bit length of the first SL resource bitmap can also be referred to as the period length of the first SL resource bitmap
  • bit length of the second SL resource bitmap can also be referred to as the period length of the second SL resource bitmap, which will be explained here. I won't repeat it below.
  • the period length of the first SL resource bitmap and the second SL resource bitmap may be a multiple of the first slot length, or the first slot length may be a multiple of the period length.
  • the first slot length is the slot length represented by Pattern 1 or Pattern 1+Pattern 2 configured through common RRC signaling in the existing 5G system (the length of P1 plus P2 as shown in Figure 3), excluding transmission The sum of the length of the time slot of the downlink signal and the remaining part of the slot after the reserved slot (not shown in FIG. 3) is removed.
  • the multiple is a positive integer
  • the reserved slot refers to a slot pre-configured by the network device for transmission detection or synchronization of information resources.
  • the first slot length is the slot length indicated by Pattern 1 configured through common RRC signaling in the existing 5G system, excluding the time slot for transmitting the downlink signal and The length of the remaining part of the slot after excluding the reserved slot; when both pattern 1 and pattern 2 are configured in the system, the first slot length is the pattern 1+Pattern configured through common RRC signaling in the existing 5G system
  • the length of the slot indicated by 2 is the sum of the length of the remaining slot after excluding the time slot for transmitting the downlink signal and the reserved slot. Among them, the length sum is the sum of the number of slots.
  • the above period length can be a multiple of the first slot length, usually several first slot lengths to form a periodically applicable SL transmission configuration; or the above period length can be divisible by the first slot length (that is, the first slot length is The multiple of the period length), usually a first slot length includes several configurations of SL transmission that can be applied periodically.
  • the RRC signaling indicated by the slot format used for SL transmission may be signaling indicated by the base station through a system information block (System Message Block, SIB) or any dedicated signaling (dedicated signaling).
  • SIB System Message Block
  • slot 8 and slot 9 indicate that UL slot can be used for SL transmission
  • slot 4 contains UL symbol
  • slot 4 can also be used for SL transmission. Therefore, the six slots corresponding to S, UL, UL, S, UL, and UL (slot 4, slot 8, slot 9) corresponding to a radio frame shown in FIG. 3 can be used for SL transmission. Therefore, the number of bits in the first SL resource bitmap is P times 6, and the number of bits in the second SL resource bitmap is Q times 6.
  • the first SL resource bitmap can be represented as 001010
  • the second SL resource bitmap can be represented as 010100.
  • slot 8 slot 9 is UL slot that can be used for SL transmission
  • slot 4 includes UL symbol and flexible symbol It can be used for SL transmission.
  • Slot 3 and slot 7 contain flexible symbols and can be used for SL transmission. Therefore, the 10 corresponding S, S, S, UL, UL, S, S, UL, UL (slot 3, slot 4, slot 7, slot 8, slot 9) corresponding to a radio frame shown in Figure 3
  • the slot can be used for SL transmission. Therefore, the number of bits in the first SL resource bitmap is P times 10, and the number of bits in the second SL resource bitmap is Q times 10.
  • the first SL resource bitmap can be represented as 0000100010
  • the second SL resource bitmap can be represented as 1001010100.
  • the use status of some symbols in the first, fourth, sixth, and eighth time slots in the slot for SL transmission is represented by the second SL resource bitmap.
  • the second SL resource bitmap can be 10 00 00 01 00 11 00 11 00 00.
  • the foregoing resource indication information includes a first SL resource bitmap and a second SL resource bitmap.
  • the number of bits in the first SL resource bitmap is P times the number of time slots available for SL transmission, and P is a positive integer.
  • the number of bits in the second SL resource bitmap is R times the number of time slots configured for SL transmission, and R is a positive integer.
  • the value of the bit in the first SL resource bitmap is used to indicate whether the corresponding time slot is configured for SL transmission. If R is 1, the value of the bit in the second SL resource bitmap is used to indicate whether the time slot configured for SL transmission is used for SL transmission; if R is an integer greater than 1, the second SL resource bitmap
  • the value of adjacent R bits in the middle is used to indicate the starting position of the symbol used for SL transmission in the corresponding time slot and the number of symbols, and the adjacent R bits include the zth to z+th in the second SL resource bitmap (R-1) bits, where z+(R-1) can be divisible by R.
  • the R value can be dynamically adjusted, so that the usage status of different numbers of symbols can be indicated.
  • the overhead of the resource indication information sent by the base station to the terminal is small.
  • the R value is larger, it can indicate more usage status of the time slot, that is, it can indicate the usage status of the time slot more refined. In this way, there can be more terminal resource configuration schemes, and the resources configured for the terminal It can be more fine-grained to meet the communication requirements of different terminals.
  • the adjacent R bits in the second resource bitmap are used to indicate the number of time slots configured for SL transmission, where the adjacent R bits are not any adjacent adjacent bits.
  • the start position and the number of symbols used for SL transmission in a time slot may be referred to as the use state or configuration state of the time slot, or may also be other names.
  • the start positions of the symbols used for SL transmission in the time slot are different, and/or the number of symbols is different.
  • N N is a positive integer
  • Y logN
  • the slot in the first SL resource bitmap configured to be used for SL transmission includes both the entire slot (including all symbols in the slot) used for SL transmission, and some symbols in the slot (including only the symbols in the slot). Part of the symbol) is used for the SL transmission slot.
  • the second SL resource bitmap is used to further indicate which symbols in each slot configured for SL transmission in the slots configured for SL transmission in the first SL resource bitmap are used for SL transmission.
  • the second SL resource bitmap is used to further indicate all the slots configured for SL transmission in the first SL resource bitmap, which slots are all symbols used for SL transmission, or which slots are in the slot Part of the symbols are used for SL transmission.
  • the second SL resource bitmap indicates which slots are part of the symbols in the slot used for SL transmission, it means that the remaining slots indicated for SL in the first SL resource bitmap are all symbols used for SL transmission.
  • the bit lengths of the first SL resource bitmap and the second SL resource bitmap are the same or different.
  • the bit length of the first SL resource bitmap may also be referred to as the period length of the first SL resource bitmap, and the bit length of the second SL resource bitmap may also be referred to as the period length of the second SL resource bitmap.
  • the period length of the first SL resource bitmap may be a multiple of the first slot length, or the first slot length may be a multiple of the period length.
  • the first slot length is the slot length represented by Pattern 1 or Pattern 1+Pattern 2 configured through common RRC signaling in the existing 5G system (the length of P1 plus P2 as shown in Figure 3), excluding transmission The sum of the length of the time slot of the downlink signal and the remaining part of the slot after the reserved slot (not shown in FIG. 3) is removed.
  • the multiple is a positive integer
  • the reserved slot refers to a slot pre-configured by the network device for transmission detection or synchronization of information resources.
  • the first slot length is the slot length indicated by Pattern 1 configured through common RRC signaling in the existing 5G system, excluding the time slot for transmitting the downlink signal and The length of the remaining part of the slot after excluding the reserved slot; when both pattern 1 and pattern 2 are configured in the system, the first slot length is the pattern 1+Pattern configured through common RRC signaling in the existing 5G system
  • the length of the slot indicated by 2 is the sum of the length of the remaining slot after excluding the time slot for transmitting the downlink signal and the reserved slot. Among them, the length sum is the sum of the number of slots.
  • the above period length can be a multiple of the first slot length, usually several first slot lengths to form a periodically applicable SL transmission configuration; or the above period length can be divisible by the first slot length (that is, the first slot length is The multiple of the period length), usually a first slot length includes several configurations of SL transmission that can be applied periodically.
  • the RRC signaling indicated by the slot format used for SL transmission may be signaling indicated by the base station through a system information block (System Message Block, SIB) or any dedicated signaling (dedicated signaling).
  • SIB System Message Block
  • slot 8 slot 9 means UL slot can be used for SL transmission, and the symbols contained in slot 4 include UL symbol , So slot 4 can also be used for SL transmission. Therefore, the six slots corresponding to S, UL, UL, S, UL, and UL (slot 4, slot 8, slot 9) corresponding to a radio frame shown in FIG. 3 can be used for SL transmission.
  • slot 4 slot 4, slot 8, slot 9
  • the number of bits in the first SL resource bitmap is P times 6
  • the number of bits in the second SL resource bitmap is R times 4.
  • the number of bits in the first SL resource bitmap is 6, and the number of bits in the second SL resource bitmap is 4.
  • the first SL resource bitmap can be represented as 011110, which means that the second to fourth time slots are configured for SL transmission
  • the second SL resource bitmap can be represented as 1010 (the second time slot is configured as The first time slot in the time slot used for SL transmission is a time slot where part of the symbols is used for SL transmission, so the first bit in the second SL resource bitmap is represented by 1).
  • the bit marked as 0 in the second SL resource bitmap can indicate that all the symbols in the slot are used for SL transmission, and it can also indicate that the symbols in the slot are part of the symbols used for SL transmission but are used for SL transmission.
  • a different configuration method is used for SL transmission.
  • the meanings of 0 and 1 in the first resource bitmap and the second resource bitmap can also be other respectively.
  • a certain bit 0, it indicates that the corresponding time slot is not configured for SL transmission.
  • a bit in the second resource bitmap is 0, it indicates that the corresponding time slot is a partial symbol for SL transmission; the bit is 1, indicating that the corresponding time slot is not a partial symbol for SL transmission.
  • the first SL resource bitmap is unchanged and still expressed as 011110, the number of bits in the second SL resource bitmap is 8, and there are four corresponding slot usage states, which pass 00 respectively. 01, 10, 11 to identify different slot usage status.
  • 00 can be used to indicate that the corresponding slot is not part of the symbols used for SL transmission (because the second SL resource bitmap is only used to indicate the use status of some symbols in the corresponding slot for SL transmission, so other non-partial symbols are used for SL
  • the transmitted slot can be indicated by other SL resource bitmaps) or 00 indicates that the corresponding slot is all symbols in the slot used for SL transmission; part of the symbols of the slot corresponding to 01, 10 and 11 are used for SL transmission, corresponding to the same or different The starting position and the number of symbols used for SL transmission.
  • the usage status of the partial symbols in the second slot and the fourth slot in the above four slots configured for SL transmission for SL transmission is represented by the second SL resource bitmap.
  • the second SL The resource bitmap can be 10 00 01 00.
  • slot 8 slot 9 is UL slot that can be used for SL transmission
  • slot 4 includes UL symbol
  • flexible symbols can be used for SL transmission
  • slot 3 and slot 7 contain flexible symbols that can be used for SL transmission. Therefore, the 10 corresponding S, S, S, UL, UL, S, S, UL, UL (slot 3, slot 4, slot 7, slot 8, slot 9) corresponding to a radio frame shown in Figure 3
  • the slot can be used for SL transmission.
  • the number of bits in the first SL resource bitmap is P times 10
  • the number of bits in the second SL resource bitmap is R times 6.
  • the number of bits in the second SL resource bitmap is 6.
  • the first SL resource bitmap can be represented as 1001110110
  • the second SL resource bitmap can be represented as 110110.
  • the first SL resource bitmap is unchanged and still expressed as 1001110110, and the number of bits in the second SL resource bitmap is 12, and there are four corresponding slot usage states, each passing 00, 01, 10, 11 to identify different slot usage status.
  • 00 can be used to indicate that the corresponding slot is not part of the symbols used for SL transmission (because the second SL resource bitmap is only used to indicate the use status of some symbols in the corresponding slot for SL transmission, so other non-partial symbols are used for SL
  • the transmitted slot can be indicated by other SL resource bitmaps); part of the symbols of the slots corresponding to 01, 10, and 11 are used for SL transmission, respectively corresponding to the same or different starting positions and the number of symbols used for SL transmission.
  • the usage status of some symbols in the first, fourth, sixth, and eighth time slots of the above six slots used for SL transmission for SL transmission is represented by the second SL resource bitmap.
  • the second SL resource bit The picture can be 10 01 00 11 01 00.
  • the access network device sends resource indication information to the terminal device.
  • the access network device sends the above-mentioned resource indication information to the device terminal, so that the device terminal clarifies the resources that can be used for SL transmission, so as to use the resource for subsequent SL transmission.
  • the access network device sends first signaling to the terminal device, where the first signaling includes the foregoing resource indication information, and the first signaling includes at least one of RRC signaling, MAC signaling, or physical layer signaling .
  • the access network device can also determine different resource indication information according to information such as the current network status, and flexibly and real-timely indicate resources for SL transmission for different terminal devices, thereby improving transmission efficiency.
  • the terminal device obtains resource indication information.
  • the terminal device receives resource indication information from the access network device, or the resource indication information is preconfigured resource indication information.
  • pre-configuration refers to pre-written in the terminal device, or through the operation and maintenance management (operation administration and maintenance, OAM) configuration to the terminal device.
  • the terminal device may also pre-configure part of the resource indication information, and obtain another part of the resource indication information through the base station.
  • the terminal receives resource indication information including 001010 from the base station, which is used to indicate that part of the symbols of each of the 1, 2, 4, and 6 time slots is used for SL transmission. All symbols in the 3rd and 5th time slots are used for SL transmission.
  • the specific symbols refer to which symbols can be pre-configured in the terminal.
  • the terminal pre-configures the first to fourth symbols in the time slot for SL transmission. Then the terminal only needs to receive 6-bit information through the base station to learn which symbols are used for SL transmission.
  • the terminal does not need to obtain specific indications about the starting position of some symbols and the number of symbols from the base station, which saves the overhead of sending signaling from the base station to the terminal and can improve the resource utilization of the network.
  • the terminal can also obtain specific indications about the starting position of some symbols and the number of symbols from the base station.
  • the base station can be flexible and real-time based on the current network communication conditions, such as communication quality, and different communication requirements of different terminals.
  • different terminals indicate the starting positions of the same or different partial symbols and the number of symbols. In this way, it can better meet the communication requirements of the terminal, meet the service differentiation requirements of the terminal, and improve the communication quality of the terminal.
  • the terminal device performs SL transmission based on the resource indication information.
  • the obtained resource indication information is used to configure SL transmission resources, and then perform SL transmission.
  • an access network device determines resource indication information.
  • the resource indication information is used to indicate transmission resources of SL.
  • the transmission resources of SL include first resources and/or second resources, and the first resources include One or more first time slots, and the second resource includes one or more second time slots.
  • the number of symbols used for SL transmission in the first time slot is different from the number of symbols used for SL transmission in the second time slot.
  • the access network device sends resource indication information to the terminal device.
  • the resources configured for the terminal for SL transmission can be the entire time slot, or one or some symbols in the time slot, so that the granularity of resource configuration is more refined, so that the terminal equipment can be configured more flexibly. Based on the resources of SL transmission, the efficiency of transmitting SL resources of terminal equipment is improved.
  • the embodiment of the present application provides a method for resource allocation.
  • the method may include S201-S204:
  • the access network device determines resource indication information.
  • the resource indication information may also be referred to as configuration information.
  • the resource indication information determined by the access network device includes first information, and the first information is used to indicate the time slot and/or symbol configured for SL transmission. .
  • the first information is used to indicate the position of the time slot and/or symbol configured for SL transmission, and/or the first information is used to indicate the length of the time slot and/or symbol configured for SL transmission.
  • the position of the time slot and/or symbol configured for SL transmission may also be referred to as the distribution of the time slot and/or symbol configured for SL transmission, and the position may be indicated implicitly or displayed.
  • the meaning of the position of the time slot and/or symbol configured for SL transmission can be implicitly notified through the mode identifier.
  • the length of time slots and/or symbols configured for SL transmission is the number of time slots and/or symbols configured for SL transmission.
  • the time slots and/or symbols configured for SL transmission are a subset of the time slots available for SL transmission.
  • the time slot available for SL transmission includes uplink symbols, or includes flexible symbols, or includes uplink symbols and first symbols, or includes flexible symbols and first symbols, or includes flexible symbols, uplink symbols, and first symbols. symbol.
  • the position and length of the flexible symbol in the time slot available for SL transmission can be pre-configured or configured through signaling.
  • the configuration through signaling means that the network device performs configuration notification to the user equipment through at least one of RRC signaling, MAC signaling, or physical layer signaling.
  • the first symbol is a downlink symbol or a pre-configured symbol used to transmit other resources, such as synchronization resources or reserved resources.
  • the UL time slot can also be considered as all symbols of a slot corresponding to the UL symbol are used for UL transmission.
  • the flexible time slot can also be considered as all the symbols of a slot corresponding to the flexible symbol. Symbols are used for flexible transmission.
  • UL time slots and UL symbols are represented by slots and symbols respectively; flexible time slots and flexible symbols are represented by slots and symbols respectively.
  • the resource indication information may indicate the position and number of time slots and/symbols configured for SL transmission through RRC signaling.
  • the RRC signaling uses the current basic instructions of common/dedicated-TDD-configuration, but first information such as SL slots and/or SL symbols instructions needs to be added to notify the resources used for SL transmission.
  • Solution 1 In a possible implementation manner, different modes can be defined for different implementation scenarios to indicate the configuration status (or use status) of the corresponding time slot and/or symbol.
  • UL slot and UL symbol can be used in SL transmission implementation scenarios, defining mode 1, and UL slot, UL symbol, flexible slot, and flexible symbol can be used in SL transmission implementation scenarios, defining mode 2, or mode 3.
  • mode 1.1 and mode 1.2 for the positions of the time slots or symbols used for SL transmission corresponding to different configuration states in mode 1
  • RRC signaling indication indicate the position and length of the time slot or symbol for SL transmission under each label mode, so that when the RRC signaling is sent to the terminal device, the terminal device can understand according to the mode label
  • the meaning of SL slot or SL symbol contained therein is to correctly interpret the RRC signaling used to indicate the position and length of the time slot or symbol used for SL transmission.
  • the first information indicates the position and length of the time slot and/or symbol configured for SL transmission in conjunction with FIG. 6.
  • 8 time slots are exemplarily given, slot 0-slot 7, slot 2 is exemplary
  • the 13 symbols included are given.
  • the time slot filled in grid (J1) represents the time slot used to transmit the downlink signal
  • the symbol filled in grid (K1) represents the symbol used to transmit the downlink signal
  • the blank symbol (K2) represents Flexible symbols (special symbols) used to provide guard intervals or data transmission
  • slash-filled time slots (J2') represent time slots used to transmit side-link signals
  • dotted-filled time slots (J2) represent The time slot used to transmit the uplink signal
  • the dotted symbol (K3) indicates the symbol used to transmit the uplink signal.
  • J1 contains 2 DL slots
  • K1 contains 4 DL symbols
  • K2 contains 4 flexible symbols
  • K3 contains 5 UL symbols
  • J2' contains 2 SL slots
  • J2 contains 3 UL slots.
  • mode 1 For example, define the following mode 1:
  • Mode 1 UL slot and UL symbol can be used for SL transmission;
  • UL slot and UL symbol can be used for SL transmission
  • Mode1.1 Define J2' (SL slot) at the end of UL symbol;
  • the embodiment of the present application uses the first information in the following format to determine the specific structure of the frame, so as to determine the specific location of J2':
  • J1 (DL slot, UU) is the number of slots used for DL transmission
  • K1 (DL symbol, UU) is the number of symbols used for DL transmission
  • K3 (UL symbol, UU) is the symbol used for UL transmission Number
  • J2' (SL slot) is the number of slots used for SL transmission
  • J2 (UL slot, UU) is the number of slots used for UL transmission
  • the slot used for SL transmission is located in the symbol for UL transmission After that, it is located before the slot used for UL transmission.
  • the first information may be as follows:
  • the resource allocation mode of the UU interface of the terminal device under NR is: the symbol or time slot after the end position of the K3 uplink symbol can be configured as a symbol or time slot for SL transmission. Then, the length of the symbol or time slot configured for SL transmission can be derived from the length value of J2'.
  • Mode1.2 Define J2' (SL slot) at the end of UL slot;
  • J1 (DL slot, UU) is the number of slots used for DL transmission
  • K1 (DL symbol, UU) is the number of symbols used for DL transmission
  • K3 (UL symbol, UU) is the symbol used for UL transmission Number
  • J2 (UL slot, UU) is the number of slots used for UL transmission
  • J2' (SL slot) is the number of slots used for SL transmission; and the slot used for SL transmission is in the slot used for UL transmission after that.
  • the time slot at the position shown in Mode1.2 can be specifically indicated by the following first information:
  • the resource allocation method of the UU interface of the terminal equipment under NR is: the symbol or time slot after the end position of the J2 uplink time slot can be configured as a symbol or time slot for SL transmission, and is configured as a symbol or time slot for SL transmission.
  • the length of the time slot can be derived from the length value of J2'.
  • SL time slot usage states that is, the start position and time slot of the time slot used for SL transmission
  • the length may be the same or different.
  • modes can be defined, for example, UL slot, UL symbol, and flexible symbol can be defined for the following modes of SL transmission.
  • the first information indicates the position and length of the time slot and/or symbol configured for SL transmission in conjunction with FIG. 8.
  • 11 time slots, slot 0-slot 10, slot 2, and slot are given.
  • 5 The 13 symbols included are given as an example.
  • the grid-filled time slot (J1) represents the time slot used to transmit downlink signals
  • the mesh-filled symbol (K1) represents the symbol used to transmit downlink signals
  • the slash-filled symbol (L1 ) Represents the symbol used to transmit the side uplink signal
  • the time slots filled with diagonal lines (M1 and J2') represent the time slot used to transmit the side uplink signal
  • the blank symbol (K2) represents the guard interval Or provide flexible symbols (special symbols) for data transmission
  • dotted-filled symbols (K3) represent symbols used to transmit uplink signals
  • dotted-filled time slots (J2) represent time slots for transmitting uplink signals Gap.
  • J1 contains 2 DL slots
  • K1 contains 4 DL symbols
  • L1 contains 9 SL symbols
  • M1 contains 2 SL slots
  • K2 contains 8 flexible symbols
  • K3 contains 5 UL symbols
  • J2' contains 2 SL symbols.
  • slot J2 contains 3 UL slots.
  • mode 2 For example, define the following mode 2:
  • Mode 2 UL slot, UL symbol and flexible symbol can be used for SL transmission;
  • UL slot, UL symbol, and flexible symbol can be used for SL transmission
  • define the position and length of the time slot used to indicate SL transmission for example, define the SL time slot with the following position and length:
  • Mode 2.1 Define L1 (F symbols), M1 (SL slots), and J2' (SL slots) at the beginning of UL slots;
  • J1 DL slot, UU
  • K1 DL symbol, UU
  • L1 F symbols
  • a period length ((Pattern 1 represents the slot length (P1) or Pattern 1+Pattern 2) represents the slot length (P1+P2)) minus All the indications of the number of slots and symbols are the number of flexible symbols), K3 (UL symbol, UU) is the number of symbols used for UL transmission, and J2 (UL slot, UU) is the slot used for UL transmission J2' (SL slot) is the number of slots used for SL transmission, and M1 (SL slots) is the number of slots used for SL transmission; among them, M1 (SL slots) used for SL transmission is located in UL Before the transmitted symbol, specifically the symbol used for UL transmission and the flexible symbol (ie, FFF7) before complementing a slot, the J2' (SL slot) used for SL transmission is located after the symbol used for UL transmission, and is used for Before the slot of UL transmission.
  • the position and number of F symbols are determined by the position and number of DL symbols, and they are used to make up a complete time slot.
  • SL slots (M1) are located after F symbols (L1).
  • the first The information can be as follows:
  • the resource allocation method of the UU interface of the terminal equipment under NR is: the time slot J2' after the end position of the K3 uplink symbol can be configured as a time slot for SL transmission, and the remaining symbols of the time slot where the K1 downlink symbol is located can be configured as The symbol L1 used for SL transmission, and the time slot adjacent to L1 can be configured as the time slot M1 used for SL transmission. Then, the length of the symbol or time slot configured for SL transmission can be derived from the length value of M1, J2'.
  • the position and number of F symbols can also be determined by the position and number of UL symbols to make up a complete time slot.
  • SL slots (M2) are located at the beginning of F symbols (L2).
  • Mode 2.2 Define M2 (SL slots), L2 (F symbols), and J2' (SL slots) at the beginning of UL slots;
  • J1 DL slot, UU
  • K1 DL symbol, UU
  • L2 F symbols
  • the length of a period (P1 or P1+P2) minus all slots and symbols indicates the number of flexible symbols
  • K3 (UL symbol , UU) is the number of symbols used for UL transmission
  • J2 (UL slot, UU) is the number of slots used for UL transmission
  • J2' (SL slot) is the number of slots used for SL transmission
  • M2 (SL slots) ) Is the number of slots used for SL transmission; among them, M2 (SL slots) used for SL transmission is located before the symbol used for UL transmission, specifically before the symbol used for UL transmission and L2 (F symbols), used for The J2' (SL slot) of SL transmission is located after the symbol used for UL transmission and before the slot used for UL transmission.
  • the resource allocation mode of the UU interface of the terminal equipment under NR is: the time slot J2' after the end position of the K3 uplink symbol can be configured as a time slot for SL transmission, and the remaining symbols of the time slot where the K3 uplink symbol is located can be configured as The symbol L2 used for SL transmission, and the time slot adjacent to L2 may be configured as the time slot M2 used for SL transmission. Then, the length of the symbol or time slot configured for SL transmission can be derived from the length value of M2, J2'.
  • Mode 2.3 Define L1 (F symbols), M1 (SL slots), and J2' (SL slots) at the end of UL slots;
  • J1 (DL slot, UU) is the number of slots used for DL transmission
  • K1 (DL symbol, UU) is the number of symbols used for DL transmission
  • L1 (F symbols) is the number of flexible symbols (indicating that there can be In the first message, it may not exist.
  • a period length (slot length (P1) represented by Pattern 1 or slot length (P1+P2) represented by Pattern 1+Pattern 2) minus all The remaining indication of the number of slots and symbols is the number of flexible symbols)
  • K3 (UL symbol, UU) is the number of symbols used for UL transmission
  • J2 (UL slot, UU) is the number of slots used for UL transmission
  • J2' (SL slot) is the number of slots used for SL transmission
  • M1 (SL slot) is the number of slots used for SL transmission; among them, M1 (SL slot) used for SL transmission is located in the slot used for UL transmission Before the symbol, specifically the symbol used for UL transmission and the flexible symbol (ie, FFF7) before complementing a slot, the J2' (SL slot) used for SL transmission is located after the slot used for UL transmission.
  • the number of the above flexible symbols ie, FFF(7) does not need to be specified. Since it is used to make up a complete time slot, it can be obtained implicitly based on the difference between K3 and the symbol contained in a slot.
  • SL slots (M1) are located after F symbols (L1).
  • the time slot at the position shown in Mode 2.3 can be specifically indicated by the following first information:
  • SL slots (M1) are located at the end of F symbols (L1).
  • the first information may be as follows:
  • the resource allocation mode of the UU interface of the terminal equipment under NR is: the time slot J2' after the end position of the J2 uplink time slot can be configured as a time slot for SL transmission, and the remaining symbols of the time slot where the K1 downlink symbol is located can be configured For the symbol L1 used for SL transmission, the time slot adjacent to L1 may be configured as the time slot M1 used for SL transmission. Then, the length of the symbol or time slot configured for SL transmission can be derived from the length value of M1, J2'.
  • SL slots are located at the beginning of F symbols (L2). , Due to the change in the number of symbols, redefine the SL time slot with the following position and length:
  • Mode 2.4 Define M2 (SL slots), L2 (F symbols), and J2' (SL slots) at the end of UL slots;
  • J1 DL slot, UU
  • K1 DL symbol, UU
  • L2 F symbols
  • the length of a cycle (P1, P1+P2) minus all slots and the number of symbols indicates the number of flexible symbols)
  • K3 (UL symbol , UU) is the number of symbols used for UL transmission
  • J2 (UL slot, UU) is the number of slots used for UL transmission
  • J2' (SL slot) is the number of slots used for SL transmission
  • M2 (SL slots) ) Is the number of slots used for SL transmission; among them, M2 (SL slots) used for SL transmission is located before the symbol used for UL transmission, specifically before the symbol used for UL transmission and L2 (F symbols), used for The J2' (SL slot) of SL transmission is located after the slot used for UL transmission.
  • the resource allocation method of the UU interface of the terminal equipment under NR is: the time slot J2' after the end of the J2 uplink time slot can be configured as a time slot for SL transmission, and the remaining symbols of the time slot where the K3 uplink symbol is located can be configured For the symbol L2 used for SL transmission, the time slot adjacent to L2 may be configured as the time slot M2 used for SL transmission. Then, the length of the symbol or time slot configured for SL transmission can be derived from the length value of M2, J2'.
  • L1 (F symbols) and L2 (F symbols) are defined in the first information to supplement the original blank symbol space of the time slot in which they are located. For example, since K1 represents DL symbol, that is, the part of the symbol in the time slot is DL symbol, then in Mode 2.1, make L1 (F symbols) after K1 (DL symbol, UU) to realize the configuration of the remaining symbols of the time slot where K1 is It is a flexible symbol used for SL transmission.
  • an index is established to indicate the position and length of each time slot and/or symbol that can be configured for SL transmission. That is, there is a mapping relationship between the index and the position and length of the time slot and/or symbol configured for SL transmission.
  • the above RRC signaling (SL-TDD-configuration) contains index, so that when RRC signaling is sent to terminal equipment, terminal equipment can understand the meaning of SL slot or SL symbol contained in it according to the meaning of index, and interpret it correctly
  • This RRC signaling is used to indicate the position and length of the time slot or symbol used for SL transmission.
  • the meaning of each index, or the mapping relationship can be notified to the terminal device through the RRC signaling or other RRC signaling, or set in the terminal device in advance.
  • Mode 1, Mode 2 and corresponding sub-modes in solution 1 can be sequentially corresponding to different indexes, And included in the above RRC signaling or other RRC signaling so that the terminal device can learn any of the above parameters (such as L, M and J2', specifically any one of L1, L2, M1, M2, J2' ) Meaning.
  • the different modes and corresponding sub-modes in scheme 1 are indicated in the above RRC signaling, and L1, L2, M1, M2, J2' are indicated with different letters or symbols so that the terminal device can learn L1, The meaning of L2, M1, M2, J2'.
  • Solution 3 In a possible implementation manner, the positions of time slots or symbols used for SL transmission can be predefined, and the number of time slots and/symbols configured for SL transmission is indicated through RRC signaling. Wherein, the pre-definition may be preset at the terminal device. Among them, the number of time slots and/symbols configured for SL transmission is indicated through RRC signaling, and scheme 1 can be referred to.
  • the time slots or symbols in the period (P1 or P1+P2) are assigned corresponding indication meanings in the first information issued, so that after the terminal device receives the first information Directly clarify the meaning of each time slot or symbol.
  • the first information includes at least one or a combination of the following parameters: the number of downlink time slots, the number of downlink symbols, the number of uplink symbols, the number of uplink time slots, the number of flexible time slots , The number of flexible symbols, the number of SL time slots and the number of SL symbols.
  • the position of the SL time slot or the SL symbol can refer to the position description in each mode in the above scheme 1. It can also be pre-configured in terminal equipment or network equipment.
  • S202 The access network device sends resource indication information to the terminal device.
  • the access network device sends the above resource indication information to the device terminal, so that the device terminal can clarify the location and/or length of the time slot and/or symbol that can be used for SL transmission, so as to perform subsequent SL transmission.
  • the terminal device obtains resource indication information.
  • the terminal device receives resource indication information from the access network device, or the resource indication information is preconfigured resource indication information.
  • pre-configuration refers to pre-written in the terminal device, or configured to the terminal device through OAM.
  • S204 The terminal device performs SL transmission based on the resource indication information.
  • the obtained resource indication information is used to configure SL transmission resources, and then perform SL transmission.
  • an access network device determines resource indication information, the resource indication information includes first information, and the first information is used to indicate a time slot and/or symbol configured for SL transmission.
  • the resources configured for the terminal for SL transmission can be the entire time slot, or one or some symbols in the time slot, so that the granularity of resource configuration is more refined, so that the terminal equipment can be configured more flexibly. Based on the resources of SL transmission, the efficiency of transmitting SL resources of terminal equipment is improved.
  • each functional module or functional unit can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software functional modules or functional units. Among them, the division of modules or units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 12 shows a schematic diagram of a possible structure of the apparatus for resource allocation involved in the foregoing embodiment.
  • the device may be an access network device or a component of the access network device (such as a chip system).
  • the device includes a determining module 1201 and a sending module 1202.
  • the determining module 1201 is configured to determine resource indication information, the resource indication information is used to indicate the transmission resource of the SL, the transmission resource of the SL includes a first resource and/or a second resource, and the first resource includes one or more first time slots, The second resource includes one or more second time slots; wherein, the number of symbols used for SL transmission in the first time slot is different from the number of symbols used for SL transmission in the second time slot.
  • the sending module 1202 is used to send resource indication information to the terminal device.
  • all symbols in each first time slot are used for SL transmission, and some symbols in each second time slot are used for SL transmission.
  • the resource indication information includes a first SL resource bitmap, and the number of bits in the first SL resource bitmap is P times the number of time slots available for SL transmission, and P is a positive integer.
  • the value of the bit in the first SL resource bitmap is used to indicate that the corresponding time slot is all symbols used for SL transmission or part of the symbols used for SL transmission; if P is an integer greater than 1, The value of the adjacent P bits in the first SL resource bitmap is used to indicate the starting position and the number of symbols used for SL transmission in the corresponding time slot, where the adjacent P bits include the first SL resource bit From the xth to x+(P-1) bits in the figure, x+(P-1) can be divisible by P.
  • the resource indication information further includes a second SL resource bitmap, the number of bits in the second SL resource bitmap is Q times the number of time slots available for SL transmission, and Q is a positive integer; the first SL resource The bit value in the bitmap is used to indicate whether all symbols of the corresponding time slot are used for SL transmission; if Q is 1, the bit value in the second SL resource bitmap is used to indicate whether the corresponding time slot is part of the symbols used for SL transmission SL transmission; if Q is an integer greater than 1, the value of the adjacent Q bits in the second SL resource bitmap is used to indicate the starting position and the number of symbols used for SL transmission in the corresponding time slot, where, The adjacent Q bits include the yth to y+(Q-1)th bits in the second SL resource bitmap, and y+(Q-1) can be divisible by Q.
  • the resource indication information further includes a second SL resource bitmap, and the number of bits in the second SL resource bitmap is R times the number of time slots configured for SL transmission, and R is a positive integer; first The bit value in the SL resource bitmap is used to indicate whether the corresponding time slot is configured for SL transmission; if R is 1, the bit value in the second SL resource bitmap is used to indicate the bit configured for SL transmission Whether some symbols of the time slot are used for SL transmission; if R is an integer greater than 1, the value of the adjacent R bits in the second SL resource bitmap is used to indicate the starting position of the symbols used for SL transmission in the corresponding time slot And the number of symbols, where the adjacent R bits include the zth to z+(R-1)th bits in the second SL resource bitmap, and z+(R-1) can be divisible by R.
  • the symbols used for SL transmission include uplink UL symbols or, the symbols used for SL transmission include UL symbols and flexible symbols.
  • sending resource indication information to the terminal device includes: sending first signaling to the terminal device, where the first signaling includes the resource indication information.
  • the first signaling includes radio resource control RRC signaling, media access control MAC signaling, and physical layer signaling.
  • FIG. 13 shows a schematic diagram of a possible structure of the apparatus for resource allocation involved in the foregoing embodiment.
  • the device may be a terminal device, or a component of the terminal device (such as a chip system of the terminal device), and the device includes an acquisition module 1301 and a transmission module 1302.
  • the obtaining module 1301 is configured to obtain resource indication information, which is used to indicate transmission resources of the side link SL.
  • the transmission resources of the SL include a first resource and/or a second resource, and the first resource includes one or more second resources.
  • the second resource includes one or more second time slots; wherein, the number of symbols used for SL transmission in the first time slot is different from the number of symbols used for SL transmission in the second time slot.
  • the transmission module 1302 is used to perform SL transmission based on the resource indication information.
  • the obtaining module 1301 obtains the resource indication information, including: the obtaining module 1301 receives the resource indication information from the access network device.
  • the obtaining module 1301 obtains the resource indication information, including: the obtaining module 1301 obtains the pre-configured resource indication information.
  • all symbols in each first time slot are used for SL transmission, and some symbols in each second time slot are used for SL transmission.
  • the resource indication information includes a first SL resource bitmap, and the number of bits in the first SL resource bitmap is P times the number of time slots available for SL transmission, and P is a positive integer.
  • the value of the bit in the first SL resource bitmap is used to indicate that the corresponding time slot is all symbols used for SL transmission or part of the symbols used for SL transmission; if P is an integer greater than 1, The value of the adjacent P bits in the first SL resource bitmap is used to indicate the starting position and the number of symbols used for SL transmission in the corresponding time slot, where the adjacent P bits include the first SL resource bit From the xth to x+(P-1) bits in the figure, x+(P-1) can be divisible by P.
  • the resource indication information further includes a second SL resource bitmap, the number of bits in the second SL resource bitmap is Q times the number of time slots available for SL transmission, and Q is a positive integer; the first SL resource The bit value in the bitmap is used to indicate whether all symbols of the corresponding time slot are used for SL transmission; if Q is 1, the bit value in the second SL resource bitmap is used to indicate whether the corresponding time slot is part of the symbols used for SL transmission SL transmission; if Q is an integer greater than 1, the value of the adjacent Q bits in the second SL resource bitmap is used to indicate the starting position and the number of symbols used for SL transmission in the corresponding time slot, where, The adjacent Q bits include the yth to y+(Q-1)th bits in the second SL resource bitmap, and y+(Q-1) can be divisible by Q.
  • the resource indication information further includes a second SL resource bitmap, and the number of bits in the second SL resource bitmap is R times the number of time slots configured for SL transmission, and R is a positive integer; first The bit value in the SL resource bitmap is used to indicate whether the corresponding time slot is configured for SL transmission; if R is 1, the bit value in the second SL resource bitmap is used to indicate the bit configured for SL transmission Whether some symbols of the time slot are used for SL transmission; if R is an integer greater than 1, the value of the adjacent R bits in the second SL resource bitmap is used to indicate the starting position of the symbols used for SL transmission in the corresponding time slot And the number of symbols, where the adjacent R bits include the zth to z+(R-1)th bits in the second SL resource bitmap, and z+(R-1) can be divisible by R.
  • the symbols used for SL transmission include uplink UL symbols or, the symbols used for SL transmission include UL symbols and flexible symbols.
  • obtaining the resource indication information by the obtaining module 1301 includes: the obtaining module 1301 obtains the first signaling from the access network device, and the first signaling includes the resource indication information.
  • the first signaling includes radio resource control RRC signaling, media access control MAC signaling, and physical layer signaling.
  • FIG. 14 shows a schematic diagram of a possible structure of the device for resource allocation involved in the foregoing embodiment.
  • the device may be an access network device or a chip system of the access network device.
  • the device includes a determining module 1401 and a sending module 1402.
  • the determining module 1401 is configured to determine resource indication information, where the resource indication information includes first indication information, and the first indication information is used to indicate a time slot and/or symbol configured for SL transmission.
  • the sending module 1402 is configured to send the aforementioned resource indication information to the terminal device.
  • the first indication information is used to indicate the time slot and/or symbol configured for SL transmission, including: the first indication information is used to indicate the location of the time slot and/or symbol configured for SL transmission, And/or the first indication information is used to indicate the length of the time slot and/or symbol configured for SL transmission.
  • the time slots and/or symbols configured for SL transmission are a subset of the time slots available for SL transmission, and the time slots available for SL transmission include uplink symbols, or the time slots available for SL transmission include Flexible symbols, or, the time slots available for SL transmission include uplink symbols and the first symbol, or the time slots available for SL transmission include flexible symbols and the first symbol, or, the time slots available for SL transmission include flexible symbols, The uplink symbol and the first symbol; where the position and length of the flexible symbol in the time slot available for SL transmission can be pre-configured.
  • FIG. 15 shows a schematic diagram of a possible structure of the device for resource allocation involved in the foregoing embodiment.
  • the device may be a terminal device or a chip system of the terminal device.
  • the device includes an acquisition module 1501 and a transmission module 1502.
  • the obtaining module 1501 is configured to obtain resource indication information, where the resource indication information includes first information, and the first information is used to indicate a time slot and/or symbol configured for SL transmission.
  • the transmission module 1502 is configured to perform SL transmission based on the aforementioned resource indication information.
  • the first indication information is used to indicate the time slot and/or symbol configured for SL transmission, including: the first indication information is used to indicate the location of the time slot and/or symbol configured for SL transmission, And/or the first indication information is used to indicate the length of the time slot and/or symbol configured for SL transmission.
  • the time slots and/or symbols configured for SL transmission are a subset of the time slots available for SL transmission, and the time slots available for SL transmission include uplink symbols, or the time slots available for SL transmission include Flexible symbols, or, the time slots available for SL transmission include uplink symbols and the first symbol, or the time slots available for SL transmission include flexible symbols and the first symbol, or, the time slots available for SL transmission include flexible symbols, The uplink symbol and the first symbol; where the position and length of the flexible symbol in the time slot available for SL transmission can be pre-configured.
  • FIG. 16 shows a schematic diagram of a possible structure of the communication device involved in the foregoing embodiment.
  • the communication device may be, for example, the aforementioned access network device or terminal device.
  • the communication device can also exist in the form of software, or a chip that can be used in equipment.
  • the communication device includes: a processing unit 1602 and a communication unit 1603.
  • the communication unit 1603 may also be divided into a sending unit (not shown in FIG. 16) and a receiving unit (not shown in FIG. 16).
  • the sending unit is used to support the communication device to send information to other network elements.
  • the receiving unit is used to support the communication device to receive information from other network elements.
  • the communication device may further include a storage unit 1601 for storing program codes and data of the communication device, and the data may include but not limited to raw data or intermediate data.
  • the storage unit 1601 is used to store resource indication information.
  • the resource indication may be the resource indication information sent by the access network device received through the communication unit 1603, or may be pre-configured in the Resource indication information in the communication device.
  • the processing unit 1602 may be used to support the communication device to determine resources for SL transmission.
  • the processing unit 1602 may determine the content of the resource indication information, so as to subsequently indicate the resource used by the terminal device for SL transmission.
  • the processing unit 1602 is used to process the acquired or pre-configured resource indication information, and determine the resource used for SL transmission, so as to perform SL transmission in the subsequent communication process. And/or other processes used in the scheme described herein.
  • the communication unit 1603 is used to support communication between the communication device and other network elements, for example, support the communication device to perform S102 in FIG. 4 or S202 in FIG. 5.
  • the sending unit is used to support the communication device to send information to other network elements.
  • the communication device is supported to perform S102 in FIG. 4 or S202 in FIG. 5, etc., and/or other processes used in the solution described herein.
  • the receiving unit is used to support the communication device to receive information from other network elements. For example, supporting the communication device to receive data from the terminal, etc., and/or other processes used in the solution described herein.
  • the processing unit 1602 may be a controller or the processor 201 or the processor 204 shown in FIG. 2, for example, a central processing unit (CPU), a general-purpose processor, or digital signal processing ( digital signal processing (DSP), application specific integrated circuit (ASIC), field-programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any of them combination. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 1603 may be the transceiver 203 shown in FIG. 2 or a communication interface or the like.
  • the storage unit 1601 may be the memory 202 shown in FIG. 2.
  • the embodiment of the present application also provides a computer storage medium for storing computer software instructions used by the above-mentioned resource allocation device, and the device includes a program designed to execute the steps performed by the above-mentioned resource allocation device.
  • the embodiments of the present application also provide a computer program product, such as a computer-readable storage medium, including a program designed to execute the steps executed by the resource allocation device in the above-mentioned embodiment.
  • the steps of the method or algorithm described in conjunction with the disclosure of this application can be implemented in a hardware manner, or implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read only memory (ROM), erasable programmable read-only memory (erasable programmable ROM (EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, portable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the disclosed method and device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network devices. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源分配的方法及装置,涉及通信领域,能够实现更加灵活的侧行链路SL资源的分配,可以应用于D2D或车联网,例如V2X等,或可以用于智能驾驶,智能网联车等领域。该方法包括:接入网设备确定资源指示信息,该资源指示信息用于指示SL的传输资源,SL的传输资源包括第一资源和/或第二资源,第一资源包括一个或多个第一时隙,第二资源包括一个或多个第二时隙;其中,第一时隙中用于SL传输的符号数不同于第二时隙中用于SL传输的符号数;接入网设备向终端设备发送资源指示信息。

Description

资源分配的方法及装置
本申请要求于2019年08月13日提交国家知识产权局、申请号为201910745871.9、发明名称为“资源分配的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及资源分配的方法及装置。
背景技术
目前,多个终端设备,如手机和车载终端,可以组成一个终端设备组,并在同一个部分带宽(bandwidth part,BWP,又称为带宽部分)上建立侧行链路(side link,SL),以便实现组内直接通信。车联任意事物(vehicle to everything,V2X)系统是将车辆与一切事物相连接的新一代信息通信技术,其中V代表车辆,X代表与车交互信息的对象,当前X主要包含车、人、交通路侧基础设施和网络。在V2X或设备到设备(device to device,D2D)通信传输时,需要确定传输资源。因为V2X系统存在周期性的业务,也就是说V2X通信需要在时间上一直都配置有可供SL使用的传输资源。当然也有非周期性的业务,可以动态地配置可供SL使用的传输资源。因此需要提供一种机制,以便能够向做V2X或D2D通信的设备高效地指示传输资源。终端之间通过SL进行通信传输时,有如下两种指示SL传输资源的模式,一种是基站调度,即终端每次进行SL通信之前,基站均会向终端指示传输资源,另一种是基于终端设备感知,基站提前为终端配置资源池,后续,当终端进行SL通信时,从资源池中自行选择所需的传输资源。
随着第五代(5th generation,5G)移动通信系统的研究,下一代无线通信环境可能更复杂,比如,具有更多数目的终端设备,需要更高的通信质量。因此,现在亟需一种适应5G通信系统或类似通信系统的资源分配方法,以便指示用于SL的资源,从而满足终端的通信需求。
发明内容
本申请的实施例提供一种资源分配的方法及装置,可以更加灵活的在NR-V2X中指示用于SL的资源。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种资源分配的方法,该方法可以由能够实现接入网设备功能的装置执行,该装置可以为接入网设备,或者,可以为与接入网设备匹配使用的装置,该装置可以支持接入网设备实现接入网设备的功能,比如,该装置可以为接入网设备中的芯片系统,该方法可以包括:接入网设备确定资源指示信息,该资源指示信息用于指示侧行链路SL的传输资源,SL的传输资源包括第一资源和/或第二资源,第一资源包括一个或多个第一时隙,第二资源包括一个或多个第二时隙;其中,第一时隙中用于SL传输的符号数不同于第二时隙中用于SL传输的符号数;接入网设备向终端设备发送资源指示信息。
如此,为终端配置的用于SL传输的资源可以是整个时隙,也可以是时隙中的某一个或一些符号,使得资源配置粒度更加精细化。相对于现有技术中,只能够实现时隙级别的 用于SL传输资源的配置,本申请的技术方案,可以更加灵活的配置终端设备中用于SL传输的资源,提高终端设备传输SL资源的效率,应用于更加复杂的通信环境。
结合第一方面,在第一方面的第一种可能的实现方式中,每一第一时隙中的全部符号用于SL传输,每一第二时隙中的部分符号用于SL传输。
结合第一方面,在第一方面的第二种可能的实现方式中,资源指示信息包括第一SL资源位图,该第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。
结合第一方面,在第一方面的第三种可能的实现方式中,若P为1,第一SL资源位图中的比特取值用于指示对应的时隙为全部符号用于SL传输或者部分符号用于SL传输;若P为大于1的整数,第一SL资源位图中相邻P个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻P个比特包括第一SL资源位图中的第x至第x+(P-1)个比特,x+(P-1)能被P整除。
如此,通过基站指示资源指示信息中的一部分,资源指示信息中的另一部分可以与配置在终端设备中。比如,基站向终端发送包括001010这6个比特的资源指示信息,用于指示第1、2、4、6个时隙为部分符号用于SL传输的时隙。第3、5个时隙中的全部符号用于SL传输。其中,具体部分符号指的是哪些符号,可以预配置在终端中。比如,终端预配置时隙中的第一至第四个符号用于SL传输。则终端仅需通过基站接收6比特信息,就可以获知具体使用哪些符号进行SL传输。终端无需从基站获取关于部分符号的起始位置和符号个数的具体指示,节约了基站向终端发送信令的开销,能够提升网络的资源利用率。
结合第一方面,在第一方面的第四种可能的实现方式中,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为可用于SL传输的时隙数的Q倍,Q为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否全部符号用于SL传输;若Q为1,第二SL资源位图中的比特取值用于指示对应的时隙是否部分符号用于SL传输;若Q为大于1的整数,第二SL资源位图中相邻Q个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻Q个比特包括第二SL资源位图中的第y至第y+(Q-1)个比特,y+(Q-1)能被Q整除。
结合第一方面,在第一方面的第五种可能的实现方式中,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为配置为用于SL传输的时隙数的R倍,R为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否配置为用于SL传输;若R为1,第二SL资源位图中的比特取值用于指示配置为用于SL传输的时隙是否部分符号用于SL传输;若R为大于1的整数,第二SL资源位图中相邻R个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻R个比特包括第二SL资源位图中的第z至第z+(R-1)个比特,z+(R-1)能被R整除。
如此,终端可以从基站获取关于部分符号的起始位置和符号个数的具体指示,这种方式中,基站可以根据当前网络的通信状况,比如通信质量,不同终端的不同通信需求,灵活实时的为不同终端指示相同或不同的部分符号的起始位置和符号个数,如此,能够更加契合终端的通信需求,满足终端的服务差异化需求,提升终端的通信质量。
结合第一方面,在第一方面的第六种可能的实现方式中,用于SL传输的符号包括上 行链路UL符号或,用于SL传输的符号包括UL符号和灵活符号。
结合第一方面,在第一方面的第七种可能的实现方式中,向终端设备发送资源指示信息,包括:向终端设备发送第一信令,该第一信令包括资源指示信息。该第一信令包括无线资源控制RRC信令、媒体接入控制MAC信令、物理层信令。
第二方面,本申请提供一种资源分配的方法,该方法可以由能够实现终端设备功能的装置执行,该装置可以为终端设备,或者,可以为与终端设备匹配使用的装置,该装置可以支持终端设备实现终端设备的功能,比如,该装置可以为终端设备中的芯片系统,该方法可以包括:终端设备获取资源指示信息,该资源指示信息用于指示侧行链路SL的传输资源,SL的传输资源包括第一资源和/或第二资源,第一资源包括一个或多个第一时隙,第二资源包括一个或多个第二时隙;其中,第一时隙中用于SL传输的符号数不同于第二时隙中用于SL传输的符号数;终端设备基于上述资源指示信息进行SL传输。
结合第二方面,在第二方面的第一种可能的实现方式中,终端设备获取资源指示信息,包括:终端设备从接入网设备接收资源指示信息。
结合第二方面,在第二方面的第二种可能的实现方式中,终端设备获取资源指示信息,包括:资源指示信息为预配置的资源指示信息。
结合第二方面,在第二方面的第三种可能的实现方式中,每一第一时隙中的全部符号用于SL传输,每一第二时隙中的部分符号用于SL传输。
结合第二方面,在第二方面的第四种可能的实现方式中,资源指示信息包括第一SL资源位图,该第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。
结合第二方面,在第二方面的第五种可能的实现方式中,若P为1,第一SL资源位图中的比特取值用于指示对应的时隙为全部符号用于SL传输或者部分符号用于SL传输;若P为大于1的整数,第一SL资源位图中相邻P个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻P个比特包括第一SL资源位图中的第x至第x+(P-1)个比特,x+(P-1)能被P整除。
结合第二方面,在第二方面的第六种可能的实现方式中,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为可用于SL传输的时隙数的Q倍,Q为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否全部符号用于SL传输;若Q为1,第二SL资源位图中的比特取值用于指示对应的时隙是否部分符号用于SL传输;若Q为大于1的整数,第二SL资源位图中相邻Q个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻Q个比特包括第二SL资源位图中的第y至第y+(Q-1)个比特,y+(Q-1)能被Q整除。
结合第二方面,在第二方面的第七种可能的实现方式中,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为配置为用于SL传输的时隙数的R倍,R为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否配置为用于SL传输;若R为1,第二SL资源位图中的比特取值用于指示配置为用于SL传输的时隙是否部分符号用于SL传输;若R为大于1的整数,第二SL资源位图中相邻R个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻R个比特包括第二SL资源位图中的第z至第z+(R-1)个比特,z+(R-1)能被R整除。
结合第二方面,在第二方面的第八种可能的实现方式中,用于SL传输的符号包括上行链路UL符号或,用于SL传输的符号包括UL符号和灵活符号。
结合第二方面,在第二方面的第九种可能的实现方式中,向终端设备发送资源指示信息,包括:向终端设备发送第一信令,该第一信令包括资源指示信息。该第一信令包括无线资源控制RRC信令、媒体接入控制MAC信令、物理层信令。
第三方面,本申请提供一种资源分配的方法,该方法可以由能够实现接入网设备功能的装置执行,该装置可以为接入网设备,或者,可以为与接入网设备匹配使用的装置,该装置可以支持接入网设备实现接入网设备的功能,比如,该装置可以为接入网设备中的芯片系统。该方法包括:接入网设备确定资源指示信息,该资源指示信息包括第一信息,第一信息用于指示配置为用于SL传输的时隙和/或符号;接入网设备向终端设备发送资源指示信息。
结合第三方面,在第三方面的第一种可能的实现方式中,第一信息用于指示配置为用于SL传输的时隙和/或符号,包括:第一信息用于指示配置为用于SL传输的时隙和/或符号的位置,和/或第一信息用于指示配置为用于SL传输的时隙和/或符号的长度。
如此,接入网设备可以直接配置第一信令,进而直接指示终端可以用于SL传输的时隙和/或符号的位置和/或长度,基站可以根据当前网络的通信状况,比如通信质量,不同终端的不同通信需求,灵活实时的为不同终端指示相同或不同的用于SL传输的时隙和/或符号的位置和/或长度,如此,能够更加契合终端的通信需求,满足终端的服务差异化需求,提升终端的通信质量。
结合第三方面,在第三方面的第二种可能的实现方式中,配置为用于SL传输的时隙和/或符号为可用于SL传输的时隙的子集,可用于SL传输的时隙包括上行符号,或者,可用于SL传输的时隙包括灵活符号,或者,可用于SL传输的时隙包括上行符号和第一符号,或者,可用于SL传输的时隙包括灵活符号和第一符号,或者,可用于SL传输的时隙包括灵活符号、上行符号和第一符号;其中,灵活符号在可用于SL传输的时隙的位置和长度可预先配置。
结合第三方面,在第三方面的第三种可能的实现方式中,第一信息用于指示配置为用于SL传输的时隙和/或符号,包括:第一信息包含模式或index以指示对应时隙和/或符号的配置状态。
结合第三方面,在第三方面的第四种可能的实现方式中,第一信息包含模式或index以指示对应时隙和/或符号的配置状态,该模式或index包含下述至少一种:用于DL传输的时隙个数,用于DL传输的符号个数,用于UL传输的符号个数,用于UL传输的时隙个数,或用于SL传输的J2’时隙个数中至少一项;其中,用于SL传输的J2’时隙位于UL符号的结尾;或者,用于DL传输的时隙个数,用于DL传输的符号个数,用于UL传输的符号个数,用于UL传输的时隙个数,或用于SL传输的J2’时隙个数中至少一项;其中,用于SL传输的J2’时隙位于UL时隙的结尾;或者,用于DL传输的时隙个数,用于DL传输的符号个数,灵活符号个数,用于UL传输的时隙个数,用于UL传输的符号个数,用于SL传输的J2’时隙个数,或用于SL传输的M1时隙个数中至少一项;其中,用于SL传输的M1时隙位于用于UL传输的符号之前,用于SL传输的J2’时隙位于用于UL传输的符号之后及用于UL传输的时隙之前;或者,用于DL传输的时隙个数,用于DL传输 的符号个数,灵活符号个数,用于UL传输的符号个数,用于UL传输的时隙个数,用于SL传输的J2’时隙个数,或用于SL传输的M2时隙个数中至少一项;其中,用于SL传输的M2时隙位于用于UL传输的符号之前,用于SL传输的J2’时隙位于用于UL传输的符号之后及用于UL传输的时隙之前;或者,用于DL传输的时隙个数,用于DL传输的符号个数,灵活符号个数,用于UL传输的符号个数,用于UL传输的时隙个数,用于SL传输的J2’时隙个数,或用于SL传输的M1时隙个数中至少一项;其中,用于SL传输的M1时隙位于用于UL传输的符号之前,用于SL传输的J2’时隙位于用于UL传输的时隙之后;或者,用于DL传输的时隙个数,用于DL传输的符号个数,灵活符号个数,用于UL传输的符号个数,用于UL传输的时隙个数,用于SL传输的J2’时隙个数,或用于SL传输的M2时隙个数中至少一项;其中,用于SL传输的M2时隙位于用于UL传输的符号之前,用于SL传输的J2’时隙位于用于UL传输的时隙之后。
结合第三方面,在第三方面的第五种可能的实现方式中,第一信息用于指示配置为用于SL传输的时隙和/或符号,包括:第一信息包含下述至少一种:用于DL传输的时隙个数,用于DL传输的符号个数,用于UL传输的符号个数,用于UL传输的时隙个数,或用于SL传输的J2’时隙个数中至少一项;其中,用于SL传输的J2’时隙位于UL符号的结尾;或者,用于DL传输的时隙个数,用于DL传输的符号个数,用于UL传输的符号个数,用于UL传输的时隙个数,或用于SL传输的J2’时隙个数中至少一项;其中,用于SL传输的J2’时隙位于UL时隙的结尾;或者,用于DL传输的时隙个数,用于DL传输的符号个数,灵活符号个数,用于UL传输的时隙个数,用于UL传输的符号个数,用于SL传输的J2’时隙个数,或用于SL传输的M1时隙个数中至少一项;其中,用于SL传输的M1时隙位于用于UL传输的符号之前,用于SL传输的J2’时隙位于用于UL传输的符号之后及用于UL传输的时隙之前;或者,用于DL传输的时隙个数,用于DL传输的符号个数,灵活符号个数,用于UL传输的符号个数,用于UL传输的时隙个数,用于SL传输的J2’时隙个数,或用于SL传输的M2时隙个数中至少一项;其中,用于SL传输的M2时隙位于用于UL传输的符号之前,用于SL传输的J2’时隙位于用于UL传输的符号之后及用于UL传输的时隙之前;或者,用于DL传输的时隙个数,用于DL传输的符号个数,灵活符号个数,用于UL传输的符号个数,用于UL传输的时隙个数,用于SL传输的J2’时隙个数,或用于SL传输的M1时隙个数中至少一项;其中,用于SL传输的M1时隙位于用于UL传输的符号之前,用于SL传输的J2’时隙位于用于UL传输的时隙之后;或者,用于DL传输的时隙个数,用于DL传输的符号个数,灵活符号个数,用于UL传输的符号个数,用于UL传输的时隙个数,用于SL传输的J2’时隙个数,或用于SL传输的M2时隙个数中至少一项;其中,用于SL传输的M2时隙位于用于UL传输的符号之前,用于SL传输的J2’时隙位于用于UL传输的时隙之后。
结合第三方面,在第三方面的第六种可能的实现方式中,用于表示时隙或者符号数量的字母均为大于等于1的正整数。
第四方面,本申请提供一种资源分配的方法,该方法可以由能够实现终端设备功能的装置执行,该装置可以为终端设备,或者,可以为与终端设备匹配使用的装置,该装置可以支持终端设备实现终端设备的功能,比如,该装置可以为终端设备中的芯片系统,该方法可以包括:终端设备获取资源指示信息,该资源指示信息包括第一信息。该第一信息用 于指示配置为用于SL传输的时隙和/或符号,终端设备基于上述述资源指示信息进行SL传输。
结合第四方面,在第四方面的第一种可能的实现方式中,第一信息用于指示配置为用于SL传输的时隙和/或符号,包括:第一信息用于指示配置为用于SL传输的时隙和/或符号的位置,和/或第一信息用于指示配置为用于SL传输的时隙和/或符号的长度。
结合第四方面,在第四方面的第二种可能的实现方式中,配置为用于SL传输的时隙和/或符号为可用于SL传输的时隙的子集,可用于SL传输的时隙包括上行符号,或者,可用于SL传输的时隙包括灵活符号,或者,可用于SL传输的时隙包括上行符号和第一符号,或者,可用于SL传输的时隙包括灵活符号和第一符号,或者,可用于SL传输的时隙包括灵活符号、上行符号和第一符号;其中,灵活符号在可用于SL传输的时隙的位置和长度可预先配置。
第五方面,本申请提供一种资源分配的装置,该装置可以为上述方面中用于实现接入网设备功能的装置,比如,可以为接入网设备或者接入网设备的芯片,该装置包括:确定模块和发送模块。确定模块,用于确定资源指示信息,资源指示信息用于指示侧行链路SL的传输资源,SL的传输资源包括第一资源和/或第二资源,第一资源包括一个或多个第一时隙,第二资源包括一个或多个第二时隙;其中,第一时隙中用于SL传输的符号数不同于第二时隙中用于SL传输的符号数。发送模块,用于向终端设备发送资源指示信息。
结合第五方面,在第五方面的第一种可能的实现方式中,每一第一时隙中的全部符号用于SL传输,每一第二时隙中的部分符号用于SL传输。
结合第五方面,在第五方面的第二种可能的实现方式中,资源指示信息包括第一SL资源位图,该第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。
结合第五方面,在第五方面的第三种可能的实现方式中,若P为1,第一SL资源位图中的比特取值用于指示对应的时隙为全部符号用于SL传输或者部分符号用于SL传输;若P为大于1的整数,第一SL资源位图中相邻P个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻P个比特包括第一SL资源位图中的第x至第x+(P-1)个比特,x+(P-1)能被P整除。
结合第五方面,在第五方面的第四种可能的实现方式中,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为可用于SL传输的时隙数的Q倍,Q为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否全部符号用于SL传输;若Q为1,第二SL资源位图中的比特取值用于指示对应的时隙是否部分符号用于SL传输;若Q为大于1的整数,第二SL资源位图中相邻Q个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻Q个比特包括第二SL资源位图中的第y至第y+(Q-1)个比特,y+(Q-1)能被Q整除。
结合第五方面,在第五方面的第五种可能的实现方式中,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为配置为用于SL传输的时隙数的R倍,R为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否配置为用于SL传输;若R为1,第二SL资源位图中的比特取值用于指示配置为用于SL传输的时隙是否部分符号用于SL传输;若R为大于1的整数,第二SL资源位图中相邻R个比特取值用于指示对 应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻R个比特包括第二SL资源位图中的第z至第z+(R-1)个比特,z+(R-1)能被R整除。
结合第五方面,在第五方面的第六种可能的实现方式中,用于SL传输的符号包括上行链路UL符号或,用于SL传输的符号包括UL符号和灵活符号。
结合第五方面,在第五方面的第七种可能的实现方式中,向终端设备发送资源指示信息,包括:发送模块向终端设备发送第一信令,该第一信令包括资源指示信息。该第一信令包括无线资源控制RRC信令、媒体接入控制MAC信令、物理层信令。
第六方面,本申请提供一种资源分配的装置,该装置可以为上述方面中用于实现终端功能的装置,比如,可以为终端设备,或者终端设备的芯片,该装置包括:获取模块和传输模块。获取模块,用于获取资源指示信息,资源指示信息用于指示侧行链路SL的传输资源,SL的传输资源包括第一资源和/或第二资源,第一资源包括一个或多个第一时隙,第二资源包括一个或多个第二时隙;其中,第一时隙中用于SL传输的符号数不同于第二时隙中用于SL传输的符号数;传输模块,用于基于资源指示信息进行SL传输。
结合第六方面,在第六方面的第一种可能的实现方式中,获取模块获取资源指示信息,包括:获取模块从接入网设备接收资源指示信息。
结合第六方面,在第六方面的第二种可能的实现方式中,获取模块获取资源指示信息,包括:获取模块获取预配置的资源指示信息。
结合第六方面,在第六方面的第三种可能的实现方式中,每一第一时隙中的全部符号用于SL传输,每一第二时隙中的部分符号用于SL传输。
结合第六方面,在第六方面的第四种可能的实现方式中,资源指示信息包括第一SL资源位图,该第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。
结合第六方面,在第六方面的第五种可能的实现方式中,若P为1,第一SL资源位图中的比特取值用于指示对应的时隙为全部符号用于SL传输或者部分符号用于SL传输;若P为大于1的整数,第一SL资源位图中相邻P个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻P个比特包括第一SL资源位图中的第x至第x+(P-1)个比特,x+(P-1)能被P整除。
结合第六方面,在第六方面的第六种可能的实现方式中,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为可用于SL传输的时隙数的Q倍,Q为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否全部符号用于SL传输;若Q为1,第二SL资源位图中的比特取值用于指示对应的时隙是否部分符号用于SL传输;若Q为大于1的整数,第二SL资源位图中相邻Q个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻Q个比特包括第二SL资源位图中的第y至第y+(Q-1)个比特,y+(Q-1)能被Q整除。
结合第六方面,在第六方面的第七种可能的实现方式中,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为配置为用于SL传输的时隙数的R倍,R为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否配置为用于SL传输;若R为1,第二SL资源位图中的比特取值用于指示配置为用于SL传输的时隙是否部分符号用于SL传输;若R为大于1的整数,第二SL资源位图中相邻R个比特取值用于指示对 应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻R个比特包括第二SL资源位图中的第z至第z+(R-1)个比特,z+(R-1)能被R整除。
结合第六方面,在第六方面的第八种可能的实现方式中,用于SL传输的符号包括上行链路UL符号或,用于SL传输的符号包括UL符号和灵活符号。
结合第六方面,在第六方面的第九种可能的实现方式中,获取模块获取资源指示信息,包括:获取模块从接入网设备获取第一信令,该第一信令包括资源指示信息。该第一信令包括无线资源控制RRC信令、媒体接入控制MAC信令、物理层信令。
第七方面,本申请提供一种资源分配的装置,该装置包括:确定模块和发送模块。确定模块,用于确定资源指示信息,该资源指示信息包括第一指示信息,第一指示信息用于指示配置为用于SL传输的时隙和/或符号;发送模块,用于向终端设备发送上述述资源指示信息。
结合第七方面,在第七方面的第一种可能的实现方式中,第一信息用于指示配置为用于SL传输的时隙和/或符号,包括:第一信息用于指示配置为用于SL传输的时隙和/或符号的位置,和/或第一信息用于指示配置为用于SL传输的时隙和/或符号的长度。
结合第七方面,在第七方面的第二种可能的实现方式中,配置为用于SL传输的时隙和/或符号为可用于SL传输的时隙的子集,可用于SL传输的时隙包括上行符号,或者,可用于SL传输的时隙包括灵活符号,或者,可用于SL传输的时隙包括上行符号和第一符号,或者,可用于SL传输的时隙包括灵活符号和第一符号,或者,可用于SL传输的时隙包括灵活符号、上行符号和第一符号;其中,灵活符号在可用于SL传输的时隙的位置和长度可预先配置。
第八方面,本申请提供一种资源分配的装置,该装置包括:获取模块和传输模块。获取模块,用于获取资源指示信息,该资源指示信息包括第一信息,第一信息用于指示配置为用于SL传输的时隙和/或符号;传输模块,用于基于上述述资源指示信息进行SL传输。
结合第八方面,在第八方面的第一种可能的实现方式中,第一信息用于指示配置为用于SL传输的时隙和/或符号,包括:第一信息用于指示配置为用于SL传输的时隙和/或符号的位置,和/或第一信息用于指示配置为用于SL传输的时隙和/或符号的长度。
结合第八方面,在第八方面的第二种可能的实现方式中,配置为用于SL传输的时隙和/或符号为可用于SL传输的时隙的子集,可用于SL传输的时隙包括上行符号,或者,可用于SL传输的时隙包括灵活符号,或者,可用于SL传输的时隙包括上行符号和第一符号,或者,可用于SL传输的时隙包括灵活符号和第一符号,或者,可用于SL传输的时隙包括灵活符号、上行符号和第一符号;其中,灵活符号在可用于SL传输的时隙的位置和长度可预先配置。
第九方面,本申请提供一种资源分配的装置,该资源分配的装置具有实现上述任一方面任一项的资源分配的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十方面,提供一种资源分配的装置,包括:处理器;处理器用于与存储器耦合,并读取存储器中的指令之后,根据指令执行如上述任一方面中任一项的资源分配方法。
第十一方面,提供一种资源分配的装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该资源分配的装置运行时,该处理器执行该存储器存储的该计算机执 行指令,以使该资源分配的装置执行如上述任一方面中任一方面中任一项的资源分配的方法。
第十二方面,本申请提供一种资源分配的装置,该装置包括:处理器、存储器、总线和通信接口。其中,存储器用于存储一个或多个程序。该一个或多个程序包括计算机执行指令,当该装置运行时,处理器执行该存储器存储的该计算机执行指令,以使该装置执行任一方面及其各种可选的实现方式中任意之一所述的资源分配的方法。
第十三方面,提供一种电路系统,电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的资源分配的方法。
第十四方面,提供一种芯片,芯片包括处理器,处理器和存储器耦合,存储器存储有程序指令,当存储器存储的程序指令被处理器执行时实现上述任一方面任意一项的资源分配的方法。
第十五方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当计算机执行该指令时,该计算机执行上述任一方面及其各种可选的实现方式中任意之一所述的资源分配的方法。
第十六方面,本申请提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述任一方面及其各种可选的实现方式中任意之一所述的资源分配的方法。
第十七方面,提供一种资源分配系统,该资源分配系统包括上述方面的终端设备(或者终端芯片)和接入网设备(或者接入网设备的芯片)。
其中,第二方面至第十七方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的资源分配的方法及装置应用的通信网络结构示意图;
图2为本申请实施例提供的通信设备的硬件结构示意图;
图3为本申请实施例提供的一种5G NR-TDD无线帧结构示意图;
图4为本申请实施例提供的一种资源分配的方法示意图一;
图5为本申请实施例提供的一种资源分配的方法示意图二;
图6为本申请实施例提供的一种SL资源配置的方法示意图一;
图7为本申请实施例提供的一种SL资源配置的方法示意图二;
图8为本申请实施例提供的一种SL资源配置的方法示意图三;
图9为本申请实施例提供的一种SL资源配置的方法示意图四;
图10为本申请实施例提供的一种SL资源配置的方法示意图五;
图11为本申请实施例提供的一种SL资源配置的方法示意图六;
图12为本申请实施例提供的一种资源分配的装置的结构示意图一;
图13为本申请实施例提供的一种资源分配的装置的结构示意图二;
图14为本申请实施例提供的一种资源分配的装置的结构示意图三;
图15为本申请实施例提供的一种资源分配的装置的结构示意图四;
图16为本申请实施例提供的一种资源分配的装置的结构示意图五。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。
此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的描述中,除非另有说明,“多个”的含义是指两个或两个以上。
本申请实施例的技术方案可以应用于终端之间可以通过SL通信的系统,例如V2X通信系统、设备间(device-to device,D2D)通信系统、车联网通信系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统,如NR系统,及未来的通信系统,如6G系统等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的无线通信系统。如图1所示,该通信系统包括第一终端设备、第二终端设备和网络设备。其中,上述终端设备,如第一终端设备或第二终端设备,可以通过空口连接到网络设备,以便接收网络服务。上述网络设备主要用于实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理功能。
此外,上述第一终端设备和第二终端设备也可以在侧行链路(side link,SL)上直接通信,如V2X通信。容易理解,上述SL上直接通信所使用的资源池,可以是网络设备配置的资源池,如第一终端设备和第二终端设备与网络设备的空口连接正常时所使用的资源池,也可以是第一终端设备和第二终端设备中预配置的资源池,如设备厂商在终端设备出厂前根据协议规定事先配置在终端设备中的资源池。
在本申请实施例中,上述网络设备可以为接入网设备,为位于上述V2X通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板, 或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU)、全球导航卫星系统(global navigation satellite system,GNSS)等。
上述终端设备为接入上述V2X通信系统,且具有无线收发功能的终端或可设置于该终端的芯片。该终端设备也可以称为用户装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU等。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的资源分配方法。
需要说明的是,上述网络设备为可选项。例如,如果存在基站,则是有网络覆盖的场景;如果没有基站,则是属于无网络覆盖的场景。在有网络覆盖的场景下,终端设备间的通信可以使用网络设备配置的资源进行,在没有网络覆盖的场景下,终端设备间的通信可以使用预配置的资源进行。
本申请实施例中部分场景以图1所示的V2X通信系统中的场景为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他移动通信系统中,相应的名称也可以用其他移动通信系统中的对应功能的名称进行替代。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他终端设备,图1中未予以画出。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的通信方法可以适用于如图2所示的通信装置200。通信装置200可以用于实现如图1中终端设备的功能,比如可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有终端功能的部件。通信装置200还可以用于实现如图1中网络设备的功能,可以是网络设备,也可以是应用于网络设备中的芯片或者其他具有网络设备功能的部件。如图2所示,通信装置200可以包括至少一个处理器201,存储器202、收发器203。其中,至少一个处理器201,存储器202、收发器203之间存在信号连接,如可以通过总线连接。
下面结合图2对通信装置200的各个构成部件进行具体的介绍:
处理器201是通信装置200的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器201是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器201可以通过运行或执行存储在存储器202内的软件程序,以及调用存储在存储器202内的数据,执行通信装置200的各种功能。
在具体的实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置200也可以包括多个处理器,例如图2中所示的处理器201和处理器204。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器202可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器202可以独立存在,也可以和处理器201集成在一起。
其中,所述存储器202用于存储执行本申请方案的软件程序,并由处理器201来控制执行。
在本申请实施例中,上述存储器202可以存储有软件程序或指令。当通信装置200上电后,处理器201可以读取并执行存储器202中存储的软件程序或指令,以使得通信装置200可以执行下述方法实施例所述的资源分配方法。上述具体实现方式可以参考下述方法实施例,此处不再赘述。
收发器203,用于与其他通信装置之间的通信。当然,收发器203还可以用于与通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。收发器203可以包括接收单元实现接收功能,以及发送单元实现发送功能。
图2中示出的通信装置200的结构并不构成对通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如下,为了阐述本申请实施例的资源分配方法,先介绍资源分配所基于的无线帧结构。图3为本申请实施例提供的一种5G NR-TDD无线帧结构示意图。5G NR支持多种无线帧结构,子载波间隔包括15KHz,30KHz,60KHz,120KHz,240Khz模式。在TDD帧结构中,一个TDD无线帧长度为10ms,分为10个子帧(未在图中示出),子帧长度为1ms。当子载波间隔为30KHz时,一个TDD无线帧包括20个时隙,此时每个子帧包含两个时隙,每个时隙长度为0.5ms,5个时隙构成一个Pattern周期,时隙0-时隙4构成Pattern 1(P1) 周期,时隙5-时隙9构成Pattern 2(P2)周期,即一个Pattern周期长度为2.5ms。10个时隙(时隙0-时隙9)构成一组Pattern(P1+P2)周期。每个时隙由13个符号构成。可以理解的是,在不同无线帧结构中,由于子载波间隔是可变的,子载波间隔越大,则每个符号的时间长度越短,而在不同无线帧结构中,子帧长度固定为1ms,所以子载波间隔越大,则一个子帧所包含的符号越多,即图3中仅为示例性的给出一种TDD帧结构,可以理解的是本申请实施例所述的资源分配方法同样适用于其他帧结构。在5G NR-TDD无线帧的结构设计中,一个5G NR-TDD无线帧既可以用于传输上行信号又可以用于传输下行信号,即5G NR系统可以定义TDD上下行子帧配置。本申请实施例提供的资源分配方法中,示例性的,提供的一种5G NR-TDD上下行子帧配置,如图3所示,网状填充并写有“DL”的时隙表示用于下行链路(down link,DL)传输的时隙,网状填充的符号表示用于DL传输的符号;点状填充且写有“UL”的时隙表示用于上行链路(up link,UL)传输的时隙,点状填充的符号表示用于UL传输的符号;空白且写有字母“S”的时隙表示用于提供保护间隔或者提供数据传输的灵活(flexible slot)时隙(特殊时隙),空白且写有字母“X”的符号表示用于提供保护间隔或者提供数据传输的灵活符号(特殊符号)(flexible symbol),灵活符号为灵活时隙中的符号。如上述描述,时隙0-时隙2为下行时隙;时隙3-时隙4为灵活时隙;时隙5-时隙6为下行时隙;时隙7为灵活时隙;时隙8-时隙9为上行时隙。图3示例性的给出了时隙3,其中时隙3包括的13个符号中结尾连续两个符号为灵活符号,其余符号为下行符号;时隙4包括的13个符号中开始的连续两个符号为灵活符号,其余符号为上行符号;时隙7包括的13个符号中结尾连续4个符号为灵活符号,其余符号为下行符号。可以理解的是,图3中的5G NR-TDD上下行子帧配置仅为一种示例性的配置,也可以根据应用场景的配置不同种类的无线帧,和/或有不同的上下行配置,比如Pattern 1也可以全部为上行时隙,Pattern 2为混合时隙(包含上行时隙、灵活时隙和下行时隙)。本申请实施例对此不做具体限定。
本申请实施例提供一种资源分配的方法,以接入网设备为基站为例,如图4所示,该方法可以包括S101-S104:
S101、接入网设备确定资源指示信息。
具体的,上述资源指示信息用于指示SL的传输资源,SL的传输资源包括第一资源和/或第二资源,即SL传输资源包括第一资源,或者包括第二资源,或者包括第一资源和第二资源。该第一资源包括一个或多个第一时隙,该第二资源包括一个或多个第二时隙。其中,第一时隙中用于SL传输的符号数不同于第二时隙中用于SL传输的符号数。在一种可能的设计中,第一时隙中的全部符号用于SL传输,第二时隙中的部分符号用于SL传输。在另一种可能的设计中,每一第一时隙中的全部符号用于SL传输,每一第二时隙中的部分符号用于SL传输。比如,资源指示信息指示SL传输资源包括图3所示的时隙3的前4个符号,还可以包括时隙7的前3个符号。
如下介绍几种如何指示哪一时隙中哪一个或几个符号用于SL传输的具体实现方案:
方案1:在一种可能的实现方式中,上述资源指示信息包括第一SL资源位图(bitmap),该第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。
在本申请实施例中,可用于SL传输的时隙,指的是能够用于SL传输的时隙的集合,可以将这个集合中的时隙配置给终端进行SL通信使用,其中,配置给终端使用的时隙可 以为全部符号给终端使用,也可以为部分符号给终端使用。具体的,用于SL传输的时隙,可以是排除一些预留时隙、同步时隙、下行时隙等时隙之外的时隙。在一种可能的设计中,可用于SL传输的时隙只包括上行时隙。在另一种可能的设计中,可用于SL传输的时隙包括上行时隙和灵活时隙。
其中,若P为1,上述第一SL资源位图中的比特取值用于指示对应的时隙为全部符号用于SL传输或者部分符号用于SL传输;这种情况下,时隙的使用状态可以预配置在终端中或者通过信令由网络设备配置给终端。
需要说明的是,本申请实施例中通过信令由网络设备配置给终端为:网络设备通过无线资源控制(radio resource control,RRC)信令,媒体接入控制(Medium Access Control,MAC)信令或物理层信令中的至少一项发送给终端。本申请实施例中资源位图为bitmap。在此进行统一说明,下文涉及上述内容不再进行赘述。
若P为大于1的整数,上述第一SL资源位图中相邻P个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数。其中,相邻P个比特包括第一SL资源位图中的第x至第x+(P-1)个比特,其中,x+(P-1)能被P整除。
在本申请实施例中,一个时隙中用于SL传输的符号的起始位置和符号个数,可以称为该时隙的使用状态或者配置状态,或者还可以为其他名称。在不同使用状态下,时隙中用于SL传输的符号起始位置不同,和/或,符号个数不同。比如,在一种使用状态下,时隙中用于传输SL传输的符号的起始位置是第一个符号,符号个数为3,在另一种使用状态下,时隙中用于传输SL传输的符号的起始位置是第二个符号,符号个数也为3。在本申请实施例中,同一时隙,可以配置相同的使用状态,或者不同的使用状态。类似的,可以为不同时隙配置相同或不同的使用状态。
如果有N(N为正整数)种使用状态,需要的用于表示N种使用状态的bit位为Y=logN的上限。示例性的,当N为2时,只需要一比特即可表示slot的两种使用状态。如此,当第一资源位图中相邻P个比特表示一个使用状态时,P个比特总共能够指示的使用状态的个数为2^P。
其中,第一SL资源位图的bit长度可以称为第一SL资源位图的周期长度。当P=1时,第一SL资源位图的周期长度可以为第一slot长度的倍数,或者第一slot长度为第一SL资源位图的周期长度的倍数。其中,第一slot长度为现有5G系统中通过common的RRC信令配置的Pattern 1或者Pattern 1+Pattern 2所表示的slot长度(如图3中所示的P1加P2的长度)中除去传输下行链路信号的时隙以及除去预留slot(并未在图3中示出)后剩余的部分slot的长度和。其中,倍数为正整数,预留slot指的是网络设备预先配置好的用于传输检测或者同步信息资源的slot。
也就是说,当系统中只配置了pattern 1时,第一slot长度为现有5G系统中通过common的RRC信令配置的Pattern 1所表示的slot长度中除去传输下行链路信号的时隙以及除去预留slot后剩余的部分slot的长度和;当系统中既配置了pattern 1又配置了pattern 2时,第一slot长度为现有5G系统中通过common的RRC信令配置的Pattern 1+Pattern 2所表示的slot长度中除去传输下行链路信号的时隙以及除去预留slot后剩余的部分slot的长度和。其中,该长度和为slot个数和。上述周期长度可以为第一slot长度的倍数,通常为几个第一slot长度形成一个可以周期性适用的SL传输的配置;或者上述周期长度能够被第 一slot长度整除(即第一slot长度为该周期长度的倍数),通常为一个第一slot长度包含几个可以周期性适用的SL传输的配置。其中,用于SL传输的slot格式指示的RRC信令可以为基站通过系统信息块(System Message Block,SIB)指示的信令或者任何专有信令(dedicated signaling)。
可选的,当UL slot和UL symbol可以用于SL传输时,以图3中所示的无线帧结构为例,slot 8,slot 9为UL slot,因此,这两个slot可以用于SL传输,slot 4包含的符号中有UL symbol,所以slot 4也可以用于SL传输。因此图3中所示的一个无线帧中,从左至右依次对应的S,UL,UL,S,UL,UL(slot 4、slot 8、slot 9)这6个slot可以用于SL传输。所以,第一SL资源位图中的比特位数为6的P倍。示例性的,假设将这6个可用于SL传输的slot中,配置为第3个时隙和第5个时隙中的全部符号用于SL传输,第1、2、4和6个时隙中的部分符号用于SL传输。假设当某比特位=1时,表示指示对应的时隙为全部符号用于SL传输;当某比特位=0时,表示指示对应的时隙为部分符号用于SL传输。
那么,当P=1时,第一SL资源位图中的比特位数为6,第一SL资源位图可以表示为001010。这种情况下,即P=1时,时隙的使用状态可以预配置在终端中,即用于SL传输的部分符号可以预配置在终端中,比如预配置slot中最后4个symbol用于SL传输,或者单数的部分符号用于SL传输,比如第一、三、五个符号用于SL传输,双数的部分符号用于SL传输。也可以通过信令由网络设备配置给终端,当然,也可以有其他配置方式,本申请实施例对此不做具体限定。
当然,在实际实现中,也有可能比特位=0时,表示指示对应的时隙为全部符号用于SL传输;当某比特位=1时,表示指示对应的时隙为部分符号用于SL传输,本申请实施例对0、1具体表示的内容不做限定。
当P=2时,第一SL资源位图中的比特位数为可用于SL传输的时隙数*P=6*2=12,其中,对于6个时隙中的每一时隙,均有两位比特用于指示该时隙的使用状态。假设00表示对应的slot的全部符号用于SL传输;01,10和11对应的slot的部分符号用于SL传输,比如,01指示对应slot的第一个符号至第四个符号用于SL传输,10指示对应slot的第二个符号至第四个符号用于SL传输,11指示对应slot的第一个符号至第六个符号用于SL传输。那么当使用第一SL资源位图表示上述6个用于SL传输的slot的使用状态时,第一SL资源位图可以为01 10 00 11 10 00。以这12比特中的前两个比特为例说明,前2个比特用于指示6个时隙中的第一个时隙的使用状态,即该第一个时隙中的第一个至第四个符号被配置用于SL传输。
当然,00、01、10、11具体分别指示什么使用状态,可以根据实际实现设置,本申请实施例这里不做限定。
需要说明的是,本申请实施例中,可以动态调整P值,从而可以指示不同数目的符号的使用状态。其中,P值较小时,基站向终端发送的资源指示信息的开销较小。P值较大时,可以指示时隙的更多使用状态,即能够更加精细化的指示时隙的使用状态,这样一来,可以有更多的终端资源配置方案,并且,为终端配置的资源可以是更细粒度的,便于满足不同终端的通信需求。
需要说明的是,上述已指出,第一资源位图中相邻P个比特位用于指示第一SL资源位图中对应的时隙使用状态,其中,相邻P个比特,并非相邻的任意相邻的P个比特。以 可用于SL传输的时隙数为6,P=3为例,第一资源位图的形式为xxx xxx xxx xxx xxx xxx(x仅表示比特占位,并不表示具体数值,比如xxx也可能是001),相邻P个比特包括所述第一SL资源位图中的第x至第x+(P-1)个比特,其中,x+(P-1)能被P整除,x为变量。x=1时,从第一个比特位开始指示,第1至3(x=1,x+(P-1)=1+(3-1))个比特位用于指示第一个时隙的使用状态,类似的,x=4时,第4至6(可以被P=3整除)个比特位用于指示第二个时隙的使用状态,当x=5时,x+(P-1)=7,7不能被3整除。可见,相邻P个比特是否能够用于指示对应时隙的使用状态,与该相邻时隙中最后一个比特在第一资源位图中的位置有关。
可选的,当UL slot、UL symbol和灵活symbol可以用于SL传输时,参见图3中所示,slot 8,slot 9为UL slot可以用于SL传输,slot 4包含有UL symbol和灵活symbol可以用于SL传输,slot 3和slot 7包含有灵活symbol可以用于SL传输。因此图3中所示的一个无线帧中,从左至右依次对应的S,S,S,UL,UL,S,S,S,UL,UL(slot 3、slot 4、slot 7、slot 8、slot 9)这10个slot可以用于SL传输,所以,第一SL资源位图中的比特位数为10的P倍。示例性的,假设这10个可用于SL传输的slot中,第5个时隙和第9个时隙中的全部符号用于SL传输,剩余时隙中的部分符号用于SL传输。那么,当P=1时,第一SL资源位图中的比特位数为10,假设当某比特位=1时,表示指示对应的时隙为全部符号用于SL传输;当某比特位=0时,表示指示对应的时隙为部分符号用于SL传输。那么,第一SL资源位图可以表示为0000100010。当P=2时,第一SL资源位图中的比特位数为20,对应的slot使用状态有四种,分别通过00,01,10,11来标识不同的slot使用状态。如上文所述,可以将00表示对应的slot的全部符号用于SL传输;01,10和11对应的slot的部分符号用于SL传输,分别对应相同或不同的用于SL传输的符号的起始位置以及符号个数。那么上述10个用于SL传输的slot使用状态用第一SL资源位图表示,此时,第一SL资源位图可以为10 01 10 01 00 11 10 11 00 11。
方案2:在另一种可能的实现方式中,上述资源指示信息除了包括第一SL资源位图,还包括第二SL资源位图。其中,第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。第二SL资源位图中的比特位数为可用于SL传输的时隙数的Q倍,Q为正整数。
与上述方案类似,第一SL资源位图中的比特取值用于指示对应的时隙是否全部符号用于SL传输。若Q为1,第二SL资源位图中的比特取值用于指示对应的时隙是否部分符号用于SL传输;若Q为大于1的整数,第二SL资源位图中相邻Q个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,所述相邻Q个比特包括所述第二SL资源位图中的第y至第y+(Q-1)个比特,其中,y+(Q-1)能被Q整除。
需要说明的是,本申请实施例中,可以动态调整Q值,从而可以指示不同数目的符号的使用状态。其中,Q值较小时,基站向终端发送的资源指示信息的开销较小。Q值较大时,可以指示时隙的更多使用状态,即能够更加精细化的指示时隙的使用状态,这样一来,可以有更多的终端资源配置方案,并且,为终端配置的资源可以是更细粒度的,便于满足不同终端的通信需求。
需要说明的是,上述已指出,第二资源位图中相邻Q个比特位用于指示用于SL传输的时隙数,其中,相邻Q个比特,并非相邻的任意相邻的Q个比特。以可用于SL传输的 时隙数为6,Q=3为例,第二资源位图的形式为yyy yyy yyy yyy yyy yyy(y仅表示比特占位,并不表示具体数值,比如yyy也可能是001),相邻Q个比特包括所述第二SL资源位图中的第y至第y+(Q-1)个比特,其中,y+(Q-1)能被Q整除,y为变量。y=1时,从第一个比特位开始指示,第1至3(y=1,y+(Q-1)=1+(3-1)=3)个比特位用于指示第一个时隙的使用状态,类似的,y=4时,第4至6(可以被Q=3整除)个比特位用于指示第二个时隙的使用状态,当y=5时,y+(Q-1)=7,7不能被3整除。可见,相邻Q个比特是否能够用于指示对应时隙的使用状态,与该相邻时隙中最后一个比特在第二资源位图中的位置有关。
在本申请实施例中,一个时隙中用于SL传输的符号的起始位置和符号个数,可以称为该时隙的使用状态或者配置状态,或者还可以为其他名称。在不同使用状态下,时隙中用于SL传输的符号起始位置不同,和/或,符号个数不同。如果有N(N为正整数)种使用状态,需要的用于表示N种使用状态的bit位为Y=logN的上限。示例性的,当N为2时,只需要一比特即可表示slot的两种使用状态。如此,当第二资源位图中相邻Q个比特表示一个使用状态时,Q个比特总共能够指示的使用状态的个数为2^Q。
其中,第一SL资源位图与第二SL资源位图的bit长度一样或不一样。第一SL资源位图的bit长度还可以称为第一SL资源位图的周期长度,第二SL资源位图的bit长度还可以称为第二SL资源位图的周期长度,这里统一说明,下文不再赘述。
当P=1,Q=1时,第一SL资源位图和第二SL资源位图的周期长度可以为第一slot长度的倍数,或者第一slot长度为该周期长度的倍数。其中,第一slot长度为现有5G系统中通过common的RRC信令配置的Pattern 1或者Pattern 1+Pattern 2所表示的slot长度(如图3中所示的P1加P2的长度)中除去传输下行链路信号的时隙以及除去预留slot(并未在图3中示出)后剩余的部分slot的长度和。其中,倍数为正整数,预留slot指的是网络设备预先配置好的用于传输检测或者同步信息资源的slot。
也就是说,当系统中只配置了pattern 1时,第一slot长度为现有5G系统中通过common的RRC信令配置的Pattern 1所表示的slot长度中除去传输下行链路信号的时隙以及除去预留slot后剩余的部分slot的长度和;当系统中既配置了pattern 1又配置了pattern 2时,第一slot长度为现有5G系统中通过common的RRC信令配置的Pattern 1+Pattern 2所表示的slot长度中除去传输下行链路信号的时隙以及除去预留slot后剩余的部分slot的长度和。其中,该长度和为slot个数和。上述周期长度可以为第一slot长度的倍数,通常为几个第一slot长度形成一个可以周期性适用的SL传输的配置;或者上述周期长度能够被第一slot长度整除(即第一slot长度为该周期长度的倍数),通常为一个第一slot长度包含几个可以周期性适用的SL传输的配置。其中,用于SL传输的slot格式指示的RRC信令可以为基站通过系统信息块(System Message Block,SIB)指示的信令或者任何专有信令(dedicated signaling)。
可选的,当UL slot和UL symbol可以用于SL传输时,参见图3中所示,slot 8,slot 9为UL slot可以用于SL传输,slot 4包含的符号中有UL symbol,所以slot 4也可以用于SL传输。因此图3中所示的一个无线帧对应的S,UL,UL,S,UL,UL(slot 4、slot 8、slot 9)这6个slot可以用于SL传输。所以,第一SL资源位图中的比特位数为6的P倍,第二SL资源位图中的比特位数为6的Q倍。示例性的,假设这6个可用于SL传输的slot 中,配置为第3个时隙和第5个时隙中的全部符号用于SL传输,第2个时隙和第4个时隙中的部分符号用于SL传输。那么,当P=1,Q=1时,第一SL资源位图中的比特位数为6,第二SL资源位图中的比特位数为6。假设当某比特位=1时,表示“是”的含义,即指示对应的时隙为全部符号用于SL传输或指示对应的时隙为部分符号用于SL传输;当某比特位=0时,表示“否”的含义,即指示对应的时隙不是全部符号用于SL传输或对应的时隙不是部分符号用于SL传输。那么,第一SL资源位图可以表示为001010,第二SL资源位图可以表示为010100。此种情况下,当某一时隙的部分符号用于SL传输时,具体使用时隙中的哪部分符号,可以预先配置在终端中。
当P=1,Q=2时,第一SL资源位图不变仍表示为001010,第二SL资源位图中的比特位数为6*2=12,其中,两个比特可以指示一个时隙的使用状态,两个比特总共能够指示slot的四种使用状态。那么上述6个用于SL传输的slot中,第2个时隙和第4个时隙中的部分符号用于SL传输的使用状态可以用第二SL资源位图表示,此时,第二SL资源位图可以为00 10 00 00 10 00。其中,第二资源位图中的00、10分别指示时隙的不同使用状。
可选的,当UL slot、UL symbol和灵活symbol可以用于SL传输时,参见图3中所示,slot 8,slot 9为UL slot可以用于SL传输,slot 4包含有UL symbol和灵活symbol可以用于SL传输,slot 3和slot 7包含有灵活symbol可以用于SL传输。因此图3中所示的一个无线帧对应的S,S,S,UL,UL,S,S,S,UL,UL(slot 3、slot 4、slot 7、slot 8、slot 9)这10个slot可以用于SL传输。所以,第一SL资源位图中的比特位数为10的P倍,第二SL资源位图中的比特位数为10的Q倍。示例性的,假设这10个可用于SL传输的slot中,第5个时隙和第9个时隙中的全部符号用于SL传输,第1、4、6、8个时隙中的部分符号用于SL传输。那么,当P=1,Q=1时,第一SL资源位图中的比特位数为10,第二SL资源位图中的比特位数为10。假设当某比特位=1时,表示“是”的含义,即指示对应的时隙为全部符号用于SL传输或指示对应的时隙为部分符号用于SL传输;当某比特位=0时,表示“否”的含义,即指示对应的时隙不是全部符号用于SL传输或对应的时隙不是部分符号用于SL传输。那么,第一SL资源位图可以表示为0000100010,第二SL资源位图可以表示为1001010100。当P=1,Q=2时,第一SL资源位图不变仍表示为0000100010,第二SL资源位图中的比特位数为10*2=20,那么上述6个用于SL传输的slot中第1、4、6、8个时隙中的部分符号用于SL传输的使用状态用第二SL资源位图表示,此时,第二SL资源位图可以为10 00 00 01 00 11 00 11 00 00。
方案3:在另一种可能的实现方式中,上述资源指示信息包括第一SL资源位图和第二SL资源位图。其中,第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。第二SL资源位图中的比特位数为配置为用于SL传输的时隙数的R倍,R为正整数。
第一SL资源位图中的比特取值用于指示对应的时隙是否配置为用于SL传输。若R为1,第二SL资源位图中的比特取值用于指示配置为用于SL传输的时隙是否部分符号用于SL传输;若R为大于1的整数,第二SL资源位图中相邻R个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,相邻R个比特包括第二SL资源位图中的第z至第z+(R-1)个比特,其中,z+(R-1)能被R整除。
需要说明的是,本申请实施例中,可以动态调整R值,从而可以指示不同数目的符号 的使用状态。其中,R值较小时,基站向终端发送的资源指示信息的开销较小。R值较大时,可以指示时隙的更多使用状态,即能够更加精细化的指示时隙的使用状态,这样一来,可以有更多的终端资源配置方案,并且,为终端配置的资源可以是更细粒度的,便于满足不同终端的通信需求。
需要说明的是,上述已指出,第二资源位图中相邻R个比特位用于指示配置为用于SL传输的时隙数,其中,相邻R个比特,并非相邻的任意相邻的R个比特。以可用于SL传输的时隙数为6,R=3为例,第二资源位图的形式为zzz zzz zzz zzz zzz zzz(z仅表示比特占位,并不表示具体数值,比如zzz也可能是001),相邻R个比特包括所述第二SL资源位图中的第z至第z+(R-1)个比特,其中,z+(R-1)能被R整除,z为变量。z=1时,从第一个比特位开始指示,第1至3(z=1,z+(R-1)=1+(3-1)=3)个比特位用于指示第一个时隙的使用状态,类似的,z=4时,第4至6(可以被R=3整除)个比特位用于指示第二个时隙的使用状态,当z=5时,z+(R-1)=7,7不能被3整除。可见,相邻R个比特是否能够用于指示对应时隙的使用状态,与该相邻时隙中最后一个比特在第二资源位图中的位置有关。
在本申请实施例中,一个时隙中用于SL传输的符号的起始位置和符号个数,可以称为该时隙的使用状态或者配置状态,或者还可以为其他名称。在不同使用状态下,时隙中用于SL传输的符号起始位置不同,和/或,符号个数不同。如果有N(N为正整数)种使用状态,需要的用于表示N种使用状态的bit位为Y=logN的上限。示例性的,当N为2时,只需要一比特即可表示slot的两种使用状态。如此,当第二资源位图中相邻R个比特表示一个使用状态时,R个比特总共能够指示的使用状态的个数为2^R。
具体的,第一SL资源位图中被配置为用于SL传输的slot既有整个slot(包含该slot中全部符号)用于SL传输的slot,也有该slot中部分符号(仅包含该slot中的部分符号)用于SL传输的slot。第二SL资源位图用于进一步指示第一SL资源位图中被配置用于SL传输的slot中每个被配置用于SL传输的slot中具体哪些符号用于SL传输。作为一种示例,第二SL资源位图用于进一步指示第一SL资源位图中所有被配置用于SL传输的slot中,哪些slot是全部符号用于SL传输,或者哪些slot是该slot中的部分符号用于SL传输。当第二SL资源位图指示的是哪些slot是该slot中的部分符号用于SL传输时,意味着第一SL资源位图中被指示用于SL的剩余slot是全部符号用于SL传输。第一SL资源位图与第二SL资源位图的bit长度一样或者不一样。第一SL资源位图的bit长度也可以称为第一SL资源位图的周期长度,第二SL资源位图的bit长度也可以称为第二SL资源位图的周期长度。
第一SL资源位图的周期长度可以为第一slot长度的倍数,或者第一slot长度为该周期长度的倍数。其中,第一slot长度为现有5G系统中通过common的RRC信令配置的Pattern 1或者Pattern 1+Pattern 2所表示的slot长度(如图3中所示的P1加P2的长度)中除去传输下行链路信号的时隙以及除去预留slot(并未在图3中示出)后剩余的部分slot的长度和。其中,倍数为正整数,预留slot指的是网络设备预先配置好的用于传输检测或者同步信息资源的slot。
也就是说,当系统中只配置了pattern 1时,第一slot长度为现有5G系统中通过common的RRC信令配置的Pattern 1所表示的slot长度中除去传输下行链路信号的时隙以及除去 预留slot后剩余的部分slot的长度和;当系统中既配置了pattern 1又配置了pattern 2时,第一slot长度为现有5G系统中通过common的RRC信令配置的Pattern 1+Pattern 2所表示的slot长度中除去传输下行链路信号的时隙以及除去预留slot后剩余的部分slot的长度和。其中,该长度和为slot个数和。上述周期长度可以为第一slot长度的倍数,通常为几个第一slot长度形成一个可以周期性适用的SL传输的配置;或者上述周期长度能够被第一slot长度整除(即第一slot长度为该周期长度的倍数),通常为一个第一slot长度包含几个可以周期性适用的SL传输的配置。其中,用于SL传输的slot格式指示的RRC信令可以为基站通过系统信息块(System Message Block,SIB)指示的信令或者任何专有信令(dedicated signaling)。
可选的,当UL slot和UL symbol可以用于SL传输时,参见图3中所示的应用场景,slot 8,slot 9为UL slot可以用于SL传输,slot 4包含的符号中有UL symbol,所以slot 4也可以用于SL传输。因此图3中所示的一个无线帧对应的S,UL,UL,S,UL,UL(slot 4、slot 8、slot 9)这6个slot可以用于SL传输。示例性的,假设这6个可用于SL传输的slot中,有4个slot配置为用于SL传输的slot,其中,第3个时隙和第5个时隙中的全部符号用于SL传输,第2个时隙和第4个时隙中的部分符号用于SL传输。所以,第一SL资源位图中的比特位数为6的P倍,第二SL资源位图中的比特位数为4的R倍。
那么,当P=1,R=1时,第一SL资源位图中的比特位数为6,第二SL资源位图中的比特位数为4,假设当某比特位=1时,表示“是”的含义,即指示第一SL资源位图中对应的时隙配置为用于SL传输或指示第二SL资源位图中对应的时隙为部分符号用于SL传输;当某比特位=0时,表示“否”的含义,即指示第一SL资源位图中对应的时隙未配置为用于SL传输或指示第二SL资源位图中对应的时隙不是部分符号用于SL传输。那么,第一SL资源位图可以表示为011110,意味着第二至四个时隙均被配置为用于SL传输,第二SL资源位图可以表示为1010(第2个时隙为配置为用于SL传输的时隙中的第1个时隙,其为部分符号用于SL传输的时隙,故第二SL资源位图中的第一个bit位用1表示)。这种情况下,第二SL资源位图中标记为0的比特位可以指示该slot中的符号全部用于SL传输,还可以指示该slot中的符号是部分符号用于SL传输但是以另一种不同的配置方式用于SL传输。当然,第一资源位图与第二资源位图中0和1的含义还可以分别为其他,比如,第一资源位图中某比特位=1时,指示对应的时隙配置为用于SL传输,当某比特位=0时,指示对应的时隙未配置为用于SL传输。第二资源位图中某比特为0时,指示对应的时隙为部分符号用于SL传输;比特为1,指示对应的时隙不是部分符号用于SL传输。
当P=1,R=2时,第一SL资源位图不变仍表示为011110,第二SL资源位图中的比特位数为8,对应的slot使用状态有四种,分别通过00,01,10,11来标识不同的slot使用状态。可以将00表示对应的slot不是部分符号用于SL传输(由于第二SL资源位图只用于指示对应的slot中部分符号用于SL传输时的使用状态,故,其他非部分符号用于SL传输的slot可以利用其他SL资源位图指示)或者00表示对应的slot是该slot中全部符号用于SL传输;01,10和11对应的slot的部分符号用于SL传输,分别对应相同或不同的用于SL传输的符号的起始位置以及符号个数。那么上述4个配置为用于SL传输的slot中第2个时隙和第4个时隙中的部分符号用于SL传输的使用状态用第二SL资源位图表示,此时,第二SL资源位图可以为10 00 01 00。
可选的,当UL slot、UL symbol和灵活symbol可以用于SL传输时,参见图3中所示的应用场景,slot 8,slot 9为UL slot可以用于SL传输,slot 4包含有UL symbol和灵活symbol可以用于SL传输,slot 3和slot 7包含有灵活symbol可以用于SL传输。因此图3中所示的一个无线帧对应的S,S,S,UL,UL,S,S,S,UL,UL(slot 3、slot 4、slot 7、slot 8、slot 9)这10个slot可以用于SL传输。示例性的,假设这10个可用于SL传输的slot中,有6个slot配置为用于SL传输的slot,其中,第5个时隙和第9个时隙中的全部符号用于SL传输,第1、4、6、8个时隙中的部分符号用于SL传输。所以,第一SL资源位图中的比特位数为10的P倍,第二SL资源位图中的比特位数为6的R倍。那么,当P=1,R=1时,第一SL资源位图中的比特位数为10,第二SL资源位图中的比特位数为6,假设当某比特位=1时,表示“是”的含义,即指示对应的时隙配置为用于SL传输或指示对应的时隙为部分符号用于SL传输;当某比特位=0时,表示“否”的含义,即指示对应的时隙未配置为用于SL传输或对应的时隙不是部分符号用于SL传输。那么,第一SL资源位图可以表示为1001110110,第二SL资源位图可以表示为110110。当P=1,Q=2时,第一SL资源位图不变仍表示为1001110110,第二SL资源位图中的比特位数为12,对应的slot使用状态有四种,分别通过00,01,10,11来标识不同的slot使用状态。可以将00表示对应的slot不是部分符号用于SL传输(由于第二SL资源位图只用于指示对应的slot中部分符号用于SL传输时的使用状态,故,其他非部分符号用于SL传输的slot可以利用其他SL资源位图指示);01,10和11对应的slot的部分符号用于SL传输,分别对应相同或不同的用于SL传输的符号的起始位置以及符号个数。那么上述6个用于SL传输的slot中第1、4、6、8个时隙中的部分符号用于SL传输的使用状态用第二SL资源位图表示,此时,第二SL资源位图可以为10 01 00 11 01 00。
S102、接入网设备向终端设备发送资源指示信息。
接入网设备通过将上述资源指示信息发送给设备终端,使得设备终端明确可以用于SL传输的资源,以使用该资源进行后续的SL传输。具体的,接入网设备向终端设备发送第一信令,该第一信令包括上述资源指示信息,第一信令包括RRC信令、MAC信令、或物理层信令中的至少一种。使得终端设备可以按照第一信令所指示的资源进行配置SL传输资源用于SL传输。并且,接入网设备还可以根据当前网络状态等信息,确定不同的资源指示信息,灵活实时的为不同的终端设备指示用于SL传输的资源,提高传输效率。
S103、终端设备获取资源指示信息。
具体的,终端设备从接入网设备接收资源指示信息,或者该资源指示信息为预配置的资源指示信息。其中,预配置的指的是通过预先写好在终端设备,或者通过操作维护管理(operation administration and maintenance,OAM)配置给终端设备。
需要说明的是,当终端设备通过预配置方式获取资源指示信息时,上述S101、S102为可选步骤,即可以不执行S101、S102。
当然,终端设备还可以预配置资源指示信息中的一部分,并通过基站获取资源指示信息中的另一部分。比如,在方案1中,终端从基站接收包括001010的资源指示信息,用于指示地1、2、4、6个时隙中每一时隙的部分符号用于SL传输。第3、5个时隙中的全部符号用于SL传输。其中,具体部分符号指的是哪些符号,可以预配置在终端中。比如,终端预配置时隙中的第一至第四个符号用于SL传输。则终端仅需通过基站接收6比特信 息,就可以获知具体使用哪些符号进行SL传输。终端无需从基站获取关于部分符号的起始位置和符号个数的具体指示,节约了基站向终端发送信令的开销,能够提升网络的资源利用率。
当然,终端还可以从基站获取关于部分符号的起始位置和符号个数的具体指示,这种方式中,基站可以根据当前网络的通信状况,比如通信质量,不同终端的不同通信需求,灵活实时的为不同终端指示相同或不同的部分符号的起始位置和符号个数,如此,能够更加契合终端的通信需求,满足终端的服务差异化需求,提升终端的通信质量。
S104、终端设备基于资源指示信息进行SL传输。
具体的,利用获取的资源指示信息进行SL传输资源的配置,进而进行SL传输。
本申请提供的一种资源分配方法,接入网设备确定资源指示信息,该资源指示信息用于指示SL的传输资源,SL的传输资源包括第一资源和/或第二资源,第一资源包括一个或多个第一时隙,第二资源包括一个或多个第二时隙。其中,第一时隙中用于SL传输的符号数不同于第二时隙中用于SL传输的符号数。接入网设备向终端设备发送资源指示信息。如此,为终端配置的用于SL传输的资源可以是整个时隙,也可以是时隙中的某一个或一些符号,使得资源配置粒度更加精细化,以便于可以更加灵活的配置终端设备中用于SL传输的资源,提高终端设备传输SL资源的效率。
本申请实施例提供一种资源分配的方法,以接入网设备为基站为例,参见图5,该方法可以包括S201-S204:
S201、接入网设备确定资源指示信息。
本申请实施例中,资源指示信息也可以称为配置信息,接入网设备确定的资源指示信息包括第一信息,该第一信息用于指示配置为用于SL传输的时隙和/或符号。具体的,第一信息用于指示配置为用于SL传输的时隙和/或符号的位置,和/或第一信息用于指示配置为用于SL传输的时隙和/或符号的长度。其中,配置为用于SL传输的时隙和/或符号的位置也可以称为配置为用于SL传输的时隙和/或符号的分布,该位置可以通过隐示指示,或者显示指示。当为隐示指示时,可以通过mode标识隐性地通知配置为用于SL传输的时隙和/或符号的位置的含义。配置为用于SL传输的时隙和/或符号的长度即为配置为用于SL传输的时隙和/或符号的数量。
其中,配置为用于SL传输的时隙和/或符号为可用于SL传输的时隙的子集。其中,可用于SL传输的时隙包括上行符号,或者,包括灵活符号,或者,包括上行符号和第一符号,或者,包括灵活符号和第一符号,或者,包括灵活符号、上行符号和第一符号。其中,灵活符号在可用于SL传输的时隙的位置和长度可预先配置或者通过信令进行配置。其中,通过信令进行配置为网络设备通过RRC信令,MAC信令,或物理层信令中至少一种进行配置通知给用户设备。第一符号为下行符号或者预配置的用于传输其它资源的符号,比如同步资源或者预留资源等。
需要说明的是,本申请实施例中,UL时隙也可以认为是UL符号对应的一个slot的所有符号都用于UL传输,同样,灵活时隙也可以认为是灵活符号对应的一个slot的所有符号都用于灵活传输。当然,也可以认为UL时隙和UL符号是分别的用slot和symbol来表示;灵活时隙和灵活符号是分别的用slot和symbol来表示。
如下介绍几种资源指示信息的内容或者资源指示信息中所包含的如何指示哪几个时 隙或者哪一时隙中哪一个或几个符号用于SL传输的具体实现方案。资源指示信息可以是通过RRC信令指示配置为SL传输的时隙和/符号的位置及数量。RRC信令沿用目前common/dedicated-TDD-configuration的基本指示,但需要增加SL slots和/或SL symbols指示等第一信息以通知用于SL传输的资源。
方案1:在一种可能的实现方式中,对于不同的实施场景可以定义不同的模式(mode)以指示对应时隙和/或符号的配置状态(或称使用状态)。比如,对于UL slot和UL symbol可以用于SL传输实施场景,定义mode 1,对于UL slot、UL symbol、灵活slot和灵活symbol可以用于SL传输的实施场景,定义mode 2,或mode 3中一种或者多种的组合。进一步,可以在mode 1下针对不同配置状态对应的用于SL传输的时隙或符号的位置重新定义mode1.1,mode1.2,可以在mode 2下针对不同配置状态对应的用于SL传输的时隙或符号的位置重新定义mode 2.1,mode 2.2,2.3,2.4…。在上述RRC信令指示中指示每种标注mode下用于SL传输的时隙或符号的位置和长度的标示,从而使得当RRC信令下发给终端设备时,终端设备能够根据mode的标示理解其中所包含的SL slot或SL symbol的含义,正确解读该用于指示用于SL传输的时隙或符号的位置和长度的RRC信令。
如下结合图6具体阐述第一信息如何指示配置为用于SL传输的时隙和/或符号的位置和长度,示例性的给出了8个时隙,slot 0-slot 7,slot 2示例性的给出了包含的13个symbol。其中,网格状填充的时隙(J1)表示用于传输下行链路信号的时隙,网状填充的符号(K1)表示用于传输下行链路信号的符号;空白的符号(K2)表示用于提供保护间隔或者提供数据传输的灵活符号(特殊符号);斜线填充的时隙(J2’)表示用于传输侧行链路信号的时隙;点状填充的时隙(J2)表示用于传输上行链路信号的时隙,点状填充的符号(K3)表示用于传输上行链路信号的符号。其中,J1包含2个DL slot,K1包含4个DL symbol,K2包含4个flexible symbol,K3包含5个UL symbol,J2’包含2个SL slot,J2包含3个UL slot。
首先,定义模式,比如,定义如下模式1:
Mode 1:UL slot和UL symbol可以用于SL传输;
其次,在UL slot和UL symbol可以用于SL传输的模式1下,定义配置为用于SL传输的时隙的位置和长度,比如,定义如下位置和长度的SL时隙:
Mode1.1:定义J2’(SL slot)在UL symbol的结尾;
具体的,本申请实施例利用如下格式的第一信息确定帧的具体结构,以便于确定J2’的具体位置:
->J1(DL slot,UU),K1(DL symbol,UU),…(FFF…),K3(UL symbol,UU),J2’(SL slot),J2(UL slot,UU);
其中,J1(DL slot,UU)为用于DL传输的slot个数,K1(DL symbol,UU)为用于DL传输的symbol个数,K3(UL symbol,UU)为用于UL传输的symbol个数,J2’(SL slot)为用于SL传输的slot个数,J2(UL slot,UU)为用于UL传输的slot个数;并且用于SL传输的slot位于用于UL传输的symbol之后,位于用于UL传输的slot之前。
具体的,结合图6,第一信息可以如下:
->J1(DL slot,UU),K1(DL symbol,UU),K2(flexible symbol,UU),K3(UL symbol,UU),J2’(SL slot),J2(UL slot,UU);
即,NR下终端设备UU接口的资源分配方式为:在K3上行符号结束位置之后的符号或时隙,可以配置为用于SL传输的符号或时隙。那么,配置为用于SL传输的符号或时隙长度,可以由J2’的长度数值得出。
当然,在UL slot和UL symbol可以用于SL传输的模式1下,还可以定义在帧结构中处于如下位置的SL时隙,参见图7所示(图7中各个字母的含义与图6中相同):
Mode1.2:定义J2’(SL slot)在UL slot的结尾;
->J1(DL slot,UU),K1(DL symbol,UU),…(FFF…),K3(UL symbol,UU),J2(UL slot,UU),J2’(SL slot);
其中,J1(DL slot,UU)为用于DL传输的slot个数,K1(DL symbol,UU)为用于DL传输的symbol个数,K3(UL symbol,UU)为用于UL传输的symbol个数,J2(UL slot,UU)为用于UL传输的slot个数,J2’(SL slot)为用于SL传输的slot个数;并且用于SL传输的slot位于用于UL传输的slot之后。
具体的,如Mode1.2中所示位置的时隙可以具体用如下第一信息指示:
->J1(DL slot,UU),K1(DL symbol,UU),K2(flexible symbol,UU),K3(UL symbol,UU),J2(UL slot,UU),J2’(SL slot);
即,NR下终端设备UU接口的资源分配方式为:在J2上行时隙结束位置之后的符号或时隙,可以配置为SL传输的符号或时隙,并且,配置为用于SL传输的符号或时隙长度,可以由J2’的长度数值得出。
可见,在同一模式下,即在UL slot和UL symbol可以用于SL传输的模式下,可以有相同或不同的SL时隙使用状态,即用于SL传输的时隙的起始位置和时隙长度可能相同或不同。
类似的,可以定义其他模式,比如,定义UL slot、UL symbol和flexible symbol可以用于SL传输的如下模式。
如下结合图8具体阐述第一信息如何指示配置为用于SL传输的时隙和/或符号的位置和长度,示例性的给出了11个时隙,slot 0-slot 10,slot 2和slot 5示例性的给出了包含的13个symbol。其中,网格状填充的时隙(J1)表示用于传输下行链路信号的时隙,网状填充的符号(K1)表示用于传输下行链路信号的符号;斜线填充的符号(L1)表示用于传输侧行链路信号的符号;斜线填充的时隙(M1和J2’)表示用于传输侧行链路信号的时隙;空白的符号(K2)表示用于提供保护间隔或者提供数据传输的灵活符号(特殊符号);点状填充的符号(K3)表示用于传输上行链路信号的符号;点状填充的时隙(J2)表示用于传输上行链路信号的时隙。其中,J1包含2个DL slot,K1包含4个DL symbol,L1包含9个SL symbol,M1包含2个SL slot,K2包含8个flexible symbol,K3包含5个UL symbol,J2’包含2个SL slot,J2包含3个UL slot。
首先,定义模式,比如,定义如下模式2:
Mode 2:UL slot、UL symbol和flexible symbol可以用于SL传输;
其次,在UL slot、UL symbol和flexible symbol可以用于SL传输的模式2下,定义用于指示SL传输的时隙的位置和长度,比如,定义如下位置和长度的SL时隙:
Mode 2.1:定义L1(F symbols),M1(SL slots),以及J2’(SL slot)位于UL slots的开始处;
->J1(DL slot,UU),K1(DL symbol,UU),L1(F symbols),M1(SL slots),…(FFF…),K3(UL symbol,UU),J2’(SL slot),J2(UL slot,UU);
其中,J1(DL slot,UU)为用于DL传输的slot个数,K1(DL symbol,UU)为用于DL传输的symbol个数,L1(F symbols)为灵活符号个数(表示可以存在于资源指示信息,也可以不存在,当不存在时,一个周期长度((Pattern 1所表示的slot长度(P1)或Pattern 1+Pattern 2所表示的slot长度(P1+P2)))减去所有的slot以及symbol个数的指示所剩余的就是灵活符号个数),K3(UL symbol,UU)为用于UL传输的symbol个数,J2(UL slot,UU)为用于UL传输的slot个数,J2’(SL slot)为用于SL传输的slot个数,M1(SL slots)为用于SL传输的slot个数;其中,用于SL传输的M1(SL slots)位于用于UL传输的symbol之前,具体为用于UL传输的symbol与flexible symbol(即,FFF…)补足一个slot之前,用于SL传输的J2’(SL slot)位于用于UL传输的symbol之后,及用于UL传输的slot之前。
其中,F symbols的位置及数量由DL symbol的位置及数量决定,用于补足一个完整的时隙,那么在图8中,SL slots(M1)位于F symbols(L1)之后,具体的,第一信息可以如下:
->J1(DL slot,UU),K1(DL symbol,UU),L1(F symbols),M1(SL slots),K2(flexible symbol,UU),K3(UL symbol,UU),J2’(SL slot),J2(UL slot,UU);
即,NR下终端设备UU接口的资源分配方式为:在K3上行符号结束位置之后的时隙J2’,可以配置为用于SL传输的时隙,K1下行符号所在时隙的剩余符号可以配置为用于SL传输的符号L1,与L1相邻的时隙可以配置为用于SL传输的时隙M1。那么,配置为用于SL传输的符号或时隙长度,可以由M1、J2’的长度数值得出。
当然,F symbols的位置及数量也可以由UL symbol的位置及数量决定,用于补足一个完整的时隙,那么在图9中,SL slots(M2)位于F symbols(L2)开始处,具体的,由于符号数量的变化,重新定义如下位置和长度的SL时隙:
Mode 2.2:定义M2(SL slots),L2(F symbols),以及J2’(SL slot)位于UL slots的开始处;
->J1(DL slot,UU),K1(DL symbol,UU),…(FFF…),M2(SL slots),L2(F symbols),K3(UL symbol,UU),J2’(SL slot),J2(UL slot,UU);
其中,J1(DL slot,UU)为用于DL传输的slot个数,K1(DL symbol,UU)为用于DL传输的symbol个数,L2(F symbols)为灵活符号个数(表示可以存在于第一信息,也可以不存在,当不存在时,一个周期长度(P1或P1+P2)减去所有的slot以及symbol个数的指示所剩余的就是灵活符号个数),K3(UL symbol,UU)为用于UL传输的symbol个数,J2(UL slot,UU)为用于UL传输的slot个数,J2’(SL slot)为用于SL传输的slot个数,M2(SL slots)为用于SL传输的slot个数;其中,用于SL传输的M2(SL slots)位于用于UL传输的symbol之前,具体为用于UL传输的symbol与L2(F symbols)之前,用于SL传输的J2’(SL slot)位于用于UL传输的symbol之后,及用于UL传输的slot之前。
其中,示例性的,定义K2=9,M2=2,L2=8,那么,结合图9,第一信息如下:
->J1(DL slot,UU),K1(DL symbol,UU),K2(flexible symbol,UU),M2(SL slots),L2(F symbols),K3(UL symbol,UU),J2’(SL slot),J2(UL slot,UU);
即,NR下终端设备UU接口的资源分配方式为:在K3上行符号结束位置之后的时隙 J2’,可以配置为用于SL传输的时隙,K3上行符号所在时隙的剩余符号可以配置为用于SL传输的符号L2,与L2相邻的时隙可以配置为用于SL传输的时隙M2。那么,配置为用于SL传输的符号或时隙长度,可以由M2、J2’的长度数值得出。
当然,在UL slot、UL symbol和flexible symbol可以用于SL传输的模式2下,还可以定义在帧结构中处于如下位置的SL时隙,参见图10所示(图10中各个字母的含义与图8中相同):
Mode 2.3:定义L1(F symbols),M1(SL slots),以及J2’(SL slot)位于UL slots的结尾处;
->J1(DL slot,UU),K1(DL symbol,UU),L1(F symbols),M1(SL slots),…(FFF…),K3(UL symbol,UU),J2(UL slot,UU),J2’(SL slot);
其中,J1(DL slot,UU)为用于DL传输的slot个数,K1(DL symbol,UU)为用于DL传输的symbol个数,L1(F symbols)为灵活符号个数(表示可以存在于第一信息,也可以不存在,当不存在时,一个周期长度(Pattern 1所表示的slot长度(P1)或Pattern 1+Pattern 2所表示的slot长度(P1+P2))减去所有的slot以及symbol个数的指示所剩余的就是灵活符号个数),K3(UL symbol,UU)为用于UL传输的symbol个数,J2(UL slot,UU)为用于UL传输的slot个数,J2’(SL slot)为用于SL传输的slot个数,M1(SL slots)为用于SL传输的slot个数;其中,用于SL传输的M1(SL slots)位于用于UL传输的symbol之前,具体为用于UL传输的symbol与flexible symbol(即,FFF…)补足一个slot之前,用于SL传输的J2’(SL slot)位于用于UL传输的slot之后。
其中,上述flexible symbol(即,FFF…)的数量不需要指明,鉴于用于补足一个完整的时隙,隐性的根据K3与一个slot所包含的symbol之差就可以获知。在图10中,SL slots(M1)位于F symbols(L1)之后,具体的,如Mode2.3中所示位置的时隙可以具体用如下第一信息指示:
->J1(DL slot,UU),K1(DL symbol,UU),L1(F symbols),M1(SL slots),K2(flexible symbol,UU),K3(UL symbol,UU),J2(UL slot,UU),J2’(SL slot);
在图10中,SL slots(M1)位于F symbols(L1)结尾处,具体的,第一信息可以如下:
->J1(DL slot,UU),K1(DL symbol,UU),L1(F symbols),M1(SL slots),K2(flexible symbol,UU),K3(UL symbol,UU),J2’(SL slot),J2(UL slot,UU);
即,NR下终端设备UU接口的资源分配方式为:在J2上行时隙结束位置之后的时隙J2’,可以配置为用于SL传输的时隙,K1下行符号所在时隙的剩余符号可以配置为用于SL传输的符号L1,与L1相邻的时隙可以配置为用于SL传输的时隙M1。那么,配置为用于SL传输的符号或时隙长度,可以由M1、J2’的长度数值得出。
当然,F symbols的位置及数量也可以由UL symbol的位置及数量决定,用于补足一个完整的时隙,那么在图11中,SL slots(M2)位于F symbols(L2)开始处,具体的,由于符号数量的变化,重新定义如下位置和长度的SL时隙:
Mode 2.4:定义M2(SL slots),L2(F symbols),以及J2’(SL slot)位于UL slots的结尾处;
->J1(DL slot,UU),K1(DL symbol,UU),…(FFF…),M2(SL slots),L2(F symbols), K3(UL symbol,UU),J2(UL slot,UU),J2’(SL slot);
其中,J1(DL slot,UU)为用于DL传输的slot个数,K1(DL symbol,UU)为用于DL传输的symbol个数,L2(F symbols)为灵活符号个数(表示可以存在于第一信息,也可以不存在,当不存在时,一个周期长度(P1,P1+P2)减去所有的slot以及symbol个数的指示所剩余的就是灵活符号个数),K3(UL symbol,UU)为用于UL传输的symbol个数,J2(UL slot,UU)为用于UL传输的slot个数,J2’(SL slot)为用于SL传输的slot个数,M2(SL slots)为用于SL传输的slot个数;其中,用于SL传输的M2(SL slots)位于用于UL传输的symbol之前,具体为用于UL传输的symbol与L2(F symbols)之前,用于SL传输的J2’(SL slot)位于用于UL传输的slot之后。
其中,示例性的,定义K2=9,M2=2,L2=8,那么,结合图11,第一信息如下:
->J1(DL slot,UU),K1(DL symbol,UU),K2(flexible symbol,UU),M2(SL slots),L2(F symbols),K3(UL symbol,UU),J2(UL slot,UU),J2’(SL slot);
即,NR下终端设备UU接口的资源分配方式为:在J2上行时隙结束位置之后的时隙J2’,可以配置为用于SL传输的时隙,K3上行符号所在时隙的剩余符号可以配置为用于SL传输的符号L2,与L2相邻的时隙可以配置为用于SL传输的时隙M2。那么,配置为用于SL传输的符号或时隙长度,可以由M2、J2’的长度数值得出。
上述Mode 2中,在第一信息中定义L1(F symbols)和L2(F symbols),用于补充其所在时隙的原本空白的符号空间。比如,由于K1表示DL symbol,即所在时隙部分符号为DL symbol,那么在Mode 2.1中使L1(F symbols)位于K1(DL symbol,UU)之后,以实现将K1所在时隙的剩余符号配置为用于SL传输的灵活符号。
方案2:在一种可能的实现方式中,建立index,用于指示每一可以配置为用于SL传输的时隙和/或符号的位置和长度。即index与配置为用于SL传输的时隙和/或符号的位置和长度之间存在映射关系。在上述RRC信令(SL-TDD-configuration)包含index,从而使得当RRC信令下发给终端设备时,终端设备能够根据index的含义理解其中所包含的SL slot或SL symbol的含义,正确解读该用于指示用于SL传输的时隙或符号的位置和长度的RRC信令。具体的,每一index的含义,或者说该映射关系,可以通过该RRC信令,或别的RRC信令通知给终端设备,或预先设置在终端设备。
示例性的,可以将方案1中的不同的模式(Mode 1、Mode 2)及对应的子模式(Mode1.1、Mode 1.2、Mode 2.1、Mode 2.2、Mode 2.3、Mode 2.4)依次对应不同index,并包含于上述RRC信令或别的RRC信令从而使得终端设备能获知上述参数(如L,M和J2’中任意一者,具体为L1,L2,M1,M2,J2’中任意一者)的含义。
或者,在上述RRC信令中指示方案1中的不同的模式及对应的子模式,并且L1,L2,M1,M2,J2’按照顺序依次指示从而使得终端设备能获知L1,L2,M1,M2,J2’的含义。
再或者,在上述RRC信令中指示方案1中的不同的模式及对应的子模式,并且L1,L2,M1,M2,J2’被用不同的字母或符号指示从而使得终端设备能获知L1,L2,M1,M2,J2’的含义。
方案3:在一种可能的实现方式中,可以预先定义用于SL传输的时隙或符号的位置,通过RRC信令指示配置为SL传输的时隙和/符号的数量。其中,预先定义可以是预先设置在终端设备处。其中,通过RRC信令指示配置为SL传输的时隙和/符号的数量,可以参照 方案1。
方案4:在一种可能的实现方式中,在下发的第一信息中对周期内(P1或P1+P2)的时隙或符号都赋予相应的指示含义,使得终端设备接收到第一信息后直接明确各个时隙或符号的含义。示例的,所述第一信息包含下述各个参数中至少一项或多项的组合:下行时隙个数,下行符号个数,上行符号个数,上行时隙个数,灵活时隙个数,灵活符号个数,SL时隙个数和SL符号个数。
其中,SL时隙或SL符号的位置可以参见上述方案1中各个模式下的位置描述。也可以为预先配置在终端设备或网络设备中。
需要说明的是,上述各个方案中,用于表示时隙或者符号数量(长度)的字母,如J1,J2,K1,K2,K3,L1,L2,M1,M2,J2’等均为大于等于1的正整数。
S202、接入网设备向终端设备发送资源指示信息。
接入网设备通过将上述资源指示信息发送给设备终端,使得设备终端明确可以用于SL传输的时隙和/或符号的位置和/长度,以便进行后续的SL传输。
S203、终端设备获取资源指示信息。
具体的,终端设备从接入网设备接收资源指示信息,或者该资源指示信息为预配置的资源指示信息。其中,预配置的指的是通过预先写好在终端设备,或者通过OAM配置给终端设备。
需要说明的是,当终端设备通过预配置方式获取资源指示信息时,上述S201、S202为可选步骤,即可以不执行S201、S202。
S204、终端设备基于资源指示信息进行SL传输。
具体的,利用获取的资源指示信息进行SL传输资源的配置,进而进行SL传输。
本申请提供的一种资源分配方法,接入网设备确定资源指示信息,该资源指示信息包括第一信息,该第一信息用于指示配置为用于SL传输的时隙和/或符号。如此,为终端配置的用于SL传输的资源可以是整个时隙,也可以是时隙中的某一个或一些符号,使得资源配置粒度更加精细化,以便于可以更加灵活的配置终端设备中用于SL传输的资源,提高终端设备传输SL资源的效率。
本申请实施例可以根据上述方法示例对装置进行功能模块或者功能单元的划分,例如,可以对应各个功能划分各个功能模块或者功能单元,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块或者功能单元的形式实现。其中,本申请实施例中对模块或者单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图12示出了上述实施例中所涉及的资源分配的装置的一种可能的结构示意图。该装置可以为接入网设备,或者为接入网设备的组件(比如芯片系统),该装置包括确定模块1201,发送模块1202。
确定模块1201,用于确定资源指示信息,资源指示信息用于指示SL的传输资源,SL的传输资源包括第一资源和/或第二资源,第一资源包括一个或多个第一时隙,第二资源包括一个或多个第二时隙;其中,第一时隙中用于SL传输的符号数不同于第二时隙中用于SL传输的符号数。
发送模块1202,用于向终端设备发送资源指示信息。
可选的,每一第一时隙中的全部符号用于SL传输,每一第二时隙中的部分符号用于SL传输。
可选的,资源指示信息包括第一SL资源位图,该第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。
可选的,若P为1,第一SL资源位图中的比特取值用于指示对应的时隙为全部符号用于SL传输或者部分符号用于SL传输;若P为大于1的整数,第一SL资源位图中相邻P个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻P个比特包括第一SL资源位图中的第x至第x+(P-1)个比特,x+(P-1)能被P整除。
可选的,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为可用于SL传输的时隙数的Q倍,Q为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否全部符号用于SL传输;若Q为1,第二SL资源位图中的比特取值用于指示对应的时隙是否部分符号用于SL传输;若Q为大于1的整数,第二SL资源位图中相邻Q个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻Q个比特包括第二SL资源位图中的第y至第y+(Q-1)个比特,y+(Q-1)能被Q整除。
可选的,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为配置为用于SL传输的时隙数的R倍,R为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否配置为用于SL传输;若R为1,第二SL资源位图中的比特取值用于指示配置为用于SL传输的时隙是否部分符号用于SL传输;若R为大于1的整数,第二SL资源位图中相邻R个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻R个比特包括第二SL资源位图中的第z至第z+(R-1)个比特,z+(R-1)能被R整除。
可选的,用于SL传输的符号包括上行链路UL符号或,用于SL传输的符号包括UL符号和灵活符号。
可选的,向终端设备发送资源指示信息,包括:向终端设备发送第一信令,该第一信令包括资源指示信息。该第一信令包括无线资源控制RRC信令、媒体接入控制MAC信令、物理层信令。
图13示出了上述实施例中所涉及的资源分配的装置的一种可能的结构示意图。该装置可以为终端设备,或者终端设备的组件(比如终端设备的芯片系统),该装置包括获取模块1301,传输模块1302。
获取模块1301,用于获取资源指示信息,资源指示信息用于指示侧行链路SL的传输资源,SL的传输资源包括第一资源和/或第二资源,第一资源包括一个或多个第一时隙,第二资源包括一个或多个第二时隙;其中,第一时隙中用于SL传输的符号数不同于第二时隙中用于SL传输的符号数。
传输模块1302,用于基于资源指示信息进行SL传输。
可选的,获取模块1301获取资源指示信息,包括:获取模块1301从接入网设备接收资源指示信息。
可选的,获取模块1301获取资源指示信息,包括:获取模块1301获取预配置的资源 指示信息。
可选的,每一第一时隙中的全部符号用于SL传输,每一第二时隙中的部分符号用于SL传输。
可选的,资源指示信息包括第一SL资源位图,该第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。
可选的,若P为1,第一SL资源位图中的比特取值用于指示对应的时隙为全部符号用于SL传输或者部分符号用于SL传输;若P为大于1的整数,第一SL资源位图中相邻P个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻P个比特包括第一SL资源位图中的第x至第x+(P-1)个比特,x+(P-1)能被P整除。
可选的,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为可用于SL传输的时隙数的Q倍,Q为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否全部符号用于SL传输;若Q为1,第二SL资源位图中的比特取值用于指示对应的时隙是否部分符号用于SL传输;若Q为大于1的整数,第二SL资源位图中相邻Q个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻Q个比特包括第二SL资源位图中的第y至第y+(Q-1)个比特,y+(Q-1)能被Q整除。
可选的,资源指示信息还包括第二SL资源位图,该第二SL资源位图中的比特位数为配置为用于SL传输的时隙数的R倍,R为正整数;第一SL资源位图中的比特取值用于指示对应的时隙是否配置为用于SL传输;若R为1,第二SL资源位图中的比特取值用于指示配置为用于SL传输的时隙是否部分符号用于SL传输;若R为大于1的整数,第二SL资源位图中相邻R个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,其中,相邻R个比特包括第二SL资源位图中的第z至第z+(R-1)个比特,z+(R-1)能被R整除。
可选的,用于SL传输的符号包括上行链路UL符号或,用于SL传输的符号包括UL符号和灵活符号。
可选的,获取模块1301获取资源指示信息,包括:获取模块1301从接入网设备获取第一信令,该第一信令包括资源指示信息。该第一信令包括无线资源控制RRC信令、媒体接入控制MAC信令、物理层信令。
图14示出了上述实施例中所涉及的资源分配的装置的一种可能的结构示意图。该装置可以为接入网设备,或者接入网设备的芯片系统,该装置包括确定模块1401,发送模块1402。
确定模块1401,用于确定资源指示信息,该资源指示信息包括第一指示信息,第一指示信息用于指示配置为用于SL传输的时隙和/或符号。
发送模块1402,用于向终端设备发送上述述资源指示信息。
可选的,第一指示信息用于指示配置为用于SL传输的时隙和/或符号,包括:第一指示信息用于指示配置为用于SL传输的时隙和/或符号的位置,和/或第一指示信息用于指示配置为用于SL传输的时隙和/或符号的长度。
可选的,配置为用于SL传输的时隙和/或符号为可用于SL传输的时隙的子集,可用 于SL传输的时隙包括上行符号,或者,可用于SL传输的时隙包括灵活符号,或者,可用于SL传输的时隙包括上行符号和第一符号,或者,可用于SL传输的时隙包括灵活符号和第一符号,或者,可用于SL传输的时隙包括灵活符号、上行符号和第一符号;其中,灵活符号在可用于SL传输的时隙的位置和长度可预先配置。
图15示出了上述实施例中所涉及的资源分配的装置的一种可能的结构示意图。该装置可以为终端设备,或者终端设备的芯片系统,该装置包括获取模块1501,传输模块1502。
获取模块1501,用于获取资源指示信息,该资源指示信息包括第一信息,第一信息用于指示配置为用于SL传输的时隙和/或符号。
传输模块1502,用于基于上述述资源指示信息进行SL传输。
可选的,第一指示信息用于指示配置为用于SL传输的时隙和/或符号,包括:第一指示信息用于指示配置为用于SL传输的时隙和/或符号的位置,和/或第一指示信息用于指示配置为用于SL传输的时隙和/或符号的长度。
可选的,配置为用于SL传输的时隙和/或符号为可用于SL传输的时隙的子集,可用于SL传输的时隙包括上行符号,或者,可用于SL传输的时隙包括灵活符号,或者,可用于SL传输的时隙包括上行符号和第一符号,或者,可用于SL传输的时隙包括灵活符号和第一符号,或者,可用于SL传输的时隙包括灵活符号、上行符号和第一符号;其中,灵活符号在可用于SL传输的时隙的位置和长度可预先配置。
图16示出了上述实施例中所涉及的通信装置的一种可能的结构示意图。该通信装置比如可以为上述的接入网设备或终端设备。该通信装置还可以以软件的形式存在,还可以为可用于设备的芯片。通信装置包括:处理单元1602和通信单元1603。可选的,通信单元1603还可以划分为发送单元(并未在图16中示出)和接收单元(并未在图16中示出)。其中,发送单元,用于支持该通信装置向其他网元发送信息。接收单元,用于支持该通信装置从其他网元接收信息。
可选的,通信装置还可以包括存储单元1601,用于存储该通信装置的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。比如,当该通信装置为终端设备时,存储单元1601,用于存储资源指示信息,该资源指示可以为通过通信单元1603接收到的接入网设备发送的资源指示信息,或者为预配置在该通信装置中的资源指示信息。
处理单元1602,可以用于支持该通信装置判断用于SL传输的资源。当该通信装置为接入网设备时,处理单元1602可以确定资源指示信息内容,以便于后续指示终端设备用于SL传输的资源。当该通信装置为终端设备时,处理单元1602用于处理上述获取的或预配置的资源指示信息,确定用于SL传输的资源,以便后续通信过程中进行SL传输。和/或用于本文所描述的方案的其它过程。
通信单元1603用于支持该通信装置和其他网元之间的通信,例如支持该通信装置执行图4中的S102或图5中的S202等。可选的,在将通信单元划分为发送单元和接收单元的情况下,发送单元,用于支持该通信装置向其他网元发送信息。比如支持该通信装置执行图4中的S102或图5中的S202等,和/或用于本文所描述的方案的其它过程。接收单元,用于支持该通信装置从其他网元接收信息。比如,支持该通信装置从终端接收数据等,和/或用于本文所描述的方案的其它过程。
一种可能的方式中,处理单元1602可以是控制器或图2所示的处理器201或处理器 204,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),应用专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1603可以是图2所示的收发器203、还可以是通信接口等。存储单元1601可以是图2所示的存储器202。
本申请的实施例还提供了一种计算机存储介质,用于存储为上述资源分配装置所用的计算机软件指令,器包含用于执行上述实施例中资源分配装置执行的步骤所设计的程序。
本申请的实施例还提供了一种计算机程序产品,例如计算机可读存储介质,包括用于执行上述实施例中资源分配装置执行的步骤所设计的程序。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法及装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服 务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种资源分配的方法,其特征在于,所述方法包括:
    接入网设备确定资源指示信息,所述资源指示信息用于指示侧行链路SL的传输资源,所述SL的传输资源包括第一资源和/或第二资源,所述第一资源包括一个或多个第一时隙,所述第二资源包括一个或多个第二时隙;其中,所述第一时隙中用于SL传输的符号数不同于所述第二时隙中用于SL传输的符号数;
    所述接入网设备向终端设备发送所述资源指示信息。
  2. 根据权利要求1所述的资源分配的方法,其特征在于,
    每一所述第一时隙中的全部符号用于SL传输,每一所述第二时隙中的部分符号用于SL传输。
  3. 根据权利要求1所述的资源分配的方法,其特征在于,
    所述资源指示信息包括第一SL资源位图,所述第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。
  4. 根据权利要求1-3中任一项权利要求所述的资源分配的方法,其特征在于,
    若P为1,所述第一SL资源位图中的比特取值用于指示对应的时隙为全部符号用于SL传输或者部分符号用于SL传输;
    若P为大于1的整数,所述第一SL资源位图中相邻P个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,所述相邻P个比特包括所述第一SL资源位图中的第x至第x+(P-1)个比特,其中,x+(P-1)能被P整除。
  5. 根据权利要求1-3中任一项权利要求所述的资源分配的方法,其特征在于,
    所述资源指示信息还包括第二SL资源位图,所述第二SL资源位图中的比特位数为可用于SL传输的时隙数的Q倍,Q为正整数;
    所述第一SL资源位图中的比特取值用于指示对应的时隙是否全部符号用于SL传输;
    若Q为1,所述第二SL资源位图中的比特取值用于指示对应的时隙是否部分符号用于SL传输;
    若Q为大于1的整数,所述第二SL资源位图中相邻Q个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,所述相邻Q个比特包括所述第二SL资源位图中的第y至第y+(Q-1)个比特,其中,y+(Q-1)能被Q整除。
  6. 根据权利要求1-3中任一项权利要求所述的资源分配的方法,其特征在于,
    所述资源指示信息还包括第二SL资源位图,所述第二SL资源位图中的比特位数为配置为用于SL传输的时隙数的R倍,R为正整数;
    所述第一SL资源位图中的比特取值用于指示对应的时隙是否配置为用于SL传输;
    若R为1,所述第二SL资源位图中的比特取值用于指示所述配置为用于SL传输的时隙是否部分符号用于SL传输;
    若R为大于1的整数,所述第二SL资源位图中相邻R个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,所述相邻R个比特包括所述第二SL资源位图中的第z至第z+(R-1)个比特,其中,z+(R-1)能被R整除。
  7. 根据权利要求1所述的资源分配的方法,其特征在于,
    用于SL传输的符号包括上行链路UL符号或,用于SL传输的符号包括UL符号和灵活符号。
  8. 根据权利要求1所述的资源分配的方法,其特征在于,所述接入网设备向终端设备发送所述资源指示信息,包括:
    向终端设备发送第一信令,所述第一信令包括所述资源指示信息,所述第一信令包括无线资源控制RRC信令、媒体接入控制MAC信令、物理层信令。
  9. 一种资源分配的方法,其特征在于,所述方法包括:
    终端设备获取资源指示信息,所述资源指示信息用于指示侧行链路SL的传输资源,所述SL的传输资源包括第一资源和/或第二资源,所述第一资源包括一个或多个第一时隙,所述第二资源包括一个或多个第二时隙;其中,所述第一时隙中用于SL传输的符号数不同于所述第二时隙中用于SL传输的符号数;
    所述终端设备基于所述资源指示信息进行SL传输。
  10. 根据权利要求9所述的资源分配的方法,其特征在于,所述终端设备获取资源指示信息,包括:终端设备从接入网设备接收所述资源指示信息。
  11. 根据权利要求9所述的资源分配的方法,其特征在于,所述终端设备获取资源指示信息,包括:所述资源指示信息为预配置的资源指示信息。
  12. 根据权利要求9所述的资源分配的方法,其特征在于,
    每一所述第一时隙中的全部符号用于SL传输,每一所述第二时隙中的部分符号用于SL传输。
  13. 根据权利要求9所述的资源分配的方法,其特征在于,
    所述资源指示信息包括第一SL资源位图,所述第一SL资源位图中的比特位数为可用于SL传输的时隙数的P倍,P为正整数。
  14. 根据权利要求13所述的资源分配的方法,其特征在于,
    若P为1,所述第一SL资源位图中的比特取值用于指示对应的时隙为全部符号用于SL传输或者部分符号用于SL传输;
    若P为大于1的整数,所述第一SL资源位图中相邻P个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,所述相邻P个比特包括所述第一SL资源位图中的第x至第x+(P-1)个比特,其中,x+(P-1)能被P整除。
  15. 根据权利要求13所述的资源分配的方法,其特征在于,
    所述资源指示信息还包括第二SL资源位图,所述第二SL资源位图中的比特位数为可用于SL传输的时隙数的Q倍,Q为正整数;
    所述第一SL资源位图中的比特取值用于指示对应的时隙是否全部符号用于SL传输;
    若Q为1,所述第二SL资源位图中的比特取值用于指示对应的时隙是否部分符号用于SL传输;
    若Q为大于1的整数,所述第二SL资源位图中相邻Q个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,所述相邻Q个比特包括所述第二SL资源位图中的第y至第y+(Q-1)个比特,其中,y+(Q-1)能被Q整除。
  16. 根据权利要求13所述的资源分配的方法,其特征在于,
    所述资源指示信息还包括第二SL资源位图,所述第二SL资源位图中的比特位数为配置为用于SL传输的时隙数的R倍,R为正整数;
    所述第一SL资源位图中的比特取值用于指示对应的时隙是否配置为用于SL传输;
    若R为1,所述第二SL资源位图中的比特取值用于指示所述配置为用于SL传输的时隙是否部分符号用于SL传输;
    若R为大于1的整数,所述第二SL资源位图中相邻R个比特取值用于指示对应的时隙中用于SL传输的符号的起始位置以及符号个数,所述相邻R个比特包括所述第二SL资源位图中的第z至第z+(R-1)个比特,其中,z+(R-1)能被R整除。
  17. 根据权利要求9所述的资源分配的方法,其特征在于,
    用于SL传输的符号包括上行链路UL符号或,用于SL传输的符号包括UL符号和灵活符号。
  18. 根据权利要求9所述的资源分配的方法,其特征在于,所述终端设备获取资源指示信息,包括:
    所述终端设备从接入网设备接收第一信令,所述第一信令包括所述资源指示信息,所述第一信令包括无线资源控制RRC信令、媒体接入控制MAC信令、物理层信令。
  19. 一种资源分配的方法,其特征在于,所述方法包括:
    接入网设备确定资源指示信息,所述资源指示信息包括第一信息,所述第一信息用于指示配置为用于SL传输的时隙和/或符号;
    所述接入网设备向终端设备发送所述资源指示信息。
  20. 根据权利要求19所述的资源分配的方法,其特征在于,所述第一信息用于指示配置为用于SL传输的时隙和/或符号,包括:
    所述第一信息用于指示配置为用于SL传输的时隙和/或符号的位置,和/或所述第一信息用于指示配置为用于SL传输的时隙和/或符号的长度。
  21. 根据权利要求19所述的资源分配的方法,其特征在于,
    所述配置为用于SL传输的时隙和/或符号为可用于SL传输的时隙的子集,所述可用于SL传输的时隙包括上行符号,或者,所述可用于SL传输的时隙包括灵活符号,或者,所述可用于SL传输的时隙包括上行符号和第一符号,或者,所述可用于SL传输的时隙包括灵活符号和第一符号,或者,所述可用于SL传输的时隙包括灵活符号、上行符号和第一符号;其中,灵活符号在所述可用于SL传输的时隙的位置和长度可预先配置。
  22. 一种资源分配的方法,其特征在于,所述方法包括:
    终端设备获取资源指示信息,所述资源指示信息包括第一信息,所述第一信息用于指示配置为用于SL传输的时隙和/或符号;
    所述终端设备基于所述资源指示信息进行SL传输。
  23. 根据权利要求22所述的资源分配的方法,其特征在于,所述第一信息用于指示配置为用于SL传输的时隙和/或符号,包括:
    所述第一信息用于指示配置为用于SL传输的时隙和/或符号的位置,和/或所述第一信息用于指示配置为用于SL传输的时隙和/或符号的长度。
  24. 根据权利要求22所述的资源分配的方法,其特征在于,
    所述配置为用于SL传输的时隙和/或符号为可用于SL传输的时隙的子集,所述可用于SL传输的时隙包括上行符号,或者,所述可用于SL传输的时隙包括灵活符号,或者,所述可用于SL传输的时隙包括上行符号和第一符号,或者,所述可用于SL传输的时隙包括灵活符号和第一符号,或者,所述可用于SL传输的时隙包括灵活符号、上行符号和第一符号;其中,灵活符号在所述可用于SL传输的时隙的位置和长度可预先配置。
  25. 一种资源分配的装置,其特征在于,包括:处理器、存储器;
    所述存储器用于存储计算机执行指令,当所述资源分配的装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置执行如权利要求1-8中任一项所述的资源分配的方法,或者,以使所述装置执行如权利要求9-18中任一项所述的资源分配的方法,或者,以使所述装置执行如权利要求19-21中任一项所述的资源分配的方法,或者,以使所述装置执行如权利要求22-24中任一项所述的资源分配的方法。
  26. 一种资源分配的装置,其特征在于,所述装置用于执行权利要求1-8中任一项所述的资源分配的方法,或者,所述装置用于执行权利要求9-18中任一项所述的资源分配的方法,或者,所述装置用于执行权利要求19-21中任一项所述的资源分配的方法,或者,所述装置用于执行权利要求22-24中任一项所述的资源分配的方法。
  27. 一种计算机可读存储介质,其特征在于,计算机可读存储介质中存储有指令,当计算机执行所述指令时,所述计算机执行如权利要求1至24中任一项所述的资源分配的方法。
  28. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,计算机执行如权利要求1至24中任一项所述的资源分配的方法。
PCT/CN2020/108733 2019-08-13 2020-08-12 资源分配的方法及装置 WO2021027855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910745871.9A CN112399371B (zh) 2019-08-13 2019-08-13 资源分配的方法及装置
CN201910745871.9 2019-08-13

Publications (1)

Publication Number Publication Date
WO2021027855A1 true WO2021027855A1 (zh) 2021-02-18

Family

ID=74570897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108733 WO2021027855A1 (zh) 2019-08-13 2020-08-12 资源分配的方法及装置

Country Status (2)

Country Link
CN (1) CN112399371B (zh)
WO (1) WO2021027855A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220216977A1 (en) * 2020-02-12 2022-07-07 Lg Electronics Inc. Method and device for setting resource pool in nr v2x
US20230028831A1 (en) * 2021-07-26 2023-01-26 Qualcomm Incorporated Optimizations for sidelink user equipment for integrated access and backhaul network

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113068147B (zh) * 2021-04-02 2023-04-07 上海中兴易联通讯股份有限公司 一种用于支持sidelink通信中资源复用的方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199707A1 (ko) * 2017-04-28 2018-11-01 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 단말의 신호 전송 방법 및 상기 방법을 이용하는 단말
EP3444990A1 (en) * 2016-05-12 2019-02-20 LG Electronics Inc. -1- Sidelink signal transmission/reception method of ue in wireless communication system
CN110034883A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 资源指示方法、终端设备和网络设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304351A (zh) * 2015-05-27 2017-01-04 中兴通讯股份有限公司 一种资源分配的方法和装置
CN109600839B (zh) * 2017-09-30 2020-11-27 华为技术有限公司 一种指示方法、确定方法、发送设备和接收设备
CN109802778B (zh) * 2017-11-16 2020-09-29 华为技术有限公司 一种指示和确定时域资源的方法、装置及系统
EP3911067B1 (en) * 2019-01-09 2024-08-21 Beijing Xiaomi Mobile Software Co., Ltd. Resource allocation method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3444990A1 (en) * 2016-05-12 2019-02-20 LG Electronics Inc. -1- Sidelink signal transmission/reception method of ue in wireless communication system
WO2018199707A1 (ko) * 2017-04-28 2018-11-01 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 단말의 신호 전송 방법 및 상기 방법을 이용하는 단말
CN110034883A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 资源指示方法、终端设备和网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink physical layer structure and procedure for NR V2X", 3GPP TSG RAN WG1 MEETING #94; R1-1808093, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 10 August 2018 (2018-08-10), Gothenburg, Sweden; 20180820 - 20180824, XP051515495 *
XIAOMI COMMUNICATIONS: "On synchronization for NR V2X", 3GPP TSG RAN WG1 MEETING #94; R1-1809177, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 10 August 2018 (2018-08-10), Gothenburg, Sweden; 20180820 - 20180824, XP051516547 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220216977A1 (en) * 2020-02-12 2022-07-07 Lg Electronics Inc. Method and device for setting resource pool in nr v2x
US11582012B2 (en) * 2020-02-12 2023-02-14 Lg Electronics Inc. Method and device for setting resource pool in NR V2X
US11838243B2 (en) 2020-02-12 2023-12-05 Lg Electronics Inc. Method and device for setting resource pool in NR V2X
US20230028831A1 (en) * 2021-07-26 2023-01-26 Qualcomm Incorporated Optimizations for sidelink user equipment for integrated access and backhaul network
US11937213B2 (en) * 2021-07-26 2024-03-19 Qualcomm Incorporated Optimizations for sidelink user equipment for integrated access and backhaul network

Also Published As

Publication number Publication date
CN112399371B (zh) 2022-10-11
CN112399371A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2021027855A1 (zh) 资源分配的方法及装置
JP2020529775A (ja) 無線通信システムにおける装置と方法
JP6905095B2 (ja) 信号伝送方法、関連装置、およびシステム
KR101849212B1 (ko) Wlan에서 ofdma 리소스 관리를 위한 시스템 및 방법
JP2022508998A (ja) サイドリンクチャネルリソースユニットの構成のための方法および装置
WO2019028699A1 (zh) 信号传输方法及相关设备
EP3512109B1 (en) Data communication method and related apparatus
TWI825174B (zh) 通訊裝置、控制裝置及通訊系統
CN104812053B (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
WO2018095241A1 (zh) 通信方法、装置和系统
WO2018027822A1 (zh) 一种调度分配信息传输方法、设备及系统
CN106470413B (zh) 多载波中邻近业务的处理方法及装置
WO2022078176A1 (zh) 部分带宽切换方法、装置及系统
CN112715042A (zh) 车辆到一切通信的设备以及所述设备的车辆到一切通信的方法
TW201941557A (zh) 無線通訊裝置及無線通訊方法
EP4044732A1 (en) Resource allocation method and device
EP3661311B1 (en) Resource indication method, system, computer readable storage medium and computer program product
WO2019010808A1 (zh) 传输控制方法及装置
EP3226629B1 (en) Internet-of-vehicles communication method and apparatus
CN111148233A (zh) 一种资源分配方法及基站
CN110830965B (zh) 一种d2d通信的方法、通信装置和通信系统
EP3142438A1 (en) Method for inter-device communications, base station, and user equipment
WO2020221058A1 (zh) 传输资源确定方法和装置
CN112564873A (zh) 参考信号传输方法及通信装置
US20220394710A1 (en) Resource indication method, resource determining method, and related apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853391

Country of ref document: EP

Kind code of ref document: A1